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Abstract 

During the recent Dialog State Tracking 

Challenge (DSTC), a fundamental question 

was raised: “Would better performance in 

dialog state tracking translate to better 

performance of the optimized policy by 

reinforcement learning?” Also, during the 

challenge system evaluation, another non-

trivial question arose: “Which evaluation 

metric and schedule would best predict 

improvement in overall dialog performance?” 

This paper aims to answer these questions by 

applying an off-policy reinforcement learning 

method to the output of each challenge system. 

The results give a positive answer to the first 

question. Thus the effort to separately improve 

the performance of dialog state tracking as 

carried out in the DSTC may be justified. The 

answer to the second question also draws 

several insightful conclusions on the 

characteristics of different evaluation metrics 

and schedules. 

1 Introduction 

Statistical approaches to spoken dialog 

management have proven very effective in 

gracefully dealing with noisy input due to 

Automatic Speech Recognition (ASR) and 

Spoken Language Understanding (SLU) error 

(Lee, 2013; Williams et al., 2013). Most recent 

advances in statistical dialog modeling have been 

based on the Partially Observable Markov 

Decision Processes (POMDP) framework which 

provides a principled way for sequential action 

planning under uncertainty (Young et al., 2013). 

In this approach, the task of dialog management 

is generally decomposed into two subtasks, i.e., 

dialog state tracking and dialog policy learning. 

The aim of dialog state tracking is to accurately 

estimate the true dialog state from noisy 

observations by incorporating patterns between 

turns and external knowledge as a dialog unfolds 

(Fig. 1). The dialog policy learning process then 

strives to select an optimal system action given 

the estimated dialog state.  

Many dialog state tracking algorithms have 

been developed. Few studies, however, have 

reported the strengths and weaknesses of each 

method. Thus the Dialog State Tracking 

Challenge (DSTC) was organized to advance 

state-of-the-art technologies for dialog state 

tracking by allowing for reliable comparisons 

between different approaches using the same 

datasets (Williams et al., 2013). Thanks to the 

DSTC, we now have a better understanding of 

effective models, features and training methods 

we can use to create a dialog state tracker that is 

not only of superior performance but also very 

robust to realistic mismatches between 

development and deployment environments (Lee 

and Eskenazi, 2013). 

Despite the fruitful results, it was largely 

limited to intrinsic evaluation, thus leaving an 

important question unanswered: “Would the 

improved performance in dialog state tracking 

carry over to dialog policy optimization?” 

Furthermore, there was no consensus on what 

and when to measure, resulting in a large set of 

metrics being evaluated with three different 

schedules. With this variety of metrics, it is not 

clear what the evaluation result means. Thus it is 

important to answer the question: “Which metric 

best serves as a predictor to the improvement in 

dialog policy optimization” since this is the 

ultimate goal, in terms of end-to-end dialog 

performance. The aim of this paper is to answer 

these two questions via corpus-based 

experiments. Similar to the rationale behind the 

DSTC, the corpus-based design allows us to 
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compare different trackers on the same data. We 

applied a sample efficient off-policy 

reinforcement learning (RL) method to the 

outputs of each tracker so that we may examine 

the relationship between the performance of 

dialog state tracking and that of the optimized 

policy as well as which metric shows the highest 

correlation with the performance of the 

optimized policy. 

This paper is structured as follows. Section 2 

briefly describes the DSTC and the metrics 

adopted in the challenge. Section 3 elaborates on 

the extrinsic evaluation method based on off-

policy RL. Section 4 presents the extrinsic 

evaluation results and discusses its implication 

on metrics for dialog state tracking evaluation. 

Finally, Section 5 concludes with a brief 

summary and suggestions for future research.  

2 DSTC Task and Evaluation Metrics 

This section briefly describes the task for the 

DSTC and evaluation metrics. For more details, 

please refer to the DSTC manual
1
.  

                                                 
1
 http://research.microsoft.com/apps/pubs/?id=169024 

2.1 Task Description 

DSTC data is taken from several different 

spoken dialog systems which all provided bus 

schedule information for Pittsburgh, 

Pennsylvania, USA (Raux et al., 2005) as part of 

the Spoken Dialog Challenge (Black et al., 2011). 

There are 9 slots which are evaluated: route, 

from.desc, from.neighborhood, from.monument, 

to.desc, to.neighborhood, to.monument, date, and 

time. Since both marginal and joint 

representations of dialog states are important for 

deciding dialog actions, the challenge takes both 

into consideration. Each joint representation is an 

assignment of values to all slots.  Thus there are 

9 marginal outputs and 1 joint output in total, 

which are all evaluated separately. 

The dialog tracker receives the SLU N-best 

hypotheses for each user turn, each with a 

confidence score. In general, there are a large 

number of values for each slot, and the coverage 

of N-best hypotheses is good, thus the challenge 

confines its determination of whether a goal has 

been reached to slots and values that have been 

observed in an SLU output. By exploiting this 

aspect, the task of a dialog state tracker is to 

generate a set of observed slot and value pairs, 

with a score between 0 and 1. The sum of all 

 
 

Figure 1: An example of dialog state tracking for the Route slot. At each turn the system asks for user’s 

goal or attempts to confirm one of hypotheses. The user’s utterance is recognized to output an N-best 

list. The SLU module generates semantic inputs to the dialog manager by parsing the N-best 

hypotheses. Each SLU hypothesis receives a confidence score. From the current turn’s SLU 

hypotheses and all previous ones thus far, the dialog state tracker computes a probability distribution 

over a set of dialog state hypotheses. Note that the number of hypotheses in a dialog state can be 

different from the number of SLU hypotheses, e.g., at turn t+1, 3 and 5 respectively.  
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scores is restricted to sum to 1.0. Thus 1.0 – total 

score is defined as the score of a special value 

None that indicates the user’s goal has not yet 

appeared on any SLU output. 

2.2 Evaluation Metrics 

To evaluate tracker output, the correctness of 

each hypothesis is labeled at each turn. Then 

hypothesis scores and labels over the entire 

dialogs are collected to compute 11 metrics:  

 

 Accuracy measures the ratio of states under 

evaluation where the top hypothesis is 

correct. 

 ROC.V1 computes the following quantity:  

 

     ( )  
  ( )

 
 

 

where    is the total number of top 

hypotheses over the entire data and   ( ) 

denotes the number of correctly accepted top 

hypotheses with the threshold being set to  . 

Similarly FA denotes false-accepts and FR 

false-rejects. From these quantities, several 

metrics are derived. ROC.V1.EER 

computes FA.V1(s) where FA.V1(s) = 

FR.V1(s). The metrics ROC.V1.CA05, 

ROC.V1.CA10, and ROC.V1.CA20 

compute CA.V1(s) when FA.V1(s) = 0.05, 

0.10, and 0.20 respectively. These metrics 

measure the quality of score via plotting 

accuracy with respect to false-accepts so that 

they may reflect not only accuracy but also 

discrimination.  

 ROC.V2 computes the conventional ROC 

quantity:  

 

     ( )  
  ( )

  ( )
 

 

ROC.V2.CA05, ROC.V2.CA10, and 

ROC.V2.CA20 do the same as the V1 

versions. These metrics measure the 

discrimination of the score for the top 

hypothesis independently of accuracy. 

 

Note that Accuracy and ROC curves do not take 

into consideration non-top hypotheses while the 

following measures do. 

 

 L2 calculates the Euclidean distance 

between the vector consisting of the scores 

of all hypotheses and a zero vector with 1 in 

the position of the correct one. This 

measures the quality of tracker’s output 

score as probability. 

 AvgP indicates the averaged score of the 

correct hypothesis. Note that this measures 

the quality of the score of the correct 

hypothesis, ignoring the scores assigned to 

incorrect hypotheses.  

 MRR denotes the mean reciprocal rank of 

the correct hypothesis. This measures the 

quality of rank instead of score. 

 

As far as evaluation schedule is concerned, there 

are three schedules for determining which turns 

to include in each evaluation. 

 

 Schedule 1: Include all turns. This schedule 

allows us to account for changes in concepts 

that are not in focus. But this makes across-

concept comparison invalid since different 

concepts appear at different times in a dialog. 

 Schedule 2: Include a turn for a given 

concept only if that concept either appears on 

the SLU N-Best list in that turn, or if the 

system’s action references that concept in 

that turn. Unlike schedule 1, this schedule 

makes comparisons across concepts valid but 

cannot account for changes in concepts 

which are not in focus. 

 Schedule 3: Include only the turn before the 

system starts over from the beginning, and 

the last turn of the dialog. This schedule does 

not consider what happens during a dialog.  

3 Extrinsic Evaluation Using Off-Policy 

Reinforcement Learning  

In this section, we present a corpus-based 

method for extrinsic evaluation of dialog state 

tracking. Thanks to the corpus-based design 

where outputs of various trackers with different 

characteristics are involved, it is possible to 

examine how the differences between trackers 

affect the performance of learned policies. The 

performance of a learned policy is measured by 

the expected return at the initial state of a dialog 

which is one of the common performance 

measures for episodic tasks.  

3.1 Off-Policy RL on Fixed Data 

To learn an optimal policy from fixed data, we 

applied a state-of-the-art kernelized off-policy 

RL method. Off-policy RL methods allows for 

optimization of a policy by observing how other 

policies behave. The policy used to control the 
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system’s behavior is called Behavior policy. As 

far as a specific algorithm is concerned, we have 

adopted Least-Squares Temporal Difference 

(LSTD) (Bradtke and Barto, 1996) for policy 

evaluation and Least-Squares Policy Iteration 

(LSPI) (Lagoudakis and Parr, 2003) for policy 

learning. LSTD and LSPI have been well known 

to be sample efficient, thus easily lending 

themselves to the application of RL to fixed data 

(Pietquin et al., 2011). LSPI is an instance of 

Approximate Policy Iteration where an 

approximated action-state value function (a.k.a Q 

function) is established for a current policy and 

an improved policy is formed by taking greedy 

actions with respect to the estimated Q function. 

The process of policy evaluation and 

improvement iterates until convergence. For 

value function approximation, in this work, we 

adopted the following linear approximation 

architecture: 

 

 ̂ (   )     (   ) 

 

where   is the set of parameters,  (   )  an 

activation vector of basis functions,   a state and 

  an action. Given a policy    and a set of state 

transitions  (             )      , where    is the 

reward that the system would get from the 

environment by executing action    at state   , 

the approximated state-action value function  ̂  

is estimated by LSTD. The most important part 

of LSTD lies in the computation of the gradient 

of temporal difference: 

 

 (   )    (    (  )) 
 

In LSPI,  (  ) takes the form of greedy policy:  

 

 (  )        
  

 ̂ (     ) 

 

It is however critical to take into consideration 

the inherent problem of insufficient exploration 

in fixed data to avoid overfitting (Henderson et 

al., 2008). Thus we confined the set of available 

actions at a given state to the ones that have an 

occurrence probability greater than some 

threshold  : 

 

 (  )        
       (  |  )  

 ̂ (     ) 

 

The conditional probability  (  |  )  can be 

easily estimated by any conventional 

classification methods which provide posterior 

probability. In this study, we set   to 0.1. 

3.2 State Representation and Basis Function 

In order to make the process of policy 

optimization tractable, the belief state is 

normally mapped to an abstract space by only 

taking crucial information for dialog action 

selection, e.g., the beliefs of the top and second 

hypotheses for a concept. Similarly, the action 

space is also mapped into a smaller space by 

only taking the predicate of an action. In this 

work, the simplified state includes the following 

elements: 

 

 The scores of the top hypothesis for each 

concept with None excluded 

 The scores of the second hypothesis for each 

concept with None excluded 

 The scores assigned to None for each 

concept 

 Binary indicators for a concept if there are 

hypotheses except None 

 The values of the top hypothesis for each 

concept 

 A binary indicator if the user affirms when 

the system asks a yes-no question for next 

bus 

 

It has been shown that the rapid learning speed 

of recent approaches is partly attributed to the 

use of kernels as basis functions (Gasic et al., 

2010; Lee and Eskenazi, 2012; Pietquin et al., 

2011). Thus to make the best of the limited 

amount of data, we adopted a kernelized 

approach. Similar to previous studies, we used a 

product of kernel functions: 

 

 (    )    (   
 )∏  (    )

   

 

 

where   (   )  is responsible for a vector of 

continuous elements of a state and   (   )  for 

each discrete element. For the continuous 

elements, we adopted Gaussian kernels: 

 

  (   
 )       ( 

‖     
 ‖

   )   

 

where   governs the value at center,   controls 

the width of the kernel and   represents the 

vector of continuous elements of a state. In the 

experiments,  and   were set to 4 and 3, 
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respectively. For a discrete element, we adopted 

delta kernel: 

 

  (    )     
(  

 ) 

 

where   ( 
 )  returns one if     , zero 

otherwise and    represents an element of a state. 

As the number of data points increases, 

kernelized approaches commonly encounter 

severe computational problems. To address this 

issue, it is necessary to limit the active kernel 

functions being used for value function 

approximation. This sparsification process has to 

find out the sufficient number of kernels which 

keeps a good balance between computational 

tractability and approximation quality. We 

adopted a simple sparsification method which 

was commonly used in previous studies (Engel et 

al., 2004). The key intuition behind of the 

sparsification method is that there is a mapping 

 ( )  to a Hilbert space in which the kernel 

function  (    )  is represented as the inner 

product of  ( )  and  (  )  by the Mercer’s 

theorem. Thus the kernel-based representation of 

Q function can be restated as a plain linear 

equation in the Hilbert space: 

 

 ̂ ( )  ∑  

 

 (    
 )  〈 ( ) ∑   (  

 )

 

〉 

 

where   denotes the pair of state and action. The 

term ∑    (  
 )  plays the role of the weight 

vector in the Hilbert space. Since this term takes 

the form of linear combination, we can safely 

remove any linearly dependent  (  
 )  without 

changing the weighted sum by tuning  . It is 

known that the linear dependence of  ( ) from 

the rest can be tested based on kernel functions 

as follows:  

 

     (     )      
(  )

     (1) 

 

where     
     (       )  (       )    

and   is a sparsification threshold. When 

equation 1 is satisfied,    can be safely removed 

from the set of basis functions. Thus the sparsity 

can be controlled by changing  . It can be shown 

that equation 1 is minimized when   
    

      
(  ) , where     

   is the Gram matrix 

excluding   . In the experiments,   was set to 3. 

3.3 Reward Function 

The reward function is defined following a  

common approach to form-filling, task-oriented 

systems: 

 

 Every correct concept filled is rewarded 100 

 Every incorrect concept filled is assigned     

-200 

 Every empty concept is assigned -300 if the 

system terminated the session, -50 otherwise. 

 At every turn, -20 is assigned 

 

The reward structure is carefully designed such 

that the RL algorithm cannot find a way to 

maximize the expected return without achieving 

the user goal. 

4 Experimental Setup 

In order to see the relationship between the 

performance of dialog state tracking and that of 

the optimized policy, we applied the off-policy 

RL method presented in Section 3 to the outputs 

of each tracker for all four DSTC test datasets
2
. 

The summary statistics of the datasets are 

presented in Table 1. In addition, to quantify the 

impact of dialog state tracking on an end-to-end 

dialog, the performance of policies optimized by 

RL was compared with Behavior policies and 

another set of learned policies using supervised 

learning (SL). Note that Behavior policies were 

developed by experts in spoken dialog research. 

The use of a learned policy using supervised 

                                                 
2
 We took the entry from each team that achieved the 

highest ranks of that team in the largest number of 

evaluation metrics: entry2 for team3 and team6, 

entry3 for team8, entry4 for team9, and entry1 for the 

rest of the teams. We were not, however, able to 

process the tracker output of team2 due to its large 

size. This does not negatively impact the general 

results of this paper. 

 # Dialogs # Turns 

Training Test Training Test 

DS1 274 312 2594 2168 
DS2 321 339 3394 2579 
DS3 277 286 2221 1988 
DS4 141 165 1060 979 

Table 1: The DSTC test datasets (DS1-4) 

were evenly divided into two groups of 

datasets for off-policy RL training and test. To 

simplify the analysis, the dialogs that include 

startover and canthelp were excluded. 
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learning (Hurtado et al., 2005) is also one of the 

common methods of spoken dialog system 

development. We exploited the SVM method 

with the same kernel functions as defined in 

Section 3.2 except that the action element is not 

included. The posterior probability of the SVM 

model was also used for handling the insufficient 

exploration problem (in Section 3.1).  

5 Results and Discussion  

The comparative results between RL, SL and 

Behavior policies are plotted in Fig. 2. Despite 

the relatively superior performance of SL 

policies over Behavior policies, the performance 

improvement is neither large nor constant. This 

confirms that Behavior policies are very strong 

baselines which were designed by expert 

researchers. RL policies, however, consistently 

outperformed Behavior as well as SL policies, 

with a large performance gap. This result 

indicates that the policies learned by the 

proposed off-policy RL method are a lot closer to 

optimal ones than the hand-crafted policies 

created by human experts. Given that many state 

features are derived from the belief state, the 

large improvement in performance implies that 

the estimated belief state is indeed a good 

summary representation of a state, maintaining 

the Markov property between states. The Markov 

property is a crucial property for RL methods to 

approach to the optimal policy. On the other 

hand, most of the dialog state trackers surpassed 

the baseline tracker (team0) in the performance 

of RL policies. This result assures that the better 

the performance in dialog state tracking, the 

better a policy we can learn in the policy 

optimization stage. Given these two results, we 

can strongly assert that dialog state tracking 

plays a key role in enhancing end-to-end dialog 

performance. 

Another interesting result worth noticing is 

that the performance of RL policies does not 

exactly align with the accuracy measured at the 

end of a dialog (Schedule 3) which would have 

been the best metric if the task were a one-time 

classification (Fig. 2). This misalignment 

therefore supports the speculation that accuracy-

schedule3 might not be the most appropriate 

metric for predicting the effect of dialog state 

tracking on end-to-end dialog performance. In 

order to better understand What To Measure and 

When To Measure to predict end-to-end dialog 

performance, a correlation analysis was carried 

out between the performance of RL policies and 

that of the dialog state tracking measured by 

different metrics and schedules. The correlations 

are listed in descending order in Fig. 3. This 

result reveals several interesting insights for 

different metrics.  

First, metrics which are intended to measure 

the quality of a tracker’s score (e.g., L2 and 

AvgP) are more correlated than other metrics. 

This tendency can be understood as a 

consequence of the sequential decision-making 

nature of a dialog task. A dialog system can 

always initiate an additional turn, unless the user 

 
 

Figure 2: The left vertical axis is associated with the performance plots of RL, SL and Behavior 

policies for each team. The right vertical axis measures the accuracies of each team’s tracker at the end 

of a dialog (schedule 3). 
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terminates the session, to refine its belief state 

when there is no dominant hypothesis. Thus 

accurate estimation of the beliefs of all observed 

hypotheses is essential. This is why the 

evaluation of only the top hypothesis does not 

provide sufficient information.  

Second, schedule1 and schedule3 showed a 

stronger correlation than schedule2. In fact 

schedule2 was more preferred in previous studies 

since it allows for a valid comparison of different 

concepts (Williams, 2013; Williams et al., 2013). 

This result can be explained by the fact that the 

best system action is selected by considering all 

of the concepts together. For example, when the 

system moves the conversation focus from one 

concept to another, the beliefs of the concepts 

that are not in focus are as important as the 

concept in focus. Thus evaluating all concepts at 

the same time is more suitable for predicting the 

performance of a sequential decision-making 

task involving multiple concepts in its state.  

Finally, metrics for evaluating discrimination 

quality (measured by ROC.V2) have little 

correlation with end-to-end dialog performance. 

In order to understand this relatively unexpected 

result, we need to give deep thought to how the 

scores of a hypothesis are distributed during the 

session. For example, the score of a true 

hypothesis usually starts from a small value due 

to the uncertainty of ASR output and gets bigger 

every time positive evidence is observed. The 

score of a false hypothesis usually stays small or 

medium. This leads to a situation where both true 

and false hypotheses are pretty much mixed in 

the zone of small and medium scores without 

significant discrimination. It is, however, very 

important for a metric to reveal a difference 

between true and false hypotheses before their 

scores fully arrive at sufficient certainty since 

most additional turns are planned for hypotheses 

with a small or medium score. Thus general 

metrics evaluating discrimination alone are 

hardly appropriate for a tracking problem where 

the score develops gradually. Furthermore, the 

choice of threshold (i.e. FA = 0.05, 0.10, 0.20) 

was made to consider relatively unimportant 

regions where the true hypothesis is likely to 

have a higher score, meaning that no further 

turns need to be planned. 

6 Conclusion 

In this paper, we have presented a corpus-based 

study that attempts to answer two fundamental 

questions which, so far,  have not been 

rigorously addressed: “Would better 

performance in dialog state tracking translate to 

better performance of the optimized policy by 

RL?”  and “Which evaluation metric and 

schedule would best predict improvement in 

overall dialog performance?” The result 

supports a positive answer to the first question. 

Thus the effort to separately improve the 

performance of dialog state tracking as carried 

out in the recent held DSTC may be justified. As 

a way to address the second question, the 

correlations of different metrics and schedules 

 
 

Figure 3: The correlations of each combination of metric and schedule with the performance of 

optimized polices.  
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with the performance of optimized policies were 

computed. The results revealed several insightful 

conclusions: 1) Metrics measuring score quality 

are more suitable for predicting the performance 

of an optimized policy. 2) Evaluation of all 

concepts at the same time is more appropriate for 

predicting the performance of a sequential 

decision making task involving multiple 

concepts in its state. 3) Metrics evaluating only 

discrimination (e.g., ROC.V2) are inappropriate 

for a tracking problem where the score gradually 

develops. Interesting extensions of this work 

include finding a composite measure of 

conventional metrics to obtain a better predictor. 

A data-driven composition may tell us the 

relative empirical importance of each metric. In 

spite of several factors which generalize our 

conclusions such as handling insufficient 

exploration, the use of separate test sets and 

various mismatches between test sets, it is still 

desirable to run different policies for live tests in 

the future. Also, since the use of an approximate 

policy evaluation method (e.g. LSTD) can 

introduce systemic errors, more deliberate 

experimental setups will be designed for a future 

study: 1) the application of different RL 

algorithms for training and test datasets 2) 

further experiments on different datasets, e.g., 

the datasets for DSTC2 (Henderson et al., 2014). 

Although the state representation adopted in this 

work is quite common for most systems that use 

a POMDP model, different state representations 

could possibly reveal new insights. 
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