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Abstract 

Grammatical error correction has been an 
active research area in the field of Natural 
Language Processing. This paper describes the 
grammatical error correction system 
developed at NTHU in participation of the 
CoNLL-2013 Shared Task. The system 
consists of four modules in a pipeline to 
correct errors related to determiners, 
prepositions, verb forms and noun number. 
Although more types of errors are involved 
that than last year’s Shared Task, leading to 
more complicated problem this year, our 
system still obtain higher F-score as compared 
to last year. We received an overall F-measure 
score of 0.325, which put our system in second 
place among 17 systems evaluated. 

1 Introduction 

Grammatical error correction is a task involving 
automatically detecting and correcting 
grammatical errors and improper choices. 
Grammatical error correction in writing of 
English as a second language (L2) or foreign 
language (EFL) is an important issue, for there 
are 375 million L2 speakers and 750 million EFL 
speakers around the world (Graddol, 2006). Most 
of these non-native speakers tend to make many 
kinds of error in their writing. An error 
correction system has the short-term benefit of 
helping writers improve the quality of writing. In 
the long run, non-native writers might learn from 
the corrections and thus gradually gain better 
command of grammar and word choice. 

The HOO shared task of 2012 is aimed at 
detecting and correcting misuse of determiners 
and prepositions, two types of errors accounting 

for only 38% of all errors. Therefore, there are a 
lot more errors related to other parts of speech 
that we have to address in this year’s shared task. 
In this paper, we describe the system submission 
from NTHU. The system reads and processes a 
given sentence through a pipeline of four distinct 
modules dealing with determiners, prepositions, 
verb forms and noun plurality. The output of one 
module feeds into the next module as input. The 
system finally produces possibly corrected 
sentences. 

The rest of the article is organized as follows. 
Section 2 describes detection and correction 
approach of each module in detail. Section 3 
describes experiment setting and results. Then in 
Section 4, we discuss strengths and limitations of 
the proposed system and directions of future 
work. We conclude in Section 5. 

 

2 System Description 

The system is designed to read a sentence and 
process each type of errors in terms and finally 
produce a corrected sentence. In Section 2.1, we 
give an overview of the system. Then, in 
Sections 2.2-2.5, we describe how to correct 
errors related to noun number, determiner, verb 
tense, and preposition.  

 

 
 

Figure 1. System Architecture 
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Table 1. Moving windows of ‘location’ 

Moving 
Window 

n-grams 

MW5 track based on the location 
based on the location of  
on the location of cell 
the location of cell phone 
location of cell phone by 

MW4 based on the location 
on the location of 
the location of cell 
location of cell phone 

MW3 on the location 
the location of 
location of cell 

MW2 the location 
location of 

2.1 Overview 

In this section, we give an overview of our 
system. Figure 1 shows the architecture of the 
error correction system. In this study, we focus 
on five different grammatical error types, 
including the improper usage of Determiner 
(ArtOrDet), Noun Number (Nn), Verb-Tenses 
(Vform), Subject-Verb Agreement (SVA), and 
Preposition (Prep).  In order to deal with these 
different types of errors systematically, we 
propose a back-off model based on the moving 
window approach. 
 
Moving Window 
 
A moving window MW of certain word wi is 
defined as below. (Leacock et al., 2010; 
Rozovskaya et al., 2010) 
 
 𝑀𝑊!,!(𝑤) = {𝑤!!! ,… ,𝑤!!!! !!!   , 𝑗 = 0, 𝑘 − 1  }  (1) 
 
where i denotes the position of word, k the 
window size, and w the original or replacement 
word at position i. In our approach, the window 
size is set to 2 to 5 words.  

For example, consider the target word 
“location” in the sentence, “Children can easily 
be track based on the location of cell phone by 
parents.” The n-grams in moving windows of 
related to “location” of sizes 2 to 5 are shown in 
Table 1. 
 
Back-off Model 
To determine whether the target word needs to 
be changed to a different form (e.g, from 
“location” to “locations”), we first replace the 
target word with its variant forms (e.g., 
‘locations’ for ‘location’) in all MW n-grams and 

Table 2. Trigram information of ‘location’ and 
‘locations’ in back-off model 

MW3 n-gram Freq. S3 
location on the location 

the location of 
location of cell 

304,400 
3,794,400 

1,400 

4 M 

locations on the locations 
the locations of 
locations of cell 

18,200 
374,000 

200 

0.04 M 

 
then measure the ratio of the counts of the 
original and replaced n-grams in a corpus. The 
frequency counts are obtained by querying a 
linguistic search engine Linggle (Joanne Boisson 
et al. 2013), a web-scale linguistic search engine 
based on Google Web1T (Brants and Franz, 
2006). The sum of n-gram counts, Sk with  the 
word w (original or replacement) in the ith 
position is defined as  
 
     𝑆!,!(𝑤)   =    𝑐𝑜𝑢𝑛𝑡(𝑛𝑔𝑟𝑎𝑚)!"#$%  ∈  !"!(!)      (2) 
 
With MW and S, we design a Replace function 
to determine whether is necessary to replace wi 

with its variant form, w' : 
 

Figure 2. The function Replace for determining whether 
to replace a word in location i using moving windows of 
size k. 

 
The parameters λ and ε in Replace are set 
empirically.  

For instance, in the given sentence “Children 
can easily be track based on the location of cell 
phone by parents”, the target word wi is 
‘location’ and the candidate is ‘locations’ for the 
Nn type error. According to Equation 2, the sums 
S9,3(“location”) of the original trigrams is about 4 
million, whereas S9,3(“locations”) of the replaced 
trigrams is only 0.4 million (see Table 2 for more 
details). The value of r is 0.096, and depending 
on the threshold, Replace either returns False 
or back off to consider again the ratio r of 
S9,2(“location”) of the original bigrams and 
S9,2(“locations”) of the replacement bigrams for 
confidence in replacing the word “location.”  

function Replace(i, k, w’) 
r = Si,k(w’)/Si,k(wi) 
if r > λ 

return True 
else if k > 2 and r > ε: 

return Replace (i, k-1, w’) 
else: 

return False 
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2.2 The number module 

The number module is designed to correct error 
related to noun number (i.e., Nn). Two types of 
error are included, errors of singular noun and 
plural noun. 

To correct errors, we identify heads of base 
noun phrase (i.e., NP consisting of maximal 
contiguous sequence of tokens without 
containing another noun phrase or clause) in the 
given sentence by using part-of-speech tags and 
GeniaTagger (Tsuruoka et al., 2006), then use 
the Replace function to replace the original 
nouns (either singular or plural) to a different 
form (i.e., singular to plural, or plural to 
singular). We use two methods in the number 
module: combining voting with back-off, and 
using dependency relations.  

 
Combining voting with back-off  
 
Each n-gram in a moving window of various 
sizes described in Section 2.1 gets to cast a vote. 
When the sum of frequency counts related to the 
original noun is higher than that related to the 
replacement noun, the original noun gets one 
vote and vise versa. Voting method determines 
whether to replace the noun based on majority of 
the votes. For example, all of the 14 replacement 
n-grams (MWi, k , k = 2, 5) in Table 1 get a vote, 
because the n-gram with “location” has higher 
frequency count that the same n-gram replaced 
with “locations”. Intuitively, we should be 
confident enough to decide to stay with the 
original noun, i.e., ‘location.’ 

Back-off model described in Section 2.1 make 
a decision to permit the Replace module to 
change the original noun depend on threshold 𝜆. 
Both of voting and back-off model need to show 
that alternative noun number is better. For the 
scheme of voting and back-off model, we also 
require the top count ratio and absolute count of 
0.95 and 60,000 based on empirical evidence. 

 
Using dependency relations 
 
In some cases, the noun number depends on 
subject-verb agreement. We use part-of-speech 
information of subject and governing verb 
obtained from a tagger to handle such cases. For 
that, we use 3rd person singular present (i.e., 
VBZ) and other verb forms (e.g., VBP) to detect 
noun number mistakes.  

Consider the sentence, “In the society today, 
there are many ideas or concept that are 

currently in the stages of research and 
development.”, where “concept” is a singular 
noun, but should be plural according to syntactic 
dependency information. The dependency parser 
typically produces nsubj(are-7, concept-11) 
among other relations and the word “are” is 
tagged as VBP. Accordingly, we can replace the 
original noun, ‘concept’ to its plural form, 
‘concepts.’ 

 
2.3 Determiners module 

 
The determiner is aimed at correcting determiner 
errors (i.e., errors annotated as ArtOrDet ). Given 
a sentence, we first identify the base noun 
phrases and their determiners (or lack of 
determiner) and using the moving window 
approach to decide whether there is an error and 
which alternative form to use. For determiner 
errors, the variant form of a base NP with a 
determiner is simple the same NP with 
determiner removed, while the variant form of a 
base NP without a determiner is simple the same 
NP with a determiner added. 

In addition to the moving window and back-
off model, we also use dependency relations to 
check if a determiner is required for a base noun 
phrase. 

 
Frequency of n-grams 
 
We adopt the moving window approach and 
combine it with the back-off model mentioned in 
Section 2.1 with slight modification for the cases 
specific to determiner errors. When the head of 
given Base-NP is the last word of the n-gram, (as 
in “Prepare meals for the elderly is my duty.”), 
the head can often be used as an modifier (as in 
“for elderly people” leading to higher counts 
unrelated to the our case of the word being used 
as the head.   

Therefore, while we adopting the moving 
window approach, the count of such n-gram is 
not counted. We set the threshold in the 
Replace function empirically: λ=5 and ε=0.35. 
 
 
Dependency 
 
In some cases, the frequency information of n-
grams provides limited evidence for identifying 
mistakes. Therefore, we use more effective rules 
based on dependency relations to recognize the 
determiner errors in a way similar to the number 
module. 
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Table 3. Verb form n-grams with PMIs. 

Verb Form n-grams PMI Sum 

happening crash happening 
happening at 

21.5 
38.2 

59.7 

happen crash happen 
happen at 

24.0 
35.7 

59.7 

happened crash happened 
happened at 
air crash happened 
happened at Miami 
crash happened at 

30.5 
43.0 
36.2 
31.8 
43.2 

184.7 

happens crash happens 
happens at 
crash happens at 

27.9 
42.4 
37.0 

107.3 

 
We remove a determiner from a noun phrase 

with a plural head and an existing determiner. 
Otherwise, this module adds an appropriate 
determiner before the current noun phrase. For a 
conjunction (i.e., X and/or Y) of two base NPs, 
the rules favor adding a determiner such that 
both NPs have the same kind of determiner. 

2.4 The verb-tense module 

In this section, we mainly concentrate on 
providing more proper verb tenses. Besides 
moving window, we introduce accumulated 
point-wise mutual information (PMI) (Church 
and Hanks, 1990) to improve the performance of 
this module. Applying PMI to this topic is based 
on the hypothesis that an appropriate verb form 
has a higher PMI measure with the context. 

To achieve more flexibility than the standard 
PMI, we use the modified PMI, which is an 
extension of standard PMI allowing an n-gram s 
of arbitrary length as input 

 
 𝑃𝑀𝐼(𝑠) = log !(!|!)

!(!!)!
!!!

                              (3) 

where wi denotes the i-th word in s, k = | s |, and 
P(wi) the probability of wi estimated using a very 
large corpus. P(s|k) is the probability based on 
maximal likelihood estimation:  

 𝑃(𝑠|𝑘) = !"#$%(!)
!"#$%(!)!∈!

                              (4) 

 
where S denotes all n-grams of length k. The 
PMI value of n-grams related to the original and 
alternative tense forms of a give verb are then 
calculated to attempt to correct the verb in 
question with a decision in favor of highest PMI. 

Table 4. Sample search results of “being ?$PP a 
dangerous situation” * 

N-gram Count 

being in a dangerous situation 161 
being a dangerous situation 0 
being at a dangerous situation 0 
being on a dangerous situation 0 
… 0 
being about a dangerous situation 0 

* Note:? denotes option word and $PP denotes wildcard prepositions 

 
With this extended notion of PMI, we 

proceed as follows. First, we select each verb in 
a sentence and extract n-grams in moving 
window method as described in Section 2.2. 
Next, we generate more alternative n-grams by 
substituting all the related verb forms for the 
selected verb. After that, for all these n-grams, 
we calculate PMIs and accumulate the measures 
for each group of verb forms. Finally, if the 
accumulated PMI of the original verb is lower 
than the mean value of PMI of all verb forms, the 
verb in question will be replaced with the verb 
form associated the highest PMI value. 

Consider the sentence, “In late nineteenth 
century, there was a severe air crash happening 
at Miami international airport.” We attempt to 
correct the verbs “was” and “happening” in the 
sentence. Table 3 shows n-grams and 
corresponding PMIs of each verb form. The 
accumulated PMI of “happened” has the 
maximum value. So, the module changes 
“happening” to “happened.”  

2.5 The prepositions module 

For preposition, we attempt to handle the two 
types of error: DELETE and REPLACE, and 
leave the INSERT errors for future work. For 
DELETE errors, the preposition in question 
should be deleted from the given sentence, 
whereas for REPLACE errors the preposition 
should be replaced with a more appropriate 
alternative. The third error type of preposition, 
INSERT, is left for future study. The proposed 
solution is based on the hypothesis that the usage 
of preposition often depends on the collocation 
relation of verb or noun. Therefore, we propose a 
back-off model, which utilizes the dependency 
relations to identify the related words of the 
preposition in question. 

We proceed as follows: For a target 
preposition in a given sentence, we extract the n-
gram containing the preposition, its prepositional 
object, and the content word before the 
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preposition. For example, the n-gram “being in a 
dangerous situation” is extracted from the 
sentence “This can protect the students from 
being in a dangerous situation in particularly for 
the small children who are studying in nursery.” 
The n-gram “being in a dangerous situation” is 
then transformed into a query for a linguistic 
search engine (e.g., Linggle as described in 
Joanne et al. 2013) to obtain the counts of all 
preposition variant forms, including NULL (for 
DELETE) or other prepositions (for REPLACE). 

The transformation process is very simple 
involving changing the proposition to a wild part 
of speech symbol. For example, “being in a 
dangerous situation” is transformed to “being 
?$PP a dangerous situation.” The sample search 
results are shown in Table 4. From the results, 
we could confirm that the preposition “in” is 
used correctly.  

Although we use the web-scale n-gram for 
validation of usage of preposition, however, data 
sparseness still poses a problem. Furthermore, 
we cannot obtain information for n-grams with 
length more than 5, since the Web 1T we used 
only contains 1 to 5-grams. In order to cope with 
the data sparseness problem, we transform a 
query into a more general form, if no result could 
be obtained in the first round of search. To 
generalize the query, we remove the modifiers of 
the prepositional object one after another. 
Additionally, we also attempt to change the 
modifiers with the most frequent modifier of the 
object. Consider the n-gram “in modern digit 
world.” The generalized n-grams “in digit world” 
and “in new world” will then be transformed into 
queries in turns until the results are sufficient for 
the model to make a decision. To avoid false 
alarm, empirically determined thresholds are 
used to measure the ratio of count of a 
preposition variant form to the original 
preposition. 

3 Experiment 

To assess the effectiveness of the proposed 
method, we used the official training and testing 
data of CoNLL-2013 Shared Task. We also 
exploited several tools including Linggle, 
Stanford Parser and Geniatagger in the proposed 
system. 

Linggle supports flexible linguistic queries 
with wild part of speech and returns matching n-
grams counts in Google Web 1T 5gram. Stanford 
Parser and Geniatagger produce syntactical 
information including dependency relations, 

part-of-speech tags, and phrase boundary. The 
evaluation scorer, which computes precision, 
recall, and F-score, is provided by National 
University of Singapore, the organizer of 
CoNLL-2013 Shared Task. 

On the test data, our system obtained the 
precision, recall and F-score of .3057, 0.346, and 
.3246, which put us in first place in term of recall 
and second place in term of F-score. 

4 Discussion 

In this section, we discuss the strengths and 
limitations of our system and propose approaches 
to overcome current limitations. 

The module of noun numbers, moving 
window and syntactic dependency for correcting 
errors cannot handle well some ambiguous cases. 
For example, in this case "In conclusion, what I 
have mentioned above, we have to agree, 
tracking system has many benefits….", according 
to the gold-standard annotations, ‘system has’ is 
corrected to ‘systems have’.  

However, this module keep the original word 
because of the 3rd person singular present verb, 
‘has’. Before ‘has’ being corrected to ‘have’, 
there was no sufficient evidence to support that 
‘systems’ is a good replacement. In cases like 
this, it is often difficult to suggest a correction 
using only the sentential context and n-gram 
frequency and dependency relations. To correct 
such an error, we may need to consider the 
context of the discourse or combine the module 
of different error types such as noun numbers 
and verb tense, which is beyond the scope of the 
current system. 

We handle the determiner errors with 
threshold 𝜆  and 𝜀  empirically derived, but it 
would be more effective if we could use some 
form of minimal error rate tuning (MERT) to set 
the parameters. Besides, we found that applying 
the dependency criteria and moving window 
method in parallel leads to high recall but low 
precision. However, the moving window method 
often fails because of insufficient evidence. In 
such case, the system can perform better in both 
precision and recall by favoring the dependency 
model output. 

For our system, the performance of correcting 
verb form errors is severely limited by the 
lengths of n-gram. The failure related to verb 
forms correction are mostly caused by the 
limitation of n-gram length of Web 1T. There is 
a large portion of sentences where the subject (or 
the adverbs) and the verb are so far apart, that 
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they are not within windows of five words. So, it 
is difficult to use the noun number of the subject 
to select the correct verb form. 

Another major area of limitations of handling 
verb form errors has to do with rare words which 
lead to unseen n-grams even in a very large 
dataset like Web 1T. These rare words are 
mostly name entities that have insufficient 
coverage when combined other words in n-
grams. Intuitively, we can generalize the n-gram 
matching process as in the case of handling 
preposition errors. 

In this study, we use the preposition and object 
relation (POBJ) to determine whether the use of 
the preposition is correct. The relation is useful 
for generalizing the queries and in correcting 
preposition errors. However, many preposition 
errors are unrelated to POBJ. For example, in the 
sentence “Surveillance technology will help to 
prevent the family to loss their member...”, the 
two words “to loss” should be replace with “from 
losing.” Unfortunately, the current system cannot 
correct such an error in the absence of POBJ 
relation. In order to correct this kind of error, we 
have to consider composed relations such as 
noun-preposition-verb, which is crucial to the 
capability of correcting such multiple 
consecutive errors (i.e., preposition plus verb). 

5 Conclusion 

In this paper, we build four modules in 
determiner, noun number, verb form, and 
preposition for error detection and correction. 
For different types of errors, we have developed 
modules independently in accordance with their 
features. The constructed modules rely on both 
moving windows and back-off model to improve 
grammatical error correction. Additionally, for 
verb form errors, we introduce point-wise mutual 
information for higher precision and recall.  

We plan to integrate all the modules in a more 
flexible way than the current pipeline scheme. 
Yet another direction for future research is to 
consider the discourse context. 
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