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Abstract 

Developmental research indicates that infants 
use low-level statistical regularities, or pho-
notactics, to segment words from continuous 
speech. In this paper, we present a segmenta-
tion framework that enables the direct com-
parison of different phonotactic models for 
segmentation. We compare a model using 
phoneme transitional probabilities, which 
have been widely used in computational 
models, to syllable-based bigram models, 
which have played a prominent role in the 
developmental literature. We also introduce a 
novel estimation method, and compare it to 
other strategies for estimating the parameters 
of the phonotactic models from unsegmented 
data. The results show that syllable-based 
models outperform the phoneme models, 
specifically in the context of improved unsu-
pervised parameter estimation. The syllable-
based transitional probability model achieves 
a word token f-score of nearly 80%, the high-
est reported performance for a phonotactic 
segmentation model with no lexicon. 

1 Introduction 

One of the first language learning tasks infants 
must solve is the segmentation of fluent speech 
into words. Extensive experimental work has 
demonstrated that infants are able to use phono-
tactic restrictions (Jusczyk & Luce, 1994; Mattys 
et al., 1999; Mattys & Jusczyk, 2001) and other 
low-level statistical regularities (Saffran et al., 
1996; Thiessen & Saffran, 2003; Pelucchi et al., 
2009) to extract words from fluent speech before 
the age of one. This work has shown that infants 
utilize these low-level statistical regularities to 
segment speech during the second half of the 
first year of life before they have developed ex-
tensive vocabularies that could provide top-down 
lexical information to guide segmentation. De-

velopmental research indicates that on average 
infants know fewer than 100 word types during 
this period (Dale & Fenson, 1996; Daland & 
Pierrehumbert, 2011).  

One statistical cue that has received a great 
deal of support in experimental work on infant 
speech segmentation is transitional probability 
calculated over syllables. In foundational work, 
Saffran et al. (1996) found that infants are able to 
segment words from continuous speech using 
statistical regularities between syllables. Numer-
ous subsequent studies have confirmed that in-
fants can track transitional probabilities and use 
them to segment speech (Aslin et al., 1998; 
Thiessen & Saffran, 2003; Pelucchi et al., 2009).  

Despite the extensive experimental literature 
demonstrating infants’ sensitivity to transitional 
probability in an artificial language learning set-
ting, the utility of these statistical cues in a natu-
ral language learning context is disputed. Yang 
(2004) shows that a segmentation strategy rely-
ing on transitional probabilities over syllables 
achieves very poor results on English child-
directed speech, even when the input is perfectly 
syllabified. Yang implements the local minimum 
segmentation strategy proposed by Saffran et al. 
(1996) wherein word boundaries are posited at 
syllable transitions whenever the transitional 
probabilities at these positions are lower than at 
the neighboring transitions. He reports that this 
strategy discovers a mere 23% of target words 
and posits incorrect words nearly 60% of the 
time. Swingley (2005) argues that statistical cues 
calculated over syllables can provide sufficient 
information for infants to begin building an ini-
tial lexicon. However, the learning strategy ex-
plored by Swingley is highly conservative, relia-
bly detecting only a small proportion of target 
words in the input. Overall, these results raise 
questions about whether syllable-based statistics 
can be reliably used to identify word boundaries 
in natural language data. 
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While the experimental work emphasizes syl-
lable-level transitional probability, recent com-
putational modeling work and corpus analyses 
have primarily focused on the utility of pho-
neme-level statistics. A number of phonotactical-
ly-based segmentation models, focusing on the 
discovery of word boundaries based on pho-
neme-level statistics, have achieved more prom-
ising results (Adriaans & Kager, 2010; Daland & 
Pierrehumbert, 2011; see also Brent, 1999). For 
example, Brent (1999) showed that a local mini-
mum strategy relying on phoneme bigrams cor-
rectly extracts about 50% of word tokens in Eng-
lish child-directed speech. Corpus analyses of 
child-directed speech have also highlighted the 
information content of phoneme-level statistics 
(Hockema, 2006; Jarosz & Johnson, 2013). Re-
lated work has shown that phonotactic infor-
mation can improve the performance of state-of-
the-art segmentation models whose primary ob-
jective is to discover the lexicon that underlies 
the regularities in the continuous speech signal. 
Again, this work has largely emphasized pho-
neme-level statistical cues (Blanchard & Heinz 
2008, 2010), and those models that do rely on 
syllable structure (Johnson, 2008a; Johnson & 
Goldwater, 2009), do not directly encode sequen-
tial statistics between adjacent syllables of the 
sort investigated in the infant literature. Finally, 
some models assume computations are per-
formed over syllables and that all word bounda-
ries in the input are aligned with syllable bounda-
ries, but provide no mechanism by which such 
language-specific syllabification principles could 
be learned (Yang, 2004; Swingley, 2005; Lignos 
& Yang, 2010). 

Overall, the existing evidence clearly shows 
that there are phonotactic cues to word bounda-
ries in spontaneous, child-directed speech. How-
ever, there are remaining questions regarding the 
exact nature of these cues, their reliability, and 
how they relate to the statistical cues explored in 
the infant word segmentation literature. In this 
paper, we investigate the computational mecha-
nisms underlying infants’ early speech segmenta-
tion abilities relying on low-level statistical regu-
larities, or phonotactics. We present a computa-
tional framework that permits the direct compari-
son of segmentation predictions for alternative 
models of phonotactics. In particular, we com-
pare a standard phonotactic model relying on 
phoneme-level bigrams to two syllable-based 
phonotactic models relying on transitional prob-
abilities. Unlike previous models relying on syl-
labified data (Yang, 2004; Swingley, 2005; Lig-

nos & Yang, 2010), we do not assume that word 
boundaries align with syllable boundaries in the 
input. Rather, we present a simple syllabification 
method that can be used to model phonotactic 
probability for arbitrary strings using statistics 
estimated from unsyllabified, unsegmented utter-
ances. We also compare the local minimum seg-
mentation strategy (Saffran et al., 1996; Yang, 
2004) to alternatives designed to deal with the 
challenges of unsupervised estimation of transi-
tional probabilities from unsegmented input.  

Our focus on the early phonotactic segmenta-
tion stage differentiates our approach from many 
computational models emphasizing the discovery 
of the lexicon and higher-level language struc-
ture (Brent, 1999; Venkataraman, 2001; Swin-
gley, 2005; Johnson, 2008a; Goldwater et al., 
2009; Johnson & Goldwater, 2009; Blanchard & 
Heinz 2008, 2010; Lignos & Yang, 2010). It 
complements that of recent work investigating 
the use of phoneme-level statistical regularities 
for segmentation (Adriaans & Kager, 2010; Da-
land & Pierrehumbert, 2011). Our work differs 
from these latter approaches, however, in com-
paring several phonotactic models, including 
ones relying on the syllable-based transitional 
probability statistics investigated in infant re-
search. Our work also contributes to existing 
segmentation work that assumes a syllabified 
input (Yang, 2004; Swingley, 2005; Lignos & 
Yang, 2010) by showing how many aspects of 
syllable structure can be inferred.  

Our results reveal an interaction between es-
timation strategy and the choice of phonotactic 
model. The local minimum segmentation strate-
gy works poorly in general for all models con-
sidered, but the lowest performance is achieved 
by the syllable-based models. However, when 
the same cues are used in the context of a simple, 
generative probability model with improved un-
supervised parameter estimation, the syllable-
based models substantially outperform the pho-
neme-based models. Indeed, the syllable-based 
transitional probability phonotactic model 
achieves a word token segmentation f-score of 
nearly 80%, which is the highest reported per-
formance among purely phonotactically-based 
segmentation models (Adriaans & Kager, 2010; 
Daland & Pierrehumbert, 2011). Indeed, this per-
formance compares favorably with state-of-the-
art segmentation models that involve learning of 
higher level regularities, such as the lexicon and 
collocations (Brent, 1999; Venkataraman, 2001; 
Johnson, 2008a; Goldwater et al., 2009; Johnson 
& Goldwater, 2009), and demonstrates that good 
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segmentation performance can be achieved by 
exploiting simple syllable-level phonotactic cues. 

2 Segmentation Model 

The proposed segmentation model defines the 
probability of an utterance in terms of an abstract 
phonotactic probability component that assigns 
word well-formedness probabilities to phoneme 
strings. The segmentation algorithm uses those 
probabilities to determine the maximum likeli-
hood segmentation as defined by a simple gener-
ative model. Since the phonotactics and segmen-
tation components are separate, they can be in-
dependently modified. This framework makes it 
possible to compare models of phonotactics 
while using the same segmentation strategy.  

2.1 Probability Model 

The segmentation probability model relies on the 
phonotactic component to assign probabilities to 
potential words. The probability of a segmenta-
tion w is defined in terms of a simple unigram 
model by multiplying the probabilities of the 
words !!!! posited in that segmentation. 
 

1) ! ! ! ! !!!! ! !!!!!!
!   

 
! !! !is the probability assigned by the phono-
tactic models, which will be defined in the next 
section. The various phonotactic models change 
how exactly ! !! !is defined, but the segmenta-
tion probability always depends directly on the 
word probabilities given by a particular phono-
tactic model. For example, for the utterance 
[l!kætmi] ‘lookatme’, the segmentation model 
compares different segmentations, such as 
[l!k#æ#tmi] and [l!k#æt#mi] based on the pho-
notactic well-formedness of the posited words. 

2.2 Segmentation Algorithm 

The segmentation algorithm computes and out-
puts the segmentation with the highest likeli-
hood: !"#$!%!! ! . The optimal segmenta-
tion is found using dynamic programming, as in 
several previous proposals (Brent, 1999; Venka-
taraman, 2001). Given an input utterance, the 
model considers placing word boundaries at dif-
ferent positions within the utterance without re-
gard to phonotactics or syllable structure. The 
phonotactic probability of each posited word is 
calculated independently as it is considered and 
used to update the probability of segmentations 
utilizing that word. In this way, the segmentation 
component remains entirely divorced from the 

details of the phonotactic models. Crucially, this 
means the full space of possible segmentations is 
considered by the segmentation model regardless 
of the phonotactic model, with no a priori re-
strictions imposed by phonotactic or syllable 
constraints as to where boundaries are permitted.  

3 Phonotactic Models 

We implement and compare several models of 
phonotactics that are utilized by the segmentation 
component described above. While all models 
rely on transitional probabilities, or bigrams, as 
defined in (2), the unit of analysis varies between 
the models. One model uses phonemes and pho-
neme transitions, and two models incorporate 
syllable information: we use x to denote a gener-
ic unit. The model determines the probability of 
a word, ! ! !!!!!!! where !! and !!!! are the 
word boundary symbol #, by multiplying the 
probabilities of all bigrams in the word. 

 
2) ! ! ! ! !!!!!!!!!!

! ! 
 
The transitional probability for the sequence 
!!!!!! can be calculated using relative frequency 
estimates based on counts ! in the corpus. 
 

3) ! !! !!!! ! ! !!!!!!!!!!!!!!!!
 

 
Section 4 describes strategies that we consider 
for estimating these parameters in an unsuper-
vised way from unsegmented data where the on-
ly word boundaries are those that coincide with 
utterance boundaries. 

3.1 Phoneme Model 

The first phonotactic model is a standard pho-
neme bigram model that determines the probabil-
ity of a word by multiplying the phoneme bi-
grams in the word (Jurafsky & Martin, 2008). 
For example, to calculate the phonotactic proba-
bility of the sequence [bot] as a word, this model 
multiplies together P(b|#)P(o|b)P(t|o)P(#|t).  

3.2 Syllable-Based Models 

The other two phonotactic models use syllables 
rather than phonemes. One model relies on tran-
sitional probabilities over syllables, and the other 
uses onsets and rhymes as the unit of analysis. 

3.2.1 Unsupervised Syllabification 

The syllabification method relies on the language 
universal principle of onset maximization to-
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gether with an inventory of syllable onsets de-
rived from the beginnings of utterances. When 
syllabifying an intervocalic sequence of conso-
nants, this method finds the longest legal onset 
aligned with the right edge and places any re-
maining consonants in the coda of the previous 
syllable. Thus, a sequence like [ætmi] would be 
syllabified as [æt.mi] in English since [m] but 
not [tm] occurs utterance-initially. The only lan-
guage-particular information required for this 
approach is knowledge of which phonemes are 
vowels (syllabic) and which are consonants, a 
limited type of information also assumed by oth-
er syllable inference models for segmentation 
(Johnson, 2008a; Johnson & Goldwater, 2009). 

As the segmentation component posits poten-
tial words, they are passed to the phonotactic 
component for syllabification and phonotactic 
probability calculation. This differs crucially 
from previous work assuming a fixed syllabifica-
tion of the input corpus in which word bounda-
ries always align with syllable boundaries (Yang, 
2004; Swingley, 2005; Lignos & Yang, 2010). In 
a setting in which syllabification must be in-
ferred from unsegmented utterances, the learner 
must be capable of assigning syllabification more 
flexibly since word boundaries do not always 
align with the syllable boundaries that would be 
posited for the utterance as a whole.  For exam-
ple, the universal onset maximization principle 
always parses singleton consonants VCV as the 
onsets V.CV rather than codas VC.V. Therefore, 
without prior knowledge of word boundaries, the 
utterance [l!kætmi] (‘look at me’) would be syl-
labified as [l!.kæt.mi], and if the segmentation 
algorithm never considered words that misa-
ligned with these syllable boundaries, it would 
never extract any vowel-initial words like ‘at’. 
Thus, a crucial feature of the current model is 
that syllabification takes place on a word-by-
word basis as potential words are posited. The 
resulting syllabification for the potential word is 
used by the syllable-based models to assign pho-
notactic probability as discussed below. 

3.2.2 Syllable Model 

The first syllable-based model is one in which 
bigram transitional probabilities are calculated 
over syllables. These transitional probabilities 
are precisely those discussed earlier as having 
played a prominent role in the infant segmenta-
tion literature. The phonotactic probability of a 
posited word is calculated by multiplying the 

transitional probabilities of all syllable bigrams 
in the word, including an assumed initial and 
final #. For example, if the segmentation compo-
nent posits a potential word such as [l!kætmi] 
‘lookatme’, this sequence is first syllabified us-
ing the procedure described earlier as 
[l!.kæt.mi]. Then the phonotactic probability of 
this potential word is calculated by multiplying 
together the syllable-based bigram probabilities: 
P(l!|#)P(kæt|l!)P(mi|kæt)P(#|mi). As before, rel-
ative frequency estimates calculated from un-
segmented input data (automatically syllabified 
using the unsupervised syllabification method 
described earlier) provide a starting point for pa-
rameter estimation. Estimation strategies are dis-
cussed in depth in Section 4. 

3.2.3 Onset Rhyme Model 

In addition to the phoneme level and syllable 
level bigram models, we consider an intermedi-
ate model that makes use of the main subconstit-
uents of syllables: onsets and rhymes. Recall that 
the syllabification procedure relies on identifying 
maximal onsets, whereas rhymes are composed 
of the remaining material in the syllable. So the-
se constituents are already available during the 
syllabification procedure, and this phonotactic 
model operates over these smaller constituents, 
rather than over entire syllables. The syllable-
based model operates over indivisible syllable 
units, while this models treats syllables as com-
binations of smaller subconstituents.  

Once a sequence is syllabified (separating on-
sets and rhymes), this model uses bigrams over 
these units to determine word probabilities. Con-
sider again the potential word [l!kætmi] 
‘lookatme’. This sequence is first syllabified into 
onsets and rhymes as [l.!.k.æt.m.i]. Then its 
phonotactic probability is calculated by multiply-
ing together the bigram probabilities: 
P(l|#)P(!|l)P(k|!)P(æt|k)P(m|æt)P(i|m)P(#|i).  As 
before, relative frequency estimates are calculat-
ed from an (automatically syllabified) unseg-
mented version of the input corpus. 

4 Estimation 

Inferring the parameters of these models in an 
unsupervised way from unsegmented utterances 
presents a number of challenges. First, a genera-
tive model relying on these parameters must be 
able to accommodate elements and sequences of 
elements that have not previously been encoun-
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tered. This includes unseen phonemes, onsets, 
rhymes, syllables, and unseen sequences of these 
units. A second difficulty for the generative 
model arises specifically in the context of seg-
mentation due to the number of boundaries en-
countered in the input data. In an unsegmented 
corpus there are no boundaries within an utter-
ance. The only evidence for word boundaries 
comes from boundaries at the beginnings and 
ends of utterances. The effect is that the total 
number of boundaries is lower than the number 
that must be inferred by the learner, and the 
overall probability of boundaries is underrepre-
sented in the input data. We considered several 
estimation methods to overcome these effects. 

4.1 Local Minimum Strategy 

In previous research (Saffran et al., 1996) it has 
been suggested that word boundaries are placed 
at troughs in transitional probability so that a 
boundary is inserted between two elements when 
the transitional probability of those elements is 
lower than the probability of the neighboring 
transitions. This strategy captures the fact that 
word boundaries are more likely to occur be-
tween elements that have a low probability of 
occurring together. Since this strategy does not 
incorporate transitional probabilities into a gen-
erative segmentation model, it provides a simple 
way around the estimation challenges discussed 
above. We include it for comparison to previous 
results relying on syllable-based transitional 
probabilities (Yang, 2004). 

4.2 Adjusted Boundary Count Strategy 

We also introduce a novel, simple method for 
adjusting the estimates of transitional probabili-
ties based on input data that underrepresents 
word boundaries. This method directly adjusts 
the parameter estimates in order to increase the 
overall likelihood of word boundaries. The main 
insight behind this estimation strategy is that ob-
served bigram counts (of co-occurring pho-
nemes, syllables, or onsets and rhymes) in the 
input data are overestimated since a proportion 
of them are in reality separated by word bounda-
ries in the desired segmentation. For a given pro-
portion p# (a parameter of this estimation meth-
od), the bigram counts of co-occurring elements 
(phonemes, syllables, or onsets/rhymes) are sys-
tematically decreased by a factor of (1- p#) and 
for each context c, are reallocated to the transi-
tional probability of P(# | c). The formula below 
illustrates how this adjustment works for arbi-
trary contexts c and proportion p#. The probabil-

ity of each possible element !! that can follow c 
is decreased by a factor of p# as shown in (4). 
The total probability taken away from all contin-
uations of c is used to increase the probability of 
P(# | c) as shown in (5). 
 

4) ! !! ! ! ! !!!!!!!!!!! !! ! !!! 
 

5) ! ! ! ! ! !!!!!!!!!! ! !!!! !
!!!!!!
!!!! ! 

 
Consider an example for the context x, with three 
bigrams observed in the input: c(xy) = 10, c(xz) = 
6, and c(x#) = 4. The relative frequency estimates 
for these transitional probabilities are 0.5, 0.3, 
and 0.2 respectively. The adjusted count method 
takes away p# of the xy and xz counts and reallo-
cates them to x#. For p# = 0.5, for example, the 
new estimates would be 0.25, 0.15, and 0.6. The 
adjustment works analogously for every context 
for each of the units of analysis. 

4.3 Smoothing 

We also utilized rudimentary smoothing tech-
niques to allow the generative model to deal with 
unknown sequences. We chose a simple method 
that allocated non-zero probability to unseen se-
quences while minimally disrupting the estimates 
computed using the adjusted boundary count 
strategy, since our primary concern was in ex-
ploring the effects of this novel re-estimation 
strategy. For all models, add-lambda smoothing 
(Jurafsky & Martin, 2008) with a value of 0.001 
was used. For the syllable-based models this total 
value was allocated to all unseen bigrams in or-
der to avoid over-allocation of probability to the 
numerous combinations of unseen syllabic units.  

4.4 Iterative Re-estimation 

After estimating the transitional probabilities 
from the unsegmented corpus, the above strate-
gies can be used to compute the optimal segmen-
tation of the input corpus in a single pass. In ad-
dition to the above strategies, we also investigat-
ed a greedy, iterative re-estimation strategy that 
makes multiple passes through the corpus. This 
estimation method takes the output of the above 
methods and uses it to re-estimate (smoothed and 
adjusted) parameters for the phonotactic models. 
It then recomputes the optimal segmentation of 
the corpus based on the new parameters and re-
peats until convergence.  This method is moti-
vated by previous segmentation work highlight-
ing the effectiveness of greedy re-estimation 
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techniques (Brent, 1999; Venkataraman, 2001; 
Goldwater et al., 2009; Johnson & Goldwater, 
2009). As noted in previous work, such greedy 
re-estimation has the potential to infer additional 
word boundaries based on commitments made to 
word boundaries on earlier passes. 

5 Experiments 

5.1 Corpus 

The experiments for all the models were run on 
the Brent (1999) version of the Bernstein-Ratner 
(1987) corpus of English child-directed speech 
consisting of phonetically transcribed utterances. 
This corpus has been widely used for evaluating 
segmentation models. Other models evaluated on 
this corpus include those of Brent (1999), Venka-
taraman (2001), Blanchard and Heinz (2008), 
and Johnson and Goldwater (2009). 

5.2 Evaluation 

Precision, recall, and f-scores of both word to-
kens and boundaries were used to evaluate per-
formance. For the models with iterative re-
estimation, the reported performance scores are 
taken from the iteration after convergence. This 
typically happened after 5-10 iterations. 

5.3 Results and Discussion 

Table 1 summarizes the word boundary and 
word token f-scores for all models, while Table 2 
presents the precision and recall scores for the 
best-performing adjusted count models and the 
local minimum models.  

Focusing first on the local minimum estima-
teion strategy, there are several noteworthy ef-
fects. First, our results with local minima for the 
syllable-level transitional probabilities achieves 
very similar word token precision and recall to 
that reported by Yang (2004), who examined a 
different corpus of child-directed English. The 
word token precision and recall of our model is 
40.2% and 23.7%, respectively, while Yang re-
ported 41.6% and 23.3%, respectively, for his 
experiments. This corroborates Yang’s finding 
that the local minima estimation strategy for syl-
lable-level transitional probabilities works very 
poorly, this time showing that this level of per-
formance can be achieved with simultaneous in-
ference of syllabification. As Table 2 shows, the 
poor performance can be attributed to poor re-
call, which the low boundary recall and high pre-
cision illustrate most clearly. As Yang discusses, 
the fatal flaw for this approach is that it categori-
cally fails to segment monosyllabic words, which 

account for an overwhelming majority of words 
in child-directed speech. This is because local 
minima must, by definition, be separated by at 
least one transition with a higher bigram proba-
bility, which is not treated as a boundary. Indeed, 
the proportion of monosyllables is so high that a 
baseline strategy that simply posits word bounda-
ries at all syllable boundaries achieves a word 
token f-score of 58.0% using the minimally-
supervised syllabification procedure described 
here1. The high performance of the monosyllabic 
baseline highlights the ineffectiveness of the lo-
cal minimum strategy but also indicates that syl-
lable structure provides a significant amount of 
information about word boundaries in English, 
even if this syllable structure is automatically 
inferred from unsegmented input using minimal 
prior knowledge. 

Furthermore, our results with the phoneme 
bigram local minimum strategy (47.1% word 
token f-score) corroborate Brent’s (1999) finding 
that this method achieves a roughly 50% word 
token f-score (Brent did not provide exact num-
bers). The improvement in performance is not 
surprising given the above discussion about the 
prevalence of monosyllabic words: local minima 
defined over the smaller phoneme units do not 
automatically rule out the possibility of segment-
ing short words. We also demonstrate that the 
onset-rhyme model achieves performance similar 
to that of the syllable bigram model using the 
local minima strategy. Finally, the results with 
iterative re-estimation show that further refine-
ment of the posited word boundaries can lead to 
some improvement, but none of the local mini-
mum models surpass 53% word token f-score, 
and the syllable-based models perform substan-
tially worse. Overall, these partial results are 
consistent with the trend suggested by previous 
work that the syllable-level bigrams examined in 
the infant studies provide little information about 
word boundaries in natural language data when 
the local minimum strategy is used. 
 However, a different picture emerges when 
the performance of the adjusted count strategy is 
considered. The fact that the local minimum 
strategy is ineffectual is already clear from the 
comparison with the monosyllabic baseline; 
however, the results for the adjusted counts esti-
mation strategy reveal that it is possible to ex- 
                                                
1 In contrast, Lignos & Yang (2010) report a word token f-
score of 78.9% for this baseline for already syllabified in-
put. The difference between these baselines highlights how 
much more difficult the segmentation task is when the syl-
labification must be inferred from unsegmented input. 
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 p# = 0 p# = 0.35 p# = 0.5 p# = 0.6 p# = 0.75 p# = 0.99 LM 
 WF BF WF BF WF BF WF BF WF BF WF BF WF BF 

P 13.0 10.2 34.7 51.9 40.3 60.6 49.9 69.2 45.9 68.8 13.9 50.1 47.1 64.5 
OR 15.4 17.9 28.7 43.3 37.1 55.8 42.2 62.0 58.4 76.0 52.3 71.4 27.9 44.1 

S 10.7 3.1 12.7 8.6 14.2 12.4 15.9 16.3 20.7 26.1 74.1 84.1 29.8 51.0 
P-IR 13.0 10.2 34.7 51.9 40.3 60.6 50.7 69.6 46.9 69.6 9.9 47.0 52.9 70.5 

OR-IR 19.8 29.1 36.8 54.7 47.7 67.7 53.4 72.8 63.8 79.8 37.1 62.1 42.3 62.3 
S-IR 10.9 3.8 13.3 10.5 15.2 15.0 16.8 18.7 23.1 31.4 79.8 88.0 27.2 43.9 

Table 1: Word token (WF) and boundary (BF) f-scores for all models. The columns in the first section 
of the table represent different settings of the p# parameter, with highest performance for each adjusted 
count model shown in bold. p# values were selected to show a representative range of performance. P 
= phoneme model; OR = onset-rhyme model; S = syllable model; IR = iterative re-estimation; LM = 
local minimum strategy. The best performing local minimum model is shaded.
 
 Adjusted Count Estimation Local Minimum Estimation 
 WP WR BP BR WP WR BP BR 
P-IR 50.3 51.1 68.8 70.4 53.4 52.4 71.5 69.5 
OR-IR 63.8 63.8 79.9 79.8 44.2 40.5 66.5 58.6 
S-IR 85.2 75.0 97.0 80.6 40.4 20.5 94.0 28.6 
Table 2: Word precision (WP), word recall (WR), boundary precision (BP), and boundary recall (BR) 
scores for selected models. For the adjusted count estimation models, the results for the best perform-
ing parameter value are shown (P-IR: 0.6; OR-IR: 0.75; S-IR: 0.99). 

 
extract substantially more information about 
word boundaries from syllable-based models 
when these cues are used in the context of a gen-
erative model and better methods are used for 
unsupervised estimation of these parameters. In 
fact, using the adjusted counts estimation method 
with the optimal parameter settings, the reverse 
trend is observed, wherein the phoneme-level 
bigrams perform worse than the syllable-based 
models, and syllable-level bigrams perform best 
of all, reaching word token f-scores of nearly 
80%. Crucially, both the onset-rhyme and the 
syllable bigram models achieve levels of perfor-
mance that surpass the monosyllabic baseline. In 
the case of the syllable bigram, the improvement 
in word token f-score is more than 20% when 
iterative re-estimation is used and more than 
15% when segmentation is performed in only a 
single pass through the corpus. 

The phoneme-based models perform about as 
well whether adjusted counts or local minimum 
estimation is used. However, compensation for 
the underrepresentation of word boundaries in 
the input is crucial to the syllable-based models. 
These models surpass the local minimum estima-
tion models only when the p# parameter compen-
sates sufficiently for the input bias against word 
boundaries. As shown in Table 1, without any 
compensation (p# = 0), all models perform terri-

bly. This is because utterance boundaries provide 
very little evidence of word boundaries, and the 
models estimated directly from such input mas-
sively undersegment. It is only at higher settings 
of the parameter that performance improves. As 
expected, the optimal parameter value increases 
with the granularity of the unit over which bi-
grams are computed. This makes sense since 
boundaries are more likely to fall between larger 
units than between smaller units.  

Less expected is the fact that the optimal pa-
rameter values are high compared to the empiri-
cal rates of word boundaries in the true segmen-
tation of the input corpus. For example, the true 
rate of utterance-internal word boundaries is 
around 30% at the phoneme level, yet the opti-
mal p# value for phoneme bigrams is around 
60%. The reason for this is that our generative 
model, like that of a number of previous models 
discussed in the literature (Brent, 1999; Venkata-
raman, 2001; Goldwater et al., 2009), has an in-
herent undersegmentation bias. Due to the way 
the phonotactic models are defined, there is a 
cost for every additional word boundary posited 
in the segmentation. This is because positing a 
boundary corresponds to the generation of an 
additional symbol, #, which otherwise does not 
have to be generated. Since generating a # is 
never done with 100% probability, doing so al-
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ways incurs a cost relative to a segmentation 
where no such # has to be generated. The high 
optimal settings of the p#  parameter reflect this 
inherent bias and enable the estimation procedure 
to compensate not only for the underrepresenta-
tion of word boundaries in the input but also for 
this bias in the generative model.  

6 Conclusions 

We compared segmentation models that rely on 
phoneme transitions to models that make use of 
syllable structure. The results indicate that sylla-
ble-based statistics are valuable for segmenta-
tion. We also showed that it is possible to utilize 
this structure successfully with limited prior 
knowledge of the target language by using a 
simple syllabification strategy inferred from un-
segmented utterances. The performance of the 
syllable-based models also demonstrates that it is 
possible to achieve good segmentation results 
without the use of a lexicon. Another contribu-
tion of this work is a novel estimation procedure 
that addresses some challenges of unsupervised 
segmentation. We showed that adjusting parame-
ter estimates inferred from unsegmented input is 
essential for achieving good performance. 
 The strong performance of the syllable level 
bigram phonotactic model has a number of im-
plications. First, it demonstrates that the kind of 
statistical regularities that infants have been con-
sistently shown to be sensitive to in artificial ex-
perimental stimuli do provide a substantial 
amount of information about word boundaries in 
natural language data, at least in English. This 
lends significant credibility to the claim that sen-
sitivity to such statistical regularities plays a cru-
cial role in infants’ early language development 
(contra Yang 2004). This result also highlights 
the role that sensitivity to richer phonological 
information, beyond the level of phonemes, plays 
in language learning, a result that is echoed in 
much recent work on the modeling of phonotac-
tic well-formedness of isolated words (Hayes & 
Wilson, 2008; Albright, 2009; Daland et al., 
2011). A consistent finding of this work has been 
that access to abstract structure and robust gener-
alization mechanisms is crucial to the modeling 
of human phonotactic knowledge. While our re-
sults are compatible with these conclusions, our 
results cannot confirm that it is syllable structure 
per se that improves segmentation since the syl-
lable-based models have several co-occurring 
advantages. In addition to abstract structure, they 
can track longer and more complex dependen-

cies. Nonetheless, these results motivate further 
investigation into the role that richer models of 
phonotactics may play in word segmentation and 
into the precise mechanisms responsible for im-
proved segmentation using syllable structure. 
Particularly critical is exploration of phonotacti-
cally-based segmentation models for languages 
besides English, for which phonotactic cues hold 
significant promise (Jarosz & Johnson, 2013) 
given the relatively low performance of state-of-
the-art lexicon-building models (Johnson 2008b). 

Another important direction for future work is 
investigating how early, phonotactically-based 
segmentation interacts with subsequent learning 
of higher-level structure, including the lexicon. 
Johnson (2008a) and Johnson & Goldwater 
(2009) have already demonstrated that syllable 
structure provides valuable information in this 
context; however, their models relied on very 
different syllable regularities than those investi-
gated here, and the consequences of these differ-
ences should be explored in future work. 
 Goldwater et al. (2009) showed that a number 
of proposed segmentation models have an under-
segmentation bias that can be avoided by simul-
taneously modeling statistical dependencies be-
tween words. They proposed a Bayesian prior to 
favor a smaller lexicon and showed that other-
wise unigram models introduce a severe under-
segmentation bias due to the possibility of 
matching empirical probabilities by memorizing 
utterances as words. Note that the same is not 
true of syllable-based models since the hypothe-
sis space does not permit memorization of utter-
ances, and the size of the syllable inventory, un-
like a lexicon, remains relatively stable under 
different segmentations. Thus, the syllable-based 
models are not subject to the same kind of under-
segmentation bias. Interestingly, the syllable bi-
gram model surpasses the performance of the 
word bigram model proposed by Goldwater et al. 
(word token f-score 72.3) given sufficient com-
pensation for its undersegmentation bias. How-
ever, this level of performance requires adjust-
ment of the p# parameter to compensate for the 
cost of generating additional boundaries. Alt-
hough parameters are common in computational 
models (for example, Goldwater et al. used a p# 
parameter to modulate the prior distributions in 
their Bayesian models), they do not provide a 
particularly satisfying explanation for why in-
fants are compelled to break up the speech 
stream into smaller units (words). Further work 
is needed to determine how undersegmentation 
biases are ultimately overcome by children. 
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