
Proceedings of the Seventeenth Conference on Computational Natural Language Learning: Shared Task, pages 20–25,
Sofia, Bulgaria, August 8-9 2013. c©2013 Association for Computational Linguistics

CoNLL-2013 Shared Task: Grammatical Error Correction
NTHU System Description

Ting-Hui Kao+, Yu-Wei Chang*, Hsun-Wen Chiu*, Tzu-Hsi Yen+,

Joanne Boisson*, Jian-Cheng Wu+, Jason S. Chang+

* Institute of Information Systems and Applications
+ Department of Computer Science

National Tsing Hua University

HsinChu, Taiwan, R.O.C. 30013
{ maxis1718, teer1990, chiuhsunwen, joseph.yen,

Joanne.boisson, wujc86, jason.jschang} @gmail.com

Abstract

Grammatical error correction has been an
active research area in the field of Natural
Language Processing. This paper describes the
grammatical error correction system
developed at NTHU in participation of the
CoNLL-2013 Shared Task. The system
consists of four modules in a pipeline to
correct errors related to determiners,
prepositions, verb forms and noun number.
Although more types of errors are involved
that than last year’s Shared Task, leading to
more complicated problem this year, our
system still obtain higher F-score as compared
to last year. We received an overall F-measure
score of 0.325, which put our system in second
place among 17 systems evaluated.

1 Introduction

Grammatical error correction is a task involving
automatically detecting and correcting
grammatical errors and improper choices.
Grammatical error correction in writing of
English as a second language (L2) or foreign
language (EFL) is an important issue, for there
are 375 million L2 speakers and 750 million EFL
speakers around the world (Graddol, 2006). Most
of these non-native speakers tend to make many
kinds of error in their writing. An error
correction system has the short-term benefit of
helping writers improve the quality of writing. In
the long run, non-native writers might learn from
the corrections and thus gradually gain better
command of grammar and word choice.

The HOO shared task of 2012 is aimed at
detecting and correcting misuse of determiners
and prepositions, two types of errors accounting

for only 38% of all errors. Therefore, there are a
lot more errors related to other parts of speech
that we have to address in this year’s shared task.
In this paper, we describe the system submission
from NTHU. The system reads and processes a
given sentence through a pipeline of four distinct
modules dealing with determiners, prepositions,
verb forms and noun plurality. The output of one
module feeds into the next module as input. The
system finally produces possibly corrected
sentences.

The rest of the article is organized as follows.
Section 2 describes detection and correction
approach of each module in detail. Section 3
describes experiment setting and results. Then in
Section 4, we discuss strengths and limitations of
the proposed system and directions of future
work. We conclude in Section 5.

2 System Description

The system is designed to read a sentence and
process each type of errors in terms and finally
produce a corrected sentence. In Section 2.1, we
give an overview of the system. Then, in
Sections 2.2-2.5, we describe how to correct
errors related to noun number, determiner, verb
tense, and preposition.

Figure 1. System Architecture

20

Table 1. Moving windows of ‘location’

Moving
Window

n-grams

MW5 track based on the location
based on the location of
on the location of cell
the location of cell phone
location of cell phone by

MW4 based on the location
on the location of
the location of cell
location of cell phone

MW3 on the location
the location of
location of cell

MW2 the location
location of

2.1 Overview

In this section, we give an overview of our
system. Figure 1 shows the architecture of the
error correction system. In this study, we focus
on five different grammatical error types,
including the improper usage of Determiner
(ArtOrDet), Noun Number (Nn), Verb-Tenses
(Vform), Subject-Verb Agreement (SVA), and
Preposition (Prep). In order to deal with these
different types of errors systematically, we
propose a back-off model based on the moving
window approach.

Moving Window

A moving window MW of certain word wi is
defined as below. (Leacock et al., 2010;
Rozovskaya et al., 2010)

 𝑀𝑊!,!(𝑤) = {𝑤!!! ,… ,𝑤!!!! !!! , 𝑗 = 0, 𝑘 − 1 } (1)

where i denotes the position of word, k the
window size, and w the original or replacement
word at position i. In our approach, the window
size is set to 2 to 5 words.

For example, consider the target word
“location” in the sentence, “Children can easily
be track based on the location of cell phone by
parents.” The n-grams in moving windows of
related to “location” of sizes 2 to 5 are shown in
Table 1.

Back-off Model
To determine whether the target word needs to
be changed to a different form (e.g, from
“location” to “locations”), we first replace the
target word with its variant forms (e.g.,
‘locations’ for ‘location’) in all MW n-grams and

Table 2. Trigram information of ‘location’ and
‘locations’ in back-off model

MW3 n-gram Freq. S3
location on the location

the location of
location of cell

304,400
3,794,400

1,400

4 M

locations on the locations
the locations of
locations of cell

18,200
374,000

200

0.04 M

then measure the ratio of the counts of the
original and replaced n-grams in a corpus. The
frequency counts are obtained by querying a
linguistic search engine Linggle (Joanne Boisson
et al. 2013), a web-scale linguistic search engine
based on Google Web1T (Brants and Franz,
2006). The sum of n-gram counts, Sk with the
word w (original or replacement) in the ith
position is defined as

 𝑆!,!(𝑤) = 𝑐𝑜𝑢𝑛𝑡(𝑛𝑔𝑟𝑎𝑚)!"#$% ∈ !"!(!) (2)

With MW and S, we design a Replace function
to determine whether is necessary to replace wi

with its variant form, w' :

Figure 2. The function Replace for determining whether
to replace a word in location i using moving windows of
size k.

The parameters λ and ε in Replace are set
empirically.

For instance, in the given sentence “Children
can easily be track based on the location of cell
phone by parents”, the target word wi is
‘location’ and the candidate is ‘locations’ for the
Nn type error. According to Equation 2, the sums
S9,3(“location”) of the original trigrams is about 4
million, whereas S9,3(“locations”) of the replaced
trigrams is only 0.4 million (see Table 2 for more
details). The value of r is 0.096, and depending
on the threshold, Replace either returns False
or back off to consider again the ratio r of
S9,2(“location”) of the original bigrams and
S9,2(“locations”) of the replacement bigrams for
confidence in replacing the word “location.”

function Replace(i, k, w’)
r = Si,k(w’)/Si,k(wi)
if r > λ

return True
else if k > 2 and r > ε:

return Replace (i, k-1, w’)
else:

return False

21

2.2 The number module

The number module is designed to correct error
related to noun number (i.e., Nn). Two types of
error are included, errors of singular noun and
plural noun.

To correct errors, we identify heads of base
noun phrase (i.e., NP consisting of maximal
contiguous sequence of tokens without
containing another noun phrase or clause) in the
given sentence by using part-of-speech tags and
GeniaTagger (Tsuruoka et al., 2006), then use
the Replace function to replace the original
nouns (either singular or plural) to a different
form (i.e., singular to plural, or plural to
singular). We use two methods in the number
module: combining voting with back-off, and
using dependency relations.

Combining voting with back-off

Each n-gram in a moving window of various
sizes described in Section 2.1 gets to cast a vote.
When the sum of frequency counts related to the
original noun is higher than that related to the
replacement noun, the original noun gets one
vote and vise versa. Voting method determines
whether to replace the noun based on majority of
the votes. For example, all of the 14 replacement
n-grams (MWi, k , k = 2, 5) in Table 1 get a vote,
because the n-gram with “location” has higher
frequency count that the same n-gram replaced
with “locations”. Intuitively, we should be
confident enough to decide to stay with the
original noun, i.e., ‘location.’

Back-off model described in Section 2.1 make
a decision to permit the Replace module to
change the original noun depend on threshold 𝜆.
Both of voting and back-off model need to show
that alternative noun number is better. For the
scheme of voting and back-off model, we also
require the top count ratio and absolute count of
0.95 and 60,000 based on empirical evidence.

Using dependency relations

In some cases, the noun number depends on
subject-verb agreement. We use part-of-speech
information of subject and governing verb
obtained from a tagger to handle such cases. For
that, we use 3rd person singular present (i.e.,
VBZ) and other verb forms (e.g., VBP) to detect
noun number mistakes.

Consider the sentence, “In the society today,
there are many ideas or concept that are

currently in the stages of research and
development.”, where “concept” is a singular
noun, but should be plural according to syntactic
dependency information. The dependency parser
typically produces nsubj(are-7, concept-11)
among other relations and the word “are” is
tagged as VBP. Accordingly, we can replace the
original noun, ‘concept’ to its plural form,
‘concepts.’

2.3 Determiners module

The determiner is aimed at correcting determiner
errors (i.e., errors annotated as ArtOrDet). Given
a sentence, we first identify the base noun
phrases and their determiners (or lack of
determiner) and using the moving window
approach to decide whether there is an error and
which alternative form to use. For determiner
errors, the variant form of a base NP with a
determiner is simple the same NP with
determiner removed, while the variant form of a
base NP without a determiner is simple the same
NP with a determiner added.

In addition to the moving window and back-
off model, we also use dependency relations to
check if a determiner is required for a base noun
phrase.

Frequency of n-grams

We adopt the moving window approach and
combine it with the back-off model mentioned in
Section 2.1 with slight modification for the cases
specific to determiner errors. When the head of
given Base-NP is the last word of the n-gram, (as
in “Prepare meals for the elderly is my duty.”),
the head can often be used as an modifier (as in
“for elderly people” leading to higher counts
unrelated to the our case of the word being used
as the head.

Therefore, while we adopting the moving
window approach, the count of such n-gram is
not counted. We set the threshold in the
Replace function empirically: λ=5 and ε=0.35.

Dependency

In some cases, the frequency information of n-
grams provides limited evidence for identifying
mistakes. Therefore, we use more effective rules
based on dependency relations to recognize the
determiner errors in a way similar to the number
module.

22

Table 3. Verb form n-grams with PMIs.

Verb Form n-grams PMI Sum

happening crash happening
happening at

21.5
38.2

59.7

happen crash happen
happen at

24.0
35.7

59.7

happened crash happened
happened at
air crash happened
happened at Miami
crash happened at

30.5
43.0
36.2
31.8
43.2

184.7

happens crash happens
happens at
crash happens at

27.9
42.4
37.0

107.3

We remove a determiner from a noun phrase

with a plural head and an existing determiner.
Otherwise, this module adds an appropriate
determiner before the current noun phrase. For a
conjunction (i.e., X and/or Y) of two base NPs,
the rules favor adding a determiner such that
both NPs have the same kind of determiner.

2.4 The verb-tense module

In this section, we mainly concentrate on
providing more proper verb tenses. Besides
moving window, we introduce accumulated
point-wise mutual information (PMI) (Church
and Hanks, 1990) to improve the performance of
this module. Applying PMI to this topic is based
on the hypothesis that an appropriate verb form
has a higher PMI measure with the context.

To achieve more flexibility than the standard
PMI, we use the modified PMI, which is an
extension of standard PMI allowing an n-gram s
of arbitrary length as input

 𝑃𝑀𝐼(𝑠) = log !(!|!)

!(!!)!
!!!

 (3)

where wi denotes the i-th word in s, k = | s |, and
P(wi) the probability of wi estimated using a very
large corpus. P(s|k) is the probability based on
maximal likelihood estimation:

 𝑃(𝑠|𝑘) = !"#$%(!)
!"#$%(!)!∈!

 (4)

where S denotes all n-grams of length k. The
PMI value of n-grams related to the original and
alternative tense forms of a give verb are then
calculated to attempt to correct the verb in
question with a decision in favor of highest PMI.

Table 4. Sample search results of “being ?$PP a
dangerous situation” *

N-gram Count

being in a dangerous situation 161
being a dangerous situation 0
being at a dangerous situation 0
being on a dangerous situation 0
… 0
being about a dangerous situation 0

* Note:? denotes option word and $PP denotes wildcard prepositions

With this extended notion of PMI, we

proceed as follows. First, we select each verb in
a sentence and extract n-grams in moving
window method as described in Section 2.2.
Next, we generate more alternative n-grams by
substituting all the related verb forms for the
selected verb. After that, for all these n-grams,
we calculate PMIs and accumulate the measures
for each group of verb forms. Finally, if the
accumulated PMI of the original verb is lower
than the mean value of PMI of all verb forms, the
verb in question will be replaced with the verb
form associated the highest PMI value.

Consider the sentence, “In late nineteenth
century, there was a severe air crash happening
at Miami international airport.” We attempt to
correct the verbs “was” and “happening” in the
sentence. Table 3 shows n-grams and
corresponding PMIs of each verb form. The
accumulated PMI of “happened” has the
maximum value. So, the module changes
“happening” to “happened.”

2.5 The prepositions module

For preposition, we attempt to handle the two
types of error: DELETE and REPLACE, and
leave the INSERT errors for future work. For
DELETE errors, the preposition in question
should be deleted from the given sentence,
whereas for REPLACE errors the preposition
should be replaced with a more appropriate
alternative. The third error type of preposition,
INSERT, is left for future study. The proposed
solution is based on the hypothesis that the usage
of preposition often depends on the collocation
relation of verb or noun. Therefore, we propose a
back-off model, which utilizes the dependency
relations to identify the related words of the
preposition in question.

We proceed as follows: For a target
preposition in a given sentence, we extract the n-
gram containing the preposition, its prepositional
object, and the content word before the

23

preposition. For example, the n-gram “being in a
dangerous situation” is extracted from the
sentence “This can protect the students from
being in a dangerous situation in particularly for
the small children who are studying in nursery.”
The n-gram “being in a dangerous situation” is
then transformed into a query for a linguistic
search engine (e.g., Linggle as described in
Joanne et al. 2013) to obtain the counts of all
preposition variant forms, including NULL (for
DELETE) or other prepositions (for REPLACE).

The transformation process is very simple
involving changing the proposition to a wild part
of speech symbol. For example, “being in a
dangerous situation” is transformed to “being
?$PP a dangerous situation.” The sample search
results are shown in Table 4. From the results,
we could confirm that the preposition “in” is
used correctly.

Although we use the web-scale n-gram for
validation of usage of preposition, however, data
sparseness still poses a problem. Furthermore,
we cannot obtain information for n-grams with
length more than 5, since the Web 1T we used
only contains 1 to 5-grams. In order to cope with
the data sparseness problem, we transform a
query into a more general form, if no result could
be obtained in the first round of search. To
generalize the query, we remove the modifiers of
the prepositional object one after another.
Additionally, we also attempt to change the
modifiers with the most frequent modifier of the
object. Consider the n-gram “in modern digit
world.” The generalized n-grams “in digit world”
and “in new world” will then be transformed into
queries in turns until the results are sufficient for
the model to make a decision. To avoid false
alarm, empirically determined thresholds are
used to measure the ratio of count of a
preposition variant form to the original
preposition.

3 Experiment

To assess the effectiveness of the proposed
method, we used the official training and testing
data of CoNLL-2013 Shared Task. We also
exploited several tools including Linggle,
Stanford Parser and Geniatagger in the proposed
system.

Linggle supports flexible linguistic queries
with wild part of speech and returns matching n-
grams counts in Google Web 1T 5gram. Stanford
Parser and Geniatagger produce syntactical
information including dependency relations,

part-of-speech tags, and phrase boundary. The
evaluation scorer, which computes precision,
recall, and F-score, is provided by National
University of Singapore, the organizer of
CoNLL-2013 Shared Task.

On the test data, our system obtained the
precision, recall and F-score of .3057, 0.346, and
.3246, which put us in first place in term of recall
and second place in term of F-score.

4 Discussion

In this section, we discuss the strengths and
limitations of our system and propose approaches
to overcome current limitations.

The module of noun numbers, moving
window and syntactic dependency for correcting
errors cannot handle well some ambiguous cases.
For example, in this case "In conclusion, what I
have mentioned above, we have to agree,
tracking system has many benefits….", according
to the gold-standard annotations, ‘system has’ is
corrected to ‘systems have’.

However, this module keep the original word
because of the 3rd person singular present verb,
‘has’. Before ‘has’ being corrected to ‘have’,
there was no sufficient evidence to support that
‘systems’ is a good replacement. In cases like
this, it is often difficult to suggest a correction
using only the sentential context and n-gram
frequency and dependency relations. To correct
such an error, we may need to consider the
context of the discourse or combine the module
of different error types such as noun numbers
and verb tense, which is beyond the scope of the
current system.

We handle the determiner errors with
threshold 𝜆 and 𝜀 empirically derived, but it
would be more effective if we could use some
form of minimal error rate tuning (MERT) to set
the parameters. Besides, we found that applying
the dependency criteria and moving window
method in parallel leads to high recall but low
precision. However, the moving window method
often fails because of insufficient evidence. In
such case, the system can perform better in both
precision and recall by favoring the dependency
model output.

For our system, the performance of correcting
verb form errors is severely limited by the
lengths of n-gram. The failure related to verb
forms correction are mostly caused by the
limitation of n-gram length of Web 1T. There is
a large portion of sentences where the subject (or
the adverbs) and the verb are so far apart, that

24

they are not within windows of five words. So, it
is difficult to use the noun number of the subject
to select the correct verb form.

Another major area of limitations of handling
verb form errors has to do with rare words which
lead to unseen n-grams even in a very large
dataset like Web 1T. These rare words are
mostly name entities that have insufficient
coverage when combined other words in n-
grams. Intuitively, we can generalize the n-gram
matching process as in the case of handling
preposition errors.

In this study, we use the preposition and object
relation (POBJ) to determine whether the use of
the preposition is correct. The relation is useful
for generalizing the queries and in correcting
preposition errors. However, many preposition
errors are unrelated to POBJ. For example, in the
sentence “Surveillance technology will help to
prevent the family to loss their member...”, the
two words “to loss” should be replace with “from
losing.” Unfortunately, the current system cannot
correct such an error in the absence of POBJ
relation. In order to correct this kind of error, we
have to consider composed relations such as
noun-preposition-verb, which is crucial to the
capability of correcting such multiple
consecutive errors (i.e., preposition plus verb).

5 Conclusion

In this paper, we build four modules in
determiner, noun number, verb form, and
preposition for error detection and correction.
For different types of errors, we have developed
modules independently in accordance with their
features. The constructed modules rely on both
moving windows and back-off model to improve
grammatical error correction. Additionally, for
verb form errors, we introduce point-wise mutual
information for higher precision and recall.

We plan to integrate all the modules in a more
flexible way than the current pipeline scheme.
Yet another direction for future research is to
consider the discourse context.

6 Acknowledgements

We would like to acknowledge the funding
supports from Delta Electronic Corp and
National Science Council, Taiwan (contract no:
NSC 100-2511-S-007-005-MY3). We are also
thankful for helpful comments from the
anonymous reviewers.

References
Joanne Boisson, Ting-Hui Kao, Jian-Cheng Wu, Tzu-

Hsi Yen and Jason S. Chang. 2013. Linggle: a
Web-scale Linguistic Search Engine for Words in
Context. In proceedings of Association for
Computational Linguistics demonstrations. (ACL
2013)

Thorsten Brants and Alex Franz. 2006. The Google
Web 1T 5-gram corpus version 1.1.LDC2006T13

Kenneth W. Church and Patrick Hanks. 1990. Word
association norms, mutual information, and
lexicography. Computational Linguistics 16(1)
(1990) 22–29

Leacock Claudia et al. 2010. Automated grammatical
error detection for language learners. Synthesis
Lectures on Human Language Technologies, 3(1)
1–134.

Daniel Dahlmeier, Hwee Tou Ng, Siew Mei Wu.
2013. Building a Large Annotated Corpus of
Learner English: The NUS Corpus of Learner
English. In Proceedings of the 8th Workshop on
Innovative Use of NLP for Building Educational
Applications (BEA 2013).

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
Evaluation for Grammatical Error Correction. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for
Computational Linguistics (NAACL 2012). pp. 568
– 572

David Graddol. 2006. English next: Why global
English may mean the end of ‘English as a Foreign
Language.’ UK: British Council.

John Lee and Stephanie Seneff. 2006. Automatic
Grammar Correction for Second-Language
Learners. In INTERSPEECH ICSLP.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto and Joel Tetreault. 2013. The CoNLL-
2013 Shared Task on Grammatical Error
Correction. In Proceedings of the Seventeenth
Conference on Computational Natural Language
Learning.

Alla Rozovskaya and Dan Roth. 2010. Generating
confusion sets for context-sensitive error
correction. In Proceedings of EMNLP, pp. 961–
970.

Yoshimasa Tsuruoka et al. Developing a Robust Part-
of-Speech Tagger for Biomedical Text. In
Advances in Informatics - 10th Panhellenic
Conference on Informatics, pp 382–392.

25

