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Abstract 

This paper is to introduce our participation in 

the WMT13 shared tasks on Quality Estima-

tion for machine translation without using ref-

erence translations. We submitted the results 

for Task 1.1 (sentence-level quality estima-

tion), Task 1.2 (system selection) and Task 2 

(word-level quality estimation). In Task 1.1, 

we used an enhanced version of BLEU metric 

without using reference translations to evalu-

ate the translation quality. In Task 1.2, we uti-

lized a probability model Naïve Bayes (NB) as 

a classification algorithm with the features 

borrowed from the traditional evaluation met-

rics. In Task 2, to take the contextual infor-

mation into account, we employed a discrimi-

native undirected probabilistic graphical mod-

el Conditional random field (CRF), in addition 

to the NB algorithm. The training experiments 

on the past WMT corpora showed that the de-

signed methods of this paper yielded promis-

ing results especially the statistical models of 

CRF and NB. The official results show that 

our CRF model achieved the highest F-score 

0.8297 in binary classification of Task 2. 

 

1 Introduction 

Due to the fast development of Machine transla-

tion, different automatic evaluation methods for 

the translation quality have been proposed in re-

cent years. One of the categories is the lexical 

similarity based metric. This kind of metrics in-

cludes the edit distance based method, such as 

WER (Su et al., 1992), Multi-reference WER 

(Nießen et al., 2000), PER (Tillmann et al., 

1997), the works of (Akiba, et al., 2001), 

(Leusch et al., 2006) and (Wang and Manning, 

2012); the precision based method, such as 

BLEU (Papineni et al., 2002), NIST (Doddington, 

2002), and SIA (Liu and Gildea, 2006); recall 

based method, such as ROUGE (Lin and Hovy 

2003); and the combination of precision and re-

call, such as GTM (Turian et al., 2003), METE-

OR (Lavie and Agarwal, 2007), BLANC (Lita et 

al., 2005), AMBER (Chen and Kuhn, 2011), 

PORT (Chen et al., 2012b), and LEPOR (Han et 

al., 2012). 

Another category is the using of linguistic fea-

tures. This kind of metrics includes the syntactic 

similarity, such as the POS information used by 

TESLA (Dahlmeier et al., 2011), (Liu et al., 

2010) and (Han et al., 2013), phrase information 

used by (Povlsen, et al., 1998) and (Echizen-ya 

and Araki, 2010), sentence structure used by 

(Owczarzak et al., 2007); the semantic similarity, 

such as textual entailment used by (Mirkin et al., 

2009) and (Castillo and Estrella, 2012), Syno-

nyms used by METEOR (Lavie and Agarwal, 

2007), (Wong and Kit, 2012), (Chan and Ng, 

2008); paraphrase used by (Snover et al., 2009). 

The traditional evaluation metrics tend to 

evaluate the hypothesis translation as compared 

to the reference translations that are usually of-

fered by human efforts. However, in the practice, 

there is usually no golden reference for the trans-

lated documents, especially on the internet works. 

How to evaluate the quality of automatically 

translated documents or sentences without using 

the reference translations becomes a new chal-

lenge in front of the NLP researchers. 
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ADJ ADP ADV CONJ DET NOUN NUM PRON PRT VERB X . 

ADJ PREP, 

PREP/DEL 

ADV, 

NEG 

CC, 

CCAD, 

CCNEG, 

CQUE, 

CSUBF, 

CSUBI, 

CSUBX 

ART NC, 

NMEA, 

NMON, 

NP, 

PERCT,  

UMMX 

CARD, 

CODE, 

QU 

DM, 

INT, 

PPC, 

PPO, 

PPX, 

REL 

SE VCLIger, 

VCLIinf, 

VCLIfin, 

VEadj, 

VEfin, 

VEger, 

VEinf, 

VHadj, 

VHfin, 

VHger, 

VHinf, 

VLadj, 

VLfin, 

VLger, 

VLinf, 

VMadj, 

VMfin, 

VMger, 

VMinf, 

VSadj, 

VSfin, 

VSger, 

VSinf 

ACRNM, 

ALFP, 

ALFS, 

FO, ITJN, 

ORD, 

PAL, 

PDEL, 

PE, PNC, 

SYM 

BACKSLASH, 

CM, COLON, 

DASH, DOTS, 

FS, LP, QT, 

RP, SEMICO-

LON, SLASH 

Table 1: Developed POS mapping for Spanish and universal tagset 
 

2 Related Works 

Gamon et al. (2005) perform a research about 

reference-free SMT evaluation method on sen-

tence level. This work uses both linear and non-

linear combinations of language model and SVM 

classifier to find the badly translated sentences. 

Albrecht and Hwa (2007) conduct the sentence-

level MT evaluation utilizing the regression 

learning and based on a set of weaker indicators 

of fluency and adequacy as pseudo references. 

Specia and Gimenez (2010) use the Confidence 

Estimation features and a learning mechanism 

trained on human annotations. They show that 

the developed models are highly biased by diffi-

culty level of the input segment, therefore they 

are not appropriate for comparing multiple sys-

tems that translate the same input segments. Spe-

cia et al. (2010) discussed the issues between the 

traditional machine translation evaluation and the 

quality estimation tasks recently proposed. The 

traditional MT evaluation metrics require refer-

ence translations in order to measure a score re-

flecting some aspects of its quality, e.g. the 

BLEU and NIST. The quality estimation ad-

dresses this problem by evaluating the quality of 

translations as a prediction task and the features 

are usually extracted from the source sentences 

and target (translated) sentences. They also show 

that the developed methods correlate better with 

human judgments at segment level as compared 

to traditional metrics. Popović et al. (2011) per-

form the MT evaluation using the IBM model 

one with the information of morphemes, 4-gram 

POS and lexicon probabilities. Mehdad et al. 

(2012) use the cross-lingual textual entailment to 

push semantics into the MT evaluation without 

using reference translations. This evaluation 

work mainly focuses on the adequacy estimation. 

Avramidis (2012) performs an automatic sen-

tence-level ranking of multiple machine transla-

tions using the features of verbs, nouns, sentenc-

es, subordinate clauses and punctuation occur-

rences to derive the adequacy information. Other 

descriptions of the MT Quality Estimation tasks 

can be gained in the works of (Callison-Burch et 

al., 2012) and (Felice and Specia, 2012). 

3 Tasks Information  

This section introduces the different sub-tasks we 

participated in the Quality Estimation task of 

WMT 13 and the methods we used.  

3.1 Task 1-1 Sentence-level QE 

Task 1.1 is to score and rank the post-editing 

effort of the automatically translated English-

Spanish sentences without offering the reference 

translation. 

Firstly, we develop the English and Spanish 

POS tagset mapping as shown in Table 1. The 75 

Spanish POS tags yielded by the Treetagger 

(Schmid, 1994) are mapped to the 12 universal 

tags developed in (Petrov et al., 2012). The Eng-

lish POS tags are extracted from the parsed sen-

tences using the Berkeley parser (Petrov et al., 

2006). 

Secondly, the enhanced version of BLEU 

(EBLEU) formula is designed with the factors of 

modified length penalty (   ), precision, and 

recall, the   and   representing the lengths of 

hypothesis (target) sentence and source sentence 

respectively. We use the harmonic mean of pre-

cision and recall, i.e.  (       ). We assign 

the weight values     and    , i.e. higher 

weight value is assigned to precision, which is 

different with METEOR (the inverse values). 
 

       
          (∑      ( (       ))) (1) 

 

     {
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Lastly, the scoring for the post-editing effort 

of the automatically translated sentences is per-

formed on the extracted POS sequences of the 

source and target languages. The evaluated per-

formance of EBLEU on WMT 12 corpus is 

shown in Table 2 using the Mean-Average-Error 

(MAE), Root-Mean-Squared-Error (RMSE).  

 

 Precision Recall MLP EBLEU 

MAE 0.17 0.19 0.25 0.16 

RMSE 0.22 0.24 0.30 0.21 

Table 2: Performance on the WMT12 corpus 

The official evaluation scores of the testing re-

sults on WMT 13 corpus are shown in Table 3. 

The testing results show similar scores as com-

pared to the training scores (the MAE score is 

around 0.16 and the RMSE score is around 0.22), 

which shows a stable performance of the devel-

oped model EBLEU. However, the performance 

of EBLEU is not satisfactory currently as shown 

in the Table 2 and Table 3. This is due to the fact 

that we only used the POS information as lin-

guistic feature. This could be further improved 

by the combination of lexical information and 

other linguistic features such as the sentence 

structure, phrase similarity, and text entailment. 

 

 MAE RMSE DeltaAvg 
Spearman 

Corr 

EBLEU 16.97 21.94 2.74 0.11 

Baseline 

SVM 
14.81 18.22 8.52 0.46 

Table 3: Performance on the WMT13 corpus 

3.2 Task 1-2 System Selection 

Task 1.2 is the system selection task on EN-ES 

and DE-EN language pairs. Participants are re-

quired to rank up to five alternative translations 

for the same source sentence produced by multi-

ple translation systems.  

Firstly, we describe the two variants of 

EBLEU method for this task. We score the five 

alternative translation sentences as compared to 

the source sentence according to the closeness of 

their POS sequences. The German POS is also 

extracted using Berkeley parser (Petrov et al., 

2006). The mapping of German POS to universal 

POS tagset is using the developed one in the 

work of (Petrov et al., 2012). When we convert 

the absolute scores into the corresponding rank 

values, the variant EBLEU-I means that we use 

five fixed intervals (with the span from 0 to 1) to 

achieve the alignment as shown in Table 4. 

[1,0.4) [0.4, 0.3) [0.3, 0.25) [0.25, 0.2) [0.2, 0] 

5 4 3 2 1 

Table 4: Convert absolute scores into ranks 

 

The alignment work from absolute scores to 

rank values shown in Table 4 is empirically de-

termined. We have made a statistical work on the 

absolute scores yielded by our metrics, and each 

of the intervals shown in Table 4 covers the simi-

lar number of sentence scores. 

On the other hand, in the metric EBLEU-A, 

“A” means average. The absolute sentence edit 

scores are converted into the five rank values 

with the same number (average number). For 

instance, if there are 1000 sentence scores in to-

tal then each rank level (from 1 to 5) will gain 

200 scores from the best to the worst. 

Secondly, we introduce the NB-LPR model 

used in this task. NB-LPR means the Naïve 

Bayes classification algorithm using the features 

of Length penalty (introduced in previous sec-

tion), Precision, Recall and Rank values. NB-

LPR considers each of its features independently. 

Let’s see the conditional probability that is also 

known as Bayes’ rule. If the  ( | )  is given, 

then the  ( | ) can be calculated as follows: 

 

  ( | )  
 ( | ) ( )

 ( )
 (5) 

 

Given a data point identified as 

 (          ) and the classifications 

 (          ), Bayes’ rule can be applied to 

this statement: 

 

  (  |          )  
 (          |  ) (  )

 (          )
 (6) 

 

As in many practical applications, parameter 

estimation for NB-LPR model uses the method 

of maximum likelihood. For details of Naïve 

Bayes algorithm, see the works of (Zhang, 2004) 

and (Harrington, 2012). 

Thirdly, the SVM-LPR model means the sup-

port vector machine classification algorithm us-

ing the features of Length penalty, Precision, 

Recall and Rank values, i.e. the same features as 

in NB-LPR. SVM solves the nonlinear classifica-

tion problem by mapping the data from a low 

dimensional space to a high dimensional space 

using the Kernel methods. In the projected high 

dimensional space, the problem usually becomes 

a linear one, which is easier to solve. SVM is 

also called maximum interval classifier because 

it tries to find the optimized hyper plane that 
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separates different classes with the largest mar-

gin, which is usually a quadratic optimization 

problem. Let’s see the formula below, we should 

find the points with the smallest margin to the 

hyper plane and then maximize this margin. 

 

          {    (      ( 
    ))  

 

‖ ‖
}

 (7) 

 

where   is normal to the hyper plane, || || is 

the Euclidean norm of  , and | | || ||  is the 

perpendicular distance from the hyper plane to 

the origin. For details of SVM, see the works of 

(Cortes and Vapnik, 1995) and (Burges, 1998). 

 

EN-ES 

NB-LPR SVM-LPR 

MAE RMSE Time MAE RMSE Time 

.315 .399 .40s .304 .551 60.67s 

DE-EN 

NB-LPR SVM-LPR 

MAE RMSE Time MAE RMSE Time 

.318 .401 .79s .312 .559 111.7s 

Table 5: NB-LPR and SVM-LPR training 

In the training stage, we used all the officially 

released data of WMT 09, 10, 11 and 12 for the 

EN-ES and DE-EN language pairs. We used the 

WEKA (Hall et al., 2009) data mining software 

to implement the NB and SVM algorithms. The 

training scores are shown in Table 5. The NB-

LPR performs lower scores than the SVM-LPR 

but faster than SVM-LPR. 

 
 DE-EN EN-ES 

Methods 
Tau(ties 

penalized) 

|Tau|(ties 

ignored) 

Tau(ties 

penalized) 

|Tau|(ties 

ignored) 

EBLEU-I -0.38 -0.03 -0.35 0.02 
EBLEU-A N/A N/A -0.27 N/A 

NB-LPR -0.49 0.01 N/A 0.07 

Baseline  -0.12 0.08 -0.23 0.03 

Table 6: QE Task 1.2 testing scores 

The official testing scores are shown in Table 

6. Each task is allowed to submit up to two sys-

tems and we submitted the results using the 

methods of EBLEU and NB-LPR. The perfor-

mance of NB-LPR on EN-ES language pair 

shows higher Tau score (0.07) than the baseline 

system score (0.03) when the ties are ignored. 

Because of the number limitation of submitted 

systems for each task, we did not submit the 

SVM-LPR results. However, the training exper-

iments prove that the SVM-LPR model performs 

better than the NB-LPR model though SVM-

LPR takes more time to run. 

3.3 Task 2 Word-level QE 

Task 2 is the word-level quality estimation of 

automatically translated news sentences from 

English to Spanish without given reference trans-

lations. Participants are required to judge each 

translated word by assigning a two- or multi-

class labels. In the binary classification, a good 

or a bad label should be judged, where “bad” 

indicates the need for editing the token. In the 

multi-class classification, the labels include 

“keep”, “delete” and “substitute”. In addition to 

the NB method, in this task, we utilized a dis-

criminative undirected probabilistic graphical 

model, i.e. Conditional Random Field (CRF). 

CRF is early employed by Lefferty (Lefferty 

et al., 2001) to deal with the labeling problems of 

sequence data, and is widely used later by other 

researchers. As the preparation for CRF defini-

tion, we assume that   is a variable representing 

the input sequence, and   is another variable rep-

resenting the corresponding labels to be attached 

to  . The two variables interact as conditional 

probability  ( | )  mathematically. Then the 

definition of CRF: Let a graph model   (   ) 

comprise a set   of vertices or nodes together 

with a set   of edges or lines and      |  
  , such that   is indexed by the vertices of  , 

then (   ) shapes a CRF model. This set meets 

the following form:  

 

   ( | )      

(∑     (   |   )       ∑     (   |   )     )
 (8) 

 

where   and   represent the data sequence and 

label sequence respectively;    and    are the 

features to be defined;    and    are the parame-

ters trained from the datasets. We used the tool 

CRF++
1
 to implement the CRF algorithm. The 

features we used for the NB and CRF are shown 

in Table 7. We firstly trained the CRF and NB 

models on the officially released training corpus 

(produced by Moses and annotated by computing 

TER with some tweaks). Then we removed the 

truth labels in the training corpus (we call it 

pseudo test corpus) and labeled each word using 

the derived training models. The test results on 

the pseudo test corpus are shown in Table 8, 

                                                 
1
 https://code.google.com/p/crfpp/ 
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which specifies CRF performs better than NB 

algorithm. 

 

     (    ) 
Unigram, from antecedent 4

th
 

to subsequent 3
rd

 token 

        
 (    ) 

Bigram, from antecedent 2
nd

 

to subsequent 2
nd

 token 

      
Jump bigram, antecedent and 

subsequent token 

            
 (    ) 

Trigram, from antecedent 2
nd

 

to subsequent 2
nd

 token 

Table 7: Developed features 

 

Binary 

CRF NB 

Training Accuracy Training Accuracy 
Itera=108 

Time=2.48s 
0.944 Time=0.59s 0.941 

Multi-classes 

CRF NB 

Training Accuracy Training Accuracy 
Itera=106 

Time=3.67s 
0.933 Time=0.55s 0.929 

Table 8: Performance on pseudo test corpus 

The official testing scores of Task 2 are shown 

in Table 9. We include also the results of other 

participants (CNGL and LIG) and their ap-

proaches. 

 
 Binary Multiclass 

Methods Pre Recall F1 Acc 

CNGL-

dMEMM 
0.7392 0.9261 0.8222 0.7162 

CNGL-

MEMM 
0.7554 0.8581 0.8035 0.7116 

LIG-All N/A N/A N/A 0.7192 

LIG-FS 0.7885 0.8644 0.8247 0.7207 

LIG-

BOOSTING 
0.7779 0.8843 0.8276 N/A 

NB 0.8181 0.4937 0.6158 0.5174 

CRF 0.7169 0.9846 0.8297 0.7114 

Table 9: QE Task 2 official testing scores 

The results show that our method CRF yields 

a higher recall score than other systems in binary 

judgments task, and this leads to the highest F1 

score (harmonic mean of precision and recall). 

The recall value reflects the loyalty to the truth 

data. The augmented feature set designed in this 

paper allows the CRF to take the contextual in-

formation into account, and this contributes 

much to the recall score. On the other hand, the 

accuracy score of CRF in multiclass evaluation is 

lower than LIG-FS method. 

4 Conclusions 

This paper describes the algorithms and features 

we used in the WMT 13 Quality Estimation tasks. 

In the sentence-level QE task (Task 1.1), we de-

velop an enhanced version of BLEU metric, and 

this shows a potential usage for the traditional 

evaluation criteria. In the newly proposed system 

selection task (Task 1.2) and word-level QE task 

(Task 2), we explore the performances of several 

statistical models including NB, SVM, and CRF, 

of which the CRF performs best, the NB per-

forms lower than SVM but much faster than 

SVM. The official results show that the CRF 

model yields the highest F-score 0.8297 in binary 

classification judgment of word-level QE task. 
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