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Abstract

One research goal in Second Language Acqui-
sition (SLA) is to formulate and test hypothe-
ses about errors and the environments in which
they are made, a process which often involves
substantial effort; large amounts of data and
computational visualisation techniques promise
help here. In this paper we have defined a new
task for finding contexts for errors that vary
with the native language of the speaker that are
potentially useful for SLA research. We pro-
pose four models for approaching this task, and
find that one based only on error-feature co-
occurrence and another based on determining
maximum weight cliques in a feature associ-
ation graph discover strongly distinguishing
contexts, with an apparent trade-off between
false positives and very specific contexts.

1 Introduction
SLA researchers are interested in a wide variety of as-
pects of humans learning a new language (L2) different
from their native one (L1): cognitive issues and devel-
opmental sequences for learners Pienemann (2005), so-
ciocultural factors (Lantolf, 2001), and so on. One long-
standing question, dating back to at least Lado (1957),
is expressed by Ortega (2009) in the following way:
“What is the role played by first language in L2 develop-
ment, vis-à-vis the role of other universal development
forces?”

An example of SLA research that looks at this ques-
tion is the study of Diéz-Bedmar and Papp (2008), com-
paring Chinese and Spanish learners of English with
respect to the English article system (a, an, the) using
corpora of essays by native and non-native speakers
of English (Granger, 2011). Drawing on the 175 non-
native texts, they take a particular theoretical analysis
(the so-called Bickerton semantic wheel), use the simple
Wordsmith tools designed to extract data for lexicogra-
phers to identify errors in a semi-automatic way, and
evaluate whether Chinese and Spanish L1 speakers do
behave differently via hypothesis testing (ANOVA, chi-

square and z-tests, in their case). They conclude that
Chinese and Spanish do have characteristic differences,
with patterns of zero article and definite article use dif-
fering according to semantic context. Such studies are
typically carried out on relatively small datasets, and
use fairly elementary tools. Sources such as Ellis (2008)
and Ortega (2009) give good overviews of such studies
and of SLA research in general.

A goal of this paper is to investigate a particular way
in which Natural Language Processing (NLP) can use-
fully contribute to SLA. In terms of existing work, the
subfield of Native Language Identification (NLI) has
been quite active recently, which looks at predicting
the L1 of writers writing in a common L2 within a
classification task framework; see for example the re-
cent NLI shared task with 29 entrants (Tetreault et al.,
2013).1 From within linguistics, there has been much
interest in how data-driven approaches can contribute to
SLA. Granger (2011) discusses a body of work based
on the the methodology of carrying out corpus-based
approaches to SLA with a focus on NLP tools; Jarvis
and Crossley (2012) in an edited collection present re-
cent work by linguists who extend the corpus-based
setup by using a text classification approach, looking at
what feature selection might say for SLA. From within
NLP, Swanson and Charniak (2013) and Swanson and
Charniak (2014) take a data-driven approach to SLA
investigations much in the spirit of this work.

One particular approach to finding aspects of texts
characteristic of their L1s that has motivated the present
work is described in Yannakoudakis et al. (2012), the
goal of which is to develop visualisation tools for SLA
researchers. They present graphs of the relationships
between errors and their contexts, such that SLA re-
searchers can navigate through the graphs to find con-
texts for particular errors that can lead to hypotheses
like that of Diéz-Bedmar and Papp (2008) above. In this
paper, we look at approaches to finding such hypothesis
candidates automatically in the context of L1–L2 inter-
action by analysing the graphs used in the visualisations

1http://sites.google.com/site/
nlisharedtask2013/
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of Yannakoudakis et al. (2012). Specifically, we do the
following:

• We propose a new task that is more directly ori-
ented to SLA research than NLI has been for the
most part, with the goal of identifying error-related
contexts that are characteristic of L1s.

• We evaluate a number of models for finding such
contexts, ranging from a simple baseline to treat-
ing the problem as a graph-theoretic maximum
weighted clique one.

• We examine the results of some of the models to
see how the task and the models might contribute
to SLA research.

Because we draw heavily on the work of Yan-
nakoudakis et al. (2012), we first review relevant aspects
of that work in §2; we then present our task definition
and experimental setup in §3; we give results along with
a discussion in §4; we follow with some more detail on
related work in §5; and we conclude in §6.

2 Developing Hypotheses: A
Visualisation Tool

The context of the Yannakoudakis et al. (2012) work
is automated grading of English as a Second or Other
Language (ESOL) exam scripts, as described in Briscoe
et al. (2010). The automated grading takes a classifi-
cation approach, using a binary discriminative learner,
with useful features including lexical and part-of-speech
(PoS) n-grams.

The publicly available dataset on which the work was
carried out consists of texts from the First Certificate in
English (FCE) exam, aimed at upper-intermediate stu-
dents of English across various L1s, and was presented
in Yannakoudakis et al. (2011). This FCE corpus2 con-
sists of a subset of 1244 texts of the Cambridge Learner
Corpus,3 and is manually annotated with errors and their
corrections, as well as a classification according to an
error typology, as in Figure 1.

Yannakoudakis et al. (2012) present their English
Profile (EP) visualiser as a way to “visually analyse as
well as perform a linguistic interpretation of discrimi-
native features that characterise learner English”, using
the features of this essay classification task. They de-
fine a measure of co-occurrence of features, among
themselves and with errors, as a core part of their
analysis. Given the set of all sentences in the corpus
S = {s1, s2, . . . , s|S|} and the set of all features F =
{f1, f2, . . . , f|F |}, a feature fi ∈ F is associated with
a feature fj ∈ F (i 6= j, 1 ≤ i, j ≤ M ) according to
the score given in Equation (1), for sk ∈ S, 1 ≤ k ≤ N

2http://ilexir.co.uk/applications/
ep-visualiser/

3http://www.cup.cam.ac.uk/gb/elt/
catalogue/subject/custom/item364603/

and exists() a binary function returning true if the input
feature occurs in sk.

scoreff(fj , fi) =
∑|S|

k=1 exists(fj , fi, sk)∑|S|
k=1 exists(fi, sk)

(1)

They mention an analogous measure for feature-error
co-occurrence; we assume given the set of all errors
E = {e1, e2, . . . , e|E|} that this is defined as follows:

scoreef(fj , ei) =
∑|S|

k=1 exists(fj , ei, sk)∑|S|
k=1 exists(ei, sk)

(2)

A graph is defined with features and errors as vertices;
an edge between features (resp. features and errors) is
established if scoreff() (resp. scoreef ) is within some
user-defined range. This graph of feature–feature (resp.
feature–error) relationships is then presented visually.

The paper then presents a case study of how the EP vi-
sualiser can be used to assist SLA researchers. The case
study starts by noting that RG_JJ_NN1 is the 18th most
discriminative negative feature from the essay classi-
fier; then, further inspecting the graph of discriminative
features, that it’s linked to JJ_NN1_II and VBZ_RG.
Then, looking at feature-error relations, it investigates
an association with error MD (missing determiner), and
presents some examples that match the features (e.g.
Unix is very powerful system but there is one thing
against it), along with a discussion of relationships to
various L1s. It is this process of finding interesting fea-
tures and linking them to particular errors and L1s that
we present an approach to automating in this paper.

3 Task Definition & Experimental Setup
At a general level, our goal is to find which kinds of
constructions (in a loose sense) centred around errors
are particularly characteristic of various L1s.

The specific task we define for this paper, then, is
to select a set of features (in the terminology of Yan-
nakoudakis et al. (2012))—which we refer to as the
ERROR CONTEXT—that, when combined with the er-
ror, show a strong association with L1, in a manner
we describe below. So, for example, this may involve
finding that an MD error in the context of RG_JJ_NN1,
JJ_NN1_II and VBZ_RG shows a strong association
with L1. We investigate a number of models for this
selection process: the task then is the identification of
which models produce poor error contexts (which will
not rank highly in hypothesis testing) and which pro-
duce good ones (potentially worth considering by an
SLA researcher). Below we discuss the data we use,
the measure of association for an error and its context,
the set of errors chosen, and the models for selecting
context.

3.1 Data
The corpus we use for evaluating the models for our task
is derived from the FCE corpus of Yannakoudakis et al.
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Verb Agreement <p>Some people <ns type="AGV"><i>says</i><c>say</c></ns> ...</p>
Incorrect Verb <p>The day I <ns type="IV"><i>shaked</i><c>shook</c></ns> their
Inflection hands,...</p>
Missing Determiner <p>I am <ns type="MD"><c>a</c></ns> really good singer.</p>

Figure 1: FCE corpus examples. Error types indicated by <ns type>...</ns>; errors indicated by <i>...</i>;
corrections indicated by <c>...</c>.

language size
Chinese CHI 66
French FRE 146
German GER 69
Italian ITA 76
Japanese JAP 81
Korean KOR 86
Spanish SPA 200
Turkish TUR 75

Table 1: FCESUB, broken down by language

(2012). The full FCE corpus consists of 1244 scripts
over 16 languages; script counts range from 2 (Dutch)
to 200 (Spanish).

The features used by Yannakoudakis et al. (2012)
were derived from their essay classification task. As we
are interested in associations with L1, we instead use
features from a system submitted to the NLI shared task
(Anonymous, 2013), which was applied to a dataset of
Test of English as a Foreign Language (TOEFL) scripts:
the task and its designated corpus are described in the
task overview paper (Tetreault et al., 2013). In this work
we use a system trained on the TOEFL11 corpus con-
sisting of texts written in English from speakers of 11
different L1s, with 1100 essays per L1 and balanced
across topic. We only use PoS n-grams (n = 1, 2, 3) as
features in this work. Note that we use the terminology
of Yannakoudakis et al. (2012) here: what had their
origin as features in the essay classification task are still
referred to as features in the visualisation tool, although
the task carried out there is not a classification one. Sim-
ilarly, we refer to our PoS n-grams as features, although
we are not classifying errors using these features and
so are not carrying out feature selection for the typical
purpose of optimising classification performance.

For this, as did Yannakoudakis et al. (2012), we use
the RASP parser (Briscoe et al., 2006) for tagging; the
tags are consequently from the CLAWS2 tagset,4 which
are more fine-grained in terms of linguistic analysis than
the more frequently used Penn Treebank tags.

For our task, we then used the subset of the FCE cor-
pus where the languages overlapped with the TOEFL11
corpus: we refer to this as FCESUB. This gives 799
scripts over 8 languages, distributed as in Table 1; a
positive byproduct is that the L1s are more similar in
size than the full FCE corpus.

4http://ucrel.lancs.ac.uk/claws2tags.
html

language mean
CHI 0.885790
FRE 0.460894
GER 0.366587
ITA 0.581401
JAP 1.058159
KOR 1.067211
SPA 0.472253
TUR 1.014129

F-stat 18.031
sig. <0.001

Table 2: ANOVA results giving mean score (number
of sentences with MD error per 10 sentences) for each
language, the ANOVA F-statistic, and significance value

3.2 Association Measure

We noted in §1 that SLA studies such as Diéz-Bedmar
and Papp (2008) use standard hypothesis testing tech-
niques. We take this as a starting point. We could, for
example, evaluate whether a particular raw error (that
is, without a feature context) is strongly associated with
L1s by using a single factor ANOVA test.5 The indepen-
dent variable would be the L1. The dependent variable
could be one of a number of alternatives; we choose the
number of sentences with a particular error per 10 sen-
tences.6 To illustrate, we give the ANOVA results from
FCESUB for the MD error in Table 2. The ANOVA
calculation is based on an F-statistic which compares
variance between treatments against variance within
treatments; this is compared against critical values for
the F-statistic to determine statistical significance. The
expected value of the F-statistic under the null hypoth-
esis is 1, with values above 1 increasingly inconsistent
with the null hypothesis. The data in Table 2 shows
that the MD error does vary significantly with L1; a
post-hoc Tukey HSD test lets us identify which specific
languages exhibit this difference and shows that, for
example (and as can be observed in the means), German
L1 speakers are significantly different from Korean L1
speakers in the occurrence of MD errors.

For our task we are not interested in significance per
se. Rather, we are interested in whether we can find oc-
currences of errors plus contexts that are more strongly
associated with, or that vary across, L1s, e.g. that an

5See, e.g., Jackson (2009).
6We note that the texts differ significantly in length by L1,

so it would not be suitable to normalise as occurrences per
document.
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type name F-stat p-val N
DJ Wrong Derived 3.27 .002 332

Adjective
DN Wrong Derived 0.70 .671 294

Noun
MD Missing Determiner 18.03 .000 1702
MT Missing Preposition 2.81 .007 985
UD Unnecessary Determiner 1.20 .301 807
UT Unnecessary Preposition 0.26 .968 689
UV Unnecessary Verb 0.78 .606 317

Table 3: Error types chosen for evaluation, including F-
statistic, ANOVA p-value and corpus count of sentences
containing error.

MD error in the context of RG_JJ_NN1, JJ_NN1_II
and VBZ_RG is more strongly associated with L1s; and
we are also interested in which of our proposed methods
for identifying an error’s feature context does this best.
For this purpose, then, we use just the F-statistic from
the ANOVA test, this time with the dependent variable
as the ratio of occurrences of error plus error context
per 10 sentences: a higher F-statistic shows a stronger
association with L1s.7

We also consider the χ2-statistic from Pearson’s chi-
squared test, noting that it is also used in SLA hypothe-
sis testing and that it was additionally found by Swanson
and Charniak (2013) to be good at distinguishing inter-
esting features in their related task (see §5 for more
detail). The F-statistic and χ2-statistic are closely re-
lated: a random variate of the F-distribution is the ratio
of two chi-squared variates scaled by their degrees of
freedom. A difference is that χ2 compares observed
versus expected counts rather than proportions: to take
account of the differing text lengths, our observed fre-
quency is the number of sentences with error and error
context per L1; our expected frequency is the total num-
ber of sentences with that error and error context scaled
according to the proportion of sentences labelled with
that L1 relative to the corpus as a whole.

3.3 Errors Chosen

From the 74 error types in the FCE corpus, we select a
subset to evaluate our models. In addition to the MD er-
ror used in the case study of Yannakoudakis et al. (2012),
we choose a subset which has a range of F-statistic val-
ues as described above: some show very similar patterns
across L1s (i.e. with low F-statistic), such as DN Wrong
Derived Noun (e.g. hot vs heat); others do vary signif-
icantly with L1, such as DJ Wrong Derived Adjective
(e.g. reasonally vs reasonable). Having errors with
a range of F-statistic values lets us evaluate whether
finding good error contexts works only for strongly L1-
associated errors, weakly L1-associated errors, or across

7As we are only using the F-statistic to evaluate ranks, we
do not need a multiple comparison adjustment such as the
Bonferroni correction: this would only apply for comparisons
to a significance threshold, and in any case the Bonferroni is
monotonic and does not affect rankings.

the spectrum. Our subset is in Table 3, along with their
F-statistic, ANOVA p-value and counts in FCESUB.

3.4 Models
We propose four models for choosing error contexts.
These models rank error contexts; we evaluate the
ranked error contexts by F-statistic and χ2-statistic val-
ues (§3.2).

ERRORCOOCC In this model we rank features by
error-feature co-occurrence scores given by Equation
(2). The L1 is not taken into account, so this will just
return common features which may be equally strongly
associated with errors across all L1s. We look at results
for when k = 1..3 features are chosen. For k = 2, 3,
we add the individual error-feature scores together for
the ranking.8 It may be the case that interesting results
could be obtained for k > 3, but we only look at the
k = 1..3 in this preliminary work to see if there are
any discernible trends suggesting that larger values of k
could help.

L1ASSOC Here we use features that are strongly as-
sociated with the L1s from the TOEFL11 corpus and
NLI shared task. Specifically, we rank features by their
Information Gain with respect to L1s as in the process of
feature selection from the shared task.9 The relationship
between errors and features (in the form of error-feature
co-occurrence scores) is not taken into account here.
Again, we look at results for when k = 1..3 features
are chosen, and for k = 2, 3, we add the individual
error-feature scores together for the ranking.

MAXWEIGHTCLIQUE Both of the preceding mod-
els look only at one factor that might be relevant: error-
feature scores (finding features that are related to the
errors) and a measure of the association of features with
L1s; but there is no link between them, and interaction
of features is not taken into account. In Yannakoudakis
et al. (2012), the visualiser provides to the SLA re-
searcher a graph showing the relatedness of features,
based on Equation (1), and the SLA researcher com-
bines this with error-feature scores to find interesting
candidate error contexts; we create a similar graph and
aim to imitate the process by incorporating error-feature
scores as follows.

We define a weighted undirected graph G = (V,A)
such that V is the set of features used in the above
models (i.e. PoS n-grams from ERRORCOOCC); A is
defined such that (vi, vj) ∈ A for vertices vi, vj ∈ V
if 0.8 ≤ scoreff(vi, vj) ≤ 1.0 where scoreff() is as
defined as in Equation (1).10 Given our set of errors
E defined at Equation (2) above, the weight of a ver-
tex vi is defined as scoreef(vi, ej) for some ej ∈ E.

8For k = 2 the combinations were made from the top 100
features from k = 1, and for k = 3 from the top 50.

9We recalculated this over the subset of eight languages
used in this paper.

10We choose this threshold value as it is the one used in the
graph definition of Yannakoudakis et al. (2012).
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model r
ERRORCOOCC 0.95
L1ASSOC 0.97
MAXWEIGHTCLIQUE 0.95
MAXWEIGHTCLIQUE-L1 0.92

Table 4: Average correlation coefficient r between F-
statistic and χ2-statistic for each model

Given this graph, it is possible to characterise the find-
ing of related features with strong aggregate associations
with errors as an instance of the MAXIMUM WEIGHT
CLIQUE PROBLEM (Bomze et al., 1999). As the name
suggests, this finds a clique of maximum weight, here
the strongest aggregate feature–error association. While
this is an NP-hard problem, there are quite efficient algo-
rithms for solving it; we use one proposed by Östergård
(1999).11

MAXWEIGHTCLIQUE-L1 We also look at a vari-
ant of MAXWEIGHTCLIQUE where we construct the
graphs based only on relationships among features for
a particular L1. That is, there will be eight weighted
graphs per error of interest.

4 Results and Discussion
4.1 Overall Results
We only present the F-statistic results here; the χ2-
statistic showed very similar patterns. The average
correlation between the two for each model shows the
strong similarity (Table 4).

For the F-statistic results, presented in Table 5, we
report the highest F-statistic in the N -best list (N =
1, 5, 20, 50) for each model. For models ERRORCOOCC
and L1ASSOC we report the highest F-statistic for each
value of k (k = 1, 2, 3). The number of occurrences
of the error context with the highest F-statistic is given
in parentheses after the F-statistic; the highest value
for each N is in bold. For MAXWEIGHTCLIQUE-L1,
we also note the language of the graph from which the
highest score was derived.

We note by comparing Table 5 with Table 3 that for
each error type except for MD, it is possible to find
an error context that is more strongly associated with
L1s than is the raw error type alone. For MD this is
not surprising, as its frequency of occurrence is very
strongly linked to the L1, as noted in Table 2 and §3.2.12

(For the error type MT also, no model produces an error
context more strongly associated with the L1 for the
single best choice where N = 1, but does for larger
values of N .)

11Code for the used wclique is available at http://tcs.
legacy.ics.tkk.fi/˜pat/wclique.html.

12The fact that determiner errors are very widely studied in
terms of analysing cross-linguistic influence suggests a broad
consensus that they vary strongly with L1. In addition to Diéz-
Bedmar and Papp (2008), a sample of other studies includes
Parrish (1987), Young (1996) and Ionin and Montrul (2010).

With respect to the individual models, the simple ER-
RORCOOCC scores highly, giving the best result about
half the time, and the best results can occur for any
of k = 1, 2, 3. The number of instances returned for
each error plus error context is larger than for the other
models as well, which is not surprising as the model
aims to find contexts strongly associated with the errors
rather than with L1s. However, these are then likely to
be features that are fairly common across L1s; we look
at some examples in §4.2.

L1ASSOC performs fairly poorly on our evaluation
measure, although in many cases it does find an error
context more strongly associated with the L1 than just
the raw error type. Counts are also lower. Also, for this
model, k = 2, 3 are always worse than k = 1: bringing
in a second context feature reduces the number of oc-
currences to such an extent that the F-statistic can drop
dramatically. This is probably in part an artefact of the
size of the FCE corpus (and particularly our FCESUB
subcorpus): these features derived from the TOEFL11
corpus just do not occur sufficiently often in our evalua-
tion corpus (and in fact there are often large numbers of
zero occurrences for k = 2, 3).

MAXWEIGHTCLIQUE also performs fairly poorly.
However, in many cases it also finds an error context
more strongly associated with L1 than the raw error type
alone (DN, MT, UD, UT, UV), even if not always for
N = 1, and it has intermediate counts of occurrences.

MAXWEIGHTCLIQUE-L1 gives the best results in
the other half of the cases where ERRORCOOCC does
not. The error contexts that it finds, however, are very
specific, often to a single language (as might be expected
by its definition) with very small numbers of counts.

4.2 Some Examples

We look at some examples in Figure 2, to illustrate both
interesting error contexts found and areas where the
models do a poor job. In these sample sentences, only
errors of interest are retained and highlighted.

The DJ error with context { JJ, NN1 } illustrates the
top result found under the ERRORCOOCC model for
N = 20. In the first sentence the model seems to find a
useful pattern: the adjective that is at the centre of the
error occurs in the context of a singular noun. On the
other hand, the second sentence illustrates a problem:
because the range of the context is the whole sentence,
frequent features such as NN1 will occur a lot in other
parts of the sentence that have no apparent relation to
the actual error. The ERRORCOOCC model is thus likely
to be picking up false positives by virtue of the relatively
high frequencies of its error contexts.

The UV error with context { TO_VV0_II, NNL1,
II, NN2, VV0_II } illustrates the top result found
under the MAXWEIGHTCLIQUE-L1 model for N =
5. This is very specific, and its three instances only
appear in Turkish. But all three are similar errors from
different documents, so it appears likely to be a genuine
pattern, although the NN2 seems only to have a tenuous
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error context example sentences
DJ JJ, NN1 Basically/RR ,/, I/PPIS1 helped/VVD them/PPHO2 liaise/VV0

with/IW the/AT local/JJ police/NN and/CC get/VV0 some/DD
<ns type="DJ"><i>electronical</i><c>electronic/JJ</c></ns> equipmen-
t/NN1 that/CST they/PPHS2 needed/VVD.
The/AT show/NN1 will/VM be/VB0 at/II the/AT Central/JJ
Exhibition/NN1 Hall/NP1 and/CC it/PPH1 will/VM be/VB0
<ns type="DJ"><i>opened</i><c>open/JJ</c></ns> until/ICS 7/MC.

UV TO_VV0_II,
NNL1, II, NN2,
VV0_II

I/PPIS1 used/VMK to/TO <ns type="UV"><i>be</i></ns> play/VV0 in/II the/AT
school/NNL1 team/NN1 . . . and/CC our/APP$ team/NN1 was/VBDZ one/MC1 of/IO the/AT
best/JJT basketball/NN1 teams/NN2 . . .

DN XX, XX_VV0,
VM_XX_VV0, NN1

Never/RR the/AT less/DAR ,/, in/II summer/NNT1 we/PPIS2 can/VM n’t/XX resist/VV0
such/DA <ns type="DN"><i>hot</i><c>heat/NN1</c></ns>!
. . . I/PPIS1 think/VV0 you/PPY should/VM have/VH0 a/AT1 <ns type="DN"><i>baby-
parking</i><c>kindergarten/NP1</c></ns> ,/, in/II fact/NN1 a/AT1 certain/JJ num-
ber/NN1 of/IO women/NN2 could/VM n’t/XX see/VV0 the/AT Festival/NN1 because/CS
of/IO their/APP$ sons/NN2.

MD VBZ_RG,
RG_JJ_NN1

The/AT first/MD and/CC most/RR important/JJ thing/NN1 is/VBZ that/RG modern/JJ
technology/NN1 has/VHZ made/VVN our/APP$ life/NN1 easier/JJR ,/, for/IF instance/NN1
<ns type="MD"><c>the/AT</c></ns> rice/NN1 cooker/NN1 is/VBZ a/AT1 great/JJ
invention/NN1 . . .

Figure 2: Examples for sample error types and specific error contexts. Error contexts are bolded.

connection.
The DN error with context { XX, XX_VV0,

VM_XX_VV0, NN1 } illustrates the top result found un-
der the MAXWEIGHTCLIQUE-L1 model for N = 50.
A number of this reasonably sized set are similar to the
first sentence, where the context appears interesting. In
this example, hot is used for heat; the other examples
of this type are from Spanish and Italian (similarly, e.g.,
live for life), where the error seems to be connected
to words where the English derivational morphology
is not simply affixation. However, there are some like
the second sentence, where (as for the DJ error) the
error context appears in a different clause, and likely
irrelevant.

The MD error in the last row we examine because (a
more complex version of) it was the focus of the case
study in Yannakoudakis et al. (2012), which from the
examples of that paper looked quite convincing as an
error context of relevance to SLA research. However, it
and the related examples of Yannakoudakis et al. (2012)
were not in the publicly available corpus,13 and in fact
there is only one example of this error and context in the
whole FCE corpus, illustrating the issue of data sparsity.
Further, this example also illustrates the issue of tagging
error: that is tagged as RG (degree adverb) where it
should be CST.

So as might be anticipated from the frequency num-
bers in Table 5, the MAXWEIGHTCLIQUE-L1 model
produces context that looks interesting from an SLA per-
spective, but is relatively limited in scope; the ERROR-
COOCC model produces a much larger set of candidates,
and can successfully find error context such that they
behave differently with respect to the L1s according
to the ANOVA F-statistic, but produces false positives.
Overall, a recurring issue illustrated for all models by

13We assume that the multiple examples come from the
larger CLC corpus.

the examples is the proposal of error context far away
from any likely relevance to SLA.

5 Related Work
While Native Language Identification (NLI) as a sub-
field of NLP has seen much new work in the last few
years — the papers from the shared task (Tetreault et
al., 2013) provide a recent sample — the emphasis on
optimising classification task results, for example by
using classifier ensembles (Malmasi et al., 2013), ver-
sus analysing features for relevance to other tasks has
varied. Below we discuss works which directly look
at how features might be related to language-learning
tasks or SLA research.

The seminal work of Koppel et al. (2005) that pre-
sented NLI as a classification task included, in addition
to standard lexical and PoS n-gram features, errors made
by the writers; these errors were automatically identi-
fied using Microsoft Word grammar checker. Kochmar
(2011) used the FCE corpus for NLI, including the man-
ually annotated errors as features, and presented an anal-
ysis of usefulness of features (including errors) with
respect to L1.

Wong and Dras (2011) used syntactic features on the
basis of SLA theory that posits that L1 constructions
may be reflected in some form of characteristic errors or
patterns in L2 constructions to some extent, or through
overuse or avoidance of particular constructions in L2
(Lado, 1957; Ellis, 2008); they did note distributional
differences of features related to L1. Wong et al. (2012)
induced topic models over function words and PoS n-
grams, where some of the topics appeared to reflect L1-
specific characteristics. These works, while interested
in the nature of the features, do not evaluate them except
via classification accuracy.

Swanson and Charniak (2012) similarly explore us-
ing syntax, where they propose a richer representation
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for L1-specific constructions through Tree Substitution
Grammar (TSG). Swanson and Charniak (2013) sub-
sequently examine both relevancy and redundancy of
features through a number of metrics (including the
χ2-statistic used in this paper). They then extend a
Bayesian induction model for TSG inference based on
a supervised mixture of hierarchical grammars, in order
to extract a filtered set of more linguistically informed
features that could benefit both NLI and SLA research;
an aim was to find relatively rare features that are nev-
ertheless useful for L1 prediction. Swanson and Char-
niak (2014) continue on from this with a data-driven
approach to inferring possible relationships between L1
and L2 structures, again using TSGs. Malmasi and Dras
(2014c) also propose a method for identifying potential
language transfer effects by using additional linguistic
features such as adaptor grammars and grammatical de-
pendencies to analyse differences in learner language.
This body of work thus shares some similarities with the
present paper, but our focus is on errors rather than on
the distributional differences, and we look at error con-
texts that may not constitute a TSG tree or grammatical
dependency.

Coming from a linguistic perspective, the works in
Jarvis and Crossley (2012) use Linear Discriminant
Analysis for classification of texts by L1, and identify
interesting features by a stepwise feature selection pro-
cess in the course of classification, rather than via the
measurement of their variability across L1s as here.

More recently, several of these NLI techniques have
been adapted and applied to languages other than En-
glish, such as Arabic and Chinese (Malmasi and Dras,
2014a; Malmasi and Dras, 2014b).

6 Conclusion

In this paper, prompted by work on using computa-
tional visualisation techniques to help SLA researchers
form hypotheses about errors and the environments in
which they are made, we have defined a new task for
finding interesting contexts for errors that vary with
the native language of the speaker. We proposed four
models, ranging from one based on simple error-feature
co-occurrence statistics to one based on the maximum
weighted clique on an L1-specific feature association
graph; these all managed to find contexts that were more
strongly associated with L1s than the raw errors alone,
and produced (albeit with many false positives in the
case of the simple model) some error contexts that look
potentially useful for SLA.

This paper is largely intended to prompt more work
on applying NLP techniques to SLA more broadly. As
such, there are many ways in which the work could be
further developed. First, to get rid of obviously incor-
rect cases, the size of the area over which the feature-
feature and feature-error scores are calculated could be
restricted, perhaps to the relevant clause or a certain
window size. Second, it may not be the case that the
ANOVA F-statistic or χ2 are the best evaluation mea-

sure: in medical work, for example, there is the notion
of clinical significance, which takes effect size into ac-
count and is often more relevant to the practitioner than
statistical significance. Similarly, the current features
may not be the most meaningful. As part of this, an im-
portant step would be to bring in SLA researchers, to as-
sess proposed error contexts and look at what evaluation
measures best relate to this. The role of the present work
would then be to rule out models for producing error
contexts (like L1ASSOC) that produce weaker results in
hypothesis testing: it would thus be complementary to
the visualisation work from which it stems, guiding SLA
researchers away from unproductive areas of the space
of possible hypotheses. And third, the size of the corpus
is (as always) an issue: as these error-annotated corpora
are few and far between, a semi-supervised approach
or one that in some way incorporated unannotated data
would be useful, perhaps using some of the extensive
recent work on error annotation.
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