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Abstract 

While machine learning methods for 

named entity recognition (mention-level 

detection) have become common, ma-

chine learning methods have rarely been 

applied to normalization (concept-level 

identification). Recent research intro-

duced a machine learning method for 

normalization based on pairwise learning 

to rank. This method, DNorm, uses a lin-

ear model to score the similarity between 

mentions and concept names, and has 

several desirable properties, including 

learning term variation directly from 

training data. In this manuscript we em-

ploy a dimensionality reduction tech-

nique based on low-rank matrix approx-

imation, similar to latent semantic index-

ing. We compare the performance of the 

low rank method to previous work, using 

disease name normalization in the NCBI 

Disease Corpus as the test case, and 

demonstrate increased performance as 

the matrix rank increases. We further 

demonstrate a significant reduction in the 

number of parameters to be learned and 

discuss the implications of this result in 

the context of algorithm scalability. 

1 Introduction 

The data necessary to answer a wide variety of 

biomedical research questions is locked away in 

narrative text. Automating the location (named 

entity recognition) and identification (normaliza-

tion) of key biomedical entities (Doğan et al., 

2009; Névéol et al., 2011) such as diseases, pro-

teins and chemicals in narrative text may reduce 

curation costs, enable significantly increased 

scale and ultimately accelerate biomedical dis-

covery (Wei et al., 2012a). 

Named entity recognition (NER) techniques 

have typically focused on machine learning 

methods such as conditional random fields 

(CRFs), which have provided high performance 

when coupled with a rich feature approach. The 

utility of NER for biomedical end users is lim-

ited, however, since many applications require 

each mention to be normalized, that is, identified 

within a specified controlled vocabulary.  

The normalization task has been highlighted in 

the BioCreative challenges (Hirschman et al., 

2005; Lu et al., 2011; Morgan et al., 2008), 

where a variety of methods have been explored 

for normalizing gene names, including string 

matching, pattern matching, and heuristic rules. 

Similar methods have been applied to disease 

names (Doğan & Lu, 2012b; Kang et al., 2012; 

Névéol et al., 2009) and species names (Gerner 

et al., 2010; Wei et al., 2012b), and the MetaMap 

program is used to locate and identify concepts 

from the UMLS MetaThesaurus (Aronson, 2001; 

Bodenreider, 2004). 

Machine learning methods for NER have pro-

vided high performance, enhanced system adapt-

ability to new entity types, and abstracted many 

details of specific rule patterns. While machine 

learning methods for normalization have been 

explored (Tsuruoka et al., 2007; Wermter et al., 

2009), these are far less common. This is partial-

ly due to the lack of appropriate training data, 

and also partially due to the need for a general-

izable supporting framework.  

Normalization is frequently decomposed into 

the sub-tasks of candidate generation and disam-

biguation (Lu et al., 2011; Morgan et al., 2008). 

During candidate generation, the set of concept 

names is constrained to a set of possible matches 

using the text of the mention. The primary diffi-

culty addressed in candidate generation is term 

variation: the need to identify terms which are 

semantically similar but textually distinct (e.g. 

“nephropathy” and “kidney disease”). The dis-

ambiguation step then differentiates between the 

different candidates to remove false positives, 

typically using the context of the mention and the 

article metadata. 
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Recently, Leaman et al. (2013a) developed an 

algorithm (DNorm) that directly addresses the 

term variation problem with machine learning, 

and used diseases – an important biomedical en-

tity – as the first case study. The algorithm learns 

a similarity function between mentions and con-

cept names directly from training data using a 

method based on pairwise learning to rank. The 

method was shown to provide high performance 

on the NCBI Disease Corpus (Doğan et al., 2014; 

Doğan & Lu, 2012a), and was also applied to 

clinical notes in the ShARe / CLEF eHealth task 

(Suominen et al., 2013), where it achieved the 

highest normalization performance out of 17 in-

ternational teams (Leaman et al., 2013b). The 

normalization step does not consider context, and 

therefore must be combined with a disambigua-

tion method for tasks where disambiguation is 

important. However, this method provides high 

performance when paired with a conditional ran-

dom field system for NER, making the combina-

tion a step towards fully adaptable mention 

recognition and normalization systems. 

This manuscript adapts DNorm to use a di-

mensionality reduction technique based on low 

rank matrix approximation. This may provide 

several benefits. First, it may increase the scala-

bility of the method, since the number of pa-

rameters used by the original technique is pro-

portional to the square of the number of unique 

tokens. Second, reducing the number of parame-

ters may, in turn, improve the stability of the 

method and improve its generalization due to the 

induction of a latent “concept space,” similar to 

latent semantic indexing (Bai et al., 2010). Final-

ly, while the rich feature approach typically used 

with conditional random fields allows it to par-

tially compensate for out-of-vocabulary effects, 

DNorm ignores unknown tokens. This reduces 

the ability of the model to generalize, due to the 

zipfian distribution of text (Manning & Schütze, 

1999), and is especially problematic in text 

which contains many misspellings, such as con-

sumer text. Using a richer feature space with 

DNorm would not be feasible, however, unless 

the parameter scalability problem is resolved. 

In this article we expand the DNorm method 

in a pilot study on feasibility of using low rank 

approximation methods for disease name nor-

malization. To make this work comparable to the 

previous work on DNorm, we again employed 

the NCBI Disease Corpus (Doğan et al., 2014). 

This corpus contains nearly 800 abstracts, split 

into training, development, and test sets, as de-

scribed in Table 1. Each disease mention is anno-

tated for span and concept, using the MEDIC 

vocabulary (Davis et al., 2012), which combines 

MeSH® (Coletti & Bleich, 2001) and OMIM® 

(Amberger et al., 2011). The average number of 

concepts for each name in the vocabulary is 5.72. 

Disease names exhibit relatively low ambiguity, 

with an average number of concepts per name of 

1.01. 

 
Subset Abstracts Mentions Concepts 

Training 593 5145 670 

Development 100 787 176 

Test 100 960 203 

 
Table 1. Descriptive statistics for the NCBI Disease 

Corpus. 

2 Methods 

DNorm uses the BANNER NER system 

(Leaman & Gonzalez, 2008) to locate disease 

mentions, and then employs a ranking method to 

normalize each mention found to the disease 

concepts in the lexicon (Leaman et al., 2013a). 

Briefly, we define   to be the set of tokens from 

both the disease mentions in the training data and 

the concept names in the lexicon. We stem each 

token in both disease mentions and concept 

names (Porter, 1980), and then convert each to 

TF-IDF vectors of dimensionality | |, where the 

document frequency for each token is taken to be 

the number of names in the lexicon containing it 

(Manning et al., 2008). All vectors are normal-

ized to unit length. We define a similarity score 

between mention vector   and name vector  , 

     (   ), and each mention is normalized by 

iterating through all concept names and returning 

the disease concept corresponding to the one 

with the highest score. 

In previous work,      (   )      , 

where   is a weight matrix and each entry     

represents the correlation between token    ap-

pearing in a mention and token    appearing in a 

concept name from the lexicon. In this work, 

however, we set   to be a low-rank approxima-

tion of the form        , where   and   

are both   | |  matrices,   being the rank 

(number of linearly independent rows), and 

  | | (Bai et al., 2010). 

For efficiency, the low-rank scoring function 

can be rewritten and evaluated as      (   )  
(  ) (  )     , allowing the respective    

and    vectors to be calculated once and then 

reused. This view provides an intuitive explana-

tion of the purpose of the  and   matrices: to 
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convert the sparse, high-dimensional mention 

and concept name vectors (  and  ) into dense, 

low dimensional vectors (as    and   ). Under 

this interpretation, we found that performance 

improved if each    and    vector was renor-

malized to unit length. 

This model retains many useful properties of 

the original model, such as the ability to repre-

sent both positive and negative correlations be-

tween tokens, to represent both synonymy and 

polysemy, and to allow the token distributions 

between the mentions and the names to be differ-

ent. The new model also adds one important ad-

ditional property: the number of parameters is 

linear in the number of unique tokens, potentially 

enabling greater scalability.  

2.1 Model Training 

Given any pair of disease names where one (  ) 

is for   , the correct disease concept for 

tion  , and the other,   , is for   , an incorrect 

concept , we would like to update the weight ma-

trix   so that            . Following 

Leaman et al. (2013a), we  iterate through each 

〈       〉 tuple, selecting   and   as the name 

for    and   , respectively, with the highest sim-

ilarity score to  , using stochastic gradient de-

scent to make updates to  . With a dense weight 

matrix  , the update rule is: if       
       , then   is updated as     
 ( (  )   (  ) ) , where   is the learning 

rate, a parameter controlling the size of the 

change to W. Under the low-rank approximation, 

the update rules are: if              , 

then   is updated as       (     )  , 

and   is updated as        (     ) , 

noting that the updates are applied simultaneous-

ly (Bai et al., 2010). Overfitting is avoided using 

a holdout set, using the average of the ranks of 

the correct concept as the performance measure-

ment, as in previous work. 

We initialize   using values chosen randomly 

from a normal distribution with mean 0 and 

standard deviation 1. We found it useful to ini-

tialize   as   , since this causes the representa-

tion for disease mentions and disease names to 

initially be the same.  

We employed an adaptive learning rate using 

the schedule      
 

   
, where   is the itera-

tion,    is the initial learning rate, and   is the 

discount (Finkel et al., 2008). We used an initial 

learning rate of       
  . This is much lower 

than reported by Leaman et al. (2013a), since we 

found that higher values caused the training to 

found that higher values caused the training to 

diverge. We used a discount parameter of    , 

so that the learning rate is equal to one half the 

initial rate after five iterations. 

3 Results 

Our results were evaluated at the abstract level, 

allowing comparison to the previous work on 

DNorm (Leaman et al., 2013a). This evaluation 

considers the set of disease concepts found in the 

abstract, and ignores the exact location(s) where 

each concept was found. A true positive consists 

of the system returning a disease concept anno-

tated within the NCBI Disease Corpus, and the 

number of false negatives and false positives are 

defined similarly. We calculated the precision, 

recall and F-measure as follows: 

  
  

     
     

  

     
     

   

   
 

We list the micro-averaged results in Table 2. 

 

Rank Precision Recall F-measure 

50 0.648 0.671 0.659 

100 0.673 0.685 0.679 

250 0.697 0.697 0.697 

500 0.702 0.700 0.701 

(Full) 0.828 0.819 0.809 

 

Table 2. Performance measurements for each 

model on the NCBI Disease Test set. Full corre-

sponds with the full-rank matrix used in previous 

work. 

4 Discussion 

There are two primary trends to note. First, the 

performance of the low rank models is about 

10%-15% lower than the full rank model. Sec-

ond, there is a clear trend towards higher preci-

sion and recall as the rank of the matrix increas-

es.  This trend is reinforced in Figure 1, which 

shows the learning curve for all models. These 

describe the performance on the holdout set after 

each iteration through the training data, and are 

measured using the average rank of the correct 

concept in the holdout set, which is dominated 

by a small number of difficult cases. 

Using the low rank approximation, the number 

of parameters is equal to     | |. Since   is 

fixed and independent of | |, the number of pa-

rameters is now linear in the number of tokens, 

effectively solving the parameter scalability 

problem. Table 3 lists the number of parameters 

for each of the models used in this study. 
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Figure 1. Learning curves showing holdout per-

formance at each iteration through the training 

data. 

 

Rank Parameters 

50 1.8×10
6
 

100 3.7×10
6
 

250 9.1×10
6
 

500 1.8×10
7
 

(Full) 3.3×10
8
 

 

Table 3. Number of model parameters for each 

variant, showing the low rank methods using 1 to 

2 orders of magnitude fewer parameters. 

 

There are two trade-offs for this improvement 

in scalability. First, there is a substantial perfor-

mance reduction, though this might be mitigated 

somewhat in the future by using a richer feature 

set – a possibility enabled by the use of the low 

rank approximation. Second, training and infer-

ence times are significantly increased; training 

the largest low-rank model (     ) required 

approximately 9 days, though the full-rank mod-

el trains in under an hour.  

The view that the   and   matrices convert the 

TF-IDF vectors to a lower dimensional space 

suggests that the function of   and   is to pro-

vide word embeddings or word representations – 

a vector space where each word vector encodes 

its relationships with other words. This further 

suggests that one way to provide higher perfor-

mance may be to take advantage of unsupervised 

pre-training (Erhan et al., 2010). Instead of ini-

tializing   and   randomly, they could be initial-

ized using a set of word embeddings trained on a 

large amount of biomedical text, such as with 

neural network language models (Collobert & 

Weston, 2008; Mikolov et al., 2013). 

5 Conclusion 

We performed a pilot study to determine whether 

a low rank approximation may increase the 

scalability of normalization using pairwise learn-

ing to rank. We showed that the reduction in the 

number of parameters is substantial: it is now 

linear to the number of tokens, rather than pro-

portional to the square of the number of tokens. 

We further observed that the precision and recall 

increase as the rank of the matrices is increased. 

We believe that further performance increases 

may be possible through the use of a richer fea-

ture set, unsupervised pre-training, or other di-

mensionality reduction techniques including fea-

ture selection or L1 regularization (Tibshirani, 

1996). We also intend to apply the method to 

additional entity types, using recently released 

corpora such as CRAFT (Bada et al., 2012). 
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