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Abstract

We present a discontinuous variant of tree-
substitution grammar (tsg) based on Linear
Context-Free Rewriting Systems. We use this
formalism to instantiate a Data-Oriented Parsing
model applied to discontinuous treebank parsing,
and obtain a significant improvement over earlier
results for this task. The model induces a tsg
from the treebank by extracting fragments that
occur at least twice. We give a direct comparison
of a tree-substitution grammar implementation
that implicitly represents all fragments from the
treebank, versus one that explicitly operates with
a significant subset. On the task of discontinuous
parsing of German, the latter approach yields a
16 % relative error reduction, requiring only a
third of the parsing time and grammar size. Fi-
nally, we evaluate the model on several treebanks
across three Germanic languages.

1 Introduction

A Probabilistic Context-Free Grammar (pcfg) extracted
from a treebank (Charniak, 1996) provides a simple
and efficient model of natural language syntax. How-
ever, its independence assumptions are too strong to
form an accurate model of language syntax. A tree-
substitution grammar (tsg) provides a generalization
of context-free grammar (cfg) that operates with larger
chunks than just single grammar productions. A prob-
abilistic tsg can be seen as a pcfg in which several
productions may be applied at once, capturing struc-
tural relations between those productions.

Tree-substitution grammars have numerous applica-
tions. They can be used for statistical parsing, such
as with Data-Oriented Parsing (dop; Scha, 1990; Bod
et al., 2003; Sangati and Zuidema, 2011) and Bayesian
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Figure 1: A tree from the Dutch Alpino treebank (van der
Beek et al., 2002). PPART is a discontinuous constituent
(indicated with crossing branches) due to its extraposed NP
object. Translation: She had invented that verb herself.

tsgs (Post and Gildea, 2009; Cohn et al., 2010; Shindo
et al., 2012). Other applications include grammaticality
judgements (Post, 2011), multi-word expression identi-
fication (Green et al., 2011), stylometry and authorship
attribution (Bergsma et al., 2012; van Cranenburgh,
2012c), and native language detection (Swanson and
Charniak, 2012).

An orthogonal way to extend the domain of locality
of pcfg is to employ a formalism that produces richer
derived structures. An example of this is to allow for
producing trees with discontinuous constituents (cf. fig-
ure 1 for an example). This can be achieved with
(string rewriting) Linear Context-Free Rewriting Sys-
tems (lcfrs; Vijay-Shanker et al., 1987). Kallmeyer
and Maier (2010, 2013) use this formalism for statisti-
cal parsing with discontinuous constituents.

The notion of discontinuous constituents in annota-
tion is useful to bridge the gap between the informa-
tion represented in constituency and dependency struc-
tures. Constituency structures capture the hierarchical
structure of phrases—which is useful for identifying re-
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Figure 2: A discontinuous tree-substitution derivation of the tree in figure 1. Note that in the first fragment, which has a
discontinuous frontier non-terminal, the destination for the discontinuous spans is marked in advance, shown as ellipses.

usable elements; discontinuous constituents extend this
to allow for arbitrary long-distance relations that may
arise due to such phenomena as extraposition and word-
order freedom. The essential difference between tradi-
tional phrase-structure trees and discontinuous ones is
that the former is a two-dimensional (planar) structure
of a one-dimensional surface form, while the latter al-
lows for a higher dimensional structure. This can be
contrasted with the alternative of introducing artificial
empty categories, which encode the same information
but in the labels instead of the tree structure.

The two approaches of tree-substitution and discon-
tinuity have been synthesized into a discontinuous all-
fragments grammar (van Cranenburgh et al., 2011; van
Cranenburgh, 2012a) defined implicitly through a re-
duction (Goodman, 2003). The present paper extends
this work. We present a grammar transformation to
parse with an arbitrary discontinuous tsg and present
results with this new implementation, using tsgs in-
duced by extracting fragments from treebanks. Our
method outperforms previous results for discontinuous
constituency parsing.

2 Grammar formalisms

In this section we formulate how a discontinuous Tree-
Substitution Grammar can be implemented using a
Linear Context-Free Rewriting System as the base
grammar.

2.1 Linear Context-Free Rewriting Systems
lcfrs can be seen as the discontinuous equivalent of
cfg, and its probabilistic variant can be used as a dis-
continuous treebank grammar. lcfrs generalizes over
cfg by rewriting a fixed number of strings at a time for
each non-terminal. This number, the measure of dis-
continuity in a constituent, is called the fan-out. A cfg
is an lcfrs with a maximum fan-out of 1. In this paper
we use the simple rcg notation (Boullier, 1998) for

lcfrs. We will define a restricted variant that operates
on unary and binary productions.

A binarized, string-rewriting lcfrs is a 4-tuple
G “ xN,T, P, S y. N and T are disjoint finite sets of
non-terminals and terminals, respectively. A function
φ : N Ñ t1, 2, . . . , u specifies the unique fan-out for
every non-terminal symbol. S is the distinguished start
symbol with S P N, φpS q “ 1. We assume a set V of
variables of the form bi and ci with i P N. P is a finite
set of productions, which come in three forms:

Apα1, . . . , αφpAqq Ñ Bpb1, . . . , bφpBqq Cpc1, . . . , cφpCqq

Apα1, . . . , αφpAqq Ñ Bpb1, . . . , bφpBqq

Dptq Ñ ε

where A, B,C,D P N, αi P V˚ for 1 ď i ď φpAiq,
t P T , and φpDq “ 1.

Productions must be linear: if a variable occurs in
a production, it occurs exactly once on the left hand
side (lhs), and exactly once on the right hand side
(rhs). A production is ordered if for any two variables
x1 and x2 occurring in a non-terminal on the rhs, x1
precedes x2 on the lhs iff x1 precedes x2 on the rhs. A
production can be instantiated when its variables can
be bound to spans such that for each component αi of
the lhs, the concatenation of its terminals and bound
variables forms a contiguous span in the input. In the
remainder we will notate discontinuous non-terminals
with a subscript indicating their fan-out.
lcfrs productions may be induced from a discontin-

uous tree, using a procedure described in Maier and
Søgaard (2008). We extend this procedure to handle
frontier non-terminals, i.e., non-terminals that do not
dominate terminals or non-terminals, because they are
part of a tree fragment extracted from a treebank.

Given a discontinuous tree, we extract a grammar
production for each non-leaf non-terminal node. The
node itself forms the lhs non-terminal, and the non-
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terminals that are immediately dominated by it forms
the rhs. The yield of each node is converted to a
sequence of indices reflecting sentence order; this in-
cludes the spans of any frontier non-terminals. For
each span in the yield, identified as a maximally con-
tinuous range in the sequence of indices, a variable is
introduced. The variables become the arguments of the
lhs and rhs non-terminals, ordered as in the original
yield. For the rhs non-terminals, each argument is a
single variable. The arguments to the lhs non-terminal
consist of a tuple of one or more variables correspond-
ing to consecutive ranges of the sequence of indices.
Pre-terminals yield a production with their terminal as
a direct argument to the pre-terminal, and an empty
rhs. Frontier non-terminals only appear on the rhs
of a production. See figure 3 for examples of lcfrs
productions extracted from discontinuous trees.

2.2 Tree-Substitution Grammar
In this section we present a reduction of an arbitrary
discontinuous tsg to a string-rewriting lcfrs. We first
look at general strategies for reducing a tsg to a simpler
formalism, and then show that these also apply for the
discontinuous case.

A tsg is a tuple xN,T,R, S y. N and T are disjoint
finite sets of non-terminals and terminals, respectively.
R is a finite set of elementary trees of depth greater than
or equal to 1. Elementary trees from R are combined by
substituting a derived tree rooted at a non-terminal X
at some leaf node in an elementary tree with a frontier
node labeled with X. Derived trees rooted at the start
symbol S with leaf nodes labeled by terminal symbols
are taken to be the trees generated by the grammar.
See figure 2 for an example of a tsg derivation; this
derivation contains discontinuous constituents, how
these are combined with a tsg shall be explained below.

Goodman (2003) gives a reduction to a pcfg for the
special case of a tsg based on all fragments from a
given treebank. This reduction is stochastically equiva-
lent after the summation of probabilities from equiva-
lent derivations—however, it does not admit parsing of
tsgs with arbitrary sets of elementary trees or arbitrary
probability models.

We use a transformation based on the one given
in Sangati and Zuidema (2011). Internal nodes are
removed from elementary trees, yielding a flattened
tree of depth 1. We binarize this flattened tree with a
left-factored binarization that adds unique identifiers to

Elementary tree Productions

S

VP2

NP

...

VB

uitgevonden

VB

...

NN

...

ADV

...

Spabq Ñ S1paq VBpbq

S1pabq Ñ S2paq ADVpbq

S2pabq Ñ S3paq NNpbq

S3pabq Ñ NPpaq VB4pbq

VB4puitgevondenq Ñ ε

S

VP2

. . . . . .

VB

had

NN

ze

ADV

zelf

Spabcq Ñ S5
2pa, cq ADV6pbq

S5
2pab, cq Ñ S7

2pa, cq NNpbq

S7
2pab, cq Ñ VP2pa, cq VB8pbq

VB8phadq Ñ ε
NN7pzeq Ñ ε
ADV6pzelfq Ñ ε

VP2

NP

. . .

VB

uitgevonden

VP2pa, bq Ñ NPpaq VB9pbq

VB9puitgevondenq Ñ ε

Figure 3: Transforming a tree-substitution grammar into an
lcfrs. The elementary trees are extracted from the tree in
figure 1 with abbreviated labels. The right column shows
the productions after transforming each elementary tree.
Note that the productions for the first elementary tree con-
tain no discontinuity, because the discontinuous internal
node is eliminated. Conversely, the transformation may also
introduce more discontinuity, due to the binarization.

every intermediate node introduced by the binarization.
In order to separate phrasal and lexical productions,
a new pos tag is introduced for each terminal, which
selects for that specific terminal. A sequence of pro-
ductions is then read off from the transformed tree.
The unique identifier in the first production is used to
look up the original elementary tree in a backtransform
table,1 which is used to restore the internal nodes after
parsing. The weight associated with an elementary tree
carries over to the first production it produces; the rest
of the productions are assigned a weight of 1.

The transformation defined above assumes that a
sequence of productions can be read off from a syntac-
tic tree, such as a standard phrase-structure tree that
can be converted into a sequence of context-free gram-
mar productions. Using the method for inducing lcfrs
productions from syntactic trees given in the previ-
ous section, we can apply the tsg transformation for
discontinuous trees as well. Figure 3 illustrates the
transformation of a discontinuous tsg.

1Note that only this first production requires a globally unique
identifier; to reduce the grammar constant, the other identifiers can
be merged for equivalent productions.

9



3 Inducing a TSG from a treebank

In Data-Oriented Parsing the grammar is the treebank
itself, and in principle all possible fragments from its
trees can be used to derive new sentences. Grammar
induction is therefore conceptually simple (although
the grammar is very large), as there is no training or
learning involved. A fragment of a tree T is defined
as a connected subgraph of T with two or more nodes,
where each node in the fragment either has no children
or the same children as the corresponding node in T .

The use of all possible fragments allows for multiple
derivations of the same tree; this spurious ambiguity is
seen as a virtue in dop, because it combines the advan-
tages of specific larger fragments and the smoothing
of smaller fragments. This is in contrast to more parsi-
monious approaches which decompose each tree in the
training corpus into a sequence of fragments represent-
ing a single derivation, such as in Bayesian tsg (Post
and Gildea, 2009; Cohn et al., 2010)

Representing all possible fragments of a treebank is
infeasible, since the number of fragments is exponen-
tial in the number of nodes. A practical solution is to
define a subset. A method called Double-dop (2dop;
Sangati and Zuidema, 2011) realizes this without com-
promising on the principle of data-orientation by re-
stricting the set to recurring fragments, i.e., fragments
that occur at least twice. These are found by con-
sidering every pair of trees and extracting the largest
tree fragments they have in common. It is feasible to
do this exhaustively for the whole treebank. This is
in contrast to the sampling of fragments in earlier dop
models (Bod, 2001) and Bayesian tsgs. Since the space
of fragments is enormous (viz. exponential), it stands
to reason that a sampling approach will not extract all
relevant fragments in a reasonable time frame.

Sangati et al. (2010) presents a tree-kernel method
for extracting maximal recurring fragments that oper-
ates in time quadratic in the number of nodes in the
treebank. However, using a different tree kernel, tree
fragments can be obtained from a treebank in linear
average time (van Cranenburgh, 2012b).

3.1 Discontinuous fragments

The aforementioned fragment extraction algorithms
can be adapted to support trees with discontinuous con-
stituents, using a representation where leaf nodes are
decorated with indices indicating their ordering. This

1. Translate indices so that they start at 0; e.g.:
VB

uitgevonden5

VB

uitgevonden0

2. Reduce spans of frontier non-terminals to length 1;
move surrounding indices accordingly; e.g.:

S

VP2

0:1 5:5

VB

had2

NN

ze3

ADV

zelf4

S

VP2

0 5

VB

had1

NN

ze2

ADV

zelf3

3. Compress gaps to length 1; e.g.:
VP2

NP

0

VB

uitgevonden5

VP2

NP

0

VB

uitgevonden2

Figure 4: Canonicalization of fragments extracted from
parse trees. The example fragments have been extracted
from the tree in figure 1. The fragments are visualized here
as discontinuous tree structures, but since the discontinu-
ities are encoded in the indices of the yield, they can be
represented in a standard bracketing format as used by the
fragment extractor.

makes it possible to use the same data structures as for
continuous trees, as long as the child nodes are kept
in a canonical order (induced from the order of the
lowest index of each child). Indices are used not only
to keep track of the order of lexical nodes in a frag-
ment, but also for that of the contribution of frontier
non-terminals. This is necessary in order to preserve
the configuration of the yield in the original sentence.
The indices are based on those in the original sentence,
but need to be decoupled from this original context.
This process is analogous to how lcfrs productions are
read off from a tree with discontinuous constituents.
The canonicalization of fragments is achieved in three
steps, described and illustrated in figure 4. In the exam-
ples, frontier non-terminals have spans denoted with
inclusive start:end intervals, as extracted from the orig-
inal parse tree, which are reduced to variables denoting
a contiguous spans whose relation to the other spans is
reflected by their indices.

When binarized with h “ 8, v “ 1 markoviza-
tion (Klein and Manning, 2003), about 8.5 % of frag-
ments extracted from the Negra treebank (cf. sec. 5.1)
contain a discontinuous root or internal node, com-
pared to 30 % of sentences in the treebank that contain
one or more discontinuous constituents.
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4 Parsing

After extracting fragments, we apply the grammar
transformation to turn them into grammar productions.
In order to achieve full coverage, we augment the set
of fragments with cover fragments of depth 1 corre-
sponding to all single productions in the treebank. Pro-
ductions corresponding to fragments are assigned a
probability based on the frequency of the respective
fragment, productions introduced by the transforma-
tion are given a probability of 1.

We parse with the transformed grammar using the
disco-dop parser (van Cranenburgh et al., 2011; van
Cranenburgh, 2012a). This is an agenda-based parser
for plcfrs based on the algorithm in Kallmeyer and
Maier (2010, 2013), extended to produce n-best deriva-
tions (Huang and Chiang, 2005) and exploit coarse-to-
fine pruning (Charniak et al., 2006).

4.1 Probabilities and disambiguation

To instantiate the probabilistic model we use the rel-
ative frequency estimate (rfe), since it has shown
good results with the Double-dop model (Sangati and
Zuidema, 2011). The frequency of fragments is ob-
tained by the fragment extractor, divided by the total
frequency mass of fragments with the same root node.

In dopmany derivations may produce the same parse
tree, and it has been shown that approximating the
most probable parse, which considers all derivations
for a tree, yields better results than the most probable
derivation (Bod, 1995). To select a parse tree from a
derivation forest, we marginalize the 10,000-best dop
derivations and select the tree with the most probability
mass.

4.2 Coarse-to-fine pruning

In order to tame the complexity of lcfrs and dop, we
apply the same coarse-to-fine pruning as in van Cra-
nenburgh (2012a). Namely, we parse in three stages:

1. Split-pcfg: A pcfg approximation of the discon-
tinuous treebank grammar; rewrites spans of dis-
continuous constituents independently

2. plcfrs: The discontinuous treebank grammar;
rewrites discontinuous constituents in a single
operation

3. The discontinuous dop grammar: tree fragments
instead of individual productions from treebank

The first stage is necessary because without pruning,
the plcfrs generates too many discontinuous spans, the
majority of which are implausible or not even part of
a complete derivation. The second stage is not neces-
sary for efficiency but gives slightly better accuracy on
discontinuous constituents.

The pcfg approximation splits discontinuous con-
stituents into several non-terminals related through
their labels; e.g.:

plcfrs production: VP2pa, bq Ñ VBpaq PRTpbq

pcfg approximation: t VP2*1 Ñ VB,

VP2*2 Ñ PRT u

In a post-processing step pcfg derivations are converted
to discontinuous trees by merging siblings marked with
’*’. This approximation overgenerates compared to
the respective lcfrs; e.g., two components VP2*1 and
VP2*2 may be generated which where extracted from
different discontinuous constituents, such that their
combination could not be generated by the lcfrs.

Pruning is achieved by limiting the second and third
stages to the labeled spans occurring in the k-best
derivations of the previous stage. The initial values for
k are 10,000 and 50, for the plcfrs and dop grammar
respectively. These values are chosen to be able to
directly compare the new approach with the results
in van Cranenburgh (2012a). However, experimenting
with a higher value for k for the dop stage has shown
to yield improved performance.

4.3 Reconstructing derivations

After a derivation forest is obtained and a list of k-best
derivations has been produced, the backtransform is ap-
plied to these derivations to recover their internal struc-
ture. This proceeds by doing a depth-first traversal of
the derivations, and expanding each non-intermediate2

node into a template of the original fragment. These
templates are stored in a backtransform table indexed
by the first binarized production of the fragment in
question. The template fragment has its substitution
sites marked, which are filled with values obtained
by recursively expanding the children of the current
constituent. To reconstruct 10,000 derivations takes 2
seconds on average.

2An intermediate node is a node introduced by the binarization.
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Language treebank train dev test

german Negra sent. 1–18,602 sent. 19,603–20,602 sent. 18,603–19,602
german Tiger sec. 2–9 / 1–9 sec. 1 sec. 0
english ptb: wsj sec. 2-21 sec. 24 sec. 23
dutch Alpino 16,319 sents. extra: 446 sents. CoNLL2006: 386 sents.
dutch Lassy small 52,157 sents. 6,520 sents. 6,523 sents.

Table 1: The discontinuous treebanks used in the experiments.

5 Experimental setup

In this section we describe the experimental setup for
benchmarking our discontinuous Double-dop imple-
mentation on several discontinuous treebanks.

5.1 Data

We evaluate on three languages: the German Negra &
Tiger treebanks (Skut et al., 1997; Brants et al., 2002),
a discontinuous version of the Penn treebank (Evang
and Kallmeyer, 2011), and the Dutch Alpino & Lassy
treebanks (van der Beek et al., 2002; Van Noord, 2009);
cf. table 1. Negra contains discontinuous annotations
by design, as a strategy to cope with the relatively
free word-order of German. The discontinuous Penn
treebank consists of the wsj section in which traces
have been converted to discontinuous constituents; we
use the version used in Evang and Kallmeyer (2011,
sec. 5.1-5.2) without restrictions on the transforma-
tions. The Alpino treebank is referred to as a depen-
dency treebank but when discontinuity is allowed it can
be directly interpreted as a constituency treebank. Fi-
nally, Tiger and Lassy use similar annotation schemes
as Negra and Alpino, respectively. The train-dev-test
splits we employ are as commonly used for the Penn
treebank; for Negra we use the one defined in Dubey
and Keller (2003); for Tiger we follow Hall and Nivre
(2008) who define sections 0–9 where sentence i be-
longs to section i mod 10; for Alpino and Lassy the
split is our own.3

For purposes of training we remove grammatical
functions from the treebanks, and binarize the trees
in the training sets head-outward with h “ 1, v “ 1

3The Alpino training set consists of all manually corrected
sentences distributed with the Alpino parser, except for the Lassy
corpus samples, gen g suite, and our development and test set,
extra and CoNNL2006 respectively. The Lassy split derives from
80-10-10 partitions of the canonically ordered sentence IDs in each
subcorpus (viz. dpc, WR, WS, and wiki).

markovization (v “ 2 for ptb) and heuristics for head
assignment (Klein and Manning, 2003); i.e., n-ary
nodes are factored into nodes specifying an immediate
sibling and parent. We add fan-out markers to guaran-
tee unique fan-outs for non-terminal labels, e.g., tVP,
VP2, VP3, . . .u, which are removed again for evalua-
tion. We apply a few simple manual state splits.4 In
order to compare the results on Negra with previous
work, we do not apply the state splits when working
with gold pos tags.

The complexity of parsing with an lcfrs depends on
the maximal sum of the non-terminal fan-outs of its
productions (Gildea, 2010). Using this measure, pars-
ing with the dop grammars extracted from Negra, wsj,
and Alpino has a worst-case time complexity of Opn9q.
The complexities for Tiger and Lassy are Opn10q and
Opn12q respectively, due to a handful of anomalous
sentences; by discarding these sentences, a grammar
with a complexity of Opn9q can be obtained with no or
negligible effect on accuracy.

5.2 Unknown words

In initial experiments we present the parser with the
gold part-of-speech tags, as in previous experiments
on discontinuous parsing. Later we show results when
tags are assigned automatically with a simple unknown
word model, based on the Stanford parser (Klein and
Manning, 2003). Tags that rewrite more than σ words
are considered open class tags, and words they rewrite
are open class words. Open class words in the training

4For English we apply the state splits described in Evang and
Kallmeyer (2011, sec. 4.2). S nodes with a WH-element are
marked as such. VPs with as head a bare infinitive, to-infinitive, or
particle verb are marked as such. The marking for VPs headed by
a bare or to-infinitive is percolated to the parent S-node.

For Dutch and German we split the pos tags for sentence-ending
punctuation ‘.!?’. For German we additionally split S nodes that
are relative clauses, based on the respective grammatical function
label.
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set that do not occur more than 4 times are replaced
with features; words in the test set which are not part
of the known words from the training set are replaced
with the same features. The features are defined in
the Stanford parser as model 4, which is relatively
language independent. ϵ probability mass is handed
out for combinations of known open class words with
unseen tags. For ϵ we use 0.01; σ is tuned on each
training set to ensure that no closed class words are
identified as open class words; for English and German
we use 150, and 100 for Dutch.

5.3 Discontinuity without lcfrs

The idea up to now has been to generate discontin-
uous constituents using formal rewrite operations of
lcfrs. However, the pcfg approximation used in the
pruning stage encodes discontinuities as part of the
labels. Instead of using this technique only as a crutch
for pruning, it can also be combined with the use of
fragments to obtain a purely cubic time pipeline. While
the pcfg approximation increases the independence as-
sumptions for discontinuous constituents, the use of
large fragments can mitigate this increase. We shall
refer to this alternative approach as ‘Split-2dop.’

5.4 Metrics

We employ the exact match and the Parseval mea-
sures (Black et al., 1992) as evaluation metrics. The
latter can be straightforwardly generalized to discontin-
uous spans by representing spans of bracketings as sets
of indices (Maier, 2010). Unfortunately it is not always
made explicit in previous work on Negra parsing what
kind of evaluation parameters are being used. We use
the evaluation parameters typically used with EVALB
on the Penn treebank. Namely, the root node, as well as
punctuation, are not counted towards the score (similar
to COLLINS.prm, except that we discount all punctu-
ation, including brackets). Counting the root node as
a constituent should not be done because it is not part
of the corpus annotation and the parser is able to gen-
erate it without doing any work; when the root node
is counted it inflates the F-score by several percentage
points. Punctuation should be ignored because in the
original annotation of the Dutch and German treebanks,
punctuation is attached directly under the root node
instead of as part of constituents. Punctuation can be
re-attached using heuristics for the purposes of parsing,
but evaluation should not be affected by this.

Model k=50 k=5000

dop reduction: disco-dop 74.3 73.5
Double-dop: disco-2dop 76.3 77.7

Table 2: Comparing the dop reduction (implicit fragments)
with Double-dop (explicit fragments) on the Negra develop-
ment set with different amounts of pruning (higher k means
less pruning; gold pos tags).

6 Evaluation

Table 2 compares previous results of Disco-dop to the
new Disco-2dop implementation. The second column
shows the accuracy for different values of k, i.e., the
number of coarse derivations that determine the al-
lowed labeled spans for the fine stage. While increas-
ing this value did not yield improvements using the
dop reduction, with Disco-2dop there is a substantial
improvement in performance, with k “ 5000 yielding
the best score among the handful of values tested.

Table 3 lists the results for discontinuous parsing of
three Germanic languages, with unknown word mod-
els. The cited work by Kallmeyer and Maier (2013)
and Evang and Kallmeyer (2011) also uses lcfrs for
discontinuity but employs a treebank grammar with
relative frequencies of productions. Hall and Nivre
(2008) use a conversion to dependencies from which
discontinuous constituents can be recovered. For En-
glish and German the results improve upon the best
known discontinuous constituency parsing results. The
new system achieves a 16 % relative error reduction
over the previous best result for discontinuous parsing
on sentences ď 40 in the Negra test set. In terms of
efficiency the Disco-2dop model is more than three
times as fast as the dop reduction, taking about 3 hours
instead of 10 on a single core. The grammar is also
more compact: the size of the Disco-2dop grammar is
only a third of the dop reduction, at 6 mb versus 18 mb
compressed size.

The substantial improvements on the larger Ger-
man and Dutch treebanks Tiger and Lassy suggest that
providing more training data will keep improving ac-
curacy. The results for Dutch are not comparable to
earlier work because such work has only been evalu-
ated on dependency relations of grammatical functions,
which our model does not produce. Earlier work on re-
covering empty categories and their antecedents in the
Penn treebank (Johnson, 2002; Gabbard et al., 2006;
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Parser, treebank |w| DEV TEST
POS F1 EX POS F1 EX

GERMAN
*vanCra2012, Negra ď 40 100 74.3 34.3 100 72.3 33.2

†*KaMa2013, Negra ď 30 100 75.8
*this paper, Negra ď 40 100 77.7 41.5 100 76.8 40.5
this paper, Negra ď 40 96.7 76.4 39.2 96.3 74.8 38.7
HaNi2008, Tiger ď 40 97.0 75.3 32.6
this paper, Tiger ď 40 97.6 78.7 40.5 97.6 78.8 40.8

ENGLISH
†*EvKa2011, wsj ă 25 100 79.0

this paper, wsj ď 40 96.0 85.2 28.0 96.6 85.6 31.3

DUTCH
this paper, Alpino ď 40 90.1 74.5 37.2 85.2 65.9 23.1
this paper, Lassy ď 40 94.1 79.0 37.4 94.6 77.0 35.2

Table 3: Discontinuous parsing of three Germanic languages.
POS is the part-of-speech tagging accuracy, F1 is the labeled
bracketing F1-score, EX is the exact match score. Results
marked with * use gold pos tags; those marked with † do not
discount the root node and punctuation. NB: KaMa, EvKa,
and HaNi use a different test set and length restriction. Key
to citations: vanCra: van Cranenburgh (2012a); KaMa:
Kallmeyer and Maier (2013); HaNi: Hall and Nivre (2008);
EvKa: Evang and Kallmeyer (2011).

Schmid, 2006) has recovered long-distance dependen-
cies by producing the traces and co-indexation as in the
original annotation; unfortunately the results are not di-
rectly comparable because their evaluation method de-
pends on having both traces and antecedents, while our
model directly generates discontinuous constituents.

Table 4 shows a comparison of coarse-to-fine
pipelines with and without lcfrs, showing that, sur-
prisingly, the use of a formalism that explicitly models
discontinuity as an operation does not give any im-
provement over a simpler model in which discontinu-
ities are only modeled probabilistically by encoding
them into labels and fragments. This demonstrates that
given the use of tree fragments, discontinuous rewrit-
ing through lcfrs comes at a high computational cost
without a clear benefit over cfg.

From the results it is clear that a probabilistic tree-
substitution grammar is able to provide much better
results than a simple treebank grammar. However, it
is not obvious whether the improvement is due to the
more fine-grained statistics (i.e., weakened indepen-
dence assumptions), or because of the use of larger
chunks. A serendipitous discovery during develop-
ment of the parser provides insight into this: during an

Pipeline F1 % EX %

Split-pcfg (no lcfrs, no tsg) 65.8 28.0
Split-pcfgñ plcfrs (no tsg) 65.9 28.6
Split-pcfgñ plcfrsñ 2dop 77.7 41.5
Split-pcfgñ Split-2dop (no lcfrs) 78.1 42.0

Table 4: Parsing discontinuous constituents is possible with-
out lcfrs (Negra dev. set, gold pos tags; results are for final
stage).

experiment, the frequencies of fragments were acciden-
tally permuted and assigned to different fragments, but
the resulting decrease in accuracy was surprisingly low,
from 77.7 % to 74.1 % F1—suggesting that most of the
improvement over the 65.9 % of the plcfrs treebank
grammar comes from memorizing larger chunks, as
opposed to statistical reckoning.

7 Conclusion

We have shown how to parse with discontinuous tree-
substitution grammars along with a practical imple-
mentation. We have presented a fragment extraction
tool that finds recurring structures in treebanks effi-
ciently, and supports discontinuous treebanks. This
enables a data-oriented parsing implementation pro-
viding a compact, efficient, and accurate model for
discontinuous parsing in a single generative model that
improves upon previous results for this task.

Surprisingly, it turns out that the formal power of
lcfrs to describe discontinuity is not necessary, since
equivalent results can be obtained with a probabilistic
tree-substitution grammar in which long-distance de-
pendencies are encoded as part of non-terminal labels.

The source code of the parser used in this work has
been released as disco-dop 0.4, available at:
https://github.com/andreasvc/disco-dop
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