
Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality, pages 91–99,
Sofia, Bulgaria, August 9 2013. c©2013 Association for Computational Linguistics

A Generative Model of Vector Space Semantics

Jacob Andreas
Computer Laboratory

University of Cambridge
jda33@cam.ac.uk

Zoubin Ghahramani
Department of Engineering
University of Cambridge

zoubin@eng.cam.ac.uk

Abstract
We present a novel compositional, gener-
ative model for vector space representa-
tions of meaning. This model reformulates
earlier tensor-based approaches to vector
space semantics as a top-down process,
and provides efficient algorithms for trans-
formation from natural language to vectors
and from vectors to natural language. We
describe procedures for estimating the pa-
rameters of the model from positive exam-
ples of similar phrases, and from distribu-
tional representations, then use these pro-
cedures to obtain similarity judgments for
a set of adjective-noun pairs. The model’s
estimation of the similarity of these pairs
correlates well with human annotations,
demonstrating a substantial improvement
over several existing compositional ap-
proaches in both settings.

1 Introduction

Vector-based word representations have gained
enormous popularity in recent years as a basic tool
for natural language processing. Various models
of linguistic phenomena benefit from the ability to
represent words as vectors, and vector space word
representations allow many problems in NLP to be
reformulated as standard machine learning tasks
(Blei et al., 2003; Deerwester et al., 1990).

Most research to date has focused on only one
means of obtaining vectorial representations of
words: namely, by representing them distribution-
ally. The meaning of a word is assumed to be
fully specified by “the company it keeps” (Firth,
1957), and word co-occurrence (or occasionally
term-document) matrices are taken to encode this
context adequately. Distributional representations
have been shown to work well for a variety of dif-
ferent tasks (Schütze and Pedersen, 1993; Baker
and McCallum, 1998).

The problem becomes more complicated when
we attempt represent larger linguistic structures—
multiword constituents or entire sentences—
within the same vector space model. The most ba-
sic issue is one of sparsity: the larger a phrase, the
less frequently we expect it to occur in a corpus,
and the less data we will have from which to es-
timate a distributional representation. To resolve
this problem, recent work has focused on compo-
sitional vector space models of semantics. Based
on the Fregean observation that the meaning of a
sentence is composed from the individual mean-
ings of its parts (Frege, 1892), research in com-
positional distributional semantics focuses on de-
scribing procedures for combining vectors for in-
dividual words in order to obtain an appropriate
representation of larger syntactic constituents.

But various aspects of this account remain un-
satisfying. We have a continuous semantic space
in which finitely many vectors are associated with
words, but no way (other than crude approxima-
tions like nearest-neighbor) to interpret the “mean-
ing” of all the other points in the space. More gen-
erally, it’s not clear that it even makes sense to talk
about the meaning of sentences or large phrases in
distributional terms, when there is no natural con-
text to represent.

We can begin to address these concerns by turn-
ing the conventional account of composition in
vector space semantics on its head, and describ-
ing a model for generating language from vectors
in semantic space. Our approach is still composi-
tional, in the sense that a sentence’s meaning can
be inferred from the meanings of its parts, but we
relax the requirement that lexical items correspond
to single vectors by allowing any vector. In the
process, we acquire algorithms for both meaning
inference and natural language generation.

Our contributions in this paper are as follows:

• A new generative, compositional model of

91

phrase meaning in vector space.

• A convex optimization procedure for map-
ping words onto their vector representations.

• A training algorithm which requires only
positive examples of phrases with the same
meaning.

• Another training algorithm which requires
only distributional representations of phrases.

• A set of preliminary experimental results in-
dicating that the model performs well on real-
world data in both training settings.

2 Model overview

2.1 Motivations

The most basic requirement for a vector space
model of meaning is that whatever distance metric
it is equipped with accurately model human judg-
ments of semantic similarity. That is: sequences
of words which are judged to “mean the same
thing” should cluster close together in the seman-
tic space, and totally unrelated sequences of words
should be spread far apart.

Beyond this, of course, inference of vector
space representations should be tractable: we re-
quire efficient algorithms for analyzing natural
language strings into their corresponding vectors,
and for estimating the parameters of the model that
does the mapping. For some tasks, it is also useful
to have an algorithm for the opposite problem—
given a vector in the semantic space, it should be
possible to produce a natural-language string en-
coding the meaning of that vector; and, in keep-
ing with our earlier requirements, if we choose
a vector close to the vector corresponding to a
known string, the resulting interpretation should
be judged by a human to mean the same thing,
and perhaps with some probability be exactly the
same.

It is these three requirements—the use of human
similarity judgments as the measure of the seman-
tic space’s quality, and the existence of efficient al-
gorithms for both generation and inference—that
motivate the remainder of this work.

We take as our starting point the general pro-
gram of Coecke et al. (2010) which suggests that
the task of analyzing into a vector space should
be driven by syntax. In this framework, the com-
positional process consists of repeatedly combin-
ing vector space word representations according to

linguistic rules, in a bottom-up process for trans-
lating a natural language string to a vector in
space.

But our requirement that all vectors be trans-
latable into meanings—that we have both analy-
sis and generation algorithms—suggests that we
should take the opposite approach, working with a
top down model of vector space semantics.

For simplicity, our initial presentation of this
model, and the accompanying experiments, will
be restricted to the case of adjective-noun pairs.
Section 5 will then describe how this framework
can be extended to full sentences.

2.2 Preliminaries

We want to specify a procedure for mapping a
natural language noun-adjective pair (a, n) into
a vector space which we will take to be Rp.
We assume that our input sentence has already
been assigned a single CCG parse (Steedman and
Baldridge, 2011), which for noun-adjective pairs
has the form

blue orangutans
N/N N

>
N

(1)

Here, the parser has assigned each token a cate-
gory of the form N, N/N, etc. Categories are ei-
ther simple, drawn from a set of base types (here
just N for “noun”), or complex, formed by com-
bining simple categories. A category of the form
X/Y “looks right” for a category of the form Y,
and can combine with other constituents by appli-
cation (we write X/Y Y ⇒ X) or composition
(X/Y Y/Z ⇒ X/Z) to form higher-level con-
stituents.

To this model we add a vector space seman-
tics. We begin with a brief review the work of
Coecke et al. (2010). Having assigned simple cat-
egories to vector spaces (in this case, N to Rp),
complex categories correspond to spaces of ten-
sors. A category of the form X/Y is recursively
associated with SX ⊗ SY, where SX and SY are
the tensor spaces associated with the categories X
and Y respectively. So the space of adjectives (of
type N/N) is just Rq⊗Rq, understood as the set of
q× q matrices. To find the meaning of a adjective-
noun pair, we simply multiply the adjective matrix
and noun vector as specified by the CCG deriva-
tion. The result is another vector in the same se-
mantic space as the noun, as desired.

92

To turn this into a top-down process, we need
to describe a procedure for splitting meanings and
their associated categories.

2.3 Generation

Our goal in this subsection is to describe a proba-
bilistic generative process by which a vector in a
semantic space is realized in natural language.

Given a constituent of category X, and a corre-
sponding vector x residing in some SX , we can ei-
ther generate a lexical item of the appropriate type
or probabilistically draw a CCG derivation rooted
in X, then independently generate the leaves. For
noun-adjective pairs, this can only be done in one
way, namely as in (1) (for a detailed account of
generative models for CCG see Hockenmaier and
Steedman (2002)). We will assume that this CCG

derivation tree is observed, and concern ourselves
with filling in the appropriate vectors and lexical
items. This is a strong independence assumption!
It effectively says “the grammatical realization of
a concept is independent of its meaning”. We will
return to it in Section 6.

The adjective-noun model has four groups of
parameters: (1) a collection ΘN/N of weight vec-
tors θa for adjectives a, (2) a collection ΘN of
weight vectors θn for nouns n, (3) a collection
EN/N of adjective matrices Ea for adjectives a, and
finally (4) a noise parameter σ2. For compactness
of notation we will denote this complete set of pa-
rameters Θ.

Now we can describe how to generate an
adjective-noun pair from a vector x. The CCG

derivation tells us to produce a noun and an ad-
jective, and the type information further informs
us that the adjective acts as a functor (here a ma-
trix) and the noun as an argument. We begin by
choosing an adjective a conditional on x. Having
made our lexical choice, we deterministically se-
lect the corresponding matrix Ea from EN/N. Next
we noisily generate a new vector y = Eax + ε,
a vector in the same space as x, corresponding
to the meaning of x without the semantic content
of a. Finally, we select a noun n conditional on
y, and output the noun-adjective pair (a, n). To
use the previous example, suppose x means blue
orangutans. First we choose an adjective a =
“blue” (or with some probability “azure” or “ultra-
marine”), and select a corresponding adjectiveEa.
Then the vector y = Eax should mean orangutan,
and when we generate a noun conditional on y we

should have n = “orangutan” (or perhaps “mon-
key”, “primate”, etc.).

This process can be summarized with the graph-
ical model in Figure 1. In particular, we draw a

ΘN/N

a

x

Ea y n

EN/N σ2 ΘN

Figure 1: Graphical model of the generative pro-
cess.

from a log-linear distribution over all words of the
appropriate category, and use the corresponding
Ea with Gaussian noise to map x onto y:

p(a|x; ΘN/N) =
exp(θ>a x)∑

θ′∈ΘN/N
exp(θ′>x)

(2)

p(y|x,Ea;σ2) = N (Eax, σ
2)(y) (3)

Last we choose n as

p(n|y; ΘN) =
exp(θ>n y)∑

θ′∈ΘN
exp(θ′>z)

(4)

Some high-level intuition about this model: in
the bottom-up account, operators (drawn from ten-
sor spaces associated with complex categories)
can be thought of as acting on simple objects and
“adding” information to them. (Suppose, for ex-
ample, that the dimensions of the vector space cor-
respond to actual perceptual dimensions; in the
bottom-up account the matrix corresponding to the
adjective “red” should increase the component of
an input vector that lies in dimension correspond-
ing to redness.) In our account, by contrast, ma-
trices remove information, and the “red” matrix
should act to reduce the vector component corre-
sponding to redness.

2.4 Analysis
Now we must solve the opposite problem: given
an input pair (a, n), we wish to map it to an ap-
propriate vector in Rp. We assume, as before, that
we already have a CCG parse of the input. Then,
analysis corresponds to solving the following op-
timization problem:

arg min
x

− log p(x|a, n; Θ)

93

By Bayes’ rule,

p(x|a, n; Θ) ∝ p(a, n|x; Θ)p(x)

so it suffices to minimize

− log p(x)− log p(a, n|x; Θ)

To find the single best complete derivation of an
input pair (equivalent to the Viterbi parse tree in
syntactic parsing), we can rewrite this as

arg min
x,y

− log p(x)− log p(a, b, y|x; Θ) (5)

where, as before, y corresponds to the vector space
semantics representation of the noun alone. We
take our prior log p(x) to be a standard normal.
We have:

− log p(a, n, y|x)

= − log p(a|x; Θ)− log p(y|a, x; Θ)

− log p(n|y; Θ)

∝ −θ>a x+ log
∑

θ′∈ΘN/N

exp θ′>x

+
1

σ2
||Eax− y||2

− θ>n y + log
∑
θ′∈ΘN

exp θ′>y

Observe that this probability is convex: it con-
sists of a sum of linear terms, Euclidean norms,
and log-normalizers, all convex functions. Conse-
quently, Equation 5 can be solved exactly and ef-
ficiently using standard convex optimization tools
(Boyd and Vandenberghe, 2004).

3 Relation to existing work

The approach perhaps most closely related to the
present work is the bottom-up account given by
Coecke et al. (2010), which has already been dis-
cussed in some detail in the preceding section. A
regression-based training procedure for a similar
model is given by Grefenstette et al. (2013). Other
work which takes as its starting point the decision
to endow some (or all) lexical items with matrix-
like operator semantics include that of Socher et
al. (2012) and Baroni and Zamparelli (2010). In-
deed, it is possible to think of the model in Ba-
roni and Zamparelli’s paper as corresponding to
a training procedure for a special case of this
model, in which the positions of both nouns and
noun-adjective vectors are fixed in advance, and in

which no lexical generation step takes place. The
adjective matrices learned in that paper correspond
to the inverses of the E matrices used above.

Also relevant here is the work of Mitchell and
Lapata (2008) and Zanzotto et al. (2010), which
provide several alternative procedures for compos-
ing distributional representations of words, and
Wu et al. (2011), which describes a compositional
vector space semantics with an integrated syntac-
tic model. Our work differs from these approaches
in requiring only positive examples for training,
and in providing a mechanism for generation as
well as parsing. Other generative work on vec-
tor space semantics includes that of Hermann et
al. (2012), which models the distribution of noun-
noun compounds. This work differs from the
model that paper in attempting to generate com-
plete natural language strings, rather than simply
recover distributional representations.

In training settings where we allow all posi-
tional vectors to be free parameters, it’s possible
to view this work as a kind of linear relational em-
bedding (Paccanaro and Hinton, 2002). It differs
from that work, obviously, in that we are interested
in modeling natural language syntax and seman-
tics rather than arbitrary hierarchical models, and
provide a mechanism for realization of the embed-
ded structures as natural language sentences.

4 Experiments

Since our goal is to ensure that the distance be-
tween natural language expressions in the vector
space correlates with human judgments of their
relatedness, it makes sense to validate this model
by measuring precisely that correlation. In the re-
mainder of this section, we provide evidence of the
usefulness of our approach by focusing on mea-
surements of the similarity of adjective-noun pairs
(ANs). We describe two different parameter esti-
mation procedures for different kinds of training
data.

4.1 Learning from matching pairs

We begin by training the model on matching
pairs. In this setting, we start with a collec-
tion N sets of up to M adjective-noun pairs
(ai1, ni1), (ai2, ni2), . . . which mean the same
thing. We fix the vector space representation yi of
each noun ni distributionally, as described below,
and find optimal settings for the lexical choice pa-
rameters ΘN/N and ΘN, matrices (here all q × q)

94

EN/N, and, for each group of adjective-noun pairs
in the training set, a latent representation xi. The
fact that the vectors yi are tied to their distribu-
tional vectors does not mean we have committed
to the distributional representation of the corre-
sponding nouns! The final model represents lexi-
cal choice only with the weight vectors Θ—fixing
the vectors just reduces the dimensionality of the
parameter estimation problem and helps steer the
training algorithm toward a good solution. The
noise parameter then acts as a kind of slack vari-
able, modeling the fact that there may be no pa-
rameter setting which reproduces these fixed dis-
tributional representations through exact linear op-
erations alone.

We find a maximum-likelihood estimate for
these parameters by minimizing

L(Θ, x) = −
N∑
i=1

M∑
i=1

log p(aij , nij |xi; Θ) (6)

The latent vectors xi are initialized to one of their
corresponding nouns, adjective matricesE are ini-
tialized to the identity. The components of ΘN are
initialized identically to the nouns they select, and
the components of ΘN/N initialized randomly. We
additionally place an L2 regularization penalty on
the scoring vectors in both Θ (to prevent weights
from going to infinity) and E (to encourage adjec-
tives to behave roughly like the identity). These
penalties, as well as the noise parameter, are ini-
tially set to 0.1.

Note that the training objective, unlike the
analysis objective, is non-convex. We use L-
BFGS (Liu and Nocedal, 1989) on the likeli-
hood function described above with ten such ran-
dom restarts, and choose the parameter setting
which assigns the best score to a held-out cross-
validation set. Computation of the objective and
its gradient at each step is linear in the number of
training examples and quadratic in the dimension-
ality of the vector space.

Final evaluation is performed by taking a set of
pairs of ANs which have been assigned a similar-
ity score from 1–6 by human annotators. For each
pair, we map it into the vector space as described
in Section 2.4 above. and finally compute the co-
sine similarity of the two pair vectors. Perfor-
mance is measured in the correlation (Spearman’s
ρ) between these cosine similarity scores and the
human similarity judgments.

4.1.1 Setup details

Noun vectors yi are estimated distributionally
from a corpus of approximately 10 million tokens
of English-language Wikipedia data (Wikimedia
Foundation, 2013). A training set of adjective-
noun pairs are collected automatically from a col-
lection of reference translations originally pre-
pared for a machine translation task. For each
foreign sentence we have four reference transla-
tions produced by different translators. We as-
sign POS tags to each reference (Loper and Bird,
2002) then add to the training data any adjec-
tive that appears exactly once in multiple refer-
ence translations, with all the nouns that follow it
(e.g. “great success”, “great victory”, “great ac-
complishment”). We then do the same for repeated
nouns and the adjectives that precede them (e.g.
“great success”, “huge success”, “tremendous suc-
cess”). This approach is crude, and the data col-
lected are noisy, featuring such “synonym pairs”
as (“incomplete myths”, “incomplete autumns”)
and (“similar training”, “province-level training”),
as well as occasional pairs which are not adjective-
noun pairs at all (e.g. “first parliamentary”). Nev-
ertheless, as results below suggest, they appear to
be good enough for purposes of learning an appro-
priate representation.

For the experiments described in this section,
we use 500 sets of such adjective-noun pairs,
corresponding to 1104 total training examples.
Testing data consists of the subset of entries in
the dataset from (Mitchell and Lapata, 2010) for
which both the adjective and noun appear at least
once (not necessarily together) in the training set,
a total of 396 pairs. None of the pairs in this test
set appears in training. We additionally withhold
from this set the ten pairs assigned a score of 6
(indicating exact similarity), setting these aside for
cross-validation.

In addition to the model discussed in the first
section of this paper (referred to here as “GEN”),
we consider a model in which there is only one
adjective matrix E used regardless of the lexical
item (referred to as “GEN-1”).

The NP space is taken to be R20, and we re-
duce distributional vectors to 20 dimensions using
a singular value decomposition.

95

4.2 Learning from distributional
representations

While the model does not require distributional
representations of latent vectors, it’s useful to con-
sider whether it can also provide a generative ana-
log to recent models aimed explicitly at produc-
ing vectorial representations of phrases given only
distributional representations of their constituent
words. To do this, we take as our training data a
set of N single ANs, paired with a distributional
representation of each AN. In the new model, the
meaning vectors x are no longer free parameters,
but fully determined by these distributional repre-
sentations. We must still obtain estimates for each
Θ and EN/N, which we do by minimizing

L(Θ) = −
N∑
i=1

log p(ai,j , ni,j |xi; Θ) (7)

4.2.1 Experimental setup
Experimental setup is similar to the previous sec-
tion; however, instead of same-meaning pairs col-
lected from a reference corpus, our training data
is a set of distributional vectors. We use the same
noun vectors, and obtain these new latent pair vec-
tors by estimating them in the same fashion from
the same corpus.

In order to facilitate comparison with the other
experiment, we collect all pairs (ai, ni) such that
both ai and ni appear in the training set used in
Section 4.1 (although, once again, not necessar-
ily together). Initialization of Θ and E , regular-
ization and noise parameters, as well as the cross-
validation procedure, all proceed as in the previ-
ous section. We also use the same restricted eval-
uation set, again to allow the results of the two
experiments to be compared. We evaluate by mea-
suring the correlation of cosine similarities in the
learned model with human similarity judgments,
and as before consider a variant of the model in
which a single adjective matrix is shared.

4.3 Results
Experimental results are displayed in Table 1. For
comparison, we also provide results for a base-
line which uses a distributional representation of
the noun only, the Adjective-Specific Linear Map
(ALM) model of Baroni and Zamparelli (2010) and
two vector-based compositional models discussed
in (Mitchell and Lapata, 2008): �, which takes
the Hadamard (elementwise) product of the distri-
butional representations of the adjective and noun,

and +, which adds the distributions. As before,
we use SVD to project these distributional repre-
sentations onto a 20-dimensional subspace.

We observe that in both matrix-based learn-
ing settings, the GEN model or its parameter-
tied variant achieves the highest score (though
the distributionally-trained GEN-1 doesn’t per-
form as well as the summing approach). The pair-
trained model performs best overall. All corre-
lations except � and the distributionally-trained
GEN are statistically significant (p < 0.05), as
are the differences in correlation between the
matching-pairs-trained GEN and all other mod-
els, and between the distributionally-trained GEN-
1 and ALM. Readers familiar with other papers
employing the similarity-judgment evaluation will
note that scores here are uniformly lower than re-
ported elsewhere; we attribute this to the compar-
atively small training set (with hundreds, instead
of thousands or tens of thousands of examples).
This is particularly notable in the case of the ALM

model, which Baroni and Zamparelli report out-
performs the noun baseline when given a training
set of sufficient size.

Training data Model ρ

Word distributions Noun .185
+ .239
� .000

Matching pairs GEN-1 .130
GEN .365

Word and phrase ALM .136
distributions GEN-1 .201

GEN .097

Table 1: Results for the similarity judgment exper-
iment.

We also give a brief demonstration of the gen-
eration capability of this model as shown in Fig-
ure 2. We demonstrate generation from three dif-
ferent vectors: one inferred as the latent represen-
tation of “basic principles” during training, one
obtained by computing a vectorial representation
of “economic development” as described in Sec-
tion 2.4 and one selected randomly from within
vector space. We observe that the model cor-
rectly identifies the adjectives “fundamental” and
“main” as synonymous with “basic” (at least when
applied to “principles”). It is also able to cor-
rectly map the vector associated with “economic

96

Input Realization

Training vector tyrannical principles
(“basic principles”) fundamental principles

main principles

Test vector economic development
(“economic development”) economic development

economic development

Random vector vital turning
further obligations
bad negotiations

Figure 2: Generation examples using the GEN

model trained with matching pairs.

development” back onto the correct lexical real-
ization. Words generated from the random vector
appear completely unrelated; this suggests that we
are sampling a portion of the space which does not
correspond to any well-defined concept.

4.4 Discussion

These experimental results demonstrate, first and
foremost, the usefulness of a model that is not tied
to distributional representations of meaning vec-
tors: as the comparatively poor performance of
the distribution-trained models shows, with only
a small number of training examples it is better to
let the model invent its own latent representations
of the adjective-noun pairs.

It is somewhat surprising, in the experi-
ments with distributional training data, that the
single-adjective model outperforms the multiple-
adjective model by so much. We hypothesize that
this is due to a search error—the significantly ex-
panded parameter space of the multiple-adjective
model makes it considerably harder to estimate
parameters; in the case of the distribution-only
model it is evidently so hard the model is unable
to identify an adequate solution even over multiple
training runs.

5 Extending the model

Having described and demonstrated the usefulness
of this model for capturing noun-adjective similar-
ity, we now describe how to extend it to capture
arbitrary syntax. While appropriate experimental
evaluation is reserved for future work, we outline
the formal properties of the model here. We’ll take
as our example the following CCG derivation:

sister Cecilia has blue orangutans
N/N N (S\N)/N N/N N

> >
N N

>
S\N

<
S

Observe that “blue orangutans” is generated ac-
cording to the noun-adjective model already de-
scribed.

5.1 Generation
To handle general syntax, we must first extend the
set EN/N of adjective matrices to sets EX for all
functor categories X, and create an additional set
of weight vectors ΘX for every category X.

When describing how to generate one split in
the CCG derivation (e.g. a constituent of type S
into constituents of type NP and S\NP), we can
identify three cases. The first, “fully-lexicalized”
case is the one already described, and is the gen-
erative process by which the a vector meaning
blue orangutans is transformed into “blue” and
“orangutans”, or sister Cecilia into “sister” and
“Cecilia”. But how do we get from the top-level
sentence meaning to a pair of vectors meaning
sister Cecilia and has blue orangutans (an “un-
lexicalized” split), and from has blue orangutans
to the word “has” and a vector meaning blue
orangutans (a “half-lexicalized” split)?

Unlexicalized split We have a vector xwith cat-
egory X, from which we wish to obtain a vector y
with category Y, and z with category Z. For this we
further augment the sets E with matrices indexed
by category rather than lexical item. Then we pro-
duce y = EYx + ε, z = EZ + ε where, as in the
previous case, ε is Gaussian noise with variance
σ2. We then recursively generate subtrees from y
and z.

Half-lexicalized split This proceeds much as in
the fully lexicalized case. We have a vector x from
which we wish to obtain a vector y with category
Y, and a lexical item w with category Z.

We choose w according to Equation 2, select
a matrix Ew and produce y = Ewx + ε as be-
fore, and then recursively generate a subtree from
y without immediately generating another lexical
item for y.

5.2 Analysis
As before, it suffices to minimize
− log p(x) − log p(W,P |x) for a sentence

97

W = (w1, w2, · · · , wn) and a set of internal
vectors P . We select our prior p(x) exactly as
before, and can define p(W,P |x) recursively. The
fully-lexicalized case is exactly as above. For the
remaining cases, we have:

Unlexicalized split Given a subsequence
Wi:j = (wi, · · · , wj), if the CCG parse splits Wi:j

into constituents Wi:k and Wk:j , with categories
Y and Z, we have:

− log p(Wi:j |x) =− log p(Wi:k, P |EY x)

− log p(Wk:j , P |EZx)

Half-lexicalized split If the parse splits Wi:j

into wi and Wi+1:j with categories Y and Z, and
y ∈ P is the intermediate vector used at this step
of the derivation, we have:

− log p(Wi:j , y|x)

= − log p(wi|x)− log p(y|x,wi)
− log p(Wi+1:j |y)

∝ −θTwi
x+ log

∑
w′∈LY

exp θTw′x

+
1

σ2
||Ewix− y||2

− log p(Wi+1:j , P |y)

Finally, observe that the complete expression
of the log probability of any derivation is, as be-
fore, a sum of linear and convex terms, so the
optimization problem remains convex for general
parse trees.

6 Future work

Various extensions to the model proposed in this
paper are possible. The fact that relaxing the
distributional requirement for phrases led to per-
formance gains suggests that something similar
might be gained from nouns. If a reliable train-
ing procedure could be devised with noun vectors
as free parameters, it might learn an even better
model of phrase similarity—and, in the process,
simultaneously perform unsupervised word sense
disambiguation on the training corpus.

Unlike the work of Coecke et al. (2010), the
structure of the types appearing in the CCG deriva-
tions used here are neither necessary nor sufficient
to specify the form of the matrices used in this
paper. Instead, the function of the CCG deriva-
tion is simply to determine which words should
be assigned matrices, and which nouns. While

CCG provides a very natural way to do this, it
is by no means the only way, and future work
might focus on providing an analog using a differ-
ent grammar—all we need is a binary-branching
grammar with a natural functor-argument distinc-
tion.

Finally, as mentioned in Section 2.3, we have
made a significant independence assumption in re-
quiring that the entire CCG derivation be gener-
ated in advance. This assumption was necessary
to ensure that the probability of a vector in mean-
ing space given its natural language representation
would be a convex program. We suspect, however,
that it is possible to express a similar probabil-
ity for an entire packed forest of derivations, and
optimize it globally by means of a CKY-like dy-
namic programming approach. This would make
it possible to optimize simultaneously over all pos-
sible derivations of a sentence, and allow positions
in meaning space to influence the form of those
derivations.

7 Conclusion

We have introduced a new model for vector
space representations of word and phrase mean-
ing, by providing an explicit probabilistic process
by which natural language expressions are gener-
ated from vectors in a continuous space of mean-
ings. We’ve given efficient algorithms for both
analysis into and generation out of this meaning
space, and described two different training proce-
dures for estimating the parameters of the model.
Experimental results demonstrate that these al-
gorithms are capable of modeling graded human
judgments of phrase similarity given only positive
examples of matching pairs, or distributional rep-
resentations of pairs as training data; when trained
in this fashion, the model outperforms several
other compositional approaches to vector space
semantics. We have concluded by suggesting how
syntactic information might be more closely inte-
grated into this model. While the results presented
here are preliminary, we believe they present com-
pelling evidence of representational power, and
motivate further study of related models for this
problem.

Acknowledgments

We would like to thank Stephen Clark and An-
dreas Vlachos for feedback on a draft of this pa-
per.

98

References
L Douglas Baker and Andrew Kachites McCallum.

1998. Distributional clustering of words for text
classification. In Proceedings of the 21st annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 96–103.
ACM.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages
1183–1193. Association for Computational Linguis-
tics.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of Ma-
chine Learning Research, 3:993–1022.

Stephen Boyd and Lieven Vandenberghe. 2004. Con-
vex optimization. Cambridge university press.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen
Clark. 2010. Mathematical foundations for a com-
positional distributional model of meaning. arXiv
preprint arXiv:1003.4394.

Scott Deerwester, Susan T. Dumais, George W Fur-
nas, Thomas K Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American society for information science,
41(6):391–407.

John Rupert Firth. 1957. A synopsis of linguistic the-
ory, 1930-1955.

Gottlob Frege. 1892. Uber Sinn und Bedeutung.
Zeitschrift fur Philosophie und philosophische Kri-
tik, pages 25–50. English Translation: em On Sense
and Meaning, in Brian McGuinness (ed), em Frege:
collected works, pp. 157–177, Basil Blackwell, Ox-
ford.

Edward Grefenstette, Georgiana Dinu, Yao-Zhong
Zhang, Mehrnoosh Sadrzadeh, and Marco Baroni.
2013. Multi-step regression learning for compo-
sitional distributional semantics. Proceedings of
the 10th International Conference on Computational
Semantics (IWCS 2013).

Karl Moritz Hermann, Phil Blunsom, and Stephen Pul-
man. 2012. An unsupervised ranking model for
noun-noun compositionality. In Proceedings of the
First Joint Conference on Lexical and Computa-
tional Semantics-Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Pro-
ceedings of the Sixth International Workshop on Se-
mantic Evaluation, pages 132–141. Association for
Computational Linguistics.

Julia Hockenmaier and Mark Steedman. 2002. Gen-
erative models for statistical parsing with combina-
tory categorial grammar. In Proceedings of the 40th
Annual Meeting on Association for Computational

Linguistics, pages 335–342. Association for Com-
putational Linguistics.

Dong C Liu and Jorge Nocedal. 1989. On the limited
memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528.

Edward Loper and Steven Bird. 2002. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL-
02 Workshop on Effective tools and methodologies
for teaching natural language processing and com-
putational linguistics - Volume 1, ETMTNLP ’02,
pages 63–70, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. proceedings of
ACL-08: HLT, pages 236–244.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive Sci-
ence, 34(8):1388–1429.

Alberto Paccanaro and Jefferey Hinton. 2002. Learn-
ing hierarchical structures with linear relational em-
bedding. In Advances in Neural Information Pro-
cessing Systems 14: Proceedings of the 2001 Neural
Information Processing Systems (NIPS) Conference,
volume 14, page 857. MIT Press.

Hinrich Schütze and Jan Pedersen. 1993. A vector
model for syntagmatic and paradigmatic relatedness.
Making sense of words, pages 104–113.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1201–1211. Association for Computational Linguis-
tics.

Mark Steedman and Jason Baldridge. 2011. Combi-
natory categorial grammar. Non-Transformational
Syntax Oxford: Blackwell, pages 181–224.

Wikimedia Foundation. 2013. Wikipedia.
http://dumps.wikimedia.org/enwiki/. Accessed:
2013-04-20.

Stephen Wu, William Schuler, et al. 2011. Struc-
tured composition of semantic vectors. In Proceed-
ings of the Ninth International Conference on Com-
putational Semantics (IWCS 2011), pages 295–304.
Citeseer.

Fabio Massimo Zanzotto, Ioannis Korkontzelos,
Francesca Fallucchi, and Suresh Manandhar. 2010.
Estimating linear models for compositional distri-
butional semantics. In Proceedings of the 23rd In-
ternational Conference on Computational Linguis-
tics, pages 1263–1271. Association for Computa-
tional Linguistics.

99

