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Abstract 

Systemic Functional Linguistics provides a 

semiotic perspective on language. The text 

analysis described in Systemic Functional 

Linguistics (SFL) can be of critical value in 

real-world applications. But parsing with SFL 

grammars is computationally intensive task 

and parsers for this level of description to date 

have not been able to operate on unrestricted 

input. This paper describes a graph-based 

method to automatically generate simplified 

SFL mood and transitivity parses of English 

sentences from Stanford Dependency parses 

and a database providing transitivity categories 

for each verb.  

1 Introduction 

Broad coverage natural language components 

now exist for several levels of linguistic abstrac-

tion, ranging from tagging and stemming, 

through syntactic analyses, to semantic specifica-

tions. In general, the higher the degree of ab-

straction, the less accurate coverage becomes.  

Transitivity descriptions
1
 as developed within 

Systemic Functional Linguistics (SFL) offer a 

semantically-oriented decomposition of clauses 

that is still sufficiently closely tied to observable 

grammatical distinctions as to offer a powerful 

bridge for automatic analysis. Transitivity anal-

yses, like those in Table 1, provide descriptions 

analogous to frame descriptions (Fillmore, 1985; 

Minsky, 1974) as found in FrameNet (Baker, 

Fillmore, & Lowe, 1998) or VerbNet (Kipper, 

Korhonen, Ryant, & Palmer, 2008) which are 

applied in Semantic Role Labelling tasks. 

CoNLL-2004/5(Carreras & Màrquez, 2005) 

shared tasks on SRL, revealed a major perfor-

mance drop when when the test corpus differs 

from the training one. This can be due to the use 

of machine learning or due to annotation sche-

mas. By contrast to VerbNet & FrameNet, the 

                                                 
1 Note that transitivity in SFL is a clause-level representa-

tion and not a verb property such as in traditional grammars.  

SFL transitivity descriptions enforce a further 

generalisation across the kinds of frame roles 

that can be used. This generalisation allows de-

scriptions to be preserved when clauses are real-

ised in different forms and also provides the ba-

sis for making a more robust connection to struc-

tural syntactic features of clauses.  

Mood descriptions offer a functional syntactic 

decomposition of clauses that serves as a well-

argued foundation for transitivity analysis 

(Halliday & Matthiessen, 2004). 

SFL adopts a semiotic perspective on lan-

guage and distinguishes different meaning-lines 

fused in the text. Therefore parsing in terms of 

mood and transitivity (e.g. Table 1) can be of 

tremendous value for Natural Language Under-

standing and Critical Discourse Analysis. Pro-

vided automatic mood and transitivity parsing 

can have applications well beyond those tradi-

tionally explored with automatic semantic and 

syntactic analysis.  

example 1 
the 

duke 
had given the teapot to my aunt. 

mood 

clause: [mood type: declarative; tense: past perfect simple; 

voice: active: polarity: positive] 

subject 
predicate 

complement complement 
finite predicator 

transitivity 
agent-

carrier 
possessive process possessed beneficiary 

example 2 
the 

lion 
caught the tourist yesterday. 

mood 

clause: [mood type: declarative; tense: past perfect simple; 

voice: active: polarity: positive] 

subject predicator/finite complement adjunct 

transitivity 
agent-

carrier 
possessive process 

affected-

possessed 

temporal 

location 

Table 1 sample mood and transitivity analyses 

Parsers for this level of description to date have 

not been able to operate on unrestricted input. To 

parse directly in terms of SFL is a computation-

ally difficult task. However there have been suc-

cessful attempts to produce SFL parses in two 

steps. This paper describes a method to automat-

ically generate English sentences parses of mood 

and transitivity from Stanford Dependency pars-

es (Marneffe, MacCartney, & Manning, 2006; 

Marneffe & Manning, 2008) and from the Pro-

cess Type Database (Neale, 2002).  
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Typed dependency grammars (like SD) and 

systemic functional grammars are different anal-

ysis approaches. The typed dependency analysis 

results in word pairs bound by a syntactic rela-

tion. The systemic functional analysis results in 

constituents and feature structures. The constitu-

ents are text chunks labelled with their functional 

grammatical role in the clause, while feature 

structures are sets of attribute-value pairs repre-

senting properties of constituents. 

The main issues addressed here are: how to 

determine the boundaries of constituents and 

their (mood/transitivity) roles in a clause and 

how to further determine their features based on 

constituent position and lexico-grammatical re-

sources. The Stanford Dependency Parser (SDP) 

offers a suitable backbone for bootstrapping 

mood analysis. The defined grammatical roles 

are syntactically compatible with functional 

grammar and contribute to the solving constitu-

ency problem (see Section 4.3). For the second 

problem we employ pattern graphs correspond-

ing to choices in systemic networks together with 

lexical-semantic resources such as the PTDB to 

further enrich the constituents with semantic in-

formation. 

The Process Type Database (PTDB) is a dic-

tionary-like database of verb lexical items, each 

of which is bound to list of verb senses and cor-

responding semantic frames that dictate the pro-

cess type and participant roles selection. 

In the remainder of this paper we briefly in-

troduce key SFL concepts with focus on mood 

and transitivity along with simplified MOOD
2
 

and TRANSITIVITY systems in terms of which 

we currently consider parsing (Section 2). Then, 

in Section 3, are presented the main contributions 

in SFL parsing followed, in Section 4, by de-

scription of our graph-based parsing approach 

detailed with parsing method, computational im-

plementations and resources that support it. In 

Section 5 we conclude on presented approach.  

2 SFL preliminaries 

In Systemic Functional Linguistics there are 

three lines of meaning expressed in any clause: 

textual, interpersonal and experiential. Textual-

ly, a clause acts as a message (or an information 

unit) that contributes to the creation of the dis-

course as a whole. Interpersonally, a clause is a 

unit of exchange between speaker and listener, 

and so serves social relations and speech func-

                                                 
2 Capitalized notation refers to a SFG system network 

whereas non-capitalized terms refer to concept s. 

tions enacted in a clause. Within SFL, however, 

speech acts are expressed by means of typical 

grammatical variations and expressions, thus 

maintaining a tighter link between the speech act 

and the grammatical realization. Mood analysis 

provides the framework to grasp and use these 

grammatical variations.  Experientially, a clause 

is the representation of some “process in on-

going human experience”(Halliday & 

Matthiessen, 2004, p. 170) and is described 

through transitivity. 

Systemic Functional Grammar approach to 

syntactic structure is to focus on systematizing 

the choice possibilities a speaker has for constru-

ing her utterances. Each choice shapes the 

grammatical realization and is accompanied by a 

range of semantic implications. These choices 

are then structured in hierarchical system net-

works so that early choices restrict latter ones.  

There are two large variants of Systemic Func-

tional Grammars: the Sydney Grammar  pro-

posed by Halliday (Halliday & Matthiessen, 

2004), who originated SFL, and the Cardiff 

Grammar proposed by Fawcett (Fawcett, 2008), 

who, based on Sydney Grammar, has constructed 

an alternative account focusing more directly on 

syntactic generalizations.  

In the present paper, the Cardiff Grammar is 

used for transitivity analysis because the PTDB 

is build according to it and, a simplified version 

of Sydney Grammar is used for mood analysis as 

described in the next section. 

2.1 Mood constituency and MOOD system-

ic network  

Mood constituency analysis in SFL supports the 

interpersonal perspective on language and re-

sembles the analysis of Quirk (1985) or that of 

Fawcett (2008) where the clause is syntactically 

split into constituting elements. We will refer to 

it as mood constituency, because, in SFL, all 

analyses have their own specific way of splitting 

the clause into constituents. An example of such 

analysis is exhibited in Table 1. The following is 

a brief description of clause constituents and 

their functional roles in exchange (argument) 

structure. 

The Finite is a part of the verbal group ex-

pressing the tense or modality. It either precedes 

the Predicator (introduced below) or is conflated 

with it in present and past simple tenses. The role 

of the Finite is to make the clause finite by an-

choring it into the here and now, so to speak, 

bringing the clause into the context of the speech 

event. This is done either by reference to the time 
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of speaking via tense or by reference to the 

judgment of the speaker via modality.  

The Subject is the nominal group or a nominal 

clause that precedes the Predicator in a clause 

and it is something by reference to which the 

proposition can be affirmed or denied. It is con-

sidered to be “modally responsible” for the valid-

ity of what is being predicated (stated, com-

manded, questioned or offered) in the clause. 

Note that the predication is not interpreted as an 

experiential relation but as an interpersonal rela-

tion. Hence there is no interpretation in terms of 

truth values of a clause (because for e.g. offers, 

and commands cannot be attributed truth values). 

The Predicator is the part of verbal group mi-

nus the finite constituent when they are not con-

flated. It specifies additional temporal and aspec-

tual relations, voice and the process type (e.g. 

action, relation, mental process etc.) that is pred-

icated about the Sub-

ject. It can contain one 

or more Main Verbs. 

The Main Verb is a 

non-auxiliary and non-

modal verb at the end 

of the verbal group. If 

there is more than one 

Main Verb we say that 

it is a complex clause. 

To enforce the syntac-

tic and functional 

analysis proposed in 

the Cardiff analysis 

methodology (Fawcett, 

2008), the complex 

clauses need to be sep-

arated into individual 

clauses so that each 

comply with the “one 

main verb per clause” principle. Sentence divi-

sion into clauses is explained in Section 2.5.  

The Complement is a part of the clause that 

follows the Predicator and has the potential of 

becoming a Subject, i.e. it can become an axis of 

the argument. Usually it is a nominal group and 

rarely a prepositional phrase. For example in 

passive clauses the agent easily loses the preposi-

tion “by” to become Subject.  

Complements correspond to “objects” in tradi-

tional grammars. 

The Adjuncts are the last type of clause con-

stituent. They do not have the potential of be-

coming a Subject; therefore arguments cannot be 

constructed around adjunct elements. They are 

realized by adverbial, nominal and prepositional 

groups. 

The system of MOOD used in this paper 

(Figure 1) is a simplified version of Sydney 

Figure 1 simplified MOOD system of Sydney Grammar 

Figure 2 TRANSITIVITY system of Cardiff Grammar 
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Grammar mood. It focuses four features
3
: mood 

type, voice type, clause polarity, and mod-

al/temporal deixis. These are clause-level fea-

tures which are determined either by: (1) constit-

uent presence, (2) constituent order, or (3) lexical 

items within a constituent. In section 4.3 is ex-

plained how to generate the mood structure and 

its features from the dependency graph.  

2.2 Transitivity constituency and TRANSI-

TIVITY systemic network 

TRANSITIVITY (Figure 2) defines the process 

types, participant roles that correspond to each 

process type and circumstances that can occur in 

the language (English in this case). These are 

functional units of a configuration whose syntac-

tic counterpart is the clause. 

The Process is the central element of a con-

figuration. Each process type (classification in 

Figure 2) provides its own model or schema for 

construing a particular domain of experience by 

defining a configuration of participant roles for 

that particular process type. The Process is filled 

by Finite and Predicator constituents but the 

Main Verb dictates systemic selection of the 

Process Type.  

  Participants are filled by Subject and Com-

plement constituents and their roles are selected 

by the configuration schema. A configuration 

can have from one to three Participants just as a 

clause has a Subject up to two Complements. 

The vast majority of Processes require two Par-

ticipants whereas only a small number of pro-

cesses ask for one or three Participants. 

The last unit type in a configuration is the cir-

cumstance. It introduces additional information 

about the configuration such as time, space, 

cause, manner, etc. Circumstances are filled by 

Adjunct constituents and are optional units in a 

configuration. The clause is syntactically valid if 

adjuncts are removed whereas if a Subject, Pred-

icate or Complement is missing the clause 

changes its meaning or becomes syntactically 

invalid. The same holds for a configuration; if a 

participant or process is removed then it becomes 

another configuration or invalid.  

One might argue that in “John behaved well”, 

if we remove or substitute the adjunct “well”, 

then the meaning of the entire clause is modified. 

The Manner is treated as circumstance in Sydney 

Grammar but in Cardiff grammar, it has been 

given a participant role. Since we are bond to the 

                                                 
3
 Feature values are further determined by their own 

sub-systems.  

latter, syntactically manner is still an adjunct but 

semantically it becomes a participant role. 

Due to space limitation, the detailed process 

type, participant role or circumstances classifica-

tion are not covered further in the current paper. 

They are treated with great detail by Halliday 

and Matthiessen (2004), Neale (2002) and Faw-

cett (2009).  

Seldom, a clause can be interpreted as corre-

sponding to more than one configuration type 

which implies different participant role and pro-

cess type selections. This principle, enounced by 

Halliday, is called systemic indeterminacy 

(Halliday & Matthiessen, 2004, p. 173) and ap-

plies to all systems but especially to TRANSI-

TIVITY.  

2.3 The Process Type Database  

The Process Type Database (Neale, 2002) is the 

key resource in the automatisation of transitivity 

analysis because the selection of the process type 

during transitivity analysis is a semantically 

driven operation. PTDB provides information on 

what possible process types and participants can 

correspond to a particular verb.  

The PTDB is a dictionary-like dataset of verb 

lexical items, each of them, bound to an exhaus-

tive list of verb senses and the corresponding 

Process Configuration for each sense. It is the 

result of Neale’s work (2002) on improving the 

TRANSITIVITY system of the Cardiff Gram-

mar. She systematizes according to the Cardiff 

Grammar over 5400 senses (and process configu-

rations) for over 2750 verbs. A small example is 

presented in Table 2. Each verb sense has its own 

Process Configuration and can coincide or differ 

from the Process Configurations of other verb 

senses. 

verb form informal meaning  configuration 

calculate work out by mathematics 

(commission will then 

calculate the number of 

casted votes) 

cognition:  

Ag-Cog + Ph 

 plan (newspaper articles 

were calculated to sway 

reader's opinions) 

two role action:  

Ag + Cre 

catch run after and seize (a 

leopard unable to catch its 

normal prey) 

possessive:  

Ag-Ca + Af-Pos 

 (did you catch a cold?) possessive: 

 Af-Ca + Pos 

catch (up 

with) 

reach (Simon tried to 

catch up with others) 

two role action: 

 Ag + Ra 

Table 2  sample PTDB entries (simplified) 
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2.4 The interplay between mood and transi-

tivity – the case of prepositional groups 

There are cases in mood analysis when deciding 

the unit type is impossible by relying solely on 

syntactic analysis (including typed dependency 

analysis). Prominent cases are the prepositional 

phrases. These can fill both a Complement and 

an Adjunct role. For mood analysis this implies 

that the same syntactic unit can fill a Comple-

ment and an Adjunct, while for transitivity anal-

ysis, it implies that the same syntactic unit can 

fill a Participant or a Circumstance.  
(1) John goes home through London. 

(2) John is building a house for Bob. 

(3) her teardrop shines like a diamond. 

(4) John is building a house for ten years now. 

(5) John goes to London by fast train. 

In examples (1) and (2) the prepositional phrases 

“through London”
4
 and “for Bob” are Comple-

ments and Participants (Path and Beneficiary 

roles) while in examples (3), (4) and (5), “like a 

diamond”, “for ten years now” and “by fast 

train” are Adjuncts and Circumstances (of com-

parison, temporal duration and manner-means). 

prep role5 Sydney grammar Cardiff grammar 

by Ag material: actor; 

mental: phenome-

non; 

relational: token 

action: actor;  

mental (emotive): 

phenomenon; 

relational: token 

to Ben material: recipi-

ent;  

verbal: receiver 

action: client / re-

ceiver6 

to Dest material: location 

/ place 

action: destination 

for Ben material: client action: receiver 

as Attr relational: attrib-

ute 

relational (attribu-

tive): attribute 

on, in Ra material: scope; 

verbal: verbiage; 

material: loca-

tional / place 

action: range / desti-

nation 

Table 3  Prepositions introducing participants 

To solve this problem of undetermined role allo-

cation there are two complementary solutions. 

The first one is to mark the every prepositional 

phrase as Complement and as Adjunct. This just 

                                                 
4 In Sydney Grammar it is a circumstance for a material 

process. However, in Cardiff Grammar for Directional and 

Locative Processes some circumstances are treated as par-

ticipants therefore they are Complements (Fawcett, 2009). 
5 General functions defined in Sydney Grammar: 

Ag(Agent), Ben(Beneficiary), Dest(Destination), 

Attr(Attribute), Ra(Range), etc.  
6 Beneficiary and Client are not directly specified in Cardiff 

system. This role is identified as Destination in two and 

three role actions. The test distinguishing between benefi-

ciary and destination is checking whether the participant is 

animate or non-animate. 

postpones the decision of selecting the right unit 

type, however.  

The second solution is to decide based on the 

preposition and potential process type as speci-

fied in the PTDB. Most of prepositions introduce 

only circumstances and only a few prepositions 

can introduce participants as well. And when 

they do, it is for only specific process types. Ta-

ble 3 we present prepositions known to introduce 

participants for process types. This table is an 

extension of the one from (Halliday & 

Matthiessen, 2004, p. 278) and contains transla-

tions to Cardiff Grammar counterparts. 

2.5 Sentence partition into clauses 

Dependency Graphs (will be introduced in Sec-

tion 4.2) are graphs of a whole sentence whereas 

transitivity analysis is at individual clause-level. 

This implies that DG need to be split into indi-

vidual clauses before transitivity analysis. We 

propose to detect and delimit clauses during the 

mood analysis. For some commonly occurring 

situations we propose treatments aligned with 

Fawcett’s (2008, 2009) methodology as follows. 

When the clauses are connected by a conjunc-

tion and have their own subject/objects then the 

conjunction is the clause border marker.  
(6) The lion chased the tourist but she escaped alive.  

(6a) The lion[Ag-Ca] chased[Pr] the tourist[Af-Pos] 

(6b) she[Ag] escaped[Pr] alive[Ra] 

When the predicators are conjoined and share 

subject and/or objects then each predicator will 

form a new clause and borrow the subject/objects 

from the other clause.  
(7) The lion chased and caught the tourist. 

(7a) the lion[Ag-Ca] chased[Pr] the tourist[Af-Pos] 

(7b) the lion[Ag-Ca] caught[Pr] the tourist[Af-Pos] 

In the case of mental, influential and event re-

lating processes (classification in Figure 2) the 

predicates are often complex. Verbs in these 

classes are known as control and raising verbs 

(Haegeman, 1991) where a superordinate con-

trols subordinate non-finite verb and binds its 

participants (Subject/Complement).  

In order to comply with “one main verb per 

clause” principle, each Main Verb of the com-

plex clause becomes a governor of a distinct 

clause. The subordinate verb with all of its de-

pendent nodes is assigned to a placeholder. The 

superordinate verb receives the placeholder as 

Complement with the role of Phenomena. If the 

subject is missing in the subordinate clause then 

it is copied from the superordinate one.  
(8) The lion wanted/began to chase the tourist. 

(8a) the lion[Cog] wanted/began[Pr] X[Phen] 
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(8b) X= the lion[Ag-Ca] to chase[Pr] the tourist[Af-

Pos] 

The meaning of complex clause decomposi-

tion can be expressed with an equivalent rephras-

ing by inserting “something that is” between the 

Main Verbs, as in example (9).  

(9) The lion wanted/began something that is to chase 

the tourist. 

3 Literature review 

Most of the parsing attempts in SFL dealt with 

the Nigel grammar (Matthiessen, 1985), which is 

a large and complex natural language generation 

(NLG) grammar. One of the early attempts was 

done by Kasper (1988). He recompiles
7
 the Nigel 

grammar as feature structures employing Func-

tional Unification Grammar (FUG) (Martin Kay, 

1985) which is a well-established and a formally 

understood representation. Kasper used phrase-

structure trees which served as backbones to 

which were mapped systemic feature choices.  

O’Donnell use a different approach to recom-

piling the Nigel grammar which allowed him to 

parse text directly without appeal to the phrase-

structure backbone that Kasper had required 

(O’Donnell, 1993, 1994). However he could not 

parse with the entire Nigel grammar because of 

the sheer size of the grammar and its inherent 

complexity introduced by multiple parallel clas-

sifications (Bateman, 2008). O’Donnell 

(O’Donnell, 2005) subsequently, in UAM Parser, 

decided, for pragmatic reasons, to return to a 

syntactic backbone and restrict the grammar so 

that functionally only the Mood structure of 

clauses is accounted for.  

In a very different style of approach, Honnibal 

and Curran (2005) constructed a parser to con-

vert Penn Treebank into a corresponding 

SFGBank. This managed to provide a good con-

version from parse trees into systemic functional 

representation covering sentence mood and the-

matic constituency (the third kind of analysis in 

SFL which has been mentioned in Section 2). 

Transitivity was not been covered because of its 

inherently semantic nature.  

More recently, O’Donnell (2012) in UAM 

Corpus Tool, created a parser that uses Stanford 

Parser(Klein & Manning, 2003) output as a 

backbone, which then is transformed into mood 

parse and then further derives the Sydney 

                                                 
7 Recompilation is employed to adopt a resource for appli-

cation needs. Nigel grammar was initially created for NL 

generation. That grammar structure is not applicable for the 

parsing task. 

Grammar transitivity parse. He uses a mood 

backbone and enriches this with semantic fea-

tures that are derived based on lexical choices 

and structural patterns. 

Our approach is aligned with Honnibal’s and 

O’Donnell’s work with respect to using mood 

constituency as a backbone and enriching it with 

syntactic and semantic features. When approach-

ing transitivity, O’Donnell provides the possible 

process types that a verb can have by employing 

a large lexicon where each word has syntactic 

and semantic features. The approach described 

here differs both in terms of the lexical resource 

and parsing method used. We employ PTDB, 

which provides entire configurations (frames) for 

each verb sense and the parsing method is a 

graph-based pattern matching. 

4 The parsing method 

In this section implementations are proposed and 

their capacities described, as well as methods 

that perform mood and transitivity parsing. The 

Stanford Dependency Schema proposed in 

(Marneffe et al., 2006) and re-motivated in 

(Marneffe & Manning, 2008) constitutes the de-

parting point of our current approach in building 

a  Mood Constituency Graph (MCG). MCG is 

the structure reflecting mood analysis and serves 

as the backbone for performing transitivity anal-

ysis via Graph Matching operations. Our method 

involves three types of graph structures: (1) De-

pendency Graphs, (2) Mood Constituency 

Graphs and (3) Pattern Graphs. We now intro-

duce the specifics of a generic graph structure 

and the operations that these graphs support and 

then we present the parsing algorithms.  

4.1 The graphs and operations over them  

Graphs are defined as usual as a data structure 

consisting of a finite set of directed edges con-

necting node entities. The nodes, however, are 

not atomic data but Feature Structures 

(Carpenter, 1992), whereas the edges are triples 

(x,y,f) where x and y are nodes being connected 

and f is the feature structure of the edge. A ge-

neric feature structure (FS) is a set of attribute-

value pairs where the value can be of an atomic 

or a complex data-type such as list, dictionary or 

feature structure. 

The literature on mood and transitivity analy-

sis specifies a range of methods for detecting and 

selecting a particular feature (Fawcett, 2008, 

2009; Halliday & Matthiessen, 2004). In order to 

support those methodological specifications the 
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graphs need to allow a number of operations: (1) 

querying over nodes and edges, (2) graph match-

ing, (3) pattern matching and (4) pattern-based 

node extraction.  

Querying over the node or edge FS return 

nodes or edges that comply with the constraints 

of the query. For example one can ask for all 

nodes that contain an “NP” part of speech or all 

node pairs connected by “det” relation. 

Graph matching enables answering questions 

of whether a graph is identical to a sub-graph of 

the second one. This is the graph isomorphism 

problem, and is known to be NP-complete. How-

ever, the available algorithm (Cordella, Foggia, 

Sansone, & Vento, 2004) nevertheless performs 

this task very quickly when the graphs addressed 

are of limited size. In our case the graphs are of 

(English) sentences composed in average of 15-

20 words. This lies well within the limits of prac-

tical computability. 

An extension of graph matching is the pattern 

matching operation. A graph pattern (GP) is a 

graph whose feature structures can either be un-

der or over specified. In the case of underspeci-

fied FS, the attributes and/or their values can be 

omitted down to an empty feature structure. In 

the case of over specified FS, the values are a list 

of possible values for an attribute. 

For example, Figure 3 depicts a GP for detect-

ing present perfect continuous tense. The slash 

(“/”) symbol stands for part of speech attribute, 

“at” (“@”) stands for the lexeme attribute while 

square brackets (“[,]”) indicate a list of values 

that are accepted for a match. Note that this pat-

tern is underspecified for most attribute-value 

pairs and over specified for one edge indicating 

two acceptable edge types (“[aux, auxpass]”) 

and for one node POS (“[vbz, vbp]”). 

 
Figure 3 sample GP 

The last operation is pattern-based node extrac-

tion. The purpose of the operation is returning 

nodes that have been marked in GP for extraction 

in the case of GP match. The matched nodes are 

returned together with the values of extraction 

markers in GP. An extraction marker is simply 

another attribute-value pair in the node’s FS. 

This gives the possibility to assign new function-

al-semantic features to nodes, such as participant 

roles during transitivity parsing. 

 
Figure 4  sample GP with marked nodes 

For example, Figure 4 represents a GP used for 

transitivity analysis, where the dollar sign (“$”) 

notation stands for an extraction marker. This 

means that whenever a verb is encountered that 

has a noun subject (“nsubj”) and a direct object 

(“dobj”), then the subject node can receive agent, 

carrier or agent-carrier roles (“[Ag,Ca,Ag-Ca]”), 

while the object node can be attributed with af-

fected, possessed or affected-possessed roles 

(“[Af,Pos,Af-Pos]”). 

4.2 The sentence dependency graph 

Stanford Dependency Parser (Marneffe et al., 

2006) generates, for each sentence, a set of typed 

dependencies between the words and the follow-

ing information for each word token: word, lem-

ma, part of speech, named entity type (if applica-

ble) and word index in the sentence (for order 

preservation). This output can re-represented as a 

graph which we call Dependency Graph (DG). 

DG is instantiated from SDP output whose nodes 

and edge FSs are filled with corresponding in-

formation. 

4.3 Generating mood parse 

The mood constituency graph (MCG) is a di-

rected graph which partitions the sentence into 

constituents at various hierarchical levels. A con-

stituent has one corresponding MCG node. 

Therefore MCG node FS, among other attributes, 

contains the list of DG nodes which the constitu-

ent covers. The generation of MCG is executed 

in two phases: creation and enrichment. 

A. Creation of MCG is based on breadth-first 

traversal of DG. The edge type, at every step de-

cides what generative operation to execute on the 

MCG. The operation choices are: (1) create a 

new constituent (subject, predicator, finite, com-

plement or adjunct as described in section 2.1), 

(2) extend the current constituent by a new to-

ken, (3) create a subordinate clause constituent 

and (4) create a sibling constituent.  

Creation of a new constituent adds a new 

MCG node under the current one and fills it with 

the current DG node and all of its children. Ex-

tension of constituent means adding the current 

DG node to MCG node. This is a passive opera-
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tion since the current DG node was added al-

ready when the new constituent was created. 

Creation of the clause constituent is similar to the 

creation of a simple constituent, but additionally, 

one more clause constituent is added under the 

former one and they both span over the same DG 

nodes. Sibling constituent creation adds a new 

constituent under the parent of the current one. 

The current DG node and all its children are 

moved from the current MCG node to a newly 

created sibling.  

Table 4 rules for MCG creation 

The decision of what operation to execute is 

based on the DG edge type, and in a few cases, 

on edge type plus the word’s part of speech. De-

pendency types that require edge part of speech 

context are: “dep” and “conj”.  lists the rules 

binding (1) Stanford Dependency relations, (2) 

generative operation in MCG and (3) the con-

stituent type. The following algorithm outlines 

how the MCG is created. 
current_constit = create root node in mcg 

bfs traverse DG: 

 for each edge: 

  oper_type,conit_type = get_rule(edge,nodes) 

  new_constit = exec_oper(oper_type,         

                contit_type, current_constit) 

  current_constit = new_constit 

B. In the enrichment phase Finite and Predi-

cate components are added. Their creation re-

quires more than one edge information available 

during the DG traversal and therefore, for the 

simplicity and clearness of the algorithm, these 

components have been left out of the creation 

phase. Moreover, in the cases of complex predi-

cates the empty constituents need to be created 

according to subject/object control rules as de-

scribed in Section 2.5 in order to constitute full 

clauses.  

Finally, voice, polarity, mood type and modal 

deixis features are added to each clause. For each 

feature selection in the MOOD system (Section 

2.1) a corresponding graph pattern is provided. 

The algorithm attempted to match these graph 

patterns in the MCG in order to determine which 

feature to add to the MCG clause constituent. 

The following algorithm outlines the enrichment 

phase of the MCG: 

for each clause in MCG: 

 create finite and predicate constituents 

 create empty constituents 

 match voice patterns & add features 

 match polarity patterns & add features 

 match mood type patterns & add features 

 match modal deixis patterns & add features 

4.4 Generating transitivity parse 

MCG divides the sentence into clauses and their 

constituents and so it is an ideal structure to carry 

transitivity descriptions. Transitivity is a clause-

level analysis that decorates the constituents with 

semantic roles, i.e. the Predicate with Process 

Type, the Subject and Complements with Partic-

ipant Roles, the Adjuncts with Circumstances 

type (not covered here).  

Transitivity parsing is very similar to enrich-

ment phase of MCG generation. The following 

algorithm outlines how to enrich the MCG with 

transitivity descriptions: 
for each clause in MCG: 

  get process types (main verb) 

  for each process type: 

    get all configuration GPs 

    for each configuration GP: 

      if GP matches clause: 

        add process type to clause 

        extract marked nodes  

        add roles to clause constituents 

The graph patterns used in this task are called 

Configuration Graph Patterns (CGP). They rep-

resent the graph form of the clause configura-

tions as described by Fawcett (2009). Fawcett’s 

configurations are given in a “normalised” form. 

It resembles Chomsky’s kernel sentences which 

are of declarative mood type, active voice and 

unmarked positive polarity. This fixed functional 

feature set accompanying semantic descriptions 

dependency  

relation 

operation on mcg constituent type 

nsubj, nsubjpass, 

xsubj 

new constituent subject 

csubj, csubjpass new clause con-

stituent 

subject 

attr, dobj, acomp new constituent complement 

ccomp new clause con-

stituent 

complement 

agent new constituent complement 

agent 

iobj new constituent complement 

dative 

prep, prepc new clause con-

stituent 

complement or 

adjunct 

advcl new clause con-

stituent 

adjunct 

advmod, tmod new constituent adjunct 

infmod, purpcl, 

rcmod, ref, rel, 

parataxis 

new constituent clause 

expl, complm, 

mark 

new sibling con-

stituent 

Marker 

vb-dep-vb,  

vb-conj-vb,  

new constituent clause 

amod, appos, aux, 

auxpass, cc, det, 

mwe, neg, nn, 

npadvmod, num, 

number, pobj, 

poss, possessive, 

preconj, predet, 

prt, punct, quant-

mod, xcomp 

Extends current 

constituent 

--- 
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of a configuration yields a particular realisation 

form. Any alternative feature set yields a predict-

able alternative realisation that can be grasped by 

the corresponding Graph Patterns for the same 

configuration. For example, a variation in voice 

of a two-role configuration would require two 

CGPs differing by participant positions. CGP 

with a passive voice would have switched partic-

ipant roles between Subject and Complement 

constituents. So, every configuration may have 

several realization variations (as a result of con-

flation with other functions) and each configura-

tion, therefore, has several corresponding CGPs 

covering those realisation variations.  

In the Cardiff Grammar there are 16 distinct 

process types which cover 65 possible configura-

tions. The process type dictates which configura-

tions are allowed to occur and therefore the pro-

cess type dictates which set of CGP shall be at-

tempted for matching to clause DG. CGPs are 

grouped according to the process type and stored 

in a graph pattern repository. 

Transitivity parsing process employs pattern-

based node extraction. For each clause in MCG, 

process types are looked up in PTDB via Main 

Verb lexeme. Then, for each process type, all 

CGPs are matched against the clause MCG and 

in case of a successful match the marked nodes 

are extracted and enriched with semantic infor-

mation carried in CGP. The final result is a MCG 

with a richer feature structure containing func-

tional-semantic information specific for each 

clause constituent covered by the clause. 

5 Conclusions 

The present paper describes a graph-based ap-

proach to generate SFG mood and transitivity 

parses from the Stanford Dependency parse and 

Process Type Database. It is a computationally 

and linguistically viable text parsing approach 

for natural language understanding which en-

compasses framed semantic roles together with 

an adequate syntactic structure to support those 

semantic roles. 

The presented method relies on correctness of 

dependency parse produced by SDP and on cor-

rectness of entries from PTDB. This constitutes a 

weak point because errors in SDP or PTDB can 

lead to decreased overall correctness. In case of 

missing verb items or verb senses for that verb 

items the parser will fail to produce transitivity 

analysis. Or if the verb sense has a faulty config-

uration specification then it will lead to incorrect 

semantic labelling. In case of incorrect depend-

encies or dependency types the mood parsing is 

likely to be erroneous as well. We cannot tell yet 

to what extend these limitations influence the 

correctness of our approach and it constitutes a 

future work. 

A valuable investigation would be to check 

whether the Semantic Role Labelling with Car-

diff Grammar suffers from the same limitation as 

the approaches describe in CoNLL-2005 which 

records a dramatic drop in parse correctness 

when the test corpus differs from the training 

corpus.  

The semantic analysis provided by TRANSI-

TIVITY covers process and participants. Cur-

rently no circumstance type has been taken into 

account as it would require additional lexico-

grammatical resources.  

No wide coverage parser employing the full 

Sydney Grammar has yet eventuated. However, 

the demand for systemic-oriented sentence anal-

ysis is on rise. Another increasing demand is for 

semantic text analysis to further support natural 

language understanding process. Concurrently 

there is a pragmatic need to work with unrestrict-

ed text and within reasonably small time for of-

fline tasks like information extraction from large 

documents, and within significantly small time 

for online tasks like in the case of Dialogue Sys-

tems. The current method manages to satisfy 

demand for systemic sentence analysis via a 

trade-off between the richness of Sydney Gram-

mar and pragmatic needs regarding coverage and 

execution time. Even so, a wide coverage sys-

temic parser could have applications well beyond 

those traditionally explored with automatic se-

mantic and syntactic analysis and become of crit-

ical value for solving real-life problems.  
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