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Abstract 

Biomedical relations play an important role in 
biological processes. In this work, we combine 
information filtering, grammar parsing and 
network analysis for gene-disease association 
extraction. The proposed method first extracts 
sentences potentially containing information about 
gene-diseases interactions based on maximum 
entropy classifier with topic features. And then 
Probabilistic Context–Free Grammars is applied 
for gene-disease association extraction. The 
network of genes and the disease is constituted by 
the extracted interactions, network centrality 
metrics are used for calculating the importance of 
each gene. We used breast cancer as testing disease 
for system evaluation. The 31 top ranked genes and 
diseases by the weighted degree, betweenness, and 
closeness centralities have been checked relevance 
with breast cancer through NCBI database. The 
evaluation showed 83.9% accuracy for the testing 
genes and diseases, 74.2% accuracy for the testing 
genes. 

1 Introduction 

Since the start of Human Genome Project in 
1990, over 40 kinds of organism genome have 
been sequenced. Biological databases expand 
rapidly with the exponential growth of biological 
data. For instance, until now, over 260,000 
named organisms have their nucleotide 
sequences in the GenBank (Benson et al. 2008) 
which integrates data from the major DNA and 
protein sequence. However, data is not 
information. Compared with situations before 
2003, the key problem today has turned to 
methods of knowledge extraction. Understanding 
the role of genetics in diseases is one of the 
major goals of the post-genome era. The 
expanding rate of knowledge in gene–disease 

associations can hardly match up with the growth 
of biological data. It takes time before new 
discoveries are included in the databases such as 
Online Mendelian Inheritance in Man (OMIM), 
and most of the information represented in these 
databases is manually collected from literature. 
    To address this challenge, we proposed an 
automatic gene-disease association extraction 
approach based on text mining and network 
analysis. We combine information filtering, 
grammar parsing and network analysis. We 
started by calculating main topics of each 
sentences in the corpus based on supervised 
Latent Dirichlet Allocation (sLDA) model (Blei 
and McAuliffe 2007). The most probable topics 
derived from sLDA model for each sentence are 
used as features for training maximum entropy 
(MaxEnt) (Manning and Schutze, 1999) 
classifier, which extracts sentences potentially 
containing information about gene-diseases 
interactions. After that, Probabilistic Context–
Free Grammars (PCFGs) (Klein and Christopher 
2003) is applied for sentence grammar parsing. 
Based on the syntactic tree of each sentence, we 
extract paths between specific entities such as 
diseases or genes. The network of all candidate 
genes and the disease is constituted by the 
interactions extracted from the sentences in the 
corpus. Our main hypothesis in network analysis 
is that the most important and the most central 
genes in an interaction network are most likely to 
be related to the disease. Last, network centrality 
metrics are used for calculating the importance 
of each gene.  
The rest of this paper is organized as follows. 

Section 2 surveys related work. In Section 3, we 
introduce the proposed approach of extracting 
interactions from literature. Section 4 presents 
gene-disease interaction network analysis. And 
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then Section 5 presents and discusses the 
experimental results. Lastly we conclude this 
paper and discuss future work in Section 6. 

2 Related Work  

Much effort is currently spent on extracting 
gene–disease associations (Özgür et al. 2008; 
Chun et al. 2006). Biomedical relation extraction 
techniques basically include two branches: 
interaction database based methods and text 
mining methods. Interaction database based 
methods rely on the availability of interaction 
databases, such as OMIM, MINT (Zanzoni et al. 
2002), IntAct (Kerrien et al. 2012), BIND (Bader 
et al. 2003), which predict interactions between 
entities using sequence, structural, or 
evolutionary information (Krallinger, Leitner, 
and Valencia 2010). Although these databases 
host a large collection of manually extracted 
interactions from the literature, manually curated 
databases require considerable effort and time 
with the rapid increasing of biomedical literature.  
 Since most biological facts are available in 
the free text of biomedical articles, the wealth of 
interaction information provided in biomedical 
articles motivated the implementation of text 
mining approaches to automatically extract 
biomedical relations. Text mining approaches to 
gene–disease association extraction have shown 
an evolution from simple systems that rely solely 
on co-occurrence statistics (Adamic et al. 2002; 
Al-Mubaid and Singh 2005) to complex systems 
utilizing natural language processing techniques 
and machine learning algorithms (Freudenberg 
and Propping 2002; Glenisson et al. 2004; Özgür 
et al. 2008). Well-known tools for discovering 
gene–disease associations include DAVID 
(Huang et al. 2009), GSEA (Subramanian et al. 
2005), GOToolBox (Martin et al. 2004), rcNet 
(Huang et al. 2011) and many others. However, 
in many cases, since the existing annotations of 
disease-causative genes is far from complete 
(McKusick 2007), and a gene set might only 
contain a short list of poorly annotated genes, 
existing approaches often fail to reveal the 
associations between gene sets and disease 
phenotypes (Huang et al. 2011). 
    Network-based approaches (Wuchty, Oltvai, 
and Barabási, 2003; Schwikowski et al. 2000; 
Chen et al. 2006) is performed by assessing how 
much genes interact together and are close to 
known disease genes in protein networks. 
Relation extraction among genes is the 
fundamental step for gene-interaction network 

creation. Recently, syntactic analysis has been 
considered for relation extraction, and different 
parsing grammars have been applied. Temkin 
and Gilder (2003) used a full parser with a 
lexical analyzer and a context free grammar 
(CFG) to extract protein-protein interactions. In 
Yakushiji et al. (2005)’s work, they proposed a 
protein-protein interaction extraction system 
based on head-driven phrase structure grammar 
(HPSG). Although the pattern generation is 
complicated, the performance is not satisfactory. 
In addition, dependency grammar is used 
frequently in this domain. Erkan et al. (2007) 
proposed a semi-supervised classification for 
extracting protein interaction sentences using 
dependency parsing. Katrin et al. (2007) defined 
some rules based on dependency parse tree for 
relation extraction. The problem of those systems 
using dependency parse is that they cannot treat 
non-local dependencies, and thus rules acquired 
from the constructions are partial (Yakushiji et al. 
2005). Differently, in this work, we apply 
sentence filtering based on topics and phrase 
structure parsing for relation extraction. The 
extracted sentences potentially contain 
information about gene-diseases interactions. 
Phrase structure grammars are based on the 
constituency relation, as opposed to the 
dependency relation associated with dependency 
grammars. Phrase structure parsing is full 
parsing, which takes into account the full 
sentence structure. 
 In addition, many researches (Aerts et al. 
2005; Chen et al. 2009; Ma et al. 2007; Hutz et al. 
2008; Morrison et al. 2005; Özgür et al. 2008) 
used an initial list of seed genes to build a 
disease-specific gene-interaction network, and 
thus they are biased in favor of the seed genes, 
consequently the results also depend on the 
pickup seed genes.  

3 Extracting interactions from 

literature  

3.1 The Corpus 

We used 44,064 articles from PubMed Central 
(PMC) Open Access which is a free full-text 
archive of biomedical and life sciences journal 
literature. All articles were extracted by querying 
the keyword of “breast cancer”. We applied a 
segmentation tool Splitta for segmenting articles 
into sentences which includes proper 
tokenization and models for high accuracy 
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sentence boundary detection with reported error 
rates near 0.25% coded by Gillick (2009). 
A gene name dictionary was built from 

OMIM database. The disease name dictionary 
was built based on Genetic Association Database 
(GAD) which is an archive of human genetic 
association studies of complex diseases and 
disorders. 

3.2 Key sentences extraction 

We applied MaxEnt classifier with topic features 
for key sentences extraction. The extracted 
sentences potentially contain information about 
genes and breast cancer interactions. 
A Latent Dirichlet Allocation (LDA) model 

was used to infer topics of sentences. Three most 
probable topics of each sentence were put into 
trained MaxEnt classifier as features for 
extracting sentences that potentially contain 
interaction relationship between genes and 
diseases. 

3.2.1 Key words annotation 
We assume that each sentence indicating 
interactions should contain at least one gene and 
target disease name. Key words are the words 
increasing possibility of sentence containing 
interaction relationships, such as genes and 
diseases. As mentioned above, we built the gene 
name dictionary with data from OMIM database 
and disease name dictionary from Genetic 
Association Database (GAD). All gene names 
and disease names were considered as key words. 

3.2.2 Topic model based on Gibbs Sampling  
Latent Dirichlet Allocation (LDA) was applied 
based on Gibbs Sampling method in our system. 
Compared with algorithm obtaining approximate 
maximum-likelihood estimates for topics-words 
distribution and the hyperparameters of the prior 
on documents-topics distribution given by Blei, 
Ng and Jordan (2002), Gibbs Sampling method 
doesn’t need to explicitly represent the model 
parameters which effect on the final results 
(Griffiths, 2002). 
For a word w  in a specific article, the 

possibility it belongs to topic j  can be given by : 

( | , ) ( | , , ) ( | )− − − −= ∝ = =i i i i i i i iP z j z w P w z j z w P z j z  (1) 

where 
iz  represents current topic, 

iz−  

represents all topics except for i , w represents 
all words in the article, 

iw  represents current 

word and 
iw−
 represents all words except for 

iw . 

Formula (1) could be represented as follow 
after derivation: 
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where )(
,
•

− jin  represents count of words belong 

to topic j  except for current word. )(
,
iw

jin−  

represents count of word 
iw  belong to topic j  in 

the article except for current one. )( idn  represents 

total of words in article 
id , while 

)(
,
id

in •−
 represents 

count of words in document 
id  not including the 

current one. α  and β  are hyperparameters that 

determine extent of smooth of this empirical 
distribution, and how heavily this distribution 
can be chosen to give the desired resolution in 
the resulting distribution. W  stands for count of 
words while T  stands for count of topics. 

3.2.3 Training of topic model 
We randomly selected sentences from 8000 
documents in our corpus as training set and set 
number of topics 

K
as 10. Topic that contains most 

words in gene name dictionary and disease name 
dictionary was treated as a key topic. Then we 
manually assigned each word in gene name 
dictionary or disease name dictionary to key 
topic, and each word doesn’t belong to the two 
dictionaries was assigned to the most probable 
topic of itself. 

3.2.4 Prediction of key sentences 
The sentences containing interactions among 
genes or diseases were marked as ‘Key’ and 
others were marked as ‘None’. A MaxEnt 
classifier 1  was trained based on the topic 
distribution.  

3.3 Extracting interactions from key 

sentences  

In order to extract interactions from sentences, 
we used phrase structure parsing which generates 
parse tree of a sentence that can be analyzed for 
relationships among words. Stanford parser tool2 
(de Marneffe et al. 2006) is employed for 
sentence parsing. Figure 1 shows an example of 
phrase structure parse tree. 
We extracted interactions by depth-first 

search in the parse tree. Each path between 
keyword nodes (e.g. gene or disease) and the root 
node were collected. A list of interaction verbs 

                                                           

1 http://morphix-nlp.berlios.de/manual/node36.html 
2 http://nlp.stanford.edu/software/stanford-
dependencies.shtml 
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were compiled from VerbNet3, which consists of 
1048 verbs. We captured interactions from the 
paths which contain an interaction verb. 

 

Figure 1. Part of the phrase structure parse tree of 
the sentence “AA, an inhibitor of p300, can suppress 
AR and its target genes, which can induce cells cycle 
arrest and apoptosis of Lncap cells through AR 
signaling.” 

For instance, two genes ‘AA’ and ‘AR’ could 
be extracted from sentence “AA, an inhibitor of 
p300, can suppress AR and its target genes, 
which can induce cells cycle arrest and apoptosis 
of Lncap cells through AR signaling”. The path 
from ‘AA’ to ‘AR’ in the syntactic tree is 
“NP(AA) ->NP ->NP ->S ->VP(can) -
>VP(suppress) ->NP ->NP ->NP(AR)”, where 
‘suppress (VP)’ is an interaction verb. Therefore, 
we consider there is a ‘suppression’ interaction 
between ‘AA’ and ‘AR’. 

4 Interaction network analysis 

The extracted interactions can be represented by 
an adjacency matrix, where 

1, =jiA
 if there is an 

edge between node i  and j , and 
0, =jiA

 if there 

is no edge between node i  and j . We establish 

disease-specific interaction network through 
searching for nodes within 3 distance unit from 
the target disease node. To gain the most related 
gene of the target disease, Centrality approach is 
used for calculating correlation of each gene 
based on its weight in this specific disease 
network. 

4.1 Degree centrality 

Degree centrality represents central tendency of 
each node in the network, the more direct 
connects it has, the more power it has in the 
network and so the more important it is. The 
degree centrality )(vCD

 of node v  is calculated 

as follows.  

                                                           

3 http://verbs.colorado.edu/~mpalmer/projects/verbnet.html 
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4.2 Betweenness centrality 

Betweenness centrality reflects the ability of a 

node taking control of other nodes’ 

communication and the capability of controlling 

resources in the network. The more nodes that 

shortest paths pass through, the more 

communications of other nodes depend on it, and 

the more betweenness centrality the node has. 

The betweenness centrality )(vCB
 of node v  is 

calculated as follows: 

∑
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where 

stσ  is the total number of shortest paths 

from node s  to t  and )(vstσ  is the number of 

paths that pass through v . 

4.3 Closeness centrality 

Closeness centrality reflects the ability a node 
has of not being controlled by other nodes. The 
closeness centrality of a node measures how 
close it is to other nodes in the whole network. 
The smaller the total distance from a node to 
other nodes in the network, the less dependency 
the node has on nodes in the network, and thus 
the higher its centrality is. The closeness 
centrality )(vC c

 of node v  is calculated as 

follows. 
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where ),( tvdG
 represents distance from node v  

to node t . 

4.4 Weighted centrality 

Formula (6) is applied to assigne weights for 
each measure of centrality equally:  
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where 
DC  represents the largest degree 

centrality of all nodes in the network, 
BC  

represents the largest betweenness centrality of 
the whole network and 

CC  represents the largest 

closeness centrality among all nodes. 

5 Results and Discussion 

As a common disease with high incidence, breast 
cancer gains much attention among researchers 
and has a rather large literature accumulation. 
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We used breast cancer as testing disease for 
system evaluation.  
The corpus contains 3,209,385 sentences 

from 44,064 articles. All articles were extracted 
from PMC with keyword of “breast cancer” 
(search date: March 1 2013). The gene name 
dictionary consists of 19,195 gene names 
searched from OMIM database while the disease 
dictionary consists of 5644 disease names from 
Genetic Association database (GAD).  

5.1 Evaluation on key sentence extraction 

MaxEnt classifier is applied with topic features 
for key sentences extraction. We randomly 
selected sentences from 8000 documents in our 
corpus as training set. We set number of topics 
K  as 10. The results of topics-words distribution 
predicted by Gibbs Sampling based topic model 
and topic correction are shown in Table 1.  

Topic0 Topic1 Topic2 Topic3 Topic4 

molecul
ar 

use increase cancer cluster 
receptor analysis rate organis

m 
compari
son body table exhibit gene melanog
aster clone differen

ce 
consider MLL identical 

organis
m 

significa
nt 

evolutio
n 

HBB place 
mutator set degree DLC1 share 
band map due GRXCR

1 
rDNA 

expressi
on 

group position XRCC1 parental 
replicate score distance GST01 pattern 

Topic5 Topic6 Topic7 Topic8 Topic9 

indicate observe control chromos
ome 

growth 
test Demons

trate 
express carry medium 

line dominan
t 

suppress
or 

male assay 
determi
ne 

fact elegans female conditio
n experim

ent 
reductio
n 

germlin
e 

cross colony 
represen
t 

weak deficien
cy 

homozy
gous 

culture 
measure strong distinct segregat

ion 
syntheti
c derive enhance

r 
close recover survival 

conversi
on 

still segment hybrid cell 

Table 1: The results of topics-words distribution 
predicted by Gibbs Sampling based topic model and 

topic correction. 

There are totally 1037,637 key sentences were 
extracted, and the extraction precision is 66.4%. 

5.2 Interaction network analysis  

5.2.1 Degree centrality 
The breast cancer related gene-interaction 
network consists of 4636 distinct gene nodes and 
19,972 interactions extracted among them. 
Figure 2 illustrates degree centrality of the 
interaction network of breast cancer. Different 
color and size indicate different degree centrality 
of each node. The node in red with the largest 
degree centrality 1069 in the figure represents 

breast cancer. This indicates that 1069 genes 
have direct interactions with breast cancer 
referred in all sentences. 

Figure 2. Degree centrality of the gene-breast cancer 
interaction network. 

Figure 3 shows the relationship between each 
degree centrality and its count of nodes. 

 

Figure 3. The relationship between each degree 
centrality and its count of nodes. 

As shown in Figure 3, the node with 
maximum degree centrality 1069 is target disease 
while most of other nodes distribute from degree 
centrality of 1 to 10 which are considered as least 
related genes. Table 2 lists part of ranks of all 
1069 genes in the order of degree centrality. 

Gene Degree Centrality 

TNF 359 
EGFR 342 
CRC 301 
IL-6 245 
EGF 200 
BRCA1 195 
HR 193 
GAPDH 190 
AR 188 
ATM 148 
TP53 138 
BRCA2 94 

Table 2: Part of ranks of all 1069 genes in the order of 
degree centrality. 
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From Table 2, we can find that BRCA1 and 
BRCA2 are known familial breast cancer genes 
which have gained authority validation. 
Although their mutations are not common in 
sporadic breast cancer patients, they accounts for 
approximately 80% to 90% among all hereditary 
breast cancer. 
TP53 is a kind of mutant gene with high 

penetrance which has also been verified 
association with breast cancer in genetics. 
Moreover, ATM and AR are low frequency 
genes belong to specific loci, about 5% to 10% 
of breast cancer relate to at least one or more 
changes in the susceptibility genes mentioned 
above. 
The result of CRC in contrast is more like 

some kind of institution's name: Cooperative 
Research Centre for Discovery of Genes for 
Common Human Diseases or the abbreviation of 
another disease: Colorectal Cancer (CRC). There 
haven’t been any evidence reveals direct 
correlation between CRC gene and breast cancer, 
we can only consider this as a misrecognition. 
In addition to genes described above, other 

genes in the list have also been verified in 
authoritative sites or papers. These results 
preliminarily verified the accuracy of our system. 

5.2.2 Betweenness centrality 

Figure 4 illustrates betweenness centrality of the 
interaction network of breast cancer. Color and 
size of each point reflect betweenness of the 
node, which indicate the ability to control other 
nodes in the network. Nodes in green have the 
minimum betweenness centrality while the color 
of jade-green shows larger betweenness 
centrality. Yellow nodes indicate betweenness 
centrality larger than jade-green and orange 
represents the largest.  

Figure 4. Betweenness centrality of the gene-breast 
cancer interaction network 

Figure 5 shows relationship between each 
betweenness centrality and its count of neighbors. 

 

Figure 5. Relationship between each betweenness 
centrality and its count of neighbors. 

As shown in Figure 5, the more adjacent nodes, 
the larger betweenness centrality. The node with 
most neighbors of 1068 has maximum 
betweenness centrality of 0.35 while most nodes 
in the network have the count of neighbors from 
0 to 200 with their betweenness centrality 
between 0 and 0.04. Table 3 lists part of ranks of 
all 1069 genes in the order of betweenness 
centrality. 

Gene Betweenness Centrality 

TNF 0.05981684 
EGFR 0.05912439 
CRC 0.04896846 
AR 0.02892632 

GAPDH 0.02877095 
AD 0.02863766 
IL-6 0.02545676 
HR 0.02381936 

BRCA1 0.02202402 
TP53 0.01603455 
ATM 0.01566084 
BRCA2 0.00507333 

Table 3: Part of ranks of all 1069 genes in the order of 
betweenness centrality. 

As can be seen from Table 3, the rank of 
betweenness centrality is approximately matched 
with the rank of degree centrality. TNF, EGFR 
and CRC are still the highest ranked genes while 
IL-6, AR, HR , GAPDH and ATM simply 
exchanged their order. AR, androgen receptor, 
has a quick raise in the rank list. It plays a vital 
role in the development and maintenance of male 
reproductive function and the cause of prostate 
cancer, but the effect and function on breast 
cancer of AR have not been clear until 2010 
(most of the literature published before 2010). 
This result shows that the genes excavated by our 
system not only include genes in the known 
interaction network, but also reflect research 
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tendency at present or in a certain period of time. 
This also indicates the effectiveness of 
understanding scientific research tendency of our 
system. 
As the definition of betweenness centrality, it 

reflects the ability to affect other nodes in the 
network. If a gene interacts with another gene 
through an intermediate gene such as suppression 
or promotion, then the role played by this 
intermediate gene is decisive in this association. 
The more intermediate roles played in 
associations, the greater the influence of the gene 
in the network. Similarly, among all genes in the 
neighborhood of a specific gene, the greater the 
betweenness centrality of a gene, the more 
influence it has on that specific gene.  

5.2.3 Closeness centrality 
Figure 6 illustrates closeness centrality of the 
interaction network of breast cancer. 

 

Figure 6. Closeness centrality of the gene-breast 
cancer interaction network. 

As can be seen from Figure 6, red node at the 
center of the network represents breast cancer 
and neighboring orange nodes stand for direct 
related genes while peripheral nodes in green 
represents least related genes. Figure 7 shows 
relationship between each closeness centrality 
and its count of neighbors. 

 

Figure 7. Relationship between each closeness 
centrality and its count of neighbors. 

Figure 7 shows the tendency of closeness 
centrality in the network while number of 
neighbors increases. There is an approximate 
positive correlation between the count of 
neighbors and the closeness centrality of nodes 
but not so obvious compared with betweenness 
centrality or degree centrality. For instance, the 
closeness centrality ranges from 0.14 to 0.34 for 
nodes with only one neighbor. This tendency 
represents that closeness centrality reflect 
geographical centricity of each node more 
efficiently compared with degree centrality and 
betweenness centrality with less dependence on 
count of neighbors. For example, if a node has 
only one edge to the center of the network, this 
node is bound to own large closeness centrality 
even though this edge is the only edge it has. 
Meanwhile, another node has much more than 
one edge but far away from the center of the 
network, the closeness centrality of it can never 
be larger than the former one. Table 4 lists part 
of ranks of all 1069 genes in the order of 
closeness centrality. 

Gene Closeness Centrality 

TNF 0.43612418 
EGFR 0.43550963 
CRC 0.4247366 
PTEN 0.41920608 
IL-6 0.41814738 
AR 0.41092005 
EGF 0.40954064 
BRCA1 0.40914306 
STAT3 0.4088544 
MMP-9 0.40386793 
HR 0.40330579 
MMP-2 0.40031085 

Table 4: Part of ranks of all 1069 genes in the order of 
closeness centrality. 

Table 4 shows that list ordered by closeness 
centrality is generally similar to list ordered by 
degree centrality and betweenness centrality. 
TNF, EGFR and CRC are still highest ranking 
genes. However, genes like STAT3, MMP-9 and 
MMP-2 appear firstly in the list where STAT3 
ranks 18 in degree centrality and 14 in 
betweenness centrality. The details of STAT3 
has been clearly described in Hsieh FC et al. 
STAT3 full-called signal transducer and 
activator of transcription 3, which is often 
detected in breast cancer tissues and its cell lines. 
STAT3 has already been defined as an oncogene 
since its activated form in nude mice can produce 
malignant transformation of cultured cells and 
ultimately form tumors. MMP-9 and MMP-2 are 
gelatinase, proteolytic enzymes involved in 
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process of tumor invasion which is considered as 
a potential tumor marker in breast cancer.  
All these three genes can be identified as 

direct related genes with breast cancer. These 
associations which are not obvious in degree 
centrality and betweenness centrality indicating 
the effectiveness of closeness centrality in 
finding related gene to a specific disease. 

5.3 Result Evaluation  

We enumerate 31 top genes ranked with 
weighted centrality considered as related to 
breast cancer due to our system. Table 5 lists the 
gene or disease symbol, ID, and full name from 
OMIM database. 

Gene 

Symbol 

Gene 

ID 

Gene Full Name 

TNF *191160 TUMOR NECROSIS FACTOR 
EGFR *131550 EPIDERMAL GROWTH FACTOR 

RECEPTOR 
CRC  COLORECTAL CANCER 
PTEN +601728 PHOSPHATASE AND TENSIN 

HOMOLOG 
IL-6 *147620 INTERLEUKIN 6 
AR *313700 ANDROGEN RECEPTOR 

BRCA1 *113705 BREAST CANCER 1 GENE 
EGF *131530 EPIDERMAL GROWTH FACTOR 

GAPDH *138400 GLYCERALDEHYDE-3-
PHOSPHATE DEHYDROGENASE 

HR *602302 HAIRLESS, MOUSE, HOMOLOG 
OF 

AML #601626 LEUKEMIA, ACUTE MYELOID 
CD4 *186940 CD4 ANTIGEN 
STAT3 *102582 SIGNAL TRANSDUCER AND 

ACTIVATOR OF 
TRANSCRIPTION 3;  

AD #104300 ALZHEIMER DISEASE 
MMP-9 *120361 MATRIX METALLOPROTEINASE 

9 
MS #126200 MULTIPLE SCLEROSIS, 

SUSCEPTIBILITY TO 
RD #111620 RADIN BLOOD GROUP ANTIGEN 
MYC *190080  V-MYC AVIAN 

MYELOCYTOMATOSIS VIRAL 
ONCOGENE HOMOLOG 

S6 *185520 SURFACE ANTIGEN 6 
TP53 *191170 TUMOR PROTEIN p53 
ATM *607585 ATAXIA-TELANGIECTASIA 

MUTATED GENE 
IL-8 *146930 INTERLEUKIN 8 
AP1  activator protein-1 
MMP-2 *120360 MATRIX METALLOPROTEINASE 

2 
GC +139200 GROUP-SPECIFIC COMPONENT 
FBS #227810 FANCONI-BICKEL SYNDROME 
ES #612219 EWING SARCOMA 
RA #180300 RHEUMATOID ARTHRITIS 

CXCR4 *162643 CHEMOKINE, CXC MOTIF, 
RECEPTOR 4 

IL-10 *124092 INTERLEUKIN 10 
BRCA2 *600185 BRCA2 GENE 

Table 5: The gene or disease symbol, ID, and full 
name from OMIM database. 

The Genes and diseases in Table 5 inferred by 
degree, betweenness, closeness centralities and 
the relevance are listed in Table 6. 

Gene Degree Betweenness Closeness Relevance 
TNF 359 0.05985761 0.43401678 Yes 
EGFR 342 0.05904224 0.4332496 Yes 
CRC 301 0.04875035 0.4225186 No 
PTEN 229 0.03029572 0.41695765 Yes 
IL-6 245 0.02541463 0.41613797 Yes 
AR 188 0.02883127 0.40890333 Yes 

BRCA1 195 0.02190664 0.40704484 Yes 
EGF 200 0.01992148 0.40747222 Yes 

GAPDH 190 0.02868382 0.39946818 Yes 
HR 193 0.02371613 0.40136172 Yes 
AML 177 0.02417702 0.39779619 Disease 
CD4 179 0.01865428 0.40467501 Yes 
STAT3 182 0.01563346 0.40683148 Yes 
AD 159 0.02853342 0.39769428 Yes 

MMP-9 160 0.01347212 0.40188126 Yes 
MS 148 0.01806096 0.39967388 Disease 
RD 166 0.0113587 0.3970162 No 
MYC 141 0.02132884 0.39052411 Yes 
S6 136 0.01504618 0.39912581 Yes 
TP53 138 0.01607533 0.39607076 Yes 
ATM 148 0.01556309 0.39170662 Yes 
IL-8 146 0.00944026 0.40108518 Yes 
AP1 141 0.01531257 0.39286317 Yes 
MMP-2 138 0.01241541 0.39837468 Yes 
GC 131 0.01515181 0.39055686 No 
FBS 126 0.0117904 0.39749061 No 
ES 128 0.01325333 0.39283003 No 
RA 133 0.01256221 0.3894464 Disease 

CXCR4 138 0.01019905 0.39039316 Yes 
IL-10 128 0.00680617 0.39045862 Yes 
BRCA2 94 0.00504479 0.38194046 Yes 

Table 6: Genes inferred by degree, betweenness, and 
closeness centralities and the relevance. 

As results listed in Table 6, all 31 top ranked 
genes and diseases have been checked relevance 
with breast cancer through NCBI database. 
Terms marked as ‘No’ are none-relevant to 
breast cancer and words marked as ‘disease’ are 
related diseases to breast cancer. The accuracy 
rate is 83.9% for these top 31 genes and diseases 
and 74.2% for these top 31 genes. 

6 Conclusion 

Understanding the role of genetics in diseases is 
one of the major goals of the post-genome era. 
We have proposed an automatic gene-disease 
association extraction approach based on text 
mining and network analysis.  
Gene-breast cancer interaction network 

analysis demonstrated that degree, betweenness, 
and closeness centralities can estimate disease 
related genes effectively. And closeness 
centrality is able to find disease related genes 
which are not obvious ranked by degree 
centrality and betweenness centrality. In addition, 
this result showed that the genes excavated by 
our system not only include genes in the known 
interaction network, but also reflect research 
tendency at present or in a certain period of time. 
This also indicates the effectiveness of 
understanding scientific research tendency of our 
system. 
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