
Proceedings of the SIGDIAL 2014 Conference, pages 310–317,
Philadelphia, U.S.A., 18-20 June 2014. c©2014 Association for Computational Linguistics

Extrinsic Evaluation of Dialog State Tracking and Predictive Metrics

for Dialog Policy Optimization

Sungjin Lee

Language Technologies Institute,

Carnegie Mellon University,

Pittsburgh, Pennsylvania, USA

sungjin.lee@cs.cmu.edu

Abstract

During the recent Dialog State Tracking

Challenge (DSTC), a fundamental question

was raised: “Would better performance in

dialog state tracking translate to better

performance of the optimized policy by

reinforcement learning?” Also, during the

challenge system evaluation, another non-

trivial question arose: “Which evaluation

metric and schedule would best predict

improvement in overall dialog performance?”

This paper aims to answer these questions by

applying an off-policy reinforcement learning

method to the output of each challenge system.

The results give a positive answer to the first

question. Thus the effort to separately improve

the performance of dialog state tracking as

carried out in the DSTC may be justified. The

answer to the second question also draws

several insightful conclusions on the

characteristics of different evaluation metrics

and schedules.

1 Introduction

Statistical approaches to spoken dialog

management have proven very effective in

gracefully dealing with noisy input due to

Automatic Speech Recognition (ASR) and

Spoken Language Understanding (SLU) error

(Lee, 2013; Williams et al., 2013). Most recent

advances in statistical dialog modeling have been

based on the Partially Observable Markov

Decision Processes (POMDP) framework which

provides a principled way for sequential action

planning under uncertainty (Young et al., 2013).

In this approach, the task of dialog management

is generally decomposed into two subtasks, i.e.,

dialog state tracking and dialog policy learning.

The aim of dialog state tracking is to accurately

estimate the true dialog state from noisy

observations by incorporating patterns between

turns and external knowledge as a dialog unfolds

(Fig. 1). The dialog policy learning process then

strives to select an optimal system action given

the estimated dialog state.

Many dialog state tracking algorithms have

been developed. Few studies, however, have

reported the strengths and weaknesses of each

method. Thus the Dialog State Tracking

Challenge (DSTC) was organized to advance

state-of-the-art technologies for dialog state

tracking by allowing for reliable comparisons

between different approaches using the same

datasets (Williams et al., 2013). Thanks to the

DSTC, we now have a better understanding of

effective models, features and training methods

we can use to create a dialog state tracker that is

not only of superior performance but also very

robust to realistic mismatches between

development and deployment environments (Lee

and Eskenazi, 2013).

Despite the fruitful results, it was largely

limited to intrinsic evaluation, thus leaving an

important question unanswered: “Would the

improved performance in dialog state tracking

carry over to dialog policy optimization?”

Furthermore, there was no consensus on what

and when to measure, resulting in a large set of

metrics being evaluated with three different

schedules. With this variety of metrics, it is not

clear what the evaluation result means. Thus it is

important to answer the question: “Which metric

best serves as a predictor to the improvement in

dialog policy optimization” since this is the

ultimate goal, in terms of end-to-end dialog

performance. The aim of this paper is to answer

these two questions via corpus-based

experiments. Similar to the rationale behind the

DSTC, the corpus-based design allows us to

310

compare different trackers on the same data. We

applied a sample efficient off-policy

reinforcement learning (RL) method to the

outputs of each tracker so that we may examine

the relationship between the performance of

dialog state tracking and that of the optimized

policy as well as which metric shows the highest

correlation with the performance of the

optimized policy.

This paper is structured as follows. Section 2

briefly describes the DSTC and the metrics

adopted in the challenge. Section 3 elaborates on

the extrinsic evaluation method based on off-

policy RL. Section 4 presents the extrinsic

evaluation results and discusses its implication

on metrics for dialog state tracking evaluation.

Finally, Section 5 concludes with a brief

summary and suggestions for future research.

2 DSTC Task and Evaluation Metrics

This section briefly describes the task for the

DSTC and evaluation metrics. For more details,

please refer to the DSTC manual
1
.

1
 http://research.microsoft.com/apps/pubs/?id=169024

2.1 Task Description

DSTC data is taken from several different

spoken dialog systems which all provided bus

schedule information for Pittsburgh,

Pennsylvania, USA (Raux et al., 2005) as part of

the Spoken Dialog Challenge (Black et al., 2011).

There are 9 slots which are evaluated: route,

from.desc, from.neighborhood, from.monument,

to.desc, to.neighborhood, to.monument, date, and

time. Since both marginal and joint

representations of dialog states are important for

deciding dialog actions, the challenge takes both

into consideration. Each joint representation is an

assignment of values to all slots. Thus there are

9 marginal outputs and 1 joint output in total,

which are all evaluated separately.

The dialog tracker receives the SLU N-best

hypotheses for each user turn, each with a

confidence score. In general, there are a large

number of values for each slot, and the coverage

of N-best hypotheses is good, thus the challenge

confines its determination of whether a goal has

been reached to slots and values that have been

observed in an SLU output. By exploiting this

aspect, the task of a dialog state tracker is to

generate a set of observed slot and value pairs,

with a score between 0 and 1. The sum of all

Figure 1: An example of dialog state tracking for the Route slot. At each turn the system asks for user’s

goal or attempts to confirm one of hypotheses. The user’s utterance is recognized to output an N-best

list. The SLU module generates semantic inputs to the dialog manager by parsing the N-best

hypotheses. Each SLU hypothesis receives a confidence score. From the current turn’s SLU

hypotheses and all previous ones thus far, the dialog state tracker computes a probability distribution

over a set of dialog state hypotheses. Note that the number of hypotheses in a dialog state can be

different from the number of SLU hypotheses, e.g., at turn t+1, 3 and 5 respectively.

311

scores is restricted to sum to 1.0. Thus 1.0 – total

score is defined as the score of a special value

None that indicates the user’s goal has not yet

appeared on any SLU output.

2.2 Evaluation Metrics

To evaluate tracker output, the correctness of

each hypothesis is labeled at each turn. Then

hypothesis scores and labels over the entire

dialogs are collected to compute 11 metrics:

 Accuracy measures the ratio of states under

evaluation where the top hypothesis is

correct.

 ROC.V1 computes the following quantity:

 ()
 ()

where is the total number of top

hypotheses over the entire data and ()

denotes the number of correctly accepted top

hypotheses with the threshold being set to .

Similarly FA denotes false-accepts and FR

false-rejects. From these quantities, several

metrics are derived. ROC.V1.EER

computes FA.V1(s) where FA.V1(s) =

FR.V1(s). The metrics ROC.V1.CA05,

ROC.V1.CA10, and ROC.V1.CA20

compute CA.V1(s) when FA.V1(s) = 0.05,

0.10, and 0.20 respectively. These metrics

measure the quality of score via plotting

accuracy with respect to false-accepts so that

they may reflect not only accuracy but also

discrimination.

 ROC.V2 computes the conventional ROC

quantity:

 ()
 ()

 ()

ROC.V2.CA05, ROC.V2.CA10, and

ROC.V2.CA20 do the same as the V1

versions. These metrics measure the

discrimination of the score for the top

hypothesis independently of accuracy.

Note that Accuracy and ROC curves do not take

into consideration non-top hypotheses while the

following measures do.

 L2 calculates the Euclidean distance

between the vector consisting of the scores

of all hypotheses and a zero vector with 1 in

the position of the correct one. This

measures the quality of tracker’s output

score as probability.

 AvgP indicates the averaged score of the

correct hypothesis. Note that this measures

the quality of the score of the correct

hypothesis, ignoring the scores assigned to

incorrect hypotheses.

 MRR denotes the mean reciprocal rank of

the correct hypothesis. This measures the

quality of rank instead of score.

As far as evaluation schedule is concerned, there

are three schedules for determining which turns

to include in each evaluation.

 Schedule 1: Include all turns. This schedule

allows us to account for changes in concepts

that are not in focus. But this makes across-

concept comparison invalid since different

concepts appear at different times in a dialog.

 Schedule 2: Include a turn for a given

concept only if that concept either appears on

the SLU N-Best list in that turn, or if the

system’s action references that concept in

that turn. Unlike schedule 1, this schedule

makes comparisons across concepts valid but

cannot account for changes in concepts

which are not in focus.

 Schedule 3: Include only the turn before the

system starts over from the beginning, and

the last turn of the dialog. This schedule does

not consider what happens during a dialog.

3 Extrinsic Evaluation Using Off-Policy

Reinforcement Learning

In this section, we present a corpus-based

method for extrinsic evaluation of dialog state

tracking. Thanks to the corpus-based design

where outputs of various trackers with different

characteristics are involved, it is possible to

examine how the differences between trackers

affect the performance of learned policies. The

performance of a learned policy is measured by

the expected return at the initial state of a dialog

which is one of the common performance

measures for episodic tasks.

3.1 Off-Policy RL on Fixed Data

To learn an optimal policy from fixed data, we

applied a state-of-the-art kernelized off-policy

RL method. Off-policy RL methods allows for

optimization of a policy by observing how other

policies behave. The policy used to control the

312

system’s behavior is called Behavior policy. As

far as a specific algorithm is concerned, we have

adopted Least-Squares Temporal Difference

(LSTD) (Bradtke and Barto, 1996) for policy

evaluation and Least-Squares Policy Iteration

(LSPI) (Lagoudakis and Parr, 2003) for policy

learning. LSTD and LSPI have been well known

to be sample efficient, thus easily lending

themselves to the application of RL to fixed data

(Pietquin et al., 2011). LSPI is an instance of

Approximate Policy Iteration where an

approximated action-state value function (a.k.a Q

function) is established for a current policy and

an improved policy is formed by taking greedy

actions with respect to the estimated Q function.

The process of policy evaluation and

improvement iterates until convergence. For

value function approximation, in this work, we

adopted the following linear approximation

architecture:

 ̂ () ()

where is the set of parameters, () an

activation vector of basis functions, a state and

 an action. Given a policy and a set of state

transitions () , where is the

reward that the system would get from the

environment by executing action at state ,

the approximated state-action value function ̂

is estimated by LSTD. The most important part

of LSTD lies in the computation of the gradient

of temporal difference:

 () (())

In LSPI, () takes the form of greedy policy:

 ()

 ̂ ()

It is however critical to take into consideration

the inherent problem of insufficient exploration

in fixed data to avoid overfitting (Henderson et

al., 2008). Thus we confined the set of available

actions at a given state to the ones that have an

occurrence probability greater than some

threshold :

 ()
 (|)

 ̂ ()

The conditional probability (|) can be

easily estimated by any conventional

classification methods which provide posterior

probability. In this study, we set to 0.1.

3.2 State Representation and Basis Function

In order to make the process of policy

optimization tractable, the belief state is

normally mapped to an abstract space by only

taking crucial information for dialog action

selection, e.g., the beliefs of the top and second

hypotheses for a concept. Similarly, the action

space is also mapped into a smaller space by

only taking the predicate of an action. In this

work, the simplified state includes the following

elements:

 The scores of the top hypothesis for each

concept with None excluded

 The scores of the second hypothesis for each

concept with None excluded

 The scores assigned to None for each

concept

 Binary indicators for a concept if there are

hypotheses except None

 The values of the top hypothesis for each

concept

 A binary indicator if the user affirms when

the system asks a yes-no question for next

bus

It has been shown that the rapid learning speed

of recent approaches is partly attributed to the

use of kernels as basis functions (Gasic et al.,

2010; Lee and Eskenazi, 2012; Pietquin et al.,

2011). Thus to make the best of the limited

amount of data, we adopted a kernelized

approach. Similar to previous studies, we used a

product of kernel functions:

 () (
)∏ ()

where () is responsible for a vector of

continuous elements of a state and () for

each discrete element. For the continuous

elements, we adopted Gaussian kernels:

 (
) (

‖
 ‖

)

where governs the value at center, controls

the width of the kernel and represents the

vector of continuous elements of a state. In the

experiments, and were set to 4 and 3,

313

respectively. For a discrete element, we adopted

delta kernel:

 ()
(

)

where (
) returns one if , zero

otherwise and represents an element of a state.

As the number of data points increases,

kernelized approaches commonly encounter

severe computational problems. To address this

issue, it is necessary to limit the active kernel

functions being used for value function

approximation. This sparsification process has to

find out the sufficient number of kernels which

keeps a good balance between computational

tractability and approximation quality. We

adopted a simple sparsification method which

was commonly used in previous studies (Engel et

al., 2004). The key intuition behind of the

sparsification method is that there is a mapping

 () to a Hilbert space in which the kernel

function () is represented as the inner

product of () and () by the Mercer’s

theorem. Thus the kernel-based representation of

Q function can be restated as a plain linear

equation in the Hilbert space:

 ̂ () ∑

 (
) 〈 () ∑ (

)

〉

where denotes the pair of state and action. The

term ∑ (
) plays the role of the weight

vector in the Hilbert space. Since this term takes

the form of linear combination, we can safely

remove any linearly dependent (
) without

changing the weighted sum by tuning . It is

known that the linear dependence of () from

the rest can be tested based on kernel functions

as follows:

 ()
()

 (1)

where
 () ()

and is a sparsification threshold. When

equation 1 is satisfied, can be safely removed

from the set of basis functions. Thus the sparsity

can be controlled by changing . It can be shown

that equation 1 is minimized when

() , where

 is the Gram matrix

excluding . In the experiments, was set to 3.

3.3 Reward Function

The reward function is defined following a

common approach to form-filling, task-oriented

systems:

 Every correct concept filled is rewarded 100

 Every incorrect concept filled is assigned

-200

 Every empty concept is assigned -300 if the

system terminated the session, -50 otherwise.

 At every turn, -20 is assigned

The reward structure is carefully designed such

that the RL algorithm cannot find a way to

maximize the expected return without achieving

the user goal.

4 Experimental Setup

In order to see the relationship between the

performance of dialog state tracking and that of

the optimized policy, we applied the off-policy

RL method presented in Section 3 to the outputs

of each tracker for all four DSTC test datasets
2
.

The summary statistics of the datasets are

presented in Table 1. In addition, to quantify the

impact of dialog state tracking on an end-to-end

dialog, the performance of policies optimized by

RL was compared with Behavior policies and

another set of learned policies using supervised

learning (SL). Note that Behavior policies were

developed by experts in spoken dialog research.

The use of a learned policy using supervised

2
 We took the entry from each team that achieved the

highest ranks of that team in the largest number of

evaluation metrics: entry2 for team3 and team6,

entry3 for team8, entry4 for team9, and entry1 for the

rest of the teams. We were not, however, able to

process the tracker output of team2 due to its large

size. This does not negatively impact the general

results of this paper.

 # Dialogs # Turns

Training Test Training Test

DS1 274 312 2594 2168
DS2 321 339 3394 2579
DS3 277 286 2221 1988
DS4 141 165 1060 979

Table 1: The DSTC test datasets (DS1-4)

were evenly divided into two groups of

datasets for off-policy RL training and test. To

simplify the analysis, the dialogs that include

startover and canthelp were excluded.

314

learning (Hurtado et al., 2005) is also one of the

common methods of spoken dialog system

development. We exploited the SVM method

with the same kernel functions as defined in

Section 3.2 except that the action element is not

included. The posterior probability of the SVM

model was also used for handling the insufficient

exploration problem (in Section 3.1).

5 Results and Discussion

The comparative results between RL, SL and

Behavior policies are plotted in Fig. 2. Despite

the relatively superior performance of SL

policies over Behavior policies, the performance

improvement is neither large nor constant. This

confirms that Behavior policies are very strong

baselines which were designed by expert

researchers. RL policies, however, consistently

outperformed Behavior as well as SL policies,

with a large performance gap. This result

indicates that the policies learned by the

proposed off-policy RL method are a lot closer to

optimal ones than the hand-crafted policies

created by human experts. Given that many state

features are derived from the belief state, the

large improvement in performance implies that

the estimated belief state is indeed a good

summary representation of a state, maintaining

the Markov property between states. The Markov

property is a crucial property for RL methods to

approach to the optimal policy. On the other

hand, most of the dialog state trackers surpassed

the baseline tracker (team0) in the performance

of RL policies. This result assures that the better

the performance in dialog state tracking, the

better a policy we can learn in the policy

optimization stage. Given these two results, we

can strongly assert that dialog state tracking

plays a key role in enhancing end-to-end dialog

performance.

Another interesting result worth noticing is

that the performance of RL policies does not

exactly align with the accuracy measured at the

end of a dialog (Schedule 3) which would have

been the best metric if the task were a one-time

classification (Fig. 2). This misalignment

therefore supports the speculation that accuracy-

schedule3 might not be the most appropriate

metric for predicting the effect of dialog state

tracking on end-to-end dialog performance. In

order to better understand What To Measure and

When To Measure to predict end-to-end dialog

performance, a correlation analysis was carried

out between the performance of RL policies and

that of the dialog state tracking measured by

different metrics and schedules. The correlations

are listed in descending order in Fig. 3. This

result reveals several interesting insights for

different metrics.

First, metrics which are intended to measure

the quality of a tracker’s score (e.g., L2 and

AvgP) are more correlated than other metrics.

This tendency can be understood as a

consequence of the sequential decision-making

nature of a dialog task. A dialog system can

always initiate an additional turn, unless the user

Figure 2: The left vertical axis is associated with the performance plots of RL, SL and Behavior

policies for each team. The right vertical axis measures the accuracies of each team’s tracker at the end

of a dialog (schedule 3).

315

terminates the session, to refine its belief state

when there is no dominant hypothesis. Thus

accurate estimation of the beliefs of all observed

hypotheses is essential. This is why the

evaluation of only the top hypothesis does not

provide sufficient information.

Second, schedule1 and schedule3 showed a

stronger correlation than schedule2. In fact

schedule2 was more preferred in previous studies

since it allows for a valid comparison of different

concepts (Williams, 2013; Williams et al., 2013).

This result can be explained by the fact that the

best system action is selected by considering all

of the concepts together. For example, when the

system moves the conversation focus from one

concept to another, the beliefs of the concepts

that are not in focus are as important as the

concept in focus. Thus evaluating all concepts at

the same time is more suitable for predicting the

performance of a sequential decision-making

task involving multiple concepts in its state.

Finally, metrics for evaluating discrimination

quality (measured by ROC.V2) have little

correlation with end-to-end dialog performance.

In order to understand this relatively unexpected

result, we need to give deep thought to how the

scores of a hypothesis are distributed during the

session. For example, the score of a true

hypothesis usually starts from a small value due

to the uncertainty of ASR output and gets bigger

every time positive evidence is observed. The

score of a false hypothesis usually stays small or

medium. This leads to a situation where both true

and false hypotheses are pretty much mixed in

the zone of small and medium scores without

significant discrimination. It is, however, very

important for a metric to reveal a difference

between true and false hypotheses before their

scores fully arrive at sufficient certainty since

most additional turns are planned for hypotheses

with a small or medium score. Thus general

metrics evaluating discrimination alone are

hardly appropriate for a tracking problem where

the score develops gradually. Furthermore, the

choice of threshold (i.e. FA = 0.05, 0.10, 0.20)

was made to consider relatively unimportant

regions where the true hypothesis is likely to

have a higher score, meaning that no further

turns need to be planned.

6 Conclusion

In this paper, we have presented a corpus-based

study that attempts to answer two fundamental

questions which, so far, have not been

rigorously addressed: “Would better

performance in dialog state tracking translate to

better performance of the optimized policy by

RL?” and “Which evaluation metric and

schedule would best predict improvement in

overall dialog performance?” The result

supports a positive answer to the first question.

Thus the effort to separately improve the

performance of dialog state tracking as carried

out in the recent held DSTC may be justified. As

a way to address the second question, the

correlations of different metrics and schedules

Figure 3: The correlations of each combination of metric and schedule with the performance of

optimized polices.

316

with the performance of optimized policies were

computed. The results revealed several insightful

conclusions: 1) Metrics measuring score quality

are more suitable for predicting the performance

of an optimized policy. 2) Evaluation of all

concepts at the same time is more appropriate for

predicting the performance of a sequential

decision making task involving multiple

concepts in its state. 3) Metrics evaluating only

discrimination (e.g., ROC.V2) are inappropriate

for a tracking problem where the score gradually

develops. Interesting extensions of this work

include finding a composite measure of

conventional metrics to obtain a better predictor.

A data-driven composition may tell us the

relative empirical importance of each metric. In

spite of several factors which generalize our

conclusions such as handling insufficient

exploration, the use of separate test sets and

various mismatches between test sets, it is still

desirable to run different policies for live tests in

the future. Also, since the use of an approximate

policy evaluation method (e.g. LSTD) can

introduce systemic errors, more deliberate

experimental setups will be designed for a future

study: 1) the application of different RL

algorithms for training and test datasets 2)

further experiments on different datasets, e.g.,

the datasets for DSTC2 (Henderson et al., 2014).

Although the state representation adopted in this

work is quite common for most systems that use

a POMDP model, different state representations

could possibly reveal new insights.

References

A. Black et al., 2011. Spoken dialog challenge 2010:

Comparison of live and control test results. In

Proceedings of SIGDIAL.

S. Bradtke and A. Barto, 1996. Linear Least-Squares

algorithms for temporal difference learning.

Machine Learning, 22, 1-3, 33-57.

Y. Engel, S. Mannor and R. Meir, 2004. The Kernel

Recursive Least Squares Algorithm. IEEE

Transactions on Signal Processing, 52:2275-2285.

M. Gasic and S. Young, 2011. Effective handling of

dialogue state in the hidden information state

POMDP-based dialogue manager. ACM

Transactions on Speech and Language Processing,

7(3).

M. Gasic, F. Jurcicek, S. Keizer, F. Mairesse, B.

Thomson, K. Yu and S. Young, 2010. Gaussian

Processes for Fast Policy Optimisation of POMDP-

based Dialogue Managers, In Proceedings of

SIGDIAL, 2010.

J. Henderson, O. Lemon and K. Georgila, 2008.

Hybrid reinforcement/supervised learning of

dialogue policies from fixed data sets.

Computational Linguistics, 34(4):487-511.

M. Henderson, B. Thomson and J. Williams, 2014.

The Second Dialog State Tracking Challenge. In

Proceedings of SIGDIAL, 2014.

L. Hurtado, D. Grial, E. Sanchis and E. Segarra, 2005.

A Stochastic Approach to Dialog Management. In

Proceedings of ASRU, 2005.

M. Lagoudakis and R. Parr, 2003. Least-squares

policy iteration. Journal of Machine Learning

Research 4, 1107-1149.

S. Lee, 2013. Structured Discriminative Model For

Dialog State Tracking. In Proceedings of SIGDIAL,

2013.

S. Lee and M. Eskenazi, 2012. Incremental Sparse

Bayesian Method for Online Dialog Strategy

Learning. IEEE Journal of Selected Topics in

Signal Processing, 6(8).

S. Lee and M. Eskenazi, 2013. Recipe For Building

Robust Spoken Dialog State Trackers: Dialog State

Tracking Challenge System Description. In

Proceedings of SIGDIAL, 2013.

O. Pietquin, M. Geist, S. Chandramohan and H.

Frezza-buet, 2011. Sample Efficient Batch

Reinforcement Learning for Dialogue Management

Optimization. ACM Transactions on Speech and

Language Processing, 7(3).

O. Pietquin, M. Geist, and S. Chandramohan, 2011.

Sample Efficient On-Line Learning of Optimal

Dialogue Policies with Kalman Temporal

Differences. In Proceedings of IJCAI, 2011.

A. Raux, B. Langner, D. Bohus, A. W Black, and M.

Eskenazi, 2005. Let’s Go Public! Taking a Spoken

Dialog System to the Real World. In Proceedings

of Interspeech.

J. Williams, 2013. Multi-domain learning and

generalization in dialog state tracking. In

Proceedings of SIGDIAL, 2013.

J. Williams, A. Raux, D. Ramachandran and A. Black,

2013. The Dialog State Tracking Challenge. In

Proceedings of SIGDIAL, 2013.

S. Young, M. Gasic, B. Thomson and J. Williams

2013. POMDP-based Statistical Spoken Dialogue

Systems: a Review. IEEE, 101(5):1160-1179.

317

