
Proceedings of the Second International Conference on Dependency Linguistics (DepLing 2013), pages 68–77,
Prague, August 27–30, 2013. c© 2013 Charles University in Prague, Matfyzpress, Prague, Czech Republic

A method to generate simplified Systemic Functional Parses from De-

pendency Parses

Eugeniu Costetchi

CRP Henri Tudor, Luxembourg, 29, J.F. Kennedy, 1855, Luxembourg

eugeniu.costetchi@tudor.lu

Abstract

Systemic Functional Linguistics provides a

semiotic perspective on language. The text

analysis described in Systemic Functional

Linguistics (SFL) can be of critical value in

real-world applications. But parsing with SFL

grammars is computationally intensive task

and parsers for this level of description to date

have not been able to operate on unrestricted

input. This paper describes a graph-based

method to automatically generate simplified

SFL mood and transitivity parses of English

sentences from Stanford Dependency parses

and a database providing transitivity categories

for each verb.

1 Introduction

Broad coverage natural language components

now exist for several levels of linguistic abstrac-

tion, ranging from tagging and stemming,

through syntactic analyses, to semantic specifica-

tions. In general, the higher the degree of ab-

straction, the less accurate coverage becomes.

Transitivity descriptions
1
 as developed within

Systemic Functional Linguistics (SFL) offer a

semantically-oriented decomposition of clauses

that is still sufficiently closely tied to observable

grammatical distinctions as to offer a powerful

bridge for automatic analysis. Transitivity anal-

yses, like those in Table 1, provide descriptions

analogous to frame descriptions (Fillmore, 1985;

Minsky, 1974) as found in FrameNet (Baker,

Fillmore, & Lowe, 1998) or VerbNet (Kipper,

Korhonen, Ryant, & Palmer, 2008) which are

applied in Semantic Role Labelling tasks.

CoNLL-2004/5(Carreras & Màrquez, 2005)

shared tasks on SRL, revealed a major perfor-

mance drop when when the test corpus differs

from the training one. This can be due to the use

of machine learning or due to annotation sche-

mas. By contrast to VerbNet & FrameNet, the

1 Note that transitivity in SFL is a clause-level representa-

tion and not a verb property such as in traditional grammars.

SFL transitivity descriptions enforce a further

generalisation across the kinds of frame roles

that can be used. This generalisation allows de-

scriptions to be preserved when clauses are real-

ised in different forms and also provides the ba-

sis for making a more robust connection to struc-

tural syntactic features of clauses.

Mood descriptions offer a functional syntactic

decomposition of clauses that serves as a well-

argued foundation for transitivity analysis

(Halliday & Matthiessen, 2004).

SFL adopts a semiotic perspective on lan-

guage and distinguishes different meaning-lines

fused in the text. Therefore parsing in terms of

mood and transitivity (e.g. Table 1) can be of

tremendous value for Natural Language Under-

standing and Critical Discourse Analysis. Pro-

vided automatic mood and transitivity parsing

can have applications well beyond those tradi-

tionally explored with automatic semantic and

syntactic analysis.

example 1
the

duke
had given the teapot to my aunt.

mood

clause: [mood type: declarative; tense: past perfect simple;

voice: active: polarity: positive]

subject
predicate

complement complement
finite predicator

transitivity
agent-

carrier
possessive process possessed beneficiary

example 2
the

lion
caught the tourist yesterday.

mood

clause: [mood type: declarative; tense: past perfect simple;

voice: active: polarity: positive]

subject predicator/finite complement adjunct

transitivity
agent-

carrier
possessive process

affected-

possessed

temporal

location

Table 1 sample mood and transitivity analyses

Parsers for this level of description to date have

not been able to operate on unrestricted input. To

parse directly in terms of SFL is a computation-

ally difficult task. However there have been suc-

cessful attempts to produce SFL parses in two

steps. This paper describes a method to automat-

ically generate English sentences parses of mood

and transitivity from Stanford Dependency pars-

es (Marneffe, MacCartney, & Manning, 2006;

Marneffe & Manning, 2008) and from the Pro-

cess Type Database (Neale, 2002).

68

Typed dependency grammars (like SD) and

systemic functional grammars are different anal-

ysis approaches. The typed dependency analysis

results in word pairs bound by a syntactic rela-

tion. The systemic functional analysis results in

constituents and feature structures. The constitu-

ents are text chunks labelled with their functional

grammatical role in the clause, while feature

structures are sets of attribute-value pairs repre-

senting properties of constituents.

The main issues addressed here are: how to

determine the boundaries of constituents and

their (mood/transitivity) roles in a clause and

how to further determine their features based on

constituent position and lexico-grammatical re-

sources. The Stanford Dependency Parser (SDP)

offers a suitable backbone for bootstrapping

mood analysis. The defined grammatical roles

are syntactically compatible with functional

grammar and contribute to the solving constitu-

ency problem (see Section 4.3). For the second

problem we employ pattern graphs correspond-

ing to choices in systemic networks together with

lexical-semantic resources such as the PTDB to

further enrich the constituents with semantic in-

formation.

The Process Type Database (PTDB) is a dic-

tionary-like database of verb lexical items, each

of which is bound to list of verb senses and cor-

responding semantic frames that dictate the pro-

cess type and participant roles selection.

In the remainder of this paper we briefly in-

troduce key SFL concepts with focus on mood

and transitivity along with simplified MOOD
2

and TRANSITIVITY systems in terms of which

we currently consider parsing (Section 2). Then,

in Section 3, are presented the main contributions

in SFL parsing followed, in Section 4, by de-

scription of our graph-based parsing approach

detailed with parsing method, computational im-

plementations and resources that support it. In

Section 5 we conclude on presented approach.

2 SFL preliminaries

In Systemic Functional Linguistics there are

three lines of meaning expressed in any clause:

textual, interpersonal and experiential. Textual-

ly, a clause acts as a message (or an information

unit) that contributes to the creation of the dis-

course as a whole. Interpersonally, a clause is a

unit of exchange between speaker and listener,

and so serves social relations and speech func-

2 Capitalized notation refers to a SFG system network

whereas non-capitalized terms refer to concept s.

tions enacted in a clause. Within SFL, however,

speech acts are expressed by means of typical

grammatical variations and expressions, thus

maintaining a tighter link between the speech act

and the grammatical realization. Mood analysis

provides the framework to grasp and use these

grammatical variations. Experientially, a clause

is the representation of some “process in on-

going human experience”(Halliday &

Matthiessen, 2004, p. 170) and is described

through transitivity.

Systemic Functional Grammar approach to

syntactic structure is to focus on systematizing

the choice possibilities a speaker has for constru-

ing her utterances. Each choice shapes the

grammatical realization and is accompanied by a

range of semantic implications. These choices

are then structured in hierarchical system net-

works so that early choices restrict latter ones.

There are two large variants of Systemic Func-

tional Grammars: the Sydney Grammar pro-

posed by Halliday (Halliday & Matthiessen,

2004), who originated SFL, and the Cardiff

Grammar proposed by Fawcett (Fawcett, 2008),

who, based on Sydney Grammar, has constructed

an alternative account focusing more directly on

syntactic generalizations.

In the present paper, the Cardiff Grammar is

used for transitivity analysis because the PTDB

is build according to it and, a simplified version

of Sydney Grammar is used for mood analysis as

described in the next section.

2.1 Mood constituency and MOOD system-

ic network

Mood constituency analysis in SFL supports the

interpersonal perspective on language and re-

sembles the analysis of Quirk (1985) or that of

Fawcett (2008) where the clause is syntactically

split into constituting elements. We will refer to

it as mood constituency, because, in SFL, all

analyses have their own specific way of splitting

the clause into constituents. An example of such

analysis is exhibited in Table 1. The following is

a brief description of clause constituents and

their functional roles in exchange (argument)

structure.

The Finite is a part of the verbal group ex-

pressing the tense or modality. It either precedes

the Predicator (introduced below) or is conflated

with it in present and past simple tenses. The role

of the Finite is to make the clause finite by an-

choring it into the here and now, so to speak,

bringing the clause into the context of the speech

event. This is done either by reference to the time

69

of speaking via tense or by reference to the

judgment of the speaker via modality.

The Subject is the nominal group or a nominal

clause that precedes the Predicator in a clause

and it is something by reference to which the

proposition can be affirmed or denied. It is con-

sidered to be “modally responsible” for the valid-

ity of what is being predicated (stated, com-

manded, questioned or offered) in the clause.

Note that the predication is not interpreted as an

experiential relation but as an interpersonal rela-

tion. Hence there is no interpretation in terms of

truth values of a clause (because for e.g. offers,

and commands cannot be attributed truth values).

The Predicator is the part of verbal group mi-

nus the finite constituent when they are not con-

flated. It specifies additional temporal and aspec-

tual relations, voice and the process type (e.g.

action, relation, mental process etc.) that is pred-

icated about the Sub-

ject. It can contain one

or more Main Verbs.

The Main Verb is a

non-auxiliary and non-

modal verb at the end

of the verbal group. If

there is more than one

Main Verb we say that

it is a complex clause.

To enforce the syntac-

tic and functional

analysis proposed in

the Cardiff analysis

methodology (Fawcett,

2008), the complex

clauses need to be sep-

arated into individual

clauses so that each

comply with the “one

main verb per clause” principle. Sentence divi-

sion into clauses is explained in Section 2.5.

The Complement is a part of the clause that

follows the Predicator and has the potential of

becoming a Subject, i.e. it can become an axis of

the argument. Usually it is a nominal group and

rarely a prepositional phrase. For example in

passive clauses the agent easily loses the preposi-

tion “by” to become Subject.

Complements correspond to “objects” in tradi-

tional grammars.

The Adjuncts are the last type of clause con-

stituent. They do not have the potential of be-

coming a Subject; therefore arguments cannot be

constructed around adjunct elements. They are

realized by adverbial, nominal and prepositional

groups.

The system of MOOD used in this paper

(Figure 1) is a simplified version of Sydney

Figure 1 simplified MOOD system of Sydney Grammar

Figure 2 TRANSITIVITY system of Cardiff Grammar

70

Grammar mood. It focuses four features
3
: mood

type, voice type, clause polarity, and mod-

al/temporal deixis. These are clause-level fea-

tures which are determined either by: (1) constit-

uent presence, (2) constituent order, or (3) lexical

items within a constituent. In section 4.3 is ex-

plained how to generate the mood structure and

its features from the dependency graph.

2.2 Transitivity constituency and TRANSI-

TIVITY systemic network

TRANSITIVITY (Figure 2) defines the process

types, participant roles that correspond to each

process type and circumstances that can occur in

the language (English in this case). These are

functional units of a configuration whose syntac-

tic counterpart is the clause.

The Process is the central element of a con-

figuration. Each process type (classification in

Figure 2) provides its own model or schema for

construing a particular domain of experience by

defining a configuration of participant roles for

that particular process type. The Process is filled

by Finite and Predicator constituents but the

Main Verb dictates systemic selection of the

Process Type.

 Participants are filled by Subject and Com-

plement constituents and their roles are selected

by the configuration schema. A configuration

can have from one to three Participants just as a

clause has a Subject up to two Complements.

The vast majority of Processes require two Par-

ticipants whereas only a small number of pro-

cesses ask for one or three Participants.

The last unit type in a configuration is the cir-

cumstance. It introduces additional information

about the configuration such as time, space,

cause, manner, etc. Circumstances are filled by

Adjunct constituents and are optional units in a

configuration. The clause is syntactically valid if

adjuncts are removed whereas if a Subject, Pred-

icate or Complement is missing the clause

changes its meaning or becomes syntactically

invalid. The same holds for a configuration; if a

participant or process is removed then it becomes

another configuration or invalid.

One might argue that in “John behaved well”,

if we remove or substitute the adjunct “well”,

then the meaning of the entire clause is modified.

The Manner is treated as circumstance in Sydney

Grammar but in Cardiff grammar, it has been

given a participant role. Since we are bond to the

3
 Feature values are further determined by their own

sub-systems.

latter, syntactically manner is still an adjunct but

semantically it becomes a participant role.

Due to space limitation, the detailed process

type, participant role or circumstances classifica-

tion are not covered further in the current paper.

They are treated with great detail by Halliday

and Matthiessen (2004), Neale (2002) and Faw-

cett (2009).

Seldom, a clause can be interpreted as corre-

sponding to more than one configuration type

which implies different participant role and pro-

cess type selections. This principle, enounced by

Halliday, is called systemic indeterminacy

(Halliday & Matthiessen, 2004, p. 173) and ap-

plies to all systems but especially to TRANSI-

TIVITY.

2.3 The Process Type Database

The Process Type Database (Neale, 2002) is the

key resource in the automatisation of transitivity

analysis because the selection of the process type

during transitivity analysis is a semantically

driven operation. PTDB provides information on

what possible process types and participants can

correspond to a particular verb.

The PTDB is a dictionary-like dataset of verb

lexical items, each of them, bound to an exhaus-

tive list of verb senses and the corresponding

Process Configuration for each sense. It is the

result of Neale’s work (2002) on improving the

TRANSITIVITY system of the Cardiff Gram-

mar. She systematizes according to the Cardiff

Grammar over 5400 senses (and process configu-

rations) for over 2750 verbs. A small example is

presented in Table 2. Each verb sense has its own

Process Configuration and can coincide or differ

from the Process Configurations of other verb

senses.

verb form informal meaning configuration

calculate work out by mathematics

(commission will then

calculate the number of

casted votes)

cognition:

Ag-Cog + Ph

 plan (newspaper articles

were calculated to sway

reader's opinions)

two role action:

Ag + Cre

catch run after and seize (a

leopard unable to catch its

normal prey)

possessive:

Ag-Ca + Af-Pos

 (did you catch a cold?) possessive:

 Af-Ca + Pos

catch (up

with)

reach (Simon tried to

catch up with others)

two role action:

 Ag + Ra

Table 2 sample PTDB entries (simplified)

71

2.4 The interplay between mood and transi-

tivity – the case of prepositional groups

There are cases in mood analysis when deciding

the unit type is impossible by relying solely on

syntactic analysis (including typed dependency

analysis). Prominent cases are the prepositional

phrases. These can fill both a Complement and

an Adjunct role. For mood analysis this implies

that the same syntactic unit can fill a Comple-

ment and an Adjunct, while for transitivity anal-

ysis, it implies that the same syntactic unit can

fill a Participant or a Circumstance.
(1) John goes home through London.

(2) John is building a house for Bob.

(3) her teardrop shines like a diamond.

(4) John is building a house for ten years now.

(5) John goes to London by fast train.

In examples (1) and (2) the prepositional phrases

“through London”
4
 and “for Bob” are Comple-

ments and Participants (Path and Beneficiary

roles) while in examples (3), (4) and (5), “like a

diamond”, “for ten years now” and “by fast

train” are Adjuncts and Circumstances (of com-

parison, temporal duration and manner-means).

prep role5 Sydney grammar Cardiff grammar

by Ag material: actor;

mental: phenome-

non;

relational: token

action: actor;

mental (emotive):

phenomenon;

relational: token

to Ben material: recipi-

ent;

verbal: receiver

action: client / re-

ceiver6

to Dest material: location

/ place

action: destination

for Ben material: client action: receiver

as Attr relational: attrib-

ute

relational (attribu-

tive): attribute

on, in Ra material: scope;

verbal: verbiage;

material: loca-

tional / place

action: range / desti-

nation

Table 3 Prepositions introducing participants

To solve this problem of undetermined role allo-

cation there are two complementary solutions.

The first one is to mark the every prepositional

phrase as Complement and as Adjunct. This just

4 In Sydney Grammar it is a circumstance for a material

process. However, in Cardiff Grammar for Directional and

Locative Processes some circumstances are treated as par-

ticipants therefore they are Complements (Fawcett, 2009).
5 General functions defined in Sydney Grammar:

Ag(Agent), Ben(Beneficiary), Dest(Destination),

Attr(Attribute), Ra(Range), etc.
6 Beneficiary and Client are not directly specified in Cardiff

system. This role is identified as Destination in two and

three role actions. The test distinguishing between benefi-

ciary and destination is checking whether the participant is

animate or non-animate.

postpones the decision of selecting the right unit

type, however.

The second solution is to decide based on the

preposition and potential process type as speci-

fied in the PTDB. Most of prepositions introduce

only circumstances and only a few prepositions

can introduce participants as well. And when

they do, it is for only specific process types. Ta-

ble 3 we present prepositions known to introduce

participants for process types. This table is an

extension of the one from (Halliday &

Matthiessen, 2004, p. 278) and contains transla-

tions to Cardiff Grammar counterparts.

2.5 Sentence partition into clauses

Dependency Graphs (will be introduced in Sec-

tion 4.2) are graphs of a whole sentence whereas

transitivity analysis is at individual clause-level.

This implies that DG need to be split into indi-

vidual clauses before transitivity analysis. We

propose to detect and delimit clauses during the

mood analysis. For some commonly occurring

situations we propose treatments aligned with

Fawcett’s (2008, 2009) methodology as follows.

When the clauses are connected by a conjunc-

tion and have their own subject/objects then the

conjunction is the clause border marker.
(6) The lion chased the tourist but she escaped alive.

(6a) The lion[Ag-Ca] chased[Pr] the tourist[Af-Pos]

(6b) she[Ag] escaped[Pr] alive[Ra]

When the predicators are conjoined and share

subject and/or objects then each predicator will

form a new clause and borrow the subject/objects

from the other clause.
(7) The lion chased and caught the tourist.

(7a) the lion[Ag-Ca] chased[Pr] the tourist[Af-Pos]

(7b) the lion[Ag-Ca] caught[Pr] the tourist[Af-Pos]

In the case of mental, influential and event re-

lating processes (classification in Figure 2) the

predicates are often complex. Verbs in these

classes are known as control and raising verbs

(Haegeman, 1991) where a superordinate con-

trols subordinate non-finite verb and binds its

participants (Subject/Complement).

In order to comply with “one main verb per

clause” principle, each Main Verb of the com-

plex clause becomes a governor of a distinct

clause. The subordinate verb with all of its de-

pendent nodes is assigned to a placeholder. The

superordinate verb receives the placeholder as

Complement with the role of Phenomena. If the

subject is missing in the subordinate clause then

it is copied from the superordinate one.
(8) The lion wanted/began to chase the tourist.

(8a) the lion[Cog] wanted/began[Pr] X[Phen]

72

(8b) X= the lion[Ag-Ca] to chase[Pr] the tourist[Af-

Pos]

The meaning of complex clause decomposi-

tion can be expressed with an equivalent rephras-

ing by inserting “something that is” between the

Main Verbs, as in example (9).

(9) The lion wanted/began something that is to chase

the tourist.

3 Literature review

Most of the parsing attempts in SFL dealt with

the Nigel grammar (Matthiessen, 1985), which is

a large and complex natural language generation

(NLG) grammar. One of the early attempts was

done by Kasper (1988). He recompiles
7
 the Nigel

grammar as feature structures employing Func-

tional Unification Grammar (FUG) (Martin Kay,

1985) which is a well-established and a formally

understood representation. Kasper used phrase-

structure trees which served as backbones to

which were mapped systemic feature choices.

O’Donnell use a different approach to recom-

piling the Nigel grammar which allowed him to

parse text directly without appeal to the phrase-

structure backbone that Kasper had required

(O’Donnell, 1993, 1994). However he could not

parse with the entire Nigel grammar because of

the sheer size of the grammar and its inherent

complexity introduced by multiple parallel clas-

sifications (Bateman, 2008). O’Donnell

(O’Donnell, 2005) subsequently, in UAM Parser,

decided, for pragmatic reasons, to return to a

syntactic backbone and restrict the grammar so

that functionally only the Mood structure of

clauses is accounted for.

In a very different style of approach, Honnibal

and Curran (2005) constructed a parser to con-

vert Penn Treebank into a corresponding

SFGBank. This managed to provide a good con-

version from parse trees into systemic functional

representation covering sentence mood and the-

matic constituency (the third kind of analysis in

SFL which has been mentioned in Section 2).

Transitivity was not been covered because of its

inherently semantic nature.

More recently, O’Donnell (2012) in UAM

Corpus Tool, created a parser that uses Stanford

Parser(Klein & Manning, 2003) output as a

backbone, which then is transformed into mood

parse and then further derives the Sydney

7 Recompilation is employed to adopt a resource for appli-

cation needs. Nigel grammar was initially created for NL

generation. That grammar structure is not applicable for the

parsing task.

Grammar transitivity parse. He uses a mood

backbone and enriches this with semantic fea-

tures that are derived based on lexical choices

and structural patterns.

Our approach is aligned with Honnibal’s and

O’Donnell’s work with respect to using mood

constituency as a backbone and enriching it with

syntactic and semantic features. When approach-

ing transitivity, O’Donnell provides the possible

process types that a verb can have by employing

a large lexicon where each word has syntactic

and semantic features. The approach described

here differs both in terms of the lexical resource

and parsing method used. We employ PTDB,

which provides entire configurations (frames) for

each verb sense and the parsing method is a

graph-based pattern matching.

4 The parsing method

In this section implementations are proposed and

their capacities described, as well as methods

that perform mood and transitivity parsing. The

Stanford Dependency Schema proposed in

(Marneffe et al., 2006) and re-motivated in

(Marneffe & Manning, 2008) constitutes the de-

parting point of our current approach in building

a Mood Constituency Graph (MCG). MCG is

the structure reflecting mood analysis and serves

as the backbone for performing transitivity anal-

ysis via Graph Matching operations. Our method

involves three types of graph structures: (1) De-

pendency Graphs, (2) Mood Constituency

Graphs and (3) Pattern Graphs. We now intro-

duce the specifics of a generic graph structure

and the operations that these graphs support and

then we present the parsing algorithms.

4.1 The graphs and operations over them

Graphs are defined as usual as a data structure

consisting of a finite set of directed edges con-

necting node entities. The nodes, however, are

not atomic data but Feature Structures

(Carpenter, 1992), whereas the edges are triples

(x,y,f) where x and y are nodes being connected

and f is the feature structure of the edge. A ge-

neric feature structure (FS) is a set of attribute-

value pairs where the value can be of an atomic

or a complex data-type such as list, dictionary or

feature structure.

The literature on mood and transitivity analy-

sis specifies a range of methods for detecting and

selecting a particular feature (Fawcett, 2008,

2009; Halliday & Matthiessen, 2004). In order to

support those methodological specifications the

73

graphs need to allow a number of operations: (1)

querying over nodes and edges, (2) graph match-

ing, (3) pattern matching and (4) pattern-based

node extraction.

Querying over the node or edge FS return

nodes or edges that comply with the constraints

of the query. For example one can ask for all

nodes that contain an “NP” part of speech or all

node pairs connected by “det” relation.

Graph matching enables answering questions

of whether a graph is identical to a sub-graph of

the second one. This is the graph isomorphism

problem, and is known to be NP-complete. How-

ever, the available algorithm (Cordella, Foggia,

Sansone, & Vento, 2004) nevertheless performs

this task very quickly when the graphs addressed

are of limited size. In our case the graphs are of

(English) sentences composed in average of 15-

20 words. This lies well within the limits of prac-

tical computability.

An extension of graph matching is the pattern

matching operation. A graph pattern (GP) is a

graph whose feature structures can either be un-

der or over specified. In the case of underspeci-

fied FS, the attributes and/or their values can be

omitted down to an empty feature structure. In

the case of over specified FS, the values are a list

of possible values for an attribute.

For example, Figure 3 depicts a GP for detect-

ing present perfect continuous tense. The slash

(“/”) symbol stands for part of speech attribute,

“at” (“@”) stands for the lexeme attribute while

square brackets (“[,]”) indicate a list of values

that are accepted for a match. Note that this pat-

tern is underspecified for most attribute-value

pairs and over specified for one edge indicating

two acceptable edge types (“[aux, auxpass]”)

and for one node POS (“[vbz, vbp]”).

Figure 3 sample GP

The last operation is pattern-based node extrac-

tion. The purpose of the operation is returning

nodes that have been marked in GP for extraction

in the case of GP match. The matched nodes are

returned together with the values of extraction

markers in GP. An extraction marker is simply

another attribute-value pair in the node’s FS.

This gives the possibility to assign new function-

al-semantic features to nodes, such as participant

roles during transitivity parsing.

Figure 4 sample GP with marked nodes

For example, Figure 4 represents a GP used for

transitivity analysis, where the dollar sign (“$”)

notation stands for an extraction marker. This

means that whenever a verb is encountered that

has a noun subject (“nsubj”) and a direct object

(“dobj”), then the subject node can receive agent,

carrier or agent-carrier roles (“[Ag,Ca,Ag-Ca]”),

while the object node can be attributed with af-

fected, possessed or affected-possessed roles

(“[Af,Pos,Af-Pos]”).

4.2 The sentence dependency graph

Stanford Dependency Parser (Marneffe et al.,

2006) generates, for each sentence, a set of typed

dependencies between the words and the follow-

ing information for each word token: word, lem-

ma, part of speech, named entity type (if applica-

ble) and word index in the sentence (for order

preservation). This output can re-represented as a

graph which we call Dependency Graph (DG).

DG is instantiated from SDP output whose nodes

and edge FSs are filled with corresponding in-

formation.

4.3 Generating mood parse

The mood constituency graph (MCG) is a di-

rected graph which partitions the sentence into

constituents at various hierarchical levels. A con-

stituent has one corresponding MCG node.

Therefore MCG node FS, among other attributes,

contains the list of DG nodes which the constitu-

ent covers. The generation of MCG is executed

in two phases: creation and enrichment.

A. Creation of MCG is based on breadth-first

traversal of DG. The edge type, at every step de-

cides what generative operation to execute on the

MCG. The operation choices are: (1) create a

new constituent (subject, predicator, finite, com-

plement or adjunct as described in section 2.1),

(2) extend the current constituent by a new to-

ken, (3) create a subordinate clause constituent

and (4) create a sibling constituent.

Creation of a new constituent adds a new

MCG node under the current one and fills it with

the current DG node and all of its children. Ex-

tension of constituent means adding the current

DG node to MCG node. This is a passive opera-

74

tion since the current DG node was added al-

ready when the new constituent was created.

Creation of the clause constituent is similar to the

creation of a simple constituent, but additionally,

one more clause constituent is added under the

former one and they both span over the same DG

nodes. Sibling constituent creation adds a new

constituent under the parent of the current one.

The current DG node and all its children are

moved from the current MCG node to a newly

created sibling.

Table 4 rules for MCG creation

The decision of what operation to execute is

based on the DG edge type, and in a few cases,

on edge type plus the word’s part of speech. De-

pendency types that require edge part of speech

context are: “dep” and “conj”. lists the rules

binding (1) Stanford Dependency relations, (2)

generative operation in MCG and (3) the con-

stituent type. The following algorithm outlines

how the MCG is created.
current_constit = create root node in mcg

bfs traverse DG:

 for each edge:

 oper_type,conit_type = get_rule(edge,nodes)

 new_constit = exec_oper(oper_type,

 contit_type, current_constit)

 current_constit = new_constit

B. In the enrichment phase Finite and Predi-

cate components are added. Their creation re-

quires more than one edge information available

during the DG traversal and therefore, for the

simplicity and clearness of the algorithm, these

components have been left out of the creation

phase. Moreover, in the cases of complex predi-

cates the empty constituents need to be created

according to subject/object control rules as de-

scribed in Section 2.5 in order to constitute full

clauses.

Finally, voice, polarity, mood type and modal

deixis features are added to each clause. For each

feature selection in the MOOD system (Section

2.1) a corresponding graph pattern is provided.

The algorithm attempted to match these graph

patterns in the MCG in order to determine which

feature to add to the MCG clause constituent.

The following algorithm outlines the enrichment

phase of the MCG:

for each clause in MCG:

 create finite and predicate constituents

 create empty constituents

 match voice patterns & add features

 match polarity patterns & add features

 match mood type patterns & add features

 match modal deixis patterns & add features

4.4 Generating transitivity parse

MCG divides the sentence into clauses and their

constituents and so it is an ideal structure to carry

transitivity descriptions. Transitivity is a clause-

level analysis that decorates the constituents with

semantic roles, i.e. the Predicate with Process

Type, the Subject and Complements with Partic-

ipant Roles, the Adjuncts with Circumstances

type (not covered here).

Transitivity parsing is very similar to enrich-

ment phase of MCG generation. The following

algorithm outlines how to enrich the MCG with

transitivity descriptions:
for each clause in MCG:

 get process types (main verb)

 for each process type:

 get all configuration GPs

 for each configuration GP:

 if GP matches clause:

 add process type to clause

 extract marked nodes

 add roles to clause constituents

The graph patterns used in this task are called

Configuration Graph Patterns (CGP). They rep-

resent the graph form of the clause configura-

tions as described by Fawcett (2009). Fawcett’s

configurations are given in a “normalised” form.

It resembles Chomsky’s kernel sentences which

are of declarative mood type, active voice and

unmarked positive polarity. This fixed functional

feature set accompanying semantic descriptions

dependency

relation

operation on mcg constituent type

nsubj, nsubjpass,

xsubj

new constituent subject

csubj, csubjpass new clause con-

stituent

subject

attr, dobj, acomp new constituent complement

ccomp new clause con-

stituent

complement

agent new constituent complement

agent

iobj new constituent complement

dative

prep, prepc new clause con-

stituent

complement or

adjunct

advcl new clause con-

stituent

adjunct

advmod, tmod new constituent adjunct

infmod, purpcl,

rcmod, ref, rel,

parataxis

new constituent clause

expl, complm,

mark

new sibling con-

stituent

Marker

vb-dep-vb,

vb-conj-vb,

new constituent clause

amod, appos, aux,

auxpass, cc, det,

mwe, neg, nn,

npadvmod, num,

number, pobj,

poss, possessive,

preconj, predet,

prt, punct, quant-

mod, xcomp

Extends current

constituent

75

of a configuration yields a particular realisation

form. Any alternative feature set yields a predict-

able alternative realisation that can be grasped by

the corresponding Graph Patterns for the same

configuration. For example, a variation in voice

of a two-role configuration would require two

CGPs differing by participant positions. CGP

with a passive voice would have switched partic-

ipant roles between Subject and Complement

constituents. So, every configuration may have

several realization variations (as a result of con-

flation with other functions) and each configura-

tion, therefore, has several corresponding CGPs

covering those realisation variations.

In the Cardiff Grammar there are 16 distinct

process types which cover 65 possible configura-

tions. The process type dictates which configura-

tions are allowed to occur and therefore the pro-

cess type dictates which set of CGP shall be at-

tempted for matching to clause DG. CGPs are

grouped according to the process type and stored

in a graph pattern repository.

Transitivity parsing process employs pattern-

based node extraction. For each clause in MCG,

process types are looked up in PTDB via Main

Verb lexeme. Then, for each process type, all

CGPs are matched against the clause MCG and

in case of a successful match the marked nodes

are extracted and enriched with semantic infor-

mation carried in CGP. The final result is a MCG

with a richer feature structure containing func-

tional-semantic information specific for each

clause constituent covered by the clause.

5 Conclusions

The present paper describes a graph-based ap-

proach to generate SFG mood and transitivity

parses from the Stanford Dependency parse and

Process Type Database. It is a computationally

and linguistically viable text parsing approach

for natural language understanding which en-

compasses framed semantic roles together with

an adequate syntactic structure to support those

semantic roles.

The presented method relies on correctness of

dependency parse produced by SDP and on cor-

rectness of entries from PTDB. This constitutes a

weak point because errors in SDP or PTDB can

lead to decreased overall correctness. In case of

missing verb items or verb senses for that verb

items the parser will fail to produce transitivity

analysis. Or if the verb sense has a faulty config-

uration specification then it will lead to incorrect

semantic labelling. In case of incorrect depend-

encies or dependency types the mood parsing is

likely to be erroneous as well. We cannot tell yet

to what extend these limitations influence the

correctness of our approach and it constitutes a

future work.

A valuable investigation would be to check

whether the Semantic Role Labelling with Car-

diff Grammar suffers from the same limitation as

the approaches describe in CoNLL-2005 which

records a dramatic drop in parse correctness

when the test corpus differs from the training

corpus.

The semantic analysis provided by TRANSI-

TIVITY covers process and participants. Cur-

rently no circumstance type has been taken into

account as it would require additional lexico-

grammatical resources.

No wide coverage parser employing the full

Sydney Grammar has yet eventuated. However,

the demand for systemic-oriented sentence anal-

ysis is on rise. Another increasing demand is for

semantic text analysis to further support natural

language understanding process. Concurrently

there is a pragmatic need to work with unrestrict-

ed text and within reasonably small time for of-

fline tasks like information extraction from large

documents, and within significantly small time

for online tasks like in the case of Dialogue Sys-

tems. The current method manages to satisfy

demand for systemic sentence analysis via a

trade-off between the richness of Sydney Gram-

mar and pragmatic needs regarding coverage and

execution time. Even so, a wide coverage sys-

temic parser could have applications well beyond

those traditionally explored with automatic se-

mantic and syntactic analysis and become of crit-

ical value for solving real-life problems.

Bibliography

Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998).

The Berkeley FrameNet Project. In C. Boitet & P.

Whitelock (Eds.), Proceedings of the 36th annual

meeting on Association for Computational

Linguistics (Vol. 1, pp. 86–90). Association for

Computational Linguistics.

Bateman, J. A. (2008). Systemic-Functional

Linguistics and the Notion of Linguistic Structure:

Unanswered Questions, New Possibilities. In

Jonathan J. Webster (Ed.), Meaning in Context:

Implementing Intelligent Applications of Language

Studies (pp. 24–58). London, New York:

Continuum.

Carpenter, B. (1992). The logic of typed feature

structures. Cambridge: Cambridge University

Press.

76

Carreras, X., & Màrquez, L. (2005). Introduction to

the CoNLL-2005 Shared Task: Semantic Role

Labeling. Proceedings of the Ninth Conference on

Computational Natural Language Learning

CoNLL2005, 152–164.

Cordella, L. P., Foggia, P., Sansone, C., & Vento, M.

A (sub)graph isomorphism algorithm for matching

large graphs. , 26 IEEE Transactions on Pattern

Analysis and Machine Intelligence 1367–72

(2004). IEEE Computer Society.

Fawcett, R. P. (2008). Invitation to Systemic

Functional Linguistics through the Cardiff

Grammar. Equinox Publishing Ltd.

Fawcett, R. P. (2009). How to Analyze Process and

Participant Roles. In The Functional Semantics

Handbook: Analyzing English at the level of

meaning. London: Continuum.

Fillmore, C. J. (1985). Frames and the semantics of

understanding. Quaderni di Semantica, 6, 222–

254.

Haegeman, L. (1991). Introduction to Government

and Binding Theory. Blackwell Textbooks in

Linguistics 1 (Vol. 2, p. 701). Blackwell.

Halliday, M. A. K., & Matthiessen, C. (2004). An

introduction to functional grammar. London:

Hodder Education.

Honnibal, M., & Curran, J. R. (2005). Creating a

Systemic Functional Grammar Corpus from the

Penn Treebank. In Proceedings of the 5th

Workshop on Important Unresolved Matters (pp.

89–96). Association for Computational Linguistics.

Kipper, K., Korhonen, A., Ryant, N., & Palmer, M.

(2008). A large-scale classification of English

verbs. Language Resources And Evaluation, 42,

21–40.

Klein, D., & Manning, C. (2003). Accurate

unlexicalized parsing. (E. Hinrichs & D. Roth,

Eds.)Proceedings of the 41st Annual Meeting on

Association for Computational Linguistics ACL 03,

1, 423–430.

Marneffe, M.-C., MacCartney, B., & Manning, C. D.

(2006). Generating Typed Dependency Parses from

Phrase Structure Parses. In LREC 2006 (Vol. 6, pp.

449–454).

Marneffe, M.-C., & Manning, C. D. (2008). The

Stanford typed dependencies representation. (P.

Neittaanmäki, T. Rossi, K. Majava, & O.

Pironneau, Eds.)Coling 2008 Proceedings of the

workshop on CrossFramework and CrossDomain

Parser Evaluation CrossParser 08, 1, 1–8.

Martin Kay. (1985). Parsing In Functional Unification

Grammar. In D.Dowty, L. Karttunen, & A. Zwicky

(Eds.), Natural Language Parsing. Cambridge

University Press.

Matthiessen, C. (1985). The systemic framework in

text generation: Nigel. In James Benson and

Willian Greaves (Ed.), Systemic perspective on

Discourse, Vol I (pp. 96–118). Norwood, New

Jersey: Ablex.

Michael O’Donnell. (2012). Transitivity Development

in Spanish Learners of English. In Proceedings of

39th International Systemic Functional Linguistics

Conference. Sydney, Australia.

Minsky, M. (1974). A framework for representing

knowledge. In P. Winston (Ed.), The Psychology of

Computer Vision (Vol. 20, pp. 211–277). McGraw-

Hill.

Neale, A. C. (2002). More Delicate TRANSITIVITY:

Extending the PROCESS TYPE for English to

include full semantic classifications. Cardiff.

O’Donnell, M. (1993). Reducing Complexity in

Systemic Parser. In Proceeedings of the Third

International Workshop on Parsing Technologies.

Tilburg.

O’Donnell, M. (1994). Sentence Analysis and

Generation: a systemic perspective. Sydney.

O’Donnell, M. (2005). The UAM Systemic Parser. In

Proceedings of the 1st Computational Systemic

Functional Grammar Conference. Sydney:

University of Sydney.

Quirk, R., Greenbaum, S., Leech, G., Svartvik, J., &

Crystal, D. (1985). A comprehensive grammar of

the English language. (R. Quirk,

Ed.)Computational Linguistics (Vol. 1, p. 1779).

New York, New York, USA: Longman.

Robert Kasper. (1988). An Experimental Parser for

Systemic Grammars. In Proceedings of the 12th

Int. Conf. on Computational Linguistics. Budapest.

77

