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Preface

The ACL 2013 Workshop on Statistical Machine Translation (WMT 2013) took place on Thursday and
Friday, August 8–9, 2013 in Sofia, Bulgaria, immediately following the Conference of the Association
for Computational Linguistics (ACL).

This is the eighth time this workshop has been held. The first time it was held at HLT-NAACL 2006 in
New York City, USA. In the following years the Workshop on Statistical Machine Translation was held
at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens,
Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh, Scotland, and NAACL 2012 in
Montréal, Canada.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source language. In this
workshop we encouraged researchers to investigate ways to improve the performance of SMT systems
for diverse languages, including morphologically more complex languages, languages with partial free
word order, and low-resource languages.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation,
we conducted three shared tasks: a translation task, a quality estimation task, and a task to test
automatic evaluation metrics. The results of the shared tasks were announced at the workshop, and
these proceedings also include an overview paper for the shared tasks that summarizes the results, as
well as provides information about the data used and any procedures that were followed in conducting
or scoring the task. In addition, there are short papers from each participating team that describe their
underlying system in greater detail.

Like in previous years, we have received a far larger number of submission than we could accept for
presentation. This year we have received 32 full paper submissions and 46 shared task submissions. In
total WMT-2013 featured 18 full paper oral presentations and 45 shared task poster presentations.

The invited talk was given by Andreas Eisele (Directorate-General for Translation at the European
Commission, Luxembourg) entitled “Machine Translation at the European Commission: Serving the
multilingual needs of the European Commission”.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Ondřej Bojar, Christian Buck, Chris Callison-Burch, Barry Haddow, Philipp Koehn, Christof Monz, Matt
Post, Hervé Saint-Amand, Radu Soricut, and Lucia Specia
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WMT 5-year Retrospective Best Paper Award

Each year WMT awards a 5-year Retrospective Best Paper Award. This year we selected the best paper
from 2008’s Workshop on Statistical Machine Translation, which was collocated with ACL in Columbus,
Ohio. The goals of this retrospective award are to recognize high-quality work that has stood the test of
time, and to highlight the excellent work that appears at WMT.

37 members of the WMT13 program committee voted on the best paper from a list of seven nominated
papers. These were nominated by selecting the papers with the most non-self-citations in the ACL
anthology network. This year the vote was very close, and was divided between several excellent papers.
Ultimately, the program committee decided to award the WMT 5-year Retrospective Best Paper Award
to:

Kevin Gimpel and Noah A. Smith. 2008. Rich Source-Side Context for Statistical Machine Translation.
In Proceedings of the Workshop on Statistical Machine Translation. Pages 9-17.

In this paper, Gimpel and Smith used a variety of features, including surrounding words and part-of-
speech tags, local syntactic structure, and other properties of the source language sentence to help predict
each phrase’s translation. They argued that source side features were easier to exploit than target side
features, and that they were likely to make a bigger impact, since some target side features are already
exploited via the language model. Gimpel and Smith empirically demonstrated the value of their model
by augmenting the baseline Moses MT system and fielding an entry into the English-to-German shared
task at WMT that year.

One of the program committee members, Preslav Nakov, commented that this work made an important
contribution in the direction of context-aware SMT, which has been largely neglected in mainstream
SMT research.

Congratulations to Kevin Gimpel and Noah Smith on their excellent work!
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Abstract

We present the results of the WMT13
shared tasks, which included a translation
task, a task for run-time estimation of ma-
chine translation quality, and an unoffi-
cial metrics task. This year, 143 machine
translation systems were submitted to the
ten translation tasks from 23 institutions.
An additional 6 anonymized systems were
included, and were then evaluated both au-
tomatically and manually, in our largest
manual evaluation to date. The quality es-
timation task had four subtasks, with a to-
tal of 14 teams, submitting 55 entries.

1 Introduction

We present the results of the shared tasks of
the Workshop on Statistical Machine Translation
(WMT) held at ACL 2013. This workshop builds
on seven previous WMT workshops (Koehn and
Monz, 2006; Callison-Burch et al., 2007, 2008,
2009, 2010, 2011, 2012).

This year we conducted three official tasks: a
translation task, a human evaluation of transla-
tion results, and a quality estimation task.1 In
the translation task (§2), participants were asked
to translate a shared test set, optionally restrict-
ing themselves to the provided training data. We
held ten translation tasks this year, between En-
glish and each of Czech, French, German, Span-
ish, and Russian. The Russian translation tasks
were new this year, and were also the most popu-
lar. The system outputs for each task were evalu-
ated both automatically and manually.

The human evaluation task (§3) involves ask-
ing human judges to rank sentences output by
anonymized systems. We obtained large numbers
of rankings from two groups: researchers (who

1The traditional metrics task is evaluated in a separate pa-
per (Macháček and Bojar, 2013).

contributed evaluations proportional to the number
of tasks they entered) and workers on Amazon’s
Mechanical Turk (who were paid). This year’s ef-
fort was our largest yet by a wide margin; we man-
aged to collect an order of magnitude more judg-
ments than in the past, allowing us to achieve sta-
tistical significance on the majority of the pairwise
system rankings. This year, we are also clustering
the systems according to these significance results,
instead of presenting a total ordering over systems.

The focus of the quality estimation task (§6)
is to produce real-time estimates of sentence- or
word-level machine translation quality. This task
has potential usefulness in a range of settings, such
as prioritizing output for human post-editing, or
selecting the best translations from a number of
systems. This year the following subtasks were
proposed: prediction of percentage of word edits
necessary to fix a sentence, ranking of up to five al-
ternative translations for a given source sentence,
prediction of post-editing time for a sentence, and
prediction of word-level scores for a given trans-
lation (correct/incorrect and types of edits). The
datasets included English-Spanish and German-
English news translations produced by a number
of machine translation systems. This marks the
second year we have conducted this task.

The primary objectives of WMT are to evaluate
the state of the art in machine translation, to dis-
seminate common test sets and public training data
with published performance numbers, and to re-
fine evaluation methodologies for machine trans-
lation. As before, all of the data, translations,
and collected human judgments are publicly avail-
able.2 We hope these datasets serve as a valu-
able resource for research into statistical machine
translation, system combination, and automatic
evaluation or prediction of translation quality.

2http://statmt.org/wmt13/results.html
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2 Overview of the Translation Task

The recurring task of the workshop examines
translation between English and five other lan-
guages: German, Spanish, French, Czech, and —
new this year — Russian. We created a test set for
each language pair by translating newspaper arti-
cles and provided training data.

2.1 Test data
The test data for this year’s task was selected from
news stories from online sources. A total of 52
articles were selected, in roughly equal amounts
from a variety of Czech, English, French, German,
Spanish, and Russian news sites:3

Czech: aktuálně.cz (1), CTK (1), denı́k (1),
iDNES.cz (3), lidovky.cz (1), Novinky.cz (2)

French: Cyber Presse (3), Le Devoir (1), Le
Monde (3), Liberation (2)

Spanish: ABC.es (2), BBC Spanish (1), El Peri-
odico (1), Milenio (3), Noroeste (1), Primera
Hora (3)

English: BBC (2), CNN (2), Economist (1),
Guardian (1), New York Times (2), The Tele-
graph (1)

German: Der Standard (1), Deutsche Welle (1),
FAZ (1), Frankfurter Rundschau (2), Welt (2)

Russian: AIF (2), BBC Russian (2), Izvestiya (1),
Rosbalt (1), Vesti (1)

The stories were translated by the professional
translation agency Capita, funded by the EU
Framework Programme 7 project MosesCore, and
by Yandex, a Russian search engine.4 All of the
translations were done directly, and not via an in-
termediate language.

2.2 Training data
As in past years we provided parallel corpora to
train translation models, monolingual corpora to
train language models, and development sets to
tune system parameters. Some training corpora
were identical from last year (Europarl5, United
Nations, French-English 109 corpus, CzEng),
some were updated (News Commentary, mono-
lingual data), and new corpora were added (Com-
mon Crawl (Smith et al., 2013), Russian-English

3For more details see the XML test files. The docid tag
gives the source and the date for each document in the test set,
and the origlang tag indicates the original source language.

4http://www.yandex.com/
5As of Fall 2011, the proceedings of the European Parlia-

ment are no longer translated into all official languages.

parallel data provided by Yandex, Russian-English
Wikipedia Headlines provided by CMU).

Some statistics about the training materials are
given in Figure 1.

2.3 Submitted systems
We received 143 submissions from 23 institu-
tions. The participating institutions and their en-
try names are listed in Table 1; each system did
not necessarily appear in all translation tasks. We
also included three commercial off-the-shelf MT
systems and three online statistical MT systems,6

which we anonymized.
For presentation of the results, systems are

treated as either constrained or unconstrained, de-
pending on whether their models were trained only
on the provided data. Since we do not know how
they were built, these online and commercial sys-
tems are treated as unconstrained during the auto-
matic and human evaluations.

3 Human Evaluation

As with past workshops, we contend that auto-
matic measures of machine translation quality are
an imperfect substitute for human assessments.
We therefore conduct a manual evaluation of the
system outputs and define its results to be the prin-
cipal ranking of the workshop. In this section, we
describe how we collected this data and compute
the results, and then present the official results of
the ranking.

We run the evaluation campaign using an up-
dated version of Appraise (Federmann, 2012); the
tool has been extended to support collecting judg-
ments using Amazon’s Mechanical Turk, replac-
ing the annotation system used in previous WMTs.
The software, including all changes made for this
year’s workshop, is available from GitHub.7

This year differs from prior years in a few im-
portant ways:

• We collected about ten times more judgments
that we have in the past, using judgments
from both participants in the shared task and
non-experts hired on Amazon’s Mechanical
Turk.

• Instead of presenting a total ordering of sys-
tems for each pair, we cluster them and report
a ranking over the clusters.

6Thanks to Hervé Saint-Amand and Martin Popel for har-
vesting these entries.

7https://github.com/cfedermann/Appraise
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Europarl Parallel Corpus
Spanish↔ English French↔ English German↔ English Czech↔ English

Sentences 1,965,734 2,007,723 1,920,209 646,605
Words 56,895,229 54,420,026 60,125,563 55,642,101 50,486,398 53,008,851 14,946,399 17,376,433

Distinct words 176,258 117,481 140,915 118,404 381,583 115,966 172,461 63,039

News Commentary Parallel Corpus
Spanish↔ English French↔ English German↔ English Czech↔ English Russian↔ English

Sentences 174,441 157,168 178,221 140,324 150,217
Words 5,116,388 4,520,796 4,928,135 4,066,721 4,597,904 4,541,058 3,206,423 3,507,249 3,841,950 4,008,949

Distinct words 84,273 61,693 69,028 58,295 142,461 61,761 138,991 54,270 145,997 57,991

Common Crawl Parallel Corpus
Spanish↔ English French↔ English German↔ English Czech↔ English Russian↔ English

Sentences 1,845,286 3,244,152 2,399,123 161,838 878,386
Words 49,561,060 46,861,758 91,328,790 81,096,306 54,575,405 58,870,638 3,529,783 3,927,378 21,018,793 21,535,122

Distinct words 710,755 640,778 889,291 859,017 1,640,835 823,480 210,170 128,212 764,203 432,062

United Nations Parallel Corpus
Spanish↔ English French↔ English

Sentences 11,196,913 12,886,831
Words 318,788,686 365,127,098 411,916,781 360,341,450

Distinct words 593,567 581,339 565,553 666,077

109 Word Parallel Corpus
French↔ English

Sentences 22,520,400
Words 811,203,407 668,412,817

Distinct words 2,738,882 2,861,836

CzEng Parallel Corpus
Czech↔ English

Sentences 14,833,358
Words 200,658,857 228,040,794

Distinct words 1,389,803 920,824

Yandex 1M Parallel Corpus
Russian↔ English

Sentences 1,000,000
Words 24,121,459 26,107,293

Distinct words 701,809 387,646

Wiki Headlines Parallel Corpus
Russian↔ English

Sentences 514,859
Words 1,191,474 1,230,644

Distinct words 282,989 251,328

Europarl Language Model Data
English Spanish French German Czech

Sentence 2,218,201 2,123,835 2,190,579 2,176,537 668,595
Words 59,848,044 60,476,282 63,439,791 53,534,167 14,946,399

Distinct words 123,059 181,837 145,496 394,781 172,461

News Language Model Data
English Spanish French German Czech Russian

Sentence 68,521,621 13,384,314 21,195,476 54,619,789 27,540,749 19,912,911
Words 1,613,778,461 386,014,234 524,541,570 983,818,841 456,271,247 351,595,790

Distinct words 3,392,137 1,163,825 1,590,187 6,814,953 2,655,813 2,195,112

News Test Set
English Spanish French German Czech Russian

Sentences 3000
Words 64,810 73,659 73,659 63,412 57,050 58,327

Distinct words 8,935 10,601 11,441 12,189 15,324 15,736

Figure 1: Statistics for the training and test sets used in the translation task. The number of words and the number of distinct
words (case-insensitive) is based on the provided tokenizer.
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ID Institution
BALAGUR Yandex School of Data Analysis (Borisov et al., 2013)
CMU

CMU-TREE-TO-TREE

Carnegie Mellon University (Ammar et al., 2013)

CU-BOJAR,
CU-DEPFIX,
CU-TAMCHYNA

Charles University in Prague (Bojar et al., 2013)

CU-KAREL, CU-ZEMAN Charles University in Prague (Bı́lek and Zeman, 2013)
CU-PHRASEFIX,
CU-TECTOMT

Charles University in Prague (Galuščáková et al., 2013)

DCU Dublin City University (Rubino et al., 2013a)
DCU-FDA Dublin City University (Bicici, 2013a)
DCU-OKITA Dublin City University (Okita et al., 2013)
DESRT Università di Pisa (Miceli Barone and Attardi, 2013)
ITS-LATL University of Geneva
JHU Johns Hopkins University (Post et al., 2013)
KIT Karlsruhe Institute of Technology (Cho et al., 2013)
LIA Université d’Avignon (Huet et al., 2013)
LIMSI LIMSI (Allauzen et al., 2013)
MES-* Munich / Edinburgh / Stuttgart (Durrani et al., 2013a; Weller et al., 2013)
OMNIFLUENT SAIC (Matusov and Leusch, 2013)
PROMT PROMT Automated Translations Solutions
QCRI-MES Qatar / Munich / Edinburgh / Stuttgart (Sajjad et al., 2013)
QUAERO QUAERO (Peitz et al., 2013a)
RWTH RWTH Aachen (Peitz et al., 2013b)
SHEF University of Sheffield
STANFORD Stanford University (Green et al., 2013)
TALP-UPC TALP Research Centre (Formiga et al., 2013a)
TUBITAK TÜBİTAK-BİLGEM (Durgar El-Kahlout and Mermer, 2013)
UCAM University of Cambridge (Pino et al., 2013)
UEDIN,
UEDIN-HEAFIELD

University of Edinburgh (Durrani et al., 2013b)

UEDIN-SYNTAX University of Edinburgh (Nadejde et al., 2013)
UMD University of Maryland (Eidelman et al., 2013)
UU Uppsala University (Stymne et al., 2013)
COMMERCIAL-1,2,3 Anonymized commercial systems
ONLINE-A,B,G Anonymized online systems

Table 1: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from the
commercial and online systems were not submitted by their respective companies but were obtained by us, and are therefore
anonymized in a fashion consistent with previous years of the workshop.
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3.1 Ranking translations of sentences
The ranking among systems is produced by col-
lecting a large number of rankings between the
systems’ translations. Every language task had
many participating systems (the largest was 19,
for the Russian-English task). Rather than asking
judges to provide a complete ordering over all the
translations of a source segment, we instead ran-
domly select five systems and ask the judge to rank
just those. We call each of these a ranking task.
A screenshot of the ranking interface is shown in
Figure 2.

For each ranking task, the judge is presented
with a source segment, a reference translation,
and the outputs of five systems (anonymized and
randomly-ordered). The following simple instruc-
tions are provided:

You are shown a source sentence fol-
lowed by several candidate translations.
Your task is to rank the translations from
best to worst (ties are allowed).

The rankings of the systems are numbered from 1
to 5, with 1 being the best translation and 5 be-
ing the worst. Each ranking task has the potential
to provide 10 pairwise rankings, and fewer if the
judge chooses any ties. For example, the ranking

{A:1, B:2, C:4, D:3, E:5}

provides 10 pairwise rankings, while the ranking

{A:3, B:3, C:4, D:3, E:1}

provides just 7. The absolute value of the ranking
or the degree of difference is not considered.

We use the collected pairwise rankings to assign
each system a score that reflects how highly that
system was usually ranked by the annotators. The
score for some system A reflects how frequently it
was judged to be better than other systems when
compared on the same segment; its score is the
number of pairwise rankings where it was judged
to be better, divided by the total number of non-
tying pairwise comparisons. These scores were
used to compute clusters of systems and rankings
between them (§3.4).

3.2 Collecting the data
A goal this year was to collect enough data to
achieve statistical significance in the rankings. We
distributed the workload among two groups of
judges: researchers and Turkers. The researcher

group comprised partipants in the shared task, who
were asked to contribute judgments on 300 sen-
tences for each system they contributed. The re-
searcher evaluation was held over three weeks
from May 17–June 7, and yielded about 280k pair-
wise rankings.

The Turker group was composed of non-expert
annotators hired on Amazon’s Mechanical Turk
(MTurk). A basic unit of work on MTurk is called
a Human Intelligence Task (HIT) and included
three ranking tasks, for which we paid $0.25. To
ensure that the Turkers provided high quality an-
notations, this portion of the evaluation was be-
gun after the researcher portion had completed,
enabling us to embed controls in the form of high-
consensus pairwise rankings in the Turker HITs.
To build these controls, we collected ranking tasks
containing pairwise rankings with a high degree of
researcher consensus. An example task is here:

SENTENCE 504
SOURCE Vor den heiligen Stätten verbeugen
REFERENCE Let’s worship the holy places
SYSTEM A Before the holy sites curtain
SYSTEM B Before we bow to the Holy Places
SYSTEM C To the holy sites bow
SYSTEM D Bow down to the holy sites
SYSTEM E Before the holy sites pay

MATRIX

A B C D E
A - 0 0 0 3
B 5 - 0 1 5
C 6 6 - 0 6
D 6 8 5 - 6
E 0 0 0 0 -

Matrix entry Mi,j records the number of re-
searchers who judged System i to be better than
System j. We use as controls pairwise judgments
for which |Mi,j−Mj,i| > 5, i.e., judgments where
the researcher consensus ran strongly in one direc-
tion. We rejected HITs from Turkers who encoun-
tered at least 10 of these controls and failed more
than 50% of them.

There were 463 people who participated in the
Turker portion of the manual evaluation, contribut-
ing 664k pairwise rankings from Turkers who
passed the controls. Together with the researcher
judgments, we collected close to a million pair-
wise rankings, compared to 101k collected last
year: a ten-fold increase. Table 2 contains more
detail.
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Figure 2: Screenshot of the Appraise interface used in the human evaluation campaign. The annotator is presented with a
source segment, a reference translation, and the outputs of five systems (anonymized and randomly-ordered) and has to rank
these according to their translation quality, ties are allowed. For technical reasons, annotators on Amazon’s Mechanical Turk
received all three ranking tasks for a single HIT on a single page, one upon the other.

3.3 Annotator agreement
Each year we calculate annotator agreement
scores for the human evaluation as a measure of
the reliability of the rankings. We measured pair-
wise agreement among annotators using Cohen’s
kappa coefficient (κ) (Cohen, 1960), which is de-
fined as

κ =
P (A)− P (E)

1− P (E)

where P (A) is the proportion of times that the an-
notators agree, and P (E) is the proportion of time
that they would agree by chance. Note that κ is ba-
sically a normalized version of P (A), one which
takes into account how meaningful it is for anno-
tators to agree with each other, by incorporating
P (E). The values for κ range from 0 to 1, with
zero indicating no agreement and 1 perfect agree-
ment.

We calculate P (A) by examining all pairs of
systems which had been judged by two or more
judges, and calculating the proportion of time that
they agreed that A > B, A = B, or A < B. In
other words, P (A) is the empirical, observed rate

at which annotators agree, in the context of pair-
wise comparisons.

As for P (E), it should capture the probability
that two annotators would agree randomly. There-
fore:

P (E) = P (A>B)2 + P (A=B)2 + P (A<B)2

Note that each of the three probabilities in P (E)’s
definition are squared to reflect the fact that we are
considering the chance that two annotators would
agree by chance. Each of these probabilities is
computed empirically, by observing how often an-
notators actually rank two systems as being tied.

Table 3 gives κ values for inter-annotator agree-
ment for WMT11–WMT13 while Table 4 de-
tails intra-annotator agreement scores. Due to the
change of annotation software, we used a slightly
different way of computing annotator agreement
scores. Therefore, we chose to re-compute values
for previous WMTs to allow for a fair comparison.
The exact interpretation of the kappa coefficient is
difficult, but according to Landis and Koch (1977),
0–0.2 is slight, 0.2–0.4 is fair, 0.4–0.6 is moderate,
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LANGUAGE PAIR Systems Rankings Average
Czech-English 11 85,469 7,769.91
English-Czech 12 102,842 8,570.17
German-English 17 128,668 7,568.71
English-German 15 77,286 5,152.40
Spanish-English 12 67,832 5,652.67
English-Spanish 13 60,464 4,651.08
French-English 13 80,741 6,210.85
English-French 17 100,783 5,928.41
Russian-English 19 151,422 7,969.58
English-Russian 14 87,323 6,237.36
Total 148 942,840 6,370.54
WMT12 103 101,969 999.69
WMT11 133 63,045 474.02

Table 2: Amount of data collected in the WMT13 manual evaluation. The final two rows report summary information from the
previous two workshops.

LANGUAGE PAIR WMT11 WMT12 WMT13 WMT13r WMT13m
Czech-English 0.400 0.311 0.244 0.342 0.279
English-Czech 0.460 0.359 0.168 0.408 0.075
German-English 0.324 0.385 0.299 0.443 0.324
English-German 0.378 0.356 0.267 0.457 0.239
Spanish-English 0.494 0.298 0.277 0.415 0.295
English-Spanish 0.367 0.254 0.206 0.333 0.249
French-English 0.402 0.272 0.275 0.405 0.321
English-French 0.406 0.296 0.231 0.434 0.237
Russian-English — — 0.278 0.315 0.324
English-Russian — — 0.243 0.416 0.207

Table 3: κ scores measuring inter-annotator agreement. The WMT13r and WMT13m columns provide breakdowns for re-
searcher annotations and MTurk annotations, respectively. See Table 4 for corresponding intra-annotator agreement scores.

0.6–0.8 is substantial, and 0.8–1.0 is almost per-
fect. We find that the agreement rates are more or
less the same as in prior years.

The WMT13 column contains both researcher
and Turker annotations at a roughly 1:2 ratio. The
final two columns break out agreement numbers
between these two groups. The researcher agree-
ment rates are similar to agreement rates from past
years, while the Turker agreement are well below
researcher agreement rates, varying widely, but of-
ten comparable to WMT11 and WMT12. Clearly,
researchers are providing us with more consistent
opinions, but whether these differences are ex-
plained by Turkers racing through jobs, the partic-
ularities that inform researchers judging systems
they know well, or something else, is hard to tell.
Intra-annotator agreement scores are also on par
from last year’s level, and are often much better.
We observe better intra-annotator agreement for
researchers compared to Turkers.

As a small test, we varied the threshold of ac-
ceptance against the controls for the Turker data
alone and computed inter-annotator agreement
scores on the datasets for the Russian–English task
(the only language pair where we had enough data
at high thresholds). Table 5 shows that higher
thresholds do indeed give us better agreements,
but not monotonically. The increasing κs sug-
gests that we can find a segment of Turkers who
do a better job and that perhaps a slightly higher
threshold of 0.6 would serve us better, while the
remaining difference against the researchers sug-
gests there may be different mindsets informing
the decisions. In any case, getting the best perfor-
mance out of the Turkers remains difficult.

3.4 System Score

Given the multitude of pairwise comparisons, we
would like to rank the systems according to a
single score computed for each system. In re-
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LANGUAGE PAIR WMT11 WMT12 WMT13 WMT13r WMT13m
Czech-English 0.597 0.454 0.479 0.483 0.478
English-Czech 0.601 0.390 0.290 0.547 0.242
German-English 0.576 0.392 0.535 0.643 0.515
English-German 0.528 0.433 0.498 0.649 0.452
Spanish-English 0.574 1.000 0.575 0.605 0.537
English-Spanish 0.426 0.329 0.492 0.468 0.492
French-English 0.673 0.360 0.578 0.585 0.565
English-French 0.524 0.414 0.495 0.630 0.486
Russian-English — — 0.450 0.363 0.477
English-Russian — — 0.513 0.582 0.500

Table 4: κ scores measuring intra-annotator agreement, i.e., self-consistency of judges, across for the past few years of the
human evaluation. The WMT13r and WMT13m columns provide breakdowns for researcher annotations and MTurk annota-
tions, respectively. The perfect inter-annotator agreement for Spanish-English is a result of there being very little data for that
language pair.

thresh. rankings κ

0.5 16,605 0.234
0.6 9,999 0.337
0.7 3,219 0.360
0.8 1,851 0.395
0.9 849 0.336

Table 5: Agreement as a function of threshold for Turkers on
the Russian–English task. The threshold is the percentage of
controls a Turker must pass for her rankings to be accepted.

cent evaluation campaigns, we tweaked the metric
and now arrived at a intuitive score that has been
demonstrated to be accurate in ranking systems ac-
cording to their true quality (Koehn, 2012).

The score, which we call EXPECTED WINS, has
an intuitive explanation. If the system is compared
against a randomly picked opposing system, on a
randomly picked sentence, by a randomly picked
judge, what is the probability that its translation is
ranked higher?

Formally, the score for a system Si among a set
of systems {Sj} given a pool of pairwise rankings
summarized as win(A,B) — the number of times
system A is ranked higher than system B — is
defined as follows:

score(Si) =
1

|{Sj}|
∑

j,j 6=i

win(Si, Sj)
win(Si, Sj) + win(Sj , Si)

Note that this score ignores ties.

3.5 Rank Ranges and Clusters

Given the scores, we would like to rank the sys-
tems, which is straightforward. But we would also
like to know, if the obtained system ranking is
statistically significant. Typically, given the large

number of systems that participate, and the simi-
larity of the systems given a common training data
condition and often common toolsets, there will be
some systems that will be very close in quality.

To establish the reliability of the obtained sys-
tem ranking, we use bootstrap resampling. We
sample from the set of pairwise rankings an equal
sized set of pairwise rankings (allowing for multi-
ple drawings of the same pairwise ranking), com-
pute the expected wins score for each system
based on this sample, and rank each system. By
repeating this procedure a 1,000 times, we can de-
termine a range of ranks, into which system falls
at least 95% of the time (i.e., at least 950 times) —
corresponding to a p-level of p ≤ 0.05.

Furthermore, given the rank ranges for each sys-
tem, we can cluster systems with overlapping rank
ranges.8

For all language pairs and all systems, Table 6
reports all system scores, rank ranges, and clus-
ters. The official interpretation of these results
is that systems in the same cluster are considered
tied. Given the large number of judgements that
we collected, it was possible to group on average
about two systems in a cluster, even though the
systems in the middle are typically in larger clus-
ters.

8Formally, given ranges defined by start(Si) and end(Si),
we seek the largest set of clusters {Cc} that satisfies:

∀S ∃C : S ∈ C
S ∈ Ca, S ∈ Cb → Ca = Cb

Ca 6= Cb → ∀Si ∈ Ca, Sj ∈ Cb :

start(Si) > end(Sj) or start(Sj) > end(Si)
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Czech-English
# score range system
1 0.607 1 UEDIN-HEAFIELD
2 0.582 2-3 ONLINE-B

0.573 2-4 MES
0.562 3-5 UEDIN
0.547 4-7 ONLINE-A
0.542 5-7 UEDIN-SYNTAX
0.534 6-7 CU-ZEMAN

8 0.482 8 CU-TAMCHYNA
9 0.458 9 DCU-FDA
10 0.321 10 JHU
11 0.297 11 SHEF-WPROA

English-Czech
# score range system
1 0.580 1-2 CU-BOJAR

0.578 1-2 CU-DEPFIX
3 0.562 3 ONLINE-B
4 0.525 4 UEDIN
5 0.505 5-7 CU-ZEMAN

0.502 5-7 MES
0.499 5-8 ONLINE-A
0.484 7-9 CU-PHRASEFIX
0.476 8-9 CU-TECTOMT

10 0.457 10-11 COMMERCIAL-1
0.450 10-11 COMMERCIAL-2

12 0.389 12 SHEF-WPROA

Spanish-English
# score range system
1 0.624 1 UEDIN-HEAFIELD
2 0.595 2 ONLINE-B
3 0.570 3-5 UEDIN

0.570 3-5 ONLINE-A
0.567 3-5 MES

6 0.537 6 LIMSI-SOUL
7 0.514 7 DCU
8 0.488 8-9 DCU-OKITA

0.484 8-9 DCU-FDA
10 0.462 10 CU-ZEMAN
11 0.425 11 JHU
12 0.169 12 SHEF-WPROA

English-Spanish
# rank range system
1 0.637 1 ONLINE-B
2 0.582 2-4 ONLINE-A

0.578 2-4 UEDIN
0.567 3-4 PROMT

5 0.535 5-6 MES
0.528 5-6 TALP-UPC

7 0.491 7-8 LIMSI
0.474 7-9 DCU
0.472 8-10 DCU-FDA
0.455 9-11 DCU-OKITA
0.446 10-11 CU-ZEMAN

12 0.417 12 JHU
13 0.324 13 SHEF-WPROA

German-English
# rank range system
1 0.660 1 ONLINE-B
2 0.620 2-3 ONLINE-A

0.608 2-3 UEDIN-SYNTAX
4 0.586 4-5 UEDIN

0.584 4-5 QUAERO
0.571 5-7 KIT
0.562 6-7 MES

8 0.543 8-9 RWTH-JANE
0.533 8-10 MES-REORDER
0.526 9-10 LIMSI-SOUL

11 0.480 11 TUBITAK
12 0.462 12-13 UMD

0.462 12-13 DCU
14 0.396 14 CU-ZEMAN
15 0.367 15 JHU
16 0.311 16 SHEF-WPROA
17 0.238 17 DESRT

English-German
# rank range system
1 0.637 1-2 ONLINE-B

0.636 1-2 PROMT
3 0.614 3 UEDIN-SYNTAX

0.587 3-5 ONLINE-A
0.571 4-6 UEDIN
0.554 5-6 KIT

7 0.523 7 STANFORD
8 0.507 8 LIMSI-SOUL
9 0.477 9-11 MES-REORDER

0.476 9-11 JHU
0.460 10-12 CU-ZEMAN
0.453 11-12 TUBITAK

13 0.361 13 UU
14 0.329 14-15 SHEF-WPROA

0.323 14-15 RWTH-JANE

English-Russian
# rank range system
1 0.641 1 PROMT
2 0.623 2 ONLINE-B
3 0.556 3-4 CMU

0.542 3-6 ONLINE-G
0.538 3-7 ONLINE-A
0.531 4-7 UEDIN
0.520 5-7 QCRI-MES

8 0.498 8 CU-KAREL
9 0.478 9-10 MES-QCRI

0.469 9-10 JHU
11 0.434 11-12 COMMERCIAL-3

0.426 11-13 LIA
0.419 12-13 BALAGUR

14 0.331 14 CU-ZEMAN

French-English
# rank range system
1 0.638 1 UEDIN-HEAFIELD
2 0.604 2-3 UEDIN

0.591 2-3 ONLINE-B
4 0.573 4-5 LIMSI-SOUL

0.562 4-5 KIT
0.541 5-6 ONLINE-A

7 0.512 7 MES-SIMPLIFIED
8 0.486 8 DCU
9 0.439 9-10 RWTH

0.429 9-11 CMU-T2T
0.420 10-11 CU-ZEMAN

12 0.389 12 JHU
13 0.322 13 SHEF-WPROA

English-French
# rank range system
1 0.607 1-2 UEDIN

0.600 1-3 ONLINE-B
0.588 2-4 LIMSI-SOUL
0.584 3-4 KIT

5 0.553 5-7 PROMT
0.551 5-8 STANFORD
0.547 5-8 MES
0.537 6-9 MES-INFLECTION
0.533 7-10 RWTH-PB
0.516 9-11 ONLINE-A
0.499 10-11 DCU

12 0.427 12 CU-ZEMAN
13 0.408 13 JHU
14 0.382 14 OMNIFLUENT
15 0.350 15 ITS-LATL
16 0.326 16 ITS-LATL-PE

Russian-English
# rank range system
1 0.657 1 ONLINE-B
2 0.604 2-3 CMU

0.588 2-3 ONLINE-A
4 0.562 4-6 ONLINE-G

0.561 4-6 PROMT
0.550 5-7 QCRI-MES
0.546 5-7 UCAM

8 0.527 8-9 BALAGUR
0.519 8-10 MES-QCRI
0.507 9-11 UEDIN
0.497 10-12 OMNIFLUENT
0.492 11-14 LIA
0.483 12-15 OMNIFLUENT-C
0.481 12-15 UMD
0.476 13-15 CU-KAREL

16 0.432 16 COMMERCIAL-3
17 0.417 17 UEDIN-SYNTAX
18 0.396 18 JHU
19 0.215 19 CU-ZEMAN

Table 6: Official results for the WMT13 translation task. Systems are ordered by the expected win score. Lines between
systems indicate clusters according to bootstrap resampling at p-level p ≤ .05. This method is also used to determine the
range of ranks into which system falls. Systems with grey background indicate use of resources that fall outside the constraints
provided for the shared task.
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4 Understandability of English→Czech

For the English-to-Czech translation, we con-
ducted a variation of the “understandability” test
as introduced in WMT09 (Callison-Burch et al.,
2009) and used in WMT10. In order to obtain
additional reference translations, we conflated this
test with post-editing. The procedure was as fol-
lows:

1. Monolingual editing (also called blind edit-
ing). The first annotator is given just the MT
output and requested to correct it. Given er-
rors in MT outputs, some guessing of the
original meaning is often inevitable and the
annotators are welcome to try. If unable, they
can mark the sentences as incomprehensible.

2. Review. A second annotator is asked to
validate the monolingual edit given both the
source and reference translations. Our in-
structions specify three options:

(a) If the monolingual edit is an adequate
translation and acceptably fluent Czech,
confirm it without changes.

(b) If the monolingual edit is adequate but
needs polishing, modify the sentence
and prefix it with the label ‘OK:’.

(c) If the monolingual edit is wrong, cor-
rect it. You may start from the origi-
nal unedited MT output, if that is eas-
ier. Avoid using the reference directly,
prefer words from MT output whenever
possible.

The motivation behind this procedure is that we
want to save the time necessary for reading the
sentence. If the reviewer has already considered
whether the sentence is an acceptable translation,
they do not need to read the MT output again in
order to post-edit it. Our approach is thus some-
what the converse of Aziz et al. (2013) who ana-
lyze post-editing effort to obtain rankings of MT
systems. We want to measure the understandabil-
ity of MT outputs and obtain post-edits at the same
time.

Both annotation steps were carried out in
the CASMACAT/Matecat post-editing user inter-
face.9, modified to provide the relevant variants of
the sentence next to the main edit box. Screen-
shots of the two annotation phases are given in
Figure 3 and Figure 4.

9http://www.casmacat.eu/index.php?n=Workbench

Occurrence GOOD ALMOST BAD EMPTY Total
First 34.7 0.1 42.3 11.0 4082
Repeated 41.1 0.1 41.0 6.1 805
Overall 35.8 0.1 42.1 10.2 4887

Table 7: Distribution of review statuses.

Similarly to the traditional ranking task, we pro-
vided three consecutive sentences from the origi-
nal text, each translated with a different MT sys-
tem. The annotators are free to use this contex-
tual information when guessing the meaning or re-
viewing the monolingual edits. Each “annotation
HIT” consists of 24 sentences, i.e. 8 snippets of 3
consecutive sentences.

4.1 Basic Statistics on Editing

In total, 21 annotators took part in the exercise, 20
of them contributed to monolingual editing and 19
contributed to the reviews.

Connecting each review with the monolingual
edit (some edits received multiple reviews), we ob-
tain one data row. We collected 4887 data rows
(i.e. sentence revisions) for 3538 monolingual ed-
its, covering 1468 source sentences as translated
by 12 MT systems (including the reference).

Not all MT systems were considered for each
sentence, we preferred to obtain judgments for
more source sentences.

Based on the annotation instructions, each data
row has one of the four possible statuses: GOOD,
ALMOST, BAD, and EMPTY. GOOD rows are
those where the reviewer accepted the monolin-
gual edit without changes, ALMOST edits were
modified by the reviewer but they were marked as
‘OK’. BAD edits were changed by the reviewer
and no ‘OK’ mark was given. Finally, the sta-
tus EMPTY is assigned to rows where the mono-
lingual editor refused to edit the sentence. The
EMPTY rows nevertheless contain the (“regular”)
post-edit of the reviewer, so they still provide a
new reference translation for the sentence.

Table 7 summarizes the distribution of row sta-
tuses depending on one more significant distinc-
tion: whether the monolingual editor has seen the
sentence before or not. We see that EMPTY and
BAD monolingual edits together drop by about
6% absolute when the sentence is not new to the
monolingual editor. The occurrence is counted as
“repeated” regardless whether the annotator has
previously seen the sentence in an editing or re-
viewing task. Unless stated otherwise, we exclude
repeated edits from our calculations.

10



Figure 3: In this screen, the annotator is expected to correct the MT output given only the context of at most two neighbouring
machine-translated sentences.

ALMOST Pairwise
treated Comparisons Agreement κ

inter
separate 2690 56.0 0.270
as BAD 2690 67.9 0.351
as GOOD 2690 65.2 0.289

intra
separate 170 65.3 0.410
as BAD 170 69.4 0.386
as GOOD 170 71.8 0.422

Table 8: Annotator agreement when reviewing monolingual
edits.

4.2 Agreement on Understandability

Before looking at individual system results, we
consider annotator agreement in the review step.
Details are given in Table 8. Given a (non-
EMPTY) string from a monolingual edit, we
would like to know how often two acceptability
judgments by two different reviewers (inter-) or
the same reviewer (intra-) agree. The repeated ed-
its remain in this analysis because we are not in-
terested in the origin of the string.

Our annotation setup leads to three possible la-
bels: GOOD, ALMOST, and BAD. The agree-
ment on one of three classes is bound to be lower
than the agreement on two classes, so we also re-
interpret ALMOST as either GOOD or BAD. Gen-
erally speaking, ALMOST is a positive judgment,
so it would be natural to treat it as GOOD. How-
ever, in our particular setup, when the reviewer
modified the sentence and forgot to add the label
‘OK:’, the item ended up in the BAD class. We
conclude that this is indeed the case: the inter-
annotator agreement appears higher if ALMOST

is treated as BAD. Future versions of the review-
ing interface should perhaps first ask for the yes/no
judgment and only then allow to post-edit.

The κ values in Table 8 are the Fleiss’
kappa (Fleiss, 1971), accounting for agreement by
chance given the observed label distributions.

In WMT09, the agreements for this task were
higher: 77.4 for inter-AA and 86.6 for intra-AA.
(In 2010, the agreements for this task were not re-
ported.) It is difficult to say whether the differ-
ence lies in the particular language pair, the dif-
ferent set of annotators, or the different user in-
terface for our reviewing task. In 2009 and 2010,
the reviewers were shown 5 monolingual edits at
once and they were asked to judge each as accept-
able or not acceptable. We show just one segment
and they have probably set their minds on the post-
editing rather than acceptability judgment. We be-
lieve that higher agreements can be reached if the
reviewers first validate one or more of the edits and
only then are allowed to post-edit it.

4.3 Understandability of English→Czech

Table 9 brings about the first main result of our
post-editing effort. For each system (including
the reference translation), we check how often a
monolingual edit was marked OK or ALMOST
by the subsequent reviewer. The average under-
standability across all MT systems into Czech is
44.2±1.6%. This is a considerable improvement
compared to 2009 where the best systems pro-
duced about 32% understandable sentences. In
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Figure 4: In this screen, the annotator is expected to validate the monolingual edit, correcting it if necessary. The annotator is
expected to add the prefix ‘OK:’ if the correction was more or less cosmetic.

Rank System Total Observations % Understandable
Overall incl. ref. 4082 46.7±1.6
Overall without ref. 3808 44.2±1.6

1 Reference 274±31 80.3±4.8
2-6 CU-ZEMAN 348±34 51.7±5.1
2-6 UEDIN 332±33 51.5±5.4
2-6 ONLINE-B 337±34 50.7±5.3
2-6 CU-BOJAR 341±35 50.7±5.2
2-7 CU-DEPFIX 350±34 48.0±5.3
6-10 COMMERCIAL-2 358±36 43.6±5.2
6-11 COMMERCIAL-1 316±34 41.5±5.5
7-12 CU-TECTOMT 338±34 39.4±5.2
8-12 MES 346±36 38.4±5.2
8-12 CU-PHRASEFIX 394±40 38.1±4.8
10-12 SHEF-WPROA 348±32 34.2±5.1

2009 Reference 91
2009 Best System 32
2010 Reference 97
2010 Best System 58

Table 9: Understandability of English→Czech systems. The
± values indicate empirical confidence bounds at 95%. Rank
ranges were also obtained in the same resampling: in 95% of
observations, the system was ranked in the given range.

2010, the best systems or system combinations
reached 55%–58%. The test set across years and
the quality of references and judgments also play a
role. In our annotation setup, the references appear
to be correctly understandable only to 80.3±4.8%.

To estimate the variance of these results due
to the particular sentences chosen, we draw 1000
random samples from the dataset, preserving the
dataset size and repeating some. The exact num-

ber of judgments per system can thus vary. We
report the 95% empirical confidence interval after
the ‘±’ signs in Table 9 (the systems range from
±4.8 to±5.5). When we drop individual blind ed-
itors or reviewers, the understandability judgments
differ by about ±2 to ±4. In other words, the de-
pendence on the test set appears higher than the
dependence on the annotators.

The limited size of our dataset allows us only
to separate two main groups of systems: those
ranking 2–6 and those ranking worse. This rough
grouping vaguely matches with WMT13 ranking
results as given in Table 6. A somewhat surpris-
ing observation is that two automatic corrections
ranked better in WMT13 ranking but score worse
in understandability: CU-DEPFIX fixes some lost
negation and some agreement errors of CU-BOJAR

and CU-PHRASEFIX is a standard statistical post-
editing of a transfer-based system CU-TECTOMT.
A detailed inspection of the data is necessary to
explain this.

5 More Reference Translations for Czech

Our annotation procedure described in Section 4
allowed us to obtain a considerable number of ad-
ditional reference translations on top of official
single reference.
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Refs 1 2 3 4 5 6 7 8 9 10-16
Sents 233 709 174 123 60 48 40 27 25 29

Table 10: Number of source sentences with the given number
of distinct reference translations.

In total, our edits cover 1468 source sentences,
i.e. about a half of the official test set size, and pro-
vide 4311 unique references. On average, one sen-
tence in our set has 2.94±2.17 unique reference
translations. Table 10 provides a histogram.

It is well known that automatic MT evalua-
tion methods perform better with more references,
because a single one may not confirm a correct
part of MT output. This issue is more severe
for morphologically rich languages like Czech
where about 1/3 of MT output was correct but not
confirmed by the reference (Bojar et al., 2010).
Advanced evaluation methods apply paraphras-
ing to smooth out some of the lexical divergence
(Kauchak and Barzilay, 2006; Snover et al., 2009;
Denkowski and Lavie, 2010). Simpler techniques
such as lemmatizing are effective for morphologi-
cally rich languages (Tantug et al., 2008; Kos and
Bojar, 2009) but they will lose resolution once the
systems start performing generally well.

WMTs have taken the stance that a big enough
test set with just a single reference should compen-
sate for the lack of other references. We use our
post-edited reference translations to check this as-
sumption for BLEU and NIST as implemented in
mteval-13a (international tokenization switched
on, which is not the default setting).

We run many probes, randomly picking the test
set size (number of distinct sentences) and the
number of distinct references per sentence. Note
that such test sets are somewhat artificially more
diverse; in narrow domains, source sentences can
repeat and even appear verbatim in the training
data, and in natural test sets with multiple refer-
ences, short sentences can receive several identical
translations.

For each probe, we measure the Spearman’s
rank correlation coefficient ρ of the ranks pro-
posed by BLEU or NIST and the manual ranks.
We use the same implementation as applied in the
WMT13 Shared Metrics Task (Macháček and Bo-
jar, 2013). Note that the WMT13 metrics task still
uses the WMT12 evaluation method ignoring ties,
not the expected wins. As Koehn (2012) shows,
the two methods do not differ much.

Overall, the correlation is strongly impacted by

Figure 5: Correlation of BLEU and WMT13 manual ranks
for English→Czech translation

Figure 6: Correlation of NIST and WMT13 manual ranks
for English→Czech translation

the particular choice of test sentences and refer-
ence translations. By picking sentences randomly,
similarly or equally sized test sets can reach dif-
ferent correlations. Indeed, e.g. for a test set of
about 1500 distinct sentences selected from the
3000-sentence official test set (1 reference trans-
lation), we obtain correlations for BLEU between
0.86 and 0.94.

Figure 5 plots the correlations of BLEU and the
system rankings, Figure 6 provides the same pic-
ture for NIST. The upper triangular part of the plot
contains samples from our post-edited reference
translations, the lower rectangular part contains
probes from the official test set of 3000 sentences
with 1 reference translation.

To interpret the observations, we also calculate
the average and standard deviation of correlations
for each cell in Figures 5 and 6. Figures 7 and
8 plot the values for 1, 6, 7 and 8 references for
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Figure 7: Projections from Figure 5 of BLEU and WMT13
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Figure 8: Projections from Figure 6 of NIST and WMT13
manual ranks for English→Czech translation

BLEU and NIST, resp. The projections confirm
that the average correlations grow with test set
size, the growth is however sub-logarithmic.

Starting from as few as a dozen of sentences, we
see that using more references is better than using
a larger test set. For BLEU, we however already
seem to reach false positives at 7 references for
one or two hundred sentences: larger sets with just
one reference may correlate slightly better.

Using one reference obtained by post-editing
seems better than using the official (independent)
reference translations. BLEU is more affected
than NIST by this difference even at relatively
large test set size. Note that our post-edits are in-
spired by all MT systems, the good as well as the
bad ones. This probably provides our set with a
certain balance.

Overall, the best balance between the test set
size and the number of references seems to lie
somewhere around 7 references and 100 or 200
sentences. Creating such a test set could be even
cheaper than the standard 3000 sentences with just

one reference. However, the wide error bars re-
mind us that even this setting can lead to correla-
tions anywhere between 0.86 and 0.96. For other
languages, data sets types or other MT evaluation
methods, the best setting can be quite different and
has to be sought for.

6 Quality Estimation Task

Machine translation quality estimation is the task
of predicting a quality score for a machine trans-
lated text without access to reference translations.
The most common approach is to treat the problem
as a supervised machine learning task, using stan-
dard regression or classification algorithms. The
second edition of the WMT shared task on qual-
ity estimation builds on the previous edition of the
task (Callison-Burch et al., 2012), with variants to
this previous task, including both sentence-level
and word-level estimation, with new training and
test datasets, along with evaluation metrics and
baseline systems.

The motivation to include both sentence- and
word-level estimation come from the different po-
tential applications of these variants. Some inter-
esting uses of sentence-level quality estimation are
the following:

• Decide whether a given translation is good
enough for publishing as is.

• Inform readers of the target language only
whether or not they can rely on a translation.

• Filter out sentences that are not good enough
for post-editing by professional translators.

• Select the best translation among options
from multiple MT and/or translation memory
systems.

Some interesting uses of word-level quality es-
timation are the following:

• Highlight words that need editing in post-
editing tasks.

• Inform readers of portions of the sentence
which are not reliable.

• Select the best segments among options from
multiple translation systems for MT system
combination.

The goals of this year’s shared task were:
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• To explore various granularity levels for the
task (sentence-level and word-level).

• To explore the prediction of more objective
scores such as edit distance and post-editing
time.

• To explore the use of quality estimation tech-
niques to replace reference-based MT evalua-
tion metrics in the task of ranking alternative
translations generated by different MT sys-
tems.

• To identify new and effective quality indica-
tors (features) for all variants of the quality
estimation task.

• To identify effective machine learning tech-
niques for all variants of the quality estima-
tion task.

• To establish the state of the art performance
in the field.

Four subtasks were proposed, as we discuss in
Sections 6.1 and 6.2. Each subtask provides spe-
cific datasets, annotated for quality according to
the subtask (Section 6.3), and evaluates the system
submissions using specific metrics (Section 6.6).
When available, external resources (e.g. SMT
training corpus) and translation engine-related re-
sources were given to participants (Section 6.4),
who could also use any additional external re-
sources (no distinction between open and close
tracks is made). Participants were also provided
with a software package to extract quality esti-
mation features and perform model learning (Sec-
tion 6.5), with a suggested list of baseline features
and learning method (Section 6.7). Participants
could submit up to two systems for each subtask.

6.1 Sentence-level Quality Estimation
Task 1.1 Predicting Post-editing Distance This
task is similar to the quality estimation task in
WMT12, but with one important difference in the
scoring variant: instead of using the post-editing
effort scores in the [1-5] range, we use HTER
(Snover et al., 2006) as quality score. This score
is to be interpreted as the minimum edit distance
between the machine translation and its manually
post-edited version, and its range is [0, 1] (0 when
no edit needs to be made, and 1 when all words
need to be edited). Two variants of the results
could be submitted in the shared task:

• Scoring: A quality score for each sentence
translation in [0,1], to be interpreted as an
HTER score; lower scores mean better trans-
lations.

• Ranking: A ranking of sentence translations
for all source test sentences from best to
worst. For this variant, it does not matter how
the ranking is produced (from HTER predic-
tions, likert predictions, or even without ma-
chine learning). The reference ranking is de-
fined based on the true HTER scores.

Task 1.2 Selecting Best Translation This task
consists in ranking up to five alternative transla-
tions for the same source sentence produced by
multiple MT systems. We use essentially the same
data provided to participants of previous years
WMT’s evaluation metrics task – where MT eval-
uation metrics are assessed according to how well
they correlate with human rankings. However, ref-
erence translations produced by humans are not be
used in this task.

Task 1.3 Predicting Post-editing Time For this
task systems are required to produce, for each
translation, the expected time (in seconds) it
would take a translator to post-edit such an MT
output. The main application for predictions of
this type is in computer-aided translation where
the predicted time can be used to select among dif-
ferent hypotheses or even to omit any MT output
in cases where no good suggestion is available.

6.2 Word-level Quality Estimation
Based on the data of Task 1.3, we define Task 2, a
word-level annotation task for which participants
are asked to produce a label for each token that
indicates whether the word should be changed by
a post-editor or kept in the final translation. We
consider the following two sets of labels for pre-
diction:

• Binary classification: a keep/change label,
the latter meaning that the token should be
corrected in the post-editing process.

• Multi-class classification: a label specifying
the edit action that should be performed on
the token (keep as is, delete, or substitute).

6.3 Datasets
Task 1.1 Predicting post-editing distance For
the training of models, we provided the WMT12
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quality estimation dataset: 2,254 English-
Spanish news sentences extracted from previous
WMT translation task English-Spanish test sets
(WMT09, WMT10, and WMT12). These were
translated by a phrase-based SMT Moses system
trained on Europarl and News Commentaries cor-
pora as provided by WMT, along with their source
sentences, reference translations, post-edited
translations, and HTER scores. We used TERp
(default settings: tokenised, case insensitive,
etc., but capped to 1)10 to compute the HTER
scores. Likert scores in [1,5] were also provided,
as participants may choose to use them for the
ranking variant.

As test data, we use a subset of the WMT13
English-Spanish news test set with 500 sentences,
whose translations were produced by the same
SMT system used for the training set. To com-
pute the true HTER labels, the translations were
post-edited under the same conditions as those on
the training set. As in any blind shared task, the
HTER scores were solely used to evaluate the sub-
missions, and were only released to participants
after they submitted their systems.

A few variations of the training and test data
were provided, including a version with cases re-
stored and a version detokenized. In addition,
we provided a number of engine-internal informa-
tion from Moses for glass-box feature extraction,
such as phrase and word alignments, model scores,
word graph, n-best lists and information from the
decoder’s search graph.

Task 1.2 Selecting best translation As training
data, we provided a large set of up to five alter-
native machine translations produced by different
MT systems for each source sentence and ranked
for quality by humans. This was the outcome of
the manual evaluation of the translation task from
WMT09-WMT12. It includes two language pairs:
German-English and English-Spanish, with 7,098
and 4,592 source sentences and up to five ranked
translations, totalling 32,922 and 22,447 transla-
tions, respectively.

As test data, a set of up to five alternative ma-
chine translations per source sentence from the
WMT08 test sets was provided, with 365 (1,810)
and 264 (1,315) source sentences (translations)
for German-English and English-Spanish, respec-
tively. We note that there was some overlap be-
tween the MT systems used in the training data

10http://www.umiacs.umd.edu/˜snover/terp/

and test datasets, but not all systems were the
same, as different systems participate in WMT
over the years.

Task 1.3 and Task 2 Predicting post-editing
time and word-level edits For Tasks 1.3 and 2
we provides a new dataset consisting of 22 English
news articles which were translated into Span-
ish using Moses and post-edited during a CAS-
MACAT11 field trial. Of these, 15 documents have
been processed repeatedly by at least 2 out of 5
translators, resulting in a total of 1,087 segments.
For each segment we provided:

• English source and Spanish translation.

• Spanish MT output which was used as basis
for post-editing.

• Document and translator ID.

• Position of the segment within the document.

The metadata about translator and document was
made available as we expect that translator perfor-
mance and normalisation over document complex-
ity can be helpful when predicting the time spend
on a given segment.

For the training portion of the data we also pro-
vided:

• Time to post-edit in seconds (Task 1.3).

• Binary (Keep, Change) and multiclass (Keep,
Substitute, Delete) labels on word level along
with explicit tokenization (Task 2).

The labels in Task 2 are derived by comput-
ing WER between the original machine translation
and its post-edited version.

6.4 Resources
For all tasks, we provided resources to extract
quality estimation features when these were avail-
able:

• The SMT training corpus (WMT News and
Europarl): source and target sides of the cor-
pus used to train the SMT engines for Tasks
1.1, 1.3, and 2, and truecase models gener-
ated from these. These corpora can also be
used for Task 1.2, but we note that some of
the MT systems used in the datasets of this
task were not statistical or did not use (only)
the training corpus provided by WMT.

11http://casmacat.eu/
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• Language models: n-gram language models
of source and target languages generated us-
ing the SMT training corpora and standard
toolkits such as SRILM Stolcke (2002), and
a language model of POS tags for the target
language. We also provided unigram, bigram
and trigram counts.

• IBM Model 1 lexical tables generated by
GIZA++ using the SMT training corpora.

• Phrase tables with word alignment informa-
tion generated by scripts provided by Moses
from the parallel corpora.

• For Tasks 1.1, 1.3 and 2, the Moses config-
uration file used for decoding or the code to
re-run the entire Moses system.

• For Task 1.1, both English and Spanish re-
sources for a number of advanced features
such as pre-generated PCFG parsing models,
topic models, global lexicon models and mu-
tual information trigger models.

We refer the reader to the QUEST website12 for
a detailed list of resources provided for each task.

6.5 QUEST Framework

QUEST (Specia et al., 2013) is an open source
framework for quality estimation which provides a
wide variety of feature extractors from source and
translation texts and external resources and tools.
These range from simple, language-independent
features, to advanced, linguistically motivated fea-
tures. They include features that rely on informa-
tion from the MT system that generated the trans-
lations (glass-box features), and features that are
oblivious to the way translations were produced
(black-box features).

QUEST also integrates a well-known machine
learning toolkit, scikit-learn,13 and other algo-
rithms that are known to perform well on this task
(e.g. Gaussian Processes), providing a simple and
effective way of experimenting with techniques
for feature selection and model building, as well
as parameter optimisation through grid search.

From QUEST, a subset of 17 features and an
SVM regression implementation were used as
baseline for Tasks 1.1, 1.2 and 1.3. The software
was made available to all participants.

12http://www.quest.dcs.shef.ac.uk/
13http://scikit-learn.org/

6.6 Evaluation Metrics

Task 1.1 Predicting post-editing distance
Evaluation is performed against the HTER and/or
ranking of translations using the same metrics as
in WMT12. For the scoring variant of the task,
we use two standard metrics for regression tasks:
Mean Absolute Error (MAE) as a primary metric,
and Root of Mean Squared Error (RMSE) as a
secondary metric. To improve readability, we
report these error numbers by first mapping the
HTER values to the [0, 100] interval, to be read
as percentage-points of the HTER metric. For a
given test set S with entries si, 1 ≤ i ≤ |S|, we
denote by H(si) the proposed score for entry si
(hypothesis), and by V (si) the reference value for
entry si (gold-standard value):

MAE =

∑N
i=1 |H(si)− V (si)|

|S|

RMSE =

√∑N
i=1(H(si)− V (si))2

|S|

Both these metrics are non-parametric, auto-
matic and deterministic (and therefore consistent),
and extrinsically interpretable. For instance, a
MAE value of 10 means that, on average, the ab-
solute difference between the hypothesized score
and the reference score value is 10 percentage
points (i.e., 0.10 difference in HTER scores). The
interpretation of RMSE is similar, with the differ-
ence that RMSE penalises larger errors more (via
the square function).

For the ranking variant of the task, we use the
DeltaAvg metric proposed in the 2012 edition of
the task (Callison-Burch et al., 2012) as our main
metric. This metric assumes that each reference
test instance has an extrinsic number associated
with it that represents its ranking with respect to
the other test instances. For completeness, we
present here again the definition of DeltaAvg.

The goal of the DeltaAvg metric is to measure
how valuable a proposed ranking (which we call a
hypothesis ranking) is, according to the true rank-
ing values associated with the test instances. We
first define a parametrised version of this metric,
called DeltaAvg[n]. The following notations are
used: for a given entry sentence s, V (s) represents
the function that associates an extrinsic value to
that entry; we extend this notation to a set S, with
V (S) representing the average of all V (s), s ∈ S.
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Intuitively, V (S) is a quantitative measure of the
“quality” of the set S, as induced by the extrinsic
values associated with the entries in S. For a set
of ranked entries S and a parameter n, we denote
by S1 the first quantile of set S (the highest-ranked
entries), S2 the second quantile, and so on, for n
quantiles of equal sizes.14 We also use the nota-
tion Si,j =

⋃j
k=i Sk. Using these notations, we

define:

DeltaAvgV [n] =
∑n−1

k=1 V (S1,k)

n− 1
− V (S)

When the valuation function V is clear from the
context, we write DeltaAvg[n] for DeltaAvgV [n].
The parameter n represents the number of quan-
tiles we want to split the set S into. For instance,
n = 2 gives DeltaAvg[2] = V (S1)−V (S), hence it
measures the difference between the quality of the
top quantile (top half) S1 and the overall quality
(represented by V (S)). For n = 3, DeltaAvg[3] =
(V (S1)+V (S1,2)/2−V (S) = ((V (S1)−V (S))+
(V (S1,2−V (S)))/2, hence it measures an average
difference across two cases: between the quality of
the top quantile (top third) and the overall quality,
and between the quality of the top two quantiles
(S1 ∪ S2, top two-thirds) and the overall quality.
In general, DeltaAvg[n] measures an average dif-
ference in quality across n − 1 cases, with each
case measuring the impact in quality of adding an
additional quantile, from top to bottom. Finally,
we define:

DeltaAvgV =

∑N
n=2 DeltaAvgV [n]

N − 1

where N = |S|/2. As before, we write DeltaAvg
for DeltaAvgV when the valuation function V is
clear from the context. The DeltaAvg metric is an
average across all DeltaAvg[n] values, for those
n values for which the resulting quantiles have at
least 2 entries (no singleton quantiles).

We present results for DeltaAvg using as valu-
ation function V the HTER scores, as defined in
Section 6.3. We also use Spearman’s rank correla-
tion coefficient ρ as a secondary metric.

Task 1.2 Selecting best translation The perfor-
mance on the task of selecting the best transla-
tion from a pool of translation candidates is mea-

14If the size |S| is not divisible by n, then the last quantile
Sn is assumed to contain the rest of the entries.

sured by comparing proposed (hypothesis) rank-
ings against human-produced rankings. The met-
ric used is Kendall’s τ rank correlation coefficient,
computed as follows:

τ =
|concordant pairs| − |discordant pairs|

|total pairs|
where a concordant pair is a pair of two transla-
tions for the same source segment in which the
ranking order proposed by a human annotator and
the ranking order of the hypothesis agree; in a dis-
cordant pair, they disagree. The possible values of
τ range between 1 (where all pairs are concordant)
and −1 (where all pairs are discordant). Thus a
system with ranking predictions having a higher
τ value makes predictions that are more similar
to human judgements than a system with ranking
predictions having a lower τ . Note that, in general,
being able to predict rankings with an accuracy
of τ = −1 is as difficult as predicting rankings
with an accuracy of τ = 1, whereas a completely
random ranking would have an expected value of
τ = 0. The range is therefore said to be symmet-
ric.

However, there are two distinct ways of mea-
suring rank correlation using Kendall’s τ , related
to the way ties are treated. They greatly affect how
Kendall’s τ numbers are to be interpreted, and es-
pecially the symmetry property. We explain the
difference in detail in what follows.

Kendall’s τ with ties penalised If the goal is
to measure to what extent the difference in qual-
ity visible to a human annotator has been captured
by an automatically produced hypothesis (recall-
oriented view), then proposing a tie between t1
and t2 (t1-equal-to-t2) when the pair was judged
(in the reference) as t1-better-than-t2 is treated as
a failure-to-recall. In other words, it is as bad as
proposing t1-worse-than-t2. Henceforth, we call
this recall-oriented measure “Kendall’s τ with ties
penalised”. This metric has the following proper-
ties:

• it is completely fair when comparing differ-
ent methods to produce ranking hypotheses,
because the denominator (number of total
pairs) is the same (it is the number of non-
tied pairs under the human judgements).

• it is non-symmetric, in the sense that a value
of τ = −1 is not as difficult to obtain as τ =
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1 (simply proposing only ties gets a τ = −1);
hence, the sign of the τ value matters.

• the expected value of a completely random
ranking is not necessarily τ = 0, but rather
depends on the number of ties in the refer-
ence rankings (i.e., it is test set dependent).

Kendall’s τ with ties ignored If the goal
is to measure to what extent the difference in
quality signalled by an automatically produced
hypothesis is reflected in the human annota-
tion (precision-oriented view), then proposing t1-
equal-to-t2 when the pair was judged differently
in the reference does no harm the metric.

Henceforth, we call this precision-oriented
measure ”Kendall’s τ with ties ignored”. This
metric has the following properties:

• it is not completely fair when comparing dif-
ferent methods to produce ranking hypothe-
ses, because the denominator (number of to-
tal pairs) may not be the same (it is the num-
ber of non-tied pairs under each system’s pro-
posal).

• it is symmetric, in the sense that a value of
τ = −1 is as difficult to obtain as τ = 1;
hence, the sign of the τ value may not mat-
ter. 15

• the expected value of a completely random
ranking is τ = 0 (test-set independent).

The first property is the most worrisome from
the perspective of reporting the results of a shared
task, because a system may fare very well on this
metric simply because it choses not to commit
(proposes ties) most of the time. Therefore, to
give a better understanding of the systems’ perfor-
mance, for Kendall’s τ with ties ignored we also
provide the number of non-ties proposed by each
system.

Task 1.3 Predicting post-editing time Submis-
sions are evaluated in terms of Mean Average Er-
ror (MAE) against the actual time spent by post-
editors (in seconds). By using a linear error mea-
sure we limit the influence of outliers: sentences
that took very long to edit or where the measure-
ment taken is questionable.

15In real life applications this distinction matters. Even
if, from a computational perspective, it is as hard to get τ
close to−1 as it is to get it close to 1, knowing the sign is the
difference between selecting the best or the worse translation.

To further analyse the influence of extreme val-
ues, we also compute Spearman’s rank correlation
ρ coefficient which does not depend on the abso-
lute values of the predictions.

We also give RMSE and Pearson’s correlation
coefficient r for reference.

Task 2 Predicting word-level scores The word-
level task is primarily evaluated by macro-
averaged F-measure. Because the class distribu-
tion is skewed – in the test data about one third
of the tokens are marked as correct – we compute
precision and recall and F1 for each class individ-
ually. Consider the following confusion matrix for
the two classes Keep and Change:

predicted
(K)eep (C)hange

expected
(K)eep 10 20
(C)hange 30 40

For the given example we derive true-positive
(tp), true-negative (tn), false-positive (fp), and
false-negative (fn) counts:

tpK = 10 fpK = 30 fnK = 20
tpC = 40 fpC = 20 fnC = 30

precisionK =
tpK

tpK + fpK
= 10/40

recallK =
tpK

tpK + fnK
= 10/30

F1,K =
2 · precisionK · recallK
precisionK +recallK

A single cumulative statistic can be computed
by averaging the resulting F-measures (macro av-
eraging) or by micro averaging in which case pre-
cision and recall are first computed by accumulat-
ing the relevant values for all classes (Özgür et al.,
2005), e.g.

precision =
tpK + tpC

(tpK + fpK) + (tpC + fpC)

The latter gives equal weight to each exam-
ple and is therefore dominated by performance on
the largest class while macro-averaged F-measure
gives equal weight to each class.

The same setup is used to evaluate the perfor-
mance in the multiclass setting. Please note that
here the test data only contains 4% examples for
class (D)elete.
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ID Participating team
CMU Carnegie Mellon University, USA (Hildebrand and Vogel, 2013)

CNGL Centre for Next Generation Localization, Ireland (Bicici, 2013b)
DCU Dublin City University, Ireland (Almaghout and Specia, 2013)

DCU-SYMC Dublin City University & Symantec, Ireland (Rubino et al., 2013b)
DFKI German Research Centre for Artificial Intelligence, Germany (Avramidis and

Popovic, 2013)
FBK-UEdin Fondazione Bruno Kessler, Italy & University of Edinburgh, UK (Camargo de

Souza et al., 2013)
LIG Laboratoire d’Informatique Grenoble, France (Luong et al., 2013)

LIMSI Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur,
France (Singh et al., 2013)

LORIA Lorraine Laboratory of Research in Computer Science and its Applications,
France (Langlois and Smaili, 2013)

SHEF University of Sheffield, UK (Beck et al., 2013)
TCD-CNGL Trinity College Dublin & CNGL, Ireland (Moreau and Rubino, 2013)

TCD-DCU-CNGL Trinity College Dublin, Dublin City University & CNGL, Ireland (Moreau and
Rubino, 2013)

UMAC University of Macau, China (Han et al., 2013)
UPC Universitat Politecnica de Catalunya, Spain (Formiga et al., 2013b)

Table 11: Participants in the WMT13 Quality Estimation shared task.

6.7 Participants
Table 11 lists all participating teams submitting
systems to any subtask in this shared task. Each
team was allowed up to two submissions for each
subtask. In the descriptions below participation in
specific tasks is denoted by a task identifier: T1.1,
T1.2, T1.3, and T2.

Sentence-level baseline system (T1.1, T1.3):
QUEST was used to extract 17 system-
independent features from the source and
translation files and the SMT training cor-
pus that were found to be relevant in previous
work (same features as in the WMT12 shared
task):

• number of tokens in the source and tar-
get sentences.
• average source token length.
• average number of occurrences of the

target word within the target sentence.
• number of punctuation marks in source

and target sentences.
• Language model probability of source

and target sentences using language
models provided by the task.
• average number of translations per

source word in the sentence: as given
by IBM 1 model thresholded so that

P (t|s) > 0.2, and so that P (t|s) > 0.01
weighted by the inverse frequency of
each word in the source side of the SMT
training corpus.
• percentage of unigrams, bigrams and tri-

grams in frequency quartiles 1 (lower
frequency words) and 4 (higher fre-
quency words) in the source side of the
SMT training corpus
• percentage of unigrams in the source

sentence seen in the source side of the
SMT training corpus.

These features are used to train a Support
Vector Machine (SVM) regression algorithm
using a radial basis function kernel within the
SCIKIT-LEARN toolkit. The γ, ε and C pa-
rameters were optimized using a grid-search
and 5-fold cross validation on the training
set. We note that although the system is re-
ferred to as a “baseline”, it is in fact a strong
system. For tasks of the same type as 1.1
and 1.3, it has proved robust across a range
of language pairs, MT systems, and text do-
mains for predicting post-editing effort, as it
has also been shown in the previous edition
of the task (Callison-Burch et al., 2012).

The same features could be useful for a base-
line system for Task 1.2. In our official re-
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sults, however, the baseline for Task 1.2 is
simpler than that: it proposes random ranks
for each pair of alternative translations for a
given source sentence, as we will discuss in
Section 6.8.

CMU (T1.1, T1.2, T1.3): The CMU quality
estimation system was trained on features
based on language models, the MT sys-
tem’s distortion model and phrase table fea-
tures, statistical word lexica, several sentence
length statistics, source language word and
bi-gram frequency statistics, n-best list agree-
ment and diversity, source language parse,
source-target word alignment and a depen-
dency parse based cohesion penalty. These
features were extracted using GIZA++, a
forced alignment algorithm and the Stanford
parser (de Marneffe et al., 2006). The pre-
diction models were trained using four clas-
sifiers in the Weka toolkit (Hall et al., 2009):
linear regression, M5P trees, multi layer per-
ceptron and SVM regression. In addition to
main system submission, a classic n-best list
re-ranking approach was used for Task 1.2.

CNGL (T1.1, T1.2, T1.3, T2): CNGL systems
are based on referential translation machines
(RTM) (Biçici and van Genabith, 2013), par-
allel feature decay algorithms (FDA) (Bicici,
2013a), and machine translation performance
predictor (MTPP) (Biçici et al., 2013), all
of which allow to obtain language and MT
system-independent predictions. For each
task, RTM models were developed using the
parallel corpora and the language model cor-
pora distributed by the WMT13 translation
task and the language model corpora pro-
vided by LDC for English and Spanish.

The sentence-level features are described in
MTPP (Biçici et al., 2013); they include
monolingual or bilingual features using n-
grams defined over text or common cover
link (CCL) (Seginer, 2007) structures as the
basic units of information over which sim-
ilarity calculations are made. RTMs use
308 features about coverage and diversity,
IBM1, and sentence translation performance,
retrieval closeness and minimum Bayes re-
trieval risk, distributional similarity and en-
tropy, IBM2 alignment, character n-grams,
and sentence readability. The learning mod-

els are Support Vector Machines (SVR) and
SVR with partial least squares (SVRPLS).

The word-level features include CCL links,
word length, location, prefix, suffix, form,
context, and alignment, totalling 511K fea-
tures for binary classification, and 637K for
multiclass classification. Generalised lin-
ear models (GLM) (Collins, 2002) and GLM
with dynamic learning (GLMd) were used.

DCU (T1.2): The main German-English submis-
sion uses six Combinatory Categorial Gram-
mar (CCG) features: CCG supertag lan-
guage model perplexity and log probability,
the number of maximal CCG constituents in
the translation output which are the highest-
probability minimum number of CCG con-
stituents that span the translation output, the
percentage of CCG argument mismatches be-
tween each subsequent CCG supertags, the
percentage of CCG argument mismatches be-
tween each subsequent CCG maximal cate-
gories and the minimum number of phrases
detected in the translation output. A second
submission uses the aforementioned CCG
features combined with 80 features from
QUEST as described in (Specia, 2011). For
the CCG features, the C&C parser was used
to parse the translation output. Moses was
used to build the phrase table from the SMT
training corpus with maximum phrase length
set to 7. The language model of supertags
was built using the SRILM toolkit. As learn-
ing algorithm, Logistic Regression as pro-
vided by the SCIKIT-LEARN toolkit was used.
The training data was prepared by converting
each ranking of translation outputs to a set
of pairwise comparisons according to the ap-
proach proposed by Avramidis et al. (2011).
The rankings were generated back from pair-
wise comparisons predicted by the model.

DCU-SYMC (T1.1): The DCU-Symantec team
employed a wide set of features which in-
cluded language model, n-gram counts and
word-alignment features as well as syntac-
tic features, topic model features and pseudo-
reference features. The main learning algo-
rithm was SVR, but regression tree learning
was used to perform feature selection, re-
ducing the initial set of 442 features to 96
features (DCU-Symantec alltypes) and 134
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(DCU-Symantec combine). Two methods
for feature selection were used: a best-first
search in the feature space using regression
trees to evaluate the subsets, and reading bi-
narised features directly from the nodes of
pruned regression trees.

The following NLP tools were used in feature
extraction: the Brown English Wall-Street-
Journal-trained statistical parser (Charniak
and Johnson, 2005), a Lexical Functional
Grammar parser (XLE), together with a
hand-crafted Lexical Functional Grammar,
the English ParGram grammar (Kaplan et al.,
2004), and the TreeTagger part-of-speech
tagger (Schmidt, 1994) with off-the-shelf
publicly available pre-trained tagging mod-
els for English and Spanish. For pseudo-
reference features, the Bing, Moses and Sys-
tran translation systems were used. The Mal-
let toolkit (McCallum, 2002) was used to
build the topic models and features based on
a grammar checker were extracted with Lan-
guageTool.16

DFKI (T1.2, T1.3): DFKI’s submission for Task
1.2 was based on decomposing rankings into
pairs (Avramidis, 2012), where the best sys-
tem for each pair was predicted with Lo-
gistic Regression (LogReg). For German-
English, LogReg was trained with Stepwise
Feature Selection (Hosmer, 1989) on two
feature sets: Feature Set 24 includes ba-
sic counts augmented with PCFG parsing
features (number of VPs, alternative parses,
parse probability) on both source and tar-
get sentences (Avramidis et al., 2011), and
pseudo-reference METEOR score; the most
successful set, Feature Set 33 combines those
24 features with the 17 baseline features. For
English-Spanish, LogReg was used with L2
Regularisation (Lin et al., 2007) and two fea-
ture sets were devised after scoring features
with ReliefF (Kononenko, 1994) and Infor-
mation Gain (Hunt et al., 1966). Feature Set
431 combines 30 features with highest abso-
lute Relief-F and Information Gain (15 from
each). features with the highest

Task 1.3 was modelled using feature sets
selected after Relief-F scoring of external
black-box and glass-box features extracted

16http://www.languagetool.org/

from the SMT decoding process. The most
successful submission (linear6) was trained
with Linear Regression including the 17 fea-
tures with highest positive Relief-F. Most
prominent features include the alternative
possible parses of the source and target sen-
tence, the positions of the phrases with the
lowest and highest probability and future
cost estimate in the translation, the counts of
phrases in the decoding graph whose prob-
ability or whether the future cost estimate
is higher/lower than their standard deviation,
counts of verbs and determiners, etc. The
second submission (pls8) was trained with
Partial Least Squares regression (Stone and
Brooks, 1990) including more glass-box fea-
tures.

FBK-Uedin (T1.1, T1.3):

The submissions explored features built on
MT engine resources including automatic
word alignment, n-best candidate translation
lists, back-translations and word posterior
probabilities. Information about word align-
ments is used to extract quantitative (amount
and distribution of the alignments) and qual-
itative (importance of the aligned terms) fea-
tures under the assumption that alignment
information can help tasks where sentence-
level semantic relations need to be identified
(Souza et al., 2013). Three similar English-
Spanish systems are built and used to provide
pseudo-references (Soricut et al., 2012) and
back-translations, from which automatic MT
evaluation metrics could be computed and
used as features.

All features were computed over a concatena-
tion of several publicly available parallel cor-
pora for the English-Spanish language pair
such as Europarl, News Commentary, and
MultiUN. The models were developed using
supervised learning algorithms: SVMs (with
feature selection step prior to model learning)
and extremely randomized trees.

LIG (T2): The LIG systems are designed to
deal with both binary and multiclass variants
of the word level task. They integrate sev-
eral features including: system-based (graph
topology, language model, alignment con-
text, etc.), lexical (Part-of-Speech tags), syn-
tactic (constituent label, distance to the con-
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stituent tree root) and semantic (target and
source polysemy count). Besides the exist-
ing components of the SMT system, feature
extraction requires further external tools and
resources, such as: TreeTagger (for POS tag-
ging), Bekerley Parser trained with AnCora
treebank (for generating constituent trees in
Spanish), WordNet and BabelNet (for pol-
ysemy count), Google Translate. The fea-
ture set is then combined and trained using
a Conditional Random Fields (CRF) learn-
ing method. During the labelling phase, the
optimal threshold is tuned using a small de-
velopment set split from the original training
set. In order to retain the most informative
features and eliminate the redundant ones, a
Sequential Backward Selection algorithm is
employed over the all-feature systems. With
the binary classifier, the Boosting technique
is applied to allow a number of sub feature
sets to complement each other, resulting in
the “stronger” combined system.

LIMSI (T1.1, T1.3): The two tasks were treated
as regression problems using a simple elas-
tic regression, a linear model trained with L1

and L2 regularisers. Regarding features, the
submissions mainly aimed at evaluating the
usefulness for quality estimation of n-gram
posterior probabilities (Gispert et al., 2013)
that quantify the probability for a given n-
gram to be part of the system output. Their
computation relies on all the hypotheses con-
sidered by a SMT system during decoding:
intuitively, the more hypotheses a n-gram ap-
pears in, the more confident the system is
that this n-gram is part of the correct trans-
lation, and the higher its posterior probabil-
ity is. The feature set contains 395 other fea-
tures that differs, in two ways, from the tra-
ditional features used in quality estimation.
First, it includes several features based on
large span continuous space language mod-
els (Le et al., 2011) that have already proved
their efficiency both for the translation task
and the quality estimation task. Second, each
feature was expanded into two “normalized
forms” in which their value was divided ei-
ther by the source length or the target length
and, when relevant, into a “ratio form” in
which the feature value computed on the tar-
get sentence is divided by its value computed

in the source sentence.

LORIA (T1.1): The system uses the 17 baseline
features, plus several numerical and boolean
features computed from the source and target
sentences (Langlois et al., 2012). These are
based on language model information (per-
plexity, level of back-off, intra-lingual trig-
gers), translation table (IBM1 table, inter-
lingual triggers). For language models, for-
ward and backward models are built. Each
feature gives a score to each word in the sen-
tence, and the score of the sentence is the av-
erage of word scores. For several features,
the score of a word depends on the score of its
neighbours. This leads to 66 features. Sup-
port Vector Machines are used to learn a re-
gression model. In training is done in a multi-
stage procedure aimed at increasing the size
of the training corpus. Initially, the train-
ing corpus with machine translated sentences
provided by the task is used to train an SVM
model. Then this model is applied to the post-
edited and reference sentences (also provided
as part of the task). These are added to the
quality estimation training corpus using as la-
bels the SVM predictions. An algorithm to
tune the predicted scores on a development
corpus is used.

SHEF (T1.1, T1.3): These submissions use
Gaussian Processes, a non-parametric prob-
abilistic learning framework for regression,
along with two techniques to improve predic-
tion performance and minimise the amount
of resources needed for the problem: feature
selection based on optimised hyperparame-
ters and active learning to reduce the training
set size (and therefore the annotation effort).
The initial set features contains all black box
and glass box features available within the
QUEST framework (Specia et al., 2013) for
the dataset at hand (160 in total for Task 1.1,
and 80 for Task 1.3). The query selection
strategy for active learning is based on the
informativeness of the instances using Infor-
mation Density, a measure that leverages be-
tween the variance among instances and how
dense the region (in the feature space) where
the instance is located is. To perform fea-
ture selection, following (Shah et al., 2013)
features are ranked by the Gaussian Process

23



algorithm according to their learned length
scales, which can be interpreted as the rel-
evance of such feature for the model. This
information was used for feature selection
by discarding the lowest ranked (least use-
ful) ones. based on empirical results found
in (Shah et al., 2013), the top 25 features for
both models were selected and used to retrain
the same regression algorithm.

UPC (T1.2): The methodology used a broad set
of features, mainly available through the last
version of the Asiya toolkit for MT evalua-
tion (Gonzàlez et al., 2012)17. Concretely,
86 features were derived for the German-to-
English and 97 features for the English-to-
Spanish tasks. These features cover differ-
ent approaches and include standard qual-
ity estimation features, as provided by the
above mentioned Asiya and QUEST toolk-
its, but also a variety of features based on
pseudo-references, explicit semantic analy-
sis and specialised language models trained
on the parallel and monolingual corpora pro-
vided by the WMT Translation Task.

The system selection task is approached by
means of pairwise ranking decisions. It uses
Random Forest classifiers with ties, expand-
ing the work of 402013cFormiga et al.), from
which a full ranking can be derived and the
best system per sentence is identified. Once
the classes are given by the Random Forest,
one can build a graph by means of the adja-
cency matrix of the pairwise decision. The fi-
nal ranking is assigned through a dominance
scheme similar to Pighin et al. (2012).

An important remark of the methodology is
the feature selection process, since it was no-
ticed that the learner was sensitive to the fea-
tures used. Selecting the appropriate set of
features was crucial to achieve a good per-
formance. The best feature combination was
composed of: i) a baseline quality estimation
feature set (Asiya or Quest) but not both of
them, ii) Length Model, iii) Pseudo-reference
aligned based features, and iv) adapted lan-
guage models. However, within the de-en
task, substituting Length Model and Aligned
Pseudo-references by the features based on

17http://asiya.lsi.upc.edu/

Semantic Roles could bring marginally bet-
ter accuracy.

TCD-CNGL (T1.1) and TCD-DCU-CNGL
(T1.3): The system is based on features
which are commonly used for style classifi-
cation (e.g. author identification). The as-
sumption is that low/high quality translations
can be characterised by some patterns which
are frequent and/or differ significantly from
the opposite category. Such features are in-
tended to focus on striking patterns rather
than to capture the global quality in a sen-
tence, but they are used in conjunction with
classical features for quality estimation (lan-
guage modelling, etc.). This requires two
steps in the training process: first the refer-
ence categories against which sentences will
be compared are built, then the standard qual-
ity estimation model training stage is per-
formed. Both datasets (Tasks 1.1 and 1.3)
were used for both tasks. Since the number
of features can be very high (up to 65,000),
a combination of various heuristics for se-
lecting features was used before the training
stage (the submitted systems were trained us-
ing SVM with RBF kernels).

UMAC (T1.1, T1.2, T2): For Task 1.1, the fea-
ture set consists in POS sequences of the
source and target languages, using 12 uni-
versal tags that are common in both lan-
guages. The algorithm is an enhanced ver-
sion of the BLEU metric (EBLEU) designed
with a modified length penalty and added re-
call factor, and having the precision and re-
call components grouped using the harmonic
mean. For Task 1.2, in addition to the uni-
versal POS sequences of the source and tar-
get languages, features include the scores of
length penalty, precision, recall and rank.
Variants of EBLEU with different strategies
for alignment are used, as well as a Naı̈ve
Bayes classification algorithm. For Task 2,
the features used are unigrams (from previous
4th to following 3rd tokens), bigrams (from
previous 2nd to following 2nd tokens), skip
bigrams (previous and next token), trigrams
(from previous 2nd to following 2nd tokens).
The learning algorithms are Conditional Ran-
dom Fields and Naı̈ve Bayes.
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6.8 Results

In what follows we give the official results for all
tasks followed by a discussion that highlights the
main findings for each of the tasks.

Task 1.1 Predicting post-editing distance

Table 12 summarises the results for the ranking
variant of the task. They are sorted from best to
worse using the DeltaAvg metric scores as primary
key and the Spearman’s rank correlation scores as
secondary key.

The winning submissions for the ranking vari-
ant of Task 1.1 are CNGL SVRPLS, with a
DeltaAvg score of 11.09, and DCU-SYMC all-
types, with a DeltaAvg score of 10.13. While the
former holds the higher score, the difference is not
significant at the p ≤ 0.05 level as estimated by a
bootstrap resampling test.

Both submissions are better than the baseline
system by a very wide margin, a larger relative im-
provement than that obtained in the corresponding
WMT12 task. In addition, five submissions (out
of 12 systems) scored significantly higher than the
baseline system (systems above the middle gray
area), which is a larger proportion than that in last
year’s task (only 3 out of 16 systems), indicat-
ing that this shared task succeeded in pushing the
state-of-the-art performance to new levels.

In addition to the performance of the official
submission, we report results obtained by two or-
acle methods: the gold-label HTER metric com-
puted against the post-edited translations as ref-
erence (Oracle HTER), and the BLEU metric (1-
BLEU to obtain the same range as HTER) com-
puted against the same post-edited translations as
reference (Oracle HBLEU). The “Oracle HTER”
DeltaAvg score of 16.38 gives an upperbound in
terms of DeltaAvg for the test set used in this eval-
uation. It indicates that, for this set, the differ-
ence in post-editing effort between the top quality
quantiles and the overall quality is 16.38 on aver-
age. The oracle based on HBLEU gives a lower
DeltaAvg score, which is expected since HTER
was our actual gold label. However, it is still
significantly higher than the score of the winning
submission, which shows that there is significant
room for improvement even by the highest scor-
ing submissions.

The results for the scoring variant of the task
are presented in Table 13, sorted from best to
worse by using the MAE metric scores as primary

key and the RMSE metric scores as secondary key.
According to MAE scores, the winning submis-

sion is SHEF FS (MAE = 12.42), which uses fea-
ture selection and a novel learning algorithm for
the task, Gaussian Processes. The baseline sys-
tem is measured to have an MAE of 14.81, with
six other submissions having performances that
are not different from the baseline at a statisti-
cally significant level, as shown by the gray area
in the middle of Table 13). Nine submissions (out
of 16) scored significantly higher than the base-
line system (systems above the middle gray area),
a considerably higher proportion of submissions
as compared to last year (5 out of 19), which indi-
cates that this shared task also succeeded in push-
ing the state-of-the-art performance to new levels
in terms of absolute scoring. Only one (6%) sys-
tem scored significantly lower than the baseline,
as opposed to 8 (42%) in last year’s task.

For the sake of completeness, we also show or-
acles figures using the same methods as for the
ranking variant of the task. Here the lowerbound
in error (Oracle HTER) will clearly be zero, as
both MAE and RMSE are measured against the
same gold label used for the oracle computation.
“Oracle HBLEU” is also not indicative in this
case, as the although the values for the two metrics
(HTER and HBLEU) are within the same ranges,
they are not directly comparable. This explains the
larger MAE/RMSE figures for “Oracle HBLEU”
than those for most submissions.

Task 1.2 Selecting the best translation
Below we present the results for this task for each
of the two Kendall’s τ flavours presented in Sec-
tion 6.6, for the German-English test set (Tables 14
and 16) and the English-Spanish test set (Tables 15
and 17). The results are sorted from best to worse
using each of the Kendall’s τ metric flavours.

For German-English, the winning submission is
DFKI’s logRegFss33 entry, for both Kendall’s τ
with ties penalised and ties ignored, with τ = 0.31
(since this submission has no ties, the two met-
rics give the same τ value). A trivial baseline that
proposes random ranks (with ties allowed) has a
Kendall’s τ with ties penalised of -0.12 (as this
metric penalises the system’s ties that were non-
ties in the reference), and a Kendall’s τ with ties
ignored of 0.08. Most of the submissions per-
formed better than this simple baseline. More in-
terestingly perhaps is the comparison between the
best submission and the performance by an ora-
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System ID DeltaAvg Spearman ρ
• CNGL SVRPLS 11.09 0.55

• DCU-SYMC alltypes 10.13 0.59
SHEF FS 9.76 0.57

CNGL SVR 9.88 0.51
DCU-SYMC combine 9.84 0.59

CMU noB 8.98 0.57
SHEF FS-AL 8.85 0.50

Baseline bb17 SVR 8.52 0.46
CMU full 8.23 0.54

LIMSI 8.15 0.44
TCD-CNGL open 6.03 0.33

TCD-CNGL restricted 5.85 0.31
UMAC 2.74 0.11

Oracle HTER 16.38 1.00
Oracle HBLEU 15.74 0.93

Table 12: Official results for the ranking variant of the WMT13 Quality Estimation Task 1.1. The winning submissions are
indicated by a • (they are significantly better than all other submissions according to bootstrap resampling (10k times) with
95% confidence intervals). The systems in the gray area are not different from the baseline system at a statistically significant
level according to the same test. Oracle results that use human-references are also shown for comparison purposes.

System ID MAE RMSE
• SHEF FS 12.42 15.74

SHEF FS-AL 13.02 17.03
CNGL SVRPLS 13.26 16.82

LIMSI 13.32 17.22
DCU-SYMC combine 13.45 16.64
DCU-SYMC alltypes 13.51 17.14

CMU noB 13.84 17.46
CNGL SVR 13.85 17.28

FBK-UEdin extra 14.38 17.68
FBK-UEdin rand-svr 14.50 17.73

LORIA inctrain 14.79 18.34
Baseline bb17 SVR 14.81 18.22

TCD-CNGL open 14.81 19.00
LORIA inctraincont 14.83 18.17

TCD-CNGL restricted 15.20 19.59
CMU full 15.25 18.97

UMAC 16.97 21.94
Oracle HTER 0.00 0.00

Oracle HBLEU (1-HBLEU) 16.85 19.72

Table 13: Official results for the scoring variant of the WMT13 Quality Estimation Task 1.1. The winning submission is
indicated by a • (it is significantly better than the other submissions according to bootstrap resampling (10k times) with 95%
confidence intervals). The systems in the gray area are not different from the baseline system at a statistically significant level
according to the same test. Oracle results that use human-references are also shown for comparison purposes.
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German-English System ID Kendall’s τ with ties penalised
• DFKI logRegFss33 0.31

DFKI logRegFss24 0.28
CNGL SVRPLSF1 0.17

CNGL SVRF1 0.17
DCU CCG 0.15

UPC AQE+SEM+LM 0.11
UPC AQE+LeM+ALGPR+LM 0.10

DCU baseline+CCG 0.00
Baseline Random-ranks-with-ties -0.12

UMAC EBLEU-I -0.39
UMAC NB-LPR -0.49

Oracle Human 1.00
Oracle BLEU (margin 0.00) 0.19
Oracle BLEU (margin 0.01) 0.05

Oracle METEOR-ex (margin 0.00) 0.23
Oracle METEOR-ex (margin 0.01) 0.06

Table 14: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for German-English, using as metric
Kendall’s τ with ties penalised. The winning submissions are indicated by a •. Oracle results that use human-references are
also shown for comparison purposes.

English-Spanish System ID Kendall’s τ with ties penalised
• CNGL SVRPLSF1 0.15

CNGL SVRF1 0.13
DFKI logRegL2-411 0.09
DFKI logRegL2-431 0.04

UPC QQE+LeM+ALGPR+LM -0.03
UPC AQE+LeM+ALGPR+LM -0.06

CMU BLEUopt -0.11
Baseline Random-ranks-with-ties -0.23

UMAC EBLEU-A -0.27
UMAC EBLEU-I -0.35

CMU cls -0.63
Oracle Human 1.00

Oracle BLEU (margin 0.00) 0.17
Oracle BLEU (margin 0.02) -0.06

Oracle METEOR-ex (margin 0.00) 0.19
Oracle METEOR-ex (margin 0.02) 0.05

Table 15: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for English-Spanish, using as metric
Kendall’s τ with ties penalised. The winning submissions are indicated by a •. Oracle results that use human-references are
also shown for comparison purposes.
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German-English System ID Kendall’s τ with ties ignored Nr. of non-ties / Nr. of decisions
• DFKI logRegFss33 0.31 882/882

DFKI logRegFss24 0.28 882/882
UPC AQE+SEM+LM 0.27 768/882

UPC AQE+LeM+ALGPR+LM 0.24 788/882
DCU CCG 0.18 862/882

CNGL SVRPLSF1 0.17 882/882
CNGL SVRF1 0.17 881/882

Baseline Random-ranks-with-ties 0.08 718/882
DCU baseline+CCG 0.01 874/882

UMAC NB-LPR 0.01 447/882
UMAC EBLEU-I -0.03 558/882

Oracle Human 1.00 882/882
Oracle BLEU (margin 0.00) 0.22 859/882
Oracle BLEU (margin 0.01) 0.27 728/882

Oracle METEOR-ex (margin 0.00) 0.20 869/882
Oracle METEOR-ex (margin 0.01) 0.24 757/882

Table 16: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for German-English, using as metric
Kendall’s τ with ties ignored. The winning submissions are indicated by a •. Oracle results that use human-references are also
shown for comparison purposes.

English-Spanish System ID Kendall’s τ with ties ignored Nr. of non-ties / Nr. of decisions
• CMU cls 0.23 192/633

CNGL SVRPLSF1 0.16 632/633
CNGL SVRF1 0.13 631/633

DFKI logRegL2-411 0.13 610/633
UPC QQE+LeM+ALGPR+LM 0.11 554/633
UPC AQE+LeM+ALGPR+LM 0.08 554/633

UMAC EBLEU-A 0.07 430/633
DFKI logRegL2-431 0.04 633/633

Baseline Random-ranks-with-ties 0.03 507/633
UMAC EBLEU-I 0.02 407/633

CMU BLEUopt -0.11 633/633
Oracle Human 1.00 633/633

Oracle BLEU (margin 0.00) 0.19 621/633
Oracle BLEU (margin 0.02) 0.26 474/633

Oracle METEOR-ex (margin 0.00) 0.25 623/633
Oracle METEOR-ex (margin 0.02) 0.28 517/633

Table 17: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for English-Spanish, using as metric
Kendall’s τ with ties ignored. The winning submissions are indicated by a •. Oracle results that use human-references are also
shown for comparison purposes.
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cle method that has access to human-created refer-
ences. This oracle uses human references to com-
pute BLEU and METEOR scores for each trans-
lation segment, and consequently computes rank-
ings for the competing translations based on these
scores. To reflect the impact of ties on the two
versions of Kendall’s τ metric we use, we allow
these ranks to be tied if the difference between the
oracle BLEU or METEOR scores is smaller than
a margin (see lower section of Tables 14 and 16,
with margins of 0 and 0.01 for the scores). For ex-
ample, under a regime of BLEU with margin 0.01,
a translation with BLEU score of 0.172 would get
the same rank as a translation with BLEU score of
0.164 (difference of 0.008), but a higher rank than
a translation with BLEU score of 0.158 (difference
of 0.014). Not surprisingly, under the Kendall’s
τ with ties penalised the best Oracle BLEU or
METEOR performance happens for a 0.0 mar-
gin (which makes ties possible only for exactly-
matching scores), for a value of τ = 0.19 and
τ = 0.23, respectively. Under the Kendall’s τ with
ties ignored, the Oracle BLEU performance for a
0.01 margin (i.e, translations under 1 BLEU point
should be considered as having the same rank)
achieves τ = 0.27, while Oracle METEOR for a
0.01 margin achieves τ = 0.24. These values are
lower than the τ = 0.31 of the winning submis-
sion without access to reference translations, sug-
gesting that quality estimation models are capable
of better modelling translation differences com-
pared to traditional, human reference-based MT
evaluation metrics.

For English-Spanish, under Kendall’s τ with
ties penalised the winning submission is CNGL’s
SVRPLSF1, with τ = 0.15. Under Kendall’s τ
with ties ignored, the best scoring submission is
CMU’s cls with τ = 0.23, but this is achieved
by offering non-tie judgements only for 192 of the
633 total judgements (30% of them). As we dis-
cussed in Section 6.6, the ”Kendall’s τ with ties
ignored” metric is weak with respect to compar-
ing different submissions, since it favours systems
that are do not commit to a given rank and rather
produce a large number of ties. This becomes even
clearer when we look at the performance of the or-
acle methods (Tables 15 and 17). Under Kendall’s
τ with ties penalised, “Oracle BLEU” (margin
0.00) achieves τ = 0.17, while under Kendall’s
τ with ties ignored, “Oracle BLEU” (margin 0.02)
has a τ = 0.26. This results in 474 non-tie deci-

sions (75% of them), and a better τ value com-
pared to “Oracle BLEU” (margin 0.00), with a
τ = 0.19 under the same metric. The oracle values
for both BLEU and METEOR are close to the τ
values of the winning submissions, supporting the
conclusion that quality estimation techniques can
successfully replace traditional, human reference-
based MT evaluation metrics.

Task 1.3 Predicting post-editing time
Results for this task are presented in Table 18.
A third of the submissions was able to beat the
baseline. Among these FBK-UEDIN’s submission
ranked best in terms of MAE, our main metric for
this task, and also achieved the lowest RMSE.

Only three systems were able to beat our base-
line in terms of MAE. Please note that while all
features were available to the participants, our
baseline is actually a competitive system.

The second-best entry, CNGL SVR, reached
the highest Spearman’s rank correlation, our sec-
ondary metric. Furthermore, in terms of this met-
ric all four top-ranking entries, two by CNGL and
FBK-UEDIN respectively, are significantly better
than the baseline (10k bootstrap resampling test
with 95% confidence intervals). As high ranking
submissions also yield strong rank correlation to
the observed post-editing time, we can be confi-
dent that improvements in MAE are not only due
to better handling of extreme cases.

Many participants submitted two variants of
their systems with different numbers of features
and/or machine learning approaches. In Table 18
we can see these are grouped closely together giv-
ing rise to the assumption that the general pool of
available features and thereby the used resources
and strongest features are most relevant for a sys-
tem’s performance. Another hint in that direction
is the observation the top-ranked systems rely on
additional data and resources to generate their fea-
tures.

Task 2 Predicting word-level scores
Results for this task are presented in Table 19 and
20, sorted by macro average F1. Since this is a
new task, we have yet to establish a strong base-
line. For reference we provide a trivial baseline
that predicts the dominant class – (K)eep – for ev-
ery token.

The first observation in Table 19 is that this triv-
ial baseline is difficult to beat in terms of accuracy.
However, considering our main metric – macro-
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System ID MAE RMSE Pearson’s r Spearman’s ρ
• FBK-UEDIN Extra 47.5 82.6 0.65 0.75

• FBK-UEDIN Rand-SVR 47.9 86.7 0.66 0.74
CNGL SVR 49.2 90.4 0.67 0.76

CNGL SVRPLS 49.6 86.6 0.68 0.74
CMU slim 51.6 84.7 0.63 0.68

Baseline bb17 SVR 51.9 93.4 0.61 0.70
DFKI linear6 52.4 84.3 0.64 0.68

CMU full 53.6 92.2 0.58 0.60
DFKI pls8 53.6 88.3 0.59 0.67

TCD-DCU-CNGL SVM2 55.8 98.9 0.47 0.60
TCD-DCU-CNGL SVM1 55.9 99.4 0.48 0.60

SHEF FS 55.9 103.1 0.42 0.61
SHEF FS-AL 64.6 99.1 0.57 0.60
LIMSI elastic 70.6 114.4 0.58 0.64

Table 18: Official results for the Task 1.3 of the WMT13 Quality Estimation shared-task. The winning submissions are
indicated by a • (they are significantly better than all other submissions according to bootstrap resampling (10k times) with
95% confidence intervals). The systems in the gray area are not different from the baseline system at a statistically significant
level according to the same test.

Keep Change
System ID Accuracy Prec. Recall F1 Prec. Recall F1 Macro F1

• LIG FS BIN 0.74 0.79 0.86 0.82 0.56 0.43 0.48 0.65
• LIG BOOST BIN 0.74 0.78 0.88 0.83 0.57 0.37 0.45 0.64

CNGL GLM 0.70 0.76 0.86 0.80 0.47 0.31 0.38 0.59
UMAC NB 0.56 0.82 0.49 0.62 0.37 0.73 0.49 0.55

CNGL GLMd 0.71 0.74 0.93 0.82 0.51 0.19 0.28 0.55
UMAC CRF 0.71 0.72 0.98 0.83 0.49 0.04 0.07 0.45

Baseline (one class) 0.71 0.71 1.00 0.83 0.00 0.00 0.00 0.42

Table 19: Official results for Task 2: binary classification on word level of the WMT13 Quality Estimation shared-task. The
winning submissions are indicated by a •.

System ID F1 Keep F1 Substitute F1 Delete Micro-F1 Macro-F1

• LIG FS MULT 0.83 0.44 0.072 0.72 0.45
• LIG ALL MULT 0.83 0.45 0.064 0.72 0.45

UMAC NB 0.62 0.43 0.042 0.52 0.36
CNGL GLM 0.83 0.18 0.028 0.71 0.35

CNGL GLMd 0.83 0.14 0.034 0.72 0.34
UMAC CRF 0.83 0.04 0.012 0.71 0.29

Baseline (one class) 0.83 0.00 0.000 0.71 0.28

Table 20: Official results for Task 2: multiclass classification on word level of the WMT13 Quality Estimation shared-task.
The winning submissions are indicated by a •.
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average F1 – it is clear that all systems outperform
the baseline. The winning systems by LIG for the
binary task are also the top ranking systems on the
multiclass task.

While promising results are found for the bi-
nary variant of the task where systems are able to
achieve an F1 of almost 0.5 for the relevant class
– Change, the multiclass prediction variant of the
task seem to suffer from its severe class imbalance.
In fact, none of the systems shows good perfor-
mance when predicting deletions.

6.9 Discussion
In what follows, we discuss the main accomplish-
ments of this shared task starting from the goals
we had previously identified for it.

Explore various granularity levels for the
quality-prediction task The decision on which
level of granularity quality estimation is applied
depends strongly on the intended application. In
Task 2 we tested binary word-level classification
in a post-editing setting. If such annotation is pre-
sented through a user interface we imagine that
words marked as incorrect would be hidden from
the editor, highlighted as possibly wrong or that a
list of alternatives would we generated.

With respect to the poor improvements over
trivial baselines, we consider that the results for
word-level prediction could be mostly connected
to limitations of the datasets provided, which are
very small for word-level prediction, as compared
to successful previous work such as (Bach et al.,
2011). Despite the limited amount of training
data, several systems were able to predict dubious
words (binary variant of the task), showing that
this can be a promising task. Extending the granu-
larity even further by predicting the actual editing
action necessary for a word yielded less positive
results than the binary setting.

We cannot directly compare sentence- and
word-level results. However, since sentence-level
predictions can benefit from more information
available and therefore more signal on which the
prediction is based, the natural conclusion is that,
if there is a choice in the prediction granularity,
to opt for the coarser one possible (i.e., sentence-
level over word-level). But certain applications
may require finer granularity levels, and therefore
word-level predictions can still be very valuable.

Explore the prediction of more objective scores
Given the multitude of possible applications for

quality estimation we must decide which predicted
values are both useful and accurate. In this year’s
task we have attempted to address the useful-
ness criterion by moving from the subjective, hu-
man judgement-based scores, to the prediction of
scores that can be more easily interpreted for prac-
tical applications: post-editing distance or types of
edits (word-level), post-editing time, and ranking
of alternative translations.

The general promise of using objective scores is
that predicting a value that is related to the use case
will make quality estimation more applicable and
yield lower deviance compared to the use of proxy
metrics. The magnitude of this benefit should be
sufficient to account for the possible additional ef-
fort related to collecting such scores.

While a direct comparison between the differ-
ent types of scores used for this year’s tasks is not
possible as they are based on different datasets, if
we compare last year’s task on predicting 1-5 lik-
ert scores (and generating an overall ranking of all
translations in the test set) with this year’s Task
1.1, which is virtually the same, but using post-
editing distance as gold-label, we see that the num-
ber of systems that outperform the baseline 18 is
proportionally larger this year. We can also notice
a higher relative improvement of these submis-
sions over the baseline system. While this could
simply be a consequence of progress in the field, it
may also provide an indication that objective met-
rics are more suitable for the problem.

Particularly with respect to post-editing time,
given that this label has a long tailed distribution
and is not trivial to measure even in a controlled
environment, the results of Task 1.3 are encour-
aging. Comparison with the better results seen
on Tasks 1.1 and 1.2, however, suggests that, for
Task 1.3, additional data processing, filtering, and
modelling (including modelling translator-specific
traits such as their variance in time) is required, as
evidenced in (Cohn and Specia, 2013).

Explore the use of quality estimation tech-
niques to replace reference-based MT evalua-
tion metrics When it comes to the task of au-
tomatically ranking alternative translations gener-
ated by different MT systems, the traditional use
of reference-based MT evaluation metrics is chal-
lenged by the findings of this task.

The top ranking quality estimation submissions
18The two baselines are exactly the same, and therefore the

comparison is meaningful.
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to Task 1.2 have performances that outperform or
are at least at the same level with the ones that
involve the use of human references. The most in-
teresting property of these techniques is that, be-
ing reference-free, they can be used for any source
sentences, and therefore are ready to be deployed
for arbitrary texts.

An immediate application for this capability is
a procedure by which MT system-selection is per-
formed, based on the output of such quality esti-
mators. Additional measurements are needed to
determine the level of improvement in translation
quality that the current performance of these tech-
niques can achieve in a system-selection scenario.

Identify new and effective quality indicators
Quality indicators, or features, are core to the
problem of quality estimation. One significant dif-
ference this year with respect to previous year was
the availability of QUEST, a framework for the ex-
traction of a large number of features. A few sub-
missions used these larger sets – as opposed to the
17 baseline features used in the 2012 edition – as
their starting point, to which they added other fea-
tures. Most features available in this framework,
however, had already been used in previous work.

Novel families of features used this year which
seems to have played an important role are those
proposed by CNGL. They include a number of
language and MT-system independent monolin-
gual and bilingual similarity metrics between the
sentences for prediction and corpora of the lan-
guage pair under consideration. Based on standard
regression algorithm (the same used by the base-
line system), the submissions from CNGL using
such feature families topped many of the tasks.

Another interesting family of features is that
used by TCD-CNGL and TCD-DCU-CNGL for
Tasks 1.1 and 1.3. These were borrowed from
work on style or authorship identification. The as-
sumption is that low/high quality translations can
be characterised by some patterns which are fre-
quent and/or differ significantly from patterns be-
longing to the opposite category.

Like in last year’s task, the vast majority of
the participating systems used external resources
in addition to those provided for the task, par-
ticularly for linguistically-oriented features, such
as parsers, part-of-speech taggers, named entity
recognizers, etc. A novel set of syntactic fea-
tures based on Combinatory Categorial Grammar
(CCG) performed reasonably well in Task 1.2:

with six CCG-based features and no additional
features, the system outperformed the baseline
system and also a second submission where the
17 baseline features were added. This highlights
the potential of linguistically-motivated features
for the problem.

As expected, different feature sets were used
for different tasks. This is essential for Task 2,
where word-level features are certainly necessary.
For example, LIG used a number of lexical fea-
tures such as part-of-speech tag, word-posterior
probabilities, syntactic (constituent label, distance
to the constituent tree root, and target and source
polysemy count). For submissions where a se-
quence labelling algorithm such as a Conditional
Random Fields was used for prediction, the inter-
dependencies between adjacent words and labels
was also modelled though features.

Pseudo-references, i.e., scores from standard
evaluation metrics such as BLEU based on trans-
lations generated by an alternative MT system as
“reference”, featured in more than half of the sub-
missions for sentence-level tasks. This is not sur-
prising given their performance in previous work
on quality estimation.

Identify effective machine learning techniques
for all variants of the quality estimation task
For the sentence-level tasks, standard regression
methods such as SVR performed well as in the
previous edition of the shared task, topping the
results for the ranking variant of Task 1.1, both
first and second place. In fact this algorithm was
used by most submissions that outperformed the
baseline. An alternative algorithm to SVR with
very promising results and which was introduced
for the problem this year is that of Gaussian Pro-
cesses. It was used by SHEF, the winning submis-
sion in the scoring variant of Task 1.1, which also
performed well in the ranking variant, despite its
hyperparameters having been optimised for scor-
ing only. Algorithms behave similarly for Task
1.3, with SVR performing particularly well.

For Task 1.2, logistic regression performed the
best or among the best, along with SVR. One of
the most effective approach for this task, however,
appears to be one that is better tailored for the
task, namely pair-wise decomposition for ranking.
This approach benefits from transforming a k-way
ranking problem into a series of simpler, 2-way
ranking problems, which can be more accurately
solved. Another approach that shows promise is
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that of ensemble of regressors, in which the output
is the results combining the predictions of differ-
ent regression models.

Linear-chain Conditional Random Fields are a
popular model of choice for sequence labelling
tasks and have been successfully used by several
participants in Task 2, along with discriminatively
trained Hidden Markov Models and Naı̈ve Bayes.

As in the previous edition, feature engineer-
ing and feature selection prior to model learning
were important components in many submissions.
However, the role of individual features is hard
to judge separately from the role of the machine
learning techniques employed.

Establish the state of the art performance All
four tasks addressed in this shared task have
achieved a dual role that is important for the re-
search community: (i) to make publicly available
new data sets that can serve to compare different
approaches and contributions; and (ii) to estab-
lish the present state-of-the-art performance in the
field, so that progress can be easily measured and
tracked. In addition, the public availability of the
scoring scripts makes evaluation and direct com-
parison straightforward.

Many participants submitted predictions for
several tasks. Comparison of the results shows
that there is little overlap between the best sys-
tems when the predicted value is varied. While
we did not formally require the participants to use
similar systems across tasks, these results indicate
that specialised systems with features selected de-
pending on the predicted variable can in fact be
beneficial.

As we mentioned before, compared to the pre-
vious edition of the task, we noticed (for Task
1.1) a larger relative improvement of scores over
the baseline system, as well as a larger propor-
tion of systems outperforming the baseline sys-
tems, which are a good indication that the field is
progressing over the years. For example, in the
scoring variant of Task 1.1, last year only 5 out of
20 systems (i.e. 25% of the systems) were able to
significantly outperform the baseline. This year, 9
out 16 systems (i.e. 56%) outperformed the same
baseline. Last year, the relative improvement of
the winning submission with respect to the base-
line system was 13%, while this year the relative
improvement is of 19%.

Overall, the tables of results presented in Sec-
tion 6.8 give a comprehensive view of the current

state-of-the-art on the data sets used for this shared
task, as well as indications on how much room
there still is for improvement via figures from ora-
cle methods. As a result, people interested in con-
tributing to research in these machine translation
quality estimation tasks will be able to do so in a
principled way, with clearly established state-of-
the-art levels and straightforward means of com-
parison.

7 Summary

As in previous incarnations of this workshop we
carried out an extensive manual and automatic
evaluation of machine translation performance,
and we used the human judgements that we col-
lected to validate automatic metrics of translation
quality. We also refined last year’s quality estima-
tion task, asking for methods that predict sentence-
level post-editing effort and time, rank translations
from alternative systems, and pinpoint words in
the output that are more likely to be wrong.

As in previous years, all data sets generated by
this workshop, including the human judgments,
system translations and automatic scores, are pub-
licly available for other researchers to analyze.19
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ling Sparse Data Issue in Machine Translation
Evaluation. In Proceedings of the ACL 2010
Conference Short Papers, pages 86–91, Upp-
sala, Sweden. Association for Computational
Linguistics.

Bojar, O., Rosa, R., and Tamchyna, A. (2013).
Chimera – three heads for English-to-Czech
translation. In Proceedings of the Eighth Work-
shop on Statistical Machine Translation, pages
90–96, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

Borisov, A., Dlougach, J., and Galinskaya, I.
(2013). Yandex school of data analysis ma-
chine translation systems for WMT13. In Pro-
ceedings of the Eighth Workshop on Statistical
Machine Translation, pages 97–101, Sofia, Bul-
garia. Association for Computational Linguis-
tics.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz,
C., and Schroeder, J. (2007). (Meta-) evaluation
of machine translation. In Proceedings of the
Second Workshop on Statistical Machine Trans-
lation (WMT07), Prague, Czech Republic.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz,
C., and Schroeder, J. (2008). Further meta-

34



evaluation of machine translation. In Proceed-
ings of the Third Workshop on Statistical Ma-
chine Translation (WMT08), Colmbus, Ohio.

Callison-Burch, C., Koehn, P., Monz, C., Pe-
terson, K., Przybocki, M., and Zaidan, O. F.
(2010). Findings of the 2010 joint workshop
on statistical machine translation and metrics
for machine translation. In Proceedings of the
Fourth Workshop on Statistical Machine Trans-
lation (WMT10), Uppsala, Sweden.

Callison-Burch, C., Koehn, P., Monz, C., Post, M.,
Soricut, R., and Specia, L. (2012). Findings of
the 2012 workshop on statistical machine trans-
lation. In Proceedings of the Seventh Workshop
on Statistical Machine Translation, pages 10–
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A Pairwise System Comparisons by Human Judges

Tables 21–30 show pairwise comparisons between systems for each language pair. The numbers in each
of the tables’ cells indicate the percentage of times that the system in that column was judged to be better
than the system in that row, ignoring ties. Bolding indicates the winner of the two systems.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine
differences (rather than differences that are attributable to chance). In the following tables ? indicates sta-
tistical significance at p ≤ 0.10, † indicates statistical significance at p ≤ 0.05, and ‡ indicates statistical
significance at p ≤ 0.01, according to the Sign Test.

Each table contains final rows showing how likely a system would win when paired against a randomly
selected system (the expected win ratio score) and the rank range according bootstrap resampling (p ≤
0.05). Gray lines separate clusters based on non-overlapping rank ranges.
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UEDIN-HEAFIELD – .50 .48† .43‡ .47† .43‡ .44‡ .38‡ .32‡ .25‡ .26‡
ONLINE-B .50 – .46‡ .48† .47† .49 .44‡ .40‡ .39‡ .29‡ .27‡

MES .52† .54‡ – .49 .47? .44‡ .45‡ .42‡ .41‡ .27‡ .25‡
UEDIN .57‡ .52† .51 – .51 .48† .47‡ .42‡ .39‡ .28‡ .25‡

ONLINE-A .53† .53† .53? .49 – .48 .51 .44‡ .42‡ .31‡ .30‡
UEDIN-SYNTAX .57‡ .51 .56‡ .52† .52 – .51 .43‡ .41‡ .29‡ .26‡

CU-ZEMAN .56‡ .56‡ .55‡ .53‡ .49 .49 – .45‡ .42‡ .32‡ .29‡
CU-TAMCHYNA .62‡ .60‡ .58‡ .58‡ .56‡ .57‡ .55‡ – .46‡ .35‡ .32‡

DCU-FDA .68‡ .61‡ .59‡ .61‡ .58‡ .59‡ .58‡ .54‡ – .32‡ .32‡
JHU .75‡ .71‡ .73‡ .72‡ .69‡ .71‡ .68‡ .65‡ .68‡ – .46‡

SHEF-WPROA .74‡ .73‡ .75‡ .75‡ .70‡ .74‡ .71‡ .68‡ .68‡ .54‡ –
score .60 .58 .57 .56 .54 .54 .53 .48 .45 .32 .29
rank 1 2-3 2-4 3-5 4-7 5-7 6-7 8 9 10 11

Table 21: Head to head comparison, ignoring ties, for Czech-English systems
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CU-BOJAR – .51 .47† .44‡ .42‡ .43‡ .48 .41‡ .37‡ .39‡ .38‡ .33‡
CU-DEPFIX .49 – .48? .42‡ .43‡ .41‡ .47† .42‡ .40‡ .40‡ .39‡ .34‡
ONLINE-B .53† .52? – .47‡ .44‡ .44‡ .44‡ .44‡ .44‡ .41‡ .36‡ .34‡

UEDIN .56‡ .58‡ .53‡ – .47† .47‡ .48 .45‡ .44‡ .42‡ .43‡ .38‡
CU-ZEMAN .58‡ .57‡ .56‡ .53† – .49 .49 .48† .46‡ .47‡ .47‡ .35‡

MES .57‡ .59‡ .56‡ .53‡ .51 – .50 .47† .46‡ .43‡ .44‡ .42‡
ONLINE-A .52 .53† .56‡ .52 .51 .50 – .52 .47? .47† .47† .46†

CU-PHRASEFIX .59‡ .58‡ .56‡ .55‡ .52† .53† .48 – .49 .48† .49 .42‡
CU-TECTOMT .63‡ .60‡ .56‡ .56‡ .54‡ .54‡ .53? .51 – .46‡ .46‡ .40‡

COMMERCIAL-1 .61‡ .60‡ .59‡ .58‡ .53‡ .57‡ .53† .52† .54‡ – .49 .42‡
COMMERCIAL-2 .62‡ .61‡ .64‡ .57‡ .53‡ .56‡ .53† .51 .54‡ .51 – .43‡

SHEF-WPROA .67‡ .66‡ .66‡ .62‡ .65‡ .58‡ .54† .58‡ .60‡ .58‡ .57‡ –
score .58 .57 .56 .52 .50 .50 .49 .48 .47 .45 .45 .38
rank 1-2 1-2 3 4 5-7 5-7 5-8 7-9 8-9 10-11 10-11 12

Table 22: Head to head comparison, ignoring ties, for English-Czech systems
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ONLINE-B – .48 .44‡ .37‡ .44‡ .41‡ .42‡ .40‡ .35‡ .37‡ .32‡ .31‡ .31‡ .27‡ .23‡ .18‡ .16‡
ONLINE-A .52 – .47 .45† .47 .43‡ .42‡ .41‡ .44‡ .40‡ .35‡ .36‡ .34‡ .31‡ .27‡ .25‡ .21‡

UEDIN-SYNTAX .56‡ .53 – .48 .46† .48? .46† .46† .45‡ .45‡ .35‡ .35‡ .34‡ .28‡ .25‡ .20‡ .19‡
UEDIN .63‡ .55† .52 – .51 .46‡ .47† .49 .44‡ .43‡ .39‡ .34‡ .35‡ .32‡ .28‡ .24‡ .22‡

QUAERO .56‡ .53 .54† .49 – .49 .52 .44‡ .46‡ .44‡ .39‡ .38‡ .37‡ .30‡ .31‡ .25‡ .21‡
KIT .59‡ .57‡ .52? .54‡ .51 – .45‡ .51 .43‡ .46‡ .37‡ .38‡ .41‡ .35‡ .31‡ .25‡ .21‡

MES .58‡ .58‡ .54† .53† .48 .55‡ – .49 .49 .46‡ .44‡ .37‡ .40‡ .34‡ .30‡ .26‡ .20‡
RWTH-JANE .60‡ .59‡ .54† .51 .56‡ .49 .51 – .46‡ .50 .45‡ .46‡ .47† .38‡ .33‡ .28‡ .20‡

MES-SZEGED-REORDER-SPLIT .65‡ .56‡ .55‡ .56‡ .54‡ .57‡ .51 .54‡ – .53? .44‡ .41‡ .41‡ .36‡ .34‡ .31‡ .21‡
LIMSI-NCODE-SOUL .63‡ .60‡ .55‡ .57‡ .56‡ .54‡ .54‡ .50 .47? – .51 .45‡ .43‡ .37‡ .34‡ .30‡ .22‡

TUBITAK .68‡ .65‡ .65‡ .61‡ .61‡ .63‡ .56‡ .55‡ .56‡ .49 – .48? .49 .39‡ .41‡ .30‡ .25‡
UMD .69‡ .64‡ .65‡ .66‡ .62‡ .62‡ .63‡ .54‡ .59‡ .55‡ .52? – .48? .41‡ .40‡ .33‡ .27‡
DCU .69‡ .66‡ .66‡ .65‡ .63‡ .59‡ .60‡ .53† .59‡ .57‡ .51 .52? – .41‡ .38‡ .37‡ .25‡

CU-ZEMAN .73‡ .69‡ .72‡ .68‡ .70‡ .65‡ .66‡ .62‡ .64‡ .63‡ .61‡ .59‡ .59‡ – .44‡ .43‡ .29‡
JHU .77‡ .73‡ .75‡ .72‡ .69‡ .69‡ .70‡ .67‡ .66‡ .66‡ .59‡ .60‡ .62‡ .56‡ – .43‡ .30‡

SHEF-WPROA .82‡ .75‡ .80‡ .76‡ .75‡ .75‡ .74‡ .72‡ .69‡ .70‡ .70‡ .67‡ .63‡ .57‡ .57‡ – .41‡
DESRT .84‡ .79‡ .81‡ .78‡ .79‡ .79‡ .80‡ .80‡ .79‡ .78‡ .75‡ .73‡ .75‡ .71‡ .70‡ .59‡ –

score .66 .62 .60 .58 .58 .57 .56 .54 .53 .52 .48 .46 .46 .39 .36 .31 .23
rank 1 2-3 2-3 4-5 4-5 5-7 6-7 8-9 8-10 9-10 11 12-13 12-13 14 15 16 17

Table 23: Head to head comparison, ignoring ties, for German-English systems
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ONLINE-B – .55‡ .50 .45? .45‡ .34‡ .37‡ .37‡ .37‡ .32‡ .32‡ .33‡ .24‡ .21‡ .26‡
PROMT .45‡ – .48? .50 .43‡ .40‡ .39‡ .36‡ .37‡ .31‡ .31‡ .32‡ .27‡ .24‡ .27‡

UEDIN-SYNTAX .50 .52? – .57† .45‡ .43‡ .38‡ .41‡ .39‡ .38‡ .33‡ .33‡ .26‡ .25‡ .22‡
ONLINE-A .55? .50 .43† – .51 .42† .48 .41‡ .36‡ .44? .44? .38‡ .32‡ .27‡ .29‡

UEDIN .55‡ .57‡ .55‡ .49 – .52 .45‡ .45‡ .42‡ .43‡ .37‡ .34‡ .29‡ .27‡ .31‡
KIT .66‡ .60‡ .57‡ .58† .48 – .48 .45‡ .42‡ .36‡ .39‡ .40‡ .30‡ .29‡ .26‡

STANFORD .63‡ .61‡ .62‡ .52 .55‡ .52 – .50 .44‡ .48 .44‡ .43‡ .34‡ .29‡ .32‡
LIMSI-NCODE-SOUL .63‡ .64‡ .59‡ .59‡ .55‡ .55‡ .50 – .44‡ .44‡ .44‡ .47† .40‡ .34‡ .33‡

MES-REORDER .63‡ .63‡ .61‡ .64‡ .58‡ .58‡ .56‡ .56‡ – .50 .46‡ .49 .38‡ .37‡ .34‡
JHU .68‡ .69‡ .62‡ .56? .57‡ .64‡ .52 .56‡ .50 – .48? .45‡ .36‡ .37‡ .34‡

CU-ZEMAN .68‡ .69‡ .67‡ .56? .63‡ .61‡ .56‡ .56‡ .54‡ .52? – .48 .40‡ .33‡ .34‡
TUBITAK .67‡ .68‡ .67‡ .62‡ .66‡ .60‡ .57‡ .53† .51 .55‡ .52 – .38‡ .40‡ .32‡

UU .76‡ .73‡ .74‡ .68‡ .71‡ .70‡ .66‡ .60‡ .62‡ .64‡ .60‡ .62‡ – .44‡ .46†
SHEF-WPROA .79‡ .76‡ .75‡ .73‡ .73‡ .71‡ .71‡ .66‡ .63‡ .63‡ .67‡ .60‡ .56‡ – .47†

RWTH-JANE .74‡ .73‡ .78‡ .71‡ .69‡ .74‡ .68‡ .67‡ .66‡ .66‡ .66‡ .68‡ .54† .53† –
score .63 .63 .61 .58 .57 .55 .52 .50 .47 .47 .46 .45 .36 .32 .32
rank 1-2 1-2 3 3-5 4-6 5-6 7 8 9-11 9-11 10-12 11-12 13 14-15 14-15

Table 24: Head to head comparison, ignoring ties, for English-German systems
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UEDIN-HEAFIELD – .45‡ .46‡ .46‡ .42‡ .42‡ .34‡ .34‡ .29‡ .33‡ .31‡ .28‡ .24‡
UEDIN .55‡ – .52? .43‡ .45‡ .46? .40‡ .38‡ .33‡ .36‡ .33‡ .32‡ .23‡

ONLINE-B .54‡ .48? – .49 .46‡ .44‡ .45‡ .40‡ .38‡ .34‡ .36‡ .31‡ .26‡
LIMSI-NCODE-SOUL .54‡ .57‡ .51 – .52? .47 .45‡ .42‡ .38‡ .36‡ .34‡ .31‡ .28‡

KIT .58‡ .55‡ .54‡ .48? – .47 .46‡ .44‡ .39‡ .38‡ .37‡ .33‡ .28‡
ONLINE-A .58‡ .54? .56‡ .53 .53 – .47 .45† .40‡ .40‡ .39‡ .34‡ .32‡

MES-SIMPLIFIEDFRENCH .66‡ .60‡ .55‡ .55‡ .54‡ .53 – .48? .44‡ .40‡ .39‡ .39‡ .32‡
DCU .66‡ .62‡ .60‡ .58‡ .56‡ .55† .52? – .45‡ .45‡ .42‡ .41‡ .36‡

RWTH .71‡ .67‡ .62‡ .62‡ .61‡ .60‡ .56‡ .55‡ – .48? .47† .47? .38‡
CMU-TREE-TO-TREE .67‡ .64‡ .66‡ .64‡ .62‡ .60‡ .60‡ .55‡ .52? – .50 .48 .37‡

CU-ZEMAN .69‡ .67‡ .64‡ .66‡ .63‡ .61‡ .61‡ .58‡ .53† .50 – .47† .39‡
JHU .72‡ .68‡ .69‡ .69‡ .67‡ .66‡ .61‡ .59‡ .53? .52 .53† – .45‡

SHEF-WPROA .76‡ .77‡ .74‡ .72‡ .72‡ .68‡ .68‡ .64‡ .62‡ .63‡ .61‡ .55‡ –
score .63 .60 .59 .57 .56 .54 .51 .48 .43 .42 .42 .38 .32
rank 1 2-3 2-3 4-5 4-5 5-6 7 8 9-10 9-11 10-11 12 13

Table 25: Head to head comparison, ignoring ties, for French-English systems
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UEDIN – .49 .47? .48 .50 .44‡ .41‡ .40‡ .47? .39‡ .41‡ .35‡ .29‡ .30‡ .27‡ .24‡
ONLINE-B .51 – .46‡ .47? .47† .44‡ .49 .43‡ .43‡ .43‡ .38‡ .35‡ .36‡ .28‡ .25‡ .25‡

LIMSI-NCODE-SOUL .53? .54‡ – .45‡ .48 .48 .45‡ .43‡ .44‡ .45† .41‡ .32‡ .34‡ .30‡ .27‡ .27‡
KIT .52 .53? .55‡ – .48 .46† .45‡ .43‡ .45‡ .46? .38‡ .30‡ .33‡ .31‡ .29‡ .29‡

PROMT .50 .53† .52 .52 – .50 .48 .52? .45‡ .47 .48? .38‡ .36‡ .36‡ .34‡ .31‡
STANFORD .56‡ .56‡ .52 .54† .50 – .52 .48 .44‡ .49 .44‡ .39‡ .34‡ .36‡ .30‡ .29‡

MES .59‡ .51 .55‡ .55‡ .52 .48 – .52 .51 .45? .45‡ .36‡ .37‡ .34‡ .29‡ .29‡
MES-INFLECTION .60‡ .57‡ .57‡ .57‡ .48? .52 .48 – .54† .51 .46† .37‡ .35‡ .31‡ .33‡ .31‡

RWTH-PHRASE-BASED-JANE .53? .57‡ .56‡ .55‡ .55‡ .56‡ .49 .46† – .53 .49 .38‡ .36‡ .34‡ .35‡ .31‡
ONLINE-A .61‡ .57‡ .55† .54? .53 .51 .55? .49 .47 – .50 .45† .38‡ .38‡ .39‡ .35‡

DCU .59‡ .62‡ .59‡ .62‡ .52? .56‡ .55‡ .54† .51 .50 – .42‡ .40‡ .40‡ .36‡ .35‡
CU-ZEMAN .65‡ .65‡ .68‡ .70‡ .62‡ .61‡ .64‡ .63‡ .62‡ .55† .58‡ – .50 .42‡ .41‡ .37‡

JHU .71‡ .64‡ .66‡ .67‡ .64‡ .66‡ .63‡ .65‡ .64‡ .62‡ .60‡ .50 – .47‡ .42‡ .38‡
OMNIFLUENT .70‡ .72‡ .70‡ .69‡ .64‡ .64‡ .66‡ .69‡ .66‡ .62‡ .60‡ .58‡ .53‡ – .43‡ .42‡

ITS-LATL .73‡ .75‡ .72‡ .71‡ .66‡ .70‡ .71‡ .67‡ .65‡ .61‡ .64‡ .59‡ .58‡ .57‡ – .45‡
ITS-LATL-PE .76‡ .75‡ .73‡ .71‡ .69‡ .71‡ .71‡ .69‡ .69‡ .65‡ .65‡ .63‡ .62‡ .58‡ .55‡ –

score .60 .60 .58 .58 .55 .55 .54 .53 .53 .51 .49 .42 .40 .38 .35 .32
rank 1-2 1-3 2-4 3-4 5-7 5-8 5-8 6-9 7-10 9-11 10-11 12 13 14 15 16

Table 26: Head to head comparison, ignoring ties, for English-French systems
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UEDIN-HEAFIELD – .49 .42‡ .45? .43‡ .40‡ .34‡ .43‡ .37‡ .34‡ .31‡ .15‡
ONLINE-B .51 – .49 .44‡ .46‡ .47† .42‡ .39‡ .40‡ .37‡ .37‡ .16‡

UEDIN .58‡ .51 – .55† .50 .47† .43‡ .42‡ .39‡ .39‡ .35‡ .14‡
ONLINE-A .55? .56‡ .45† – .50 .44‡ .45† .42‡ .42‡ .41‡ .37‡ .18‡

MES .57‡ .54‡ .50 .50 – .47† .45‡ .41‡ .41‡ .40‡ .38‡ .15‡
LIMSI-NCODE-SOUL .60‡ .53† .53† .56‡ .53† – .46‡ .45‡ .44‡ .43‡ .38‡ .18‡

DCU .66‡ .58‡ .57‡ .55† .55‡ .54‡ – .44‡ .47† .42‡ .41‡ .16‡
DCU-OKITA .57‡ .61‡ .58‡ .58‡ .59‡ .55‡ .56‡ – .49 .46‡ .46‡ .18‡

DCU-FDA .63‡ .60‡ .61‡ .58‡ .59‡ .56‡ .53† .51 – .48? .43‡ .18‡
CU-ZEMAN .66‡ .63‡ .61‡ .59‡ .60‡ .57‡ .58‡ .54‡ .52? – .43‡ .18‡

JHU .69‡ .63‡ .65‡ .63‡ .62‡ .62‡ .59‡ .54‡ .57‡ .57‡ – .22‡
SHEF-WPROA .85‡ .84‡ .86‡ .82‡ .85‡ .82‡ .84‡ .82‡ .82‡ .82‡ .78‡ –

score .62 .59 .57 .57 .56 .53 .51 .48 .48 .46 .42 .16
rank 1 2 3-5 3-5 3-5 6 7 8-9 8-9 10 11 12

Table 27: Head to head comparison, ignoring ties, for Spanish-English systems
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ONLINE-B – .49 .45‡ .43‡ .38‡ .35‡ .34‡ .35‡ .37‡ .34‡ .33‡ .32‡ .23‡
ONLINE-A .51 – .49 .48 .38‡ .46? .42‡ .41‡ .43‡ .38‡ .38‡ .37‡ .31‡

UEDIN .55‡ .51 – .49 .46† .45‡ .43‡ .42‡ .36‡ .38‡ .38‡ .38‡ .26‡
PROMT .57‡ .52 .51 – .46‡ .48 .43‡ .43‡ .40‡ .37‡ .39‡ .34‡ .29‡

MES .62‡ .62‡ .54† .54‡ – .46‡ .44‡ .44‡ .41‡ .40‡ .43‡ .36‡ .32‡
TALP-UPC .65‡ .54? .55‡ .52 .54‡ – .50 .45‡ .44‡ .40‡ .40‡ .37‡ .32‡

LIMSI-NCODE .66‡ .58‡ .57‡ .57‡ .56‡ .50 – .46‡ .51 .48 .44‡ .45‡ .35‡
DCU .65‡ .59‡ .58‡ .57‡ .56‡ .55‡ .54‡ – .50 .48 .48 .45‡ .36‡

DCU-FDA .63‡ .57‡ .64‡ .60‡ .59‡ .56‡ .49 .50 – .53? .49 .42‡ .32‡
DCU-OKITA .66‡ .62‡ .62‡ .63‡ .60‡ .60‡ .52 .52 .47? – .50 .47† .36‡
CU-ZEMAN .67‡ .62‡ .62‡ .61‡ .57‡ .60‡ .56‡ .52 .51 .50 – .46‡ .40‡

JHU .68‡ .63‡ .62‡ .66‡ .64‡ .63‡ .55‡ .55‡ .58‡ .53† .54‡ – .37‡
SHEF-WPROA .77‡ .69‡ .74‡ .71‡ .68‡ .68‡ .65‡ .64‡ .68‡ .64‡ .60‡ .63‡ –

score .63 .58 .57 .56 .53 .52 .49 .47 .47 .45 .44 .41 .32
rank 1 2-4 2-4 3-4 5-6 5-6 7-8 7-9 8-10 9-11 10-11 12 13

Table 28: Head to head comparison, ignoring ties, for English-Spanish systems
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ONLINE-B – .40‡ .42‡ .41‡ .37‡ .37‡ .41‡ .33‡ .33‡ .37‡ .33‡ .33‡ .35‡ .38‡ .34‡ .33‡ .29‡ .28‡ .14‡
CMU .60‡ – .50 .46† .43‡ .47† .42‡ .42‡ .39‡ .43‡ .41‡ .41‡ .40‡ .38‡ .36‡ .30‡ .30‡ .29‡ .17‡

ONLINE-A .58‡ .50 – .50 .51 .43‡ .47? .44‡ .40‡ .41‡ .43‡ .38‡ .40‡ .38‡ .38‡ .39‡ .34‡ .30‡ .19‡
ONLINE-G .59‡ .54† .50 – .55† .50 .51 .48 .42‡ .41‡ .44‡ .43‡ .46† .40‡ .44‡ .36‡ .34‡ .33‡ .19‡

PROMT .63‡ .57‡ .49 .45† – .43‡ .47† .43‡ .47† .47† .43‡ .39‡ .44‡ .43‡ .37‡ .41‡ .40‡ .38‡ .25‡
QCRI-MES .63‡ .53† .57‡ .50 .57‡ – .48 .46† .47? .45‡ .43‡ .45‡ .45‡ .38‡ .42‡ .37‡ .33‡ .40‡ .19‡

UCAM-MULTIFRONTEND .59‡ .58‡ .53? .49 .53† .52 – .47† .48 .46‡ .46‡ .42‡ .45‡ .46‡ .45‡ .40‡ .39‡ .33‡ .17‡
BALAGUR .67‡ .58‡ .56‡ .52 .57‡ .54† .53† – .47† .49 .45‡ .53? .40‡ .44‡ .44‡ .41‡ .36‡ .33‡ .23‡
MES-QCRI .67‡ .61‡ .60‡ .58‡ .53† .53? .52 .53† – .49 .47† .47? .43‡ .43‡ .44‡ .38‡ .42‡ .39‡ .17‡

UEDIN .63‡ .57‡ .59‡ .59‡ .53† .55‡ .54‡ .51 .51 – .48 .52 .44‡ .52 .49 .42‡ .43‡ .35‡ .21‡
OMNIFLUENT-UNCNSTR .67‡ .59‡ .57‡ .56‡ .57‡ .57‡ .54‡ .55‡ .53† .52 – .51 .46† .48 .48 .44‡ .40‡ .39‡ .25‡

LIA .67‡ .59‡ .62‡ .57‡ .61‡ .55‡ .58‡ .47? .53? .48 .49 – .51 .49 .48 .50 .41‡ .39‡ .20‡
OMNIFLUENT-CNSTR .65‡ .60‡ .60‡ .54† .56‡ .55‡ .55‡ .60‡ .57‡ .56‡ .54† .49 – .51 .48 .47? .40‡ .40‡ .25‡

UMD .62‡ .62‡ .62‡ .60‡ .57‡ .62‡ .54‡ .56‡ .57‡ .48 .52 .51 .49 – .53† .42‡ .46‡ .42‡ .19‡
CU-KAREL .66‡ .64‡ .62‡ .56‡ .63‡ .58‡ .55‡ .56‡ .56‡ .51 .52 .52 .52 .47† – .44‡ .40‡ .47? .24‡

COMMERCIAL-3 .67‡ .70‡ .61‡ .64‡ .59‡ .63‡ .60‡ .59‡ .62‡ .58‡ .56‡ .50 .53? .58‡ .56‡ – .51 .44‡ .32‡
UEDIN-SYNTAX .71‡ .70‡ .66‡ .66‡ .60‡ .67‡ .61‡ .64‡ .58‡ .57‡ .60‡ .59‡ .60‡ .54‡ .60‡ .49 – .45‡ .25‡

JHU .72‡ .71‡ .70‡ .67‡ .62‡ .60‡ .67‡ .67‡ .61‡ .65‡ .61‡ .61‡ .60‡ .58‡ .53? .56‡ .55‡ – .24‡
CU-ZEMAN .86‡ .83‡ .81‡ .81‡ .75‡ .81‡ .83‡ .77‡ .83‡ .79‡ .75‡ .80‡ .75‡ .81‡ .76‡ .68‡ .75‡ .76‡ –

score .65 .60 .58 .56 .56 .55 .54 .52 .51 .50 .49 .49 .48 .48 .47 .43 .41 .39 .21
rank 1 2-3 2-3 4-6 4-6 5-7 5-7 8-9 8-10 9-11 10-12 11-14 12-15 12-15 13-15 16 17 18 19

Table 29: Head to head comparison, ignoring ties, for Russian-English systems
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PROMT – .44‡ .39‡ .47 .46? .36‡ .37‡ .37‡ .32‡ .35‡ .28‡ .30‡ .32‡ .24‡
ONLINE-B .56‡ – .44‡ .41‡ .44† .38‡ .37‡ .35‡ .33‡ .39‡ .33‡ .31‡ .35‡ .24‡

CMU .61‡ .56‡ – .52 .49 .47† .43‡ .41‡ .39‡ .44‡ .44‡ .40‡ .35‡ .28‡
ONLINE-G .53 .59‡ .48 – .48 .50 .48 .46 .46? .42‡ .38‡ .43‡ .38‡ .36‡
ONLINE-A .54? .56† .51 .52 – .47 .49 .49 .48 .44† .38‡ .40‡ .40‡ .34‡

UEDIN .64‡ .62‡ .53† .50 .53 – .49 .46† .42‡ .39‡ .44‡ .41‡ .38‡ .29‡
QCRI-MES .63‡ .63‡ .57‡ .52 .51 .51 – .48 .45‡ .44‡ .42‡ .39‡ .40‡ .29‡

CU-KAREL .63‡ .65‡ .59‡ .54 .51 .54† .52 – .50 .46† .43‡ .40‡ .42‡ .34‡
MES-QCRI .68‡ .67‡ .61‡ .54? .52 .58‡ .55‡ .50 – .48? .47‡ .43‡ .45‡ .34‡

JHU .65‡ .61‡ .56‡ .58‡ .56† .61‡ .56‡ .54† .52? – .51 .44‡ .44‡ .33‡
COMMERCIAL-3 .72‡ .67‡ .56‡ .62‡ .62‡ .56‡ .58‡ .57‡ .53‡ .49 – .52 .48 .44‡

LIA .70‡ .69‡ .60‡ .57‡ .60‡ .59‡ .61‡ .60‡ .57‡ .56‡ .48 – .47† .41‡
BALAGUR .68‡ .65‡ .65‡ .62‡ .60‡ .62‡ .60‡ .58‡ .55‡ .56‡ .52 .53† – .41‡

CU-ZEMAN .76‡ .76‡ .72‡ .64‡ .66‡ .71‡ .71‡ .66‡ .66‡ .67‡ .56‡ .59‡ .59‡ –
score .64 .62 .55 .54 .53 .53 .52 .49 .47 .46 .43 .42 .41 .33
rank 1 2 3-4 3-6 3-7 4-7 5-7 8 9-10 9-10 11-12 11-13 12-13 14

Table 30: Head to head comparison, ignoring ties, for English-Russian systems

44



Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 45–51,
Sofia, Bulgaria, August 8-9, 2013 c©2013 Association for Computational Linguistics

Results of the WMT13 Metrics Shared Task
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Abstract
This paper presents the results of the
WMT13 Metrics Shared Task. We asked
participants of this task to score the
outputs of the MT systems involved in
WMT13 Shared Translation Task. We
collected scores of 16 metrics from 8 re-
search groups. In addition to that we com-
puted scores of 5 standard metrics such as
BLEU, WER, PER as baselines. Collected
scores were evaluated in terms of system
level correlation (how well each metric’s
scores correlate with WMT13 official hu-
man scores) and in terms of segment level
correlation (how often a metric agrees with
humans in comparing two translations of a
particular sentence).

1 Introduction

Automatic machine translation metrics play a very
important role in the development of MT systems
and their evaluation. There are many different
metrics of diverse nature and one would like to
assess their quality. For this reason, the Metrics
Shared Task is held annually at the Workshop of
Statistical Machine Translation (Callison-Burch et
al., 2012). This year, the Metrics Task was run
by different organizers but the only visible change
is hopefully that the results of the task are pre-
sented in a separate paper instead of the main
WMT overview paper.

In this task, we asked metrics developers to
score the outputs of WMT13 Shared Translation
Task (Bojar et al., 2013). We have collected the
computed metrics’ scores and use them to evalu-
ate quality of the metrics.

The systems’ outputs, human judgements and
evaluated metrics are described in Section 2. The
quality of the metrics in terms of system level cor-
relation is reported in Section 3. Segment level
correlation is reported in Section 4.

2 Data

We used the translations of MT systems involved
in WMT13 Shared Translation Task together with
reference translations as the test set for the Metrics
Task. This dataset consists of 135 systems’ out-
puts and 6 reference translations in 10 translation
directions (5 into English and 5 out of English).
Each system’s output and the reference translation
contain 3000 sentences. For more details please
see the WMT13 main overview paper (Bojar et al.,
2013).

2.1 Manual MT Quality Judgements
During the WMT13 Translation Task a large scale
manual annotation was conducted to compare the
systems. We used these collected human judge-
ments for evaluating the automatic metrics.

The participants in the manual annotation were
asked to evaluate system outputs by ranking trans-
lated sentences relative to each other. For each
source segment that was included in the procedure,
the annotator was shown the outputs of five sys-
tems to which he or she was supposed to assign
ranks. Ties were allowed. Only sentences with 30
or less words were ranked by humans.

These collected rank labels were then used to
assign each system a score that reflects how high
that system was usually ranked by the annotators.
Please see the WMT13 main overview paper for
details on how this score is computed. You can
also find inter- and intra-annotator agreement esti-
mates there.

2.2 Participants of the Shared Task
Table 1 lists the participants of WMT13 Shared
Metrics Task, along with their metrics. We have
collected 16 metrics from a total of 8 research
groups.

In addition to that we have computed the fol-
lowing two groups of standard metrics as base-
lines:
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Metrics Participant
METEOR Carnegie Mellon University (Denkowski and Lavie, 2011)

LEPOR, NLEPOR University of Macau (Han et al., 2013)
ACTA, ACTA5+6 Idiap Research Institute (Hajlaoui, 2013) (Hajlaoui and Popescu-Belis, 2013)

DEPREF-{ALIGN,EXACT} Dublin City University (Wu et al., 2013)
SIMPBLEU-{RECALL,PREC} University of Shefield (Song et al., 2013)

MEANT, UMEANT Hong Kong University of Science and Technology (Lo and Wu, 2013)
TERRORCAT German Research Center for Artificial Intelligence (Fishel, 2013)

LOGREGFSS, LOGREGNORM DFKI (Avramidis and Popović, 2013)

Table 1: Participants of WMT13 Metrics Shared Task

• Moses Scorer. Metrics BLEU (Papineni et
al., 2002), TER (Snover et al., 2006), WER,
PER and CDER (Leusch et al., 2006) were
computed using the Moses scorer which is
used in Moses model optimization. To tok-
enize the sentences we used the standard tok-
enizer script as available in Moses Toolkit. In
this paper we use the suffix *-MOSES to label
these metrics.

• Mteval. Metrics BLEU (Papineni et
al., 2002) and NIST (Doddington,
2002) were computed using the script
mteval-v13a.pl 1 which is used in
OpenMT Evaluation Campaign and includes
its own tokenization. We use *-MTEVAL

suffix to label these metrics. By default,
mteval assumes the text is in ASCII,
causing poor tokenization around curly
quotes. We run mteval in both the
default setting as well as with the flag
--international-tokenization
(marked *-INTL).

We have normalized all metrics’ scores such
that better translations get higher scores.

3 System-Level Metric Analysis

We measured the quality of system-level metrics’
scores using the Spearman’s rank correlation coef-
ficient ρ. For each direction of translation we con-
verted the official human scores into ranks. For
each metric, we converted the metric’s scores of
systems in a given direction into ranks. Since there
were no ties in the rankings, we used the simplified
formula to compute the Spearman’s ρ:

ρ = 1− 6
∑
d2i

n(n2 − 1)
(1)

1http://www.itl.nist.gov/iad/mig/
/tools/

where di is the difference between the human rank
and metric’s rank for system i and n is number of
systems. The possible values of ρ range between
1 (where all systems are ranked in the same order)
and -1 (where the systems are ranked in the re-
verse order). A good metric produces rankings of
systems similar to human rankings. Since we have
normalized all metrics such that better translations
get higher score we consider metrics with values
of Spearman’s ρ closer to 1 as better.

We also computed empirical confidences of
Spearman’s ρ using bootstrap resampling. Since
we did not have direct access to participants’ met-
rics (we received only metrics’ scores for the com-
plete test sets without the ability to run them on
new sampled test sets), we varied the “golden
truth” by sampling from human judgments. We
have bootstrapped 1000 new sets and used 95 %
confidence level to compute confidence intervals.

The Spearman’s ρ correlation coefficient is
sometimes too harsh: If a metric disagrees with
humans in ranking two systems of a very similar
quality, the ρ coefficient penalizes this equally as
if the systems were very distant in their quality.
Aware of how uncertain the golden ranks are in
general, we do not find the method very fair. We
thus also computed three following correlation co-
efficients besides the Spearman’s ρ:

• Pearson’s correlation coefficient. This co-
efficient measures the strength of the linear
relationship between metric’s scores and hu-
man scores. In fact, Spearman’s ρ is Pear-
son’s correlation coefficient applied to ranks.

• Correlation with systems’ clusters. In the
Translation Task (Bojar et al., 2013), the
manual scores are also presented as clus-
ters of systems that can no longer be signifi-
cantly distinguished from one another given
the available judgements. (Please see the
WMT13 Overview paper for more details).
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We take this cluster information as a “rank
with ties” for each system and calculate its
Pearson’s correlation coefficient with each
metric’s scores.

• Correlation with systems’ fuzzy ranks. For
a given system the fuzzy rank is computed
as an average of ranks of all systems which
are not significantly better or worse than the
given system. The Pearson’s correlation co-
efficient of a metric’s scores and systems’
fuzzy ranks is then computed.

You can find the system-level correlations for
translations into English in Table 2 and for transla-
tions out of English in Table 3. Each row in the ta-
bles contains correlations of a metric in each of the
examined translation directions. The metrics are
sorted by average Spearman’s ρ correlation across
translation directions. The best results in each di-
rection are in bold.

As in previous years, a lot of metrics outper-
formed BLEU in system level correlation. The
metric which has on average the strongest corre-
lation in directions into English is METEOR. For
the out of English direction, SIMPBLEU-RECALL

has the highest system-level correlation. TER-
RORCAT achieved even a higher average corre-
lation but it did not participate in all language
pairs. The implementation of BLEU in mteval
is slightly better than the one in Moses scorer
(BLEU-MOSES). This confirms the known truth
that tokenization and other minor implementation
details can considerably influence a metric perfor-
mance.

4 Segment-Level Metric Analysis

We measured the quality of metrics’ segment-
level scores using Kendall’s τ rank correlation
coefficient. For this we did not use the official
WMT13 human scores but we worked with raw
human judgements: For each translation direction
we extracted all pairwise comparisons where one
system’s translation of a particular segment was
judged to be (strictly) better than the other sys-
tem’s translation. Formally, this is a list of pairs
(a, b) where a segment translation a was ranked
better than translation b:

Pairs := {(a, b) | r(a) < r(b)} (2)

where r(·) is human rank. For a given metricm(·),
we then counted all concordant pairwise compar-

isons and all discordant pairwise comparisons. A
concordant pair is a pair of two translations of
the same segment in which the comparison of hu-
man ranks agree with the comparison of the met-
ric’s scores. A discordant pair is a pair in which
the comparison of human ranks disagrees with the
metric’s comparison. Note that we totally ignore
pairs where human ranks or metric’s scores are
tied. Formally:

Con := {(a, b) ∈ Pairs | m(a) > m(b)} (3)

Dis := {(a, b) ∈ Pairs | m(a) < m(b)} (4)

Finally the Kendall’s τ is computed using the fol-
lowing formula:

τ =
|Con| − |Dis|
|Con|+ |Dis| (5)

The possible values of τ range between -1 (a met-
ric always predicted a different order than humans
did) and 1 (a metric always predicted the same or-
der as humans). Metrics with higher τ are better.

The final Kendall’s τs are shown in Table 4
for directions into English and in Table 5 for di-
rections out of English. Each row in the tables
contains correlations of a metric in given direc-
tions. The metrics are sorted by average corre-
lation across the translation directions. Metrics
which did not compute scores for systems in all
directions are at the bottom of the tables.

You can see that in both categories, into and out
of English, the strongest correlated segment-level
metric is SIMPBLEU-RECALL.

4.1 Details on Kendall’s τ
The computation of Kendall’s τ has slightly
changed this year. In WMT12 Metrics Task
(Callison-Burch et al., 2012), the concordant pairs
were defined exactly as we do (Equation 3) but the
discordant pairs were defined differently: pairs in
which one system was ranked better by the human
annotator but in which the metric predicted a tie
were considered also as discordant:

Dis := {(a, b) ∈ Pairs | m(a) ≤ m(b)} (6)

We feel that for two translations a and b of a seg-
ment, where a is ranked better by humans, a metric
which produces equal scores for both translations
should not be penalized as much as a metric which
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Directions fr-en de-en es-en cs-en ru-en Average
Extracted pairs 80741 128668 67832 85469 151422

SIMPBLEU-RECALL .193 .318 .279 .260 .234 .257
METEOR .178 .293 .236 .265 .239 .242

DEPREF-ALIGN .161 .267 .234 .228 .200 .218
DEPREF-EXACT .167 .263 .228 .227 .195 .216

SIMPBLEU-PREC .154 .236 .214 .208 .174 .197
NLEPOR .149 .240 .204 .176 .172 .188

SENTBLEU-MOSES .150 .218 .198 .197 .170 .187
LEPOR V3.100 .149 .221 .161 .187 .177 .179

UMEANT .101 .166 .144 .160 .108 .136
MEANT .101 .160 .145 .164 .109 .136

LOGREGFSS-33 n/a .272 n/a n/a n/a .272
LOGREGFSS-24 n/a .270 n/a n/a n/a .270

TERRORCAT .161 .298 .230 n/a n/a .230

Table 4: Segment-level Kendall’s τ correlations of automatic evaluation metrics and the official WMT
human judgements when translating into English.

Directions en-fr en-de en-es en-cs en-ru Average
Extracted pairs 100783 77286 60464 102842 87323

SIMPBLEU-RECALL .158 .085 .231 .065 .126 .133
SIMPBLEU-PREC .138 .065 .187 .055 .095 .108

METEOR .147 .049 .175 .058 .111 .108
SENTBLEU-MOSES .133 .047 .171 .052 .095 .100

LEPOR V3.100 .126 .058 .178 .023 .109 .099
NLEPOR .124 .048 .163 .048 .097 .096

LOGREGNORM-411 n/a n/a .136 n/a n/a .136
TERRORCAT .116 .074 .186 n/a n/a .125

LOGREGNORMSOFT-431 n/a n/a .033 n/a n/a .033

Table 5: Segment-level Kendall’s τ correlations of automatic evaluation metrics and the official WMT
human judgements when translating out of English.
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strongly disagrees with humans. The method we
used this year does not harm metrics which often
estimate two segments as equally good.

5 Conclusion

We carried out WMT13 Metrics Shared Task in
which we assessed the quality of various au-
tomatic machine translation metrics. We used
the human judgements as collected for WMT13
Translation Task to compute system-level and
segment-level correlations with human scores.

While most of the metrics correlate very well
on the system-level, the segment-level correlations
are still rather poor. It was shown again this year
that a lot of metrics outperform BLEU, hopefully
one of them will attract a wider use at last.
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Abstract

There has been a recent surge of interest in
semantic machine translation, which stan-
dard automatic metrics struggle to evalu-
ate. A family of measures called MEANT

has been proposed which uses semantic
role labels (SRL) to overcome this prob-
lem. The human variant, HMEANT, has
largely been evaluated using correlation
with human contrastive evaluations, the
standard human evaluation metric for the
WMT shared tasks. In this paper we claim
that for a human metric to be useful, it
needs to be evaluated on intrinsic proper-
ties. It needs to be reliable; it needs to
work across different language pairs; and
it needs to be lightweight. Most impor-
tantly, however, a human metric must be
discerning. We conclude that HMEANT

is a step in the right direction, but has
some serious flaws. The reliance on verbs
as heads of frames, and the assumption
that annotators need minimal guidelines
are particularly problematic.

1 Introduction

Human evaluation is essential in machine transla-
tion (MT) research because it is the ultimate way
to judge system quality. Furthermore, human eval-
uation is used to evaluate automatic metrics which
are necessary for tuning system parameters. Un-
fortunately, there is no clear consensus on which
evaluation strategy is best. Humans have been
asked to judge if translations are correct, to grade
them and to rank them. But it is often very difficult
to decide how good a translation is, when there are
so many possible ways of translating a sentence.
Another problem is that different types of evalua-

tion might be useful for different purposes. If the
MT is going to be the basis of a human transla-
tor’s work-flow, then post-editing effort seems like
a natural fit. However, for people using MT for
gisting, what we really want is some measure of
how much meaning has been retained.

We clearly need a metric which tries to answer
the question, how much of the meaning does the
translation capture. In this paper, we explore the
use of human evaluation metrics which attempt
to capture the extent of this meaning retention.
In particular, we consider HMEANT (Lo and Wu,
2011a), a metric that uses semantic role labels
to measure how much of the “who, why, when,
where” has been preserved. For HMEANT evalua-
tion, annotators are instructed to identify verbs as
heads of semantic frames. Then they attach role
fillers to the heads and finally they align heads
and role fillers in the candidate translation with
those in a reference translation. In a series of pa-
pers, Lo and Wu (2010, 2011b,a, 2012) explored a
number of questions, evaluating HMEANT by us-
ing correlation statistics to compare it to judge-
ments of human adequacy and contrastive evalu-
ations. Given the drawbacks of those evaluation
measures, which we discuss in Sec. 2, they could
just as well have been evaluating the human ade-
quacy and contrastive judgements using HMEANT.
Human evaluation metrics need to be judged on
other intrinsic qualities, which we describe below.

The aim of this paper is to evaluate the effec-
tiveness of HMEANT, with the goal of using it to
judge the relative merits of different MT systems,
for example in the shared task of the Workshop on
Machine Translation.

In order to be useful, an MT evaluation metric
must be reliable, be language independent, have
discriminatory power, and be efficient. We address
each of these criteria as follows:
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Reliability We produce extensive IAA (Inter-
annotator agreement) for HMEANT, breaking it
down into the different stages of annotation. Our
experimental results show that whilst the IAA for
HMEANT is acceptable at the individual stages of
the annotation, the compounding effect of dis-
agreement at each stage of the pipeline greatly re-
duces the effective overall IAA — to 0.44 on role
alignment for German, and, only slightly better,
0.59 for English. This raises doubts about the reli-
ability of HMEANT in its current form.

Discriminatory Power We consider output of
three types of MT system (Phrase-based, Syntax-
based and Rule-based) to attempt to gain insight
into the different types of semantic information
preserved by the different systems. The Syntax-
based system seems to have a slight edge overall,
but since IAA is so low, this result has to be taken
with a grain of salt.

Language Independence We apply HMEANT

to both English and German translation outputs,
showing that the guidelines can be adapted to the
new language.

Efficiency Whilst HMEANT evaluation will
never be as fast as, for example, the contrastive
judgements used for the WMT shared task,
it is still reasonably efficient considering the
fine-grained nature of the evaluation. On average,
annotators evaluated about 10 sentences per hour.

2 Related Work

Even though the idea that machine translation re-
quires a semantic representation of the translated
content is as old as the idea of computer-based
translation itself (Weaver, 1955), it has not been
until recently that people have begun to combine
statistical models with semantic representations.
Jones et al. (2012), for example, represent mean-
ing as directed acyclic graphs and map these to
PropBank (Palmer et al., 2005) style dependen-
cies. To evaluate such approaches properly, we
need evaluation metrics that capture the accuracy
of the translation.

Current automatic metrics of machine trans-
lation, such as BLEU (Papineni et al., 2002),
METEOR (Lavie and Denkowski, 2009) and
TER (Snover et al., 2009b), which have greatly
accelerated progress in MT research, rely on shal-
low surface properties of the translations, and
only indirectly capture whether or not the trans-
lation preserves the meaning. This has meant that

potentially more sophisticated translation models
are pitted against the flatter phrase-based mod-
els, based on metrics which cannot reflect their
strengths. Callison-Burch et al. (2011) provide ev-
idence that automatic metrics are inconsistent with
human judgements when comparing rule-based
against statistical machine translation systems.

Automatic evaluation metrics are evaluated and
calibrated based on their correlation with human
judgements. However, after more than 60 years
of research into machine translation, there is still
no consensus on how to evaluate machine transla-
tion based on human judgements. (Hutchins and
Somers, 1992; Przybocki et al., 2009).

One obvious approach is to ask annotators to
rate translation candidates on a numerical scale.
Under the DARPA TIDES program, the Linguistic
Data Consortium (2002) developed an evaluation
scheme that relies on two five-point scales repre-
senting fluency and adequacy. This was also the
human evaluation scheme used in the annual MT
competitions sponsored by NIST (2005).

In an analysis of human evaluation results for
the WMT ’07 workshop, however, Callison-Burch
et al. (2007) found high correlation between flu-
ency and adequacy scores assigned by individual
annotators, suggesting that human annotators are
not able to separate these two evaluation dimen-
sions easily. Furthermore these absolute scores
show low inter-annotator agreement. Instead of
giving absolute quality assessments, annotators
appeared to be using their ratings to rank trans-
lation candidates according to their overall prefer-
ence for one over the other.

In line with these findings, Callison-Burch et al.
(2007) proposed to let annotators rank translation
candidates directly, without asking them to assign
an absolute quality assessment to each candidate.
This type of human evaluation has been performed
in the last six Workshops on Statistical Machine
Translation.

Although it is useful to have a score or a rank
for a particular sentence, especially for evaluat-
ing automatic metrics, these ratings are necessar-
ily a simplification of the real differences between
translations. Translations can contain a large num-
ber of different types of errors of varying severity.
Even if we put aside difficulties with selecting one
preferred sentence, ranking judgements are diffi-
cult to generalise. Humans are shown five transla-
tions at a time, and there is a high cognitive cost to
ranking these at once. Furthermore, these repre-
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sent a subset of the competing systems, and these
rankings must be combined with other annotators
judgements on five other system outputs to com-
pute an overall ranking. The methodology for in-
terpreting the contrastive evaluations has been the
subject of much recent debate in the community
(Bojar et al., 2011; Lopez, 2012).

There has been some effort to overcome these
problems. HTER (Snover et al., 2009a) is a met-
ric which counts the number of edits needed by a
human to convert the machine translation so as to
convey the same meaning as the reference. This
type of evaluation is of some use when one is us-
ing MT to aid human translation (although the re-
lationship between number of edits and actual ef-
fort is not straightforward (Koponen, 2012)), but
it is not so helpful when one’s task is gisting. The
number of edits need not correlate with the sever-
ity of the semantic differences between the two
sentences. The loss of a negative, for instance, is
only one edit away from the original, but the se-
mantics change completely.

Alternatively, HyTER (Dreyer and Marcu,
2012) is an annotation tool which allows a user
to create an exponential number of correct trans-
lations for a given sentence. These references are
then efficiently exploited to compare with machine
translation output. The authors argue that the cur-
rent metrics fail simply because they have access
to sets of reference translations which are simply
too small. However, the fact is that even if one
does have access to large numbers of translations,
it is very difficult to determine whether the refer-
ence correctly captures the essential semantic con-
tent of the references.

The idea of using semantic role labels to evalu-
ate machine translation is not new. Giménez and
Màrquez (2007) proposed using automatically as-
signed semantic role labels as a feature in a com-
bined MT metric. The main difference between
this application of semantic roles and MEANT is
that arguments for specific verbs are taken into ac-
count, instead of just applying the subset agent,
patient and benefactor. This idea would probably
help human annotators to handle sentences with
passives, copulas and other constructions which
do not easily match the most basic arguments. On
the other hand, verb specific arguments are lan-
guage dependent.

Bojar and Wu (2012), applying HMEANT to
English-to-Czech MT output, identified a number
of problems with HMEANT, and suggested a vari-

ety of improvements. In some respects, this work
is very similar, except that our goal is to evaluate
HMEANT along a range of intrinsic properties, to
determine how useful the metric really is to evalu-
ation campaigns such as the workshop on machine
translation.

3 Evaluation with HMEANT

3.1 Annotation Procedure

The goal of the HMEANT metric is to capture es-
sential semantic content, but still be simple and
fast. There are two stages to the annotation, the
first of which is semantic role labelling (SRL).
Here the annotator is directed to select the actions,
or frame heads, by marking all the verbs in the sen-
tence except for auxilliaries and modals. The roles
(or slot fillers) within the frame are then marked
and each is linked with a unique action. Each role
is given a type from an inventory of 11 (Table 1),
and an action with its collection of corresponding
roles is known as a frame. In the role annotation
the idea is to get the annotator to recognise who
did what to who, when, where and why in both the
references and the MT outputs.

who what whom when where
agent patient benefactive temporal locative
why how

purpose degree, manner, modal, negation, other

Table 1: Semantic roles

The second stage in the annotation is alignment,
where the annotators match elements of the SRL
annotation in the reference with that in the MT
output. The annotators link both actions and roles,
and these alignments can be matched as “Correct”
or “Partial” matches, depending on how well the
action or role is translated. The guidelines for the
annotators are deliberately minimalistic, with the
argument being that non-experts can get started
quickly. Lo and Wu (2011a) claim that unskilled
annotators can be trained within 15 minutes.

In all such human evaluation, there is a trade-
off between simplicity and accuracy. Clearly when
evaluating bad machine translation output, we do
not want to label too much. However, sometimes
having so little choice of semantic roles can lead
to confusion and slow down the annotator when
more complicated examples do not fit the scheme.
Therefore, common exceptions need to be handled
either in the roles provided, or in the annotator
guidelines.
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3.2 Calculation of Score

The overall HMEANT score for MT evaluation
is computed as the f-score from the counts of
matches of frames and their role fillers between
the reference and the MT output. Unmatched
frames are excluded from the calculation together
with all their corresponding roles.

In recognition that preservation of some types
of semantic relations may be more important than
others for a human to understand a sentence, one
may want to weight them differently in the com-
putation of the HMEANT score. Lo and Wu (2012)
train weights for each role filler type to optimise
correlation with human adequacy judgements. As
an unsupervised alternative, they suggest weight-
ing roles according to their frequency as approxi-
mation to their importance.

Since the main focus of the current paper is the
annotation of the actions, roles and alignments that
HMEANT depends on, we do not explore such dif-
ferent weight-setting schemes, but set the weights
uniformly, with the exception of a partial align-
ment, which is given a weight of 0.5. HMEANT is
thus defined as follows:

Fi = # correct or partially correct fillers
for PRED i in MT

MTi = total # fillers for PRED i in MT
REFi = total # fillers for PRED i in REF

P =
∑

matched i

Fi

MTi

R =
∑

matched i

Fi

REFi

Ptotal =
Pcorrect + 0.5Ppartial

total # predicates in MT

Rtotal =
Pcorrect + 0.5Ppartial

total # predicates in REF

HMEANT =
2 ∗ Ptotal ∗Rtotal

Ptotal +Rtotal

3.3 Automating HMEANT

One of the main directions taken by the authors of
HMEANT is in creating a fully automated version
of the metric (MEANT) in (Lo et al., 2012). The
metric combines shallow semantic parsing with a
simple maximum weighted bipartite matching al-
gorithm for aligning semantic frames. They use
approximate matching schemes (Cosine and Jac-
card similarity) for matching roles, with the lat-
ter producing better alignments (Tumuluru et al.,

2012). They demonstrate that MEANT corre-
lates with human adequacy judgements better than
other commonly used automatic metrics. In this
paper we focus on human evaluation, as it is es-
sential for building better automatic metrics, and
therefore a more fundamental problem.

4 Experimental Setup

4.1 Systems and Data Sets

We performed HMEANT evaluation on three
systems selected from 2013 WMT evaluation1.
The systems we selected were uedin-wmt13,
uedin-syntax and rbmt-3, which were cho-
sen to provide us with a high performing phrase-
based system, a high performing syntax-based
system and the top performing rule-based system,
respectively. The cased BLEU scores of the three
systems are shown in Table 2.

System Type de-en en-de
uedin-wmt13 Phrase 26.6 20.1
uedin-syntax Syntax 26.3 19.4
rbmt-3 Rule 18.8 16.5

Table 2: Cased BLEU on the full newstest2013
test set for the systems used in this study

We randomly selected sentences from the en-de
and de-en newstest2013 tasks, and extracted
the corresponding references and system outputs
for these sentences. For the en-de task, 75% of our
selected sentences were selected from the section
of newstest2013 that was originally in Ger-
man, with the other 25% from the section that was
originally in English. The sentence selection for
the de-en task was performed in a similar man-
ner. For presentation to the annotators, the sen-
tences were split into segments of 12. We found
that with practice, annotators could complete one
of these segments in around 100-120 minutes. In
total, with close to 70 hours of annotator effort,
we evaluated 142 sentences of German, and 72
sentences of English. The annotation for each
sentence includes 1 reference, 3 system outputs,
and their corresponding alignments. Apart from 5
singly-annotated German sentences, and 1 singly-
annotated English sentence, all sentences were an-
notated by exactly 2 annotators.

1www.statmt.org/wmt13
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4.2 Annotation

The annotation for English was performed by 3
different annotators (E1, E2 and E3), and the Ger-
man annotation by 2 annotators (D1 and D2).
All the English annotators were machine transla-
tion researchers, with E1 and E2 both native En-
glish speakers whereas E3 is not a native speaker,
but lives and works in an English-speaking coun-
try. The two German annotators were both native
speakers of German, with no background in com-
putational linguistics, although D2 is a teacher of
German as a second language and has had linguis-
tic training.

The HMEANT evaluation task was carried out
following the framework described in Lo and Wu
(2011a) and Bojar and Wu (2012). For each sen-
tence in the evaluation set, the annotators were first
asked to mark the semantic frames and roles (i.e.,
slot fillers within the frame) in a human reference
translation of the respective sentence. They were
then presented with the output of several machine
translation systems for the same source sentence,
one system at a time, with the reference transla-
tion and its annotations visible in the left half of
the screen (cf. Fig. 1). For each system, the an-
notators were asked to annotate semantic frames
and slot fillers in the translation first, and then
align them with frame heads and slot fillers in
the human reference translation. Annotations and
alignment were performed with Edi-HMEANT2,
a web-based annotation tool for HMEANT that
we developed on the basis of Yawat (Germann,
2008). The tool allows the alignment of slots from
different semantic frames, and the alignment of
slots of different types; however, such alignments
are not considered in the computation of the final
HMEANT score.

The annotation guidelines were essentially
those used in Bojar and Wu (2012), with some ad-
ditional English examples, and a complete set of
German examples. For ease of comparison with
prior work, we used the same set of semantic role
labels as Bojar and Wu (2012), shown in Table 1.
Given the restriction that the head of a frame can
consist of only one word, a convention was made
that all other verbs attached to the main verb such
as modals, auxiliaries or separable particles for
German verbs, would be labelled as modal. This
was the only change we made to the HMEANT

2Edi-HMEANT is part of the Edinburgh
Multi-text Annotation and Alignment Tool Suite
(http://www.statmt.org/edimtaats).

scheme.

5 Results and Discussion

5.1 Inter-Annotator Agreement
We first measured IAA on role identification, as
in Lo and Wu (2011a), except that we use exact
match on word spans as opposed to the approx-
imate match employed in that reference. Whilst
exact match is a harsher measure, penalising dis-
agreements related to punctuation and articles, us-
ing any sort of approximate match would mean
having to deal with N:M matches. IAA is defined
as follows:

IAA =
2 ∗ P ∗R
P +R

Where P is defined as the number of labels (ei-
ther heads, roles, or alignments) that match be-
tween annotators, divided by the total number of
labels given by annotator 1. And R is defined the
same way for annotator 2. This is similar to an
F-measure (f1), where we consider one of the an-
notators as the gold standard. The IAA for role
identification is shown in Table 3.

Reference Hypothesis
Lang. matches f1 matches f1

de 865 0.846 2091 0.737
en 461 0.759 1199 0.749

Table 3: IAA for role identification. This is calcu-
lated by considering exact endpoint matches on all
spans (predicates and arguments).

The agreements in Table 3 are not too differ-
ent from those reported in earlier work. We note
that the IAA for the German annotators drops for
the MT system outputs, but this may be because
the English annotators (as MT researchers) are less
bothered by bad MT output than their counterparts
working on the German texts.

Next we looked at the IAA on role classifica-
tion, the other IAA figure provided by Lo and Wu
(2011a). We only considered roles where both an-
notators had marked the same span in the same
frame, with the frame being identified by its ac-
tion. The IAA for role classification is shown in
Table 4.

Again, we show similar levels of IAA to those
reported in (Lo and Wu, 2011a). Examining the
disagreements in more detail, we produced counts
of the most common role type disagreements, by
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Figure 1: Example of a sentence pair annotated with Edi-HMEANT. The reference translation is on
the left, the machine translation output on the right. Head and slot fillers for each semantic frame are
marked by selecting spans in the text and automatically listed in tables below the respective sentences.
Frames and slot fillers are aligned by clicking on table cells. The alignments of the semantic frames are
highlighted: green (grey in black and white version) for exact match and grey (light grey) for partial
match.

Reference Hypothesis
Lang. matches f1 matches f1

de 425 0.717 1050 0.769
en 245 0.825 634 0.826

Table 4: IAA for role classification. We only con-
sider cases where annotators had marked the same
span in the same frame.

Role 1 Role 2 Count
Agent Experiencer-Patient 110
Degree-Extent Modal 92
Beneficiary Experiencer-Patient 45
Experiencer-Patient Manner 26
Manner Other 25

Table 5: Most common role type disagreements,
for German

language. We show the top 5 disagreements in Ta-
bles 5 and 6. Essentially these show that the most
common role types provide the most confusions.

In order to shed more light on the role type dis-
agreements, we examined a random sample of 10
of the English annotations where the annotators
had disagreed about “Agent” versus “Experiencer-
Patient”. In 7 of these cases, there was a definite
correct answer, according to the annotation guide-
lines. Of the other 3, there were 2 cases of poor
MT output making the semantic interpretation dif-
ficult, and one case of existential “there”. Of the 7
cases where one annotator appears in error, 3 were
passive, 1 was a copula, and 1 involved the verb

Role 1 Role 2 Count
Agent Experiencer-Patient 44
Manner Other 22
Degree-Extent Temporal 12
Degree-Extent Other 12
Beneficiary Experiencer-Patient 11

Table 6: Most common role type disagreements,
for English

“receive”. For the other 2 there was no clear rea-
son for the error. From this small sample, we sug-
gest that passive constructions are still difficult to
annotate semantically.

The last of elements of the semantic frames to
be considered for IAA are the actions, i.e. the
frame heads or predicates. In this case identifying
a match was straightforward as actions are identi-
fied by a single token. The IAA for action identi-
fication is shown in Table 7.

Reference Hypothesis
Lang. matches f1 matches f1

de 238 0.937 592 0.826
en 126 0.818 362 0.868

Table 7: IAA for action identification.

We see fairly high IAA for actions, which seems
encouraging, but given the importance of actions
in HMEANT, we probably need the scores to be
higher. Most of the problems with the identifica-
tion of actions centre around multiple-verb con-
structions and participles.

We now turn our attention to the second stage
of the annotation process where the annotators
marked alignments between slots and roles. These
provide the relevant statistics for the calculation of
the HMEANT score so it is important that they are
annotated reliably.

Firstly, we consider the alignment of actions. In
this case, we use pipelined statistics, in that if one
annotator marks actions in the reference and hy-
pothesis, then aligns them, whilst the other anno-
tator does not mark the corresponding actions, we
still count this as an action alignment mismatch.
This creates a harsher measure on action align-
ment, but gives a better idea of the overall relia-
bility of the annotation task. In Table 8 we show
the IAA (as F1) on action alignments. Comparing
Tables 8 and 7 we see that, for English at least, the
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Lang. matches f1
de 300 0.655
en 275 0.769

Table 8: IAA for action alignment, collapsing par-
tial and full alignment

agreement on action alignment is not much lower
than that on action identification, indicating that if
annotators agree on the actions then they generally
agree on how they align. For German, however,
the IAA on action alignment is a bit lower, ap-
parently because one of the annotators was much
stricter about which actions they aligned.

In order to calculate the IAA on role align-
ments, we only consider those alignments that
connect two roles in aligned frames, of the same
type, since these are the only role alignments that
count for computing the HMEANT score. This
means that if one of the annotators does not align
the frames, then all the contained role alignments
are counted as mismatches. We do not consider
the spans when calculating the agreement on role
alignments, meaning that if one annotator has an
alignment between roles of type T in frame F ,
and the other annotator also aligns the same types
of roles in the same frame, then they are consid-
ered as a match. This is done because it is only the
counts of alignments that are relevant for HMEANT

scoring. The IAA on the role alignments is quite

Lang. matches f1
de 448 0.442
en 506 0.596

Table 9: IAA for role alignment.

low, dipping below 0.5 for German. This is mainly
because of the pipelining effect, where annota-
tion disagreements at each stage are compounded.
Since the final HMEANT score is computed essen-
tially by counting role alignments, this level of
IAA causes problems for this score calculation.

We computed HMEANT and BLEU scores for the
hypotheses annotated by each annotator pair. The
HMEANT scores were calculated as described in
Section 3.2. The two metrics are calculated for
each sentence (we apply +1 smoothing for BLEU),
then averaged across all sentences. Table 10 shows
the scores organised by annotator pair and sys-
tem type. The agreement in the overall scores is
not good, but really just reflects the compounded

Annotator System BLEU HMEANT HMEANT
Pair (Annot. 1) (Annot. 2)

Phrase 0.310 0.626 (2) 0.672 (3)
E1, E2 Syntax 0.291 0.635 (1) 0.730 (1)

Rule 0.252 0.578 (3) 0.673 (2)
Phrase 0.378 0.569 (1) 0.602 (3)

E1, E3 Syntax 0.376 0.553 (2) 0.627 (2)
Rule 0.320 0.546 (3) 0.646 (1)

Phrase 0.360 0.669 (2) 0.696 (3)
E2, E3 Syntax 0.362 0.751 (1) 0.739 (1)

Rule 0.308 0.624 (3) 0.716 (2)
Phrase 0.296 0.327 (1) 0.631 (3)

D1, D2 Syntax 0.321 0.312 (2) 0.707 (1)
Rule 0.242 0.274 (3) 0.648 (2)

Table 10: Scores assigned by each annotator pair.
The numbers in brackets after the HMEANT scores
show the relative ranking assigned by each anno-
tator.

agreement problems in the role alignments (Table
9). In no case do the annotators choose a consis-
tent ranking of the 3 systems, and in 2 of the 4 an-
notator pairs, the annotators disagree about which
is the top performing system.

5.2 Overall Scores

In this section we report the overall HMEANT

scores of the three systems whose output we an-
notated. Our main focus on this paper was on the
annotation task, so we do not wish to emphasise
the scoring, but it is nevertheless an important end-
product of the HMEANT annotation process. The
overall scores (HMEANT and +1 smoothed sen-
tence BLEU, averaged across sentences and anno-
tators) are given in Table 11.

Language System BLEU HMEANT

Phrase 0.351 0.634
en Syntax 0.344 0.667

Rule 0.295 0.625
Phrase 0.294 0.482

de Syntax 0.302 0.517
Rule 0.242 0.464

Table 11: Comparison of mean HMEANT and
(smoothed sentence) BLEU for the three systems.

From the table we can observe that, whilst
BLEU shows similar scores for the phrase-based
and syntax-based systems, with lower scores for
the rule-based system, HMEANT shows the syntax-
based system as being ahead, with the other two
showing similar performance. We would caution
against reading too much into this, considering the
relatively small number of sentences annotated,
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and the issues with IAA exposed in the previous
section, but it is an encouraging results for syntax-
based MT.

5.3 Discussion
Machine translation research needs a reliable
method for evaluating and comparing different
machine translation systems. The performance of
HMEANT as shown in the previous section is dis-
appointing. The fact that the final role IAA, in Ta-
ble 9, is 0.442 for German and 0.596 for English,
demonstrates that there are fundamental problems
with the scheme. One of the areas of greatest con-
fusion is between what seems like one of the eas-
iest role types to distinguish: agent and patient.
Here is an example of a passive where one anno-
tator has marked “tea” wrongly as agent, and the
other annotator correctly labelled it as patient:

Reference: In the kitchen, tea is prepared for
the guests
ACTION prepared
LOCATIVE In the kitchen
AGENT / PATIENT tea
MODAL is
BENEFICIARY for the guests

We would argue that the most important change
to HMEANT must be in creating more comprehen-
sive annotation guidelines, with examples of diffi-
cult cases. Bojar and Wu (2012) listed a number of
problems and improvements to HMEANT, which
we largely agree with. We list the most important
limitations of HMEANT that we have encountered:

• Single Word Heads Verbal predicates often
consist of multiple words, which can be split.
For example: “Take him up on his offer”.

• Heads being limited to verbs The semantics
of verbs can often be carried by an equivalent
noun and should be allowed by HMEANT. For
example “My father broke down and cried .”,
the verb “cried” is correctly paraphrased in
“My father collapsed in tears .”

• Copular Verbs These do not fit in to the lim-
ited list of role types. For example forcing
this sentence “The story is plausible”, to have
and agent and patient is confusing.

• Prepositional Phrases attaching to a noun
These can greatly affect the semantics of a
sentence, but HMEANT has no way of captur-
ing this.

• Semantics not on head This frequently oc-
curs with light verbs, for example “Bouson
did the review of the paper” is equivalent to
“Bouson reviewed the paper”.

• Hierarchy of frames There are often frames
which are embedded in other frames, for ex-
ample in reported speech. It is not clear
whether errors at the lowest level should be
marked wrong just at that point, or whether
they should be marked wrong all the way up
the semantic tree. For example: “Arafat said
‘Isreal suffocates such a hope in the germ’ ”.
The frame headed by “said” is largely cor-
rect, but the reported speech is not. The pa-
tient role of the verb “said” could be aligned
as correct, as the error is already captured in
relation to the verb “suffocates”.

• No discourse markers These are impor-
tant for capturing the relationships between
frames and should be labelled.

6 Conclusion

HMEANT represents an attempt to create a human
evaluation for machine translation which directly
measures the semantic content preserved by the
MT. It partly succeeds. However we have cast
doubt on the claim that HMEANT can be reliably
annotated with minimal annotator training and
guidelines. In the most extensive study of inter-
annotator agreement yet performed for HMEANT,
across two language pairs, we have shown that the
disagreements between annotators make it diffi-
cult to reliably compare different MT systems with
HMEANT scores.

Furthermore, the fact that HMEANT is restricted
to annotating purely verbal predicates results in
some important disadvantages. Ideally we need a
more general definition of a frame, not restricted
to purely verbal predicates, and we would like
to be able to link frames. We should explore
the feasibility of a semantic framework which at-
tempts to overcome reliance on syntactic proper-
ties such as Universal Conceptual Cognitive An-
notation (Abend and Rappoport, 2013).
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Abstract

This paper describes LIMSI’s submis-
sions to the shared WMT’13 translation
task. We report results for French-English,
German-English and Spanish-English in
both directions. Our submissions use
n-code, an open source system based on
bilingual n-grams, and continuous space
models in a post-processing step. The
main novelties of this year’s participation
are the following: our first participation
to the Spanish-English task; experiments
with source pre-ordering; a tighter integra-
tion of continuous space language mod-
els using artificial text generation (for Ger-
man); and the use of different tuning sets
according to the original language of the
text to be translated.

1 Introduction

This paper describes LIMSI’s submissions to the
shared translation task of the Eighth Workshop on
Statistical Machine Translation. LIMSI partici-
pated in the French-English, German-English and
Spanish-English tasks in both directions. For this
evaluation, we used n-code, an open source in-
house Statistical Machine Translation (SMT) sys-
tem based on bilingual n-grams1, and continuous
space models in a post-processing step, both for
translation and target language modeling.

This paper is organized as follows. Section 2
contains an overview of the baseline systems built
with n-code, including the continuous space mod-
els. As in our previous participations, several
steps of data pre-processing, cleaning and filter-
ing are applied, and their improvement took a non-
negligible part of our work. These steps are sum-
marized in Section 3. The rest of the paper is de-
voted to the novelties of the systems submitted this

1http://ncode.limsi.fr/

year. Section 4 describes the system developed for
our first participation to the Spanish-English trans-
lation task in both directions. To translate from
German into English, the impact of source pre-
ordering is investigated, and experimental results
are reported in Section 5, while for the reverse di-
rection, we explored a text sampling strategy us-
ing a 10-gram SOUL model to allow a tighter in-
tegration of continuous space models during the
translation process (see Section 6). A final section
discusses the main lessons of this study.

2 System overview

n-code implements the bilingual n-gram approach
to SMT (Casacuberta and Vidal, 2004; Mariño
et al., 2006; Crego and Mariño, 2006). In this
framework, translation is divided in two steps: a
source reordering step and a (monotonic) transla-
tion step. Source reordering is based on a set of
learned rewrite rules that non-deterministically re-
order the input words. Applying these rules result
in a finite-state graph of possible source reorder-
ings, which is then searched for the best possible
candidate translation.

2.1 Features

Given a source sentence s of I words, the best
translation hypothesis t̂ is defined as the sequence
of J words that maximizes a linear combination of
feature functions:

t̂ = argmax
t,a

{
M∑

m=1

λmhm(a, s, t)

}
(1)

where λm is the weight associated with feature
function hm and a denotes an alignment between
source and target phrases. Among the feature
functions, the peculiar form of the translation
model constitutes one of the main difference be-
tween the n-gram approach and standard phrase-
based systems.
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In addition to the translation model (TM), four-
teen feature functions are combined: a target-
language model; four lexicon models; six lexical-
ized reordering models (Tillmann, 2004; Crego et
al., 2011) aimed at predicting the orientation of
the next translation unit; a “weak” distance-based
distortion model; and finally a word-bonus model
and a tuple-bonus model which compensate for the
system preference for short translations. The four
lexicon models are similar to the ones used in stan-
dard phrase-based systems: two scores correspond
to the relative frequencies of the tuples and two
lexical weights are estimated from the automatic
word alignments. The weight vector λ is learned
using the Minimum Error Rate Training frame-
work (MERT) (Och, 2003) and BLEU (Papineni
et al., 2002) measured on nt09 (newstest2009) as
the optimization criteria.

2.2 Translation Inference

During decoding, source sentences are represented
in the form of word lattices containing the most
promising reordering hypotheses, so as to repro-
duce the word order modifications introduced dur-
ing the tuple extraction process. Hence, only those
reordering hypotheses are translated and are intro-
duced using a set of reordering rules automatically
learned from the word alignments. Part-of-speech
(POS) information is used to increase the gen-
eralization power of these rules. Hence, rewrite
rules are built using POS, rather than surface word
forms (Crego and Mariño, 2006).

2.3 SOUL rescoring

Neural networks, working on top of conventional
n-gram back-off language models (BOLMs), have
been introduced in (Bengio et al., 2003; Schwenk
et al., 2006) as a potential means to improve dis-
crete language models (LMs). As for our last year
participation (Le et al., 2012c), we take advantage
of the recent proposal of Le et al. (2011). Using
a specific neural network architecture (the Struc-
tured OUtput Layer or SOUL model), it becomes
possible to estimate n-gram models that use large
vocabulary, thereby making the training of large
neural network LMs (NNLMs) feasible both for
target language models and translation models (Le
et al., 2012a). We use the same models as last year,
meaning that the SOUL rescoring was used for all
systems, except for translating into Spanish. See
section 6 and (Le et al., 2012c) for more details.

3 Corpora and data pre-processing

Concerning data pre-processing, we started from
our submissions from last year (Le et al., 2012c)
and mainly upgraded the corpora and the associ-
ated language-dependent pre-processing routines.
We used in-house text processing tools for the to-
kenization and detokenization steps (Déchelotte
et al., 2008). Previous experiments have demon-
strated that better normalization tools provide bet-
ter BLEU scores: all systems are thus built using
the “true-case” scheme.

As German is morphologically more complex
than English, the default policy which consists in
treating each word form independently is plagued
with data sparsity, which severely impacts both
training (alignment) and decoding (due to un-
known forms). When translating from German
into English, the German side is thus normalized
using a specific pre-processing scheme (Allauzen
et al., 2010; Durgar El-Kahlout and Yvon, 2010)
which aims at reducing the lexical redundancy by
(i) normalizing the orthography, (ii) neutralizing
most inflections and (iii) splitting complex com-
pounds. All parallel corpora were POS-tagged
with the TreeTagger (Schmid, 1994); in addition,
for German, fine-grained POS labels were also
needed for pre-processing and were obtained us-
ing the RFTagger (Schmid and Laws, 2008).

For Spanish, all the availaible data are tokenized
using FreeLing2 toolkit (Padró and Stanilovsky,
2012), with default settings and some added rules.
Sentence splitting and morphological analysis are
disabled except for del → de el and al → a el.
Moreover, a simple “true-caser” based on upper-
case word frequency is used, and the specific
Spanish punctuation signs ”¿” and ”¡” are removed
and heuristically reintroduced in a post-processing
step. All Spanish texts are POS-tagged also using
Freeling. The EAGLES tag set is however sim-
plified by truncating the category label to the first
two symbols, in order to reduce the sparsity of the
reordering rules estimated by n-code.

For the CommonCrawl corpus, we found that
many sentences are not in the expected language.
For example, in the French side of the French-
English version, most of the first sentences are
in English. Therefore, foreign sentence pairs are
filtered out with a MaxEnt classifier that uses n-
grams of characters as features (n is between 1
and 4). This filter discards approximatively 10%

2http://nlp.lsi.upc.edu/freeling/
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of the sentence pairs. Moreover, we also observe
that a lot of sentence pairs are not translation of
each other. Therefore, an extra sentence alignment
step is carried out using an in-house implementa-
tion of the tool described in (Moore, 2002). This
last step discards approximately 20% of the cor-
pus. For the Spanish-English task, the same filter-
ing is applied to all the available corpora.

4 System development for the
Spanish-English task

This is our first participation to the Spanish-
English translation task in both directions. This
section provides details about the development of
n-code systems for this language pair.

4.1 Data selection and filtering

The CommonCrawl and UN corpora can be con-
sidered as very noisy and out-of-domain. As de-
scribed in (Allauzen et al., 2011), to select a subset
of parallel sentences, trigram LMs were trained for
both Spanish and English languages on a subset of
the available News data: the Spanish (resp. En-
glish) LM was used to rank the Spanish (resp. En-
glish) side of the corpus, and only those sentences
with perplexity above a given threshold were se-
lected. Finally, the two selected sets were in-
tersected. In the following experiments, the fil-
tered versions of these corpora are used to train
the translation systems unless explicitly stated.

4.2 Spanish language model

To train the language models, we assumed that the
test set would consist in a selection of recent news
texts and all the available monolingual data for
Spanish were used, including the Spanish Giga-
word, Third Edition. A vocabulary is first defined
by including all tokens observed in the News-
Commentary and Europarl corpora. This vocab-
ulary is then expanded with all words that occur
more than 10 times in the recent news texts (LDC-
2007-2011 and news-crawl-2011-2012). This pro-
cedure results in a vocabulary containing 372k
words. Then, the training data are divided into
7 sets based on dates or genres. On each set, a
standard 4-gram LM is estimated from the vocab-
ulary using absolute discounting interpolated with
lower order models (Kneser and Ney, 1995; Chen
and Goodman, 1998). The resulting LMs are then
linearly interpolated using coefficients chosen so

Corpora BLEU
dev nt11 test nt12

es2en N,E 30.2 33.2
N,E,C 30.6 33.7
N,E,U 30.3 33.6
N,E,C,U 30.6 33.7
N,E,C,U (nf) 30.7 33.6

en2es N,E 32.2 33.3
N,E,C,U 32.3 33.6
N,E,C,U (nf) 32.5 33.9

Table 1: BLEU scores achieved with different
sets of parallel corpora. All systems are base-
line n-code with POS factor models. The follow-
ing shorthands are used to denote corpora, : ”N”
stands for News-Commentary, ”E” for Europarl,
”C” for CommonCrawl, ”U” for UN and (nf) for
non filtered corpora.

as to minimise the perplexity evaluated on the de-
velopment set (nt08).

4.3 Experiments

All reported results are averaged on 3 MERT runs.
Table 1 shows the BLEU scores obtained with dif-
ferent corpora setups. We can observe that us-
ing the CommonCrawl corpus improves the per-
formances in both directions, while the impact of
the UN data is less important, especially when
combined with CommonCrawl. The filtering strat-
egy described in Section 4.2 has a slightly posi-
tive impact of +0.1 BLEU point for the Spanish-
to-English direction but yields a 0.2 BLEU point
decrease in the opposite direction.

For the following experiments, all the available
corpora are therefore used: News-Commentary,
Europarl, filtered CommonCrawl and UN. For
each of these corpora, a bilingual n-gram model
is estimated and used by n-code as one individual
model score. An additionnal TM is trained on the
concatenation all these corpora, resulting in a to-
tal of 5 TMs. Moreover, n-code is able to handle
additional “factored” bilingual models where the
source side words are replaced by the correspond-
ing lemma or even POS tag (Koehn and Hoang,
2007). Table 2 reports the scores obtained with
different settings.

In Table 2, big denotes the use of a wider
context for n-gram TMs (n = 4, 5, 4 instead
of 3, 4, 3 respectively for word-based, POS-based
and lemma-based TMs). Using POS factored
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Condition BLEU
dev nt11 test nt12

es2en base 30.3 33.5
pos 30.6 33.7
big-pos 30.7 33.7
big-pos-lem 30.7 33.8

en2es base 32.0 33.4
pos 32.3 33.6
big-pos 32.3 33.8
big-pos-pos+ 32.2 33.4

Table 2: BLEU scores for different configuration
of factored translation models. The big prefix de-
notes experiments with the larger context for n-
gram translation models.

models yields a significant BLEU improvement,
as well as using a wider context for n-gram TMs.
Since Spanish is morphologically richer than En-
glish, lemmas are introduced only on the Span-
ish side. An additionnal BLEU improvement is
achieved by adding factored models based on lem-
mas when translating from Spanish to English,
while in the opposite direction it does not seem
to have any clear impact.

For English to Spanish, we also experimented
with a 5-gram target factored model, using the
whole morphosyntactic EAGLES tagset, (pos+ in
Table 2), to add some syntactic information, but
this, in fact, proved harmful.

As several tuning sets were available, experi-
ments were carried out with the concatenation of
nt09 to nt11 as a tuning data set. This yields an im-
provement between 0.1 and 0.3 BLEU point when
testing on nt12 when translating from Spanish to
English.

4.4 Submitted systems

For both directions, the submitted systems are
trained on all the available training data, the cor-
pora CommonCrawl and UN being filtered as de-
scribed previously. A word-based TM and a POS
factored TM are estimated for each training set.
To translate from Spanish to English, the system
is tuned on the concatenation of the nt09 to nt11
datasets with an additionnal 4-gram lemma-based
factored model, while in the opposite direction, we
only use nt11.

dev nt09 test nt11
en2de 15.43 15.35
en-mod2de 15.06 15.00

Table 3: BLEU scores for pre-ordering experi-
ments with a n-code system and the approach pro-
posed by (Neubig et al., 2012)

5 Source pre-ordering for English to
German translation

While distorsion models can efficiently handle
short range reorderings, they are inadequate to
capture long-range reorderings, especially for lan-
guage pairs that differ significantly in their syn-
tax. A promising workaround is the source pre-
ordering method that can be considered similar,
to some extent, to the reordering strategy imple-
mented in n-code; the main difference is that the
latter uses one deterministic (long-range) reorder-
ing on top of conventional distortion-based mod-
els, while the former only considers one single
model delivering permutation lattices. The pre-
ordering approach is illustrated by the recent work
of Neubig et al. (2012), where the authors use a
discriminatively trained ITG parser to infer a sin-
gle permutation of the source sentence.

In this section, we investigate the use of this
pre-ordering model in conjunction with the bilin-
gual n-gram approach for translating English into
German (see (Collins et al., 2005) for similar ex-
periments with the reverse translation direction).
Experiments are carried out with the same settings
as described in (Neubig et al., 2012): given the
source side of the parallel data (en), the parser is
estimated to modify the original word order and to
generate a new source side (en-mod); then a SMT
system is built for the new language pair (en-mod
→ de). The same reordering model is used to re-
order the test set, which is then translated with the
en-mod→ de system.

Results for these experiments are reported in Ta-
ble 3, where nt09 and nt11 are respectively used
as development and test sets. We can observe that
applying pre-ordering on source sentences leads to
small drops in performance for this language pair.

To explain this degradation, the histogram of to-
ken movements performed by the model on the
pre-ordered training data is represented in Fig-
ure 1. We can observe that most of the movements
are in the range [−4,+6] (92% of the total occur-
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Figure 1: Histogram of token movement size ver-
sus its occurrences performed by the model Neu-
big on the source english data.

rences), which can be already taken into account
by the standard reordering model of the baseline
system. This is reflected also by the following
statistics: surprisingly, only 16% of the total num-
ber of sentences are changed by the pre-ordering
model, and the average sentence-wise Kendall’s τ
and the average displacement of these small parts
of modified sentences are, respectively, 0.027 and
3.5. These numbers are striking for two reasons:
first, English and German have in general quite
different word order, thus our experimental con-
dition should be somehow similar to the English-
Japanese scenario studied in (Neubig et al., 2012);
second, since the model is able to perform pre-
ordering basically at any distance, it is surprising
that a large part of the data remains unmodified.

6 Artificial Text generation with SOUL

While the context size for BOLMs is limited (usu-
ally up to 4-grams) because of sparsity issues,
NNLMs can efficiently handle larger contexts up
to 10-grams without a prohibitive increase of the
overall number of parameters (see for instance the
study in (Le et al., 2012b)). However the major
bottleneck of NNLMs is the computation cost dur-
ing both training and inference. In fact, the pro-
hibitive inference time usually implies to resort to
a two-pass approach: the first pass uses a conven-
tional BOLM to produce a k-best list (the k most
likely translations); in the second pass, the prob-
ability of a NNLM is computed for each hypoth-
esis, which is then added as a new feature before
the k-best list is reranked. Note that to produce the
k-best list, the decoder uses a beam search strategy

to prune the search space. Crucially, this pruning
does not use the NNLMs scores and results in po-
tentially sub-optimal k-best-lists.

6.1 Sampling texts with SOUL
In language modeling, a language is represented
by a corpus that is approximated by a n-gram
model. Following (Sutskever et al., 2011; Deoras
et al., 2013), we propose an additionnal approxi-
mation to allow a tighter integration of the NNLM:
a 10-gram NNLM is first estimated on the training
corpus; texts then are sampled from this model to
create an artificial training corpus; finally, this arti-
ficial corpus is approximated by a 4-gram BOLM.

The training procedure for the SOUL NNLM is
the same as the one described in (Le et al., 2012c).
To sample a sentence from the SOUL model, first
the sentence length is randomly drawn from the
empirical distribution, then each word of the sen-
tence is sampled from the 10-gram distribution es-
timated with the SOUL model.

The convergence of this sampling strategy can
be evaluated by monitoring the perplexity evolu-
tion vs. the number of sentences that are gener-
ated. Figure 2 depicts this evolution by measuring
perplexity on the nt08 set with a step size of 400M
sampled sentences. The baseline BOLM (std) is
estimated on all the available training data that
consist of approximately 300M of running words.
We can observe that the perplexity of the BOLM
estimated on sampled texts (generated texts) de-
creases when the number of sample sentences in-
creases, and tends to reach slowly the perplex-
ity of the baseline BOLM. Moreover, when both
BOLMs are interpolated, an even lower perplex-
ity is obtained, which further decreases with the
amount of sampled training texts.

6.2 Translation results
Experiments are run for translation into German,
which lacks a GigaWord corpus. An artificial cor-
pus containing 3 billions of running words is first
generated as described in Section 6.1. This corpus
is used to estimate a BOLM with standard settings,
that is then used for decoding, thereby approxi-
mating the use of a NNLM during the first pass.
Results reported in Table 4 show that adding gen-
erated texts improves the BLEU scores even when
the SOUL model is added in a rescoring step. Also
note that using the LM trained on the sampled cor-
pus yields the same BLEU score that using the
standard LM.

66



 190
 200
 210
 220
 230
 240
 250
 260
 270
 280

 2  4  6  8  10  12

pp
x

times 400M sampled sentences

artificial texts
artificial texts+std

std

Figure 2: Perplexity measured on nt08 with the
baseline LM (std), with the LM estimated on the
sampled texts (generated texts), and with the inter-
polation of both.

Therefore, to translate from English to German,
the submitted system includes three BOLMs: one
trained on all the monolingual data, one on artifi-
cial texts and a third one that uses the freely avail-
able deWack corpus3 (1.7 billion words).

target LM BLEU
dev nt09 test nt10

base 15.3 16.5
+genText 15.5 16.8
+SOUL 16.4 17.6
+genText+SOUL 16.5 17.8

Table 4: Impact of the use of sampled texts.

7 Different tunings for different original
languages

As shown by Lembersky et al. (2012), the original
language of a text can have a significant impact on
translation performance. In this section, this effect
is assessed on the French to English translation
task. Training one SMT system per original lan-
guage is impractical, since the required informa-
tion is not available for most of parallel corpora.
However, metadata provided by the WMT evalua-
tion allows us to split the development and test sets
according to the original language of the text. To
ensure a sufficient amount of texts for each con-
dition, we used the concatenation of newstest cor-
pora for the years 2008, 2009, 2011, and 2012,
leaving nt10 for testing purposes.

Five different development sets have been cre-
ated to tune five different systems. Experimental
results are reported in Table 7 and show a drastic

3http://wacky.sslmit.unibo.it/doku.php

baseline adapted
original language tuning
cz 22.31 23.83
en 36.41 39.21
fr 31.61 32.41
de 18.46 18.49
es 30.17 29.34
all 29.43 30.12

Table 5: BLEU scores for the French-to-English
translation task measured on nt10 with systems
tuned on development sets selected according to
their original language (adapted tuning).

improvement in terms of BLEU score when trans-
lating back to the original English and a significant
increase for original text in Czech and French. In
this year’s evaluation, Russian was introduced as
a new language, so for sentences originally in this
language, the baseline system was used. This sys-
tem is used as our primary submission to the eval-
uation, with additional SOUL rescoring step.

8 Conclusion

In this paper, we have described our submis-
sions to the translation task of WMT’13 for
the French-English, German-English and Spanish-
English language pairs. Similarly to last year’s
systems, our main submissions use n-code, and
continuous space models are introduced in a post-
processing step, both for translation and target lan-
guage modeling. To translate from English to
German, we showed a slight improvement with
a tighter integration of the continuous space lan-
guage model using a text sampling strategy. Ex-
periments with pre-ordering were disappointing,
and the reasons for this failure need to be better
understood. We also explored the impact of using
different tuning sets according to the original lan-
guage of the text to be translated. Even though the
gain vanishes when adding the SOUL model in a
post-processing step, it should be noted that due to
time limitation this second step was not tuned ac-
cordingly to the original language. We therefore
plan to assess the impact of using different tuning
sets on the post-processing step.
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Lluı́s Padró and Evgeny Stanilovsky. 2012. Freeling
3.0: Towards wider multilinguality. In Proceedings
of the Language Resources and Evaluation Confer-
ence (LREC 2012), Istanbul, Turkey, May. ELRA.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In ACL ’02:
Proc. of the 40th Annual Meeting on Association for
Computational Linguistics, pages 311–318. Associ-
ation for Computational Linguistics.

Helmut Schmid and Florian Laws. 2008. Estima-
tion of conditional probabilities with decision trees
and an application to fine-grained POS tagging. In
Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pages
777–784, Manchester, UK, August.

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In Proc. of Interna-
tional Conference on New Methods in Language
Processing, pages 44–49, Manchester, UK.

Holger Schwenk, Daniel Déchelotte, and Jean-Luc
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Abstract

We describe the CMU systems submit-
ted to the 2013 WMT shared task in ma-
chine translation. We participated in three
language pairs, French–English, Russian–
English, and English–Russian. Our
particular innovations include: a label-
coarsening scheme for syntactic tree-to-
tree translation and the use of specialized
modules to create “synthetic translation
options” that can both generalize beyond
what is directly observed in the parallel
training data and use rich source language
context to decide how a phrase should
translate in context.

1 Introduction

The MT research group at Carnegie Mellon Uni-
versity’s Language Technologies Institute par-
ticipated in three language pairs for the 2013
Workshop on Machine Translation shared trans-
lation task: French–English, Russian–English,
and English–Russian. Our French–English sys-
tem (§3) showcased our group’s syntactic sys-
tem with coarsened nonterminal types (Hanne-
man and Lavie, 2011). Our Russian–English and
English–Russian system demonstrate a new multi-
phase approach to translation that our group is us-
ing, in which synthetic translation options (§4)
to supplement the default translation rule inven-
tory that is extracted from word-aligned training
data. In the Russian-English system (§5), we used
a CRF-based transliterator (Ammar et al., 2012)
to propose transliteration candidates for out-of-
vocabulary words, and used a language model
to insert or remove common function words in
phrases according to an n-gram English language

model probability. In the English–Russian system
(§6), we used a conditional logit model to predict
the most likely inflectional morphology of Rus-
sian lemmas, conditioning on rich source syntac-
tic features (§6.1). In addition to being able to
generate inflected forms that were otherwise unob-
served in the parallel training data, the translations
options generated in this matter had features re-
flecting their appropriateness given much broader
source language context than usually would have
been incorporated in current statistical MT sys-
tems.

For our Russian–English system, we addition-
ally used a secondary “pseudo-reference” transla-
tion when tuning the parameters of our Russian–
English system. This was created by automatically
translating the Spanish translation of the provided
development data into English. While the output
of an MT system is not always perfectly gram-
matical, previous work has shown that secondary
machine-generated references improve translation
quality when only a single human reference is
available when BLEU is used as an optimization
criterion (Madnani, 2010; Dyer et al., 2011).

2 Common System Components

The decoder infrastructure we used was cdec
(Dyer et al., 2010). Only the constrained data
resources provided for the shared task were used
for training both the translation and language
models. Word alignments were generated us-
ing the Model 2 variant described in Dyer et al.
(2013). Language models used modified Kneser-
Ney smoothing estimated using KenLM (Heafield,
2011). Translation model parameters were dis-
criminatively set to optimize BLEU on a held-out
development set using an online passive aggres-
sive algorithm (Eidelman, 2012) or, in the case of
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the French–English system, using the hypergraph
MERT algorithm and optimizing towards BLEU
(Kumar et al., 2009). The remainder of the paper
will focus on our primary innovations in the vari-
ous system pairs.

3 French-English Syntax System

Our submission for French–English is a tree-to-
tree translation system that demonstrates several
innovations from group’s research on SCFG-based
translation.

3.1 Data Selection
We divided the French–English training data into
two categories: clean data (Europarl, News Com-
mentary, UN Documents) totaling 14.8 million
sentence pairs, and web data (Common Crawl,
Giga-FrEn) totaling 25.2 million sentence pairs.
To reduce the volume of data used, we filtered
non-parallel and other unhelpful segments accord-
ing to the technique described by Denkowski et al.
(2012). This procedure uses a lexical translation
model learned from just the clean data, as well as
source and target n-gram language models to com-
pute the following feature scores:

• French and English 4-gram log likelihood (nor-
malized by length);
• French–English and English–French lexical

translation log likelihood (normalized by
length); and,
• Fractions of aligned words under the French–

English and English–French models.

We pooled previous years’ WMT news test sets
to form a reference data set. We computed the
same features. To filter the web data, we retained
only sentence for which each feature score was
no lower than two standard deviations below the
mean on the reference data. This reduced the web
data from 25.2 million to 16.6 million sentence
pairs. Parallel segments from all parts of the data
that were blank on either side, were longer than 99
tokens, contained a token of more than 30 charac-
ters, or had particularly unbalanced length ratios
were also removed. After filtering, 30.9 million
sentence pairs remained for rule extraction: 14.4
million from the clean data, and 16.5 million from
the web data.

3.2 Preprocessing and Grammar Extraction
Our French–English system uses parse trees in
both the source and target languages, so tokeniza-

tion in this language pair was carried out to match
the tokenizations expected by the parsers we used
(English data was tokenized with the Stanford to-
kenizer for English and an in-house tokenizer for
French that targets the tokenization used by the
Berkeley French parser). Both sides of the par-
allel training data were parsed using the Berkeley
latent variable parser.

Synchronous context-free grammar rules were
extracted from the corpus following the method of
Hanneman et al. (2011). This decomposes each
tree pair into a collection of SCFG rules by ex-
haustively identifying aligned subtrees to serve as
rule left-hand sides and smaller aligned subtrees
to be abstracted as right-hand-side nonterminals.
Basic subtree alignment heuristics are similar to
those by Galley et al. (2006), and composed rules
are allowed. The computational complexity is held
in check by a limit on the number of RHS elements
(nodes and terminals), rather than a GHKM-style
maximum composition depth or Hiero-style max-
imum rule span. Our rule extractor also allows
“virtual nodes,” or the insertion of new nodes in
the parse tree to subdivide regions of flat struc-
ture. Virtual nodes are similar to the A+B ex-
tended categories of SAMT (Zollmann and Venu-
gopal, 2006), but with the added constraint that
they may not conflict with the surrounding tree
structure.

Because the SCFG rules are labeled with non-
terminals composed from both the source and tar-
get trees, the nonterminal inventory is quite large,
leading to estimation difficulties. To deal with
this, we automatically coarsening the nonterminal
labels (Hanneman and Lavie, 2011). Labels are
agglomeratively clustered based on a histogram-
based similarity function that looks at what tar-
get labels correspond to a particular source label
and vice versa. The number of clusters used is de-
termined based on spikes in the distance between
successive clustering iterations, or by the number
of source, target, or joint labels remaining. Start-
ing from a default grammar of 877 French, 2580
English, and 131,331 joint labels, we collapsed
the label space for our WMT system down to 50
French, 54 English, and 1814 joint categories.1

1Selecting the stopping point still requires a measure of
intuition. The label set size of 1814 chosen here roughly cor-
responds to the number of joint labels that would exist in the
grammar if virtual nodes were not included. This equivalence
has worked well in practice in both internal and published ex-
periments on other data sets (Hanneman and Lavie, 2013).
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Extracted rules each have 10 features associated
with them. For an SCFG rule with source left-
hand side `s, target left-hand side `t, source right-
hand side rs, and target right-hand side rt, they
are:

• phrasal translation log relative frequencies
log f(rs | rt) and log f(rt | rs);
• labeling relative frequency log f(`s, `t | rs, rt)

and generation relative frequency
log f(rs, rt | `s, `t);
• lexical translation log probabilities log plex(rs |
rt) and log plex(rt | rs), defined similarly to
Moses’s definition;

• a rarity score exp( 1
c
)−1

exp(1)−1 for a rule with frequency
c (this score is monotonically decreasing in the
rule frequency); and,
• three binary indicator features that mark

whether a rule is fully lexicalized, fully abstract,
or a glue rule.

Grammar filtering. Even after collapsing la-
bels, the extracted SCFGs contain an enormous
number of rules — 660 million rule types from just
under 4 billion extracted instances. To reduce the
size of the grammar, we employ a combination of
lossless filtering and lossy pruning. We first prune
all rules to select no more than the 60 most fre-
quent target-side alternatives for any source RHS,
then do further filtering to produce grammars for
each test sentence:

• Lexical rules are filtered to the sentence level.
Only phrase pairs whose source sides match the
test sentence are retained.
• Abstract rules (whose RHS are all nontermi-

nals) are globally pruned. Only the 4000 most
frequently observed rules are retained.
• Mixed rules (whose RHS are a mix of terminals

and nonterminals) must match the test sentence,
and there is an additional frequency cutoff.

After this filtering, the number of completely lex-
ical rules that match a given sentence is typically
low, up to a few thousand rules. Each fully ab-
stract rule can potentially apply to every sentence;
the strict pruning cutoff in use for these rules is
meant to focus the grammar to the most important
general syntactic divergences between French and
English. Most of the latitude in grammar pruning
comes from adjusting the frequency cutoff on the
mixed rules since this category of rule is by far the

most common type. We conducted experiments
with three different frequency cutoffs: 100, 200,
and 500, with each increase decreasing the gram-
mar size by 70–80 percent.

3.3 French–English Experiments

We tuned our system to the newstest2008 set of
2051 segments. Aside from the official new-
stest2013 test set (3000 segments), we also col-
lected test-set scores from last year’s newstest2012
set (3003 segments). Automatic metric scores
are computed according to BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2011),
and TER (Snover et al., 2006), all computed ac-
cording to MultEval v. 0.5 (Clark et al., 2011).
Each system variant is run with two independent
MERT steps in order to control for optimizer in-
stability.

Table 1 presents the results, with the metric
scores averaged over both MERT runs. Quite in-
terestingly, we find only minor differences in both
tune and test scores despite the large differences in
filtered/pruned grammar size as the cutoff for par-
tially abstract rules increases. No system is fully
statistically separable (at p < 0.05) from the oth-
ers according to MultEval’s approximate random-
ization algorithm. The closest is the variant with
cutoff 200, which is generally judged to be slightly
worse than the other two. METEOR claims full
distinction on the 2013 test set, ranking the sys-
tem with the strictest grammar cutoff (500) best.
This is the version that we ultimately submitted to
the shared translation task.

4 Synthetic Translation Options

Before discussing our Russian–English and
English–Russian systems, we introduce the
concept of synthetic translation options, which
we use in these systems. We provide a brief
overview here; for more detail, we refer the reader
to Tsvetkov et al. (2013).

In language pairs that are typologically similar,
words and phrases map relatively directly from
source to target languages, and the standard ap-
proach to learning phrase pairs by extraction from
parallel data can be very effective. However, in
language pairs in which individual source lan-
guage words have many different possible transla-
tions (e.g., when the target language word could
have many different inflections or could be sur-
rounded by different function words that have no
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Dev (2008) Test (2012) Test (2013)
System BLEU METR TER BLEU METR TER BLEU METR TER
Cutoff 100 22.52 31.44 59.22 27.73 33.30 53.25 28.34 * 33.19 53.07
Cutoff 200 22.34 31.40 59.21 * 27.33 33.26 53.23 * 28.05 * 33.07 53.16
Cutoff 500 22.80 31.64 59.10 27.88 * 33.58 53.09 28.27 * 33.31 53.13

Table 1: French–English automatic metric scores for three grammar pruning cutoffs, averaged over two
MERT runs each. Scores that are statistically separable (p < 0.05) from both others in the same column
are marked with an asterisk (*).

direct correspondence in the source language), we
can expect the standard phrasal inventory to be
incomplete, except when very large quantities of
parallel data are available or for very frequent
words. There simply will not be enough exam-
ples from which to learn the ideal set of transla-
tion options. Therefore, since phrase based trans-
lation can only generate input/output word pairs
that were directly observed in the training corpus,
the decoder’s only hope for producing a good out-
put is to find a fluent, meaning-preserving transla-
tion using incomplete translation lexicons. Syn-
thetic translation option generation seeks to fill
these gaps using secondary generation processes
that produce possible phrase translation alterna-
tives that are not directly extractable from the
training data. By filling in gaps in the transla-
tion options used to construct the sentential trans-
lation search space, global discriminative transla-
tion models and language models can be more ef-
fective than they would otherwise be.

From a practical perspective, synthetic transla-
tion options are attractive relative to trying to build
more powerful models of translation since they
enable focus on more targeted translation prob-
lems (for example, transliteration, or generating
proper inflectional morphology for a single word
or phrase). Since they are translation options and
not complete translations, many of them may be
generated.

In the following system pairs, we use syn-
thetic translation options to augment hiero gram-
mar rules learned in the usual way. The synthetic
phrases we include augment draw from several
sources:

• transliterations of OOV Russian words (§5.3);

• English target sides with varied function words
(for example, given a phrase that translates into
cat we procedure variants like the cat, a cat and
of the cat); and,

• when translating into Russian, we generate
phrases by first predicting the most likely Rus-
sian lemma for a source word or phrase, and
then, conditioned on the English source context
(including syntactic and lexical features), we
predict the most likely inflection of the lemma
(§6.1).

5 Russian–English System

5.1 Data

We used the same parallel data for both the
Russian–English and English Russian systems.
Except for filtering to remove sentence pairs
whose log length ratios were statistical outliers,
we only filtered the Common Crawl corpus to re-
move sentence pairs with less than 50% concentra-
tion of Cyrillic characters on the Russian side. The
remaining data was tokenized and lower-cased.
For language models, we trained 4-gram Markov
models using the target side of the bitext and any
available monolingual data (including Gigaword
for English). Additionally, we trained 7-gram lan-
guage models using 600-class Brown clusters with
Witten-Bell smoothing.2

5.2 Baseline System

Our baseline Russian–English system is a hierar-
chical phrase-based translation model as imple-
mented in cdec (Chiang, 2007; Dyer et al., 2010).
SCFG translation rules that plausibly match each
sentence in the development and deftest sets were
extracted from the aligned parallel data using the
suffix array indexing technique of Lopez (2008).
A Russian morphological analyzer was used to
lemmatize the training, development, and test
data, and the “noisier channel” translation ap-
proach of Dyer (2007) was used in the Russian–
English system to let unusually inflected surface
forms back off to per-lemma translations.

2http://www.ark.cs.cmu.edu/cdyer/ru-600/.
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5.3 Synthetic Translations: Transliteration

Analysis revealed that about one third of the un-
seen Russian tokens in the development set con-
sisted of named entities which should be translit-
erated. We used individual Russian-English word
pairs in Wikipedia parallel headlines 3 to train a
linear-chained CRF tagger which labels each char-
acter in the Russian token with a sequence of zero
or more English characters (Ammar et al., 2012).
Since Russian names in the training set were in
nominative case, we used a simple rule-based mor-
phological generator to produce possible inflec-
tions and filtered out the ones not present in the
Russian monolingual corpus. At decoding, un-
seen Russian tokens are fed to the transliterator
which produces the most probable 20 translitera-
tions. We add a synthetic translation option for
each of the transliterations with four features: an
indicator feature for transliterations, the CRF un-
normalized score, the trigram character-LM log-
probability, and the divergence from the average
length-ratio between an English name and its Rus-
sian transliteration.

5.4 Synthetic Translations: Function Words

Slavic languages like Russian have a large number
of different inflected forms for each lemma, repre-
senting different cases, tenses, and aspects. Since
our training data is rather limited relative to the
number of inflected forms that are possible, we use
an English language model to generate a variety
of common function word contexts for each con-
tent word phrase. These are added to the phrase
table with a feature indicating that they were not
actually observed in the training data, but rather
hallucinated using SRILM’s disambig tool.

5.5 Summary

Table 5.5 summarizes our Russian-English trans-
lation results. In the submitted system, we addi-
tionally used MBR reranking to combine the 500-
best outputs of our system, with the 500-best out-
puts of a syntactic system constructed similarly to
the French–English system.

6 English–Russian System

The bilingual training data was identical to the
filtered data used in the previous section. Word
alignments was performed after lemmatizing the

3We contributed the data set to the shared task participants
at http://www.statmt.org/wmt13/wiki-titles.ru-en.tar.gz

Table 2: Russian-English summary.

Condition BLEU

Baseline 30.8
Function words 30.9
Transliterations 31.1

Russian side of the training corpus. An unpruned,
modified Kneser-Ney smoothed 4-gram language
model (Chen and Goodman, 1996) was estimated
from all available Russian text (410 million words)
using the KenLM toolkit (Heafield et al., 2013).

A standard hierarchical phrase-based system
was trained with rule shape indicator features, ob-
tained by replacing terminals in translation rules
by a generic symbol. MIRA training was per-
formed to learn feature weights.

Additionally, word clusters (Brown et al., 1992)
were obtained for the complete monolingual Rus-
sian data. Then, an unsmoothed 7-gram language
model was trained on these clusters and added as
a feature to the translation system. Indicator fea-
tures were also added for each cluster and bigram
cluster occurence. These changes resulted in an
improvement of more than a BLEU point on our
held-out development set.

6.1 Predicting Target Morphology

We train a classifier to predict the inflection of
each Russian word independently given the cor-
responding English sentence and its word align-
ment. To do this, we first process the Russian
side of the parallel training data using a statisti-
cal morphological tagger (Sharoff et al., 2008) to
obtain lemmas and inflection tags for each word
in context. Then, we obtain part-of-speech tags
and dependency parses of the English side of the
parallel data (Martins et al., 2010), as well as
Brown clusters (Brown et al., 1992). We extract
features capturing lexical and syntactical relation-
ships in the source sentence and train structured
linear logistic regression models to predict the tag
of each English word independently given its part-
of-speech.4 In practice, due to the large size of
the corpora and of the feature space dimension,
we were only able to use about 10% of the avail-
able bilingual data, sampled randomly from the
Common Crawl corpus. We also restricted the

4We restrict ourselves to verbs, nouns, adjectives, adverbs
and cardinals since these open-class words carry most inflec-
tion in Russian.
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она пыталась пересечь пути на ее велосипед

she had attempted to cross the road on her bike

PRP   VBD         VBN          TO    VB       DT     NN    IN  PRP$   NN

nsubj

aux

xcomp

aux

пытаться_V*+*mis/sfm/e

C50   C473        C28          C8    C275   C37   C43  C82 C94   C331

Figure 1: The classifier is trained to predict the verbal inflection mis-sfm-e based on the linear and
syntactic context of the words aligned to the Russian word; given the stem пытаться (pytat’sya), this
inflection paradigm produces the observed surface form пыталась (pytalas’).

set of possible inflections for each word to the set
of tags that were observed with its lemma in the
full monolingual training data. This was neces-
sary because of our choice to use a tagger, which
is not able to synthesize surface forms for a given
lemma-tag pair.

We then augment the standard hierarchical
phrase-base grammars extracted for the baseline
systems with new rules containing inflections not
necessarily observed in the parallel training data.
We start by training a non-gappy phrase transla-
tion model on the bilingual data where the Russian
has been lemmatized.5 Then, before translating an
English sentence, we extract translation phrases
corresponding to this specific sentence and re-
inflect each word in the target side of these phrases
using the classifier with features extracted from
the source sentence words and annotations. We
keep the original phrase-based translation features
and add the inflection score predicted by the clas-
sifier as well as indicator features for the part-of-
speech categories of the re-inflected words.

On a held-out development set, these synthetic
phrases produce a 0.3 BLEU point improvement.
Interestingly, the feature weight learned for using
these phrases is positive, indicating that useful in-
flections might be produced by this process.

7 Conclusion

The CMU systems draws on a large number of
different research directions. Techniques such as
MBR reranking and synthetic phrases allow dif-
ferent contributors to focus on different transla-

5We keep intact words belonging to non-predicted cate-
gories.

tion problems that are ultimately recombined into
a single system. Our performance, in particular,
on English–Russian machine translation was quite
satisfying, we attribute our biggest gains in this
language pair to the following:

• Our inflection model that predicted how an En-
glish word ought best be translated, given its
context. This enabled us to generate forms that
were not observed in the parallel data or would
have been rare independent of context with pre-
cision.

• Brown cluster language models seem to be quite
effective at modeling long-range morphological
agreement patterns quite reliably.
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Abstract
We use feature decay algorithms (FDA)
for fast deployment of accurate statistical
machine translation systems taking only
about half a day for each translation direc-
tion. We develop parallel FDA for solving
computational scalability problems caused
by the abundance of training data for SMT
models and LM models and still achieve
SMT performance that is on par with us-
ing all of the training data or better. Par-
allel FDA runs separate FDA models on
randomized subsets of the training data
and combines the instance selections later.
Parallel FDA can also be used for selecting
the LM corpus based on the training set
selected by parallel FDA. The high qual-
ity of the selected training data allows us
to obtain very accurate translation outputs
close to the top performing SMT systems.
The relevancy of the selected LM corpus
can reach up to 86% reduction in the num-
ber of OOV tokens and up to 74% reduc-
tion in the perplexity. We perform SMT
experiments in all language pairs in the
WMT13 translation task and obtain SMT
performance close to the top systems us-
ing significantly less resources for training
and development.

1 Introduction

Statistical machine translation (SMT) is a data in-
tensive problem. If you have the translations for
the source sentences you are translating in your
training set or even portions of it, then the trans-
lation task becomes easier. If some tokens are not
found in your training data then you cannot trans-
late them and if some translated word do not ap-
pear in your language model (LM) corpus, then it
becomes harder for the SMT engine to find their
correct position in the translation.

Current SMT systems also face problems
caused by the proliferation of various parallel cor-
pora available for building SMT systems. The
training data for many of the language pairs in
the translation task, part of the Workshop on Ma-
chine translation (WMT13) (Callison-Burch et al.,
2013), have increased the size of the available par-
allel corpora for instance by web crawled corpora
over the years. The increased size of the training
material creates computational scalability prob-
lems when training SMT models and can increase
the amount of noisy parallel sentences found. As
the training set sizes increase, proper training set
selection becomes more important.

At the same time, when we are going to trans-
late just a couple of thousand sentences, possibly
belonging to the same target domain, it does not
make sense to invest resources for training SMT
models over tens of millions of sentences or even
more. SMT models like Moses already have filter-
ing mechanisms to create smaller parts of the built
models that are relevant to the test set.

In this paper, we develop parallel feature decay
algorithms (FDA) for solving computational scal-
ability problems caused by the abundance of train-
ing data for SMT models and LM models and still
achieve SMT performance that is on par with us-
ing all of the training data or better. Parallel FDA
runs separate FDA models on randomized subsets
of the training data and combines the instance se-
lections later. We perform SMT experiments in
all language pairs of the WMT13 (Callison-Burch
et al., 2013) and obtain SMT performance close to
the baseline Moses (Koehn et al., 2007) system us-
ing less resources for training. With parallel FDA,
we can solve not only the instance selection prob-
lem for training data but also instance selection for
the LM training corpus, which allows us to train
higher order n-gram language models and model
the dependencies better.

Parallel FDA improves the scalability of FDA
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and allows rapid prototyping of SMT systems for
a given target domain or task. Parallel FDA can be
very useful for MT in target domains with limited
resources or in disaster and crisis situations (Lewis
et al., 2011) where parallel corpora can be gath-
ered by crawling and selected by parallel FDA.
Parallel FDA also improves the computational re-
quirements of FDA by selecting from smaller cor-
pora and distributing the work load. The high
quality of the selected training data allows us to
obtain very accurate translation outputs close to
the top performing SMT systems. The relevancy
of the LM corpus selected can reach up to 86% re-
duction in the number of OOV tokens and up to
74% reduction in the perplexity.

We organize our work as follows. We describe
FDA and parallel FDA models in the next section.
We also describe how we extend the FDA model
for LM corpus selection. In section 3, we present
our experimental results and in the last section, we
summarize our contributions.

2 Feature Decay Algorithms for Instance
Selection

In this section, we describe the FDA algorithm,
the parallel FDA model, and how FDA training
instance selection algorithms can be used also for
instance selection for language model corpora.

2.1 Feature Decay Algorithm (FDA)

Feature decay algorithms (Biçici and Yuret,
2011a) increase the diversity of the training set by
decaying the weights of n-gram features that have
already been included. FDAs try to maximize the
coverage of the target language features for the test
set. Translation performance can improve as we
include multiple possible translations for a given
word, which increases the diversity of the training
set. A target language feature that does not appear
in the selected training instances will be difficult to
produce regardless of the decoding algorithm (im-
possible for unigram features). FDA tries to find
as many training instances as possible to increase
the chances of covering the correct target language
feature by reducing the weight of the included fea-
tures after selecting each training instance.

Algorithm 1 gives the pseudo-code for FDA.
We improve FDA with improved scaling, where
the score for each sentence is scaled proportional
to the length of the sentence, which reduces the
average length of the training instances.

Algorithm 1: The Feature Decay Algorithm
Input: Parallel training sentences U , test set

features F , and desired number of
training instances N .

Data: A priority queue Q, sentence scores
score, feature values fval.

Output: Subset of the parallel sentences to be
used as the training data L ⊆ U .

1 foreach f ∈ F do
2 fval(f)← init(f,U)
3 foreach S ∈ U do
4 score(S)← 1

|S|s
∑

f∈features(S)
fval(f)

5 enqueue(Q, S,score(S))
6 while |L| < N do
7 S ← dequeue(Q)
8 score(S)← 1

|S|s
∑

f∈features(S)
fval(f)

9 if score(S) ≥ topval(Q) then
10 L ← L ∪ {S}
11 foreach f ∈ features(S) do
12 fval(f)← decay(f,U ,L)
13 else
14 enqueue(Q, S,score(S))

The input to the algorithm consists of parallel
training sentences, the number of desired training
instances, and the source language features of the
test set. The feature decay function (decay) is
the most important part of the algorithm where
feature weights are multiplied by 1/n where n
is the count of the feature in the current train-
ing set. The initialization function (init) calcu-
lates the log of inverse document frequency (idf):
init(f,U) = log(|U|/(1 + C(f,U))), where
|U| is the sum of the number of features appear-
ing in the training corpus and C(f,U) is the num-
ber of times feature f appear in U . Further ex-
periments with the algorithm are given in (Biçici
and Yuret, 2011a). We improve FDA with a scal-
ing factor that prefers shorter sentences defined as:
|S|s, where s is the power of the source sentence
length and we set it to 0.9 after optimizing it over
the perplexity of the LM built over the selected
corpus (further discussed in Section 2.3).

2.2 Parallel FDA Model

FDA model obtains a sorting over all of the avail-
able training corpus based on the weights of the
features found on the test set. Each selected train-
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Algorithm 2: Parallel FDA
Input: U , F , and N .
Output: L ⊆ U .

1 U ← shuffle(U)
2 UUU ,M ← split(U , N)
3 LLL ← {}
4 SSS ← {}
5 foreach Ui ∈ UUU do
6 Li,Si ← FDA(Ui,F ,M)
7 add(LLL,Li)
8 add(SSS,Si)
9 L ← merge(LLL,SSS)

ing instance effects which feature weights will be
decayed and therefore can result in a different or-
dering of the instances if previous instance selec-
tions are altered. This makes it difficult to par-
allelize the FDA algorithm fully. Parallel FDA
model first shuffles the parallel training sentences,
U , and distributes them to multiple splits for run-
ning individual FDA models on them.

The input to parallel FDA also consists of paral-
lel training sentences, the number of desired train-
ing instances, and the source language features of
the test set. The first step shuffles the parallel train-
ing sentences and the next step splits into equal
parts and outputs the split files and the adjusted
number of instances to select from each,M . Since
we split into equal parts, we select equal number
of sentences, M , from each split. Then we run
FDA on each file to obtain sorted files,LLL, together
with their scores, SSS. merge combines k sorted
lists into one sorted list in O(Mk log k) where
Mk is the total number of elements in all of the
input lists. 1 The obtained L is the new training set
to be used for SMT experiments. We compared the
target 2-gram feature coverage of the training sets
obtained with FDA and parallel FDA and found
that parallel FDA achieves close performance.

Parallel FDA improves the scalability of FDA
and allows rapid prototyping of SMT systems for
a given target domain or task. Parallel FDA also
improves the computational requirements of FDA
by selecting from smaller corpora and distributing
the work load, which can be very useful for MT in
disaster scenarios.

1 (Cormen et al., 2009), question 6.5-9. Merging k sorted
lists into one sorted list using a min-heap for k-way merging.

2.3 Instance Selection for the Language
Model Corpus

The language model corpus is very important for
improving the SMT performance since it helps
finding the correct ordering among the translated
tokens or phrases. Increased LM corpus size can
increase the SMT performance where doubling the
LM corpus can improve the BLEU (Papineni et
al., 2002) by 0.5 (Koehn, 2006). However, al-
though LM corpora resources are more abundant,
training on large LM corpora also poses compu-
tational scalability problems and until 2012, LM
corpora such as LDC Gigaword corpora were not
fully utilized due to memory limitations of com-
puters and even with large memory machines, the
LM corpora is split into pieces, interpolated, and
merged (Koehn and Haddow, 2012) or the LM
order is decreased to use up to 4-grams (Markus
et al., 2012) or low frequency n-gram counts are
omitted and better smoothing techniques are de-
veloped (Yuret, 2008). Using only the given train-
ing data for building the LM is another option
used for limiting the size of the corpus, which
can also obtain the second best performance in
Spanish-English translation task and in the top
tier for German-English (Guzman et al., 2012;
Callison-Burch et al., 2012). This can also indi-
cate that prior knowledge of the test set domain
and its similarity to the available parallel training
data may be diminishing the gains in SMT perfor-
mance through better language modeling or better
domain adaptation.

For solving the computational scalability prob-
lems, there is a need for properly selecting LM
training data as well. We select LM corpus with
parallel FDA based on this observation:

No word not appearing in the training
set can appear in the translation.

It is impossible for an SMT system to translate
a word unseen in the training corpus nor can it
translate it with a word not found in the target
side of the training set 2. Thus we are only in-
terested in correctly ordering the words appear-
ing in the training corpus and collecting the sen-
tences that contain them for building the LM. At
the same time, we want to be able to model longer
range dependencies more efficiently especially for
morphologically rich languages (Yuret and Biçici,

2Unless the translation is a verbatim copy of the source.
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2009). Therefore, a compact and more relevant
LM corpus can be useful.

Selecting the LM corpus is harder. First of all,
we know which words should appear in the LM
corpus but we do not know which phrases should
be there since the translation model may reorder
the translated words, find different translations,
and generate different phrases. Thus, we use 1-
gram features for LM corpus selection. At the
same time, in contrast with selecting instances for
the training set, we are less motivated to increase
the diversity since we want predictive power on
the most commonly observed patterns. Thus, we
do not initialize feature weights with the idf score
and instead, we use the inverse of the idf score
for initialization, which is giving more importance
to frequently occurring words in the training set.
This way of LM corpus selection also allows us
to obtain a more controlled language and helps us
create translation outputs within the scope of the
training corpus and the closely related LM corpus.

We shuffle the LM corpus available before split-
ting and select from individual splits, to prevent
extreme cases. We add the training set directly
into the LM and also add the training set not se-
lected into the pool of sentences that can be se-
lected for the LM. The scaling parameter s is opti-
mized over the perplexity of the training data with
the LM built over the selected LM corpus.

3 Experiments

We experiment with all language pairs in
both directions in the WMT13 translation
task (Callison-Burch et al., 2013), which include
English-German (en-de), English-Spanish (en-es),
English-French (en-fr), English-Czech (en-cs),
and English-Russian (en-ru). We develop transla-
tion models using the phrase-based Moses (Koehn
et al., 2007) SMT system. We true-case all of the
corpora, use 150-best lists during tuning, set the
max-fertility of GIZA++ (Och and Ney, 2003) to
a value between 8-10, use 70 word classes learned
over 3 iterations with mkcls tool during GIZA++
training, and vary the language model order
between 5 to 9 for all language pairs. The de-
velopment set contains 3000 sentences randomly
sampled from among all of the development
sentences provided.

Since we do not know the best training set
size that will maximize the performance, we rely
on previous SMT experiments (Biçici and Yuret,

2011a; Biçici and Yuret, 2011b) to select the
proper training set size. We choose close to 15
million words and its corresponding number of
sentences for each training corpus and 10 million
sentences for each LM corpus not including the
selected training set, which is added later. This
corresponds to selecting roughly 15% of the train-
ing corpus for en-de and 35% for ru-en, and due to
their larger size, 5% for en-es, 6% for cs-en, 2%
for en-fr language pairs. The size of the LM cor-
pus allows us to build higher order models. The
statistics of the training data selected by the paral-
lel FDA is given in Table 1. Note that the training
set size for different translation directions differ
slightly since we run a parallel FDA for each.

cs / en de / en es / en fr / en ru / en
words (#M) 186 / 215 92 / 99 409 / 359 1010 / 886 41 / 44
sents (#K) 867 631 841 998 709
words (#M) 13 / 15 16 / 17 23 / 21 26 / 22 16 / 18

Table 1: Comparison of the training data available
and the selected training set by parallel FDA for
each language pair. The size of the parallel cor-
pora is given in millions (M) of words or thou-
sands (K) of sentences.

After selecting the training set, we select the
LM corpora using the words in the target side of
the training set as the features. For en, es, and
fr, we have access to the LDC Gigaword corpora,
from which we extract only the story type news
and for en, we exclude the corpora from Xinhua
News Agency (xin eng). The size of the LM cor-
pora from LDC and the monolingual LM corpora
provided by WMT13 are given in Table 2. For
all target languages, we select 10M sentences with
parallel FDA from the LM corpora and the remain-
ing training sentences and add the selected training
data to obtain the LM corpus. Thus the size of the
LM corpora is 10M plus the number of sentences
in the training set as given in Table 1.

#M cs de en es fr ru
LDC - - 3402 949 773 -
Mono 388 842 1389 341 434 289

Table 2: The size of the LM corpora from LDC
and the monolingual language model corpora pro-
vided in millions (M) of words.

With FDA, we can solve not only the instance
selection problem for the training data but also
the instance selection problem for the LM train-
ing corpus and achieve close target 2-gram cover-
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S → en en→ T
cs-en de-en es-en fr-en ru-en en-cs en-de en-es en-fr en-ru

WMT13 .2620 .2680 .3060 .3150 .2430 .1860 .2030 .3040 .3060 .1880
BLEUc .2430 .2414 .2909 .2539 .2226 .1708 .1792 .2799 .2379 .1732
BLEUc diff .0190 .0266 .0151 .0611 .0204 .0152 .0238 .0241 .0681 .0148
LM order 7 9 7 9 6 5 5 5 7 5
BLEUc, n .2407, 5 .2396, 5 .2886, 8 .2532, 6 .2215, 9 .1698, 9 .1784, 9 .2794, 9 .2374, 9 .1719, 9

Table 3: Best BLEUc results obtained on the translation task together with the LM order used when
obtaining the result compared with the best constrained Moses results in WMT12 and WMT13. The last
row compares the BLEUc result with respect to using a different LM order.

age using about 5% of the available training data
and 5% of the available LM corpus for instance for
en. A smaller LM training corpus also allows us
to train higher order n-gram language models and
model the dependencies better and achieve lower
perplexity as given in Table 5.

3.1 WMT13 Translation Task Results

We run a number of SMT experiments for each
language pair varying the LM order used and ob-
tain different results and sorted these based on the
tokenized BLEU performance, BLEUc. The best
BLEUc results obtained on the translation task to-
gether with the LM order used when obtaining the
results are given in Table 3. We also list the top re-
sults from WMT13 (Callison-Burch et al., 2013) 3,
which use phrase-based Moses for comparison 4

and the BLEUc difference we obtain. For trans-
lation tasks with en as the target, higher order n-
gram LM perform better whereas for translation
tasks with en as the source, mostly 5-gram LM
perform the best. We can obtain significant gains
in BLEU (+0.0023) using higher order LMs.

For all translation tasks except fr-en and en-fr,
we are able to obtain very close results to the top
Moses system output (0.0148 to 0.0266 BLEUc
difference). This shows that we can obtain very
accurate translation outputs yet use only a small
portion of the training corpus available, signifi-
cantly reducing the time required for training, de-
velopment, and deployment of an SMT system for
a given translation task.

We are surprised by the lower performance in
en-fr or fr-en translation tasks and the reason is,
we believe, due to the inherent noise in the Gi-
gaFrEn training corpus 5. FDA is an instance se-

3We use the results from matrix.statmt.org.
4Phrase-based Moses systems usually rank in the top 3.
5We even found control characters in the corpora.

lection tool and it does not filter out target sen-
tences that are noisy since FDA only looks at the
source sentences when selecting training instance
pairs. Noisy instances may be caused by a sen-
tence alignment problem and one way to fix them
is to measure the sentence alignment accuracy by
using a similarity score over word distributions
such as the Zipfian Word Vectors (Biçici, 2008).
Since noisy parallel corpora can decrease the per-
formance, we also experimented with discarding
the GigaFrEn corpus in the experiments. However,
this decreased the results by 0.0003 BLEU in con-
trast to 0.004-0.01 BLEU gains reported in (Koehn
and Haddow, 2012). Also, note that the BLEU re-
sults we obtained are lower than in (Koehn and
Haddow, 2012), which may be an indication that
our training set size was small for this task.

3.2 Training Corpus Quality
We measure the quality of the training corpus by
the coverage of the target 2-gram features of the
test set, which is found to correlate well with the
BLEU performance achievable (Biçici and Yuret,
2011a). Table 4 presents the source (scov) and tar-
get (tcov) 2-gram feature coverage of both the par-
allel training corpora (train) that we select from
and the training sets obtained with parallel FDA.
We show that we can obtain coverages close to us-
ing all of the available training corpora.

3.3 LM Corpus Quality
We compare the perplexity of the LM trained on
all of the available training corpora for the de-en
language pair versus the LM trained on the paral-
lel FDA training corpus and the parallel FDA LM
corpus. The number of OOV tokens become 2098,
2255, and 291 respectively for English and 2143,
2555, and 666 for German. To be able to com-
pare the perplexities, we take the OOV tokens into
consideration during calculations. Tokenized LM
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cs-en de-en es-en fr-en ru-en en-cs en-de en-es en-fr en-ru

train
scov .70 .74 .85 .83 .66 .82 .82 .84 .87 .78
tcov .82 .82 .84 .87 .78 .70 .74 .85 .83 .66

FDA
scov .70 .74 .85 .82 .66 .82 .82 .84 .84 .78
tcov .74 .75 .77 .78 .75 .59 .67 .78 .76 .61

Table 4: Source (scov) and target (tcov) 2-gram feature coverage comparison of the training corpora
(train) with the training sets obtained with parallel FDA (FDA).

corpus has 247M tokens for en and 218M tokens
for de. We assume that each OOV word in en or
de contributes log(1/218M) to the log probabil-
ity, which we round to −19. We also present re-
sults for the case when we handle OOV words bet-
ter with a cost of −11 each in Table 5.

Table 5 shows that we reduce the perplexity
with a LM built on the training set selected with
parallel FDA, which uses only 15% of the training
data for de-en. More significantly, the LM build on
the LM corpus selected by the parallel FDA is able
to decrease both the number of OOV tokens and
the perplexity and allows us to efficiently model
higher order relationships as well. We reach up to
86% reduction in the number of OOV tokens and
up to 74% reduction in the perplexity.

log OOV = −19 log OOV = −11
ppl train FDA FDA LM train FDA FDA LM

en

3 763 774 203 431 419 187
4 728 754 192 412 409 178
5 725 753 191 410 408 176
6 724 753 190 409 408 176
7 724 753 190 409 408 176

de

3 1255 1449 412 693 713 343
4 1216 1428 398 671 703 331
5 1211 1427 394 668 702 327
6 1210 1427 393 668 702 326
7 1210 1427 392 668 702 326

Table 5: Perplexity comparison of the LM built
from the training corpus (train), parallel FDA se-
lected training corpus (FDA), and the parallel FDA
selected LM corpus (FDA LM).

3.4 Computational Costs

In this section, we quantify how fast the overall
system runs for a given language pair. The in-
stance selection times are dependent on the num-
ber of training sentences available for the language
pair for training set selection and for the target lan-
guage for LM corpus selection. We give the av-
erage number of minutes it takes for the parallel
FDA to finish selection for each direction and for
each target language in Table 6.

time (minutes) en-fr en-ru
Parallel FDA train 50 18
Parallel FDA LM 66 50

Table 6: The average time in the number of min-
utes for parallel FDA to select instances for the
training set or for the LM corpus for language
pairs en-fr and en-ru.

Once the training set and the LM corpus are
ready, the training of the phrase-based SMT model
Moses takes about 12 hours. Therefore, we are
able to deploy an SMT system for the target trans-
lation task in about half a day and still obtain very
accurate translation results.

4 Contributions

We develop parallel FDA for solving computa-
tional scalability problems caused by the abun-
dance of training data for SMT models and LM
models and still achieve SMT performance that is
on par with the top performing SMT systems. The
high quality of the selected training data and the
LM corpus allows us to obtain very accurate trans-
lation outputs while the selected the LM corpus re-
sults in up to 86% reduction in the number of OOV
tokens and up to 74% reduction in the perplexity
and allows us to model higher order dependencies.

FDA and parallel FDA raise the bar of expec-
tations from SMT translation outputs with highly
accurate translations and lowering the bar to entry
for SMT into new domains and tasks by allowing
fast deployment of SMT systems in about half a
day. Parallel FDA provides a new step towards
rapid SMT system development in budgeted train-
ing scenarios and can be useful in developing ma-
chine translation systems in target domains with
limited resources or in disaster and crisis situations
where parallel corpora can be gathered by crawl-
ing and selected by parallel FDA. Parallel FDA is
also allowing a shift from general purpose SMT
systems towards task adaptive SMT solutions.
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Abstract

We describe our experiments with
phrase-based machine translation for
the WMT 2013 Shared Task. We
trained one system for 18 translation
directions between English or Czech
on one side and English, Czech, Ger-
man, Spanish, French or Russian on
the other side. We describe a set of re-
sults with different training data sizes
and subsets. For the pairs containing
Russian, we describe a set of indepen-
dent experiments with slightly different
translation models.

1 Introduction
With so many official languages, Europe is
a paradise for machine translation research.
One of the largest bodies of electronically
available parallel texts is being nowadays gen-
erated by the European Union and its insti-
tutions. At the same time, the EU also pro-
vides motivation and boosts potential market
for machine translation outcomes.

Most of the major European languages be-
long to one of three branches of the Indo-
European language family: Germanic, Ro-
mance or Slavic. Such relatedness is respon-
sible for many structural similarities in Eu-
ropean languages, although significant differ-
ences still exist. Within the language portfo-
lio selected for the WMT shared task, English,
French and Spanish seem to be closer to each
other than to the rest.

German, despite being genetically related
to English, differs in many properties. Its
word order rules, shifting verbs from one

end of the sentence to the other, easily cre-
ate long-distance dependencies. Long Ger-
man compound words are notorious for in-
creasing out-of-vocabulary rate, which has
led many researchers to devising unsupervised
compound-splitting techniques. Also, upper-
case/lowercase distinction is more important
because all German nouns start with an up-
percase letter by the rule.

Czech is a language with rich morphology
(both inflectional and derivational) and rela-
tively free word order. In fact, the predicate-
argument structure, often encoded by fixed
word order in English, is usually captured by
inflection (especially the system of 7 grammat-
ical cases) in Czech. While the free word order
of Czech is a problem when translating to En-
glish (the text should be parsed first in order
to determine the syntactic functions and the
English word order), generating correct inflec-
tional affixes is indeed a challenge for English-
to-Czech systems. Furthermore, the multitude
of possible Czech word forms (at least order of
magnitude higher than in English) makes the
data sparseness problem really severe, hinder-
ing both directions.

Most of the above characteristics of Czech
also apply to Russian, another Slavic language.
Similar issues have to be expected when trans-
lating between Russian and English. Still,
there are also interesting divergences between
Russian and Czech, especially on the syntactic
level. Russian sentences typically omit cop-
ula in the present tense and there is also no
direct equivalent of the verb “to have”. Pe-
riphrastic constructions such as “there is XXX
by him” are used instead. These differences
make the Czech-Russian translation interest-
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ing as well. Interestingly enough, results of
machine translation between Czech and Rus-
sian has so far been worse than between En-
glish and any of the two languages, language
relatedness notwithstanding.

Our goal is to run one system under as
similar conditions as possible to all eighteen
translation directions, to compare their trans-
lation accuracies and see why some directions
are easier than others. The current version of
the system does not include really language-
specific techniques: we neither split German
compounds, nor do we address the peculiari-
ties of Czech and Russian mentioned above.

In an independent set of experiments, we
tried to deal with the data sparseness of Rus-
sian language with the addition of a backoff
model with a simple stemming and some ad-
ditional data; those experiments were done for
Russian and Czech|English combinations.

2 The Translation System
Both sets of experiments use the same ba-
sic framework. The translation system is
built around Moses1 (Koehn et al., 2007).
Two-way word alignment was computed us-
ing GIZA++2 (Och and Ney, 2003), and
alignment symmetrization using the grow-
diag-final-and heuristic (Koehn et al., 2003).
Weights of the system were optimized using
MERT (Och, 2003). No lexical reordering
model was trained.

For language modeling we use the SRILM
toolkit3 (Stolcke, 2002) with modified Kneser-
Ney smoothing (Kneser and Ney, 1995; Chen
and Goodman, 1998).

3 General experiments
In the first set of experiments we wanted to
use the same setting for all language pairs.

3.1 Data and Pre-processing Pipeline
We applied our system to all the ten official
language pairs. In addition, we also exper-
imented with translation between Czech on
one side and German, Spanish, French or Rus-
sian on the other side. Training data for
these additional language pairs were obtained

1http://www.statmt.org/moses/
2http://code.google.com/p/giza-pp/
3http://www-speech.sri.com/projects/srilm/

by combining parallel corpora of the officially
supported pairs. For instance, to create the
Czech-German parallel corpus, we identified
the intersection of the English sides of Czech-
English and English-German corpora, respec-
tively; then we combined the corresponding
Czech and German sentences.

We took part in the constrained task. Un-
less explicitly stated otherwise, the transla-
tion model in our experiments was trained on
the combined News-Commentary v8 and Eu-
roparl v7 corpora.4 Note that there is only
News Commentary and no Europarl for Rus-
sian. We were also able to evaluate several
combinations with large parallel corpora: the
UN corpus (English, French and Spanish),
the Giga French-English corpus and CzEng
(Czech-English). We did not use any large
corpus for Russian-English. Table 1 shows the
sizes of the training data.

Corpus SentPairs Tkns lng1 Tkns lng2
cs-en 786,929 18,196,080 21,184,881
de-en 2,098,430 55,791,641 58,403,756
es-en 2,140,175 62,444,507 59,811,355
fr-en 2,164,891 70,363,304 60,583,967
ru-en 150,217 3,889,215 4,100,148
de-cs 657,539 18,160,857 17,788,600
es-cs 697,898 19,577,329 18,926,839
fr-cs 693,093 19,717,885 18,849,244
ru-cs 103,931 2,642,772 2,319,611
Czeng
cs-en 14,833,358 204,837,216 235,177,231
UN
es-en 11,196,913 368,154,702 328,840,003
fr-en 12,886,831 449,279,647 372,627,886
Giga
fr-en 22,520,400 854,353,231 694,394,577

Table 1: Number of sentence pairs and tokens
for every language pair in the parallel training
corpus. Languages are identified by their ISO
639 codes: cs = Czech, de = German, en =
English, es = Spanish, fr = French, ru = Rus-
sian. Every line corresponds to the respective
version of EuroParl + News Commentary; the
second part presents the extra corpora.

The News Test 2010 (2489 sentences in
each language) and 2012 (3003 sentences)
data sets5 were used as development data for
MERT. BLEU scores reported in this paper
were computed on the News Test 2013 set

4http://www.statmt.org/wmt13/
translation-task.html\#download

5http://www.statmt.org/wmt13/
translation-task.html
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(3000 sentences each language). We do not
use the News Tests 2008, 2009 and 2011.

All parallel and monolingual corpora un-
derwent the same preprocessing. They were
tokenized and some characters normalized
or cleaned. A set of language-dependent
heuristics was applied in an attempt to re-
store the opening/closing quotation marks (i.e.
"quoted" → “quoted”) (Zeman, 2012).

The data are then tagged and lemmatized.
We used the Featurama tagger for Czech
and English lemmatization and TreeTagger for
German, Spanish, French and Russian lemma-
tization. All these tools are embedded in the
Treex analysis framework (Žabokrtský et al.,
2008).

The lemmas are used later to compute word
alignment. Besides, they are needed to ap-
ply “supervised truecasing” to the data: we
cast the case of the lemma to the form, rely-
ing on our morphological analyzers and tag-
gers to identify proper names, all other words
are lowercased. Note that guessing of the true
case is only needed for the sentence-initial to-
ken. Other words can typically be left in their
original form, unless they are uppercased as a
form of HIGHLIGHTING.

3.2 Experiments
BLEU scores were computed by our sys-
tem, comparing truecased tokenized hypoth-
esis with truecased tokenized reference trans-
lation. Such scores must differ from the official
evaluation—see Section 3.2.4 for discussion of
the final results.

The confidence interval for most of the
scores lies between ±0.5 and ±0.6 BLEU %
points.

3.2.1 Baseline Experiments
The set of baseline experiments were trained
on the supervised truecased combination of
News Commentary and Europarl. As we had
lemmatizers for the languages, word alignment
was computed on lemmas. (But our previous
experiments showed that there was little dif-
ference between using lemmas and lowercased
4-character “stems”.) A hexagram language
model was trained on the monolingual version
of the News Commentary + Europarl corpus
(typically a slightly larger superset of the tar-
get side of the parallel corpus).

3.2.2 Larger Monolingual Data

Besides the monolingual halves of the par-
allel corpora, additional monolingual data
were provided / permitted. Our experiments
in previous years clearly showed that the
Crawled News corpus (2007–2012), in-domain
and large, contributed significantly to better
BLEU scores. This year we included it in
our baseline experiments for all language pairs:
translation model on News Commentary +
Europarl, language model on monolingual part
of the two, plus Crawled News.

In addition there are the Gigaword corpora
published by the Linguistic Data Consortium,
available only for English (5th edition), Span-
ish (3rd) and French (3rd). Table 2 gives
the sizes and Table 3 compares BLEU scores
with Gigaword against the baseline. Gigaword
mainly contains texts from news agencies and
as such it should be also in-domain. Neverthe-
less, the crawled news are already so large that
the improvement contributed by Gigaword is
rarely significant.

Corpus Segments Tokens
newsc+euro.cs 830,904 18,862,626
newsc+euro.de 2,380,813 59,350,113
newsc+euro.en 2,466,167 67,033,745
newsc+euro.es 2,330,369 66,928,157
newsc+euro.fr 2,384,293 74,962,162
newsc.ru 183,083 4,340,275
news.all.cs 27,540,827 460,356,173
news.all.de 54,619,789 1,020,852,354
news.all.en 68,341,615 1,673,187,787
news.all.es 13,384,314 388,614,890
news.all.fr 21,195,476 557,431,929
news.all.ru 19,912,911 361,026,791
gigaword.en 117,905,755 4,418,360,239
gigaword.es 31,304,148 1,064,660,498
gigaword.fr 21,674,453 963,571,174

Table 2: Number of segments (paragraphs
in Gigaword, sentences elsewhere) and tokens
of additional monolingual training corpora.
“newsc+euro” are the monolingual versions of
the News Commentary and Europarl parallel
corpora. “news.all” denotes all years of the
Crawled News corpus for the given language.
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Direction Baseline Gigaword
en-cs 0.1632
en-de 0.1833
en-es 0.2808 0.2856
en-fr 0.2987 0.2988
en-ru 0.1582
cs-en 0.2328 0.2367
de-en 0.2389 0.2436
es-en 0.2916 0.2975
fr-en 0.2887
ru-en 0.1975 0.2003
cs-de 0.1595
cs-es 0.2170 0.2220
cs-fr 0.2220 0.2196
cs-ru 0.1660
de-cs 0.1488
es-cs 0.1580
fr-cs 0.1420
ru-cs 0.1506

Table 3: BLEU scores of the baseline experi-
ments (left column) on News Test 2013 data,
computed by the system on tokenized data,
versus similar setup with Gigaword. The dif-
ference was typically not significant.

3.2.3 Larger Parallel Data
Various combinations with larger parallel cor-
pora were also tested. We do not have results
for all combinations because these experiments
needed a lot of time and resources and not all
of them finished in time successfully.

In general the UN corpus seems to be of low
quality or too much off-domain. It may help
a little if used in combination with news-euro.
If used separately, it always hurts the results.

The Giga French-English corpus gave the
best results for English-French as expected,
even without the core news-euro data. How-
ever, training the model on data of this size is
extremely demanding on memory and time.

Finally, Czeng undoubtedly improves
Czech-English translation in both directions.
The news-euro dataset is smaller for this
language pair, which makes Czeng stand out
even more. See Table 4 for details.

3.2.4 Final Results
Table 5 compares our BLEU scores with those
computed at matrix.statmt.org.

BLEU (without flag) denotes BLEU score

Dir Parallel Mono BLEU

en-es news-euro +gigaword 0.2856
en-es news-euro-un +gigaword 0.2844
en-es un un+gigaw. 0.2016
en-fr giga +gigaword 0.3106
en-fr giga +newsall 0.3037
en-fr news-euro-un +gigaword 0.3010
en-fr news-euro +gigaword 0.2988
en-fr un un 0.2933
es-en news-euro +gigaword 0.2975
es-en news-euro-un baseline 0.2845
es-en un un+news 0.2067
fr-en news-euro-un +gigaword 0.2914
fr-en news-euro baseline 0.2887
fr-en un un+news 0.2737

Table 4: BLEU scores with different parallel
corpora.

computed by our system, comparing truecased
tokenized hypothesis with truecased tokenized
reference translation.

The official evaluation by matrix.statmt.
org gives typically lower numbers, reflecting
the loss caused by detokenization and new
(different) tokenization.

3.2.5 Efficiency
The baseline experiments were conducted
mostly on 64bit AMD Opteron quad-core
2.8 GHz CPUs with 32 GB RAM (decoding
run on 15 machines in parallel) and the whole
pipeline typically required between a half and
a whole day.

However, we used machines with up to
500 GB RAM to train the large language mod-
els and translation models. Aligning the UN
corpora with Giza++ took around 5 days.
Giga French-English corpus was even worse
and required several weeks to complete. Us-
ing such a large corpus without pruning is not
practical.

4 Extra Experiments with Russian

In a separate set of experiments, we tried to
take a basic Moses framework and change the
setup a little for better results on morpholog-
ically rich languages.

Tried combinations were Russian-Czech and
Russian-English.
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Direction BLEU BLEUl BLEUt

en-cs 0.1786 0.180 0.170
en-de 0.1833 0.179 0.173
en-es 0.2856 0.288 0.271
en-fr 0.3010 0.270 0.259
en-ru 0.1582 0.142 0.142
cs-en 0.2527 0.259 0.244
de-en 0.2389 0.244 0.230
es-en 0.2856 0.288 0.271
fr-en 0.2887 0.294 0.280
ru-en 0.1975 0.203 0.191
cs-de 0.1595 0.159 0.151
cs-es 0.2220 0.225 0.210
cs-fr 0.2220 0.191 0.181
cs-ru 0.1660 0.150 0.149
de-cs 0.1488 0.151 0.142
es-cs 0.1580 0.160 0.152
fr-cs 0.1420 0.145 0.137
ru-cs 0.1506 0.151 0.144

Table 5: Final BLEU scores. BLEU is true-
cased computed by the system, BLEUl is
the official lowercased evaluation by matrix.
statmt.org. BLEUt is official truecased eval-
uation. Although lower official scores are ex-
pected, notice the larger gap in en-fr and cs-fr
translation. There seems to be a problem in
our French detokenization procedure.

4.1 Data
For the additional Russian-to-Czech systems,
we used following parallel data:

• UMC 0.1 (Klyueva and Bojar, 2008) – tri-
parallel set, consisting of news articles –
93,432 sentences

• data mined from movie subtitles (de-
scribed in further detail below) –
2,324,373 sentences

• Czech-Russian part of InterCorp – a cor-
pus from translation of fiction books (Čer-
mák and Rosen, 2012) – 148,847 sentences

For Russian-to-English translation, we used
combination of

• UMC 0.1 – 95,540 sentences

• subtitles – 1,790,209 sentences

• Yandex English-Russian parallel corpus 6

– 1,000,000 sentences

• wiki headlines from WMT website 7 –
514,859 sentences

• common crawl from WMT website –
878,386 sentences

Added together, Russian-Czech parallel
data consisted of 2,566,615 sentences and
English-Czech parallel data consisted of
4,275,961 sentences 8.

We also used 765 sentences from UMC003
as a devset for MERT training.

We used the following monolingual corpora
to train language models. Russian:

• Russian sides of all the parallel data –
4,275,961 sentences

• News commentary from WMT website –
150,217 sentences

• News crawl 2012 – 9,789,861 sentences
For Czech:
• Czech sides of all the parallel data –

2,566,615 sentences

• Data downloaded from Czech news arti-
cles9 – 1,531,403 sentences

• WebColl (Spoustová et al., 2010) –
4,053,223 sentences

• PDT 10 – 115,844 sentences

• Complete Czech Wikipedia – 3,695,172
sentences

• Sentences scraped from Czech social
server okoun.cz – 580,249 sentences

For English:
• English sides of all the paralel data –

4,275,961 sentences

• News commentary from WMT website –
150,217 sentences

Table 6 and Table 7 shows the sizes of the
training data.

6https://translate.yandex.ru/corpus?lang=en
7http://www.statmt.org/wmt13/

translation-task.html
8some sentences had to be removed for technical

reasons
9http://thepiratebay.sx/torrent/7121533/

10http://ufal.mff.cuni.cz/pdt2.0/
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Corpus SentPairs Tok lng1 Tok lng2
cs-ru 2,566,615 19,680,239 20,031,688
en-ru 4,275,961 64,619,964 58,671,725

Table 6: Number of sentence pairs and tokens
for every language pair.

Corpus Sentences Tokens
en mono 13,426,211 278,199,832
ru mono 13,701,213 231,076,387
cs mono 12,542,506 202,510,993

Table 7: Number of sentences and tokens for
every language.

4.1.1 Tokenization, tagging
Czech and English data was tokenized and
tagged using Morče tagger; Russian was to-
kenized and tagged using TreeTagger. Tree-
Tagger also does lemmatization; however, we
didn’t use lemmas for alignment or translation
models, since our experiments showed that
primitive stemming got better results.

However, what is important to mention is
that TreeTagger had problems with some cor-
pora, mostly Common Crawl. For some rea-
son, Russian TreeTagger has problems with
“dirty” data—sentences in English, French or
random non-unicode noise. It either slows
down significantly or stops working at all. For
this reason, we wrapped TreeTagger in a script
that detected those hangs and replaced the
erroneous Russian sentences with bogus, one-
letter Russian sentences (we can’t delete those,
since the lines already exist in the opposite lan-
guages; but since the pair doesn’t really make
sense in the first place, it doesn’t matter as
much).

All the data are lowercased for all the mod-
els and we recase the letters only at the very
end.

4.1.2 Subtitle data
For an unrelated project dealing with movie
subtitles translation, we obtained data from
OpenSubtitles.org for Czech and English sub-
titles. However, those data were not aligned
on sentence level and were less structured—we
had thousands of .srt files with some sort of
metadata.

When exploiting the data from the subtitles,

we made several observations:

• language used in subtitles is very different
from the language used in news articles

• one of the easiest and most accurate sen-
tence alignments in movie subtitles is the
one based purely on the time stamps

• allowing bigger differences in the time
stamps in the alignment produced more
data, but less accurate

• the subtitles are terribly out of domain (as
experiments with using only the subtitle
data showed us), but adding the corpus
mined from the subtitles still increases
the accuracy of the translation

• allowing bigger differences in the time
stamps and, therefore, more (albeit less
accurate) data always led to better results
in our tests.

In the end, we decided to pair as much sub-
titles as possible, even with the risk of some
being misaligned, because we found out that
this helped the most.

4.2 Translation model, language model
For alignment, we used primitive stemming
that takes just first 6 letters from a word.
We found out that using this “brute force”
stemming—for reasons that will have to be
explored in a further research—return better
results than regular lemmatization, for both
alignment and translation model, as described
further.

For each language pair, we used a transla-
tion model with two translation tables, one of
them as backoff model. More exactly, the pri-
mary translation is from a form to a combina-
tion of (lower case) form and tag, and the sec-
ondary backoff translation is from a “stem” de-
scribed above to a combination of (lower case)
form and tag.

We built two language models—one for tags
and one for lower case forms.

The models were actually a mixed model us-
ing interpolate option in SRILM—we trained a
different language model for each corpus, and
then we mixed the language models using a
small development set from UMC003.
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4.3 Final Results
The final results from matrix.statmt.org are
in the table Table 8. You might notice a sharp
difference between lowercased and truecased
BLEU—that is due to a technical error that
we didn’t notice before the deadline.

Direction BLEUl BLEUt

ru-cs 0.158 0.135
cs-ru 0.165 0.162
ru-en 0.224 0.174
en-ru 0.163 0.160

Table 8: Lowercased and cased BLEU scores

5 Conclusion

We have described two independent Moses-
based SMT systems we used for the WMT
2013 shared task. We discussed experiments
with large data for many language pairs from
the point of view of both the translation accu-
racy and efficiency.
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Abstract

This paper describes our WMT submis-
sions CU-BOJAR and CU-DEPFIX, the lat-
ter dubbed “CHIMERA” because it com-
bines on three diverse approaches: Tec-
toMT, a system with transfer at the deep
syntactic level of representation, factored
phrase-based translation using Moses, and
finally automatic rule-based correction of
frequent grammatical and meaning errors.
We do not use any off-the-shelf system-
combination method.

1 Introduction

Targeting Czech in statistical machine transla-
tion (SMT) is notoriously difficult due to the
large number of possible word forms and com-
plex agreement rules. Previous attempts to resolve
these issues include specific probabilistic models
(Subotin, 2011) or leaving the morphological gen-
eration to a separate processing step (Fraser et al.,
2012; Mareček et al., 2011).

TectoMT (CU-TECTOMT, Galuščáková et al.
(2013)) is a hybrid (rule-based and statistical) MT
system that closely follows the analysis-transfer-
synthesis pipeline. As such, it suffers from many
issues but generating word forms in proper agree-
ments with their neighbourhood as well as the
translation of some diverging syntactic structures
are handled well. Overall, TectoMT sometimes
even ties with a highly tuned Moses configuration
in manual evaluations, see Bojar et al. (2011).

Finally, Rosa et al. (2012) describes Depfix, a
rule-based system for post-processing (S)MT out-
put that corrects some morphological, syntactic
and even semantic mistakes. Depfix was able to
significantly improve Google output in WMT12,
so now we applied it on an open-source system.

Our WMT13 system is thus a three-headed
creature where, hopefully: (1) TectoMT provides

missing word forms and safely handles some non-
parallel syntactic constructions, (2) Moses ex-
ploits very large parallel and monolingual data,
and boosts better lexical choice, (3) Depfix at-
tempts to fix severe flaws in Moses output.

2 System Description

TectoMT

Moses

cu-tectomt

Depfix

cu-bojar

cu-depfix = Chimera

Input

Figure 1: CHIMERA: three systems combined.

CHIMERA is a sequential combination of three
diverse MT systems as depicted in Figure 1. Each
of the intermediate stages of processing has been
submitted as a separate primary system for the
WMT manual evalution, allowing for a more thor-
ough analysis.

Instead of an off-the-shelf system combination
technique, we use TectoMT output as synthetic
training data for Moses as described in Section 2.1
and finally we process its output using rule-based
corrections of Depfix (Section 2.2). All steps di-
rectly use the source sentence.

2.1 Moses Setup for CU-BOJAR

We ran a couple of probes with reduced training
data around the setup of Moses that proved suc-
cessful in previous years (Bojar et al., 2012a).

2.1.1 Pre-processing
We use a stable pre-processing pipeline that in-
cludes normalization of quotation marks,1 tok-
enization, tagging and lemmatization with tools

1We do not simply convert them to unpaired ASCII quotes
but rather balance them and use other heuristics to convert
most cases to the typographically correct form.
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Case recaser lc→form utc stc
BLEU 9.05 9.13 9.70 9.81

Table 1: Letter Casing

included in the Treex platform (Popel and
Žabokrtský, 2010).

This year, we evaluated the end-to-end effect of
truecasing. Ideally, English-Czech SMT should be
trained on data where only names are uppercased
(and neither the beginnings of sentences, nor all-
caps headlines or exclamations etc). For these ex-
periments, we trained a simple baseline system on
1 million sentence pairs from CzEng 1.0.

Table 1 summarizes the final (case-sensitive!)
BLEU scores for four setups. The standard ap-
proach is to train SMT lowercase and apply a re-
caser, e.g. the Moses one, on the output. Another
option (denoted “lc→form”) is to lowercase only
the source side of the parallel data. This more
or less makes the translation model responsible
for identifying names and the language model for
identifying beginnings of sentences.

The final two approaches attempt at “truecas-
ing” the data, i.e. the ideal lowercasing of ev-
erything except names. Our simple unsupervised
truecaser (“utc”) uses a model trained on monolin-
gual data (1 million sentences in this case, same
as the parallel training data used in this experi-
ment) to identify the most frequent “casing shape”
of each token type when it appears within a sen-
tence and then converts its occurrences at the be-
ginnings of sentences to this shape. Our super-
vised truecaser (“stc”) casts the case of the lemma
on the form, because our lemmatizers for English
and Czech produce case-sensitive lemmas to indi-
cate names. After the translation, only determinis-
tic uppercasing of sentence beginnings is needed.

We confirm that “stc” as we have been using it
for a couple of years is indeed the best option, de-
spite its unpleasingly frequent omissions of names
(incl. “Spojené státy”, “the United States”). One
of the rules in Depfix tries to cast the case from
the source to the MT output but due to alignment
errors, it is not perfect in fixing these mistakes.

Surprisingly, the standard recasing worked
worse than “lc→form”, suggesting that two Moses
runs in a row are worse than one joint search.

We consider using a full-fledged named entity
recognizer in the future.

Tokens [M]
Corpus Sents [M] English Czech
CzEng 1.0 14.83 235.67 205.17
Europarl 0.65 17.61 15.00
Common Crawl 0.16 4.08 3.63

Table 2: Basic Statistics of Parallel Data.

2.1.2 Factored Translation for Morphological
Coherence

We use a quite standard factored configuration of
Moses. We translate from “stc” to two factors:
“stc” and “tag” (full Czech positional morpholog-
ical tag). Even though tags on the target side make
the data somewhat sparser (a single Czech word
form typically represents several cases, numbers
or genders), we do not use any back-off or alterna-
tive decoding path. A high-order language model
on tags is used to promote grammatically correct
and coherent output. Our system is thus less prone
to errors in local morphological agreement.

2.1.3 Large Parallel Data
The main source of our parallel data was CzEng
1.0 (Bojar et al., 2012b). We also used Europarl
(Koehn, 2005) as made available by WMT13 orga-
nizers.2 The English-Czech part of the new Com-
mon Crawl corpus was quite small and very noisy,
so we did not include it in our training data. Ta-
ble 2 provides basic statistics of the data.

Processing large parallel data can be challeng-
ing in terms of time and computational resources
required. The main bottlenecks are word align-
ment and phrase extraction.

GIZA++ (Och and Ney, 2000) has been the
standard tool for computing word alignment in
phrase-based MT. A multi-threaded version exists
(Gao and Vogel, 2008), which also supports incre-
mental extensions of parallel data by applying a
saved model on a new sentence pair. We evaluated
these tools and measured their wall-clock time3 as
well as the final BLEU score of a full MT system.

Surprisingly, single-threaded GIZA++ was con-
siderably faster than single-threaded MGIZA. Us-
ing 12 threads, MGIZA outperformed GIZA++
but the difference was smaller than we expected.

Table 3 summarizes the results. We checked the
difference in BLEU using the procedure by Clark
et al. (2011) and GIZA++ alignments were indeed

2http://www.statmt.org/wmt13/
translation-task.html

3Time measurements are only indicative, they were af-
fected by the current load in our cluster.
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Alignment Wallclock Time BLEU
GIZA++ 71 15.5
MGIZA 1 thread 114 15.4
MGIZA 12 threads 51 15.4

Table 3: Rough wallclock time [hours] of word
alignment and the resulting BLEU scores.

Corpus Sents [M] Tokens [M]
CzEng 1.0 14.83 205.17
CWC Articles 36.72 626.86
CNC News 28.08 483.88
CNA 47.00 830.32
Newspapers 64.39 1040.80
News Crawl 24.91 444.84
Total 215.93 3631.87

Table 4: Basic Statistics of Monolingual Data.

little but significantly better than MGIZA in three
MERT runs.

We thus use the standard GIZA++ aligner.

2.1.4 Large Language Models
We were able to collect a very large amount of
monolingual data for Czech: almost 216 million
sentences, 3.6 billion tokens. Table 4 lists the
corpora we used. CWC Articles is a section of
the Czech Web Corpus (Spoustová and Spousta,
2012). CNC News refers to a subset of the Czech
National Corpus4 from the news domain. CNA
is a corpus of Czech News Agency stories from
1998 to 2012. Newspapers is a collection of ar-
ticles from various Czech newspapers from years
1998 to 2002. Finally, News Crawl is the mono-
lingual corpus made available by the organizers of
WMT13.

We created an in-domain language model from
all the corpora except for CzEng (where we only
used the news section). We were able to train a 4-
gram language model using KenLM (Heafield et
al., 2013). Unfortunately, we did not manage to
use a model of higher order. The model file (even
in the binarized trie format with probability quan-
tization) was so large that we ran out of memory
in decoding.5 We also tried pruning these larger
models but we did not have enough RAM.

To cater for a longer-range coherence, we
trained a 7-gram language model only on the News
Crawl corpus (concatenation of all years). In this
case, we used SRILM (Stolcke, 2002) and pruned
n-grams so that (training set) model perplexity

4http://korpus.cz/
5Due to our cluster configuration, we need to pre-load lan-

guage models.

Token Order Sents Tokens ARPA.gz Trie
[M] [M] [GB] [GB]

stc 4 201.31 3430.92 28.2 11.8
stc 7 24.91 444.84 13.1 8.1
tag 10 14.83 205.17 7.2 3.0

Table 5: LMs used in CU-BOJAR.

does not increase more than 10−14. The data for
this LM exactly match the domain of WMT test
sets.

Finally, we model sequences of morphological
tags on the target side using a 10-gram LM es-
timated from CzEng. Individual sections of the
corpus (news, fiction, subtitles, EU legislation,
web pages, technical documentation and Navajo
project) were interpolated to match WMT test sets
from 2007 to 2011 best. This allows even out-of-
domain data to contribute to modeling of overall
sentence structure. We filtered the model using the
same threshold 10−14.

Table 5 summarizes the resulting LM files as
used in CU-BOJAR and CHIMERA.

2.1.5 Bigger Tuning Sets
Koehn and Haddow (2012) report benefits from
tuning on a larger set of sentences. We experi-
mented with a down-scaled MT system to com-
pare a couple of options for our tuning set: the
default 3003 sentences of newstest2011, the de-
fault and three more Czech references that were
created by translating from German, the default
and two more references that were created by post-
editing a variant of our last year’s Moses system
and also a larger single-reference set consisting
of several newstest years. The preliminary re-
sults were highly inconclusive: negligibly higher
BLEU scores obtained lower manual scores. Un-
able to pick the best configuration, we picked the
largest. We tune our systems on “bigref”, as spec-
ified in Table 6. The dataset consists of 11583
source sentences, 3003 of which have 4 reference
translations and a subset (1997 sents.) of which
has 2 reference translations constructed by post-
editing. The dataset does not include 2010 data as
a heldout for other foreseen experiments.

2.1.6 Synthetic Parallel Data
Galuščáková et al. (2013) describe several possi-
bilities of combining TectoMT and phrase-based
approaches. Our CU-BOJAR uses one of the sim-
pler but effective ones: adding TectoMT output on
the test set to our training data. As a contrast to
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English Czech # Refs # Snts
newstest2011 official + 3 more from German 4 3003
newstest2011 2 post-edits of a system 2 1997

similar to (Bojar et al., 2012a)
newstest2009 official 1 2525
newstest2008 official 1 2051
newstest2007 official 1 2007
Total 4 11583

Table 6: Our big tuning set (bigref).

CU-BOJAR, we also examine PLAIN Moses setup
which is identical but lacks the additional syn-
thetic phrase table by TectoMT.

In order to select the best balance between
phrases suggested by TectoMT and our parallel
data, we provide these data as two separate phrase
tables. Each phrase table brings in its own five-
tuple of scores, one of which, the phrase-penalty
functions as an indicator how many phrases come
from which of the phrase tables. The standard
MERT is then used to optimize the weights.6,7

We use one more trick compared to
Galuščáková et al. (2013): we deliberately
overlap our training and tuning datasets. When
preparing the synthetic parallel data, we use the
English side of newstests 08 and 10–13. The
Czech side is always produced by TectoMT. We
tune on bigref (see Table 6), so the years 08, 11
and 12 overlap. (We could have overlapped also
years 07, 09 and 10 but we had them originally
reserved for other purposes.) Table 7 summarizes
the situation and highlights that our setup is fair:
we never use the target side of our final evaluation
set newstest2013. Some test sets are denoted
“could have” as including them would still be
correct.

The overlap allows MERT to estimate how use-
ful are TectoMT phrases compared to the standard
phrase table not just in general but on the spe-
cific foreseen test set. This deliberate overfitting
to newstest 08, 11 and 12 then helps in translating
newstest13.

This combination technique in its current state
is rather expensive as a new phrase table is re-
quired for every new input document. However,
if we fix the weights for the TectoMT phrase ta-

6Using K-best batch MIRA (Cherry and Foster, 2012) did
not work any better in our setup.

7We are aware of the fact that Moses alternative decoding
paths (Birch and Osborne, 2007) with similar phrase tables
clutter n-best lists with identical items, making MERT less
stable (Eisele et al., 2008; Bojar and Tamchyna, 2011). The
issue was not severe in our case, CU-BOJAR needed 10 itera-
tions compared to 3 iterations needed for PLAIN.

Used in
Test Set Training Tuning Final Eval
newstest07 could have en+cs –
newstest08 en+TectoMT en+cs –
newstest09 could have en+cs –
newstest10 en+TectoMT could have –
newstest11 en+TectoMT en+cs –
newstest12 en+TectoMT en+cs –
newstest13 en+TectoMT – en+cs

Table 7: Summary of test sets usage. “en” and
“cs” denote the official English and Czech sides,
resp. “TectoMT” denotes the synthetic Czech.

ble, we can avoid re-tuning the system (whether
this would degrade translation quality needs to be
empirically evaluated). Moreover, if we use a dy-
namic phrase table, we could update it with Tec-
toMT outputs on the fly, thus bypassing the need
to retrain the translation model.

2.2 Depfix

Depfix is an automatic post-editing tool for cor-
recting errors in English-to-Czech SMT. It is ap-
plied as a post-processing step to CU-BOJAR, re-
sulting in the CHIMERA system. Depfix 2013 is an
improvement of Depfix 2012 (Rosa et al., 2012).

Depfix focuses on three major types of language
phenomena that can be captured by employing lin-
guistic knowledge but are often hard for SMT sys-
tems to get right:
• morphological agreement, such as:

– an adjective and the noun it modifies have to
share the same morphological gender, num-
ber and case

– the subject and the predicate have to agree in
morphological gender, number and person, if
applicable

• transfer of meaning in cases where the same
meaning is expressed by different grammatical
means in English and in Czech, such as:
– a subject in English is marked by being a left

modifier of the predicate, while in Czech a
subject is marked by the nominative morpho-
logical case

– English marks possessiveness by the preposi-
tion ’of’, while Czech uses the genitive mor-
phological case

– negation can be marked in various ways in
English and Czech

• verb-noun and noun-noun valency—see (Rosa
et al., 2013)
Depfix first performs a complex lingustic anal-
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System BLEU TER WMT Ranking
Appraise MTurk

CU-TECTOMT 14.7 0.741 0.455 0.491
CU-BOJAR 20.1 0.696 0.637 0.555
CU-DEPFIX 20.0 0.693 0.664 0.542
PLAIN Moses 19.5 0.713 – –
GOOGLE TR. – – 0.618 0.526

Table 8: Overall results.

ysis of both the source English sentence and its
translation to Czech by CU-BOJAR. The anal-
ysis includes tagging, word-alignment, and de-
pendency parsing both to shallow-syntax (“analyt-
ical”) and deep-syntax (“tectogrammatical”) de-
pendency trees. Detection and correction of errors
is performed by rule-based components (the va-
lency corrections use a simple statistical valency
model). For example, if the adjective-noun agree-
ment is found to be violated, it is corrected by
projecting the morphological categories from the
noun to the adjective, which is realized by chang-
ing their values in the Czech morphological tag
and generating the appropriate word form from the
lemma-tag pair using the rule-based generator of
Hajič (2004).

Rosa (2013) provides details of the current ver-
sion of Depfix. The main additions since 2012 are
valency corrections and lost negation recovery.

3 Overall Results

Table 8 reports the scores on the WMT13 test
set. BLEU and TER are taken from the evalu-
ation web site8 for the normalized outputs, case
insensitive. The normalization affects typeset-
ting of punctuation only and greatly increases
automatic scores. “WMT ranking” lists results
from judgments from Appraise and Mechanical
Turk. Except CU-TECTOMT, the manual evalua-
tion used non-normalized MT outputs. The fig-
ure is the WMT12 standard interpretation as sug-
gested by Bojar et al. (2011) and says how often
the given system was ranked better than its com-
petitor across all 18.6k non-tying pairwise com-
parisons extracted from the annotations.

We see a giant leap from CU-TECTOMT to CU-
BOJAR, confirming the utility of large data. How-
ever, CU-TECTOMT had something to offer since it
improved over PLAIN, a very competitive baseline,
by 0.6 BLEU absolute. Depfix seems to slightly
worsen BLEU score but slightly improve TER; the

8http://matrix.statmt.org/

System # Tokens % Tokens
All 22920 76.44
Moses 3864 12.89
TectoMT 2323 7.75
Other 877 2.92

Table 9: CHIMERA components that contribute
“confirmed” tokens.

System # Tokens % Tokens
None 21633 79.93
Moses 2093 7.73
TectoMT 2585 9.55
Both 385 1.42
CU-BOJAR 370 1.37

Table 10: Tokens missing in CHIMERA output.

manual evaluation is similarly indecisive.

4 Combination Analysis

We now closely analyze the contributions of
the individual engines to the performance of
CHIMERA. We look at translations of the new-
stest2013 sets produced by the individual systems
(PLAIN, CU-TECTOMT, CU-BOJAR, CHIMERA).

We divide the newstest2013 reference tokens
into two classes: those successfully produced by
CHIMERA (Table 9) and those missed (Table 10).
The analysis can suffer from false positives as well
as false negatives, a “confirmed” token can violate
some grammatical constraints in MT output and
an “unconfirmed” token can be a very good trans-
lation. If we had access to more references, the
issue of false negatives would decrease.

Table 9 indicates that more than 3/4 of to-
kens confirmed by the reference were available
in all CHIMERA components: PLAIN Moses, CU-
TECTOMT alone but also in the subsequent combi-
nations CU-BOJAR and the final CU-DEPFIX.

PLAIN Moses produced 13% tokens that Tec-
toMT did not provide and TectoMT output
roughly 8% tokens unknown to Moses. However,
note that it is difficult to distinguish the effect of
different model weights: PLAIN might have pro-
duced some of those tokens as well if its weights
were different. The row “Other” includes cases
where e.g. Depfix introduced a confirmed token
that none of the previous systems had.

Table 10 analyses the potential of CHIMERA

components. These tokens from the reference
were not produced by CHIMERA. In almost 80%
of cases, the token was not available in any 1-best
output; it may have been available in Moses phrase
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tables or the input sentence.
TectoMT offered almost 10% of missed tokens,

but these were not selected in the subsequent com-
bination. The potential of Moses is somewhat
lower (about 8%) because our phrase-based com-
bination is likely to select wordings that score well
in a phrase-based model. 385 tokens were sug-
gested by both TectoMT and Moses alone, but the
combination in CU-BOJAR did not select them, and
finally 370 tokens were produced by the combina-
tion while they were not present in 1-best output of
neither TectoMT nor Moses. Remember, all these
tokens eventually did not get to CHIMERA output,
so Depfix must have changed them.

4.1 Depfix analysis
Table 11 analyzes the performance of the individ-
ual components of Depfix. Each evaluated sen-
tence was either modified by a Depfix component,
or not. If it was modified, its quality could have
been evaluated as better (improved), worse (wors-
ened), or the same (equal) as before. Thus, we can
evaluate the performance of the individual compo-
nents by the following measures:9

precision = #improved
#improved+#worsened (1)

impact = #modified
#evaluated (2)

useless = #equal
#modified (3)

Please note that we make an assumption that if
a sentence was modified by multiple Depfix com-
ponents, they all have the same effect on its qual-
ity. While this is clearly incorrect, it is impossible
to accurately determine the effect of each individ-
ual component with the evaluation data at hand.
This probably skews especially the reported per-
formance of “high-impact” components, which of-
ten operate in combination with other components.

The evaluation is computed on 871 hits in which
CU-BOJAR and CHIMERA were compared.

The results show that the two newest compo-
nents – Lost negation recovery and Valency model
– both modify a large number of sentences. Va-
lency model seems to have a slightly negative ef-
fect on the translation quality. As this is the only
statistical component of Depfix, we believe that
this is caused by the fact that its parameters were
not tuned on the final CU-BOJAR system, as the

9We use the term precision for our primary measure for
convenience, even though the way we define it does not match
exactly its usual definition.

Depfix component Prc. Imp. Usl.
Aux ’be’ agr. – 1.4% 100%
No prep. without children – 0.5% 100%
Sentence-initial capitalization 0% 0.1% 0%
Prepositional morph. case 0% 2.1% 83%
Preposition - noun agr. 40% 3.8% 70%
Noun number projection 41% 7.2% 65%
Valency model 48% 10.6% 66%
Subject - nominal pred. agr. 50% 3.8% 76%
Noun - adjective agr. 55% 17.8% 75%
Subject morph. case 56% 8.5% 57%
Tokenization projection 56% 3.0% 38%
Verb tense projection 58% 5.2% 47%
Passive actor with ’by’ 60% 1.0% 44%
Possessive nouns 67% 0.9% 25%
Source-aware truecasing 67% 2.8% 50%
Subject - predicate agr. 68% 5.1% 57%
Pro-drop in subject 73% 3.4% 63%
Subject - past participle agr. 75% 6.3% 42%
Passive - aux ’be’ agr. 77% 4.8% 69%
Possessive with ’of’ 78% 1.5% 31%
Present continuous 78% 1.5% 31%
Missing reflexive verbs 80% 1.6% 64%
Subject categories projection 83% 3.7% 62%
Rehang children of aux verbs 83% 5.5% 62%
Lost negation recovery 90% 7.2% 38%

Table 11: Depfix components performance analy-
sis on 871 sentences from WMT13 test set.

tuning has to be done semi-manually and the fi-
nal system was not available in advance. On the
other hand, Lost negation recovery seems to have
a highly positive effect on translation quality. This
is to be expected, as a lost negation often leads to
the translation bearing an opposite meaning to the
original one, which is probably one of the most
serious errors that an MT system can make.

5 Conclusion

We have reached our chimera to beat Google
Translate. We combined all we have: a deep-
syntactic transfer-based system TectoMT, very
large parallel and monolingual data, factored setup
to ensure morphological coherence, and finally
Depfix, a rule-based automatic post-editing sys-
tem that corrects grammaticality (agreement and
valency) of the output as well as some features vi-
tal for adequacy, namely lost negation.
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2013. Deepfix: Statistical Post-editing of Statistical
Machine Translation Using Deep Syntactic Analy-
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Abstract

This paper describes the English-Russian
and Russian-English statistical machine
translation (SMT) systems developed at
Yandex School of Data Analysis for the
shared translation task of the ACL 2013
Eighth Workshop on Statistical Machine
Translation. We adopted phrase-based
SMT approach and evaluated a number
of different techniques, including data fil-
tering, spelling correction, alignment of
lemmatized word forms and translitera-
tion. Altogether they yielded +2.0 and
+1.5 BLEU improvement for ru-en and en-
ru language pairs. We also report on the
experiments that did not have any positive
effect and provide an analysis of the prob-
lems we encountered during the develop-
ment of our systems.

1 Introduction

We participated in the shared translation task of
the ACL 2013 Workshop on Statistical Machine
Translation (WMT13) for ru-en and en-ru lan-
guage pairs. We provide a detailed description of
the experiments carried out for the development of
our systems.

The rest of the paper is organized as follows.
Section 2 describes the tools and data we used.
Our Russian→English and English→Russian se-
tups are discussed in Section 3. In Section 4 we
report on the experiments that did not have any
positive effect despite our expectations. We pro-
vide a thorough analysis of erroneous outputs in
Section 5 and draw conclusions in Section 6.

2 Tools and data

2.1 Tools
We used an open source SMT system Moses
(Koehn et al., 2007) for all our experiments ex-

cluding the one described in Section 4.1 due to its
performance constraints. To overcome the limita-
tion we employed our in-house decoder.

Language models (LM) were created with an
open source IRSTLM toolkit (Federico et al.,
2008). We computed 4-gram LMs with modified
Kneser-Ney smoothing (Kneser and Ney, 1995).

We used an open source MGIZA++ tool (Gao
and Vogel, 2008) to compute word alignment.

To obtain part of speech (POS) tags we used
an open source Stanford POS tagger for English
(Toutanova et al., 2003) and an open source suite
of language analyzers, FreeLing 3.0 (Carreras et
al., 2004; Padró and Stanilovsky, 2012), for Rus-
sian.

We utilized a closed source free for non-
commercial use morphological analyzer, Mystem
(Segalovich, 2003), that used a limited dictionary
to obtain lemmas.

We also made use of the in-house language rec-
ognizer based on (Dunning, 1994) and a spelling
corrector designed on the basis of the work of
Cucerzan and Brill (2004).

We report all results in case-sensitive BLEU
(Papineni et al., 2002) using mt-eval13a script
from Moses distribution.

2.2 Data
Training data
We used News Commentary and News Crawl
monolingual corpora provided by the organizers
of the workshop.

Bilingual training data comprised English-
Russian parallel corpus release by Yandex1, News
Commentary and Common Crawl corpora pro-
vided by the organizers.

We also exploited Wiki Headlines collection of
three parallel corpora provided by CMU2 as a

1https://translate.yandex.ru/corpus
2http://www.statmt.org/wmt13/

wiki-titles.ru-en.tar.gz
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source of reliable data.

Development set
The newstest2012 test set (Callison-Burch et al.,
2012) was divided in the ratio 2:1 into a tuning
set and a test set. The latter is referred to as
newstest2012-test in the rest of the paper.

3 Primary setups

3.1 Baseline
We built the baseline systems according to the in-
structions available at the Moses website3.

3.2 Preprocessing
The first thing we noticed was that some sentences
marked as Russian appeared to be sentences in
other languages (most commonly English). We
applied a language recognizer for both monolin-
gual and bilingual corpora. Results are given in
Table 1.

Corpus Filtered out (%)
Bilingual 3.39
Monolingual (English) 0.41
Monolingual (Russian) 0.58

Table 1: Results of the language recognizer: per-
centage of filtered out sentences.

The next thing we came across was the pres-
ence of a lot of spelling errors in our training data,
so we applied a spelling corrector. Statistics are
presented in Table 2.

Corpus Modified (%)
Bilingual (English) 0.79
Bilingual (Russian) 1.45
Monolingual (English) 0.61
Monolingual (Russian) 0.52

Table 2: Results of the spelling corrector: percent-
age of modified sentences.

3.3 Alignment of lemmatized word forms
Russian is a language with rich morphology. The
diversity of word forms results in data sparse-
ness that makes translation of rare words dif-
ficult. In some cases inflections do not con-
tain any additional information and are used

3http://www.statmt.org/moses/?n=moses.
baseline

only to make an agreement between two words.
E.g. ADJ + NOUN: красив ая арфа (beau-
tiful harp), красив ое пианино (beautiful pi-
ano), красив ый рояль (beautiful grand piano).
These inflections reflect the gender of the noun
words, that has no equivalent in English.

In this particular case we can drop the inflec-
tions, but for other categories they can still be use-
ful for translation, because the information they
contain appears in function words in English. On
the other hand, most of Russian morphology is
useless for word alignment.

We applied a morphological analyzer Mystem
(Segalovich, 2003) to the Russian text and con-
verted each word to its dictionary form. Next
we computed word alignment between the origi-
nal English text and the lemmatized Russian text.
All the other steps were executed according to the
standard procedure with the original texts.

3.4 Phrase score adjustment
Sometimes phrases occur one or two times in the
training corpus. In this case the corresponding
phrase translation probability would be overesti-
mated. We used Good-Turing technique described
in (Gale, 1994) to decrease it to some more realis-
tic value.

3.5 Decoding
Minimum Bayes-Risk (MBR)
MBR decoding (Kumar and Byrne, 2004) aims
to minimize the expected loss of translation er-
rors. As it is not possible to explore the space of
all possible translations, we approximated it with
the 1,000 most probable translations. A minus
smoothed BLEU score (Lin and Och, 2004) was
used for the loss function.

Reordering constrains
We forbade reordering over punctuation and trans-
lated quoted phrases independently.

3.6 Handling unknown words
The news texts contained a lot of proper names
that did not appear in the training data. E.g. al-
most 25% of our translations contained unknown
words. Dropping the unknown words would lead
to better BLEU scores, but it might had caused
bad effect on human judgement. To leave them
in Cyrillic was not an option, so we exploited two
approaches: incorporating reliable data from Wiki
Headlines and transliteration.
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newstest2012-test newstest2013
Russian→English
Baseline 28.96 21.82

+ Preprocessing 29.59 22.28
+ Alignment of lemmatized word forms 29.97 22.61

+ Good-Turing 30.31 22.87
+ MBR 30.45 23.21

+ Reordering constraints 30.54 23.33
+ Wiki Headlines 30.68 23.46

+ Transliteration 30.93 23.73
English→Russian
Baseline 21.96 16.24

+ Preprocessing 22.48 16.76
+ Good-Turing 22.84 17.13

+ MBR and Reordering constraints 23.27 17.45
+ Wiki Headlines and Transliteration 23.54 17.80

Table 3: Experimental results in case-sensitive BLEU for Russian→English and English→Russian tasks.

Wiki Headlines
We replaced the names occurring in the text with
their translations, based on the information in
"guessed-names" corpus from Wiki Headlines.

As has been mentioned in Section 3.3, Russian
is a morphologically rich language. This often
makes it hard to find exactly the same phrases,
so we applied lemmatization of Russian language
both for the input text and the Russian side of the
reference corpus.

Russian→English transliteration
We gained considerable improvement from incor-
porating Wiki Headlines, but still 17% of transla-
tions contained Cyrillic symbols.

We applied a transliteration algorithm based on
(Knight and Graehl, 1998). This technique yielded
us a significant improvement, but introduced a lot
of errors. E.g. Джеймс Бонд (James Bond) was
converted to Dzhejms Bond.

English→Russian transliteration
In Russian, it is a common practice to leave some
foreign words in Latin. E.g. the names of compa-
nies: Apple, Google, Microsoft look inadmissible
when either translated directly or transliterated.

Taking this into account, we applied the
same transliteration algorithm (Knight and Graehl,
1998), but replaced an unknown word with its
transliteration only if we found a sufficient num-
ber of occurrences of its transliterated form in the
monolingual corpus. We used five for such num-

ber.

3.7 Experimental results

We summarized the gains from the de-
scribed techniques for Russian→English and
English→Russian tasks on Table 3.

4 What did not work

4.1 Translation in two stages

Frequently machine translations contain errors
that can be easily corrected by human post-editors.
Since human aided machine translation is cost-
efficient, we decided to address this problem to the
computer.

We propose to translate sentences in two stages.
At the first stage a SMT system is used to trans-
late the input text into a preliminary form (in target
language). At the next stage the preliminary form
is translated again with an auxiliary SMT system
trained on the translated and the target sides of the
parallel corpus.

We encountered a technical challenge, when we
had to build a SMT system for the second stage.
A training corpus with one side generated with
the first stage SMT system was not possible to be
acquired with Moses due to its performance con-
straints. Thereupon we utilized our in-house SMT
decoder and managed to translate 2M sentences in
time.

We applied this technique both for ru-en and en-
ru language pairs. Approximately 20% of the sen-
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tences had changed, but the BLEU score remained
the same.

4.2 Factored model
We tried to build a factored model for ru-en lan-
guage pair with POS tags produced by Stanford
POS tagger (Toutanova et al., 2003).

Unfortunately, we did not gain any improve-
ments from it.

5 Analysis

We carefully examined the erroneous outputs of
our system and compared it with the outputs of
the other systems participating in ru-en and en-ru
tasks, and with the commercial systems available
online (Bing, Google, Yandex).

5.1 Transliteration
Russian→English
The standard transliteration procedure is not in-
vertible. This means that a Latin word being trans-
fered into Cyrillic and then transliterated back
to Latin produces an artificial word form. E.g.
Хавард Хальварсен / Havard Halvarsen was
correctly transliterated by only four out of 23
systems, including ours. Twelve systems either
dropped one of the words or left it in Cyrillic.
We provide a list of typical mistakes in order of
their frequency: Khavard Khalvarsen, Khavard
Khal’varsen, Xavard Xaljvarsen. Another exam-
ple: Мисс Уайэтт (Miss Wyatt) → Miss Uayett
(all the systems failed).

The next issue is the presence of non-null in-
flections that most certainly would result in wrong
translation by any straight-forward algorithm. E.g.
Хайдельберг а (Heidelberg)→ Heidelberga.

English→Russian
In Russian, most words of foreign origin are writ-
ten phonetically. Thereby, in order to obtain the
best quality we should transliterate the transcrip-
tion, not the word itself. E.g. the French derived
name Elsie Monereau [’elsi mon@’r@V] being trans-
lated by letters would result in Элси Монереау
while the transliteration of the transcription would
result in the correct form Элси Монро.

5.2 Grammars
English and Russian make use of different gram-
mars. When the difference in their sentence struc-
ture becomes fundamental the phrase-based ap-
proach might get inapplicable.

Word order

Both Russian and English are classified as subject-
verb-object (SOV) languages, but Russian has
rather flexible word order compared to English
and might frequently appear in other forms. This
often results in wrong structure of the translated
sentence. A common mistake made by our sys-
tem and reproduced by the major online services:
не изменились и правила (rules have not been
changed either) → have not changed and the
rules.

Constructions

• there is / there are is a non-local construc-
tion that has no equivalent in Russian. In
most cases it can not be produced from the
Russian text. E.g. на столе стоит матрёш-
ка (there is a matryoshka doll on the table)
→ on the table is a matryoshka.

• multiple negatives in Russian are grammati-
cally correct ways to express negation (a sin-
gle negative is sometimes incorrect) while
they are undesirable in standard English. E.g.
Там никто никогда не был (nobody has
ever been there) being translated word by
word would result in there nobody never not
was.

5.3 Idioms

Idiomatic expressions are hard to discover and
dangerous to translate literary. E.g. a Russian
idiom была не была (let come what may) be-
ing translated word by word would result in was
not was. Neither of the commercial systems we
checked managed to collect sufficient statistic to
translate this very popular expression.

6 Conclusion

We have described the primary systems developed
by the team of Yandex School of Data Analysis for
WMT13 shared translation task.

We have reported on the experiments and
demonstrated considerable improvements over the
respective baseline. Among the most notable tech-
niques are data filtering, spelling correction, align-
ment of lemmatized word forms and translitera-
tion. We have analyzed the drawbacks of our sys-
tems and shared the ideas for further research.
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Abstract

This paper describes the phrase-based
SMT systems developed for our partici-
pation in the WMT13 Shared Translation
Task. Translations for English↔German
and English↔French were generated us-
ing a phrase-based translation system
which is extended by additional models
such as bilingual, fine-grained part-of-
speech (POS) and automatic cluster lan-
guage models and discriminative word
lexica (DWL). In addition, we combined
reordering models on different sentence
abstraction levels.

1 Introduction

In this paper, we describe our systems for the
ACL 2013 Eighth Workshop on Statistical Ma-
chine Translation. We participated in the Shared
Translation Task and submitted translations for
English↔German and English↔French using a
phrase-based decoder with lattice input.

The paper is organized as follows: the next sec-
tion gives a detailed description of our systems
including all the models. The translation results
for all directions are presented afterwards and we
close with a conclusion.

2 System Description

The phrase table is based on a GIZA++ word
alignment for the French↔English systems. For
the German↔English systems we use a Discrim-
inative Word Alignment (DWA) as described in
Niehues and Vogel (2008). For every source
phrase only the top 10 translation options are con-
sidered during decoding. The SRILM Toolkit
(Stolcke, 2002) is used for training SRI language
models using Kneser-Ney smoothing.

For the word reordering between languages, we
used POS-based reordering models as described in

Section 4. In addition to it, tree-based reordering
model and lexicalized reordering were added for
German↔English systems.

An in-house phrase-based decoder (Vogel,
2003) is used to perform translation. The trans-
lation was optimized using Minimum Error Rate
Training (MERT) as described in Venugopal et
al. (2005) towards better BLEU (Papineni et al.,
2002) scores.

2.1 Data
The Europarl corpus (EPPS) and News Commen-
tary (NC) corpus were used for training our trans-
lation models. We trained language models for
each language on the monolingual part of the
training corpora as well as the News Shuffle and
the Gigaword corpora. The additional data such as
web-crawled corpus, UN and Giga corpora were
used after filtering. The filtering work for this data
is discussed in Section 3.

For the German↔English systems we use the
news-test2010 set for tuning, while the news-
test2011 set is used for the French↔English sys-
tems. For testing, news-test2012 set was used for
all systems.

2.2 Preprocessing
The training data is preprocessed prior to train-
ing the system. This includes normalizing special
symbols, smart-casing the first word of each sen-
tence and removing long sentences and sentence
pairs with length mismatch.

Compound splitting is applied to the German
part of the corpus of the German→English system
as described in Koehn and Knight (2003).

3 Filtering of Noisy Pairs

The filtering was applied on the corpora which
are found to be noisy. Namely, the Giga English-
French parallel corpus and the all the new web-
crawled data . The operation was performed using
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an SVM classifier as in our past systems (Medi-
ani et al., 2011). For each pair, the required lexica
were extracted from Giza alignment of the corre-
sponding EPPS and NC corpora. Furthermore, for
the web-crawled data, higher precision classifiers
were trained by providing a larger number of neg-
ative examples to the classifier.

After filtering, we could still find English sen-
tences in the other part of the corpus. Therefore,
we performed a language identification (LID)-
based filtering afterwards (performed only on the
French-English corpora, in this participation).

4 Word Reordering

Word reordering was modeled based on POS se-
quences. For the German↔English system, re-
ordering rules learned from syntactic parse trees
were used in addition.

4.1 POS-based Reordering Model

In order to train the POS-based reordering model,
probabilistic rules were learned based on the POS
tags from the TreeTagger (Schmid and Laws,
2008) of the training corpus and the alignment. As
described in Rottmann and Vogel (2007), continu-
ous reordering rules are extracted. This modeling
of short-range reorderings was extended so that it
can cover also long-range reorderings with non-
continuous rules (Niehues and Kolss, 2009), for
German↔English systems.

4.2 Tree-based Reordering Model

In addition to the POS-based reordering, we
apply a tree-based reordering model for the
German↔English translation to better address the
differences in word order between German and
English. We use the Stanford Parser (Rafferty and
Manning, 2008) to generate syntactic parse trees
for the source side of the training corpus. Then
we use the word alignment between source and
target language to learn rules on how to reorder
the constituents in a German source sentence to
make it match the English target sentence word or-
der better (Herrmann et al., 2013). The POS-based
and tree-based reordering rules are applied to each
input sentence. The resulting reordered sentence
variants as well as the original sentence order are
encoded in a word lattice. The lattice is then used
as input to the decoder.

4.3 Lexicalized Reordering

The lexicalized reordering model stores the re-
ordering probabilities for each phrase pair. Pos-
sible reordering orientations at the incoming and
outgoing phrase boundaries are monotone, swap
or discontinuous. With the POS- and tree-based
reordering word lattices encode different reorder-
ing variants. In order to apply the lexicalized re-
ordering model, we store the original position of
each word in the lattice. At each phrase boundary
at the end, the reordering orientation with respect
to the original position of the words is checked.
The probability for the respective orientation is in-
cluded as an additional score.

5 Translation Models

In addition to the models used in the baseline sys-
tem described above, we conducted experiments
including additional models that enhance trans-
lation quality by introducing alternative or addi-
tional information into the translation modeling
process.

5.1 Bilingual Language Model

During the decoding the source sentence is seg-
mented so that the best combination of phrases
which maximizes the scores is available. How-
ever, this causes some loss of context information
at the phrase boundaries. In order to make bilin-
gual context available, we use a bilingual language
model (Niehues et al., 2011). In the bilingual lan-
guage model, each token consists of a target word
and all source words it is aligned to.

5.2 Discriminative Word Lexicon

Mauser et al. (2009) introduced the Discriminative
Word Lexicon (DWL) into phrase-based machine
translation. In this approach, a maximum entropy
model is used to determine the probability of using
a target word in the translation.

In this evaluation, we used two extensions to
this work as shown in (Niehues and Waibel, 2013).
First, we added additional features to model the
order of the source words better. Instead of rep-
resenting the source sentence as a bag-of-words,
we used a bag-of-n-grams. We used n-grams up to
the order of three and applied count filtering to the
features for higher order n-grams.

Furthermore, we created the training examples
differently in order to focus on addressing errors
of the other models of the phrase-based translation
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system. We first translated the whole corpus with a
baseline system. Then we only used the words that
occur in the N-Best List and not in the reference as
negative examples instead of using all words that
do not occur in the reference.

5.3 Quasi-Morphological Operations

Because of the inflected characteristic of the
German language, we try to learn quasi-
morphological operations that change the lexi-
cal entry of a known word form to the out-of-
vocabulary (OOV) word form as described in
Niehues and Waibel (2012).

5.4 Phrase Table Adaptation

For the French↔English systems, we built two
phrase tables; one trained with all data and the
other trained only with the EPPS and NC cor-
pora. This is due to the fact that Giga corpus is big
but noisy and EPPS and NC corpus are more reli-
able. The two models are combined log-linearly to
achieve the adaptation towards the cleaner corpora
as described in Niehues et al. (2010).

6 Language Models

The 4-gram language models generated by the
SRILM toolkit are used as the main language
models for all of our systems. For the
English↔French systems, we use a good quality
corpus as in-domain data to train in-domain lan-
guage models. Additionally, we apply the POS
and cluster language models in different systems.
For the German→English system, we build sepa-
rate language models using each corpus and com-
bine them linearly before the decoding by mini-
mizing the perplexity. Language models are inte-
grated into the translation system by a log-linear
combination and receive optimal weights during
tuning by the MERT.

6.1 POS Language Models

For the English→German system, we use the POS
language model, which is trained on the POS se-
quence of the target language. The POS tags are
generated using the RFTagger (Schmid and Laws,
2008) for German. The RFTagger generates fine-
grained tags which include person, gender, and
case information. The language model is trained
with up to 9-gram information, using the German
side of the parallel EPPS and NC corpus, as well
as the News Shuffle corpus.

6.2 Cluster Language Models

In order to use larger context information, we use
a cluster language model for all our systems. The
cluster language model is based on the idea shown
in Och (1999). Using the MKCLS algorithm, we
cluster the words in the corpus, given a number
of classes. Then words in the corpus are replaced
with their cluster IDs. Using these cluster IDs,
we train n-gram language models as well as a
phrase table with this additional factor of cluster
ID. Our submitted systems have diversed range of
the number of clusters as well as n-gram.

7 Results

Using the models described above we performed
several experiments leading finally to the systems
used for generating the translations submitted to
the workshop. The results are reported as case-
sensitive BLEU scores on one reference transla-
tion.

7.1 German→English

The experiments for the German to English trans-
lation system are summarized in Table 1. The
baseline system uses POS-based reordering, DWA
with lattice phrase extraction and language models
trained on the News Shuffle corpus and Giga cor-
pus separately. Then we added a 5-gram cluster
LM trained with 1,000 word classes. By adding a
language model using the filtered crawled data we
gained 0.3 BLEU on the test set. For this we com-
bined all language models linearly. The filtered
crawled data was also used to generate a phrase
table, which brought another improvement of 0.85
BLEU. Applying tree-based reordering improved
the BLEU score, and the performance had more
gain by adding the extended DWL, namely us-
ing both bag-of-ngrams and n-best lists. While
lexicalized reordering gave us a slight gain, we
added morphological operation and gained more
improvements.

7.2 English→German

The English to German baseline system uses POS-
based reordering and language models using par-
allel data (EPPS and NC) as shown in Table 2.
Gradual gains were achieved by changing align-
ment from GIZA++ to DWA, adding a bilingual
language model as well as a language model based
on the POS tokens. A 9-gram cluster-based lan-
guage model with 100 word classes gave us a
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System Dev Test
Baseline 24.15 22.79
+ Cluster LM 24.18 22.84
+ Crawled Data LM (Comb.) 24.53 23.14
+ Crawled Data PT 25.38 23.99
+ Tree Rules 25.80 24.16
+ Extended DWL 25.59 24.54
+ Lexicalized Reordering 26.04 24.55
+ Morphological Operation - 24.62

Table 1: Translation results for German→English

small gain. Improving the reordering using lexi-
alized reordering gave us gain on the optimization
set. Using DWL let us have more improvements
on our test set. By using the filtered crawled data,
we gained a big improvement of 0.46 BLEU on
the test set. Then we extended the DWL with bag
of n-grams and n-best lists to achieve additional
improvements. Finally, the best system includes
lattices generated using tree rules.

System Dev Test
Baseline 17.00 16.24
+ DWA 17.27 16.53
+ Bilingual LM 17.27 16.59
+ POS LM 17.46 16.66
+ Cluster LM 17.49 16.68
+ Lexicalized Reordering 17.57 16.68
+ DWL 17.58 16.77
+ Crawled Data 18.43 17.23
+ Extended DWL 18.66 17.57
+ Tree Rules 18.63 17.70

Table 2: Translation results for English→German

7.3 French→English

Table 3 reports some remarkable improvements
as we combined several techniques on the
French→English direction. The baseline system
was trained on parallel corpora such as EPPS, NC
and Giga, while the language model was trained
on the English part of those corpora plus News
Shuffle. The newly presented web-crawled data
helps to achieve almost 0.6 BLEU points more
on test set. Adding bilingual language model and
cluster language model does not show a significant
impact. Further gains were achieved by the adap-
tation of in-domain data into general-theme phrase
table, bringing 0.15 BLEU better on the test set.
When we added the DWL feature, it notably im-
proves the system by 0.25 BLEU points, resulting

in our best system.

System Dev Test
Baseline 30.33 29.35
+ Crawled Data 30.59 29.93
+ Bilingual and Cluster LMs 30.67 30.01
+ In-Domain PT Adaptation 31.17 30.16
+ DWL 31.07 30.40

Table 3: Translation results for French→English

7.4 English→French

In the baseline system, EPPS, NC, Giga and News
Shuffle corpora are used for language modeling.
The big phrase tables tailored EPPC, NC and Giga
data. The system also uses short-range reordering
trained on EPPS and NC. Adding parallel and fil-
tered crawl data improves the system. It was fur-
ther enhanced by the integration of a 4-gram bilin-
gual language model. Moreover, the best config-
uration of 9-gram language model trained on 500
clusters of French texts gains 0.25 BLEU points
improvement. We also conducted phrase-table
adaptation from the general one into the domain
covered by EPPS and NC data and it helps as well.
The initial try-out with lexicalized reordering fea-
ture showed an improvement of 0.23 points on the
development set, but a surprising reduction on the
test set, thus we decided to take the system after
adaptation as our best English→French system.

System Dev Test
Baseline 30.50 27.77
+ Crawled Data 31.05 27.87
+ Bilingual LM 31.23 28.50
+ Cluster LM 31.58 28.75
+ In-Domain PT Adaptation 31.88 29.12
+ Lexicalized Reordering 32.11 28.98

Table 4: Translation results for English→French

8 Conclusions

We have presented the systems for our par-
ticipation in the WMT 2013 Evaluation for
English↔German and English↔French. All sys-
tems use a class-based language model as well
as a bilingual language model. Using a DWL
with source context improved the translation qual-
ity of English↔German systems. Also for these
systems, we could improve even more with a
tree-based reordering model. Special handling
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of OOV words improved German→English sys-
tem, while for the inverse direction the language
model with fine-grained POS tags was helpful. For
English↔French, phrase table adaptation helps to
avoid using wrong parts of the noisy Giga corpus.
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Abstract

This paper describes T̈UBİTAK-B İLGEM
statistical machine translation (SMT) sys-
tems submitted to the Eighth Work-
shop on Statistical Machine Transla-
tion (WMT) shared translation task for
German-English language pair in both di-
rections. We implement phrase-based
SMT systems with standard parameters.
We present the results of using a big tun-
ing data and the effect of averaging tun-
ing weights of different seeds. Addition-
ally, we performed a linguistically moti-
vated compound splitting in the German-
to-English SMT system.

1 Introduction

TÜBİTAK-B İLGEM participated for the first time
in the WMT’13 shared translation task for the
German-English language pairs in both directions.
We implemented a phrase-based SMT system by
using the entire available training data. In the
German-to-English SMT system, we performed a
linguistically motivated compound splitting. We
tested different language model (LM) combina-
tions by using the parallel data, monolingual data,
and Gigaword v4. In each step, we tuned systems
with five different tune seeds and used the average
of tuning weights in the final system. We tuned
our systems on a big tuning set which is generated
from the last years’ (2008, 2009, 2010, and 2012)
development sets. The rest of the paper describes
the details of our systems.

2 German-English

2.1 Baseline

All available data was tokenized, truecased, and
the maximum number of tokens were fixed to
70 for the translation model. The Moses open
SMT toolkit (Koehn et al., 2007) was used with

MGIZA++ (Gao and Vogel, 2008) with the stan-
dard alignment heuristicgrow-diag-final(Och and
Ney, 2003) for word alignments.Good-Turing
smoothing was used for phrase extraction. Sys-
tems were tuned onnewstest2012with MERT
(Och, 2003) and tested onnewstest2011. 4-
gram language models (LMs) were trained on
the target side of the parallel text and the mono-
lingual data by using SRILM (Stolcke, 2002)
toolkit with Kneser-Ney smoothing (Kneser and
Ney, 1995) and then binarized by using KenLM
toolkit (Heafield, 2011). At each step, systems
were tuned with five different seeds with lattice-
samples. Minimum Bayes risk decoding (Kumar
and Byrne, 2004) and-drop-unknownparameters
were used during the decoding.

This configuration is common for all of the ex-
periments decribed in this paper unless stated oth-
erwise. Table 1 shows the number of sentences
used in system training after theclean-corpuspro-
cess.

Data Number of sentences
Europarl 1908574

News-Commentary 177712

Commoncrawl 726458

Table 1: Parallel Corpus.

We trained two baseline systems in order to as-
sess the effects of this year’s new parallel data,
commoncrawl. We first trained an SMT system
by using only the training data from the previ-
ous WMT shared translation tasks that iseuroparl
andnews-commentary(Baseline1). As the second
baseline, we also included the new parallel data
commoncrawlonly in the translation model (Base-
line2). Then, we includedcommoncrawlcorpus
both to the translation model and the language
model (Baseline3).

Table 2 compares the baseline results. For all
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experiments throughout the paper, we present the
minimum and the maximum BLEU scores ob-
tained after five different tunes. As seen in the
table, the addition of thecommoncrawlcorpus re-
sultedin a1.1 BLEU (Papineni et al., 2002) points
improvement (on average) on the test set. Al-
thoughBaseline2is slightly better thanBaseline3,
we usedBaseline3and keptcommoncrawlcorpus
in LMs for further experiments.

System newstest12 newstest11
Baseline1 20.58|20.74 19.14|19.29

Baseline2 21.37|21.58 20.16|20.46

Baseline3 21.28|21.58 20.22|20.49

Table 2: Baseline Results.

2.2 Bayesian Alignment

In the original IBM models (Brown et al., 1993),
word translation probabilities are treated as model
parameters and the expectation-maximization
(EM) algorithm is used to obtain the maximum-
likelihood estimates of the parameters and the
resulting distributions on alignments. However,
EM provides a point-estimate, not a distribu-
tion, for the parameters. The Bayesian align-
ment on the other hand takes into account all
values of the model parameters by treating them
as multinomial-distributed random variables with
Dirichlet priors and integrating over all possible
values. A Bayesian approach to word alignment
inference in IBM Models is shown to result in sig-
nificantly less “garbage collection” and a much
more compact alignment dictionary. As a result,
the Bayesian word alignment has better transla-
tion performances and obtains significant BLEU
improvements over EM on various language pairs,
data sizes, and experimental settings (Mermer et
al., 2013).

We compared the translation performance of
word alignments obtained via Bayesian inference
to those obtained via EM algorithm. We used a
a Gibbs sampler for fully Bayesian inference in
HMM alignment model, integrating over all pos-
sible parameter values in finding the alignment
distribution by usingBaseline3word alignments
for initialization. Table 3 compares the Bayesian
alignment to the EM alignment. The results show
a slight increase in the development setnewstest12
but a decrease of0.1 BLEU points on average in
the test setnewstest11.

System newstest12 newstest11
Baseline3 21.28|21.58 20.22|20.49

Gibbs Sampling 21.36|21.59 19.98|20.40

Table 3: Bayesian Alignment Results.

2.3 Development Data in Training

Development data from the previous years (i.e.
newstest08, newstest09, newstest10), though being
a small set of corpus (7K sentences), is in-domain
data and can positively affect the translation sys-
tem. In order to make use of this data, we exper-
imented two methods: i) adding the development
data in the translation model as described in this
section and ii) using it as a big tuning set for tun-
ing the parameters more efficiently as explained in
the next section.

Similar to including thecommoncrawlcorpus,
we first add the development data both to the train-
ing and language models by concatenating it to the
biggest corpuseuroparl (DD(tm+lm)) and then
we removed this corpus from the language models
(DD(tm)). Results in Table 4 show that including
the development data both the tranining and lan-
guage model increases the performance in devel-
opment set but decreases the performance in the
test set. Including the data only in the translation
model shows a very slight improvement in the test
set.

System newstest12 newstest11
Baseline3 21.28|21.58 20.22|20.49

DD(tm+lm) 21.28|21.65 20.00|20.49

DD(tm) 21.23|21.52 20.26|20.49

Table 4: Development Sets Results.

2.4 Tuning with a Big Development Data

The second method of making use of the develop-
ment data is to concatenate it to the tuning set. As
a baseline, we tuned the system withnewstest12
as mentioned in Section 2.1. Then, we concate-
nated the development data of the previous years
with thenewstest12and built a big tuning set. Fi-
nally, we obtained a tuning set of 10K sentences.
We excluded thenewstest11as an internal test set
to see the relative improvements of different sys-
tems. Table 5 shows the results of using a big tun-
ing set. Tuning the system with a big tuning set
resulted in a0.13 BLEU points improvement.
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System newstest12 newstest11
newstest12 21.28|21.58 20.22|20.49

Big Tune 20.93|21.19 20.32|20.58

Table 5: Tuning Results.

2.5 Effects of Different Language Models

In this set of experiments, we tested the effects
of different combinations of parallel and monolin-
gual data as language models. As the baseline, we
trained three LMs, one from each parallel corpus
aseuroparl, news-commentary, andcommoncrawl
and one LM from the monolingual datanews-
shuffled(Baseline3). We then trained two LMs,
one from the whole parallel data and one from the
monolingual data (2LMs). Table 6 shows that us-
ing whole parallel corpora as one LM performs
better than individual corpus LMs and results in
0.1 BLEU points improvement on the baseline. Fi-
nally, we trained Gigaword v4 (LDC2009T13) as a
third LM (3LMs) which gives a0.16 BLEU points
improvement over the2LMs.

System newstest12 newstest11
Baseline3 21.28|21.58 20.22|20.49

2LMs 21.46|21.70 20.28|20.57

3LMs 21.78|21.93 20.54|20.68

Table 6: Language Model Results.

2.6 German Preprocessing

In German, compounding is very common. From
the machine translation point of view, compounds
increase the vocabulary size with high number of
the singletons in the training data and hence de-
crease the word alignment quality. Moreover, high
number of out-of-vocabulary (OOV) words in tun-
ing and test sets results in several German words
left as untranslated. A well-known solution to this
problem is compound splitting.

Similarly, having different word forms for a
source side lemma for the same target lemma
causes the lexical redundancy in translation. This
redundancy results in unnecessary large phrase
translation tables that overload the decoder, as a
separate phrase translation entry has to be kept for
each word form. For example, German definite de-
terminer could be marked in sixteen different ways
according to the possible combinations of genders,
case and number, which are fused in six different

tokens (e.g., der, das, die, den, dem, des). Except
for the plural and genitive cases, all these forms
are translated to the same English word “the”.

In the German preprocessing, we aimed both
normalizing lexical redundancy and splitting Ger-
man compounds with corpus driven splitting al-
gorithm based on Koehn and Knight (2003). We
used the same compound splitting and lexical re-
dundancy normalization methods described in Al-
lauzen et al. (2010) and Durgar El-Kahlout and
Yvon (2010) with minor in-house changes. We
used only “addition” (e.g., -s, -n, -en, -e, -es) and
“truncation” (e.g., -e, -en, -n) affixes for com-
pound splitting. We selected minimum candidate
length to8 and minimum split length to4. By us-
ing the Treetagger (Schmid, 1994) output, we in-
cluded linguistic information in compound split-
ting such as not splitting named entities and for-
eign words (CS1). We also experimented adding
# as a delimiter for the splitted words except the
last word (e.g., Finanzkrisen is splitted as finanz#
krisen) (CS2).

On top of the compound splitting, we
applied the lexical redundancy normalization
(CS+Norm1). We lemmatized German articles,
adjectives (only positive form), for some pronouns
and for nouns in order to remove the lexical re-
dundancy (e.g., Bildes as Bild) by using the fine-
grained part-of-speech tags generated by RFTag-
ger (Schmid and Laws, 2008). Similar toCS2, We
tested the delimited version of normalized words
(CS+Norm2).

Table 7 shows the results of compound split-
ting and normalization methods. As a result, nor-
malization on top of compounding did not per-
form well. Besides, experiments showed that com-
pound word decomposition is crucial and helps
vastly to improve translation results0.43 BLEU
points on average over the best system described
in Section 2.5.

System newstest12 newstest11
3LMs 21.78|21.93 20.54|20.68

CS1 22.01|22.21 20.63|20.89

CS2 22.06|22.22 20.74|20.99

CS+Norm2 21.96|22.16 20.70|20.88

CS+Norm1 20.63|20.76 22.01|22.16

Table 7: Compound Splitting Results.

111



2.7 Average of Weights

As mentioned in Section 2.1, we performed tun-
ing with five different seeds. We averaged the five
tuning weights and directly applied these weights
during the decoding. Table 8 shows that using the
average of several tuning weights performs better
than each individual tuning (0.2 BLEU points).

System newstest12 newstest11
CS2 22.06|22.22 20.74|20.99

Avg. of Weights 22.27 21.07

Table 8: Average of Weights Results.

2.8 Other parameters

In addition to the experiments described in the
earlier sections, we removed the-drop-unknown
parameter which gave us a0.5 BLEU points im-
provement. We also included the monotone-at-
punctuation,-mp in decoding. We handled out-
of-vocabulary (OOV) words by lemmatizing the
OOV words. Moreover, we added all development
data in training after fixing the parameter weights
as described in Section 2.7. Although each of
these changes increases the translation scores each
gave less than0.1 BLEU point improvement. Ta-
ble 9 shows the results of the final system after
including all of the approaches except the ones de-
scribed in Section 2.2 and 2.3.

System newstest12 newstest11
Final System 22.59|22.77 21.86|21.93

Avg. of Weights 22.66 22.00

+ tune data in train −− 22.09

Table 9: German-to-English Final System Results.

3 English-German

For English-to-German translation system, the
baseline setting is the same as described in Sec-
tion 2.1. We also added the items that showed
positive improvement in the German to English
SMT system such as using 2 LMs, tuning with five
seeds and averaging tuning parameters, using-mp,
and not using-drop-unknown. Table 10 shows the
experimental results for English-to-German SMT
systems. Similar to the German-to-English direc-
tion, tuning with a big development data outper-
forms the baseline0.26 BLEU points (on average).

Additionally, averaging the tuning weights of dif-
ferent seeds results in0.2 BLEU points improve-
ment.

System newstest12 newstest11
Baseline 16.95|17.03 15.93|16.13

+ Big Tune 16.82|17.01 16.22|16.37

Avg. of Weights 16.99 16.47

Table 10: English to German Final System Re-
sults.

4 Final System and Results

Table 11 shows our official submission scores for
German-English SMT systems submitted to the
WMT’13.

System newstest13
De-En 25.60

En-De 19.28

Table 11: German-English Official Test Submis-
sion.

5 Conclusion

In this paper, we described our submissions to
WMT’13 Shared Translation Task for German-
English language pairs. We used phrase-based
systems with a big tuning set which is a com-
bination of the development sets from last four
years. We tuned the systems on this big tuning
set with five different tunes. We averaged these
five tuning weights in the final system. We trained
4-gram language models one from parallel data
and one from monolingual data. Moreover, we
trained a 4-gram language model with Gigaword
v4 for German-to-English direction. For German-
to-English, we performed a different compound
splitting method instead of the Moses splitter. We
obtained a1.7 BLEU point increase for German-
to-English SMT system and a0.5 BLEU point in-
crease for English-to-German SMT system for the
internal test setnewstest2011. Finally, we sub-
mitted our German-to-English SMT system with
a BLEU score25.6 and English-to-German SMT
system with a BLEU score19.3 for the official test
setnewstest2013.
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Abstract

We validated various novel and recently
proposed methods for statistical machine
translation on 10 language pairs, using
large data resources. We saw gains
from optimizing parameters, training with
sparse features, the operation sequence
model, and domain adaptation techniques.
We also report on utilizing a huge lan-
guage model trained on 126 billion tokens.

The annual machine translation evaluation cam-
paign for European languages organized around
the ACL Workshop on Statistical Machine Trans-
lation offers the opportunity to test recent advance-
ments in machine translation in large data condi-
tion across several diverse language pairs.

Building on our own developments and external
contributions to the Moses open source toolkit, we
carried out extensive experiments that, by early in-
dications, led to a strong showing in the evaluation
campaign.

We would like to stress especially two contri-
butions: the use of the new operation sequence
model (Section 3) within Moses, and — in a sepa-
rate unconstraint track submission — the use of a
huge language model trained on 126 billion tokens
with a new training tool (Section 4).

1 Initial System Development

We start with systems (Haddow and Koehn, 2012)
that we developed for the 2012 Workshop on
Statistical Machine Translation (Callison-Burch
et al., 2012). The notable features of these systems
are:
• Moses phrase-based models with mostly de-

fault settings
• training on all available parallel data, includ-

ing the large UN parallel data, the French-
English 109 parallel data and the LDC Giga-
word data

• very large tuning set consisting of the test sets
from 2008-2010, with a total of 7,567 sen-
tences per language
• German–English with syntactic pre-

reordering (Collins et al., 2005), compound
splitting (Koehn and Knight, 2003) and use
of factored representation for a POS target
sequence model (Koehn and Hoang, 2007)
• English–German with morphological target

sequence model

Note that while our final 2012 systems in-
cluded subsampling of training data with modified
Moore-Lewis filtering (Axelrod et al., 2011), we
did not use such filtering at the starting point of
our development. We will report on such filtering
in Section 2.

Moreover, our system development initially
used the WMT 2012 data condition, since it took
place throughout 2012, and we switched to WMT
2013 training data at a later stage. In this sec-
tion, we report cased BLEU scores (Papineni et al.,
2001) on newstest2011.

1.1 Factored Backoff (German–English)
We have consistently used factored models in past
WMT systems for the German–English language
pairs to include POS and morphological target se-
quence models. But we did not use the factored
decomposition of translation options into multi-
ple mapping steps, since this usually lead to much
slower systems with usually worse results.

A good place, however, for factored decompo-
sition is the handling of rare and unknown source
words which have more frequent morphological
variants (Koehn and Haddow, 2012a). Here, we
used only factored backoff for unknown words,
giving gains in BLEU of +.12 for German–English.

1.2 Tuning with k-best MIRA
In preparation for training with sparse features, we
moved away from MERT which is known to fall
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apart with many more than a couple of dozen fea-
tures. Instead, we used k-best MIRA (Cherry and
Foster, 2012). For the different language pairs, we
saw improvements in BLEU of -.05 to +.39, with an
average of +.09. There was only a minimal change
in the length ratio (Table 1)

MERT k-best MIRA ∆
de-en 22.11 (1.010) 22.10 (1.008) –.01 (+.002)
fr-en 30.00 (1.023) 30.11 (1.026) +.11 (±.003)
es-en 30.42 (1.021) 30.63 (1.020) +.21 (–.001)
cs-en 25.54 (1.022) 25.49 (1.024) –.05 (±.002)
en-de 16.08 (0.995) 16.04 (1.001) –.04 (±.006)
en-fr 29.26 (0.980) 29.65 (0.982) +.39 (±.002)
en-es 31.92 (0.985) 31.95 (0.985) +.03 (±.000)
en-cs 17.38 (0.967) 17.42 (0.974) +.04 (±.007)
avg – – +.09

Table 1: Tuning with k-best MIRA instead of MERT
(cased BLEU scores with length ratio)

1.3 Translation Table Smoothing with
Kneser-Ney Discounting

Previously, we smoothed counts for the phrasal
conditional probability distributions in the trans-
lation model with Good Turing discounting. We
explored the use of Kneser-Ney discounting, but
results are mixed (no difference on average, see
Table 2), so we did not pursue this further.

Good Turing Kneser Ney ∆
de-en 22.10 22.15 +.05
fr-en 30.11 30.13 +.02
es-en 30.63 30.64 +.01
cs-en 25.49 25.56 +.07
en-de 16.04 15.93 –.11
en-fr 29.65 29.75 +.10
en-es 31.95 31.98 +.03
en-cs 17.42 17.26 –.16
avg – – ±.00

Table 2: Translation model smoothing with Kneser-Ney

1.4 Sparse Features

A significant extension of the Moses system over
the last couple of years was the support for large
numbers of sparse features. This year, we tested
this capability on our big WMT systems. First, we
used features proposed by Chiang et al. (2009):

• phrase pair count bin features (bins 1, 2, 3,
4–5, 6–9, 10+)
• target word insertion features
• source word deletion features
• word translation features
• phrase length feature (source, target, both)

The lexical features were restricted to the 50 most
frequent words. All these features together only
gave minor improvements (Table 3).

baseline sparse ∆
de-en 22.10 22.02 –.08
fr-en 30.11 30.24 +.13
es-en 30.63 30.61 –.02
cs-en 25.49 25.49 ±.00
en-de 16.04 15.93 –.09
en-fr 29.65 29.81 +.16
en-es 31.95 32.02 +.07
en-cs 17.42 17.28 –.14
avg – – +.04

Table 3: Sparse features

We also explored domain features in the sparse
feature framework, in three different variations.
Assume that we have three domains, and a phrase
pair occurs in domain A 15 times, in domain B 5
times, and in domain C never.

We compute three types of domain features:

• binary indicator, if phrase-pairs occurs in do-
main (example: indA = 1, indB = 1, indC = 0)

• ratio how frequent the phrase pairs occurs in
domain (example: ratioA = 15

15+5
= .75, ratioB =

5
15+5

= .25, ratioC = 0)

• subset of domains in which phrase pair oc-
curs (example: subsetAB = 1, other subsets 0)

We tested all three feature types, and found
the biggest gain with the domain indicator feature
(+.11, Table 4). Note that we define as domain the
different corpora (Europarl, etc.). The number of
domains ranges from 2 to 9 (see column #d).1

#d base. indicator ratio subset
de-en 2 22.10 22.14 +.04 22.07 –.03 22.12 +.02
fr-en 4 30.11 30.34 +.23 30.29 +.18 30.15 +.04
es-en 3 30.63 30.88 +.25 30.64 +.01 30.82 +.19
cs-en 9 25.49 25.58 +.09 25.58 +.09 25.46 –.03
en-de 2 16.122 16.14 +.02 15.96 –.16 16.01 –.11
en-fr 4 29.65 29.75 +.10 29.71 +.05 29.70 +.05
en-es 3 31.95 32.06 +.11 32.13 +.18 32.02 +.07
en-cs 9 17.42 17.45 +.03 17.35 –.07 17.44 +.02
avg. - – +.11 +.03 +.03

Table 4: Sparse domain features

When combining the domain features and the
other sparse features, we see roughly additive
gains (Table 5). We use the domain indicator fea-
ture and the other sparse features in subsequent ex-
periments.

1In the final experiments on the 2013 data condition, one
domain (commoncrawl) was added for all language pairs.
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baseline indicator ratio subset
de-en 22.10 22.18 +.08 22.10 ±.00 22.16 +.06
fr-en 30.11 30.41 +.30 30.49 +.38 30.36 +.25
es-en 30.63 30.75 +.12 30.56 –.07 30.85 +.22
cs-en 25.49 25.56 +.07 25.63 +.14 25.43 –.06
en-de 16.12 15.95 –.17 15.96 –.16 16.05 –.07
en-fr 29.65 29.96 +.31 29.88 +.23 29.92 +.27
en-es 31.95 32.12 +.17 32.16 +.21 32.08 +.23
en-cs 17.42 17.38 –.04 17.35 –.07 17.40 –.02
avg. – +.11 +.09 +.11

Table 5: Combining domain and other sparse features

1.5 Tuning Settings

Given the opportunity to explore the parameter
tuning of models with sparse features across many
language pairs, we investigated a number of set-
tings. We expect tuning to work better with more
iterations, longer n-best lists and bigger cube prun-
ing pop limits. Our baseline settings are 10 itera-
tions with 100-best lists (accumulating) and a pop
limit of 1000 for tuning and 5000 for testing.

base 25 it. 25it+1k-best 25it+pop5k
de-en 22.18 22.16 –.02 22.14 –.04 22.17 –.01
fr-en 30.41 30.40 –.01 30.44 +.03 30.49 +.08
es-en 30.75 30.91 +.16 30.86 +.11 30.81 +.06
cs-en 25.56 25.60 +.04 25.64 +.08 25.56 ±.00
en-de 15.96 15.99 +.03 16.05 +.09 15.96 ±.00
en-fr 29.96 29.90 –.06 29.95 –.01 29.92 –.04
en-es 32.12 32.17 +.05 32.11 –.01 32.19 +.07
en-cs 17.38 17.43 +.05 17.50 +.12 17.38 ±.00
avg – +.03 +.05 +.02

Table 6: Tuning settings (number of iterations, size of n-best
list, and cube pruning pop limit)

Results support running tuning for 25 iterations
but we see no gains for 5000 pops. There is ev-
idence that an n-best list size of 1000 is better in
tuning but we did not adopt this since these large
lists take up a lot of disk space and slow down the
MIRA optimization step (Table 6).

1.6 Smaller Phrases

Given the very large corpus sizes (up to a billion
words of parallel data for French–English), the
size of translation model and lexicalized reorder-
ing model becomes a challenge. Hence, we want
to examine if restriction to smaller phrases is fea-
sible without loss in translation quality. Results
in Table 7 suggest that a maximum phrase length
of 5 gives almost identical results, and only with
a phrase length limit of 4 significant losses occur.
We adopted the limit of 5.

max 7 max 6 max 5 max 4
de-en 22.16 22.03 –.13 22.05 –.11 22.17 +.01
fr-en 30.40 30.30 –.10 30.39 –.01 30.23 –.17
es-en 30.91 30.80 –.09 30.86 –.05 30.81 –.10
cs-en 25.60 25.55 –.05 25.53 –.07 25.48 –.12
en-de 15.99 15.94 –.05 15.97 –.02 16.03 +.04
en-fr 29.90 29.97 +.07 29.89 –.01 29.77 –.13
en-es 32.17 32.13 –.04 32.27 +.10 31.93 –.24
en-cs 17.43 17.46 +.03 17.41 –.02 17.41 –.02
avg – –.05 –.03 –.09

Table 7: Maximum phrase length, reduced from baseline

1.7 Unpruned Language Models
Previously, we trained 5-gram language models
using the default settings of the SRILM toolkit in
terms of singleton pruning. Thus, training throws
out all singletons n-grams of order 3 and higher.
We explored whether unpruned language models
could give better performance, even if we are only
able to train 4-gram models due to memory con-
straints. At the time, we were not able to build un-
pruned 4-gram language models for English, but
for the other language pairs we did see improve-
ments of -.07 to +.13 (Table 8). We adopted such
models for these language pairs.

5g pruned 4g unpruned ∆
en-fr 29.89 29.83 –.07
en-es 32.27 32.34 +.07
en-cs 17.41 17.54 +.13

Table 8: Language models without singleton pruning

1.8 Translations per Input Phrase
Finally, we explored one more parameter: the limit
on how many translation options are considered
per input phrase. The default for this setting is 20.
However, our experiments (Table 9) show that we
can get better results with a translation table limit
of 100, so we adopted this.

ttl 20 ttl 30 ttl 50 ttl 100
de-en 21.05 +.06 +.09 +.01
fr-en 30.39 –.02 +.05 +.07
es-en 30.86 ±.00 –.03 –.07
cs-en 25.53 +.24 +.13 +.20
en-de 15.97 +.03 +.07 +.11
en-fr 29.83 +.14 +.19 +.13
en-es 32.34 +.08 +.10 +.07
en-cs 17.54 –.05 –.02 +.01
avg – +.06 +.07 +.07

Table 9: Maximal number translations per input phrase

1.9 Other Experiments
We explored a number of other settings and fea-
tures, but did not observe any gains.
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• Using HMM alignment instead of IBM
Model 4 leads to losses of –.01 to –.27.
• An earlier check of modified Moore–Lewis

filtering (see also below in Section 3) gave
very inconsistent results.
• Filtering the phrase table with significance

filtering (Johnson et al., 2007) leads to losses
of –.19 to –.63.
• Throwing out phrase pairs with direct transla-

tion probability φ(ē|f̄) of less than 10−5 has
almost no effect.
• Double-checking the contribution of the

sparse lexical features in the final setup, we
observe an average losses of –.07 when drop-
ping these features.
• For the German–English language pairs we

saw some benefits to using sparse lexical fea-
tures over POS tags instead of words, so we
used this in the final system.

1.10 Summary
We adopted a number of changes that improved
our baseline system by an average of +.30, see Ta-
ble 10 for a breakdown.

avg. method
+.01 factored backoff
+.09 kbest MIRA
+.11 sparse features and domain indicator
+.03 tuning with 25 iterations
–.03 maximum phrase length 5
+.02 unpruned 4-gram LM
+.07 translation table limit 100
+.30 total

Table 10: Summary of impact of changes

Minor improvements that we did not adopt was
avoiding reducing maximum phrase length to 5
(average +.03) and tuning with 1000-best lists
(+.02).

The improvements differed significantly by lan-
guage pair, as detailed in Table 11, with the
biggest gains for English–French (+.70), no gain
for English–German and no gain for English–
German.

1.11 New Data
The final experiment of the initial system devel-
opment phase was to train the systems on the new
data, adding newstest2011 to the tuning set (now
10,068 sentences). Table 12 reports the gains on
newstest2012 due to added data, indicating very
clearly that valuable new data resources became
available this year.

baseline improved ∆
de-en 21.99 22.09 +.10
fr-en 30.00 30.46 +.46
es-en 30.42 30.79 +.37
cs-en 25.54 25.73 +.19
en-de 16.08 16.08 ±.00
en-fr 29.26 29.96 +.70
en-es 31.92 32.41 +.49
en-cs 17.38 17.55 +.17

Table 11: Overall improvements per language pair

WMT 2012 WMT 2013 ∆
de-en 23.11 24.01 +0.90
fr-en 29.25 30.77 +1.52
es-en 32.80 33.99 +1.19
cs-en 22.53 22.86 +0.33
ru-en – 31.67 –
en-de 16.78 17.95 +1.17
en-fr 27.92 28.76 +0.84
en-es 33.41 34.00 +0.59
en-cs 15.51 15.78 +0.27
en-ru – 23.78 –

Table 12: Training with new data (newstest2012 scores)

2 Domain Adaptation Techniques

We explored two additional domain adaptation
techniques: phrase table interpolation and modi-
fied Moore-Lewis filtering.

2.1 Phrase Table Interpolation
We experimented with phrase-table interpolation
using perplexity minimisation (Foster et al., 2010;
Sennrich, 2012). In particular, we used the im-
plementation released with Sennrich (2012) and
available in Moses, comparing both the naive and
modified interpolation methods from that paper.
For each language pair, we took the alignments
created from all the data concatenated, built sepa-
rate phrase tables from each of the individual cor-
pora, and interpolated using each method. The re-
sults are shown in Table 13

baseline naive modified
fr-en 30.77 30.63 –.14 –
es-en∗ 33.98 33.83 –.15 34.03 +.05
cs-en∗ 23.19 22.77 –.42 23.03 –.17
ru-en 31.67 31.42 –.25 31.59 –.08
en-fr 28.76 28.88 +.12 –
en-es 34.00 34.07 +.07 34.31 +.31
en-cs 15.78 15.88 +.10 15.87 +.09
en-ru 23.78 23.84 +.06 23.68 –.10

Table 13: Comparison of phrase-table interpolation (two
methods) with baseline (on newstest2012). The baselines are
as Table 12 except for the starred rows where tuning with
PRO was found to be better. The modified interpolation was
not possible in fr↔en as it uses to much RAM.

The results from the phrase-table interpolation
are quite mixed, and we only used the technique
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for the final system in en-es. An interpolation
based on PRO has recently been shown (Haddow,
2013) to improve on perplexity minimisation is
some cases, but the current implementation of this
method is limited to 2 phrase-tables, so we did not
use it in this evaluation.

2.2 Modified Moore-Lewis Filtering

In last year’s evaluation (Koehn and Haddow,
2012b) we had some success with modified
Moore-Lewis filtering (Moore and Lewis, 2010;
Axelrod et al., 2011) of the training data. This
year we conducted experiments in most of the lan-
guage pairs using MML filtering, and also exper-
imented using instance weighting (Mansour and
Ney, 2012) using the (exponential of) the MML
weights. The results are show in Table 14

base MML Inst. Wt Inst. Wt
line 20% (scale)

fr-en 30.77 – – –
es-en∗ 33.98 34.26 +.28 33.85 –.13 33.98 ±.00
cs-en∗ 23.19 22.62 –.57 23.17 –.02 23.13 –.06
ru-en 31.67 31.58 –.09 31.57 –.10 31.62 –.05
en-fr 28.67 28.74 +.07 28.81 +.17 28.63 –.04
en-es 34.00 34.07 +.07 34.27 +.27 34.03 +.03
en-cs 15.78 15.37 –.41 15.87 +.09 15.89 +.11
en-ru 23.78 22.90 –.88 23.82 +.05 23.72 –.06

Table 14: Comparison of MML filtering and weighting with
baseline. The MML uses monolingual news as in-domain,
and selects from all training data after alignment.The weight-
ing uses the MML weights, optionally downscaled by 10,
then exponentiated. Baselines are as Table 13.

As with phrase-table interpolation, MML filter-
ing and weighting shows a very mixed picture, and
not the consistent improvements these techniques
offer on IWSLT data. In the final systems, we used
MML filtering only for es-en.

3 Operation Sequence Model (OSM)

We enhanced the phrase segmentation and re-
ordering mechanism by integrating OSM: an op-
eration sequence N-gram-based translation and re-
ordering model (Durrani et al., 2011) into the
Moses phrase-based decoder. The model is based
on minimal translation units (MTUs) and Markov
chains over sequences of operations. An opera-
tion can be (a) to jointly generate a bi-language
MTU, composed from source and target words, or
(b) to perform reordering by inserting gaps and do-
ing jumps.

Model: Given a bilingual sentence pair <
F,E > and its alignment A, we transform it to

Figure 1: Bilingual Sentence with Alignments

sequence of operations (o1, o2, . . . , oJ ) and learn
a Markov model over this sequence as:

posm(F,E,A) = p(oJ1 ) =
J∏

j=1

p(oj |oj−n+1, ..., oj−1)

By coupling reordering with lexical generation,
each (translation or reordering) decision condi-
tions on n − 1 previous (translation and reorder-
ing) decisions spanning across phrasal boundaries
thus overcoming the problematic phrasal indepen-
dence assumption in the phrase-based model. In
the OSM model, the reordering decisions influ-
ence lexical selection and vice versa. Lexical gen-
eration is strongly coupled with reordering thus
improving the overall reordering mechanism.

We used the modified version of the OSM
model (Durrani et al., 2013b) that addition-
ally handles discontinuous and unaligned target
MTUs3. We borrow 4 count-based supportive fea-
tures, the Gap, Open Gap, Gap-width and Dele-
tion penalties from Durrani et al. (2011).

Training: During training, each bilingual sen-
tence pair is deterministically converted to a
unique sequence of operations. Please refer to
Durrani et al. (2011) for a list of operations and
the conversion algorithm and see Figure 1 and Ta-
ble 15 for a sample bilingual sentence pair and
its step-wise conversion into a sequence of oper-
ation. A 9-gram Kneser-Ney smoothed operation
sequence model is trained with SRILM.

Search: Although the OSM model is based on
minimal units, phrase-based search on top of OSM
model was found to be superior to the MTU-based
decoding in Durrani et al. (2013a). Following this
framework allows us to use OSM model in tandem
with phrase-based models. We integrated the gen-
erative story of the OSM model into the hypothe-
sis extension of the phrase-based Moses decoder.
Please refer to (Durrani et al., 2013b) for details.

Results: Table 16 shows case-sensitive BLEU
scores on newstest2012 and newstest2013 for fi-

3In the original OSM model these are removed from the
alignments through a post-processing heuristic which hurts in
some language pairs. See Durrani et al. (2013b) for detailed
experiments.
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Operation Sequence Generation
Generate(Ich, I) Ich ↓

I
Generate Target Only (do) Ich ↓

I do
Insert Gap Ich nicht ↓
Generate (nicht, not) I do not
Jump Back (1) Ich gehe ↓ nicht
Generate (gehe, go) I do not go
Generate Source Only (ja) Ich gehe ja ↓ nicht

I do not go
Jump Forward Ich gehe ja nicht ↓

I do not go
Generate (zum, to the) . . . gehe ja nicht zum ↓

. . . not go to the
Generate (haus, house) . . . ja nicht zum haus ↓

. . . go to the house
Table 15: Step-wise Generation of Figure 1

LP Baseline +OSM
newstest 2012 2013 2012 2013
de-en 23.85 26.54 24.11 +.26 26.83 +.29
fr-en 30.77 31.09 30.96 +.19 31.46 +.37
es-en 34.02 30.04 34.51 +.49 30.94 +.90
cs-en 22.70 25.70 23.03 +.33 25.79 +.09
ru-en 31.87 24.00 32.33 +.46 24.33 +.33
en-de 17.95 20.06 18.02 +.07 20.26 +.20
en-fr 28.76 30.03 29.36 +.60 30.39 +.36
en-es 33.87 29.66 34.44 +.57 30.10 +.44
en-cs 15.81 18.35 16.16 +.35 18.62 +.27
en-ru 23.75 18.44 24.05 +.30 18.84 +.40

Table 16: Results using the OSM Feature

nal systems from Section 1 and these systems aug-
mented with the operation sequence model. The
model gives gains for all language pairs (BLEU

+.09 to +.90, average +.37, on newstest2013).

4 Huge Language Models

To overcome the memory limitations of SRILM,
we implemented modified Kneser-Ney (Kneser
and Ney, 1995; Chen and Goodman, 1998)
smoothing from scratch using disk-based stream-
ing algorithms. This open-source4 tool is de-
scribed fully by Heafield et al. (2013). We used it
to estimate an unpruned 5–gram language model
on web pages from ClueWeb09.5 The corpus was
preprocessed by removing spam (Cormack et al.,
2011), selecting English documents, splitting sen-
tences, deduplicating, tokenizing, and truecasing.
Estimation on the remaining 126 billion tokens
took 2.8 days on a single machine with 140 GB
RAM (of which 123 GB was used at peak) and six
hard drives in a RAID5 configuration. Statistics
about the resulting model are shown in Table 17.

4http://kheafield.com/code/
5http://lemurproject.org/clueweb09/

1 2 3 4 5
393m 3,775m 17,629m 39,919m 59,794m

Table 17: Counts of unique n-grams (m for millions) for the
5 orders in the unconstrained language model

The large language model was then quantized
to 10 bits and compressed to 643 GB with KenLM
(Heafield, 2011), loaded onto a machine with 1
TB RAM, and used as an additional feature in
unconstrained French–English, Spanish–English,
and Czech–English submissions. This additional
language model is the only difference between our
final constrained and unconstrained submissions;
no additional parallel data was used. Results are
shown in Table 18. Improvement from large lan-
guage models is not a new result (Brants et al.,
2007); the primary contribution is estimating on a
single machine.

Constrained Unconstrained ∆
fr-en 31.46 32.24 +.78
es-en 30.59 31.37 +.78
cs-en 27.38 28.16 +.78
ru-en 24.33 25.14 +.81

Table 18: Gain on newstest2013 from the unconstrained lan-
guage model. Our time on shared machines with 1 TB is
limited so Russian–English was run after the deadline and
German–English was not ready in time.

5 Summary

Table 19 breaks down the gains over the final sys-
tem from Section 1 from using the operation se-
quence models (OSM), modified Moore-Lewis fil-
tering (MML), fixing a bug with the sparse lex-
ical features (Sparse-Lex Bugfix), and instance
weighting (Instance Wt.), translation model com-
bination (TM-Combine), and use of the huge lan-
guage model (ClueWeb09 LM).

Acknowledgments
Thanks to Miles Osborne for preprocessing the ClueWeb09
corpus. The research leading to these results has re-
ceived funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant
agreement 287658 (EU BRIDGE) and grant agreement
288487(MosesCore).This work made use of the resources
provided by the Edinburgh Compute and Data Facility6.
The ECDF is partially supported by the eDIKT initia-
tive7. This work also used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number
OCI-1053575. Specifically, Stampede was used under
allocation TG-CCR110017.

6http://www.ecdf.ed.ac.uk/
7http://www.edikt.org.uk/

119



System 2012 2013
Spanish-English

1. Baseline 34.02 30.04
2. 1+OSM 34.51 +.49 30.94 +.90
3. 1+MML (20%) 34.38 +.36 30.38 +.34
4. 1+Sparse-Lex Bugfix 34.17 +.15 30.33 +.29
5. 1+2+3: OSM+MML 34.65 +.63 30.51 +.47
6. 1+2+3+4 34.68 +.66 30.59 +.55
7. 6+ClueWeb09 LM 31.37 +1.33

English-Spanish
1. Baseline 33.87 29.66
2. 1+OSM 34.44 +.57 30.10 +.44
3. 1+TM-Combine 34.31 +44 29.76 +.10
4. 1+Instance Wt. 34.27 +.40 29.63 –.03
5. 1+Sparse-Lex Bugfix 34.20 +.33 29.86 +.20
6. 1+2+3: OSM+TM-Cmb. 34.63 +.76 30.21 +.55
7. 1+2+4: OSM+Inst. Wt. 34.58 +.71 30.11 +.45
8. 1+2+3+5 34.78 +.91 30.43 +.77

Czech-English
1. Baseline 22.70 25.70
2. 1+OSM 23.03 +.33 25.79 +.09
3. 1+with PRO 23.19 +.49 26.08 +.38
4. 1+Sparse-Lex Bugfix 22.86 +.16 25.74 +.04
5. 1+OSM+PRO 23.42 +.72 26.23 +.53
6. 1+2+3+4 23.16 +.46 25.94 +.24
7. 5+ClueWeb09 LM 27.06 +.36

English-Czech
1. Baseline 15.85 18.35
2. 1+OSM 16.16 +.31 18.62 +.27

French-English
1. Baseline 30.77 31.09
2. 1+OSM 30.96 +.19 31.46 +.37
3. 2+ClueWeb09 LM 32.24 +1.15

English-French
1. Baseline 28.76 30.03
2. 1+OSM 29.36 +.60 30.39 +.36
3. 1+Sparse-Lex Bugfix 28.97 +.21 30.08 +.05
4. 1+2+3 29.37 +.61 30.58 +.55

German-English
1. Baseline 23.85 26.54
2. 1+OSM 24.11 +.26 26.83 +.29

English-German
1. Baseline 17.95 20.06
2. 1+OSM 18.02 +.07 20.26 +.20

Russian-English
1. Baseline 31.87 24.00
2. 1+OSM 32.33 +.46 24.33 +.33

English-Russian
1. Baseline 23.75 18.44
2. 1+OSM 24.05 +.40 18.84 +.40

Table 19: Summary of methods with BLEU scores on news-
test2012 and newstest2013. Bold systems were submitted,
with the ClueWeb09 LM systems submitted in the uncon-
straint track. The German–English and English–German
OSM systems did not complete in time for the official sub-
mission.
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Abstract

This paper describes Munich-Edinburgh-
Stuttgart’s submissions to the Eighth
Workshop on Statistical Machine Transla-
tion. We report results of the translation
tasks from German, Spanish, Czech and
Russian into English and from English to
German, Spanish, Czech, French and Rus-
sian. The systems described in this paper
use OSM (Operation Sequence Model).
We explain different pre-/post-processing
steps that we carried out for different
language pairs. For German-English we
used constituent parsing for reordering
and compound splitting as preprocessing
steps. For Russian-English we transliter-
ated the unknown words. The translitera-
tion system is learned with the help of an
unsupervised transliteration mining algo-
rithm.

1 Introduction

In this paper we describe Munich-Edinburgh-
Stuttgart’s1 joint submissions to the Eighth Work-
shop on Statistical Machine Translation. We use
our in-house OSM decoder which is based on
the operation sequence N-gram model (Durrani
et al., 2011). The N-gram-based SMT frame-
work (Mariño et al., 2006) memorizes Markov
chains over sequences of minimal translation units
(MTUs or tuples) composed of bilingual transla-
tion units. The OSM model integrates reordering
operations within the tuple sequences to form a
heterogeneous mixture of lexical translation and

1Qatar Computing Research Institute and University of
Szeged were partnered for RU-EN and DE-EN language pairs
respectively.

reordering operations and learns a Markov model
over a sequence of operations.

Our decoder uses the beam search algorithm in
a stack-based decoder like most sequence-based
SMT frameworks. Although the model is based
on minimal translation units, we use phrases dur-
ing search because they improve the search accu-
racy of our system. The earlier decoder (Durrani
et al., 2011) was based on minimal units. But we
recently showed that using phrases during search
gives better coverage of translation, better future
cost estimation and lesser search errors (Durrani
et al., 2013a) than MTU-based decoding. We have
therefore shifted to phrase-based search on top of
the OSM model.

This paper is organized as follows. Section 2
gives a short description of the model and search
as used in the OSM decoder. In Section 3 we
give a description of the POS-based operation se-
quence model that we test for our German-English
and English-German experiments. Section 4 de-
scribes our processing of the German and English
data for German-English and English-German ex-
periments. In Section 5 we describe the unsuper-
vised transliteration mining that has been done for
the Russian-English and English-Russian experi-
ments. In Section 6 we describe the sub-sampling
technique that we have used for several language
pairs. In Section 7 we describe the experimental
setup followed by the results. Finally we summa-
rize the paper in Section 8.

2 System Description

2.1 Model

Our systems are based on the OSM (Operation Se-
quence Model) that simultaneously learns trans-
lation and reordering by representing a bilingual
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Figure 1: Bilingual Sentence with Alignments

sentence pair and its alignments as a unique se-
quence of operations. An operation either jointly
generates source and target words, or it performs
reordering by inserting gaps or jumping to gaps.
We then learn a Markov model over a sequence of
operations o1, o2, . . . , oJ that encapsulate MTUs
and reordering information as:

posm(o1, ..., oJ) =
J∏

j=1

p(oj |oj−n+1, ..., oj−1)

By coupling reordering with lexical generation,
each (translation or reordering) decision depends
on n− 1 previous (translation and reordering) de-
cisions spanning across phrasal boundaries. The
reordering decisions therefore influence lexical se-
lection and vice versa. A heterogeneous mixture
of translation and reordering operations enables us
to memorize reordering patterns and lexicalized
triggers unlike the classic N-gram model where
translation and reordering are modeled separately.

2.2 Training

During training, each bilingual sentence pair is de-
terministically converted to a unique sequence of
operations.2 The example in Figure 1(a) is con-
verted to the following sequence of operations:

Generate(Beide, Both)→ Generate(Länder, coun-
tries)→ Generate(haben, have)→ Insert Gap→
Generate(investiert, invested)

At this point, the (partial) German and English
sentences look as follows:

Beide Länder haben investiert

Both countries have invested
The translator then jumps back and covers the
skipped German words through the following se-
quence of operations:

Jump Back(1)→Generate(Millionen, millions)→
Generate(von, of)→ Generate(Dollar, dollars)

2Please refer to Durrani et al. (2011) for a list of opera-
tions and the conversion algorithm.

The generative story of the OSM model also
supports discontinuous source-side cepts and
source-word deletion. However, it doesn’t provide
a mechanism to deal with unaligned and discon-
tinuous target cepts. These are handled through
a 3-step process3 in which we modify the align-
ments to remove discontinuous and unaligned tar-
get MTUs. Please see Durrani et al. (2011) for
details. After modifying the alignments, we con-
vert each bilingual sentence pair and its align-
ments into a sequence of operations as described
above and learn an OSM model. To this end,
a Kneser-Ney (Kneser and Ney, 1995) smoothed
9-gram model is trained with SRILM (Stolcke,
2002) while KenLM (Heafield, 2011) is used at
runtime.

2.3 Feature Functions
We use additional features for our model and em-
ploy the standard log-linear approach (Och and
Ney, 2004) to combine and tune them. We search
for a target string E which maximizes a linear
combination of feature functions:

Ê = argmax
E





J∑

j=1

λjhj(o1, ..., oJ)





where λj is the weight associated with the fea-
ture hj(o1, ..., oj). Apart from the main OSM
feature we train 9 additional features: A target-
language model (see Section 7 for details), 2 lex-
ical weighting features, gap and open gap penalty
features, two distance-based distortion models and
2 length-based penalty features. Please refer to
Durrani et al. (2011) for details.

2.4 Phrase Extraction
Phrases are extracted in the following way: The
aligned training corpus is first converted to an op-
eration sequence. Each subsequence of operations
that starts and ends with a translation operation, is
considered a “phrase”. The translation operations
include Generate Source Only (X) operation which
deletes unaligned source word. Such phrases may
be discontinuous if they include reordering opera-
tions. We replace each subsequence of reordering
operations by a discontinuity marker.

3Durrani et al. (2013b) recently showed that our post-
processing of alignments hurt the performance of the Moses
Phrase-based system in several language pairs. The solu-
tion they proposed has not been incorporated into the current
OSM decoder yet.
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During decoding, we match the source tokens
of the phrase with the input. Whenever there is
a discontinuity in the phrase, the next source to-
ken can be matched at any position of the input
string. If there is no discontinuity marker, the next
source token in the phrase must be to the right of
the previous one. Finally we compute the number
of uncovered input tokens within the source span
of the hypothesized phrase and reject the phrase
if the number is above a threshold. We use a
threshold value of 2 which had worked well in
initial experiments. Once the positions of all the
source words of a phrase are known, we can com-
pute the necessary reordering operations (which
may be different from the ones that appeared in
the training corpus). This usage of phrases al-
lows the decoder to generalize from a seen trans-
lation “scored a goal – ein Tor schoss” (where
scored/a/goal and schoss/ein/Tor are aligned, re-
spectively) to “scored a goal – schoss ein Tor”.
The phrase can even be used to translate “er schoss
heute ein Tor – he scored a goal today” although
“heute” appears within the source span of the
phrase “ein Tor schoss”. Without phrase-based
decoding, the unusual word translations “schoss–
scored” and “Tor–goal” (at least outside of the soc-
cer literature) are likely to be pruned.

The phrase tables are further filtered with
threshold pruning. The translation options with
a frequency less than x times the frequency of
the most frequent translation are deleted. We use
x = 0.02. We use additional settings to increase
this threshold for longer phrases. The phrase fil-
tering heuristic was used to speed up decoding. It
did not lower the BLEU score in our small scale
experiments (Durrani et al., 2013a), however we
could not test whether this result holds in a large
scale evaluation.

2.5 Decoder

The decoding framework used in the operation se-
quence model is based on Pharaoh (Koehn, 2004).
The decoder uses beam search to build up the
translation from left to right. The hypotheses are
arranged in m stacks such that stack i maintains
hypotheses that have already translated imany for-
eign words. The ultimate goal is to find the best
scoring hypothesis, that translates all the words
in the foreign sentence. During the hypothesis
extension each extracted phrase is translated into
a sequence of operations. The reordering opera-

tions (gaps and jumps) are generated by looking at
the position of the translator, the last foreign word
generated etc. (Please refer to Algorithm 1 in Dur-
rani et al. (2011)). The probability of an opera-
tion depends on the n−1 previous operations. The
model is smoothed with Kneser-Ney smoothing.

3 POS-based OSM Model

Part-of-speech information is often relevant for
translation. The word “stores” e.g. should be
translated to “Läden” if it is a noun and to “spei-
chert” when it is a verb. The sentence “The small
child cries” might be incorrectly translated to “Die
kleinen Kind weint” where the first three words
lack number, gender and case agreement.

In order to better learn such constraints which
are best expressed in terms of part of speech, we
add another OSM model as a new feature to the
log-linear model of our decoder, which is identi-
cal to the regular OSM except that all the words
have been replaced by their POS tags. The input
of the decoder consists of the input sentence with
automatically assigned part-of-speech tags. The
source and target part of the training data are also
automatically tagged and phrases with words and
POS tags on both sides are extracted. The POS-
based OSM model is only used in the German-to-
English and English-to-German experiments.4 So
far, we only used coarse POS tags without gender
and case information.

4 Constituent Parse Reordering

Our German-to-English system used constituent
parses for pre-ordering of the input. We parsed all
of the parallel German to English data available,
and the tuning, test and blind-test sets. We then
applied reordering rules to these parses. We used
the rules for reordering German constituent parses
of Collins et al. (2005) together with the additional
rules described by Fraser (2009). These are ap-
plied as a preprocess to all German data (training,
tuning and test data). To produce the parses, we
started with the generative BitPar parser trained on
the Tiger treebank with optimizations of the gram-
mar, as described by (Fraser et al., 2013). We then
performed self-training using the high quality Eu-
roparl corpus - we parsed it, and then retrained the
parser on the output.

4This work is ongoing and we will present detailed exper-
iments in the future.
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Following this, we performed linguistically-
informed compound splitting, using the system of
Fritzinger and Fraser (2010), which disambiguates
competing analyses from the high-recall Stuttgart
Morphological Analyzer SMOR (Schmid et al.,
2004) using corpus statistics (Koehn and Knight,
2003). We also split portmanteaus like German
“zum” formed from “zu dem” meaning “to the”.
Due to time constraints, we did not address Ger-
man inflection. See Weller et al. (2013) for further
details of the linguistic processing involved in our
German-to-English system.

5 Transliteration Mining/Handling
OOVs

The machine translation system fails to translate
out-of-vocabulary words (OOVs) as they are un-
known to the training data. Most of the OOVs
are named entities and simply passing them to
the output often produces correct translations if
source and target language use the same script.
If the scripts are different transliterating them to
the target language script could solve this prob-
lem. However, building a transliteration system
requires a list of transliteration pairs for training.
We do not have such a list and making one is a
cumbersome process. Instead, we use the unsu-
pervised transliteration mining system of Sajjad et
al. (2012) that takes a list of word pairs for train-
ing and extracts transliteration pairs that can be
used for the training of the transliteration system.
The procedure of mining transliteration pairs and
transliterating OOVs is described as follows:

We word-align the parallel corpus using
GIZA++ in both direction and symmetrize the
alignments using the grow-diag-final-and heuris-
tic. We extract all word pairs which occur as 1-
to-1 alignments (like Sajjad et al. (2011)) and later
refer to them as the list of word pairs. We train the
unsupervised transliteration mining system on the
list of word pairs and extract transliteration pairs.
We use these mined pairs to build a transliteration
system using the Moses toolkit. The translitera-
tion system is applied in a post-processing step
to transliterate OOVs. Please refer to Sajjad et
al. (2013) for further details on our transliteration
work.

6 Sub-sampling

Because of scalability problems we were not able
to use the entire data made available for build-

ing the translation model in some cases. We used
modified Moore-Lewis sampling (Axelrod et al.,
2011) for the language pairs es-en, en-es, en-fr,
and en-cs. In each case we included the News-
Commentary and Europarl corpora in their en-
tirety, and scored the sentences in the remaining
corpora (the selection corpus) using a filtering cri-
terion, adding 10% of the selection corpus to
the training data. We can not say with certainty
whether using the entire data will produce better
results with the OSM decoder. However, we know
that the same data used with the state-of-the-art
Moses produced worse results in some cases. The
experiments in Durrani et al. (2013c) showed that
MML filtering decreases the BLEU scores in es-
en (news-test13: Table 19) and en-cs (news-test12:
Table 14). We can therefore speculate that being
able to use all of the data may improve our results
somewhat.

7 Experiments

Parallel Corpus: The amount of bitext used for
the estimation of the translation models is: de–en
≈ 4.5M and ru–en ≈ 2M parallel sentences. We
were able to use all the available data for cs-to-en
(≈ 15.6M sentences). However, sub-sampled data
was used for en-to-cs (≈ 3M sentences), en-to-fr
(≈ 7.8M sentences) and es–en (≈ 3M sentences).

Monolingual Language Model: We used all
the available training data (including LDC Giga-
word data) for the estimation of monolingual lan-
guage models: en≈ 287.3M sentences, fr≈ 91M,
es ≈ 65.7M, cs ≈ 43.4M and ru ≈ 21.7M sen-
tences. All data except for ru-en and en-ru was
true-cased. We followed the approach of Schwenk
and Koehn (2008) by training language models
from each sub-corpus separately and then linearly
interpolated them using SRILM with weights op-
timized on the held-out dev-set. We concatenated
the news-test sets from four years (2008-2011) to
obtain a large dev-set5 in order to obtain more sta-
ble weights (Koehn and Haddow, 2012).

Decoder Settings: For each extracted input
phrase only 15-best translation options were used
during decoding.6 We used a hard reordering limit

5For Russian-English and English-Russian language
pairs, we divided the tuning-set news-test 2012 into two
halves and used the first half for tuning and second for test.

6We could not experiment with higher n-best translation
options due to a bug that was not fixed in time and hindered
us from scaling.
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of 16 words which disallows a jump beyond 16
source words. A stack size of 100 was used during
tuning and 200 for decoding the test set.

Results: Table 1 shows the uncased BLEU
scores along with the rank obtained on the sub-
mission matrix.7 We also show the results from
human evaluation.

Lang Evaluation
Automatic Human

BLEU Rank Win Ratio Rank
de-en 27.6 9/31 0.562 6-8
es-en 30.4 6/12 0.569 3-5
cs-en 26.4 3/11 0.581 2-3
ru-en 24.5 8/22 0.534 7-9
en-de 20.0 6/18
en-es 29.5 3/13 0.544 5-6
en-cs 17.6 14/22 0.517 4-6
en-ru 18.1 6/15 0.456 9-10
en-fr 30.0 7/26 0.541 5-9

Table 1: Translating into and from English

8 Conclusion

In this paper, we described our submissions to
WMT 13 in all the shared-task language pairs
(except for fr-en). We used an OSM-decoder,
which implements a model on n-gram of opera-
tions encapsulating lexical generation and reorder-
ing. For German-to-English we used constituent
parsing and applied linguistically motivated rules
to these parses, followed by compound splitting.
We additionally used a POS-based OSM model for
German-to-English and English-to-German exper-
iments. For Russian-English language pairs we
used unsupervised transliteration mining. Because
of scalability issues we could not use the entire
data in some language pairs and used only sub-
sampled data. Our Czech-to-English system that
was built from the entire data did better in both
automatic and human evaluation compared to the
systems that used sub-sampled data.
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Based Machine Translation. Computational Lin-
guistics, 32(4):527–549.

Franz J. Och and Hermann Ney. 2004. The Alignment
Template Approach to Statistical Machine Transla-
tion. Computational Linguistics, 30(1):417–449.

Hassan Sajjad, Alexander Fraser, and Helmut Schmid.
2011. An algorithm for unsupervised transliteration
mining with an application to word alignment. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies - Volume 1, Portland, USA.

Hassan Sajjad, Alexander Fraser, and Helmut Schmid.
2012. A statistical model for unsupervised and
semi-supervised transliteration mining. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers - Vol-
ume 1, Jeju, Korea.

Hassan Sajjad, Svetlana Smekalova, Nadir Durrani,
Alexander Fraser, and Helmut Schmid. 2013.
QCRI-MES Submission at WMT13: Using Translit-
eration Mining to Improve Statistical Machine
Translation. In Proceedings of the Eighth Workshop
on Statistical Machine Translation, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Helmut Schmid, Arne Fitschen, and Ulrich Heid.
2004. SMOR: A German Computational Morphol-
ogy Covering Derivation, Composition, and Inflec-
tion. In Proceedings of the Fourth International
Conference on Language Resources and Evaluation
(LREC).

Holger Schwenk and Philipp Koehn. 2008. Large and
Diverse Language Models for Statistical Machine
Translation. In International Joint Conference on
Natural Language Processing, pages 661–666, Jan-
uary 2008.

Andreas Stolcke. 2002. SRILM - An Extensible Lan-
guage Modeling Toolkit. In Intl. Conf. Spoken Lan-
guage Processing, Denver, Colorado.

Marion Weller, Max Kisselew, Svetlana Smekalova,
Alexander Fraser, Helmut Schmid, Nadir Durrani,
Hassan Sajjad, and Richárd Farkas. 2013. Munich-
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Abstract

We present the system we developed to
provide efficient large-scale feature-rich
discriminative training for machine trans-
lation. We describe how we integrate with
MapReduce using Hadoop streaming to
allow arbitrarily scaling the tuning set and
utilizing a sparse feature set. We report our
findings on German-English and Russian-
English translation, and discuss benefits,
as well as obstacles, to tuning on larger
development sets drawn from the parallel
training data.

1 Introduction

The adoption of discriminative learning methods
for SMT that scale easily to handle sparse and lex-
icalized features has been increasing in the last
several years (Chiang, 2012; Hopkins and May,
2011). However, relatively few systems take full
advantage of the opportunity. With some excep-
tions (Simianer et al., 2012), most still rely on
tuning a handful of common dense features, along
with at most a few thousand others, on a relatively
small development set (Cherry and Foster, 2012;
Chiang et al., 2009). While more features tuned
on more data usually results in better performance
for other NLP tasks, this has not necessarily been
the case for SMT.

Thus, our main focus in this paper is to improve
understanding into the effective use of sparse fea-
tures, and understand the benefits and shortcom-
ings of large-scale discriminative training. To
this end, we conducted experiments for the shared
translation task of the 2013 Workshop on Statis-
tical Machine Translation for the German-English
and Russian-English language pairs.

2 Baseline system

We use a hierarchical phrase-based decoder im-
plemented in the open source translation system
cdec1 (Dyer et al., 2010). For tuning, we use
Mr. MIRA2 (Eidelman et al., 2013), an open
source decoder agnostic implementation of online
large-margin learning in Hadoop MapReduce. Mr.
MIRA separates learning from the decoder, allow-
ing the flexibility to specify the desired inference
procedure through a simple text communication
protocol. The decoder receives input sentences
and weight updates from the learner, while the
learner receives k-best output with feature vectors
from the decoder.

Hadoop MapReduce (Dean and Ghemawat,
2004) is a popular distributed processing frame-
work that has gained widespread adoption, with
the advantage of providing scalable parallelization
in a manageable framework, taking care of data
distribution, synchronization, fault tolerance, as
well as other features. Thus, while we could oth-
erwise achieve the same level of parallelization, it
would be in a more ad-hoc manner.

The advantage of online methods lies in their
ability to deal with large training sets and high-
dimensional input representations while remain-
ing simple and offering fast convergence. With
Hadoop streaming, our system can take advantage
of commodity clusters to handle parallel large-
scale training while also being capable of running
on a single machine or PBS-managed batch clus-
ter.

System design To efficiently encode the infor-
mation that the learner and decoder require (source
sentence, reference translation, grammar rules) in
a manner amenable to MapReduce, i.e. avoiding
dependencies on “side data” and large transfers
across the network, we append the reference and

1http://cdec-decoder.org
2https://github.com/kho/mr-mira
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per-sentence grammar to each input source sen-
tence. Although this file’s size is substantial, it is
not a problem since after the initial transfer, it re-
sides on Hadoop distributed file system, and Map-
Reduce optimizes for data locality when schedul-
ing mappers.

A single iteration of training is performed as
a Hadoop streaming job. Each begins with a
map phase, with every parallel mapper loading the
same initial weights and decoding and updating
parameters on a shard of the data. This is followed
by a reduce phase, with a single reducer collect-
ing final weights from all mappers and computing
a weighted average to distribute as initial weights
for the next iteration.

Parameter Settings We tune our system toward
approximate sentence-level BLEU (Papineni et al.,
2002),3 and the decoder is configured to use cube
pruning (Huang and Chiang, 2007) with a limit
of 200 candidates at each node. For optimiza-
tion, we use a learning rate of η=1, regularization
strength of C=0.01, and a 500-best list for hope
and fear selection (Chiang, 2012) with a single
passive-aggressive update for each sentence (Ei-
delman, 2012).

Baseline Features We used a set of 16 stan-
dard baseline features: rule translation relative
frequency P (e|f), lexical translation probabilities
Plex(e|f) and Plex(f |e), target n-gram language
model P (e), penalties for source and target words,
passing an untranslated source word to the tar-
get side, singleton rule and source side, as well
as counts for arity-0,1, or 2 SCFG rules, the total
number of rules used, and the number of times the
glue rule is used.

2.1 Data preparation
For both languages, we used the provided Eu-
roparl and News Commentary parallel training
data to create the translation grammar neces-
sary for our model. For Russian, we addi-
tionally used the Common Crawl and Yandex
data. The data were lowercased and tokenized,
then filtered for length and aligned using the
GIZA++ implementation of IBM Model 4 (Och
and Ney, 2003) to obtain one-to-many align-
ments in both directions and symmetrized sing the
grow-diag-final-and method (Koehn et al., 2003).

3We approximate corpus BLEU by scoring sentences us-
ing a pseudo-document of previous 1-best translations (Chi-
ang et al., 2009).

We constructed a 5-gram language model us-
ing SRILM (Stolcke, 2002) from the provided
English monolingual training data and parallel
data with modified Kneser-Ney smoothing (Chen
and Goodman, 1996), which was binarized using
KenLM (Heafield, 2011). The sentence-specific
translation grammars were extracted using a suffix
array rule extractor (Lopez, 2007).

For German, we used the 3,003 sentences in
newstest2011 as our Dev set, and report results
on the 3,003 sentences of the newstest2012 Test
set using BLEU and TER (Snover et al., 2006).
For Russian, we took the first 2,000 sentences of
newstest2012 for Dev, and report results on the re-
maining 1,003. For both languages, we selected
1,000 sentences from the bitext to be used as an
additional testing set (Test2).

Compound segmentation lattices As German
is a morphologically rich language with produc-
tive compounding, we use word segmentation lat-
tices as input for the German translation task.
These lattices encode alternative segmentations of
compound words, allowing the decoder to auto-
matically choose which segmentation is best. We
use a maximum entropy model with recommended
settings to create lattices for the dev and test sets,
as well as for obtaining the 1-best segmentation of
the training data (Dyer, 2009).

3 Evaluation

This section describes the experiments we con-
ducted in moving towards a better understanding
of the benefits and challenges posed by large-scale
high-dimensional discriminative tuning.

3.1 Sparse Features

The ability to incorporate sparse features is the pri-
mary reason for the recent move away from Min-
imum Error Rate Training (Och, 2003), as well as
for performing large-scale discriminative training.
We include the following sparse Boolean feature
templates in our system in addition to the afore-
mentioned baseline features: rule identity (for ev-
ery unique rule in the grammar), rule shape (map-
ping rules to sequences of terminals and nontermi-
nals), target bigrams, lexical insertions and dele-
tions (for the top 150 unaligned words from the
training data), context-dependent word pairs (for
the top 300 word pairs in the training data), and
structural distortion (Chiang et al., 2008).
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Dev Test Test2 5k 10k 25k 50k
en 75k 74k 27k 132k 255k 634k 1258k
de 74k 73k 26k 133k 256k 639k 1272k

Table 1: Corpus statistics in tokens for German.

Dev Test Test2 15k
ru 46k 24k 24k 350k
en 50k 27k 25k 371k

Table 2: Corpus statistics in tokens for
Russian.

Set # features Tune Test
↑BLEU ↑BLEU ↓TER

de-en 16 22.38 22.69 60.61
+sparse 108k 23.86 23.01 59.89

ru-en 16 30.18 29.89 49.05
+sparse 77k 32.40 30.81 48.40

Table 3: Results with the addition of sparse fea-
tures for German and Russian.

All of these features are generated from the
translation rules on the fly, and thus do not have
to be stored as part of the grammar. To allow for
memory efficiency while scaling the training data,
we hash all the lexical features from their string
representation into a 64-bit integer.

Altogether, these templates result in millions of
potential features, thus how to select appropriate
features, and how to properly learn their weights
can have a large impact on the potential benefit.

3.2 Adaptive Learning Rate
The passive-aggressive update used in MIRA has a
single learning rate η for all features, which along
with α limits the amount each feature weight can
change at each update. However, since the typical
dense features (e.g., language model) are observed
far more frequently than sparse features (e.g., rule
identity), it has been shown to be advantageous
to use an adaptive per-feature learning rate that
allows larger steps for features that do not have
much support (Green et al., 2013; Duchi et al.,
2011). Essentially, instead of having a single pa-
rameter η,

α← min

(
C,

cost(y′)−w>(f(y+)− f(y′))

‖f(y+)− f(y′)‖2
)

w← w + αη
(
f(y+)− f(y′)

)

we instead have a vector Σ with one entry for each
feature weight:

Σ−1 ← Σ−1 + λdiag
(
ww>

)

w← w + αΣ1/2
(
f(y+)− f(y′)

)
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Figure 1: Learning curves for tuning when using
a single step size (η) versus different per-feature
learning rates.

In practice, this update is very similar to that of
AROW (Crammer et al., 2009; Chiang, 2012).

Figure 1 shows learning curves for sparse mod-
els with a single learning rate, and adaptive learn-
ing with λ=0.01 and λ=0.1, with associated re-
sults on Test in Table 4.4 As can be seen, using
a single η produces almost no gain on Dev. How-
ever, while both settings using an adaptive rate fare
better, the proper setting of λ is important. With
λ=0.01 we observe 0.5 BLEU gain over λ=0.1 in
tuning, which translates to a small gain on Test.
Henceforth, we use an adaptive learning rate with
λ=0.01 for all experiments.

Table 3 presents baseline results for both lan-
guages. With the addition of sparse features, tun-
ing scores increase by 1.5 BLEU for German, lead-
ing to a 0.3 BLEU increase on Test, and 2.2 BLEU

for Russian, with 1 BLEU increase on Test. The
majority of active features for both languages are
rule id (74%), followed by target bigrams (14%)
and context-dependent word pairs (11%).

3.3 Feature Selection

As the tuning set size increases, so do the num-
ber of active features. This may cause practi-
cal problems, such as reduced speed of computa-
tion and memory issues. Furthermore, while some

4All sparse models are initialized with the same tuned
baseline weights. Learning rates are local to each mapper.
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Adaptive # feat. Tune Test
↑BLEU ↑BLEU ↓TER

none 74k 22.75 22.87 60.19
λ=0.01 108k 23.86 23.01 59.89
λ=0.1 62k 23.32 22.92 60.09

Table 4: Results with different λ settings for using a per-feature learning rate with sparse features.

Set # feat. Tune Test
↑BLEU ↑BLEU ↓TER

all 510k 32.99 22.36 59.26
top 200k 200k 32.96 22.35 59.29

all 373k 34.26 28.84 49.29
top 200k 200k 34.45 28.98 49.30

Table 5: Comparison of using all features versus
top k selection.

sparse features will generalize well, others may
not, thereby incurring practical costs with no per-
formance benefit. Simianer et al. (2012) recently
explored `1/`2 regularization for joint feature se-
lection for SMT in order to improve efficiency and
counter overfitting effects. When performing par-
allel learning, this allows for selecting a reduced
set of the top k features at each iteration that are
effective across all learners.

Table 5 compares selecting the top 200k fea-
tures versus no selection for a larger German and
Russian tuning set (§3.4). As can be seen, we
achieve the same performance with the top 200k
features as we do when using double that amount,
while the latter becomes increasing cumbersome
to manage. Therefore, we use a top 200k selection
for the remainder of this work.

3.4 Large-Scale Training

In the previous section, we saw that learning
sparse features on the small development set leads
to substantial gains in performance. Next, we
wanted to evaluate if we can obtain further gains
by scaling the tuning data to learn parameters di-
rectly on a portion of the training bitext. Since the
bitext is used to learn rules for translation, using
the same parallel sentences for grammar extrac-
tion as well as for tuning feature weights can lead
to severe overfitting (Flanigan et al., 2013). To
avoid this issue, we used a jackknifing method to
split the training data into n = 10 folds, and built
a translation system on n−1 folds, while sampling

sentences from the News Commentary portion of
the held-out fold to obtain tuning sets from 5,000
to 50,000 sentences for German, and 15,000 sen-
tences for Russian.

Results for large-scale training for German are
presented in Table 6. Although we cannot com-
pare the tuning scores across different size sets,
we can see that tuning scores for all sets improve
substantially with sparse features. Unfortunately,
with increasing tuning set size, we see very little
improvement in Test BLEU and TER with either
feature set. Similar findings for Russian are pre-
sented in Table 7. Introducing sparse features im-
proves performance on each set, respectively, but
Dev always performs better on Test.

While tuning on Dev data results in better BLEU

on Test than when tuning on the larger sets, it is
important to note that although we are able to tune
more features on the larger bitext tuning sets, they
are not composed of the same genre as the Tune
and Test sets, resulting in a domain mismatch.

This phenomenon is further evident in German
when testing each model on Test2, which is se-
lected from the bitext, and is thus closer matched
to the larger tuning sets, but is separate from both
the parallel data used to build the translation model
and the tuning sets. Results on Test2 clearly show
significant improvement using any of the larger
tuning sets versus Dev for both the baseline and
sparse features. The 50k sparse setting achieves
almost 1 BLEU and 2 TER improvement, showing
that there are significant differences between the
Dev/Test sets and sets drawn from the bitext.

For Russian, we amplified the effects by select-
ing Test2 from the portion of the bitext that is sepa-
rate from the tuning set, but is among the sentences
used to create the translation model. The effects of
overfitting are markedly more visible here, as there
is almost a 7 BLEU difference between tuning on
Dev and the 15k set with sparse features. Further-
more, it is interesting to note when looking at Dev
that using sparse features has a significant nega-
tive impact, as the baseline tuned Dev performs
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Tuning Test
↑BLEU ↓TER

5k 22.81 59.90
10k 22.77 59.78
25k 22.88 59.77
50k 22.86 59.76

Table 8: Results for German with 2 iterations of
tuning on Dev after tuning on larger set.

reasonably well, while the introduction of sparse
features leads to overfitting the specificities of the
Dev/Test genre, which are not present in the bitext.

We attempted two strategies to mitigate this
problem: combining the Dev set with the larger
bitext tuning set from the beginning, and tuning
on a larger set to completion, and then running 2
additional iterations of tuning on the Dev set using
the learned model. Results for tuning on Dev and a
larger set together are presented in Table 7 for Rus-
sian and Table 6 for German. As can be seen, the
resulting model improves somewhat on the other
genre and strikes a middle ground, although it is
worse on Test than Dev.

Table 8 presents results for tuning several ad-
ditional iterations after learning a model on the
larger sets. Although this leads to gains of around
0.5 BLEU on Test, none of the models outperform
simply tuning on Dev. Thus, neither of these two
strategies seem to help. In future work, we plan
to forgo randomly sampling the tuning set from
the bitext, and instead actively select the tuning
set based on similarity to the test set.

4 Conclusion

We explored strategies for scaling learning for
SMT to large tuning sets with sparse features.
While incorporating an adaptive per-feature learn-
ing rate and feature selection, we were able to
use Hadoop to efficiently take advantage of large
amounts of data. Although discriminative training
on larger sets still remains problematic, having the
capability to do so remains highly desirable, and
we plan to continue exploring methods by which
to leverage the power of the bitext effectively.
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Abstract

This paper describes the TALP participa-
tion in the WMT13 evaluation campaign.
Our participation is based on the combi-
nation of several statistical machine trans-
lation systems: based on standard phrase-
based Moses systems. Variations include
techniques such as morphology genera-
tion, training sentence filtering, and do-
main adaptation through unit derivation.
The results show a coherent improvement
on TER, METEOR, NIST, and BLEU
scores when compared to our baseline sys-
tem.

1 Introduction

The TALP-UPC center (Center for Language and
Speech Technologies and Applications at Univer-
sitat Politècnica de Catalunya) focused on the En-
glish to Spanish translation of the WMT13 shared
task.

Our primary (contrastive) run is an internal
system selection comprised of different train-
ing approaches (without CommonCrawl, unless
stated): (a) Moses Baseline (Koehn et al.,
2007b), (b) Moses Baseline + Morphology Gener-
ation (Formiga et al., 2012b), (c) Moses Baseline
+ News Adaptation (Henrı́quez Q. et al., 2011),
(d) Moses Baseline + News Adaptation + Mor-
phology Generation , and (e) Moses Baseline +
News Adaptation + Filtered CommonCrawl Adap-
tation (Barrón-Cedeño et al., 2013). Our sec-
ondary run includes is the full training strategy
marked as (e) in the previous description.

The main differences with respect to our last
year’s participation (Formiga et al., 2012a) are: i)
the inclusion of the CommonCrawl corpus, using

a sentence filtering technique and the system com-
bination itself, and ii) a system selection scheme
to select the best translation among the different
configurations.

The paper is organized as follows. Section 2
presents the phrase-based system and the main
pipeline of our baseline system. Section 3 de-
scribes the our approaches to improve the baseline
system on the English-to-Spanish task (special at-
tention is given to the approaches that differ from
last year). Section 4 presents the system combi-
nation approach once the best candidate phrase of
the different subsystems are selected. Section 5
discusses the obtained results considering both in-
ternal and official test sets. Section 6 includes con-
clusions and further work.

2 Baseline system: Phrase-Based SMT

Our contribution is a follow up of our last year par-
ticipation (Formiga et al., 2012a), based on a fac-
tored Moses from English to Spanish words plus
their Part-of-Speech (POS). Factored corpora aug-
ments words with additional information, such as
POS tags or lemmas. In that case, factors other
than surface (e.g. POS) are usually less sparse, al-
lowing the construction of factor-specific language
models with higher-order n-grams. Such language
models can help to obtain syntactically more cor-
rect outputs.

We used the standard models available in Moses
as feature functions: relative frequencies, lexi-
cal weights, word and phrase penalties, wbe-msd-
bidirectional-fe reordering models, and two lan-
guage models (one for surface and one for POS
tags). Phrase scoring was computed using Good-
Turing discounting (Foster et al., 2006).

As aforementioned, we developed five factored
Moses-based independent systems with different
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approaches. We explain them in Section 3. As
a final decision, we applied a system selection
scheme (Formiga et al., 2013; Specia et al., 2010)
to consider the best candidate for each sentence,
according to human trained quality estimation
(QE) models. We set monotone reordering of
the punctuation signs for the decoding using the
Moses wall feature.

We tuned the systems using the Moses
MERT (Och, 2003) implementation. Our focus
was on minimizing the BLEU score (Papineni et
al., 2002) of the development set. Still, for ex-
ploratory purposes, we tuned configuration (c) us-
ing PRO (Hopkins and May, 2011) to set the ini-
tial weights at every iteration of the MERT algo-
rithm. However, it showed no significant differ-
ences compared to the original MERT implemen-
tation.

We trained the baseline system using all
the available parallel corpora, except for
common-crawl. That is, European Parlia-
ment (EPPS) (Koehn, 2005), News Commentary,
and United Nations. Regarding the monolingual
data, there were more News corpora organized
by years for Spanish. The data is available at
the Translation Task’s website1. We used all
the News corpora to busld the language model
(LM). Firstly, a LM was built for every corpus
independently. Afterwards, they were combined
to produce de final LM.

For internal testing we used the News 2011 and
News 2012 data and concatenated the remaining
three years of News data as a single parallel corpus
for development.

We processed the corpora as in our participa-
tion to WMT12 (Formiga et al., 2012a). Tok-
enization and POS-tagging in both Spanish and
English was obtained with FreeLing (Padró et al.,
2010). Stemming was carried out with Snow-
ball (Porter, 2001). Words were conditionally case
folded based on their POS: proper nouns and ad-
jectives were separated from other categories to
determine whether a string should be fully folded
(no special property), partially folded (noun or ad-
jective) or not folded at all in (acronym).

Bilingual corpora was filtered with the clean-
corpus-n script of Moses (Koehn et al., 2007a), re-
moving those pairs in which a sentence was longer
than 70. For the CommonCrawl corpus we used a
more complex filtering step (cf. Section 3.3).

1http://www.statmt.org/wmt13/translation-task.html

Postprocessing included two special scripts to
recover contractions and clitics. Detruecasing was
done forcing the capitals after the punctuation
signs. Furthermore we used an additional script in
order to check the casing of output names with re-
spect to the source. We reused our language mod-
els and alignments (with stems) from WMT12.

3 Improvement strategies

We tried three different strategies to improve the
baseline system. Section 3.1 shows a strategy
based on morphology simplification plus genera-
tion. Its aim is dealing with the problems raised
by morphology-rich languages, such as Spanish.
Section 3.2 presents a domain–adaptation strategy
that consists of deriving new units. Section 3.3
presents an advanced strategy to filter the good bi-
sentences from the CommonCrawl corpus, which
might be useful to perform the domain adaptation.

3.1 Morphology generation

Following the success of our WMT12 participa-
tion (Formiga et al., 2012a), our first improve-
ment is based on the morphology generalization
and generation approach (Formiga et al., 2012b).
We focus our strategy on simplifying verb forms
only.

The approach first translates into Spanish sim-
plified forms (de Gispert and Mariño, 2008). The
final inflected forms are predicted through a mor-
phology generation step, based on the shallow
and deep-projected linguistic information avail-
able from both source and target language sen-
tences.

Lexical sparseness is a crucial aspect to deal
with for an open-domain robust SMT when trans-
lating to morphology-rich languages (e.g. Span-
ish) . We knew beforehand (Formiga et al., 2012b)
that morphology generalization is a good method
to deal with generic translations and it provides
stability to translations of the training domain.

Our morphology prediction (generation) sys-
tems are trained with the WMT13 corpora (Eu-
roparl, News, and UN) together with noisy data
(OpenSubtitles). This combination helps to obtain
better translations without compromising the qual-
ity of the translation models. These kind of mor-
phology generation systems are trained with a rel-
atively short amount of parallel data compared to
standard SMT training corpora.

Our main enhancement to this strategy is the
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addition of source-projected deep features to the
target sentence in order to perform the morphol-
ogy prediction. These features are Dependency
Features and Semantic Role Labelling, obtained
from the source sentence through Lund Depen-
dency Parser2. These features are then projected
to the target sentence as explained in (Formiga et
al., 2012b).

Projected deep features are important to pre-
dict the correct verb morphology from clean and
fluent text. However, the projection of deep fea-
tures is sentence-fluency sensitive, making it un-
reliable when the baseline MT output is poor. In
other words, the morphology generation strategy
becomes more relevant with high-quality MT de-
coders, as their output is more fluent, making the
shallow and deep features more reliable classifier
guides.

3.2 Domain Adaptation through pivot
derived units

Usually the WMT Translation Task focuses on
adapting a system to a news domain, offering an
in-domain parallel corpus to work with. How-
ever this corpus is relatively small compared to
the other corpora. In our previous participation
we demonstrated the need of performing a more
aggressive domain adaptation strategy. Our strat-
egy was based on using in-domain parallel data to
adapt the translation model, but focusing on the
decoding errors that the out-of-domain baseline
system makes when translating the in-domain cor-
pus.

The idea is to identify the system mistakes and
use the in-domain data to learn how to correct
them. To that effect, we interpolate the transla-
tion models (phrase and lexical reordering tables)
with a new adapted translation model with derived
units. We obtained the units identifying the mis-
matching parts between the non-adapted transla-
tion and the actual reference (Henrı́quez Q. et al.,
2011). This derivation approach uses the origi-
nal translation as a pivot to find a word-to-word
alignment between the source side and the target
correction (word-to-word alignment provided by
Moses during decoding).

The word-to-word monolingual alignment be-
tween output translation target correction was ob-
tained combining different probabilities such as
i)lexical identity, ii) TER-based alignment links,

2http://nlp.cs.lth.se/software/

Corpus Sent. Words Vocab. avg.len.

Original EN 1.48M 29.44M 465.1k 19.90
ES 31.6M 459.9k 21.45

Filtered EN 0.78M 15.3M 278.0k 19.72
ES 16.6M 306.8k 21.37

Table 1: Commoncrawl corpora statistics for
WMT13 before and after filtering.

iii) lexical model probabilities, iv) char-based Lev-
enshtein distance between tokens and v) filtering
out those alignments from NULL to a stop word
(p = −∞).

We empirically set the linear interpolation
weight as w = 0.60 for the baseline translation
models and w = 0.40 for the derived units trans-
lations models. We applied the pivot derived units
strategy to the News domain and to the filtered
Commoncrawl corpus (cf. Section 5). The proce-
dure to filter out the Commoncrawl corpus is ex-
plained next.

3.3 CommonCrawl Filtering

We used the CommonCrawl corpus, provided for
the first time by the organization, as an impor-
tant source of information for performing aggres-
sive domain adaptation. To decrease the impact
of the noise in the corpus, we performed an auto-
matic pre-selection of the supposedly more correct
(hence useful) sentence pairs: we applied the au-
tomatic quality estimation filters developed in the
context of the FAUST project3. The filters’ pur-
pose is to identify cases in which the post-editions
provided by casual users really improve over auto-
matic translations.

The adaptation to the current framework is as
follows. Example selection is modelled as a bi-
nary classification problem. We consider triples
(src, ref , trans), where src and ref stand for the
source-reference sentences in the CommonCrawl
corpus and trans is an automatic translation of the
source, generated by our baseline SMT system. A
triple is assigned a positive label iff ref is a bet-
ter translation from src than trans. That is, if the
translation example provided by CommonCrawl is
better than the output of our baseline SMT system.

We used four feature sets to characterize the
three sentences and their relationships: sur-
face, back-translation, noise-based and similarity-
based. These features try to capture (a) the simi-
larity between the different texts on the basis of

3http://www.faust-fp7.eu
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diverse measures, (b) the length of the different
sentences (including ratios), and (c) the likelihood
of a source or target text to include noisy text.4

Most of them are simple, fast-calculation and
language-independent features. However, back-
translation features require that trans and ref are
back-translated into the source language. We did
it by using the TALP es-en system from WMT12.

Considering these features, we trained lin-
ear Support Vector Machines using SVMlight

(Joachims, 1999). Our training collection was the
FFF+ corpus, with +500 hundred manually anno-
tated instances (Barrón-Cedeño et al., 2013). No
adaptation to CommonCrawl was performed. To
give an idea, classification accuracy over the test
partition of the FFF+ corpus was only moderately
good (∼70%). However, ranking by classification
score a fresh set of over 6,000 new examples, and
selecting the top ranked 50% examples to enrich a
state-of-the-art SMT system, allowed us to signifi-
cantly improve translation quality (Barrón-Cedeño
et al., 2013).

For WMT13, we applied these classifiers to
rank the CommonCrawl translation pairs and then
selected the top 53% instances to be processed by
the domain adaptation strategy. Table 1 displays
the corpus statistics before and after filtering.

4 System Combination

We approached system combination as a system
selection task. More concretely, we applied Qual-
ity Estimation (QE) models (Specia et al., 2010;
Formiga et al., 2013) to select the highest qual-
ity translation at sentence level among the trans-
lation candidates obtained by our different strate-
gies. The QE models are trained with human
supervision, making use of no system-dependent
features.

In a previous study (Formiga et al., 2013),
we showed the plausibility of building reliable
system-independent QE models from human an-
notations. This type of task should be addressed
with a pairwise ranking strategy, as it yields bet-
ter results than an absolute quality estimation ap-
proach (i.e., regression) for system selection. We
also found that training the quality estimation
models from human assessments, instead of au-
tomatic reference scores, helped to obtain better

4We refer the interested reader to (Barrón-Cedeño et al.,
2013) for a detailed description of features, process, and eval-
uation.

models for system selection for both i) mimicking
the behavior of automatic metrics and ii) learning
the human behavior when ranking different trans-
lation candidates.

For training the QE models we used the data
from the WMT13 shared task on quality estima-
tion (System Selection Quality Estimation at Sen-
tence Level task5), which contains the test sets
from other WMT campaigns with human assess-
ments. We used five groups of features, namely:
i) QuestQE: 17 QE features provided by the Quest
toolkit6; ii) AsiyaQE: 26 QE features provided by
the Asiya toolkit for MT evaluation (Giménez and
Màrquez, 2010a); iii) LM (and LM-PoS) perplex-
ities trained with monolingual data; iv) PR: Clas-
sical lexical-based measures -BLEU (Papineni et
al., 2002), NIST (Doddington, 2002), and ME-
TEOR (Denkowski and Lavie, 2011)- computed
with a pseudo-reference approach, that is, using
the other system candidates as references (Sori-
cut and Echihabi, 2010); and v) PROTHER: Ref-
erence based metrics provided by Asiya, including
GTM, ROUGE, PER, TER (Snover et al., 2008),
and syntax-based evaluation measures also with a
pseudo-reference approach.

We trained a Support Vector Machine ranker by
means of pairwise comparison using the SVMlight

toolkit (Joachims, 1999), but with the “-z p” pa-
rameter, which can provide system rankings for
all the members of different groups. The learner
algorithm was run according to the following pa-
rameters: linear kernel, expanding the working set
by 9 variables at each iteration, for a maximum of
50,000 iterations and with a cache size of 100 for
kernel evaluations. The trade-off parameter was
empirically set to 0.001.

Table 2 shows the contribution of different fea-
ture groups when training the QE models. For
evaluating performance, we used the Asiya nor-
malized linear combination metric ULC (Giménez
and Màrquez, 2010b), which combines BLEU,
NIST, and METEOR (with exact, paraphrases and
synonym variants). Within this scenario, it can
be observed that the quality estimation features
(QuestQE and AsiyaQE) did not obtain good re-
sults, perhaps because of the high similarity be-
tween the test candidates (Moses with different
configurations) in contrast to the strong differ-
ence between the candidates in training (Moses,

5http://www.quest.dcs.shef.ac.uk/wmt13 qe.html
6http://www.quest.dcs.shef.ac.uk
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Features Asiya ULC
WMT’11 WMT’12 AVG WMT’13

QuestQE 60.46 60.64 60.55 60.06
AsiyaQE 61.04 60.89 60.97 60.29

QuestQE+AsiyaQE 60.86 61.07 60.96 60.42
LM 60.84 60.63 60.74 60.37

QuestQE+AsiyaQE+LM 60.80 60.55 60.67 60.21
QuestQE+AsiyaQE+PR 60.97 61.12 61.05 60.54

QuestQE+AsiyaQE+PR+PROTHER 61.05 61.19 61.12 60.69
PR 61.24 61.08 61.16 61.04

PR+PROTHER 61.19 61.16 61.18 60.98
PR+PROTHER+LM 61.11 61.29 61.20 61.03

QuestQE+AsiyaQE+PR+PROTHER+LM 60.70 60.88 60.79 60.14

Table 2: System selection scores (ULC) obtained using QE models trained with different groups of
features. Results displayed for WMT11, WMT12 internal tests, their average, and the WMT13 test

EN→ES BLEU TER
wmt13 Primary 29.5 0.586
wmt13 Secondary 29.4 0.586

Table 4: Official automatic scores for the WMT13
English↔Spanish translations.

RBMT, Jane, etc.). On the contrary, the pseudo-
reference-based features play a crucial role in the
proper performance of the QE model, confirming
the hypothesis that PR features need a clear dom-
inant system to be used as reference. The PR-
based configurations (with and without LM) had
no big differences between them. We choose the
best AVG result for the final system combination:
PR+PROTHER+LM, which it is consistent with
the actual WMT13 evaluated afterwards.

5 Results

Evaluations were performed considering different
quality measures: BLEU, NIST, TER, and ME-
TEOR in addition to an informal manual analy-
sis. This manifold of metrics evaluates distinct as-
pects of the translation. We evaluated both over
the WMT11 and WMT12 test sets as internal in-
dicators of our systems. We also give our perfor-
mance on the WMT13 test dataset.

Table 3 presents the obtained results for the
different strategies: (a) Moses Baseline (w/o
commoncrawl) (b) Moses Baseline+Morphology
Generation (w/o commoncrawl) (c) Moses Base-
line+News Adaptation through pivot based align-
ment (w/o commoncrawl) (d) Moses Baseline +

News Adaptation (b) + Morphology Generation
(c) (e) Moses Baseline + News Adaptation (b) +
Filtered CommonCrawl Adaptation.

The official results are in Table 4. Our primary
(contrastive) run is the system combination strat-
egy whereas our secondary run is the full training
strategy marked as (e) on the system combination.
Our primary system was ranked in the second clus-
ter out of ten constrained systems in the official
manual evaluation.

Independent analyzes of the improvement
strategies show that the highest improvement
comes from the CommonCrawl Filtering + Adap-
tation strategy (system e). The second best strat-
egy is the combination of the morphology pre-
diction system plus the news adaptation system.
However, for the WMT12 test the News Adap-
tation strategy contributes to main improvement
whereas for the WMT13 this major improvement
is achieved with the morphology strategy. Analyz-
ing the distance betweem each test set with respect
to the News and CommonCrawl domain to further
understand the behavior of each strategy seems an
interesting future work. Specifically, for further
contrasting the difference in the morphology ap-
proach, it would be nice to analyze the variation in
the verb inflection forms. Hypothetically, the per-
son or the number of the verb forms used may have
a higher tendency to be different in the WMT13
test set, implying that our morphology approach is
further exploited.

Regarding the system selection step (internal
WMT12 test), the only automatic metric that has
an improvement is TER. However, TER is one of
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EN→ES BLEU NIST TER METEOR
wmt12 Baseline 32.97 8.27 49.27 49.91
wmt12 + Morphology Generation 33.03 8.29 49.02 50.01
wmt12 + News Adaptation 33.22 8.31 49.00 50.16
wmt12 + News Adaptation + Morphology Generation 33.29 8.32 48.83 50.29
wmt12 + News Adaptation + Filtered CommonCrawl Adaptation 33.61 8.35 48.82 50.52
wmt12 System Combination 33.43 8.34 48.78 50.44
wmt13 Baseline 29.02 7.72 51.92 46.96
wmt13 Morphology Generation 29.35 7.73 52.04 47.04
wmt13 News Adaptation 29.19 7.74 51.91 47.07
wmt13 News Adaptation + Morphology Generation 29.40 7.74 51.96 47.12
wmt13 News Adaptation + Filtered CommonCrawl Adaptation 29.47 7.77 51.82 47.22
wmt13 System Combination 29.54 7.77 51.76 47.34

Table 3: Automatic scores for English→Spanish translations.

the most reliable metrics according to human eval-
uation. Regarding the actual WMT13 test, the sys-
tem selection step is able to overcome all the auto-
matic metrics.

6 Conclusions and further work

This paper described the TALP-UPC participa-
tion for the English-to-Spanish WMT13 transla-
tion task. We applied the same systems as in last
year, but enhanced with new techniques: sentence
filtering and system combination.

Results showed that both approaches performed
better than the baseline system, being the sentence
filtering technique the one that most improvement
reached in terms of all the automatic quality indi-
cators: BLEU, NIST, TER, and METEOR. The
system combination was able to outperform the
independent systems which used morphological
knowledge and/or domain adaptation techniques.

As further work would like to focus on further
advancing on the morphology-based techniques.
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Lluı́s Formiga, Lluı́s Màrquez, and Jaume Pujantell.
2013. Real-life translation quality estimation for mt
system selection. In Proceedings of 14th Machine
Translation Summit (MT Summit), Nice, France,
September. EAMT.

George Foster, Roland Kuhn, and Howard Johnson.
2006. Phrasetable smoothing for statistical machine
translation. In Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’06, pages 53–61, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.
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Abstract

We present two English-to-Czech systems
that took part in the WMT 2013 shared
task: TECTOMT and PHRASEFIX. The
former is a deep-syntactic transfer-based
system, the latter is a more-or-less stan-
dard statistical post-editing (SPE) applied
on top of TECTOMT. In a brief survey, we
put SPE in context with other system com-
bination techniques and evaluate SPE vs.
another simple system combination tech-
nique: using synthetic parallel data from
TECTOMT to train a statistical MT sys-
tem (SMT). We confirm that PHRASEFIX

(SPE) improves the output of TECTOMT,
and we use this to analyze errors in TEC-
TOMT. However, we also show that ex-
tending data for SMT is more effective.

1 Introduction

This paper describes two submissions to the
WMT 2013 shared task:1 TECTOMT – a deep-
syntactic tree-to-tree system and PHRASEFIX –
statistical post-editing of TECTOMT using Moses
(Koehn et al., 2007). We also report on exper-
iments with another hybrid method where TEC-
TOMT is used to produce additional (so-called
synthetic) parallel training data for Moses. This
method was used in CU-BOJAR and CU-DEPFIX

submissions, see Bojar et al. (2013).

2 Overview of Related Work

The number of approaches to system combination
is enormous. We very briefly survey those that
form the basis of our work reported in this paper.

2.1 Statistical Post-Editing
Statistical post-editing (SPE, see e.g. Simard et al.
(2007), Dugast et al. (2009)) is a popular method

1http://www.statmt.org/wmt13

for improving outputs of a rule-based MT sys-
tem. In principle, SPE could be applied to any
type of first-stage system including a statistical
one (Oflazer and El-Kahlout, 2007; Béchara et al.,
2011), but most benefit could be expected from
post-editing rule-based MT because of the com-
plementary nature of weaknesses and advantages
of rule-based and statistical approaches.

SPE is usually done with an off-the-shelf SMT
system (e.g. Moses) which is trained on output of
the first-stage system aligned with reference trans-
lations of the original source text. The goal of SPE
is to produce translations that are better than both
the first-stage system alone and the second-stage
SMT trained on the original training data.

Most SPE approaches use the reference trans-
lations from the original training parallel corpus
to train the second-stage system. In contrast,
Simard et al. (2007) use human-post-edited first-
stage system outputs instead. Intuitively, the lat-
ter approach achieves better results because the
human-post-edited translations are closer to the
first-stage output than the original reference trans-
lations. Therefore, SPE learns to perform the
changes which are needed the most. However, cre-
ating human-post-edited translations is laborious
and must be done again for each new (version of
the) first-stage system in order to preserve its full
advantage over using the original references.2

Rosa et al. (2013) have applied SPE on
English→Czech SMT outputs. They have used
the approach introduced by Béchara et al. (2011),
but no improvement was achieved. However, their
rule-based post-editing were found helpful.

Our SPE setting (called PHRASEFIX) uses
TECTOMT as the first-stage system and Moses as
the second-stage system. Ideally, TECTOMT pre-

2If more reference translations are available, it would be
beneficial to choose such references for training SPE which
are most similar to the first-stage outputs. However, in our
experiments only one reference is available.
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serves well-formed syntactic sentence structures,
and the SPE (Moses) fixes low fluency wordings.

2.2 MT Output Combination
An SPE system is trained to improve the output
of a single first-stage system. Sometimes, more
(first-stage) systems are available, and we would
like to combine them. In MT output selection,
for each sentence one system’s translation is se-
lected as the final output. In MT output combi-
nation, the final translation of each sentence is a
combination of phrases from several systems. In
both approaches, the systems are treated as black
boxes, so only their outputs are needed. In the
simplest setting, all systems are supposed to be
equally good/reliable, and the final output is se-
lected by voting, based on the number of shared n-
grams or language model scores. The number and
the identity of the systems to be combined there-
fore do not need to be known in advance. More so-
phisticated methods learn parameters/weights spe-
cific for the individual systems. These methods
are based e.g. on confusion networks (Rosti et al.,
2007; Matusov et al., 2008) and joint optimization
of word alignment, word order and lexical choice
(He and Toutanova, 2009).

2.3 Synthetic Data Combination
Another way to combine several first-stage sys-
tems is to employ a standard SMT toolkit, e.g.
Moses. The core of the idea is to use the n first-
stage systems to prepare synthetic parallel data
and include them in the training data for the SMT.

Corpus Combination (CComb) The easiest
method is to use these n newly created paral-
lel corpora as additional training data, i.e. train
Moses on a concatenation of the original paral-
lel sentences (with human-translated references)
and the new parallel sentences (with machine-
translated pseudo-references).

Phrase Table Combination (PTComb) An-
other method is to extract n phrase tables in
addition to the original phrase table and ex-
ploit the Moses option of multiple phrase tables
(Koehn and Schroeder, 2007). This means that
given the usual five features (forward/backward
phrase/lexical log probability and phrase penalty),
we need to tune 5 · (n+1) features. Because such
MERT (Och, 2003) tuning may be unstable for
higher n, several methods were proposed where
the n+1 phrase tables are merged into a single one

(Eisele et al., 2008; Chen et al., 2009). Another is-
sue of phrase table combination is that the same
output can be achieved with phrases from several
phrase tables, leading to spurious ambiguity and
thus less diversity in n-best lists of a given size
(see Chen et al. (2009) for one possible solution).
CComb does not suffer from the spurious ambi-
guity issue, but it does not allow to tune special
features for the individual first-stage systems.

In our experiments, we use both CComb and
PTComb approaches. In PTComb, we use TEC-
TOMT as the only first-stage system and Moses as
the second-stage system. We use the two phrase
tables separately (the merging is not needed; 5 · 2
is still a reasonable number of features in MERT).
In CComb, we concatenate English↔Czech par-
allel corpus with English↔“synthetic Czech” cor-
pus translated from English using TECTOMT. A
single phrase table is created from the concate-
nated corpus.

3 TECTOMT

TECTOMT is a linguistically-motivated tree-to-
tree deep-syntactic translation system with trans-
fer based on Maximum Entropy context-sensitive
translation models (Mareček et al., 2010) and
Hidden Tree Markov Models (Žabokrtský and
Popel, 2009). It employs some rule-based compo-
nents, but the most important tasks in the analysis-
transfer-synthesis pipeline are based on statistics
and machine learning. There are three main rea-
sons why it is a suitable candidate for SPE and
other hybrid methods.
• TECTOMT has quite different distribution

and characteristics of errors compared to
standard SMT (Bojar et al., 2011).
• TECTOMT is not tuned for BLEU using

MERT (its development is rather driven by hu-
man inspection of the errors although different
setups are regularly evaluated with BLEU as an
additional guidance).
• TECTOMT uses deep-syntactic dependency

language models in the transfer phase, but it
does not use standard n-gram language mod-
els on the surface forms because the current syn-
thesis phase supports only 1-best output.
The version of TECTOMT submitted to WMT

2013 is almost identical to the WMT 2012 version.
Only a few rule-based components (e.g. detection
of surface tense of English verbs) were refined.
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Corpus Sents
Tokens

Czech English
CzEng 15M 205M 236M
tmt(CzEng) 15M 197M 236M
Czech Web Corpus 37M 627M –
WMT News Crawl 25M 445M –

Table 1: Statistics of used data.

4 Common Experimental Setup

All our systems (including TECTOMT) were
trained on the CzEng (Bojar et al., 2012) par-
allel corpus (development and evaluation sub-
sets were omitted), see Table 1 for statistics.
We translated the English side of CzEng with
TECTOMT to obtain “synthetic Czech”. This
way we obtained a new parallel corpus, denoted
tmt(CzEng), with English↔ synthetic Czech sen-
tences. Analogically, we translated the WMT
2013 test set (newstest2013) with TECTOMT and
obtained tmt(newstest2013). Our baseline SMT
system (Moses) trained on CzEng corpus only was
then also used for WMT 2013 test set transla-
tion, and we obtained smt(newstest2013). For all
MERT tuning, newstest2011 was used.

4.1 Alignment

All our parallel data were aligned with GIZA++
(Och and Ney, 2003) and symmetrized with
the “grow-diag-final-and” heuristics. This ap-
plies also to the synthetic corpora tmt(CzEng),
tmt(newstest2013),3 and smt(newstest2013).

For the SPE experiments, we decided to base
alignment on (genuine and synthetic Czech) lem-
mas, which could be acquired directly from the
TECTOMT output. For the rest of the experiments,
we approximated lemmas with just the first four
lowercase characters of each (English and Czech)
token.

4.2 Language Models

In all our experiments, we used three language
models on truecased forms: News Crawl as pro-
vided by WMT organizers,4 the Czech side of
CzEng and the Articles section of the Czech Web

3Another possibility was to adapt TECTOMT to output
source-to-target word alignment, but GIZA++ was simpler to
use also due to different internal tokenization in TECTOMT
and our Moses pipeline.

4The deep-syntactic LM of TECTOMT was trained only
on this News Crawl data – http://www.statmt.org/
wmt13/translation-task.html (sets 2007–2012).

BLEU 1-TER
TECTOMT 14.71±0.53 35.61±0.60
PHRASEFIX 17.73±0.54 35.63±0.65
Filtering 14.68±0.50 35.47±0.57
Mark Reliable Phr. 17.87±0.55 35.57±0.66
Mark Identities 17.87±0.57 35.85±0.68

Table 2: Comparison of several strategies of SPE.
Best results are in bold.

Corpus (Spoustová and Spousta, 2012).
We used SRILM (Stolcke, 2002) with modified

Kneser-Ney smoothing. We trained 5-grams on
CzEng; on the other two corpora, we trained 7-
grams and pruned them if the (training set) per-
plexity increased by less than 10−14 relative. The
domain of the pruned corpora is similar to the test
set domain, therefore we trained 7-grams on these
corpora. Adding CzEng corpus can then increase
the results only very slightly – training 5-grams on
CzEng is therefore sufficient and more efficient.

Each of the three LMs got its weight as-
signed by MERT. Across the experiments, Czech
Web Corpus usually gained the largest portion of
weights (40±17% of the total weight assigned to
language models), WMT News Crawl was the sec-
ond (32±15%), and CzEng was the least useful
(15±7%), perhaps due to its wide domain mixture.

5 SPE Experiments

We trained a base SPE system as described in Sec-
tion 2.1 and dubbed it PHRASEFIX.

First two rows of Table 2 show that the first-
stage TECTOMT system (serving here as the base-
line) was significantly improved in terms of BLEU
(Papineni et al., 2002) by PHRASEFIX (p < 0.001
according to the paired bootstrap test (Koehn,
2004)), but the difference in TER (Snover et
al., 2006) is not significant.5 The preliminary
results of WMT 2013 manual evaluation show
only a minor improvement: TECTOMT=0.476
vs. PHRASEFIX=0.484 (higher means better, for
details on the ranking see Callison-Burch et al.
(2012)).

5The BLEU and TER results reported here slightly differ
from the results shown at http://matrix.statmt.
org/matrix/systems_list/1720 because of differ-
ent tokenization and normalization. It seems that statmt.org
disables the --international-tokenization
switch, so e.g. the correct Czech quotes („word“) are not
tokenized, hence the neighboring tokens are never counted
as matching the reference (which is tokenized as " word ").
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Despite of the improvement, PHRASEFIX’s
phrase table (synthetic Czech ↔ genuine Czech)
still contains many wrong phrase pairs that worsen
the TECTOMT output instead of improving it.
They naturally arise in cases where the genuine
Czech is a too loose translation (or when the
English-Czech sentence pair is simply misaligned
in CzEng), and the word alignment between gen-
uine and synthetic Czech struggles.

Apart from removing such garbage phrase pairs,
it would also be beneficial to have some control
over the SPE. For instance, we would like to gen-
erally prefer the original output of TECTOMT ex-
cept for clear errors, so only reliable phrase pairs
should be used. We examine several strategies:

Phrase table filtering. We filter out all phrase
pairs with forward probability ≤ 0.7 and all sin-
gleton phrase pairs. These thresholds were set
based on our early experiments. Similar filtering
was used by Dugast et al. (2009).

Marking of reliable phrases. This strategy is
similar to the previous one, but the low-frequency
phrase pairs are not filtered-out. Instead, a special
feature marking these pairs is added. The subse-
quent MERT of the SPE system selects the best
weight for this indicator feature. The frequency
and probability thresholds for marking a phrase
pair are the same as in the previous case.

Marking of identities A special feature indicat-
ing the equality of the source and target phrase in
a phrase pair is added. In general, if the output
of TECTOMT matched the reference, then such
output was probably good and does not need any
post-editing. These phrase pairs should be perhaps
slightly preferred by the SPE.

As apparent from Table 2, marking either reli-
able phrases or identities is useful in our SPE set-
ting in terms of BLEU score. In terms of TER
measure, marking the identities slightly improves
PHRASEFIX. However, none of the improvements
is statistically significant.

6 Data Combination Experiments

We now describe experiments with phrase table
and corpus combination. In the training step, the
source-language monolingual corpus that serves
as the basis of the synthetic parallel data can
be:

• the source side of the original parallel training
corpus (resulting in tmt(CzEng)),
• a huge source-language monolingual corpus for

which no human translations are available (we
have not finished this experiment yet),
• the source side of the test set (resulting in

tmt(newstest2013) if translated by TECTOMT
or smt(newstest2013) if translated by baseline
configuration of Moses trained on CzEng), or
• a combination of the above.

There is a trade-off in the choice: the source
side of the test set is obviously most useful for
the given input, but it restricts the applicability (all
systems must be installed or available online in the
testing time) and speed (we must wait for the slow-
est system and the combination).

So far, in PTComb we tried adding the full
synthetic CzEng (“CzEng + tmt(CzEng)”), adding
the test set (“CzEng + tmt(newstest2013)” and
“CzEng + smt(newstest2013)”), and adding both
(“CzEng + tmt(CzEng) + tmt(newstest2013)”). In
CComb, we concatenated CzEng and full syn-
thetic CzEng (“CzEng + tmt(CzEng)”).

There are two flavors of PTComb: either the
two phrase tables are used both at once as alter-
native decoding paths (“Alternative”), where each
source span is equipped with translation options
from any of the tables, or the synthetic Czech
phrase table is used only as a back-off method if a
source phrase is not available in the primary table
(“Back-off”). The back-off model was applied to
source phrases of up to 5 tokens.

Table 3 summarizes our results with phrase ta-
ble and corpus combination. We see that adding
synthetic data unrelated to the test set does bring
only a small benefit in terms of BLEU in the case
of CComb, and we see a small improvement in
TER in two cases. Adding the (synthetic) transla-
tion of the test set helps. However, adding trans-
lated source side of the test set is helpful only if
it is translated by the TECTOMT system. If our
baseline system is used for this translation, the re-
sults even slightly drop.

Somewhat related experiments for pivot lan-
guages by Galuščáková and Bojar (2012) showed
a significant gain when the outputs of a rule-based
system were added to the training data of Moses.
In their case however, the genuine parallel corpus
was much smaller than the synthetic data. The
benefit of unrelated synthetic data seems to van-
ish with larger parallel data available.
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Training Data for Moses Decoding Type BLEU 1-TER
baseline: CzEng — 18.52±0.57 36.41±0.66
tmt(CzEng) — 15.96±0.53 33.67±0.63
CzEng + tmt(CzEng) CComb 18.57±0.57 36.47±0.64
CzEng + tmt(CzEng) PTComb Alternative 18.42±0.58 36.47±0.65
CzEng + tmt(CzEng) PTComb Back-off 18.38±0.57 36.25±0.65
CzEng + tmt(newstest2013) PTComb Alternative 18.68±0.57 37.00±0.65
CzEng + smt(newstest2013) PTComb Alternative 18.46±0.54 36.59±0.65
CzEng + tmt(CzEng) + tmt(newstest2013) PTComb Alternative 18.85±0.58 37.03±0.66

Table 3: Comparison of several strategies used for Synthetic Data Combination (PTComb – phrase table
combination and CComb – corpus combination).

BLEU Judged better
SPE 17.73±0.54 123
PTComb 18.68±0.57 152

Table 4: Automatic (BLEU) and manual (number
of sentences judged better than the other system)
evaluation of SPE vs. PTComb.

7 Discussion

7.1 Comparison of SPE and PTComb

Assuming that our first-stage system, TECTOMT,
guarantees the grammaticality of the output (sadly
often not quite true), we see SPE and PTComb
as two complementary methods that bring in the
goods of SMT but risk breaking the grammati-
cality. Intuitively, SPE feels less risky, because
one would hope that the post-edits affect short se-
quences of words and not e.g. the clause structure.
With PTComb, one relies purely on the phrase-
based model and its well-known limitations with
respect to grammatical constraints.

Table 4 compares the two approaches empir-
ically. For SPE, we use the default PHRASE-
FIX; for PTComb, we use the option “CzEng +
tmt(newstest2013)”. The BLEU scores are re-
peated.

We ran a small manual evaluation where three
annotators judged which of the two outputs was
better. The identity of the systems was hidden,
but the annotators had access to both the source
and the reference translation. Overall, we col-
lected 333 judgments over 120 source sentences.
Of the 333 judgments, 17 marked the two systems
as equally correct, and 44 marked the systems as
incomparably wrong. Across the remaining 275
non-tying comparisons, PTComb won – 152 vs.
123.

We attribute the better performance of PTComb
to the fact that, unlike SPE, it has direct access to
the source text. Also, the risk of flawed sentence
structure in PTComb is probably not too bad, but
this can very much depend on the language pair.
English→Czech translation does not need much
reordering in general.

Based on the analysis of the better marked re-
sults of the PTComb system, the biggest problem
is the wrong selection of the word and word form,
especially for verbs. PTComb also outperforms
SPE in processing of frequent phrases and sub-
ordinate clauses. This problem could be solved
by enhancing fluency in SPE or by incorporat-
ing more training data. Another possibility would
be to modify TECTOMT system to produce more
than one-best translation as the correct word or
word form may be preserved in sequel transla-
tions.

7.2 Error Analysis of TECTOMT
While SPE seems to perform worse, it has a
unique advantage: it can be used as a feedback
for improving the first stage system. We can either
inspect the filtered SPE phrase table or differences
in translated sentences.

After submitting our WMT 2013 systems, this
comparison allowed us to spot a systematic error
in TECTOMT tagging of latin-origin words:

source pancreas
TECTOMT slinivek [plural]
PHRASEFIX slinivky [singular] břišní

The part-of-speech tagger used in TECTOMT in-
correctly detects pancreas as plural, and the wrong
morphological number is used in the synthesis.
PHRASEFIX correctly learns that the plural form
slinivek should be changed to singular slinivky,
which has also a higher language model score.
Moreover, PHRASEFIX also learns that the trans-
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lation of pancreas should be two words (břišní
means abdominal). TECTOMT currently uses a
simplifying assumption of 1-to-1 correspondence
between content words, so it is not able to produce
the correct translation in this case.

Another example shows where PHRASEFIX

recovered from a lexical gap in TECTOMT:
source people who are strong-willed
TECTOMT lidé , kteří jsou silná willed
PHRASEFIX lidí , kteří mají silnou vůli

TECTOMT’s primary translation model considers
strong-willed an OOV word, so a back-off dictio-
nary specialized for hyphen compounds is used.
However, this dictionary is not able to translate
willed. PHRASEFIX corrects this and also the
verb jsou = are (the correct Czech translation is
mají silnou vůli = have a strong will).
Finally, PHRASEFIX can also break things:

source You won’t be happy here
TECTOMT Nebudete št’astní tady
PHRASEFIX Vy tady št’astní [you here happy]

Here, PHRASEFIX damaged the translation by
omitting the negative verb nebudete = you won’t.

8 Conclusion

Statistical post-editing (SPE) and phrase table
combination (PTComb) can be seen as two com-
plementary approaches to exploiting the mutual
benefits of our deep-transfer system TECTOMT
and SMT.

We have shown that SPE improves the results of
TECTOMT. Several variations of SPE have been
examined, and we have further improved SPE re-
sults by marking identical and reliable phrases us-
ing a special feature. However, SMT still out-
performs SPE according to BLEU and TER mea-
sures. Finally, employing PTComb, we have im-
proved the baseline SMT system by utilizing ad-
ditional data translated by the TECTOMT system.
A small manual evaluation suggests that PTComb
is on average better than SPE, though in about one
third of sentences SPE was judged better. In our
future experiments, we plan to improve SPE by
applying techniques suited for monolingual align-
ment, e.g. feature-based aligner considering word
similarity (Rosa et al., 2012) or extending the par-
allel data with vocabulary identities to promote
alignment of the same word form (Dugast et al.,
2009). Marking and filtering methods for SPE also
deserve a deeper study. As for PTComb, we plan
to combine several sources of synthetic data (in-

cluding a huge source-language monolingual cor-
pus).
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Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In Proc. of ACL, pages 177–180, Prague, Czech Re-
public. ACL.

Philipp Koehn. 2004. Statistical Significance Tests
for Machine Translation Evaluation. In Proc. of
EMNLP, Barcelona, Spain.

David Mareček, Martin Popel, and Zdeněk Žabokrt-
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Abstract
We describe the Stanford University NLP
Group submission to the 2013 Workshop
on Statistical Machine Translation Shared
Task. We demonstrate the effectiveness of a
new adaptive, online tuning algorithm that
scales to large feature and tuning sets. For
both English-French and English-German,
the algorithm produces feature-rich mod-
els that improve over a dense baseline and
compare favorably to models tuned with
established methods.

1 Introduction
Green et al. (2013b) describe an online, adaptive
tuning algorithm for feature-rich translation mod-
els. They showed considerable translation quality
improvements over MERT (Och, 2003) and PRO
(Hopkins and May, 2011) for two languages in a
research setting. The purpose of our submission to
the 2013 Workshop on Statistical Machine Trans-
lation (WMT) Shared Task is to compare the algo-
rithm to more established methods in an evaluation.
We submitted English-French (En-Fr) and English-
German (En-De) systems, each with over 100k fea-
tures tuned on 10k sentences. This paper describes
the systems and also includes new feature sets and
practical extensions to the original algorithm.

2 Translation Model
Our machine translation (MT) system is Phrasal
(Cer et al., 2010), a phrase-based system based on
alignment templates (Och and Ney, 2004). Like
many MT systems, Phrasal models the predictive
translation distribution p(e|f ;w) directly as

p(e|f ;w) = 1

Z(f)
exp

[
w>φ(e, f)

]
(1)

where e is the target sequence, f is the source se-
quence, w is the vector of model parameters, φ(·)

is a feature map, and Z(f) is an appropriate nor-
malizing constant. For many years the dimension
of the feature map φ(·) has been limited by MERT,
which does not scale past tens of features.

Our submission explores real-world translation
quality for high-dimensional feature maps and as-
sociated weight vectors. That case requires a more
scalable tuning algorithm.

2.1 Online, Adaptive Tuning Algorithm
FollowingHopkins andMay (2011) we castMT tun-
ing as pairwise ranking. Consider a single source
sentence f with associated references e1:k. Let d
be a derivation in an n-best list of f that has the
target e = e(d) and the feature map φ(d). Define
the linear model scoreM(d) = w · φ(d). For any
derivation d+ that is better than d− under a gold
metric G, we desire pairwise agreement such that

G
(
e(d+), e

1:k
)
> G

(
e(d−), e1:k

)

⇐⇒ M(d+) > M(d−)

Ensuring pairwise agreement is the same as ensur-
ing w · [φ(d+)− φ(d−)] > 0.
For learning, we need to select derivation pairs

(d+, d−) to compute difference vectors x+ =
φ(d+) − φ(d−). Then we have a 1-class separa-
tion problem trying to ensure w · x+ > 0. The
derivation pairs are sampled with the algorithm of
Hopkins and May (2011). Suppose that we sample
s pairs for source sentence ft to compute a set of
difference vectors Dt = {x1:s+ }. Then we optimize

`t(w) = `(Dt, w) = −
∑

x+∈Dt

log
1

1 + e−w·x+

(2)
which is the familiar logistic loss. Hopkins and
May (2011) optimize (2) in a batch algorithm
that alternates between candidate generation (i.e.,
n-best list or lattice decoding) and optimization
(e.g., L-BFGS). We instead use AdaGrad (Duchi
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et al., 2011), a variant of stochastic gradient de-
scent (SGD) in which the learning rate is adapted
to the data. Informally, AdaGrad scales the weight
updates according to the geometry of the data ob-
served in earlier iterations. Consider a particu-
lar dimension j of w, and let scalars vt = wt,j ,
gt = ∇j`t(wt−1), and Gt =

∑t
i=1 g

2
i . The Ada-

Grad update rule is

vt = vt−1 − η G−1/2t gt (3)
Gt = Gt−1 + g2t (4)

In practice,Gt is a diagonal approximation. IfGt =
I , observe that (3) is vanilla SGD.
In MT systems, the feature map may generate

exponentially many irrelevant features, so we need
to regularize (3). The L1 norm of the weight vec-
tor is known to be an effective regularizer in such
a setting (Ng, 2004). An efficient way to apply
L1 regularization is the Forward-Backward split-
ting (FOBOS) framework (Duchi and Singer, 2009),
which has the following two-step update:

wt− 1
2
= wt−1 − ηt−1∇`t−1(wt−1) (5)

wt = argmin
w

1

2
‖w − wt− 1

2
‖22 + ηt−1r(w)

(6)

where (5) is just an unregularized gradient descent
step and (6) balances the regularization term r(w)
with staying close to the gradient step.

For L1 regularization we have r(w) = λ||w||1
and the closed-form solution to (6) is

wt = sign(wt− 1
2
)
[
|wt− 1

2
| − ηt−1λ

]
+

(7)

where [x]+ = max(x, 0) is the clipping function
that in this case sets a weight to 0 when it falls below
the threshold ηt−1λ.

Online algorithms are inherently sequential; this
algorithm is no exception. If we want to scale the
algorithm to large tuning sets, then we need to par-
allelize the weight updates. Green et al. (2013b)
describe the parallelization technique that is imple-
mented in Phrasal.

2.2 Extensions to (Green et al., 2013b)
Sentence-Level Metric We previously used the
gold metric BLEU+1 (Lin and Och, 2004), which
smoothes bigram precisions and above. This metric
worked well with multiple references, but we found
that it is less effective in a single-reference setting

like WMT. To make the metric more robust, Nakov
et al. (2012) extended BLEU+1 by smoothing both
the unigram precision and the reference length. We
found that this extension yielded a consistent +0.2
BLEU improvement at test time for both languages.
Subsequent experiments on the data sets of Green
et al. (2013b) showed that standard BLEU+1 works
best for multiple references.

Custom regularization parameters Green et al.
(2013b) showed that large feature-rich models over-
fit the tuning sets. We discovered that certain fea-
tures caused greater overfitting than others. Custom
regularization strengths for each feature set are one
solution to this problem. We found that technique
largely fixed the overfitting problem as shown by
the learning curves presented in section 5.1.

Convergence criteria Standard MERT imple-
mentations approximate tuning BLEU by re-
ranking the previous n-best lists with the updated
weight vector. This approximation becomes infeasi-
ble for large tuning sets, and is less accurate for algo-
rithms like ours that do not accumulate n-best lists.
We approximate tuning BLEU by maintaining the
1-best hypothesis for each tuning segment. At the
end of each epoch, we compute corpus-level BLEU
from this hypothesis set. We flush the set of stored
hypotheses before the next epoch begins. Although
memory-efficient, we find that this approximation
is less dependable as a convergence criterion than
the conventional method. Whereas we previously
stopped the algorithm after four iterations, we now
select the model according to held-out accuracy.

3 Feature Sets

3.1 Dense Features

The baseline “dense” model has 19 features: the
nine Moses (Koehn et al., 2007) baseline features, a
hierarchical lexicalized re-ordering model (Galley
and Manning, 2008), the (log) bitext count of each
translation rule, and an indicator for unique rules.
The final dense feature sets for each language

differ slightly. The En-Fr system incorporates a
second language model. The En-De system adds a
future cost component to the linear distortion model
(Green et al., 2010).The future cost estimate allows
the distortion limit to be raised without a decrease
in translation quality.
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3.2 Sparse Features
Sparse features do not necessarily fire on each hy-
pothesis extension. Unlike prior work on sparseMT
features, our feature extractors do not filter features
based on tuning set counts. We instead rely on the
regularizer to select informative features.
Several of the feature extractors depend on

source-side part of speech (POS) sequences and
dependency parses. We created those annotations
with the Stanford CoreNLP pipeline.

Discriminative Phrase Table A lexicalized in-
dicator feature for each rule in a derivation. The
feature weights can be interpreted as adjustments
to the associated dense phrase table features.

Discriminative Alignments A lexicalized indi-
cator feature for the phrase-internal alignments in
each rule in a derivation. For one-to-many, many-to-
one, and many-to-many alignments we extract the
clique of aligned tokens, perform a lexical sort, and
concatenate the tokens to form the feature string.

Discriminative Re-ordering A lexicalized indi-
cator feature for each rule in a derivation that ap-
pears in the following orientations: monotone-with-
next, monotone-with-previous, non-monotone-
with-next, non-monotone-with-previous. Green
et al. (2013b) included the richer non-monotone
classes swap and discontinuous. However, we found
that these classes yielded no significant improve-
ment over the simpler non-monotone classes. The
feature weights can be interpreted as adjustments
to the generative lexicalized re-ordering model.

Source Content-Word Deletion Count-based
features for source content words that are “deleted”
in the target. Content words are nouns, adjectives,
verbs, and adverbs. A deleted source word is ei-
ther unaligned or aligned to one of the 100 most
frequent target words in the target bitext. For each
deleted word we increment both the feature for the
particular source POS and an aggregate feature for
all parts of speech. We add similar but separate
features for head content words that are either un-
aligned or aligned to frequent target words.

Inverse Document Frequency Numeric fea-
tures that compare source and target word frequen-
cies. Let idf(·) return the inverse document fre-
quency of a token in the training bitext. Suppose
a derivation d = {r1, r2, . . . , rn} is composed of
n translation rules, where e(r) is the target side of
the rule and f(r) is the source side. For each rule

Bilingual Monolingual
Sentences Tokens Tokens

En-Fr 5.0M 289M 1.51B
En-De 4.4M 223M 1.03B

Table 1: Gross corpus statistics after data selection
and pre-processing. The En-Fr monolingual counts
include French Gigaword 3 (LDC2011T10).

r that translates j source tokens to i target tokens
we compute

q =
∑

i

idf(e(r)i)−
∑

j

idf(f(r)j) (8)

We add two numeric features, one for the source and
another for the target. When q > 0 we increment
the target feature by q; when q < 0 we increment
the target feature by |q|. Together these features
penalize asymmetric rules that map rare words to
frequent words and vice versa.

POS-based Re-ordering The lexicalized dis-
criminative re-ordering model is very sparse, so we
added re-ordering features based on source parts of
speech. When a rule is applied in a derivation, we
extract the associated source POS sequence along
with the POS sequences from the previous and next
rules. We add a “with-previous” indicator feature
that is the conjunction of the current and previous
POS sequences; the “with-next” indicator feature is
created analogously. This feature worked well for
En-Fr, but not for En-De.

4 Data Preparation
Table 1 describes the pre-processed corpora from
which our systems are built.

4.1 Data Selection
We used all of the monolingual and parallel En-
De data allowed in the constrained condition. We
incorporated all of the French monolingual data,
but sampled a 5M-sentence bitext from the approx-
imately 40M available En-Fr parallel sentences.
To select the sentences we first created a “target”
corpus by concatenating the tuning and test sets
(newstest2008–2013). Then we ran the feature
decay algorithm (FDA) (Biçici and Yuret, 2011),
which samples sentences that most closely resem-
ble the target corpus. FDA is a principled method
for reducing the phrase table size by excluding less
relevant training examples.
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4.2 Tokenization
We tokenized the English (source) data according
to the Penn Treebank standard (Marcus et al., 1993)
with Stanford CoreNLP. The French data was to-
kenized with packages from the Stanford French
Parser (Green et al., 2013a), which implements a
scheme similar to that used in the French Treebank
(Abeillé et al., 2003).

German is more complicated due to pervasive
compounding. We first tokenized the data with the
same English tokenizer. Then we split compounds
with the lattice-based model (Dyer, 2009) in cdec
(Dyer et al., 2010). To simplify post-processing we
added segmentation markers to split tokens, e.g.,
überschritt⇒ über #schritt.

4.3 Alignment
We aligned both bitexts with the Berkeley Aligner
(Liang et al., 2006) configured with standard set-
tings. We symmetrized the alignments according
to the grow-diag heuristic.

4.4 Language Modeling
We estimated unfiltered 5-gram language models
using lmplz (Heafield et al., 2013) and loaded them
with KenLM (Heafield, 2011). For memory effi-
ciency and faster loading we also used KenLM to
convert the LMs to a trie-based, binary format. The
German LM included all of the monolingual data
plus the target side of the En-De bitext. We built
an analogous model for French. In addition, we
estimated a separate French LM from the Gigaword
data.1

4.5 French Agreement Correction
In French verbs must agree in number and person
with their subjects, and adjectives (and some past
participles) must agree in number and gender with
the nouns they modify. On their own, phrasal align-
ment and target side language modeling yield cor-
rect agreement inflection most of the time. For
verbs, we find that the inflections are often accurate:
number is encoded in the English verb and subject,
and 3rd person is generally correct in the absence
of a 1st or 2nd person pronoun. However, since En-
glish does not generally encode gender, adjective
inflection must rely on language modeling, which
is often insufficient.

1The MT system learns significantly different weights for
the two LMs: 0.086 for the primary LM and 0.044 for the
Gigaword LM.

To address this problem we apply an automatic
inflection correction post-processing step. First, we
generate dependency parses of our system’s out-
put using BONSAI (Candito and Crabbé, 2009),
a French-specific extension to the Berkeley Parser
(Petrov et al., 2006). Based on these dependencies,
we match adjectives with the nouns they modify
and past participles with their subjects. Then we
use Lefff (Sagot, 2010), a machine-readable French
lexicon, to determine the gender and number of the
noun and to choose the correct inflection for the
adjective or participle.
Applied to our 3,000 sentence development set,

this correction scheme produced 200 corrections
with perfect accuracy. It produces a slight (−0.014)
drop in BLEU score. This arises from cases where
the reference translation uses a synonymous but
differently gendered noun, and consequently has
different adjective inflection.

4.6 German De-compounding
Split German compounds must be merged after
translation. This process often requires inserting
affixes (e.g., s, en) between adjacent tokens in the
compound. Since the German compounding rules
are complex and exception-laden, we rely on a dic-
tionary lookup procedure with backoffs. The dic-
tionary was constructed during pre-processing. To
compound the final translations, we first lookup
the compound sequence—which is indicated by
segmentation markers—in the dictionary. If it is
present, then we use the dictionary entry. If the com-
pound is novel, then for each pair of words to be
compounded, we insert the suffix most commonly
appended in compounds to the first word of the pair.
If the first word itself is unknown in our dictionary,
we insert the suffix most commonly appended after
the last three characters. For example, words end-
ing with ung most commonly have an s appended
when they are used in compounds.

4.7 Recasing
Phrasal includes an LM-based recaser (Lita et al.,
2003), which we trained on the target side of the
bitext for each language. On the newstest2012 de-
velopment data, the German recaser was 96.8% ac-
curate and the French recaser was 97.9% accurate.

5 Translation Quality Experiments

During system development we tuned on
newstest2008–2011 (10,570 sentences) and tested
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#iterations #features tune newstest2012 newstest2013†

Dense 10 20 30.26 31.12 –
Feature-rich 11 207k 32.29 31.51 29.00

Table 2: En-Fr BLEU-4 [% uncased] results. The tuning set is newstest2008–2011. (†) newstest2013 is
the cased score computed by the WMT organizers.

#iterations #features tune newstest2012 newstest2013†

Dense 10 19 16.83 18.45 –
Feature-rich 13 167k 17.66 18.70 18.50

Table 3: En-De BLEU-4 [% uncased] results.

on newstest2012 (3,003 sentences). We compare
the feature-rich model to the “dense” baseline.
The En-De system parameters were: 200-best

lists, a maximum phrase length of 8, and a distortion
limit of 6 with future cost estimation. The En-Fr
system parameters were: 200-best lists, a maximum
phrase length of 8, and a distortion limit of 5.

The online tuning algorithm used a default learn-
ing rate η = 0.03 and a mini-batch size of 20. We
set the regularization strength λ to 10.0 for the dis-
criminative re-ordering model, 0.0 for the dense
features, and 0.1 otherwise.

5.1 Results
Tables 2 and 3 show En-Fr and En-De results, re-
spectively. The “Feature-rich” model, which con-
tains the full complement of dense and sparse fea-
tures, offers ameager improvement over the “Dense”
baseline. This result contrasts with the results
of Green et al. (2013b), who showed significant
translation quality improvements over the same
dense baseline for Arabic-English and Chinese-
English. However, they had multiple target refer-
ences, whereas the WMT data sets have just one.
We speculate that this difference is significant. For
example, consider a translation rule that rewrites
to a 4-gram in the reference. This event can in-
crease the sentence-level score, thus encouraging
the model to upweight the rule indicator feature.

More evidence of overfitting can be seen in Fig-
ure 1, which shows learning curves on the devel-
opment set for both language pairs. Whereas the
dense model converges after just a few iterations,
the feature-rich model continues to creep higher.
Separate experiments on a held-out set showed that
generalization did not improve after about eight
iterations.

6 Conclusion
We submitted a feature-rich MT system to WMT
2013. While sparse features did offer a measur-
able improvement over a baseline dense feature set,
the gains were not as significant as those shown
by Green et al. (2013b). One important difference
between the two sets of results is the number of ref-
erences. Their NIST tuning and test sets had four
references; the WMT data sets have just one. We
speculate that sparse features tend to overfit more
in this setting. Individual features can greatly in-
fluence the sentence-level metric and thus become
large components of the gradient. To combat this
phenomenon we experimented with custom reg-
ularization strengths and a more robust sentence-
level metric. While these two improvements greatly
reduced the model size relative to (Green et al.,
2013b), a generalization problem remained. Nev-
ertheless, we showed that feature-rich models are
now competitive with the state-of-the-art.
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Abstract

We describe the LIA machine transla-
tion systems for the Russian-English and
English-Russian translation tasks. Various
factored translation systems were built us-
ing MOSES to take into account the mor-
phological complexity of Russian and we
experimented with the romanization of un-
translated Russian words.

1 Introduction

This paper presents the factored phrase-based
Machine Translation (MT) systems (Koehn and
Hoang, 2007) developed at LIA, for the Russian-
English and English-Russian translation tasks at
WMT’13. These systems use only data provided
for the evaluation campaign along with the LDC
English Gigaword corpus.

We summarize in Section 2 the resources used
and the main characteristics of the systems based
on the MOSES toolkit (Koehn et al., 2007). Sec-
tion 3 reports experiments on the use of fac-
tored translation models. Section 4 describes the
transliteration process used to improve the Russian
to English task. Finally, we conclude in Section 5.

2 System Architecture

2.1 Pre-processing

The corpora available for the workshop were pre-
processed using an in-house script that normal-
izes quotes, dashes, spaces and ligatures. Long
sentences or sentences with many numeric or
non-alphanumeric characters were also discarded.
Since the Yandex corpus is provided as lower-
cased, we decided to lowercase all the other cor-
pora. The same pipeline was applied to the LDC
Gigaword; also only the documents classified as
“story” were retained. Table 1 summarizes the
used data and introduces designations that we fol-

low in the remainder of this paper to refer to these
corpora.

Russian is a morphologically rich language with
nouns, adjectives and verbs inflected for case,
number and gender. This property requires in-
troducing morphological information inside the
MT system to handle the lack of many inflec-
tional forms inside training corpora. For this
purpose, each corpus was previously tagged with
Part-of-Speech (PoS) tags. The tagger TREE-
TAGGER (Schmid, 1995) was selected for its
good performance on several comparable tasks.
The Russian tagger associates each word (e.g.
ÿùèêà (boxes)) with a complex PoS including
morphological information (e.g. “Ncmpnn” for
“Noun Type=common Gender=masculine Num-
ber=plural Case=nominative Animate=no”) and
its lemma (e.g. ÿùèê (box)). A description of
the Russian tagset can be found in (Sharoff et al.,
2008). The English tagger provides also a lemma-
tization and outputs PoS from the Penn Treebank
tagset (Marcus et al., 1993) (e.g. “NNS” for
“Noun plural”).

In order to simplify the comparison of differ-
ent setups, we used the tokenizer included in the
TREETAGGER tool to process all the corpora.

2.2 Language Models

Kneser-Ney discounted LMs were built
from monolingual corpora using the SRILM
toolkit (Stolcke, 2002). 5-gram LMs were trained
for words, 7-gram LMs for lemmas and PoS. A
LM was built separately on each monolingual cor-
pus: mono-news-c and news-s. Since ldc was too
large to be processed as one file, it was split into
three parts according to the original publication
year of the document. These LMs were combined
through linear interpolation. Weights were fixed
by optimizing the perplexity on a corpus made of
the WMT test sets from 2008 to 2011 for English
and on the WMT 2012 test set for Russian (the
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CORPORA DESIGNATION SIZE (SENTENCES)

English-Russian Bilingual training
News Commentary v8 news-c 146 k
Common Crawl crawl 755 k
Yandex yandex 978 k

English Monolingual training
News Commentary v8 mono-news-c 247 k
Shuffled News Crawl corpus (from 2007 to 2012) news-s 68 M
LDC Gigaword ldc 190 M

Russian Monolingual training
News Commentary v8 mono-news-c 182 k
Shuffled News Crawl corpus (from 2008 to 2012) news-s 20 M

Development
newstest2012 test12 3,003

Table 1: Used bilingual and monolingual corpora

only available at that time).

2.3 Alignment and Translation Models

All parallel corpora were aligned using
MGIZA++ (Gao and Vogel, 2008). Our transla-
tion models are phrase-based models (PBMs) built
with MOSES using default settings. Weights of
LM, phrase table and lexicalized reordering model
scores were optimized on test12, thanks to the
MERT algorithm (Gao and Vogel, 2008). Since
only one development corpus was made available
for Russian, we used a 3-fold cross-validation
so that MERT is repeated three times for each
translation model on a 2,000-sentence subsample
of test12.

To recase the corpora, translation models were
trained using a word-to-word translation model
trained on the parallel corpora aligning lowercased
and cased sentences of the monolingual corpora
mono-news-c and news-s.

3 Experiments with Factored
Translation Models

The evaluation was performed using case-
insensitive BLEU and was computed with the
mteval-v13a.pl script provided by NIST.
The BLEU scores shown in the tables below are
all averaged on the test parts obtained from the 3-
fold cross validation process.

In the remainder of the paper, we employ the
notation proposed by Bojar et al. (2012) to refer
to factored translation models. For example, tW-

W:tL-L+tP-P+gLaP-W, where “t” and “g” stand
for “translation” and “generation”, denotes a trans-
lation system with two decoding paths:

• a first one directly translates words to words
(tW-W),

• a second one is divided into three steps:

1. translation from lemmas to lemmas (tL-
L),

2. translation from PoS to PoS (tP-P) and
3. generation of target words from target

lemmas and PoS (gLaP-W).

3.1 Baseline Phrase-Based Systems
Table 2 is populated with the results of PBMs
which use words as their sole factor. When LMs
are built on mono-news-c and news-s, an improve-
ment of BLEU is observed each time a training
parallel corpus is used, both for both translation di-
rections (columns 1 and 3). We can also notice an
absolute increase of 0.4 BLEU score when the En-
glish LM is additionally trained on ldc (column 2).

3.2 Decomposition of factors
Koehn and Hoang (2007) suggested from their ex-
periments for English-Czech systems that “it is
beneficial to carefully consider which morpholog-
ical information to be used.” We therefore tested
various decompositions of the complex Russian
PoS tagset (P) output by TREETAGGER. We con-
sidered the grammatical category alone (C), mor-
phological information restrained to case, number
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EN→ RU RU→ EN
+LDC

news-c 26.52 26.82 19.89
+crawl 29.49 29.82 21.06
+yandex 31.08 31.49 22.16

Table 2: BLEU scores measured with standard
PBMs.

Tagset #tags Examples

C 17 Af, Vm, P, C
M1 95 fsg, -s-, fsa, —
M2 380 fsg, -s-, fsa, ÷òî (that)
M3 580 fsg, -s-1ife, fsa3, ÷òî (that)
P 604 Afpfsg, Vmif1s-a-e, P-3fsa, C

Table 3: Statistics on Russian tagsets.

and gender (M1), the fields included in M1 along
with additional information (lemmas) for conjunc-
tions, particles and adpositions (M2), and finally
the information included in M2 enriched with per-
son for pronouns and person, tense and aspect for
verbs (M3). Table 3 provides the number of tags
and shows examples for each used tagset.

To speed up the training of translation models,
we experimented with various setups for factor de-
composition from news-c. The results displayed
on Table 4 show that factors with morphologi-
cal information lead to better results than a PBM
trained on word forms (line 1) but that finally the
best system is achieved when the complex PoS tag
output by TREETAGGER is used without any de-
composition (last line).

tW-W 19.89
tW-WaC 19.81
tW-WaM1 20.04
tW-WaCaM1 19.95
tW-WaM2 19.92
tW-WaCaM2 19.91
tW-WaM3 19.98
tW-WaCaM3 19.89
tW-WaP 20.30

Table 4: BLEU scores for EN→RU using news-c
as training parallel corpus.

tL-W 29.23
tW-W 31.49
tWaP-WaP 31.62
tW-W:tL-W 31.69
tW-WaP 31.80
tW-WaP:tL-WaP 31.89

Table 5: BLEU scores for RU→EN using the three
available parallel corpora.

3.3 Experimental Results for Factored
Models

The many inflections for Russian induce a hight
out-of-vocabulary rate for the PBMs, which gener-
ates many untranslated Russian words for Russian
to English. We experimented with the training of
a PMB on lemmatized Russian corpora (Table 5,
line 1) but observed a decrease in BLEU score
w.r.t. a PBM trained on words (line 2). With two
decoding paths — one from words, one from lem-
mas (line 4) — using the MOSES ability to manage
multiple decoding paths for factored translation
models, an absolute improvement of 0.2 BLEU
score was observed.

Another interest of factored models is disam-
biguating translated words according to their PoS.
Translating a (word, PoS) pair results in an ab-
solute increase of 0.3 BLEU (line 5), and of 0.4
BLEU when considering two decoding paths (last
line). Disambiguating source words with PoS did
not seem to help the translation process (line 3).

The Russian inflections are far more problem-
atic in the other translation direction since mor-
phological information, including case, gender
and number, has to be induced from the English
words and PoS, which are restrained for that lan-
guage to the grammatical category and knowledge
about number (singular/plural for nouns, 3rd per-
son singular or not for verbs). Disambiguating
translated Russian words with their PoS resulted
in a dramatic increase of BLEU by 1.6 points (Ta-
ble 6, last line vs line 3). The model that trans-
lates independently PoS and lemmas, before gen-
erating words, albeit appealing for its potential to
deal with data sparsity, turned out to be very dis-
appointing (first line). We additionally led ex-
periments training generation models gLaP-W on
monolingual corpora instead of the less volumi-
nous parallel corpora, but we did not observed a
gain in terms of BLEU.
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tL-L+tP-P+gLaP-W 17.06
tW-W 22.16
tWaP-WaP 23.34
tWaP-LaP+gLaP-W 23.48
tW-LaP+gLaP-W 23.58
tW-WaP 23.72

Table 6: BLEU scores for EN→RU using the three
available parallel corpora.

BEFORE AFTER

tW-WaP 31.80 32.15
tW-WaP:tL-WaP 31.89 32.21

Table 7: BLEU scores for RU → EN before and
after transliteration.

4 Transliteration

Words written in Cyrillic inside the English trans-
lation output were transliterated into Latin letters.
We decided to restrain the use of transliteration for
the English to Russian direction since we found
that many words, especially proper names, are in-
tentionally used in Latin letters in the Russian ref-
erence.

Transliteration was performed in two steps.
Firstly, untranslated words in Cyrillic are looked
up in the guessed-names.ru-en file provided for the
workshop and built from Wikipedia. Secondly, the
remaining words are romanized with rules of the
BGN/PCGN romanization method for Russian (on
Geographic Names, 1994). Transliterating words
in Cyrillic resulted in an absolute improvement of
0.3 BLEU for our two best factor-based system
(Table 7, last column).

The factored model with the tW-WaP:tL-
WaP translation path and a transliteration post-
processing step is the final submission for the
Russian-English workshop translation task, while
the tW-WaP is the final submission for the other
translation direction.

5 Conclusion

This paper presented experiments carried out with
factored phrase-based translation models for the
two-way Russian-English translation tasks. A mi-
nor gain was observed after romanizing Russian
words (+0.3 BLEU points for RU → EN) and
higher improvements using word forms, PoS inte-
grating morphological information and lemma as

factors (+0.4 BLEU points for RU→ EN and +1.6
for EN → RU w.r.t. to a phrase-based restrained
to word forms). However, these improvements
were observed with setups which disambiguate
words according to their grammatical category or
morphology, while results integrating a generation
step and dealing with data sparsity were disap-
pointing. It seems that further work should be
done to fully exploit the potential of this option
inside MOSES.
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Ondřej Bojar, Bushra Jawaid, and Amir Kamran. 2012.

Probes in a taxonomy of factored phrase-based mod-
els. In 7th NAACL Workshop on Statistical Machine
Translation (WMT), pages 253–260.

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool. In Proceedings of
the ACL Workshop: Software Engineering, Testing,
and Quality Assurance for Natural Language Pro-
cessing, pages 49–57.

Philipp Koehn and Hieu Hoang. 2007. Factored trans-
lation models. In Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 868—-876.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine transla-
tion. In 45th Annual Meeting of the Association for
Computational Linguistics (ACL), Companion Vol-
ume, pages 177–180.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 2:313–330.

U.S. Board on Geographic Names. 1994. Romaniza-
tion systems and roman-script spelling conventions.
Technical report, Defense Mapping Agency.

Helmut Schmid. 1995. Improvements in part-of-
speech tagging with an application to german. In
ACL SIGDAT Workshop, pages 47–50.

Serge Sharoff, Mikhail Kopotev, Tomaž Erjavec, Anna
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Abstract

This paper describes OmnifluentTM Trans-
late – a state-of-the-art hybrid MT sys-
tem capable of high-quality, high-speed
translations of text and speech. The sys-
tem participated in the English-to-French
and Russian-to-English WMT evaluation
tasks with competitive results. The
features which contributed the most to
high translation quality were training data
sub-sampling methods, document-specific
models, as well as rule-based morpholog-
ical normalization for Russian. The latter
improved the baseline Russian-to-English
BLEU score from 30.1 to 31.3% on a held-
out test set.

1 Introduction

Omnifluent Translate is a comprehensive multilin-
gual translation platform developed at SAIC that
automatically translates both text and audio con-
tent. SAIC’s technology leverages hybrid machine
translation, combining features of both rule-based
machine and statistical machine translation for im-
proved consistency, fluency, and accuracy of trans-
lation output.

In the WMT 2013 evaluation campaign, we
trained and tested the Omnifluent system on the
English-to-French and Russian-to-English tasks.
We chose the En–Fr task because Omnifluent En–
Fr systems are already extensively used by SAIC’s
commercial customers: large human translation
service providers, as well as a leading fashion de-
signer company (Matusov, 2012). Our Russian-to-
English system also produces high-quality transla-
tions and is currently used by a US federal govern-
ment customer of SAIC.

Our experimental efforts focused mainly on the
effective use of the provided parallel and monolin-
gual data, document-level models, as well using

rules to cope with the morphological complexity
of the Russian language. While striving for the
best possible translation quality, our goal was to
avoid those steps in the translation pipeline which
would make a real-time use of the Omnifluent sys-
tem impossible. For example, we did not integrate
re-scoring of N-best lists with huge computation-
ally expensive models, nor did we perform system
combination of different system variants. This al-
lowed us to create a MT system that produced our
primary evaluation submission with the translation
speed of 18 words per second1. This submission
had a BLEU score of 24.2% on the Russian-to-
English task2, and 27.3% on the English-to-French
task. In contrast to many other submissions from
university research groups, our evaluation system
can be turned into a fully functional, commer-
cially deployable on-line system with the same
high level of translation quality and speed within
a single work day.

The rest of the paper is organized as follows. In
the next section, we describe the core capabilities
of the Omnifluent Translate systems. Section 3
explains our data selection and filtering strategy.
In Section 4 we present the document-level trans-
lation and language models. Section 5 describes
morphological transformations of Russian. In sec-
tions 6 we present an extension to the system that
allows for automatic spelling correction. In Sec-
tion 7, we discuss the experiments and their evalu-
ation. Finally, we conclude the paper in Section 8.

2 Core System Capabilities

The Omnifluent system is a state-of-the-art hybrid
MT system that originates from the AppTek tech-
nology acquired by SAIC (Matusov and Köprü,
2010a). The core of the system is a statistical
search that employs a combination of multiple

1Using a single core of a 2.8 GHz Intel Xeon CPU.
2The highest score obtained in the evaluation was 25.9%
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probabilistic translation models, including phrase-
based and word-based lexicons, as well as reorder-
ing models and target n-gram language models.
The retrieval of matching phrase pairs given an
input sentence is done efficiently using an algo-
rithm based on the work of (Zens, 2008). The
main search algorithm is the source cardinality-
synchronous search. The goal of the search is to
find the most probable segmentation of the source
sentence into non-empty non-overlapping contigu-
ous blocks, select the most probable permutation
of those blocks, and choose the best phrasal trans-
lations for each of the blocks at the same time. The
concatenation of the translations of the permuted
blocks yields a translation of the whole sentence.
In practice, the permutations are limited to allow
for a maximum of M “gaps” (contiguous regions
of uncovered word positions) at any time during
the translation process. We set M to 2 for the
English-to-French translation to model the most
frequent type of reordering which is the reorder-
ing of an adjective-noun group. The value of M
for the Russian-to-English translation is 3.

The main differences of Omnifluent Trans-
late as compared to the open-source MT sys-
tem Moses (Koehn et al., 2007) is a reordering
model that penalizes each deviation from mono-
tonic translation instead of assigning costs propor-
tional to the jump distance (4 features as described
by Matusov and Köprü (2010b)) and a lexicaliza-
tion of this model when such deviations depend on
words or part-of-speech (POS) tags of the last cov-
ered and current word (2 features, see (Matusov
and Köprü, 2010a)). Also, the whole input doc-
ument is always visible to the system, which al-
lows the use of document-specific translation and
language models. In translation, multiple phrase
tables can be interpolated linearly on the count
level, as the phrasal probabilities are computed
on-the-fly. Finally, various novel phrase-level fea-
tures have been implemented, including binary
topic/genre/phrase type indicators and translation
memory match features (Matusov, 2012).

The Omnifluent system also allows for partial
or full rule-based translations. Specific source lan-
guage entities can be identified prior to the search,
and rule-based translations of these entities can
be either forced to be chosen by the MT system,
or can compete with phrase translation candidates
from the phrase translation model. In both cases,
the language model context at the boundaries of

the rule-based translations is taken into account.
Omnifluent Translate identifies numbers, dates,
URLs, e-mail addresses, smileys, etc. with manu-
ally crafted regular expressions and uses rules to
convert them to the appropriate target language
form. In addition, it is possible to add manual
translation rules to the statistical phrase table of
the system.

3 Training Data Selection and Filtering

We participated in the constrained data track of
the evaluation in order to obtain results which are
comparable to the majority of the other submis-
sions. This means that we trained our systems only
on the provided parallel and monolingual data.

3.1 TrueCasing

Instead of using a separate truecasing module, we
apply an algorithm for finding the true case of the
first word of each sentence in the target training
data and train truecased phrase tables and a true-
cased language model3. Thus, the MT search de-
cides on the right case of a word when ambiguities
exist. Also, the Omnifluent Translate system has
an optional feature to transfer the case of an input
source word to the word in the translation output
to which it is aligned. Although this approach is
not always error-free, there is an advantage to it
when the input contains previously unseen named
entities which use common words that have to be
capitalized. We used this feature for our English-
to-French submission only.

3.2 Monolingual Data

For the French language model, we trained sepa-
rate 5-gram models on the two GigaWord corpora
AFP and APW, on the provided StatMT data for
2007–2012 (3 models), on the EuroParl data, and
on the French side of the bilingual data. LMs were
estimated and pruned using the IRSTLM toolkit
(Federico et al., 2008). We then tuned a linear
combination of these seven individual parts to op-
timum perplexity on WMT test sets 2009 and 2010
and converted them for use with the KenLM li-
brary (Heafield, 2011). Similarly, our English LM
was a linear combination of separate LMs built for
GigaWord AFP, APW, NYT, and the other parts,
StatMT 2007–2012, Europarl/News Commentary,
and the Yandex data, which was tuned for best per-
plexity on the WMT 2010-2013 test sets.

3Source sentences were lowercased.
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3.3 Parallel Data

Since the provided parallel corpora had differ-
ent levels of noise and quality of sentence align-
ment, we followed a two-step procedure for fil-
tering the data. First, we trained a baseline sys-
tem on the “good-quality” data (Europarl and
News Commentary corpora) and used it to trans-
late the French side of the Common Crawl data
into English. Then, we computed the position-
independent word error rate (PER) between the
automatic translation and the target side on the
segment level and only kept those original seg-
ment pairs, the PER for which was between 10%
and 60%. With this criterion, we kept 48% of the
original 3.2M sentence pairs of the common-crawl
data.

To leverage the significantly larger Multi-UN
parallel corpus, we performed perplexity-based
data sub-sampling, similarly to the method de-
scribed e. g. by Axelrod et al. (2011). First, we
trained a relatively small 4-gram LM on the source
(English) side of our development data and evalu-
ation data. Then, we used this model to compute
the perplexity of each Multi-UN source segment.
We kept the 700K segments with the lowest per-
plexity (normalized by the segment length), so that
the size of the Multi-UN corpus does not exceed
30% of the total parallel corpus size. This proce-
dure is the only part of the translation pipeline for
which we currently do not have a real-time solu-
tion. Yet such a real-time algorithm can be imple-
mented without problems: we word-align the orig-
inal corpora using GIZA++ahead of time, so that af-
ter sub-sampling we only need to perform a quick
phrase extraction. To obtain additional data for
the document-level models only (see Section 4),
we also applied this procedure to the even larger
Gigaword corpus and thus selected 1M sentence
pairs from this corpus.

We used the PER-based procedure as described
above to filter the Russian-English Common-
crawl corpus to 47% of its original size. The base-
line system used to obtain automatic translation
for the PER-based filtering was trained on News
Commentary, Yandex, and Wiki headlines data.

4 Document-level Models

As mentioned in the introduction, the Omnifluent
system loads a whole source document at once.
Thus, it is possible to leverage document context
by using document-level models which score the

phrasal translations of sentences from a specific
document only and are unloaded after processing
of this document.

To train a document-level model for a specific
document from the development, test, or evalua-
tion data, we automatically extract those source
sentences from the background parallel training
data which have (many) n-grams (n=2...7) in com-
mon with the source sentences of the document.
Then, to train the document-level LM we take the
target language counterparts of the extracted sen-
tences and train a standard 3-gram LM on them.
To train the document-level phrase table, we take
the corresponding word alignments for the ex-
tracted source sentences and their target counter-
parts, and extract the phrase table as usual. To
keep the additional computational overhead min-
imal yet have enough data for model estimation,
we set the parameters of the n-gram matching
in such a way that the number of sentences ex-
tracted for document-level training is around 20K
for document-level phrase tables and 100K for
document-level LMs.

In the search, the counts from the document-
level phrase table are linearly combined with the
counts from the background phrase table trained
on the whole training data. The document-level
LM is combined log-linearly with the general LM
and all the other models and features. The scal-
ing factors for the document-level LMs and phrase
tables are not document-specific; neither is the
linear interpolation factor for a document-level
phrase table which we tuned manually on a devel-
opment set. The scaling factor for the document-
level LM was optimized together with the other
scaling factors using Minimum Error Rate Train-
ing (MERT, see (Och, 2003)).

For English-to-French translation, we used both
document-level phrase tables and document-level
LMs; the background data for them contained the
sub-sampled Gigaword corpus (see Section 3.3).
We used only the document-level LMs for the
Russian-to-English translation. They were ex-
tracted from the same data that was used to train
the background phrase table.

5 Morphological Transformations of
Russian

Russian is a morphologically rich language. Even
for large vocabulary MT systems this leads to data
sparseness and high out-of-vocabulary rate. To
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mitigate this problem, we developed rules for re-
ducing the morphological complexity of the lan-
guage, making it closer to English in terms of the
used word forms. Another goal was to ease the
translation of some morphological and syntactic
phenomena in Russian by simplifying them; this
included adding artificial function words.

We used the pymorphy morphological analyzer4

to analyze Russian words in the input text. The
output of pymorphy is one or more alternative
analyses for each word, each of which includes
the POS tag plus morphological categories such
as gender, tense, etc. The analyses are generated
based on a manual dictionary, do not depend on
the context, and are not ordered by probability of
any kind. However, to make some functional mod-
ifications to the input sentences, we applied the
tool not to the vocabulary, but to the actual input
text; thus, in some cases, we introduced a context
dependency. To deterministically select one of the
pymorphy’s analyses, we defined a POS priority
list. Nouns had a higher priority than adjectives,
and adjectives higher priority than verbs. Other-
wise we relied on the first analysis for each POS.

The main idea behind our hand-crafted rules
was to normalize any ending/suffix which does not
carry information necessary for correct translation
into English. Under normalization we mean the
restoration of some “base” form. The pymorphy
analyzer API provides inflection functions so that
each word could be changed into a particular form
(case, tense, etc.). We came up with the following
normalization rules:

• convert all adjectives and participles to first-
person masculine singular, nominative case;
• convert all nouns to the nominative case

keeping the plural/singular distinction;
• for nouns in genitive case, add the artificial

function word “of ” after the last noun before
the current one, if the last noun is not more
than 4 positions away;
• for each verb infinitive, add the artificial

function word “to ” in front of it;
• convert all present-tense verbs to their infini-

tive form;
• convert all past-tense verbs to their past-tense

first-person masculine singular form;
• convert all future-tense verbs to the artificial

function word “will ” + the infinitive;
4https://bitbucket.org/kmike/pymorphy

• For verbs ending with reflexive suffixes
ñÿ/ñü, add the artificial function word “sya ”
in front of the verb and remove the suf-
fix. This is done to model the reflexion (e.g.
“îí óìûâàëñÿ�– “îí sya_ óìûâàë” – “he
washed himself”, here “sya ” corresonds to
“himself”), as well as, in other cases, the pas-
sive mood (e.g. “îí âñòàâëÿåòñÿ� � �îí
sya_ âñòàâëÿòü�– “it is inserted”).

An example that is characteristic of all these mod-
ifications is given in Figure 1.

It is worth noting that not all of these transfor-
mations are error-free because the analysis is also
not always error-free. Also, sometimes there is in-
formation loss (as in case of the instrumental noun
case, for example, which we currently drop instead
of finding the right artificial preposition to express
it). Nevertheless, our experiments show that this is
a successful morphological normalization strategy
for a statistical MT system.

6 Automatic Spelling Correction

Machine translation input texts, even if prepared
for evaluations such as WMT, still contain spelling
errors, which lead to serious translation errors. We
extended the Omnifluent system by a spelling cor-
rection module based on Hunspell5 – an open-
source spelling correction software and dictionar-
ies. For each input word that is unknown both to
the Omnifluent MT system and to Hunspell, we
add those Hunspell’s spelling correction sugges-
tions to the input which are in the vocabulary of
the MT system. They are encoded in a lattice and
assigned weights. The weight of a suggestion is
inversely proportional to its rank in the Hunspell’s
list (the first suggestions are considered to be more
probable) and proportional to the unigram proba-
bility of the word(s) in the suggestion. To avoid
errors related to unknown names, we do not apply
spelling correction to words which begin with an
uppercase letter.

The lattice is translated by the decoder using
the method described in (Matusov et al., 2008);
the globally optimal suggestion is selected in the
translation process. On the English-to-French
task, 77 out of 3000 evaluation data sentences
were translated differently because of automatic
spelling correction. The BLEU score on these
sentences improved from 22.4 to 22.6%. Man-
ual analysis of the results shows that in around

5http://hunspell.sourceforge.net

161



source Îáåä ïðîâîäèëñÿ â îòåëå Âàøèíãòîí ñïóñòÿ íåñêîëüêî ÷àñîâ ïîñëå ñîâåùàíèÿ ñóäà ïî äåëó

prep Îáåä sya_ ïðîâîäèë â îòåëü Âàøèíãòîí ñïóñòÿ íåñêîëüêî ÷àñû ïîñëå ñîâåùàíèå of_ ñóä ïî äåëî

ref The dinner was held at a Washington hotel a few hours after the conference of the court over the case

Figure 1: Example of the proposed morphological normalization rules and insertion of artificial function
words for Russian.

System BLEU PER
[%] [%]

baseline 31.3 41.1
+ extended features 31.7 41.0
+ alignment combination 32.1 40.6
+ doc-level models 32.7 39.3
+ common-crawl/UN data 33.0 39.9

Table 1: English-to-French translation results
(newstest-2012-part2 progress test set).

70% of the cases the MT system picks the right
or almost right correction. We applied automatic
spelling correction also to the Russian-to-English
evaluation submissions. Here, the spelling correc-
tion was applied to words which remained out-of-
vocabulary after applying the morphological nor-
malization rules.

7 Experiments

7.1 Development Data and Evaluation
Criteria

For our experiments, we divided the 3000-
sentence newstest-2012 test set from the WMT
2012 evaluation in two roughly equal parts, re-
specting document boundaries. The first part we
used as a tuning set for N-best list MERT opti-
mization (Och, 2003). We used the second part
as a test set to measure progress; the results on it
are reported below. We computed case-insensitive
BLEU score (Papineni et al., 2002) for optimiza-
tion and evaluation. Only one reference translation
was available.

7.2 English-to-French System

The baseline system for the English-to-French
translation direction was trained on Europarl and
News Commentary corpora. The word align-
ment was obtained by training HMM and IBM
Model 3 alignment models and combining their
two directions using the “grow-diag-final” heuris-
tic (Koehn, 2004). The first line in Table 1 shows
the result for this system when we only use the
standard features (phrase translation and word lex-
icon costs in both directions, the base reorder-

System BLEU PER
[%] [%]

baseline (full forms) 30.1 38.9
morph. reduction 31.3 38.1
+ extended features 32.4 37.3
+ doc-level LMs 32.3 37.4
+ common-crawl data 32.9 37.1

Table 2: Russian-to-English translation results
(newstest-2012-part2 progress test set).

ing features as described in (Matusov and Köprü,
2010b) and the 5-gram target LM). When we
also optimize the scaling factors for extended fea-
tures, including the word-based and POS-based
lexicalized reordering models described in (Ma-
tusov and Köprü, 2010a), we improve the BLEU
score by 0.4% absolute. Extracting phrase pairs
from three different, equally weighted alignment
heuristics improves the score by another 0.3%.
The next big improvement comes from using
document-level language models and phrase ta-
bles, which include Gigaword data. Especially the
PER decreases significantly, which indicates that
the document-level models help, in most cases, to
select the right word translations. Another signifi-
cant improvement comes from adding parts of the
Common-crawl and Multi-UN data, sub-sampled
with the perplexity-based method as described in
Section 3.3. The settings corresponding to the last
line of Table 1 were used to produce the Omniflu-
ent primary submission, which resulted in a BLEU
score of 27.3 on the WMT 2013 test set.

After the deadline for submission, we discov-
ered a bug in the extraction of the phrase table
which had reduced the positive impact of the ex-
tended phrase-level features. We re-ran the opti-
mization on our tuning set and obtained a BLEU
score of 27.7% on the WMT 2013 evaluation set.

7.3 Russian-to-English System
The first experiment with the Russian-to-English
system was to show the positive effect of the
morphological transformations described in Sec-
tion 5. Table 2 shows the result of the baseline
system, trained using full forms of the Russian
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words on the News Commentary, truecased Yan-
dex and Wiki Headlines data. When applying the
morphological transformations described in Sec-
tion 5 both in training and translation, we obtain
a significant improvement in BLEU of 1.3% ab-
solute. The out-of-vocabulary rate was reduced
from 0.9 to 0.5%. This shows that the morpholog-
ical reduction actually helps to alleviate the data
sparseness problem and translate structurally com-
plex constructs in Russian.

Significant improvements are obtained for Ru–
En through the use of extended features, including
the lexicalized and “POS”-based reordering mod-
els. As the “POS” tags for the Russian words we
used the pymorphy POS tag selected deterministi-
cally based on our priority list, together with the
codes for additional morphological features such
as tense, case, and gender. In contrast to the En–
Fr task, document-level models did not help here,
most probably because we used only LMs and
only trained on sub-sampled data that was already
part of the background phrase table. The last boost
in translation quality was obtained by adding those
segments of the cleaned Common-crawl data to
the phrase table training which are similar to the
development and evaluation data in terms of LM
perplexity. The BLEU score in the last line of Ta-
ble 2 corresponds to Omnifluent’s BLEU score of
24.2% on the WMT 2013 evaluation data. This is
only 1.7% less than the score of the best BLEU-
ranked system in the evaluation.

8 Summary and Future Work

In this paper we described the Omnifluent hybrid
MT system and its use for the English-to-French
and Russian-to-English WMT tasks. We showed
that it is important for good translation quality to
perform careful data filtering and selection, as well
as use document-specific phrase tables and LMs.
We also proposed and evaluated rule-based mor-
phological normalizations for Russian. They sig-
nificantly improved the Russian-to-English trans-
lation quality. In contrast to some evaluation par-
ticipants, the presented high-quality system is fast
and can be quickly turned into a real-time system.
In the future, we intend to improve the rule-based
component of the system, allowing users to add
and delete translation rules on-the-fly.
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Abstract

We propose a pre-reordering scheme to
improve the quality of machine translation
by permuting the words of a source sen-
tence to a target-like order. This is accom-
plished as a transition-based system that
walks on the dependency parse tree of the
sentence and emits words in target-like or-
der, driven by a classifier trained on a par-
allel corpus. Our system is capable of gen-
erating arbitrary permutations up to flexi-
ble constraints determined by the choice of
the classifier algorithm and input features.

1 Introduction

The dominant paradigm in statistical machine
translation consists mainly of phrase-based sys-
tem such as Moses (Koehn et.al.,2007). Differ-
ent languages, however, often express the same
concepts in different idiomatic word orders, and
while phrase-based system can deal to some ex-
tent with short-distance word swaps that are cap-
tured by short segments, they typically perform
poorly on long-distance (more than four or five
words apart) reordering. In fact, according to
(Birch et.al., 2008), the amount of reordering be-
tween two languages is the most predictive feature
of phrase-based translation accuracy.

A number of approaches to deal with long-
distance reordering have been proposed. Since an
extuasive search of the permutation space is un-
feasible, these approaches typically constrain the
search space by leveraging syntactical structure of
natural languages.

In this work we consider approaches which in-
volve reordering the words of a source sentence
in a target-like order as a preprocessing step, be-
fore feeding it to a phrase-based decoder which
has itself been trained with a reordered training
set. These methods also try to leverage syntax,

typically by applying hand-coded or automatically
induced reordering rules to a constituency or de-
pendency parse of the source sentence. (Gal-
ley and Manning, 2008; Xu et.al., 2009; Genzel,
2010; Isozaki et.al., 2010) or by treating reorder-
ing as a global optimization problem (Tromble and
Eisner, 2009; Visweswariah et.al., 2011). In or-
der to keep the training and execution processes
tractable, these methods impose hard constrains
on the class of permutations they can generate.

We propose a pre-reordering method based on
a walk on the dependency parse tree of the source
sentence driven by a classifier trained on a parallel
corpus.

In principle, our system is capable of generat-
ing arbitrary permutations of the source sentence.
Practical implementations will necessarily limit
the available permutations, but these constraints
are not intrinsic to the model, rather they depend
on the specific choice of the classifier algorithm,
its hyper-parameters and input features.

2 Reordering as a walk on a dependency
tree

2.1 Dependency parse trees

Let a sentence be a list of words s ≡
(w1, w2, . . . , wn) and its dependency parse tree
be a rooted tree whose nodes are the words of the
sentence. An edge of the tree represents a syntac-
tical dependency relation between a head (parent)
word and a modifier (child) word. Typical depen-
dency relations include verb-subject, verb-object,
noun-adjective, and so on.

We assume that in addition to its head hi and
dependency relation type di each word is also an-
notated with a part-of-speech pi and optionally a
lemma li and a morphology mi (e.g. grammatical
case, gender, number, tense).

Some definitions require dependency parse
trees to be projective, meaning that any complete
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subtree must correspond to a contiguous span of
words in the sentence, however, we don’t place
such a requirement. In practice, languages with a
substantially strict word ordering like English typ-
ically have largely projective dependencies, while
languages with a more free word ordering like
Czech can have substantial non-projectivity.

2.2 Reordering model
Given a sentence s ∈ S with its dependency parse
tree and additional annotations, we incrementally
construct a reordered sentence s′ by emitting its
words in a sequence of steps. We model the re-
ordering process as a non-deterministic transition
system which traverses the parse tree:

Let the state of the system be a tuple x ≡
(i, r, a, , . . . ) containing at least the index of the
current node i (initialized at the root), the list of
emitted nodes r (initialized as empty) and the last
transition action a (initialized as null). Additional
information can be included in the state x, such as
the list of the last K nodes that have been visited,
the last K actions and a visit count for each node.

At each step we choose one of the following ac-
tions:

• EMIT : emit the current node. Enabled only
if the current node hasn’t already been emit-
ted

i /∈ r

(i, r, a, , . . . )
EMIT→ (i, (r | i) , EMIT, , . . . )

• UP : move to the parent of the current node

hi 6= null, ∀j a 6= DOWNj

(i, r, a, , . . . )
UP→ (hi, r, UP, , . . . )

• DOWNj : move to the child j of the current
node. Enabled if the subtree of j (including
j) contains nodes that have not been emitted
yet.

hj = i, a 6= UP, ∃k ∈ subtree(i) : k /∈ r

(i, r, a, , . . . )
DOWNj→ (j, r, DOWNj , , . . . )

The pre-conditions on the UP and DOWN actions
prevent them from canceling each other, ensuring
that progress is made at each step. The additional
precondition on DOWN actions ensures that the
process always halts at a final state where all the
nodes have been emitted.

Let T (s) be the set of legal traces of the transi-
tion system for sentence s. Each trace τ ∈ T (s)
defines a permutation sτ of s as the list of emitted
nodes r of its final state.

We define the reordering problem as finding the
trace τ∗ that maximizes a scoring function Φ

τ∗ ≡ arg max
τ∈T (s)

Φ (s, τ) (1)

Note that since the parse tree is connected, in
principle any arbitrary permutation can be gen-
erated for a suitable choice of Φ, though the
maximization problem (1) is NP-hard and APX-
complete in the general case, by trivial reduction
from the traveling salesman problem.

The intuition behind this model is to leverage
the syntactical information provided by the de-
pendency parse tree, as successfully done by (Xu
et.al., 2009; Genzel, 2010; Isozaki et.al., 2010)
without being strictly constrained by a specific
type reordering rules.

2.3 Trace scores
We wish to design a scoring function Φ that cap-
tures good reorderings for machine translation and
admits an efficient optimization scheme.

We chose a function that additively decomposes
into local scoring functions, each depending only
on a single state of the trace and the following tran-
sition action

Φ (s, τ) ≡
|τ |−1∑

t=1

φ (s, x (τ, t) , xa (τ, t+ 1))

(2)
We further restrict our choice to a function

which is linear w.r.t. a set of elementary local fea-
ture functions {fk}

φ (s, x, a) ≡
|F |∑

k=1

vkfk (s, x, a) (3)

where {vk} ∈ R|F | is a vector of parameters
derived from a training procedure.

While in principle each feature function could
depend on the whole sentence and the whole se-
quence of nodes emitted so far, in practice we re-
strict the dependence to a fixed neighborhood of
the current node and the last few emitted nodes.
This reduces the space of possible permutations.

2.4 Classifier-driven action selection
Even when the permutation space has been re-
stricted by an appropriate choice of the feature
functions, computing an exact solution of the opti-
mization problem (1) remains non-trivial, because
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at each step of the reordering generation process,
the set of enabled actions depends in general on
nodes emitted at any previous step, and this pre-
vents us from applying typical dynamic program-
ming techniques. Therefore, we need to apply an
heuristic procedure.

In our experiments, we apply a simple greedy
procedure: at each step we choose an action ac-
cording to the output a two-stage classifier:

1. A three-class one-vs-all logistic classifier
chooses an action among EMIT, UP or
DOWN based on a vector of features ex-
tracted from a fixed neighborhood of the cur-
rent node i, the last emitted nodes and addi-
tional content of the state.

2. If a DOWN action was chosen, then a one-
vs-one voting scheme is used to choose
which child to descend to: For each pair
(j, j′) : j < j′ of children of i, a binary lo-
gistic classifier assigns a vote either to j or
j′. The child that receives most votes is cho-
sen. This is similar to the max-wins approach
used in packages such as LIBSVM (Chang
and Lin, 2011) to construct a M -class clas-
sifier from M (M − 1) /2 binary classifiers,
except that we use a single binary classifier
acting on a vector of features extracted from
the pair of children (j, j′) and the node i,
with their respective neighborhoods.

We also experimented with different classification
schemes, but we found that this one yields the best
performance.

Note that we are not strictly maximizing a
global linear scoring function as as defined by
equations (2) and (3), although this approach is
closely related to that framework.

This approach is related to transition-based de-
pendency parsing such as (Nivre and Scholz,
2004; Attardi, 2006) or dependency tree revi-
sion(Attardi and Ciaramita, 2007).

3 Training

3.1 Dataset preparation

Following (Al-Onaizan and Papineni, 2006;
Tromble and Eisner, 2009; Visweswariah et.al.,
2011), we generate a source-side reference re-
ordering of a parallel training corpus. For each
sentence pair, we generate a bidirectional word
alignment using GIZA++ (Och and Ney, 2000)

and the “grow-diag-final-and” heuristic imple-
mented in Moses (Koehn et.al.,2007), then we as-
sign to each source-side word a integer index cor-
responding to the position of the leftmost target-
side word it is aligned to (attaching unaligned
words to the following aligned word) and finally
we perform a stable sort of source-side words ac-
cording to this index.

On language pairs where GIZA++ produces
substantially accurate alignments (generally all
European languages) this scheme generates a
target-like reference reordering of the corpus.

In order to tune the parameters of the down-
stream phrase-based translation system and to test
the overall translation accuracy, we need two addi-
tional small parallel corpora. We don’t need a ref-
erence reordering for the tuning corpus since it is
not used for training the reordering system, how-
ever we generate a reference reordering for the test
corpus in order to evaluate the accuracy of the re-
ordering system in isolation. We obtain an align-
ment of this corpus by appending it to the train-
ing corpus, and processing it with GIZA++ and
the heuristic described above.

3.2 Reference traces generation and classifier
training

For each source sentence s in the training set
and its reference reordering s′, we generate a
minimum-length trace τ of the reordering transi-
tion system, and for each state and action pair in it
we generate the following training examples:

• For the first-stage classifier we generate a sin-
gle training examples mapping the local fea-
tures to an EMIT, UP or DOWN action label

• For the second-stage classifier, if the action is
DOWNj , for each pair of children (k, k′) :
k < k′ of the current node i, we generate a
positive example if j = k or a negative ex-
ample if j = k′.

Both classifiers are trained with the LIBLIN-
EAR package (Fan et.al., 2008), using the L2-
regularized logistic regression method. The reg-
ularization parameter C is chosen by two-fold
cross-validation. In practice, subsampling of the
training set might be required in order to keep
memory usage and training time manageable.

3.3 Translation system training and testing
Once the classifiers have been trained, we run
the reordering system on the source side of the
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whole (non-subsampled) training corpus and the
tuning corpus. For instance, if the parallel cor-
pora are German-to-English, after the reorder-
ing step we obtain German’-to-English corpora,
where German’ is German in an English-like
word order. These reordered corpora are used to
train a standard phrase-based translation system.
Finally, the reordering system is applied to source
side of the test corpus, which is then translated
with the downstream phrase-based system and the
resulting translation is compared to the reference
translation in order to obtain an accuracy measure.
We also evaluate the ”monolingual” reordering ac-
curacy of upstream reordering system by compar-
ing its output on the source side of the test cor-
pus to the reference reordering obtained from the
alignment.

4 Experiments

We performed German-to-English and Italian-to-
English reordering and translation experiments.

4.1 Data

The German-to-English corpus is Europarl v7
(Koehn, 2005). We split it in a 1,881,531 sentence
pairs training set, a 2,000 sentence pairs develop-
ment set (used for tuning) and a 2,000 sentence
pairs test set. We also used a 3,000 sentence pairs
”challenge” set of newspaper articles provided by
the WMT 2013 translation task organizers.

The Italian-to-English corpus has been assem-
bled by merging Europarl v7, JRC-ACQUIS v2.2
(Steinberger et.al., 2006) and bilingual newspaper
articles crawled from news websites such as Cor-
riere.it and Asianews.it. It consists of a 3,075,777
sentence pairs training set, a 3,923 sentence pairs
development set and a 2,000 sentence pairs test
set.

The source sides of these corpora have been
parsed with Desr (Attardi, 2006). For both lan-
guage pairs, we trained a baseline Moses phrase-
based translation system with the default configu-
ration (including lexicalized reordering).

In order to keep the memory requirements and
duration of classifier training manageable, we sub-
sampled each training set to 40,000 sentences,
while both the baseline and reordered Moses sys-
tem are trained on the full training sets.

4.2 Features

After various experiments with feature selection,
we settled for the following configuration for both
German-to-English and Italian-to-English:

• First stage classifier: current node i state-
ful features (emitted?, left/right subtree emit-
ted?, visit count), curent node lexical and
syntactical features (surface form wi, lemma
li, POS pi, morphology mi, DEPREL di, and
pairwise combinations between lemma, POS
and DEPREL), last two actions, last two vis-
ited nodes POS, DEPREL and visit count,
last two emitted nodes POS and DEPREL, bi-
gram and syntactical trigram features for the
last two emitted nodes and the current node,
all lexical, syntactical and stateful features
for the neighborhood of the current node
(left, right, parent, parent-left, parent-right,
grandparent, left-child, right-child) and pair-
wise combination between syntactical fea-
tures of these nodes.

• Second stage classifier: stateful features for
the current node i and the the children pair
(j, j′), lexical and syntactical features for
each of the children and pairwise combina-
tions of these features, visit count differences
and signed distances between the two chil-
dren and the current node, syntactical trigram
features between all combinations of the two
children, the current node, the parent hi and
the two last emitted nodes and the two last
visited nodes, lexical and syntactical features
for the two children left and right neighbors.

All features are encoded as binary one-of-n indi-
cator functions.

4.3 Results

For both German-to-English and Italian-to-
English experiments, we prepared the data as
described above and we trained the classifiers on
their subsampled training sets. In order to evaluate
the classifiers accuracy in isolation from the rest
of the system, we performed two-fold cross vali-
dation on the same training sets, which revealed
an high accuracy: The first stage classifier obtains
approximately 92% accuracy on both German and
Italian, while the second stage classifier obtains
approximately 89% accuracy on German and 92%
on Italian.
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BLEU NIST
German 57.35 13.2553
Italian 68.78 15.3441

Table 1: Monolingual reordering scores

BLEU NIST
de-en baseline 33.78 7.9664

de-en reordered 32.42 7.8202
it-en baseline 29.17 7.1352

it-en reordered 28.84 7.1443

Table 2: Translation scores

We applied the reordering preprocessing system
to the source side of the corpora and evaluated the
monolingual BLEU and NIST score of the test sets
(extracted from Europarl) against their reference
reordering computed from the alignment

To evaluate translation performance, we trained
a Moses phrase-based system on the reordered
training and tuning corpora, and evaluated the
BLEU and NIST of the (Europarl) test sets. As
a baseline, we also trained and evaluated Moses
system on the original unreordered corpora.

We also applied our baseline and reordered
German-to-English systems to the WMT2013
translation task dataset.

5 Discussion

Unfortunately we were generally unable to im-
prove the translation scores over the baseline, even
though our monolingual BLEU for German-to-
English reordering is higher than the score re-
ported by (Tromble and Eisner, 2009) for a com-
parable dataset.

Accuracy on the WMT 2013 set is very low. We
attribute this to the fact that it comes form a differ-
ent domain than the training set.

Since classifier training set cross-validation ac-
curacy is high, we speculate that the main problem
lies with the training example generation process:
training examples are generated only from opti-
mal reordering traces. This means that once the
classifiers produce an error and the system strays
away from an optimal trace, it may enter in a fea-
ture space that is not well-represented in the train-
ing set, and thus suffer from unrecoverable per-
formance degradation. Moreover, errors occurring
on nodes high in the parse tree may cause incor-
rect placement of whole spans of words, yielding

a poor BLEU score (although a cursory exami-
nation of the reordered sentences doesn’t reveal
this problem to be prevalent). Both these issues
could be possibly addressed by switching from
a classifier-based system to a structured predic-
tion system, such as averaged structured percep-
tron (Collins, 2002) or MIRA (Crammer, 2003;
McDonald et.al., 2005).

Another possible cause of error is the purely
greedy action selection policy. This could be ad-
dressed using a search approach such as beam
search.

We reserve to investigate these approaches in
future work.
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Abstract

We present the syntax-based string-to-
tree statistical machine translation systems
built for the WMT 2013 shared transla-
tion task. Systems were developed for
four language pairs. We report on adapting
parameters, targeted reduction of the tun-
ing set, and post-evaluation experiments
on rule binarization and preventing drop-
ping of verbs.

1 Overview

Syntax-based machine translation models hold
the promise to overcome some of the fundamen-
tal problems of the currently dominating phrase-
based approach, most importantly handling re-
ordering for syntactically divergent language pairs
and grammatical coherence of the output.

We are especially interested in string-to-tree
models that focus syntactic annotation on the tar-
get side, especially for morphologically rich target
languages (Williams and Koehn, 2011).

We have trained syntax-based systems for the
language pairs

• English-German,
• German-English,
• Czech-English, and
• Russian-English.

We have also tried building systems for French-
English and Spanish-English but the data size
proved to be problematic given the time con-
straints. We give a brief description of the syntax-
based model and its implementation within the
Moses system. Some of the available features are
described as well as some of the pre-processing
steps. Several experiments are described and final
results are presented for each language pair.

2 System Description

The syntax-based system used in all experiments
is the Moses string-to-tree toolkit implementing
GHKM rule extraction and Scope-3 parsing previ-
ously described in by Williams and Koehn (2012)

2.1 Grammar
Our translation grammar is a synchronous context-
free grammar (SCFG) with phrase-structure labels
on the target side and the generic non-terminal la-
bel X on the source side. In this paper, we write
these rules in the form

LHS → RHSs | RHSt

where LHS is a target-side non-terminal label and
RHSs and RHSt are strings of terminals and non-
terminals for the source and target sides, respec-
tively. We use subscripted indices to indicate the
correspondences between source and target non-
terminals.

For example, a translation rule to translate the
German Haus into the English house is

NN → Haus | house

If our grammar also contains the translation rule

S → das ist ein X1 | this is a NN1

then we can apply the two rules to an input das ist
ein Haus to produce the output this is a house.

2.2 Rule Extraction
The GHKM rule extractor (Galley et al., 2004,
2006) learns translation rules from a word-aligned
parallel corpora for which the target sentences are
syntactically annotated. Given a string-tree pair,
the set of minimally-sized translation rules is ex-
tracted that can explain the example and is consis-
tent with the alignment. The resulting rules can be
composed in a non-overlapping fashion in order to
cover the string-tree pair.

Two or more minimal rules that are in a parent-
child relationship can be composed together to ob-
tain larger rules with more syntactic context. To
avoid generating an exponential number of com-
posed rules, several limitation have to be imposed.

One such limitation is on the size of the com-
posed rules, which is defined as the number of
non-part-of-speech, non-leaf constituent labels in
the target tree (DeNeefe et al., 2007). The corre-
sponding parameter in the Moses implementation
is MaxRuleSize and its default value is 3.
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Another limitation is on the depth of the rules’
target subtree. The rule depth is computed as the
maximum distance from its root node to any of its
children, not counting pre-terminal nodes (param-
eter MaxRuleDepth, default 3).

The third limitation considered is the number of
nodes in the composed rule, not counting target
words (parameter MaxNodes, default 15).

These parameters are language-dependent and
should be set to values that best represent the char-
acteristics of the target trees on which the rule ex-
tractor is trained on. Therefore the style of the
treebanks used for training the syntactic parsers
will also influence these numbers. The default
values have been set based on experiments on
the English-German language pair (Williams and
Koehn, 2012). It is worth noting that the Ger-
man parse trees (Skut et al., 1997) tend to be
broader and shallower than those for English. In
Section 3 we present some experiments where we
choose different settings of these parameters for
the German-English language pair. We use those
settings for all language pairs where the target lan-
guage is English.

2.3 Tree Restructuring

The coverage of the extracted grammar depends
partly on the structure of the target trees. If the
target trees have flat constructions such as long
noun phrases with many sibling nodes, the rules
extracted will not generalize well to unseen data
since there will be many constraints given by the
types of different sibling nodes.

In order to improve the grammar coverage to
generalize over such cases, the target tree can be
restructured. One restructuring strategy is tree
binarization. Wang et al. (2010) give an exten-
sive overview of different tree binarization strate-
gies applied for the Chinese-English language
pair. Moses currently supports left binarization
and right binarization.

By left binarization all the left-most children
of a parent node n except the right most child
are grouped under a new node. This node is in-
serted as the left child of n and receives the la-
bel n̄. Left binarization is then applied recursively
on all newly inserted nodes until the leaves are
reached. Right binarization implies a similar pro-
cedure but in this case the right-most children of
the parent node are grouped together except the
left most child.

Another binarization strategy that is not cur-
rently integrated in Moses, but is worth investigat-
ing for different language pairs, is parallel head
binarization.

The result of parallel binarization of a parse
tree is a binarization forest. To generate a bina-
rization forest node, both right binarization and
left binarization are applied recursively to a parent
node with more than two children. Parallel head
binarization is a case of parallel binarization with
the additional constraint that the head constituent
is part of all the new nodes inserted by either left
or right binarization steps.

In Section 3 we give example of some initial ex-
periments carried out for the German-English lan-
guage pair.

2.4 Pruning The Grammar
Decoding for syntax-based model relies on a
bottom-up chart parsing algorithm. Therefore de-
coding efficiency is influenced by the following
combinatorial problem: given an input sentence
of length n and a context-free grammar rule with
s consecutive non-terminals, there are

(
n+1
s

)
ways

to choose subspans, or application contexts (Hop-
kins and Langmead, 2010), that the rule can ap-
plied to. The asymptotic running time of chart
parsing is linear in this number O(ns).

Hopkins and Langmead (2010) maintain cubic
decoding time by pruning the grammar to remove
rules for which the number of potential applica-
tion contexts is too large. Their key observation is
that a rule can have any number of non-terminals
and terminals as long as the number of consecutive
non-terminal pairs is bounded. Terminals act to
anchor the rule, restricting the number of potential
application contexts. An example is the rule X →
WyY Zz for which there are at most O(n2) appli-
cation contexts, given that the terminals will have
a fixed position and will play the role of anchors
in the sentence for the non-terminal spans. The
number of consecutive non-terminal pairs plus the
number of non-terminals at the edge of a rule is
referred to as the scope of the rule. The scope of a
grammar is the maximum scope of any of its rules.
Moses implements scope-3 pruning and therefore
the resulting grammar can be parsed in cubic time.

2.5 Feature Functions
Our feature functions are unchanged from last
year. They include the n-gram language model
probability of the derivation’s target yield, its word
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count, and various scores for the synchronous
derivation. Our grammar rules are scored accord-
ing to the following functions:

• p(RHSs|RHSt,LHS), the noisy-channel
translation probability.

• p(LHS,RHSt|RHSs), the direct translation
probability.

• plex (RHSt|RHSs) and plex (RHSs|RHSt),
the direct and indirect lexical weights (Koehn
et al., 2003).

• ppcfg(FRAGt), the monolingual PCFG prob-
ability of the tree fragment from which
the rule was extracted. This is defined
as
∏n

i=1 p(ri), where r1 . . . rn are the con-
stituent CFG rules of the fragment. The
PCFG parameters are estimated from the
parse of the target-side training data. All lex-
ical CFG rules are given the probability 1.
This is similar to the pcfg feature proposed
by Marcu et al. (2006) and is intended to en-
courage the production of syntactically well-
formed derivations.

• exp(−1/count(r)), a rule rareness penalty.

• exp(1), a rule penalty. The main grammar
and glue grammars have distinct penalty fea-
tures.

3 Experiments

This section describes details for the syntax-based
systems submitted by the University of Edinburgh.
Additional post-evaluation experiments were car-
ried out for the German-English language pair.

3.1 Data
We made use of all available data for each lan-
guage pair except for the Russian-English where
the Commoncrawl corpus was not used. Table 1
shows the size of the parallel corpus used for each
language pair. The English side of the paral-
lel corpus was parsed using the Berkeley parser
(Petrov et al., 2006) and the German side of the
parallel corpus was parsed using the BitPar parser
(Schmid, 2004). For German-English, German
compounds were split using the script provided
with Moses. The parallel corpus was word-aligned
using MGIZA++ (Gao and Vogel, 2008).

All available monolingual data was used for
training the language models for each language

Lang. pair Sentences Grammar Size
en-de 4,411,792 31,568,480
de-en 4,434,060 55,310,162
cs-en 14,425,564 209,841,388
ru-en 1,140,359 7,946,502

Table 1: Corpus statistics for parallel data.

pair. 5-gram language models were trained us-
ing SRILM toolkit (Stolcke, 2002) with modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1998) and then interpolated using weights tuned
on the newstest2011 development set.

The feature weights for each system were tuned
on development sets using the Moses implementa-
tion of minimum error rate training (Och, 2003).
The size of the tuning data varied for different lan-
guages depending on the amount of available data.
In the case of the the German-English pair a filter-
ing criteria based on sentence level BLEU score
was applied which is briefly described in Section
3.5. Table 2 shows the size of the tuning set for
each language pair.

Lang. pair Sentences
en-de 7,065
de-en 2,400
cs-en 10,068
ru-en 1,501

Table 2: Corpus statistics for tuning data.

3.2 Pre-processing
Some attention was given to pre-processing of the
English side of the corpus prior to parsing. This
was done to avoid propagating parser errors to the
rule-extraction step. These particular errors arise
from a mismatch in punctuation and tokenization
between the corpus used to train the parser, the
PennTree bank, and the corpus which is being
parsed and passed on to the rule extractor. There-
fore we changed the quotation marks, which ap-
pear quite often in the parallel corpora, to opening
and closing quotation marks. We also added some
PennTree bank style tokenization rules1. These
rules split contractions such as I’ll, It’s, Don’t,
Gonna, Commissioner’s in order to correctly sep-
arate the verbs, negation and possessives that are

1The PennTree bank tokenization rules considered were
taken from http://www.cis.upenn.edu/˜treebank/
tokenizer.sed. Further examples of contractions were
added.
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Grammar Size BLEU

Parameters Full Filtered 2009-40 2010-40 2011-40 Average
Depth=3, Nodes=15, Size=3 2,572,222 751,355 18.57 20.43 18.51 19.17
Depth=4, Nodes=20, Size=4 3,188,970 901,710 18.88 20.38 18.63 19.30
Depth=5, Nodes=20, Size=5 3,668,205 980,057 19.04 20.47 18.75 19.42
Depth=5, Nodes=30, Size=5 3,776,961 980,061 18.90 20.59 18.77 19.42
Depth=5, Nodes=30, Size=6 4,340,716 1,006,174 18.98 20.52 18.80 19.43

Table 3: Cased BLEU scores for various rule extraction parameter settings for German-English language
pair. The parameters considered are MaxRuleDepth, MaxRuleSize, MaxNodes. Grammar sizes are given
for the full extracted grammar and after filtering for the newstest2008 dev set.

newstest2012 newstest2013
System Sentences BLEU Glue Rule Tree Depth BLEU Glue Rule Tree Depth
Baseline 5,771 23.21 5.42 4.03 26.27 4.23 3.80
Big tuning set 10,068 23.52 3.41 4.34 26.33 2.49 4.03
Filtered tuning set 2,400 23.54 3.21 4.37 26.30 2.37 4.05

Table 4: Cased BLEU scores for German-English systems tuned on different data. Scores are emphasized
for the system submitted to the shared translation task.

parsed as separate constituents.
For German–English, we carried out the usual

compound splitting (Koehn and Knight, 2003), but
not pre-reordering (Collins et al., 2005).

3.3 Rule Extraction

Some preliminary experiments were carried out
for the German-English language pair to deter-
mine the parameters for the rule extraction step:
MaxRuleDepth, MaxRuleSize, MaxNodes. Table 3
shows the BLEU score on different test sets for
various parameter settings. For efficiency rea-
sons less training data was used, therefore the
grammar sizes, measured as the total number of
extracted rules, are smaller than the final sys-
tems (Table 1). The parameters on the third line
Depth=5, Nodes=20, Size=4 were chosen as the
average BLEU score did not increase although the
size of the extracted grammar kept growing. Com-
paring the rate of growth of the full grammar and
the grammar after filtering for the dev set (the
columns headed “Full” and “Filtered”) suggests
that beyond this point not many more usable rules
are extracted, even while the total number of rules
stills increases.

3.4 Decoder Settings

We used the following non-default decoder param-
eters:

max-chart-span=25: This limits sub deriva-
tions to a maximum span of 25 source words. Glue
rules are used to combine sub derivations allowing
the full sentence to be covered.

ttable-limit=200: Moses prunes the translation
grammar on loading, removing low scoring rules.
This option increases the number of translation
rules that are retained for any given source side
RHSs.

cube-pruning-pop-limit=1000: Number of hy-
potheses created for each chart span.

3.5 Tuning sets

One major limitation for the syntax-based systems
is that decoding becomes inefficient for long sen-
tences. Therefore using large tuning sets will slow
down considerably the development cycle. We
carried out some preliminary experiments to de-
termine how the size of the tuning set affects the
quality and speed of the system.

Three tuning sets were considered. The tun-
ing set that was used for training the baseline sys-
tem was built using the data from newstest2008-
2010 filtering out sentences longer than 30 words.
The second tuning set was built using all data
from newstest2008-2011. The final tuning set
was also built using the concatenation of the sets
newstest2008-2011. All sentences in this set were
decoded with a baseline system and the output was
scored according to sentence-BLEU scores. We se-
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lected examples with high sentence-BLEU score in
a way that penalizes excessively short examples2.
Results of these experiments are shown in Table 4.

Results show that there is some gain in BLEU

score when providing longer sentences during tun-
ing. Further experiments should consider tuning
the baseline with the newstest2008-2011 data, to
eliminate variance caused by having different data
sources. Although the size of the third tuning set is
much smaller than that of the other tuning sets, the
BLEU score remains the same as when using the
largest tuning set. The glue rule number, which
shows how many times the glue rule was applied,
is lowest when tuning with the third data set. The
tree depth number, which shows the depth of the
resulting target parse tree, is higher for the third
tuning set as compared to the baseline and similar
to that resulted from using the largest tuning set.
These numbers are all indicators of better utilisa-
tion of the syntactic structure.

Regarding efficiency, the baseline tuning set and
the filtered tuning set took about a third of the time
needed to decode the larger tuning set.

Therefore we could draw some initial conclu-
sions that providing longer sentences is useful,
but sentences for which some baseline system per-
forms very poorly in terms of BLEU score can be
eliminated from the tuning set.

3.6 Results

Table 5 summarizes the results for the systems
submitted to the shared task. The BLEU scores for
the phrase-based system submitted by the Univer-
sity of Edinburgh are also shown for comparison.
The syntax-based system had BLEU scores similar
to those of the phrase-based system for German-
English and English-German language pairs. For
the Czech-English and Russian-English language
pairs the syntax-based system was 2 BLEU points
behind the phrase-based system.

However, in the manual evaluation, the
German–English and English–German syntax
based systems were ranked higher than the phrase-
based systems. For Czech–English, the syntax
systems also came much closer than the BLEU

score would have indicated.
The Russian-English system performed worse

because we used much less of the available data
for training (leaving out Commoncrawl) and there-

2Ongoing work by Eva Hasler. Filtered data set was pro-
vided in order to speed up experiment cycles.

phrase-based syntax-based
BLEU manual BLEU manual

en-de 20.1 0.571 19.4 0.614
de-en 26.6 0.586 26.3 0.608
cs-en 26.2 0.562 24.4 0.542
ru-en 24.3 0.507 22.5 0.416

Table 5: Cased BLEU scores and manual evalua-
tion scores (”expected wins”) on the newstest2013
evaluation set for the phrase-based and syntax-
based systems submitted by the University of Ed-
inburgh.

fore the extracted grammar is less reliable. An-
other reason was the mismatch in data format-
ting for the Russian-English parallel corpus. All
the training data was lowercased which resulted in
more parsing errors.

3.7 Post-Submission Experiments

Table 6 shows results for some preliminary ex-
periments carried out for the German-English lan-
guage pair that were not included in the final sub-
mission. The baseline system is trained on all
available parallel data and tuned on data from
newstest2008-2010 filtered for sentences up to 30
words.

Tree restructuring — In one experiment the
parse trees were restructured before training by
left binarization. Tree restructuring is need to im-
prove generalization power of rules extracted from
flat structures such as base noun phrases with sev-
eral children. The second raw in Table 6 shows
that the BLEU score did not improve and more
glue rules were applied when using left binariza-
tion. One reason for this result is that the rule ex-
traction parameters MaxRuleDepth, MaxRuleSize,
MaxNodes had the same values as in the baseline.
Increasing this parameters should improve the ex-
tracted grammar since binarizing the trees will in-
crease these three dimensions.

Verb dropping — A serious problem of
German–English machine translation is the ten-
dency to drop verbs, which shatters sentence struc-
ture. One cause of this problem is the failure of the
IBM Models to properly align the German verb to
its English equivalent, since it is often dislocated
with respect to English word order. Further prob-
lems appear when the main verb is not reordered in
the target sentence, which can result in lower lan-
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newstest2012 newstest2013
System Grammar size BLEU glue rule tree depth BLEU glue rule tree depth
Baseline 55,310,162 23.21 5.42 4.03 26.27 4.23 3.80
Left binarized 57,151,032 23.17 7.79 4.09 26.13 6.57 3.85
Realigned vb 53,894,112 23.26 4.88 4.19 26.26 3.73 3.96

Table 6: Cased BLEU scores for various German-English systems.

System Vb drop
rules

Vb Count
nt2012

Vb Count
nt2013

Baseline 1,038,597 9,216 8,418
Realigned

verbs 391,231 9,471 8,614

Reference
translation - 9,992 9,207

Table 7: Statistics about verb dropping.

guage model scores and BLEU scores. However
the syntax models handle the reordering of verbs
better than phrase-based models.

In an experiment we investigated how the num-
ber of verbs dropped by the translation rules can
be reduced. In order to reduce the number of
verb dropping rules we looked at unaligned verbs
and realigned them before rule extraction. An un-
aligned verb in the source sentence was aligned
to the verb in the target sentence for which IBM
model 1 predicted the highest translation probabil-
ity. The third row in Table 6 shows the results of
this experiment. While there is no change in BLEU

score the number of glue rules applied is lower.
Further analysis shows in Table 7 that the number
of verb dropping rules in the grammar is almost
three times lower and that there are more trans-
lated verbs in the output when realigning verbs.

4 Conclusion

We describe in detail the syntax-based machine
translation systems that we developed for four Eu-
ropean language pairs. We achieved competitive
results, especially for the language pairs involving
German.
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Abstract

This paper describes shallow
semantically-informed Hierarchical
Phrase-based SMT (HPBSMT) and
Phrase-Based SMT (PBSMT) systems
developed at Dublin City University
for participation in the translation task
between EN-ES and ES-EN at the Work-
shop on Statistical Machine Translation
(WMT 13). The system uses PBSMT
and HPBSMT decoders with multiple
LMs, but will run only one decoding
path decided before starting translation.
Therefore the paper does not present a
multi-engine system combination. We
investigate three types of shallow seman-
tics: (i) Quality Estimation (QE) score,
(ii) genre ID, and (iii) context ID derived
from context-dependent language models.
Our results show that the improvement is
0.8 points absolute (BLEU) for EN-ES
and 0.7 points for ES-EN compared to
the standard PBSMT system (single best
system). It is important to note that we
developed this method when the standard
(confusion network-based) system com-
bination is ineffective such as in the case
when the input is only two.

1 Introduction

This paper describes shallow semantically-
informed Hierarchical Phrase-based SMT
(HPBSMT) and Phrase-Based SMT (PBSMT)
systems developed at Dublin City University
for participation in the translation task between
EN-ES and ES-EN at WMT 13. Our objectives
are to incorporate several shallow semantics into
SMT systems. The first semantics is the QE score
for a given input sentence which can be used to
select the decoding path either of HPBSMT or

PBSMT. Although we call this aQE score, this
score is not quite a standard one which does not
have access to translation output information. The
second semantics is genre ID which is intended to
capture domain adaptation. The third semantics
is context ID: this context ID is used to adjust the
context for the local words. Context ID is used in
a continuous-space LM (Schwenk, 2007), but is
implicit since the context does not appear in the
construction of a continuous-space LM. Note that
our usage of the termsemantics refers to meaning
constructed by a sentence or words. The QE
score works as a sentence level switch to select
HPBSMT or PBSMT, based on thesemantics
of a sentence. The genre ID gives an indication
that the sentence is to be translated by genre ID-
sensitive MT systems, again based onsemantics
on a sentence level. The context-dependent LM
can be interpreted as supplying the local context
to a word, capturingsemantics on a word level.

The architecture presented in this paper is sub-
stantially different from multi-engine system com-
bination. Although the system has multiple paths,
only one path is chosen at decoding when process-
ing unseen data. Note thatstandard multi-engine
system combination using these three semantics
has been presented before (Okita et al., 2012b;
Okita et al., 2012a; Okita, 2012). This paper also
compares the two approaches.

The remainder of this paper is organized as fol-
lows. Section 2 describes the motivation for our
approach. In Section 3, we describe our proposed
systems, while in Section 4 we describe the exper-
imental results. We conclude in Section 5.

2 Motivation

Model Difference of PBSMT and HPBSMT
Our motivation is identical with a system combi-
nation strategy which would obtain a better trans-
lation if we can access more than two translations.
Even though we are limited in the type of MT sys-
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tems, i.e. SMT systems, we can access at least
two systems, i.e. PBSMT and HPBSMT systems.
The merit that accrues from accessing these two
translation is shown in Figure 1. In this exam-
ple between EN-ES, the skirts of the distribution
shows that around 20% of the examples obtain the
same BLEU score, 37% are better under PBSMT,
and 42% under HPBSMT. Moreover, around 10%
of sentences show difference of 10 BLEU points.
Even a selection of outputs would improve the re-
sults. Unfortunately, some pitfall of system com-
bination (Rosti et al., 2007) impact on the process
when the number of available translation is only
two. If there are only two inputs, (1) the mismatch
of word order and word selection would yield a
bad combination since system combination relies
on monolingual word alignment (or TER-based
alignment) which seeks identical words, and (2)
Minimum Bayes Risk (MBR) decoding, which is
a first step, will not work effectively since it re-
lies on voting. (In fact, only selecting one of the
translation outputs is even effective: this method
is called system combination as well (Specia et al.,
2010).) Hence, although the aim is similar, we do
not use a system combination strategy, but we de-
velop a semantically-informed SMT system.

Figure 1: Figure shows the difference of sentence-
based performance between PBSMT and HPB-
SMT systems.

Relation of Complexity of Source Sentence and
Performance of HPBSMT and PBSMT It is
interesting to note that PBSMT tends to be bet-
ter than HPBSMT for European language pairs
as the recent WMT workshop shows, while HPB-
SMT shows often better performance for distant
language pairs such as EN-JP (Okita et al., 2010b)

and EN-ZH in other workshops.
Under the assumption that we use the same

training corpus for training PBSMT and HPBSMT
systems, our hypothesis is that we may be able
to predict the quality of translation. Note that al-
though this is the analogy of quality estimation,
the setting is slightly different in that in test phase,
we will not be given a translation output, but only
a source sentence. Our aim is to predict whether
HPBSMT obtains better translation output than
PBSMT or not. Hence, our aim does not require
that the quality prediction here is very accurate
compared to the standard quality estimation task.
We use a feature set consisting of various charac-
teristics of input sentences.

3 Our Methods: Shallow Semantics

Our system accommodates PBSMT and HPBSMT
with multiple of LMs. A decoder which handles
shallow semantic information is shown in Table
3.1.

3.1 QE Score

Quality estimation aims to predict the quality of
translation outputs for unseen data (e.g. by build-
ing a regressor or a classifier) without access to
references: the inputs are translation outputs and
source sentences in a test phase, while in a training
phase the corresponding BLEU or HTER scores
are used. In this subsection, we try to build a re-
gressor with the similar settings but without sup-
plying the translation outputs. That is, we supply
only the input sentences. (Since our method is not
a quality estimation for a given translation output,
quality estimation may not be an entirely appro-
priate term. However, we borrow this term for this
paper.) If we can build such a regressor for PB-
SMT and HPBSMT systems, we would be able
to select a better translation output without actu-
ally translating them for a given input sentence.
Note that we translate the training set by PBSMT
and HPBSMT in a training phase only to supply
their BLEU scores to a regressor (since a regres-
sor is a supervised learning method). Then, we
use these regressors for a given unseen source sen-
tence (which has no translation output attached) to
predict their BLEU scores for PBSMT and HPB-
SMT.

Our motivation came from the comparison of
a sequential learning system and a parser-based
system. The typical decoder of the former is a
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Viterbi decoder while that of the latter is a Cocke-
Younger-Kasami (CYK) decoder (Younger, 1967).
The capability of these two systems provides
an intuition about the difference of PBSMT and
HPBSMT: the CYK decoder-based system has
some capability to handle syntactic constructions
while the Viterbi decoder-based system has only
the capability of learning a sequence. For ex-

Input: Foreign sent f=f1,...,f1f
, language model,

translation model, rule table.
Output: English translation e

ceScore = predictQEScore(fi)
if (ceScore == HPBSMTBetter)

for span length l=1 to1f do
for start=0..1f -1 do

genreID = predictGenreID(fi)
end = start + 1
forall seq s of entries and words in span

[start,end] do
forall rules r do

if rule r applies to chart seq s then
create new chart entry c

with LM(genreID)
add chart entry c to chart

return e from best chart entry in span [0,1f ]
else:

genreID = predictGenreID(fi)
place empty hypothesis into stack 0
for all stacks 0...n-1 do

for all hypotheses in stack do
for all translation options do

if applicable then
create new hyp with LM(ID)
place in stack
recombine with existing hyp if

possible
prune stack if too big

return e

predictQEScore()
predictGenreID()
predictContextID(wordi, wordi−1)

Table 1: Decoding algorithm: the main algorithm
of PBSMT and HPBSMT are from (Koehn, 2010).
The modification is related to predictQEScore(),
predictGenreID(), and predictContextID().

ample, the (context-free) grammar-based system
has the capability of handling various difficul-

ties caused by inserted clauses, coordination, long
Multiword Expressions, and parentheses, while
the sequential learning system does not (This is
since this is what the aim of the context-free
grammar-based system is.) These difficulties are
manifest in input sentences.
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Figure 2: A blue line shows the true BLEU dif-
ference between PBSMT and HPBSMT (y-axis)
where x-axis is the sample IDs reordered in de-
scending order (blue), while green dots show the
BLEU absolute difference (y-axis) of the typical
samples where x-axis is shared with the above.
This example is sampled 300 points from new-
stest2013 (ES-EN). Even if the regressor does not
achieve a good performance, the bottom line of the
overall performance is already really high in this
tricky problem. Roughly, even if we plot randomly
we could achieve around 80 - 90% of correctness.
Around 50% of samples (middle of the curve) do
not care (since the true performance of PBSMT
and HPBSMT are even), there is a slope in the left
side of the curve where random plot around this
curve would achieve 15 - 20% among 25% of cor-
rectness (the performance of PBSMT is superior),
and there is another slope in the right side of the
curve where random plot would achieve again 15
- 20% among 25% (the performance of HPBSMT
is superior). In this case, accuracy is 86%.

If we assume that this is one major difference
between these two systems, the complexity of the
input sentence will correlate with the difference of
translation quality of these two systems. In this
subsection, we assume that this is one major dif-
ference of these two systems and that the complex-
ity of the input sentence will correlate with the dif-
ference of translation quality of these two systems.
Based on these assumptions, we build a regressor
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for each system for a given input sentence where in
a training phase we supply the BLEU score mea-
sured using the training set. One remark is that the
BLEU score which we predict is only meaning-
ful in a relative manner since we actually generate
a translation output in preparation phase (there is
a dependency to the mean of BLEU score in the
training set). Nevertheless, this is still meaningful
as a relative value if we want to talk about their
difference, which is what we want in our settings
to predict which system, either PBSMT or HPB-
SMT, will generate a better output.

The main features used for training the regres-
sor are as follows: (1) number of / length of in-
serted clause / coordination / multiword expres-
sions, (2) number of long phrases (connection by
‘of’; ordering of words), (3) number of OOV
words (which let it lower the prediction quality),
(4) number of / length of parenthesis, etc. We ob-
tained these features using parser (de Marneffe et
al., 2006) and multiword extractor (Okita et al.,
2010a).

3.2 Genre ID

Genre IDs allow us to apply domain adaptation
technique according to the genre ID of the testset.
Among various methods of domain adaptation, we
investigate unsupervised clustering rather than al-
ready specified genres.

We used (unsupervised) classification via La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
to obtain genre ID. LDA represents topics as
multinomial distributions over theW unique
word-types in the corpus and represents docu-
ments as a mixture of topics.

Let C be the number of unique labels in the
corpus. Each labelc is represented by aW -
dimensional multinomial distributionφc over the
vocabulary. For documentd, we observe both the
words in the documentw(d) as well as the docu-
ment labelsc(d). Given the distribution over top-
ics θd, the generation of words in the document is
captured by the following generative model.

1. For each labelc ∈ {1, . . . C}, sample a distri-
bution over word-typesφc ∼ Dirichlet(·|β)

2. For each documentd ∈ {1, . . . , D}

(a) Sample a distribution over its observed
labelsθd ∼ Dirichlet(·|α)

(b) For each wordi ∈ {1, . . . , NW
d }

i. Sample a label z
(d)
i ∼

Multinomial(θd)

ii. Sample a word w
(d)
i ∼

Multinomial(φc) from the la-

bel c = z
(d)
i

Using topic modeling (or LDA) as described
above, we perform the in-domain data partitioning
as follows, building LMs for each class, and run-
ning a decoding process for the development set,
which will obtain the best weights for clusteri.

1. Fix the number of clustersC, we explore val-
ues from small to big.1

2. Do unsupervised document classification (or
LDA) on the source side of the training, de-
velopment and test sets.

3. Separate each class of training sets and build
LM for each clusteri (1 ≤ i ≤ C).

4. Separate each class of development set (keep
the original index and new index in the allo-
cated separated dataset).

5. (Using the same class of development set):
Run the decoder on each class to obtain the
n-best lists, run a MERT process to obtain the
best weights based on the n-best lists, (Repeat
the decoding / MERT process several itera-
tions. Then, we obtain the best weights for a
particular class.)

For the test phase,

1. Separate each class of the test set (keep the
original index and new index in the allocated
separated dataset).

2. Suppose the test sentence belongs to cluster
i, run the decoder of clusteri.

3. Repeat the previous step until all the test sen-
tences are decoded.

3.3 Context ID

Context ID semantics is used through the re-
ranking of the n-best list in a MERT process
(Schwenk, 2007; Schwenk et al., 2012; Le et al.,
2012). 2-layer ngram-HMM LM is a two layer
version of the 1-layer ngram-HMM LM (Blun-
som and Cohn, 2011) which is a nonparametric

1Currently, we do not have a definite recommendation on
this. It needs to be studied more deeply.
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Bayesian method using hierarchical Pitman-Yor
prior. In the 2-layer LM, the hidden sequence of
the first layer becomes the input to the higher layer
of inputs. Note that such an architecture comes
from the Restricted Boltzmann Machine (Smolen-
sky, 1986) accumulating in multiple layers in or-
der to build deep belief networks (Taylor and Hin-
ton, 2009). Although a 2-layer ngram-HMM LM
is inferior in its performance compared with other
two LMs, the runtime cost is cheaper than these.

ht denotes the hidden word for the first layer,h̄t

denotes the hidden word for the second layer,wi

denotes the word in output layer. The generative
model for this is shown below.

ht|h̄t ∼ F (φ̄st) (1)

wt|ht ∼ F (φst) (2)

wi|w1:i−1 ∼ PY(di, θi, Gi) (3)

where α is a concentration parameter,θ is a
strength parameter, andGi is a base measure.
Note that these terms belong to the hierarchical
Pitman-Yor language model (Teh, 2006). We used
a blocked inference for inference. The perfor-
mance of 2-layer LM is shown in Table 3.

4 Experimental Settings

We used Moses (Koehn et al., 2007) for PBSMT
and HPBSMT systems in our experiments. The
GIZA++ implementation (Och and Ney, 2003) of
IBM Model 4 is used as the baseline for word
alignment: Model 4 is incrementally trained by
performing 5 iterations of Model 1, 5 iterations
of HMM, 3 iterations of Model 3, and 3 iter-
ations of Model 4. For phrase extraction the
grow-diag-final heuristics described in (Koehn et
al., 2003) is used to derive the refined alignment
from bidirectional alignments. We then perform
MERT process (Och, 2003) which optimizes the
BLEU metric, while a 5-gram language model is
derived with Kneser-Ney smoothing (Kneser and
Ney, 1995) trained with SRILM (Stolcke, 2002).
For the HPBSMT system, the chart-based decoder
of Moses (Koehn et al., 2007) is used. Most of the
procedures are identical with the PBSMT systems
except the rule extraction process (Chiang, 2005).

The procedures to handle three kinds of se-
mantics are implemented using the already men-
tioned algorithm. We use libSVM (Chang and Lin,
2011), and Mallet (McCallum, 2002) for Latent
Dirichlet Allocation (LDA) (Blei et al., 2003).

For the corpus, we used all the resources pro-
vided for the translation task at WMT13 for lan-

output layer

2−layer conditional RBM language model

ngram language model

1st RBM

2nd RBM

hidden layer

output layer

N

projection layer

discrete representation

N

P

neural network
probability estimation

continuous−space language

model [Schwenk, 2007]

1st hidden layer

2−layer ngram−HMM language model

2nd hidden layer

output layer

ngram language model

Figure 3: Figure shows the three kinds of context-
dependent LM. The upper-side shows continuous-
space language model (Schwenk, 2007). The
lower-left shows ours, i.e. the 2-layer ngram-
HMM LM. The lower-right shows the 2-layer con-
ditional Restricted Boltzmann Machine LM (Tay-
lor and Hinton, 2009).

guage model, that is parallel corpora (Europarl
V7 (Koehn, 2005), Common Crawl corpus, UN
corpus, and News Commentary) and monolingual
corpora (Europarl V7, News Commentary, and
News Crawl from 2007 to 2012).

Experimental results are shown in Table 2.
The left-most column (sem-inform) shows our re-
sults. Thesem-inform made a improvement of 0.8
BLEU points absolute compared to the PBSMT
results in EN-ES, while the standard system com-
bination lost 0.1 BLEU points absolute compared
to the single worst. For ES-EN, thesem-inform
made an improvement of 0.7 BLEU points abso-
lute compared to the PBSMT results. These im-
provements over both of PBSMT and HPBSMT
are statistically significant by a paired bootstrap
test (Koehn, 2004).
5 Conclusion

This paper describes shallow semantically-
informed HPBSMT and PBSMT systems devel-
oped at Dublin City University for participation in
the translation task at the Workshop on Statistical
Machine Translation (WMT 13). Our system has
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EN-ES sem-inform PBSMT HPBSMT syscomb aug-syscomb

BLEU 30.3 29.5 28.2 28.1 28.5
BLEU(11b) 30.3 29.5 28.2 28.1 28.5
BLEU-cased 29.0 28.4 27.1 27.0 27.5
BLEU-cased(11b) 29.0 28.4 27.1 27.0 27.5
NIST 7.91 7.74 7.35 7.35 7.36
Meteor 0.580 0.579 0.577 0.577 0.578
WER 53.7 55.4 59.3 59.2 58.9
PER 41.3 42.4 46.0 45.8 45.5

ES-EN sem-inform PBSMT HPBSMT syscomb aug-syscomb

BLEU 31.1 30.4 23.1∗ 28.8 29.9
BLEU(11b) 31.1 30.4 23.1∗ 28.8 29.9
BLEU-cased 29.7 29.1 22.3∗ 27.9 28.8
BLEU-cased(11b) 29.7 29.1 22.3∗ 27.9 28.8
NIST 7.87 7.79 6.67∗ 7.40 7.71
Meteor 0.615 0.612 0.533∗ 0.612 0.613
WER 54.8 55.4 62.5∗ 59.3 56.1
PER 41.3 41.8 48.3∗ 45.8 41.9

Table 2: Table shows the score where “sem-inform” shows our system. Underlined figure shows the
official score. “syscomb” denotes the confusion-network-based system combination using BLEU, while
“aug-syscomb” uses three shallow semantics described in QE score (Okitaet al., 2012a), genre ID (Okita
et al., 2012b), and context ID (Okita, 2012). Note that the inputs for syscomb and aug-syscomb are the
output of HPBSMT and PBSMT. HPBSMT from ES to EN has marked with∗, which indicates that this
is trained only with Europarl V7.

2-layer ngram- SRI-
EN HMM LM LM

newstest12 130.4 140.3
newstest11 146.2 157.1
newstest10 156.4 166.8
newstest09 176.3 187.1

Table 3: Table shows the perplexity of context-
dependent language models, which is 2-layer
ngram HMM LM, and that of SRILM (Stolcke,
2002) in terms of newstest09 to 12.

PBSMT and HPBSMT decoders with multiple
LMs, but our system will execute only one path,
which is different from multi-engine system
combination. We consider investigate three types
of shallow semantic information: (i) a Quality
Estimate (QE) score, (ii) genre ID, and (iii) a
context ID through context-dependent language
models. Our experimental results show that the
improvement is 0.8 points absolute (BLEU) for
EN-ES and 0.7 points for ES-EN compared to
the standard PBSMT system (single best system).
We developed this method when the standard

(confusion network-based) system combination is
ineffective such as in the case when the input is
only two.

A further avenue would be the investigation of
other semantics such as linguistic semantics, in-
cluding co-reference resolution or anaphora reso-
lution, hyper-graph decoding, and text understand-
ing. Some of which are investigated in the context
of textual entailment task (Okita, 2013b) and we
would like to extend this to SMT task. Another
investigation would be the integration of genre ID
into the context-dependent LM. The preliminary
work shows that such integration would decrease
the overall perplexity (Okita, 2013a).
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Abstract
This paper describes the joint submis-
sion of the QUAERO project for the
German→English translation task of the
ACL 2013 Eighth Workshop on Statisti-
cal Machine Translation (WMT 2013).
The submission was a system combina-
tion of the output of four different transla-
tion systems provided by RWTH Aachen
University, Karlsruhe Institute of Technol-
ogy (KIT), LIMSI-CNRS and SYSTRAN
Software, Inc. The translations were
joined using the RWTH’s system com-
bination approach. Experimental results
show improvements of up to 1.2 points in
BLEU and 1.2 points in TER compared to
the best single translation.

1 Introduction

QUAERO is a European research and develop-
ment program with the goal of developing multi-
media and multilingual indexing and management
tools for professional and general public applica-
tions (http://www.quaero.org). Research in ma-
chine translation is mainly assigned to the four
groups participating in this joint submission. The
aim of this submission was to show the quality of
a joint translation by combining the knowledge of
the four project partners. Each group develop and
maintain their own different machine translation
system. These single systems differ not only in
their general approach, but also in the preprocess-
ing of training and test data. To take advantage
of these differences of each translation system, we
combined all hypotheses of the different systems,
using the RWTH system combination approach.

This paper is structured as follows. First, the
different engines of all four groups are introduced.

In Section 3, the RWTH Aachen system combina-
tion approach is presented. Experiments with dif-
ferent system selections for system combination
are described in Section 4. This paper is concluded
in Section 5.

2 Translation Systems

For WMT 2013, each QUAERO partner trained
their systems on the parallel Europarl (EPPS),
News Commentary (NC) corpora and the web-
crawled corpus. All single systems were tuned on
the newstest2009 and newstest2010 development
set. The newstest2011 development set was used
to tune the system combination parameters. Fi-
nally, on newstest2012 the results of the different
system combination settings are compared. In this
Section, all four different translation engines are
presented.

2.1 RWTH Aachen Single System
For the WMT 2013 evaluation, RWTH utilized a
phrase-based decoder based on (Wuebker et al.,
2012) which is part of RWTH’s open-source SMT
toolkit Jane 2.1 1. GIZA++ (Och and Ney, 2003)
was employed to train a word alignment, language
models have been created with the SRILM toolkit
(Stolcke, 2002).

After phrase pair extraction from the word-
aligned parallel corpus, the translation probabil-
ities are estimated by relative frequencies. The
standard feature set also includes an n-gram lan-
guage model, phrase-level IBM-1 and word-,
phrase- and distortion-penalties, which are com-
bined in log-linear fashion. Furthermore, we used
an additional reordering model as described in
(Galley and Manning, 2008). By this model six

1http://www-i6.informatik.rwth-aachen.
de/jane/
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additional feature are added to the log-linear com-
bination. The model weights are optimized with
standard Mert (Och, 2003a) on 200-best lists. The
optimization criterion is BLEU.

2.1.1 Preprocessing
In order to reduce the source vocabulary size trans-
lation, the German text was preprocessed by split-
ting German compound words with the frequency-
based method described in (Koehn and Knight,
2003). To further reduce translation complexity
for the phrase-based approach, we performed the
long-range part-of-speech based reordering rules
proposed by (Popović et al., 2006).

2.1.2 Translation Model
We applied filtering and weighting for domain-
adaptation similarly to (Mansour et al., 2011) and
(Mansour and Ney, 2012). For filtering the bilin-
gual data, a combination of LM and IBM Model
1 scores was used. In addition, we performed
weighted phrase extraction by using a combined
LM and IBM Model 1 weight.

2.1.3 Language Model
During decoding a 4-gram language model is ap-
plied. The language model is trained on the par-
allel data as well as the provided News crawl,
the 109 French-English, UN and LDC Gigaword
Fourth Edition corpora.

2.2 Karlsruhe Institute of Technology Single
System

2.2.1 Preprocessing
The training data was preprocessed prior to the
training. Symbols such as quotes, dashes and
apostrophes are normalized. Then the first words
of each sentence are smart-cased. For the Ger-
man part of the training corpus, the hunspell2 lex-
icon was used, in order to learn a mapping from
old German spelling to new German writing rules.
Compound-splitting was also performed as de-
scribed in Koehn and Knight (2003). We also re-
moved very long sentences, empty lines, and sen-
tences which show big mismatch on the length.

2.2.2 Filtering
The web-crawled corpus was filtered using an
SVM classifier as described in (Mediani et al.,
2011). The lexica used in this filtering task were
obtained from Giza alignments trained on the

2http://hunspell.sourceforge.net/

cleaner corpora, EPPS and NC. Assuming that this
corpus is very noisy, we biased our classifier more
towards precision than recall. This was realized
by giving higher number of false examples (80%
of the training data).

This filtering technique ruled out more than
38% of the corpus (the unfiltered corpus contains
around 2.4M pairs, 0.9M of which were rejected
in the filtering task).

2.2.3 System Overview
The in-house phrase-based decoder (Vogel, 2003)
is used to perform decoding. Optimization with
regard to the BLEU score is done using Minimum
Error Rate Training (MERT) as described in Venu-
gopal et al. (2005).

2.2.4 Reordering Model
We applied part-of-speech (POS) based reordering
using probabilistic continuous (Rottmann and Vo-
gel, 2007) and discontinuous (Niehues and Kolss,
2009) rules. This was learned using POS tags gen-
erated by the TreeTagger (Schmid, 1994) for short
and long range reorderings respectively.

In addition to this POS-based reordering, we
also used tree-based reordering rules. Syntactic
parse trees of the whole training corpus and the
word alignment between source and target lan-
guage are used to learn rules on how to reorder the
constituents in a German source sentence to make
it match the English target sentence word order
better (Herrmann et al., 2013). The training corpus
was parsed by the Stanford parser (Rafferty and
Manning, 2008). The reordering rules are applied
to the source sentences and the reordered sentence
variants as well as the original sequence are en-
coded in a word lattice which is used as input to
the decoder.

Moreover, our reordering model was extended
so that it could include the features of lexicalized
reordering model. The reordering probabilities for
each phrase pair are stored as well as the origi-
nal position of each word in the lattice. During
the decoding, the reordering origin of the words
is checked along with its probability added as an
additional score.

2.2.5 Translation Models
The translation model uses the parallel data of
EPPS, NC, and the filtered web-crawled data. As
word alignment, we used the Discriminative Word
Alignment (DWA) as shown in (Niehues and Vo-
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gel, 2008). The phrase pairs were extracted using
different source word order suggested by the POS-
based reordering models presented previously as
described in (Niehues et al., 2009).

In order to extend the context of source lan-
guage words, we applied a bilingual language
model (Niehues et al., 2011). A Discriminative
Word Lexicon (DWL) introduced in (Mauser et
al., 2009) was extended so that it could take the
source context also into the account. For this,
we used a bag-of-ngrams instead of representing
the source sentence as a bag-of-words. Filtering
based on counts was then applied to the features
for higher order n-grams. In addition to this, the
training examples were created differently so that
we only used the words that occur in the n-best list
but not in the reference as negative example.

2.2.6 Language Models
We build separate language models and combined
them prior to decoding. As word-token based
language models, one language model is built on
EPPS, NC, and giga corpus, while another one is
built using crawled data. We combined the LMs
linearly by minimizing the perplexity on the de-
velopment data. As a bilingual language model we
used the EPPS, NC, and the web-crawled data and
combined them. Furthermore, we use a 5-gram
cluster-based language model with 1,000 word
clusters, which was trained on the EPPS and NC
corpus. The word clusters were created using the
MKCLS algorithm.

2.3 LIMSI-CNRS Single System
2.3.1 System overview
LIMSI’s system is built with n-code (Crego et al.,
2011), an open source statistical machine transla-
tion system based on bilingual n-gram3. In this
approach, the translation model relies on a spe-
cific decomposition of the joint probability of a
sentence pair using the n-gram assumption: a sen-
tence pair is decomposed into a sequence of bilin-
gual units called tuples, defining a joint segmen-
tation of the source and target. In the approach of
(Mariño et al., 2006), this segmentation is a by-
product of source reordering which ultimately de-
rives from initial word and phrase alignments.

2.3.2 An overview of n-code
The baseline translation model is implemented as
a stochastic finite-state transducer trained using

3http://ncode.limsi.fr/

a n-gram model of (source,target) pairs (Casacu-
berta and Vidal, 2004). Training this model re-
quires to reorder source sentences so as to match
the target word order. This is performed by
a stochastic finite-state reordering model, which
uses part-of-speech information4 to generalize re-
ordering patterns beyond lexical regularities.

In addition to the translation model, eleven fea-
ture functions are combined: a target-language
model; four lexicon models; two lexicalized re-
ordering models (Tillmann, 2004) aiming at pre-
dicting the orientation of the next translation unit;
a ’weak’ distance-based distortion model; and
finally a word-bonus model and a tuple-bonus
model which compensate for the system prefer-
ence for short translations. The four lexicon mod-
els are similar to the ones use in a standard phrase
based system: two scores correspond to the rel-
ative frequencies of the tuples and two lexical
weights estimated from the automatically gener-
ated word alignments. The weights associated to
feature functions are optimally combined using a
discriminative training framework (Och, 2003b).

The overall search is based on a beam-search
strategy on top of a dynamic programming algo-
rithm. Reordering hypotheses are computed in a
preprocessing step, making use of reordering rules
built from the word reorderings introduced in the
tuple extraction process. The resulting reordering
hypotheses are passed to the decoder in the form
of word lattices (Crego and Mario, 2006).

2.3.3 Continuous space translation models
One critical issue with standard n-gram translation
models is that the elementary units are bilingual
pairs, which means that the underlying vocabu-
lary can be quite large, even for small translation
tasks. Unfortunately, the parallel data available to
train these models are typically order of magni-
tudes smaller than the corresponding monolingual
corpora used to train target language models. It is
very likely then, that such models should face se-
vere estimation problems. In such setting, using
neural network language model techniques seem
all the more appropriate. For this study, we fol-
low the recommendations of Le et al. (2012), who
propose to factor the joint probability of a sen-
tence pair by decomposing tuples in two (source
and target) parts, and further each part in words.
This yields a word factored translation model that

4Part-of-speech labels for English and German are com-
puted using the TreeTagger (Schmid, 1995).
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can be estimated in a continuous space using the
SOUL architecture (Le et al., 2011).

The design and integration of a SOUL model for
large SMT tasks is far from easy, given the com-
putational cost of computing n-gram probabilities.
The solution used here was to resort to a two pass
approach: the first pass uses a conventional back-
off n-gram model to produce a k-best list; in the
second pass, the k-best list is reordered using the
probabilities of m-gram SOUL translation models.
In the following experiments, we used a fixed con-
text size for SOUL of m = 10, and used k = 300.

2.3.4 Corpora and data pre-processing

All the parallel data allowed in the constrained
task are pooled together to create a single par-
allel corpus. This corpus is word-aligned using
MGIZA++5 with default settings. For the English
monolingual training data, we used the same setup
as last year6 and thus the same target language
model as detailed in (Allauzen et al., 2011).

For English, we also took advantage of our in-
house text processing tools for the tokenization
and detokenization steps (Dchelotte et al., 2008)
and our system is built in “true-case”. As Ger-
man is morphologically more complex than En-
glish, the default policy which consists in treat-
ing each word form independently is plagued with
data sparsity, which is detrimental both at training
and decoding time. Thus, the German side was
normalized using a specific pre-processing scheme
(described in (Allauzen et al., 2010; Durgar El-
Kahlout and Yvon, 2010)), which notably aims at
reducing the lexical redundancy by (i) normalizing
the orthography, (ii) neutralizing most inflections
and (iii) splitting complex compounds.

2.4 SYSTRAN Software, Inc. Single System

In the past few years, SYSTRAN has been focus-
ing on the introduction of statistical approaches
to its rule-based backbone, leading to Hybrid Ma-
chine Translation.

The technique of Statistical Post-Editing
(Dugast et al., 2007) is used to automatically edit
the output of the rule-based system. A Statistical
Post-Editing (SPE) module is generated from a
bilingual corpus. It is basically a translation mod-
ule by itself, however it is trained on rule-based

5http://geek.kyloo.net/software
6The fifth edition of the English Gigaword

(LDC2011T07) was not used.

translations and reference data. It applies correc-
tions and adaptations learned from a phrase-based
5-gram language model. Using this two-step
process will implicitly keep long distance re-
lations and other constraints determined by the
rule-based system while significantly improving
phrasal fluency. It has the advantage that quality
improvements can be achieved with very little
but targeted bilingual data, thus significantly
reducing training time and increasing translation
performance.

The basic setup of the SPE component is identi-
cal to the one described in (Dugast et al., 2007).
A statistical translation model is trained on the
rule-based translation of the source and the target
side of the parallel corpus. Language models are
trained on each target half of the parallel corpora
and also on additional in-domain corpora. More-
over, the following measures - limiting unwanted
statistical effects - were applied:

• Named entities are replaced by special tokens
on both sides. This usually improves word
alignment, since the vocabulary size is sig-
nificantly reduced. In addition, entity trans-
lation is handled more reliably by the rule-
based engine.

• The intersection of both vocabularies (i.e. vo-
cabularies of the rule-based output and the
reference translation) is used to produce an
additional parallel corpus (whose target is
identical to the source). This was added to the
parallel text in order to improve word align-
ment.

• Singleton phrase pairs are deleted from the
phrase table to avoid overfitting.

• Phrase pairs not containing the same number
of entities on the source and the target side
are also discarded.

• Phrase pairs appearing less than 2 times were
pruned.

The SPE language model was trained on 2M
phrases from the news/europarl and Common-
Crawl corpora, provided as training data for WMT
2013. Weights for these separate models were
tuned by the Mert algorithm provided in the Moses
toolkit (Koehn et al., 2007), using the provided
news development set.
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Figure 1: Confusion network of four different hypotheses.

3 RWTH Aachen System Combination

System combination is used to produce consen-
sus translations from multiple hypotheses gener-
ated with different translation engines. First, a
word to word alignment for the given single sys-
tem hypotheses is produced. In a second step a
confusion network is constructed. Then, the hy-
pothesis with the highest probability is extracted
from this confusion network. For the alignment
procedure, each of the given single systems gen-
erates one confusion network with its own as pri-
mary system. To this primary system all other hy-
potheses are aligned using the METEOR (Lavie
and Agarwal, 2007) alignment and thus the pri-
mary system defines the word order. Once the
alignment is given, the corresponding confusion
network is constructed. An example is given in
Figure 1. The final network for one source sen-
tence is the union of all confusion networks gen-
erated from the different primary systems. That
allows the system combination to select the word
order from different system outputs.

Before performing system combination, each
translation output was normalized by tokenization
and lowercasing. The output of the combination
was then truecased based on the original truecased
output.

The model weights of the system combination
are optimized with standard Mert (Och, 2003a)
on 100-best lists. We add one voting feature for
each single system to the log-linear framework of
the system combination. The voting feature fires
for each word the single system agrees on. More-
over, a word penalty, a language model trained on
the input hypotheses, a binary feature which pe-
nalizes word deletions in the confusion network
and a primary feature which marks the system
which provides the word order are combined in
this log-linear model. The optimization criterion
is 4BLEU-TER.

4 Experimental Results

In this year’s experiments, we tried to improve the
result of the system combination further by com-
bining single systems tuned on different develop-

Table 1: Comparison of single systems tuned on
newstest2009 and newstest2010. The results are
reported on newstest2012.

single systems tuned on newstest2012
newstest BLEU TER

KIT 2009 24.6 58.4
2010 24.6 58.6

LIMSI 2009 22.5 61.5
2010 22.6 59.8

SYSTRAN 2009 20.9 63.3
2010 21.2 62.2

RWTH 2009 23.7 60.8
2010 24.4 58.8

ment sets. The idea is to achieve a more stable
performance in terms of translation quality, if the
single systems are not optimized on the same data
set. In Table 1, the results of each provided single
system tuned on newstest2009 and newstest2010
are shown. For RWTH, LIMSI and SYSTRAN,
it seems that the performance of the single system
depends on the chosen tuning set. However, the
translation quality of the single systems provided
by KIT is stable.

As initial approach and for the final submis-
sion, we grouped single systems with dissimilar
approaches. Thus, KIT (phrase-based SMT) and
SYSTRAN (rule-based MT) tuned their system on
newstest2010, while RWTH (phrase-based SMT)
and LIMSI (n-gram) optimized on newstest2009.

To compare the impact of this approach, all pos-
sible combinations were checked (Table 2). How-
ever, it seems that the translation quality can not be
improved by this approach. For the test set (new-
stest2012), BLEU is steady around 25.6 points.
Even if the single system with lowest BLEU are
combined (KIT 2010, LIMSI 2009, SYSTRAN
2010, RWTH 2009), the translation quality in
terms of BLEU is comparable with the combina-
tion of the best single systems (KIT 2009, LIMSI
2010, SYSTRAN 2010, RWTH 2010). However,
we could gain 1.0 point in TER.

Due to the fact, that for the final submission the
initial grouping was available only, we kept this
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Table 2: Comparison of different system combination settings. For each possible combination of systems
tuned on different tuning sets, a system combination was set up, re-tuned on newstest2011 and evaluated
on newstest2012. The setting used for further experiments is set in boldface.

single systems system combinations
KIT LIMSI SYSTRAN RWTH newstest2011 newstest2012

tuned on newstest BLEU TER BLEU TER

2009 2009 2009 2009 24.6 58.0 25.6 56.8
2010 2010 2010 2010 24.2 58.1 25.6 57.7
2010 2009 2009 2009 24.5 57.9 25.7 57.4
2009 2010 2009 2009 24.4 58.3 25.7 57.0
2009 2009 2010 2009 24.5 57.9 25.6 57.0
2009 2009 2009 2010 24.5 58.0 25.6 56.8
2009 2010 2010 2010 24.1 57.5 25.4 56.4
2010 2009 2010 2010 24.3 57.6 25.6 56.9
2010 2010 2009 2010 24.2 58.0 25.6 57.3
2010 2010 2010 2009 24.3 57.9 25.5 57.6
2010 2010 2009 2009 24.4 58.1 25.6 57.5
2009 2009 2010 2010 24.4 57.8 25.5 56.6
2009 2010 2010 2009 24.4 58.2 25.5 57.0
2009 2010 2009 2010 24.2 57.8 25.5 56.8
2010 2009 2009 2010 24.4 57.9 25.6 57.4
2010 2009 2010 2009 24.4 57.7 25.6 57.4

Table 3: Results of the final submission (bold-
face) compared with best single system on new-
stest2012.

newstest2011 newstest2012
BLEU TER BLEU TER

best single 23.2 60.9 24.6 58.4
system comb. 24.4 57.7 25.6 57.4
+ IBM-1 24.6 58.1 25.6 57.6
+ bigLM 24.6 57.9 25.8 57.2

combination. To improve this baseline further, two
additional models were added. We applied lexi-
cal smoothing (IBM-1) and an additional language
model (bigLM) trained on the English side of the
parallel data and the News shuffle corpus. The re-
sults are presented in Table 3.

The baseline was slightly improved by 0.2
points in BLEU and TER. Note, this system com-
bination was the final submission.

5 Conclusion

For the participation in the WMT 2013 shared
translation task, the partners of the QUAERO
project (Karlsruhe Institute of Technology, RWTH

Aachen University, LIMSI-CNRS and SYSTRAN
Software, Inc.) provided a joint submission. By
joining the output of four different translation sys-
tems with RWTH’s system combination, we re-
ported an improvement of up to 1.2 points in
BLEU and TER.

Combining systems optimized on different tun-
ing sets does not seem to improve the translation
quality. However, by adding additional model, the
baseline was slightly improved.

All in all, we conclude that the variability in
terms of BLEU does not influence the final result.
It seems that using different approaches of MT in
a system combination is more important (Freitag
et al., 2012).
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Abstract

This paper describes the statistical ma-
chine translation (SMT) systems devel-
oped at RWTH Aachen University for
the translation task of the ACL 2013
Eighth Workshop on Statistical Machine
Translation (WMT 2013). We partici-
pated in the evaluation campaign for the
French-English and German-English lan-
guage pairs in both translation directions.
Both hierarchical and phrase-based SMT
systems are applied. A number of dif-
ferent techniques are evaluated, including
hierarchical phrase reordering, translation
model interpolation, domain adaptation
techniques, weighted phrase extraction,
word class language model, continuous
space language model and system combi-
nation. By application of these methods
we achieve considerable improvements
over the respective baseline systems.

1 Introduction

For the WMT 2013 shared translation task1

RWTH utilized state-of-the-art phrase-based and
hierarchical translation systems as well as an in-
house system combination framework. We give
a survey of these systems and the basic meth-
ods they implement in Section 2. For both
the French-English (Section 3) and the German-
English (Section 4) language pair, we investigate
several different advanced techniques. We con-
centrate on specific research directions for each
of the translation tasks and present the respec-
tive techniques along with the empirical results
they yield: For the French→English task (Sec-
tion 3.2), we apply a standard phrase-based sys-
tem with up to five language models including a

1http://www.statmt.org/wmt13/
translation-task.html

word class language model. In addition, we em-
ploy translation model interpolation and hierarchi-
cal phrase reordering. For the English→French
task (Section 3.1), we train translation mod-
els on different training data sets and augment
the phrase-based system with a hierarchical re-
ordering model, a word class language model,
a discriminative word lexicon and a insertion
and deletion model. For the German→English
(Section 4.3) and English→German (Section 4.4)
tasks, we utilize morpho-syntactic analysis to pre-
process the data (Section 4.1), domain-adaptation
(Section 4.2) and a hierarchical reordering model.
For the German→English task, an augmented hi-
erarchical phrase-based system is set up and we
rescore the phrase-based baseline with a continu-
ous space language model. Finally, we perform a
system combination.

2 Translation Systems

In this evaluation, we employ phrase-based trans-
lation and hierarchical phrase-based translation.
Both approaches are implemented in Jane (Vilar et
al., 2012; Wuebker et al., 2012), a statistical ma-
chine translation toolkit which has been developed
at RWTH Aachen University and is freely avail-
able for non-commercial use.2

2.1 Phrase-based System

In the phrase-based decoder (source cardinality
synchronous search, SCSS), we use the standard
set of models with phrase translation probabilities
and lexical smoothing in both directions, word and
phrase penalty, distance-based distortion model,
an n-gram target language model and three bi-
nary count features. Optional additional models
used in this evaluation are the hierarchical reorder-
ing model (HRM) (Galley and Manning, 2008), a
word class language model (WCLM) (Wuebker et

2http://www.hltpr.rwth-aachen.de/jane/
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al., 2012), a discriminative word lexicon (DWL)
(Mauser et al., 2009), and insertion and deletion
models (IDM) (Huck and Ney, 2012). The param-
eter weights are optimized with minimum error
rate training (MERT) (Och, 2003). The optimiza-
tion criterion is BLEU.

2.2 Hierarchical Phrase-based System
In hierarchical phrase-based translation (Chiang,
2007), a weighted synchronous context-free gram-
mar is induced from parallel text. In addition to
continuous lexical phrases, hierarchical phrases
with up to two gaps are extracted. The search is
carried out with a parsing-based procedure. The
standard models integrated into our Jane hierar-
chical systems (Vilar et al., 2010; Huck et al.,
2012c) are: phrase translation probabilities and
lexical smoothing probabilities in both translation
directions, word and phrase penalty, binary fea-
tures marking hierarchical phrases, glue rule, and
rules with non-terminals at the boundaries, four
binary count features, and an n-gram language
model. Optional additional models comprise IBM
model 1 (Brown et al., 1993), discriminative word
lexicon and triplet lexicon models (Mauser et al.,
2009; Huck et al., 2011), discriminative reordering
extensions (Huck et al., 2012a), insertion and dele-
tion models (Huck and Ney, 2012), and several
syntactic enhancements like preference grammars
(Stein et al., 2010) and soft string-to-dependency
features (Peter et al., 2011). We utilize the cube
pruning algorithm for decoding (Huck et al., 2013)
and optimize the model weights with MERT. The
optimization criterion is BLEU.

2.3 System Combination
System combination is used to produce consensus
translations from multiple hypotheses generated
with different translation engines. First, a word
to word alignment for the given single system hy-
potheses is produced. In a second step a confusion
network is constructed. Then, the hypothesis with
the highest probability is extracted from this con-
fusion network. For the alignment procedure, one
of the given single system hypotheses is chosen as
primary system. To this primary system all other
hypotheses are aligned using the METEOR (Lavie
and Agarwal, 2007) alignment and thus the pri-
mary system defines the word order. Once the
alignment is given, the corresponding confusion
network is constructed. An example is given in
Figure 1.

The model weights of the system combination
are optimized with standard MERT on 100-best
lists. For each single system, a factor is added to
the log-linear framework of the system combina-
tion. Moreover, this log-linear model includes a
word penalty, a language model trained on the in-
put hypotheses, a binary feature which penalizes
word deletions in the confusion network and a pri-
mary feature which marks the system which pro-
vides the word order. The optimization criterion is
4BLEU-TER.

2.4 Other Tools and Techniques

We employ GIZA++ (Och and Ney, 2003) to train
word alignments. The two trained alignments are
heuristically merged to obtain a symmetrized word
alignment for phrase extraction. All language
models (LMs) are created with the SRILM toolkit
(Stolcke, 2002) and are standard 4-gram LMs
with interpolated modified Kneser-Ney smooth-
ing (Kneser and Ney, 1995; Chen and Goodman,
1998). The Stanford Parser (Klein and Manning,
2003) is used to obtain parses of the training data
for the syntactic extensions of the hierarchical sys-
tem. We evaluate in truecase with BLEU (Papineni
et al., 2002) and TER (Snover et al., 2006).

2.5 Filtering of the Common Crawl Corpus

The new Common Crawl corpora contain a large
number of sentences that are not in the labelled
language. To clean these corpora, we first ex-
tracted a vocabulary from the other provided cor-
pora. Then, only sentences containing at least
70% word from the known vocabulary were kept.
In addition, we discarded sentences that contain
more words from target vocabulary than source
vocabulary on the source side. These heuristics
reduced the French-English Common Crawl cor-
pus by 5,1%. This filtering technique was also ap-
plied on the German-English version of the Com-
mon Crawl corpus.

3 French–English Setups

We trained phrase-based translation systems for
French→English and for English→French. Cor-
pus statistics for the French-English parallel data
are given in Table 1. The LMs are 4-grams trained
on the provided resources for the respective lan-
guage (Europarl, News Commentary, UN, 109,
Common Crawl, and monolingual News Crawl
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Figure 1: Confusion network of four different hypotheses.

Table 1: Corpus statistics of the preprocessed
French-English parallel training data. EPPS de-
notes Europarl, NC denotes News Commentary,
CC denotes Common Crawl. In the data, numeri-
cal quantities have been replaced by a single cate-
gory symbol.

French English
EPPS Sentences 2.2M
+ NC Running Words 64.7M 59.7M

Vocabulary 153.4K 132.2K
CC Sentences 3.2M

Running Words 88.1M 80.9.0M
Vocabulary 954.8K 908.0K

UN Sentences 12.9M
Running Words 413.3M 362.3M
Vocabulary 487.1K 508.3K

109 Sentences 22.5M
Running Words 771.7M 661.1M
Vocabulary 1 974.0K 1 947.2K

All Sentences 40.8M
Running Words 1 337.7M 1 163.9M
Vocabulary 2 749.8K 2 730.1K

language model training data).3

3.1 Experimental Results English→French

For the English→French task, separate translation
models (TMs) were trained for each of the five
data sets and fed to the decoder. Four additional
indicator features are introduced to distinguish the
different TMs. Further, we applied the hierar-
chical reordering model, the word class language
model, the discriminative word lexicon, and the
insertion and deletion model. Table 2 shows the
results of our experiments.

As a development set for MERT, we use new-
stest2010 in all setups.

3.2 Experimental Results French→English

For the French→English task, a translation model
(TM) was trained on all available parallel data.
For the baseline, we interpolated this TM with

3The parallel 109 corpus is often also referred to as WMT
Giga French-English release 2.

an in-domain TM trained on EPPS+NC and em-
ployed the hierarchical reordering model. More-
over, three language models were used: The first
language model was trained on the English side
of all available parallel data, the second one on
EPPS and NC and the third LM on the News Shuf-
fled data. The baseline was improved by adding a
fourth LM trained on the Gigaword corpus (Ver-
sion 5) and a 5-gram word class language model
trained on News Shuffled data. For the WCLM,
we used 50 word classes clustered with the tool
mkcls (Och, 2000). All results are presented in Ta-
ble 3.

4 German–English Setups

For both translation directions of the German-
English language pair, we trained phrase-based
translation systems. Corpus statistics for German-
English can be found in Table 4. The language
models are 4-grams trained on the respective tar-
get side of the bilingual data as well as on the
provided News Crawl corpus. For the English
language model the 109 French-English, UN and
LDC Gigaword Fifth Edition corpora are used ad-
ditionally.

4.1 Morpho-syntactic Analysis
In order to reduce the source vocabulary size for
the German→English translation, the German text
is preprocessed by splitting German compound
words with the frequency-based method described
in (Koehn and Knight, 2003). To further reduce
translation complexity, we employ the long-range
part-of-speech based reordering rules proposed by
Popović and Ney (2006).

4.2 Domain Adaptation
This year, we experimented with filtering and
weighting for domain-adaptation for the German-
English task. To perform adaptation, we define a
general-domain (GD) corpus composed from the
news-commentary, europarl and Common Crawl
corpora, and an in-domain (ID) corpus using
a concatenation of the test sets (newstest{2008,
2009, 2010, 2011, 2012}) with the correspond-
ing references. We use the test sets as in-domain
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Table 2: Results for the English→French task (truecase). newstest2010 is used as development set.
BLEU and TER are given in percentage.

newstest2008 newstest2009 newstest2010 newstest2011 newstest2012
English→French BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

TM:EPPS + HRM 22.9 63.0 25.0 60.0 27.8 56.7 28.9 54.4 27.2 57.1
TM:UN + HRM 22.7 63.4 25.0 60.0 28.3 56.4 29.5 54.2 27.3 57.1
TM:109 + HRM 23.5 62.3 26.0 59.2 29.6 55.2 30.3 53.3 28.0 56.4
TM:CC + HRM 23.5 62.3 26.2 58.8 29.2 55.3 30.3 53.3 28.2 56.0
TM:NC 21.0 64.8 22.3 61.6 25.6 58.7 26.9 56.6 25.7 58.5
+ HRM 21.5 64.3 22.6 61.2 26.1 58.4 27.3 56.1 26.0 58.2
+ TM:EPPS,CC,UN 23.9 61.8 26.4 58.6 29.9 54.7 31.0 52.7 28.6 55.6

+ TM:109 24.0 61.5 26.5 58.4 30.2 54.2 31.1 52.3 28.7 55.3
+ WCLM, DWL, IDM 24.0 61.6 26.5 58.3 30.4 54.0 31.4 52.1 28.8 55.2

Table 3: Results for the French→English task (truecase). newstest2010 is used as development set.
BLEU and TER are given in percentage.

newstest2010 newstest2011 newstest2012
French→English BLEU TER BLEU TER BLEU TER

SCSS baseline 28.1 54.6 29.1 53.3 - -
+ GigaWord.v5 LM 28.6 54.2 29.6 52.9 29.6 53.3
+ WCLM 29.1 53.8 30.1 52.5 29.8 53.1

(newswire) as the other corpora are coming from
differing domains (news commentary, parliamen-
tary discussions and various web sources), and on
initial experiments, the other corpora did not per-
form well when used as an in-domain representa-
tive for adaptation. To check whether over-fitting
occurs, we measure the results of the adapted
systems on the evaluation set of this year (new-
stest2013) which was not used as part of the in-
domain set.

The filtering experiments are done similarly to
(Mansour et al., 2011), where we compare filtering
using LM and a combined LM and IBM Model 1
(LM+M1) based scores. The scores for each sen-
tence pair in the general-domain corpus are based
on the bilingual cross-entropy difference of the
in-domain and general-domain models. Denoting
HLM (x) as the cross entropy of sentence x ac-
cording to LM , then the cross entropy difference
DHLM (x) can be written as:

DHLM (x) = HLMID
(x)−HLMGD

(x)

The bilingual cross entropy difference for a sen-
tence pair (s, t) in the GD corpus is then defined
by:

DHLM (s) +DHLM (t)

For IBM Model 1 (M1), the cross-entropy

HM1(s|t) is defined similarly to the LM cross-
entropy, and the resulting bilingual cross-entropy
difference will be of the form:

DHM1(s|t) +DHM1(t|s)

The combined LM+M1 score is obtained by
summing the LM and M1 bilingual cross-entropy
difference scores. To perform filtering, the GD
corpus sentence pairs are scored by the appropri-
ate method, sorted by the score, and the n-best sen-
tences are then used to build an adapted system.

In addition to adaptation using filtering, we ex-
periment with weighted phrase extraction similar
to (Mansour and Ney, 2012). We differ from their
work by using a combined LM+M1 weight to per-
form the phrase extraction instead of an LM based
weight. We use a combined LM+M1 weight as
this worked best in the filtering experiments, mak-
ing scoring with LM+M1 more reliable than LM
scores only.

4.3 Experimental Results German→English

For the German→English task, the baseline is
trained on all available parallel data and includes
the hierarchical reordering model. The results of
the various filtering and weighting experiments are
summarized in Table 5.

196



Table 5: German-English results (truecase). BLEU and TER are given in percentage. Corresponding
development set is marked with *. † labels the single systems selected for the system combination.

newstest2009 newstest2010 newstest2011 newstest2012 newstest2013
German→English BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

SCSS baseline 21.7 61.1 24.8* 58.9* 22.0 61.1 23.4 60.0 26.1 56.4
LM 800K-best 21.6 60.5 24.7* 58.3* 22.0 60.5 23.6 59.7 - -
LM+M1 800K-best 21.4 60.5 24.7* 58.1* 22.0 60.4 23.7 59.2 - -
(LM+M1)*TM 22.1 60.2 25.4* 57.8* 22.5 60.1 24.0 59.1 - -
(LM+M1)*TM+GW 22.8 59.5 25.7* 57.2* 23.1 59.5 24.4 58.6 26.6 55.5
(LM+M1)*TM+GW† 22.9* 61.1* 25.2 59.3 22.8 61.5 23.7 60.8 26.4 57.1
SCSS baseline 22.6* 61.6* 24.1 60.1 22.1 62.0 23.1 61.2 - -
CSLM rescoring† 22.0 60.4 25.1* 58.3* 22.4 60.2 23.9 59.3 26.0 56.0
HPBT† 21.9 60.4 24.9* 58.2* 22.3 60.3 23.6 59.6 25.9 56.3
system combination - - - - 23.4* 59.3* 24.7 58.5 27.1 55.3

Table 6: English-German results (truecase). newstest2009 was used as development set. BLEU and TER

are given in percentage.

newstest2008 newstest2009 newstest2010 newstest2011 newstest2012
English→German BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

SCSS baseline 14.9 70.9 14.9 70.4 16.0 66.3 15.4 69.5 15.7 67.5
LM 800K-best 15.1 70.9 15.1 70.3 16.2 66.3 15.6 69.4 15.9 67.4
(LM+M1) 800K-best 15.8 70.8 15.4 70.0 16.2 66.2 16.0 69.3 16.1 67.4
(LM+M1) ifelse 16.1 70.6 15.7 69.9 16.5 66.0 16.2 69.2 16.3 67.2

Table 4: Corpus statistics of the preprocessed
German-English parallel training data (Europarl,
News Commentary and Common Crawl). In the
data, numerical quantities have been replaced by a
single category symbol.

German English
Sentences 4.1M
Running Words 104M 104M
Vocabulary 717K 750K

For filtering, we use the 800K best sentences
from the whole training corpora, as this se-
lection performed best on the dev set among
100K,200K,400K,800K,1600K setups. Filtering
seems to mainly improve on the TER scores, BLEU

scores are virtually unchanged in comparison to
the baseline. LM+M1 filtering improves further
on TER in comparison to LM-based filtering.

The weighted phrase extraction performs best
in our experiments, where the weights from the
LM+M1 scoring method are used. Improvements
in both BLEU and TER are achieved, with BLEU

improvements ranging from +0.4% up-to +0.6%
and TER improvements from -0.9% and up-to -
1.1%.

As a final step, we added the English Gigaword
corpus to the LM (+GW). This resulted in further
improvements of the systems.

In addition, the system as described above was
tuned on newstest2009. Using this development
set results in worse translation quality.

Furthermore, we rescored the SCSS baseline
tuned on newstest2009 with a continuous space
language model (CSLM) as described in (Schwenk
et al., 2012). The CSLM was trained on the eu-
roparl and news-commentary corpora. For rescor-
ing, we used the newstest2011 set as tuning set and
re-optimized the parameters with MERT on 1000-
best lists. This results in an improvement of up to
0.8 points in BLEU compared to the baseline.

We compared the phrase-based setups with a
hierarchical translation system, which was aug-
mented with preference grammars, soft string-
to-dependency features, discriminative reordering
extensions, DWL, IDM, and discriminative re-
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ordering extensions. The phrase table of the hier-
archical setup has been extracted from News Com-
mentary and Europarl parallel data only (not from
Common Crawl).

Finally, three setups were joined in a system
combination and we gained an improvement of up
to 0.5 points in BLEU compared to the best single
system.

4.4 Experimental Results English→German

The results for the English→German task are
shown in Table 6. While the LM-based filter-
ing led to almost no improvement over the base-
line, the LM+M1 filtering brought some improve-
ments in BLEU. In addition to the sentence fil-
tering, we tried to combine the translation model
trained on NC+EPPS with a TM trained on Com-
mon Crawl using the ifelse combination (Mansour
and Ney, 2012). This combination scheme con-
catenates both TMs and assigns the probabilities
of the in-domain TM if it contains the phrase,
else it uses the probabilities of the out-of-domain
TM. Appling this method, we achieved further im-
provements.

5 Conclusion

For the participation in the WMT 2013 shared
translation task, RWTH experimented with both
phrase-based and hierarchical translation systems.
Several different techniques were evaluated and
yielded considerable improvements over the re-
spective baseline systems as well as over our last
year’s setups (Huck et al., 2012b). Among these
techniques are a hierarchical phrase reordering
model, translation model interpolation, domain
adaptation techniques, weighted phrase extraction,
a word class language model, a continuous space
language model and system combination.
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Abstract

This paper describes the University of
Cambridge submission to the Eighth
Workshop on Statistical Machine Transla-
tion. We report results for the Russian-
English translation task. We use mul-
tiple segmentations for the Russian in-
put language. We employ the Hadoop
framework to extract rules. The decoder
is HiFST, a hierarchical phrase-based de-
coder implemented using weighted finite-
state transducers. Lattices are rescored
with a higher order language model and
minimum Bayes-risk objective.

1 Introduction

This paper describes the University of Cam-
bridge system submission to the ACL 2013
Eighth Workshop on Statistical Machine Transla-
tion (WMT13). Our translation system is HiFST
(Iglesias et al., 2009), a hierarchical phrase-based
decoder that generates translation lattices directly.
Decoding is guided by a CYK parser based on a
synchronous context-free grammar induced from
automatic word alignments (Chiang, 2007). The
decoder is implemented with Weighted Finite
State Transducers (WFSTs) using standard op-
erations available in the OpenFst libraries (Al-
lauzen et al., 2007). The use of WFSTs allows
fast and efficient exploration of a vast translation
search space, avoiding search errors in decoding.
It also allows better integration with other steps
in our translation pipeline such as 5-gram lan-
guage model (LM) rescoring and lattice minimum
Bayes-risk (LMBR) decoding (Blackwood, 2010).

We participate in the Russian-English transla-
tion shared task in the Russian-English direction.
This is the first time we train and evaluate a sys-
tem on this language pair. This paper describes the
development of the system.

The paper is organised as follows. Section 2
describes each step in the development of our sys-
tem for submission, from pre-processing to post-
processing and Section 3 presents and discusses
results.

2 System Development

2.1 Pre-processing

We use all the Russian-English parallel data avail-
able in the constraint track. We filter out non
Russian-English sentence pairs with the language-
detection library.2 A sentence pair is filtered out if
the language detector detects a different language
with probability more than 0.999995 in either the
source or the target. This discards 78543 sen-
tence pairs. In addition, sentence pairs where the
source sentence has no Russian character, defined
by the Perl regular expression [\x0400-\x04ff],
are discarded. This further discards 19000 sen-
tence pairs.

The Russian side of the parallel corpus is to-
kenised with the Stanford CoreNLP toolkit.3 The
Stanford CoreNLP tokenised text is additionally
segmented with Morfessor (Creutz and Lagus,
2007) and with the TreeTagger (Schmid, 1995).
In the latter case, we replace each token by its
stem followed by its part-of-speech. This of-
fers various segmentations that can be taken ad-
vantage of in hypothesis combination: CoreNLP,
CoreNLP+Morfessor and CoreNLP+TreeTagger.
The English side of the parallel corpus is tokenised
with a standard in-house tokeniser. Both sides of
the parallel corpus are then lowercased, so mixed
case is restored in post-processing.

Corpus statistics after filtering and for various
segmentations are summarised in Table 1.

2http://code.google.com/p/language-detection/
3http://nlp.stanford.edu/software/corenlp.shtml
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Lang Segmentation # Tokens # Types
RU CoreNLP 47.4M 1.2M
RU Morfessor 50.0M 0.4M
RU TreeTagger 47.4M 1.5M
EN Cambridge 50.4M 0.7M

Table 1: Russian-English parallel corpus statistics
for various segmentations.

2.2 Alignments
Parallel data is aligned using the MTTK toolkit
(Deng and Byrne, 2008). We train a word-
to-phrase HMM model with a maximum phrase
length of 4 in both source-to-target and target-to-
source directions. The final alignments are ob-
tained by taking the union of alignments obtained
in both directions.

2.3 Rule Extraction and Retrieval
A synchronous context-free grammar (Chiang,
2007) is extracted from the alignments. The con-
straints are set as in the original publication with
the following exceptions:

• phrase-based rule maximum number of
source words: 9

• maximum number of source element (termi-
nal or nonterminal): 5

• maximum span for nonterminals: 10

Maximum likelihood estimates for the transla-
tion probabilities are computed using MapReduce.
We use a custom Hadoop-based toolkit which im-
plements method 3 of Dyer et al. (2008). Once
computed, the model parameters are stored on disk
in the HFile format (Pino et al., 2012) for fast
querying. Rule extraction and feature computa-
tion takes about 2h30. The HFile format requires
data to be stored in a key-value structure. For the
key, we use shared source side of many rules. The
value is a list of tuples containing the possible tar-
gets for the source key and the associated param-
eters of the full rule. The query set of keys for
the test set is all possible source phrases (includ-
ing nonterminals) found in the test set.

During HFile querying we add other features.
These include IBM Model 1 (Brown et al., 1993)
lexical probabilities. Loading these models in
memory doesn’t fit well with the MapReduce
model so lexical features are computed for each

test set rather than for the entire parallel corpus.
The model parameters are stored in a client-server
based architecture. The client process computes
the probability of the rule by querying the server
process for the Model 1 parameters. The server
process stores the model parameters completely
in memory so that parameters are served quickly.
This architecture allows for many low-memory
client processes across many machines.

2.4 Language Model

We used the KenLM toolkit (Heafield et al., 2013)
to estimate separate 4-gram LMs with Kneser-Ney
smoothing (Kneser and Ney, 1995), for each of the
corpora listed in Tables 2 (self-explanatory abbre-
viations). The component models were then in-
terpolated with the SRILM toolkit (Stolcke, 2002)
to form a single LM for use in first-pass trans-
lation decoding. The interpolation weights were
optimised for perplexity on the news-test2008,
newstest2009 and newssyscomb2009 development
sets. The weights reflect both the size of the com-
ponent models and the genre of the corpus the
component models are trained on, e.g. weights are
larger for larger corpora in the news genre.

Corpus # Tokens
EU + NC + UN + CzEng + Yx 652.5M
Giga + CC + Wiki 654.1M
News Crawl 1594.3M
afp 874.1M
apw 1429.3M
cna + wpb 66.4M
ltw 326.5M
nyt 1744.3M
xin 425.3M
Total 7766.9M

Table 2: Statistics for English monolingual cor-
pora.

2.5 Decoding

For translation, we use the HiFST decoder (Igle-
sias et al., 2009). HiFST is a hierarchical decoder
that builds target word lattices guided by a prob-
abilistic synchronous context-free grammar. As-
suming N to be the set of non-terminals and T the
set of terminals or words, then we can define the
grammar as a set R = {R} of rules R : N →
〈γ,α〉 / p, where N ∈ N, γ, α ∈ {N ∪T}+ and p
the rule score.
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HiFST translates in three steps. The first step
is a variant of the CYK algorithm (Chappelier and
Rajman, 1998), in which we apply hypothesis re-
combination without pruning. Only the source
language sentence is parsed using the correspond-
ing source-side context-free grammar with rules
N → γ. Each cell in the CYK grid is specified
by a non-terminal symbol and position: (N, x, y),
spanning sx+y−1

x on the source sentence s1...sJ .
For the second step, we use a recursive algo-

rithm to construct word lattices with all possi-
ble translations produced by the hierarchical rules.
Construction proceeds by traversing the CYK grid
along the back-pointers established in parsing. In
each cell (N, x, y) of the CYK grid, we build a
target language word lattice L(N, x, y) containing
every translation of sx+y−1

x from every derivation
headed by N . For efficiency, this lattice can use
pointers to lattices on other cells of the grid.

In the third step, we apply the word-based LM
via standard WFST composition with failure tran-
sitions, and perform likelihood-based pruning (Al-
lauzen et al., 2007) based on the combined trans-
lation and LM scores.

We are using shallow-1 hierarchical gram-
mars (de Gispert et al., 2010) in our experiments.
This model is constrained enough that the decoder
can build exact search spaces, i.e. there is no prun-
ing in search that may lead to spurious undergen-
eration errors.

2.6 Features and Parameter Optimisation

We use the following standard features:

• language model

• source-to-target and target-to-source transla-
tion scores

• source-to-target and target-to-source lexical
scores

• target word count

• rule count

• glue rule count

• deletion rule count (each source unigram, ex-
cept for OOVs, is allowed to be deleted)

• binary feature indicating whether a rule is ex-
tracted once, twice or more than twice (Ben-
der et al., 2007)

No alignment information is used when com-
puting lexical scores as done in Equation (4) in
(Koehn et al., 2005). Instead, the source-to-target
lexical score is computed in Equation 1:

s(ru, en) =
1

(E + 1)R

R∏

r=1

E∑

e=0

pM1(ene|rur)

(1)
where ru are the terminals in the Russian side of
a rule, en are the terminals in the English side of
a rule, including the null word, R is the number
of Russian terminals, E is the number of English
terminals and pM1 is the IBM Model 1 probability.

In addition to these standard features, we also
use provenance features (Chiang et al., 2011). The
parallel data is divided into four subcorpora: the
Common Crawl (CC) corpus, the News Commen-
tary (NC) corpus, the Yandex (Yx) corpus and the
Wiki Headlines (Wiki) corpus. For each of these
subcorpora, source-to-target and target-to-source
translation and lexical scores are computed. This
requires computing IBM Model 1 for each sub-
corpus. In total, there are 28 features, 12 standard
features and 16 provenance features.

When retrieving relevant rules for a particular
test set, various thresholds are applied, such as
number of targets per source or translation prob-
ability cutoffs. Thresholds involving source-to-
target translation scores are applied separately for
each provenance and the union of all surviving
rules for each provenance is kept. This strategy
gives slight gains over using thresholds only for
the general translation table.

We use an implementation of lattice minimum
error rate training (Macherey et al., 2008) to op-
timise under the BLEU score (Papineni et al.,
2001) the feature weights with respect to the odd
sentences of the newstest2012 development set
(newstest2012.tune). The weights obtained match
our expectation, for example, the source-to-target
translation feature weight is higher for the NC cor-
pus than for other corpora since we are translating
news.

2.7 Lattice Rescoring

The HiFST decoder is set to directly generate
large translation lattices encoding many alterna-
tive translation hypotheses. These first-pass lat-
tices are rescored with second-pass higher-order
LMs prior to LMBR.
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2.7.1 5-gram LM Lattice Rescoring
We build a sentence-specific, zero-cutoff stupid-
backoff (Brants et al., 2007) 5-gram LMs esti-
mated over the data described in section 2.4. Lat-
tices obtained by first-pass decoding are rescored
with this 5-gram LM (Blackwood, 2010).

2.7.2 LMBR Decoding
Minimum Bayes-risk decoding (Kumar and
Byrne, 2004) over the full evidence space of the 5-
gram rescored lattices is applied to select the trans-
lation hypothesis that maximises the conditional
expected gain under the linearised sentence-level
BLEU score (Tromble et al., 2008; Blackwood,
2010). The unigram precision p and average re-
call ratio r are set as described in Tromble et al.
(2008) using the newstest2012.tune development
set.

2.8 Hypothesis Combination
LMBR decoding (Tromble et al., 2008) can also be
used as an effective framework for multiple lattice
combination (Blackwood, 2010). We used LMBR
to combine translation lattices produced by sys-
tems trained on alternative segmentations.

2.9 Post-processing
Training data is lowercased, so we apply true-
casing as post-processing. We used the disam-
big tool provided by the SRILM toolkit (Stolcke,
2002). The word mapping model which contains
the probability of mapping a lower-cased word
to its mixed-cased form is trained on all avail-
able data. A Kneser-Ney smoothed 4-gram lan-
guage model is also trained on the following cor-
pora: NC, News Crawl, Wiki, afp, apw, cna, ltw,
nyt, wpb, xin, giga. In addition, several rules are
manually designed to improve upon the output of
the disambig tool. First, casing information from
pass-through translation rules (for OOV source
words) is used to modify the casing of the output.
For example, this allows us to get the correct cas-
ing for the word Bundesrechnungshof. Other rules
are post-editing rules which force some words
to their upper-case forms, such as euro → Euro.
Post-editing rules are developed based on high-
frequency errors on the newstest2012.tune devel-
opment set. These rules give an improvement of
0.2 mixed-cased NIST BLEU on the development
set.

Finally, the output is detokenised before sub-
mission and Cyrillic characters are transliterated.

We assume for human judgment purposes that it
is better to have a non English word in Latin al-
phabet than in Cyrillic (e.g. uprazdnyayushchie);
sometimes, transliteration can also give a correct
output (e.g. Movember), especially in the case of
proper nouns.

3 Results and Discussion

Results are reported in Table 3. We use the inter-
nationalisation switch for the NIST BLEU scor-
ing script in order to properly lowercase the hy-
pothesis and the reference. This introduces a
slight discrepancy with official results going into
the English language. The newstest2012.test de-
velopment set consists of even sentences from
newstest2012. We observe that the CoreNLP
system (A) outperforms the other two systems.
The CoreNLP+Morfessor system (B) has a much
smaller vocabulary but the model size is compa-
rable to the system A’s model size. Translation
did not benefit from source side morphological de-
composition. We also observe that the gain from
LMBR hypothesis combination (A+B+C) is mini-
mal. Unlike other language pairs, such as Arabic-
English (de Gispert et al., 2009), we have not yet
found any great advantage in multiple morpho-
logical decomposition or preprocessing analyses
of the source text. 5-gram and LMBR rescoring
give consistent improvements. 5-gram rescoring
improvements are very modest, probably because
the first pass 4-gram model is trained on the same
data. As noted, hypothesis combination using the
various segmentations gives consistent but modest
gains over each individual system.

Two systems were submitted to the evalua-
tion. System A+B+C achieved a mixed-cased
NIST BLEU score of 24.6, which was the top
score achieved under this measure. System A sys-
tem achieved a mixed-cased NIST BLEU score of
24.5, which was the second highest score.

4 Summary

We have successfully trained a Russian-English
system for the first time. Lessons learned include
that simple tokenisation is enough to process the
Russian side, very modest gains come from com-
bining alternative segmentations (it could also be
that the Morfessor segmentation should not be per-
formed after CoreNLP but directly on untokenised
data), and reordering between Russian and En-
glish is such that a shallow-1 grammar performs

203



Configuration newstest2012.tune newstest2012.test newstest2013
CoreNLP(A) 33.65 32.36 25.55
+5g 33.67 32.58 25.63
+5g+LMBR 33.98 32.89 25.89
CoreNLP+Morfessor(B) 33.21 31.91 25.33
+5g 33.28 32.12 25.44
+5g+LMBR 33.58 32.43 25.78
CoreNLP+TreeTagger(C) 32.92 31.54 24.78
+5g 32.94 31.85 24.97
+5g+LMBR 33.12 32.12 25.05
A+B+C 34.32 33.13 26.00

Table 3: Translation results, shown in lowercase NIST BLEU. Bold results correspond to submitted
systems.

competitively.
Future work could include exploring alterna-

tive grammars, applying a 5-gram Kneser-Ney
smoothed language model directly in first-pass de-
coding, and combining alternative segmentations
that are more diverse from each other.
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Abstract

We describe improvements made over the
past year to Joshua, an open-source trans-
lation system for parsing-based machine
translation. The main contributions this
past year are significant improvements in
both speed and usability of the grammar
extraction and decoding steps. We have
also rewritten the decoder to use a sparse
feature representation, enabling training of
large numbers of features with discrimina-
tive training methods.

1 Introduction

Joshua is an open-source toolkit1 for hierarchical
and syntax-based statistical machine translation
of human languages with synchronous context-
free grammars (SCFGs). The original version of
Joshua (Li et al., 2009) was a port (from Python to
Java) of the Hiero machine translation system in-
troduced by Chiang (2007). It was later extended
to support grammars with rich syntactic labels (Li
et al., 2010). Subsequent efforts produced Thrax,
the extensible Hadoop-based extraction tool for
synchronous context-free grammars (Weese et al.,
2011), later extended to support pivoting-based
paraphrase extraction (Ganitkevitch et al., 2012).
Joshua 5.0 continues our yearly update cycle.

The major components of Joshua 5.0 are:

§3.1 Sparse features. Joshua now supports an
easily-extensible sparse feature implementa-
tion, along with tuning methods (PRO and
kbMIRA) for efficiently setting the weights
on large feature vectors.

1joshua-decoder.org

§3.2 Significant speed increases. Joshua 5.0 is up
to six times faster than Joshua 4.0, and also
does well against hierarchical Moses, where
end-to-end decoding (including model load-
ing) of WMT test sets is as much as three
times faster.

§3.3 Thrax 2.0. Our reengineered Hadoop-based
grammar extractor, Thrax, is up to 300%
faster while using significantly less interme-
diate disk space.

§3.4 Many other features. Joshua now includes a
server mode with fair round-robin scheduling
among and within requests, a bundler for dis-
tributing trained models, improvements to the
Joshua pipeline (for managing end-to-end ex-
periments), and better documentation.

2 Overview

Joshua is an end-to-end statistical machine trans-
lation toolkit. In addition to the decoder com-
ponent (which performs the actual translation), it
includes the infrastructure needed to prepare and
align training data, build translation and language
models, and tune and evaluate them.

This section provides a brief overview of the
contents and abilities of this toolkit. More infor-
mation can be found in the online documentation
(joshua-decoder.org/5.0/).

2.1 The Pipeline: Gluing it all together
The Joshua pipeline ties together all the infrastruc-
ture needed to train and evaluate machine transla-
tion systems for research or industrial purposes.
Once data has been segmented into parallel train-
ing, development, and test sets, a single invocation
of the pipeline script is enough to invoke this entire
infrastructure from beginning to end. Each step is
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broken down into smaller steps (e.g., tokenizing a
file) whose dependencies are cached with SHA1
sums. This allows a reinvoked pipeline to reliably
skip earlier steps that do not need to be recom-
puted, solving a common headache in the research
and development cycle.

The Joshua pipeline is similar to other “ex-
periment management systems” such as Moses’
Experiment Management System (EMS), a much
more general, highly-customizable tool that al-
lows the specification and parallel execution of
steps in arbitrary acyclic dependency graphs
(much like the UNIX make tool, but written with
machine translation in mind). Joshua’s pipeline
is more limited in that the basic pipeline skeleton
is hard-coded, but reduced versatility covers many
standard use cases and is arguably easier to use.

The pipeline is parameterized in many ways,
and all the options below are selectable with
command-line switches. Pipeline documentation
is available online.

2.2 Data preparation, alignment, and model
building

Data preparation involves data normalization (e.g.,
collapsing certain punctuation symbols) and tok-
enization (with the Penn treebank or user-specified
tokenizer). Alignment with GIZA++ (Och and
Ney, 2000) and the Berkeley aligner (Liang et al.,
2006b) are supported.

Joshua’s builtin grammar extractor, Thrax, is
a Hadoop-based extraction implementation that
scales easily to large datasets (Ganitkevitch et al.,
2013). It supports extraction of both Hiero (Chi-
ang, 2005) and SAMT grammars (Zollmann and
Venugopal, 2006) with extraction heuristics eas-
ily specified via a flexible configuration file. The
pipeline also supports GHKM grammar extraction
(Galley et al., 2006) using the extractors available
from Michel Galley2 or Moses.

SAMT and GHKM grammar extraction require
a parse tree, which are produced using the Berke-
ley parser (Petrov et al., 2006), or can be done out-
side the pipeline and supplied as an argument.

2.3 Decoding

The Joshua decoder is an implementation of the
CKY+ algorithm (Chappelier et al., 1998), which
generalizes CKY by removing the requirement

2nlp.stanford.edu/˜mgalley/software/
stanford-ghkm-latest.tar.gz

that the grammar first be converted to Chom-
sky Normal Form, thereby avoiding the complex-
ities of explicit binarization schemes (Zhang et
al., 2006; DeNero et al., 2009). CKY+ main-
tains cubic-time parsing complexity (in the sen-
tence length) with Earley-style implicit binariza-
tion of rules. Joshua permits arbitrary SCFGs, im-
posing no limitation on the rank or form of gram-
mar rules.

Parsing complexity is still exponential in the
scope of the grammar,3 so grammar filtering re-
mains important. The default Thrax settings ex-
tract only grammars with rank 2, and the pipeline
implements scope-3 filtering (Hopkins and Lang-
mead, 2010) when filtering grammars to test sets
(for GHKM).

Joshua uses cube pruning (Chiang, 2007) with
a default pop limit of 100 to efficiently explore the
search space. Other decoder options are too nu-
merous to mention here, but are documented on-
line.

2.4 Tuning and testing

The pipeline allows the specification (and optional
linear interpolation) of an arbitrary number of lan-
guage models. In addition, it builds an interpo-
lated Kneser-Ney language model on the target
side of the training data using KenLM (Heafield,
2011; Heafield et al., 2013), BerkeleyLM (Pauls
and Klein, 2011) or SRILM (Stolcke, 2002).

Joshua ships with MERT (Och, 2003) and PRO
implementations. Tuning with k-best batch MIRA
(Cherry and Foster, 2012) is also supported via
callouts to Moses.

3 What’s New in Joshua 5.0

3.1 Sparse features

Until a few years ago, machine translation systems
were for the most part limited in the number of fea-
tures they could employ, since the line-based op-
timization method, MERT (Och, 2003), was not
able to efficiently search over more than tens of
feature weights. The introduction of discrimina-
tive tuning methods for machine translation (Liang
et al., 2006a; Tillmann and Zhang, 2006; Chiang
et al., 2008; Hopkins and May, 2011) has made
it possible to tune large numbers of features in
statistical machine translation systems, and open-

3Roughly, the number of consecutive nonterminals in a
rule (Hopkins and Langmead, 2010).
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source implementations such as Cherry and Foster
(2012) have made it easy.

Joshua 5.0 has moved to a sparse feature rep-
resentation internally. First, to clarify terminol-
ogy, a feature as implemented in the decoder is
actually a template that can introduce any number
of actual features (in the standard machine learn-
ing sense). We will use the term feature function
for these templates and feature for the individual,
traditional features that are induced by these tem-
plates. For example, the (typically dense) features
stored with the grammar on disk are each separate
features contributed by the PHRASEMODEL fea-
ture function template. The LANGUAGEMODEL

template contributes a single feature value for each
language model that was loaded.

For efficiency, Joshua does not store the en-
tire feature vector during decoding. Instead, hy-
pergraph nodes maintain only the best cumulative
score of each incoming hyperedge, and the edges
themselves retain only the hyperedge delta (the in-
ner product of the weight vector and features in-
curred by that edge). After decoding, the feature
vector for each edge can be recomputed and ex-
plicitly represented if that information is required
by the decoder (for example, during tuning).

This functionality is implemented via the fol-
lowing feature function interface, presented here
in simplified pseudocode:

interface FeatureFunction:
apply(context, accumulator)

The context comprises fixed pieces of the input
sentence and hypergraph:

• the hypergraph edge (which represents the
SCFG rule and sequence of tail nodes)

• the complete source sentence

• the input span

The accumulator object’s job is to accumulate
feature (name,value) pairs fired by a feature func-
tion during the application of a rule, via another
interface:

interface Accumulator:
add(feature_name, value)

The accumulator generalization4 permits the use
of a single feature-gathering function for two ac-
cumulator objects: the first, used during decoding,
maintains only a weighted sum, and the second,

4Due to Kenneth Heafield.

used (if needed) during k-best extraction, holds
onto the entire sparse feature vector.

For tuning large sets of features, Joshua sup-
ports both PRO (Hopkins and May, 2011), an in-
house version introduced with Joshua 4.0, and k-
best batch MIRA (Cherry and Foster, 2012), im-
plemented via calls to code provided by Moses.

3.2 Performance improvements

We introduced many performance improvements,
replacing code designed to get the job done under
research timeline constraints with more efficient
alternatives, including smarter handling of locking
among threads, more efficient (non string-based)
computation of dynamic programming state, and
replacement of fixed class-based array structures
with fixed-size literals.

We used the following experimental setup to
compare Joshua 4.0 and 5.0: We extracted a large
German-English grammar from all sentences with
no more than 50 words per side from Europarl v.7
(Koehn, 2005), News Commentary, and the Com-
mon Crawl corpora using Thrax default settings.
After filtering against our test set (newstest2012),
this grammar contained 70 million rules. We then
trained three language models on (1) the target
side of our grammar training data, (2) English
Gigaword, and (3) the monolingual English data
released for WMT13. We tuned a system using
kbMIRA and decoded using KenLM (Heafield,
2011). Decoding was performed on 64-core 2.1
GHz AMD Opteron processors with 256 GB of
available memory.

Figure 1 plots the end-to-end runtime5 as a
function of the number of threads. Each point in
the graph is the minimum of at least fifteen runs
computed at different times over a period of a few
days. The main point of comparison, between
Joshua 4.0 and 5.0, shows that the current version
is up to 500% faster than it was last year, espe-
cially in multithreaded situations.

For further comparison, we took these models,
converted them to hierarchical Moses format, and
then decoded with the latest version.6 We com-
piled Moses with the recommended optimization
settings7 and used the in-memory (SCFG) gram-

5i.e., including model loading time and grammar sorting
6The latest version available on Github as of June 7, 2013
7With tcmalloc and the following compile flags:

--max-factors=1 --kenlm-max-order=5
debug-symbols=off
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Figure 1: End-to-end runtime as a function of the
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Figure 2: Decoding time alone.

mar format. BLEU scores were similar.8 In this
end-to-end setting, Joshua is about 200% faster
than Moses at high thread counts (Figure 1).

Figure 2 furthers the Moses and Joshua com-
parison by plotting only decoding time (subtract-
ing out model loading and sorting times). Moses’
decoding speed is 2–3 times faster than Joshua’s,
suggesting that the end-to-end gains in Figure 1
are due to more efficient grammar loading.

3.3 Thrax 2.0
The Thrax module of our toolkit has undergone
a similar overhaul. The rule extraction code was

822.88 (Moses), 22.99 (Joshua 4), and 23.23 (Joshua 5).
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Figure 3: Here, position-aware lexical and part-of-
speech n-gram features, labeled dependency links,
and features reflecting the phrase’s CCG-style la-
bel NP/NN are included in the context vector.

rewritten to be easier to understand and extend, al-
lowing, for instance, for easy inclusion of alterna-
tive nonterminal labeling strategies.

We optimized the data representation used for
the underlying map-reduce framework towards
greater compactness and speed, resulting in a
300% increase in extraction speed and an equiv-
alent reduction in disk I/O (Table 1). These
gains enable us to extract a syntactically labeled
German-English SAMT-style translation grammar
from a bitext of over 4 million sentence pairs in
just over three hours. Furthermore, Thrax 2.0 is
capable of scaling to very large data sets, like
the composite bitext used in the extraction of the
paraphrase collection PPDB (Ganitkevitch et al.,
2013), which counted 100 million sentence pairs
and over 2 billion words on the English side.

Furthermore, Thrax 2.0 contains a module fo-
cused on the extraction of compact distributional
signatures over large datasets. This distribu-
tional mode collects contextual features for n-
gram phrases, such as words occurring in a win-
dow around the phrase, as well as dependency-
based and syntactic features. Figure 3 illustrates
the feature space. We then compute a bit signature
from the resulting feature vector via a randomized
locality-sensitive hashing projection. This yields a
compact representation of a phrase’s typical con-
text. To perform this projection Thrax relies on
the Jerboa toolkit (Van Durme, 2012). As part of
the PPDB effort, Thrax has been used to extract
rich distributional signatures for 175 million 1-
to-4-gram phrases from the Annotated Gigaword
corpus (Napoles et al., 2012), a parsed and pro-
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Cs-En Fr-En De-En Es-En
Rules 112M 357M 202M 380M

Space Time Space Time Space Time Space Time
Joshua 4.0 120GB 112 min 364GB 369 min 211GB 203 min 413GB 397 min
Joshua 5.0 31GB 25 min 101GB 81 min 56GB 44 min 108GB 84 min
Difference -74.1% -77.7% -72.3% -78.0% -73.5% -78.3% -73.8% -78.8%

Table 1: Comparing Hadoop’s intermediate disk space use and extraction time on a selection of Europarl
v.7 Hiero grammar extractions. Disk space was measured at its maximum, at the input of Thrax’s final
grammar aggregation stage. Runtime was measured on our Hadoop cluster with a capacity of 52 mappers
and 26 reducers. On average Thrax 2.0, bundled with Joshua 5.0, is up to 300% faster and more compact.

cessed version of the English Gigaword (Graff et
al., 2003).

Thrax is distributed with Joshua and is also
available as a separate download.9

3.4 Other features
Joshua 5.0 also includes many features designed
to increase its usability. These include:

• A TCP/IP server architecture, designed to
handle multiple sets of translation requests
while ensuring fairness in thread assignment
both across and within these connections.

• Intelligent selection of translation and lan-
guage model training data using cross-
entropy difference to rank training candidates
(Moore and Lewis, 2010; Axelrod et al.,
2011) (described in detail in Orland (2013)).

• A bundler for easy packaging of trained mod-
els with all of its dependencies.

• A year’s worth of improvements to the
Joshua pipeline, including many new features
and supported options, and increased robust-
ness to error.

• Extended documentation.

4 WMT Submissions

We submitted a constrained entry for all tracks ex-
cept English-Czech (nine in total). Our systems
were constructed in a straightforward fashion and
without any language-specific adaptations using
the Joshua pipeline. For each language pair, we
trained a Hiero system on all sentences with no
more than fifty words per side in the Europarl,
News Commentary, and Common Crawl corpora.

9github.com/joshua-decoder/thrax

We built two interpolated Kneser-Ney language
models: one from the monolingual News Crawl
corpora (2007–2012), and another from the tar-
get side of the training data. For systems translat-
ing into English, we added a third language model
built on Gigaword. Language models were com-
bined linearly into a single language model using
interpolation weights from the tuning data (new-
stest2011). We tuned our systems with kbMIRA.
For truecasing, we used a monolingual translation
system built on the training data, and finally deto-
kenized with simple heuristics.

5 Summary

The 5.0 release of Joshua is the result of a signif-
icant year-long research, engineering, and usabil-
ity effort that we hope will be of service to the
research community. User-friendly packages of
Joshua are available from joshua-decoder.
org, while developers are encouraged to partic-
ipate via github.com/joshua-decoder/
joshua. Mailing lists, linked from the main
Joshua page, are available for both.
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Abstract

This paper presents the experiments con-
ducted by the Machine Translation group
at DCU and Prompsit Language Engineer-
ing for the WMT13 translation task. Three
language pairs are considered: Spanish-
English and French-English in both direc-
tions and German-English in that direc-
tion. For the Spanish-English pair, the use
of linguistic information to select paral-
lel data is investigated. For the French-
English pair, the usefulness of the small in-
domain parallel corpus is evaluated, com-
pared to an out-of-domain parallel data
sub-sampling method. Finally, for the
German-English system, we describe our
work in addressing the long distance re-
ordering problem and a system combina-
tion strategy.

1 Introduction

This paper presents the experiments conducted
by the Machine Translation group at DCU1 and
Prompsit Language Engineering2 for the WMT13
translation task on three language pairs: Spanish-
English, French-English and German-English.
For these language pairs, the language and trans-
lation models are built using different approaches
and datasets, thus presented in this paper in sepa-
rate sections.

In Section 2, the systems built for the Spanish-
English pair in both directions are described. We
investigate the use of linguistic information to se-
lect parallel data. In Section 3, we present the sys-
tems built for the French-English pair in both di-

1http://www.nclt.dcu.ie/mt/
2http://www.prompsit.com/

rections. The usefulness of the small in-domain
parallel corpus is evaluated, compared to an out-
of-domain parallel data sub-sampling method. In
Section 4, for the German-English system, aiming
at exploring the long distance reordering problem,
we first describe our efforts in a dependency tree-
to-string approach, before combining different hi-
erarchical systems with a phrase-based system and
show a significant improvement over three base-
line systems.

2 Spanish-English

This section describes the experimental setup for
the Spanish-English language pair.

2.1 Setting
Our setup uses the MOSES toolkit, version
1.0 (Koehn et al., 2007). We use a pipeline
with the phrase-based decoder with standard pa-
rameters, unless noted otherwise. The decoder
uses cube pruning (-cube-pruning-pop-limit 2000
-s 2000), MBR (-mbr-size 800 -mbr-scale 1) and
monotone at punctuation reordering.

Individual language models (LMs), 5-gram and
smoothed using a simplified version of the im-
proved Kneser-Ney method (Chen and Goodman,
1996), are built for each monolingual corpus using
IRSTLM 5.80.01 (Federico et al., 2008). These
LMs are then interpolated with IRSTLM using
the test set of WMT11 as the development set. Fi-
nally, the interpolated LMs are merged into one
LM preserving the weights using SRILM (Stol-
cke, 2002).

We use all the parallel corpora available for
this language pair: Europarl (EU), News Com-
mentary (NC), United Nations (UN) and Common
Crawl (CC). Regarding monolingual corpora, we
use the freely available monolingual corpora (Eu-
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roparl, News Commentary, News 2007–2012) as
well as the target side of several parallel corpora:
Common Crawl, United Nations and 109 French–
English corpus (only for English as target lan-
guage). Both the parallel and monolingual data
are tokenised and truecased using scripts from the
MOSES toolkit.

2.2 Data selection
The main contribution in our participation regards
the selection of parallel data. We follow the
perplexity-based approach to filter monolingual
data (Moore and Lewis, 2010) extended to filter
parallel data (Axelrod et al., 2011). In our case, we
do not measure perplexity only on word forms but
also using different types of linguistic information
(lemmas and named entities) (Toral, 2013).

We build LMs for the source and target sides
of the domain-specific corpus (in our case NC)
and for a random subset of the non-domain-
specific corpus (EU, UN and CC) of the same size
(number of sentences) of the domain-specific cor-
pus. Each parallel sentence s in the non-domain-
specific corpus is then scored according to equa-
tion 1 where PPIsl(s) is the perplexity of s in
the source side according to the domain-specific
LM and PPOsl(s) is the perplexity of s in the
source side according to the non-domain-specific
LM. PPItl(s) and PPOtl(s) contain the corre-
sponding values for the target side.

score(s) =
1

2
× (PPIsl(s)− PPOsl(s))

+(PPItl(s)− PPOtl(s)) (1)

Table 1 shows the results obtained using four
models: word forms (forms), forms and named en-
tities (forms+nes), lemmas (lem) and lemmas and
named entities (lem+nes). Details on these meth-
ods can be found in Toral (2013).

For each corpus we selected two subsets (see in
bold in Table 1), the one for which one method
obtained the best perplexity (top 5% of EU us-
ing forms, 2% of UN using lemmas and 50% of
CC using forms and named entities) and a big-
ger one used to compare the performance in SMT
(top 14% of EU using lemmas and named entities
(lem+nes), top 12% of UN using forms and named
entities and the whole CC). These subsets are used
as training data in our systems.

As we can see in the table, the use of lin-
guistic information allows to obtain subsets with

lower perplexity than using solely word forms, e.g.
1057.7 (lem+nes) versus 1104.8 (forms) for 14%
of EU. The only exception to this is the subset that
comprises the top 5% of EU, where perplexity us-
ing word forms (957.9) is the lowest one.

corpus size forms forms+nes lem lem+nes

EU 5% 957.9 987.2 974.3 1005.5
14% 1104.8 1058.7 1111.6 1057.7

UN 2% 877.1 969.6 866.6 962.2
12% 1203.2 1130.9 1183.8 1131.6

CC 50% 573.0 547.2 574.5 546.4
100% 560.1 560.1 560.1 560.1

Table 1: Perplexities in data selection

2.3 Results
Table 2 presents the results obtained. Note that
these were obtained during development and thus
the systems are tuned on WMT’s 2011 test set and
tested on WMT’s 2012 test set.

All the systems share the same LM. The first
system (no selection) is trained with the whole NC
and EU. The second (small) and third (big) sys-
tems use as training data the whole NC and sub-
sets of EU (5% and 14%, respectively), UN (2%
and 12%, respectively) and CC (50% and 100%,
respectively), as shown in Table 1.

System #sent. BLEU BLEUcased
no selection 2.1M 31.99 30.96
small 1.4M 33.12 32.05
big 3.8M 33.49 32.43

Table 2: Number of sentences and BLEU scores
obtained on the WMT12 test set for the different
systems on the EN–ES translation task.

The advantage of data selection is clear. The
second system, although smaller in size compared
to the first (1.4M sentence pairs versus 2.1M),
takes its training from a more varied set of data,
and its performance is over one absolute BLEU
point higher.

When comparing the two systems that rely on
data selection, one might expect the one that uses
data with lower perplexity (small) to perform bet-
ter. However, this is not the case, the third system
(big) performing around half an absolute BLEU
point higher than the second (small). This hints
at the fact that perplexity alone is not an optimal
metric for data selection, but size should also be
considered. Note that the size of system 3’s phrase
table is more than double that of system 2.
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3 French-English

This section describe the particularities of the MT
systems built for the French-English language pair
in both directions. The goal of the experimen-
tal setup presented here is to evaluate the gain of
adding small in-domain parallel data into a trans-
lation system built on a sub-sample of the out-of-
domain parallel data.

3.1 Data Pre-processing

All the available parallel and monolingual data for
the French-English language pair, including the
last versions of LDC Gigaword corpora, are nor-
malised and special characters are escaped using
the scripts provided by the shared task organisers.
Then, the corpora are tokenised and for each lan-
guage a true-case model is built on the concatena-
tion of all the data after removing duplicated sen-
tences, using the scripts included in MOSES dis-
tribution. The corpora are then true-cased before
being used to build the language and the transla-
tion models.

3.2 Language Model

To build our final language models, we first build
LMs on each corpus individually. All the monolin-
gual corpora are considered, as well as the source
or target side of the parallel corpora if the data
are not already in the monolingual data. We build
modified Kneser-Ney discounted 5-gram LMs us-
ing the SRILM toolkit for each corpus and sepa-
rate the LMs in three groups: one in-domain (con-
taining news-commentary and news crawl cor-
pora), another out-of-domain (containing Com-
mon Crawl, Europarl, UN and 109 corpora), and
the last one with LDC Gigaword LMs (the data
are kept separated by news source, as distributed
by LDC). The LMs in each group are linearly in-
terpolated based on their perplexities obtained on
the concatenation of all the development sets from
previous WMT translation tasks. The same devel-
opment corpus is used to linearly interpolate the
in-domain and LDC LMs. We finally obtain two
LMs, one containing out-of-domain data which is
only used to filter parallel data, and another one
containing in-domain data which is used to filter
parallel data, tuning the translation model weights
and at decoding time. Details about the number of
n-grams in each language model are presented in
Table 3.

French English
out in out in

1-gram 4.0 3.3 4.2 10.7
2-gram 43.0 44.0 48.2 161.9
3-gram 54.2 61.8 63.4 256.8
4-gram 99.7 119.2 103.2 502.7
5-gram 136.4 165.0 125.4 680.7

Table 3: Number of n-grams (in millions) for the
in-domain and out-of-domain LMs in French and
English.

3.3 Translation Model
Two phrase-based translation models are built
using MGIZA++ (Gao and Vogel, 2008) and
MOSES3, with the default alignment heuris-
tic (grow-diag-final) and bidirectional reordering
models. The first translation model is in-domain,
built with the news-commentary corpus. The sec-
ond one is built on a sample of all the other paral-
lel corpora available for the French-English lan-
guage pair. Both corpora are cleaned using the
script provided with Moses, keeping the sentences
with a length below 80 words. For the second
translation model, we used the modified Moore-
Lewis method based on the four LMs (two per
language) presented in section 3.2. The sum of
the source and target perplexity difference is com-
puted for each sentence pair of the corpus. We set
an acceptance threshold to keep a limited amount
of sentence pairs. The kept sample finally con-
tains∼ 3.7M sentence pairs to train the translation
model. Statistics about this data sample and the
news-commentary corpus are presented in Table 4.
The test set of WMT12 translation task is used to
optimise the weights for the two translation mod-
els with the MERT algorithm. For this tuning step,
the limit of target phrases loaded per source phrase
is set to 50. We also use a reordering constraint
around punctuation marks. The same parameters
are used during the decoding of the test set.

news-commentary sample
tokens FR 4.7M 98.6M
tokens EN 4.0M 88.0M
sentences 156.5k 3.7M

Table 4: Statistics about the two parallel corpora,
after pre-processing, used to train the translation
models.

3Moses version 1.0
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3.4 Results

The two translation models presented in Sec-
tion 3.3 allow us to design three translation sys-
tems: one using only the in-domain model, one
using only the model built on the sub-sample of
the out-of-domain data, and one using both mod-
els by giving two decoding paths to Moses. For
this latter system, the MERT algorithm is also used
to optimise the translation model weights. Results
obtained on the WMT13 test set, measured with
the official automatic metrics, are presented in Ta-
ble 5. The submitted system is the one built on
the sub-sample of the out-of-domain parallel data.
This system was chosen during the tuning step be-
cause it reached the highest BLEU scores on the
development corpus, slightly above the combina-
tion of the two translation models.

News-Com. Sample Comb.
FR-EN

BLEUdev 26.9 30.0 29.9
BLEU 27.0 30.8 30.4
BLEUcased 26.1 29.8 29.3
TER 62.9 58.9 59.3

EN-FR
BLEUdev 27.1 29.7 29.6
BLEU 26.6 29.6 29.4
BLEUcased 25.8 28.7 28.5
TER 65.1 61.8 62.0

Table 5: BLEU and TER scores obtained by our
systems. BLEUdev is the score obtained on the
development set given by MERT, while BLEU,
BLEUcased and TER are obtained on the test set
given by the submission website.

For both FR-EN and EN-FR tasks, the best re-
sults are reached by the system built on the sub-
sample taken from the out-of-domain parallel data.
Using only News-Commentary to build a trans-
lation model leads to acceptable BLEU scores,
with regards to the size of the training corpus.
When the sub-sample of the out-of-domain par-
allel data is used to build the translation model,
adding a model built on News-Commentary does
not improve the results. The difference between
these two systems in terms of BLEU score (both
cased sensitive and insensitive) indicates that sim-
ilar results can be achieved, however it appears
that the amount of sentence pairs in the sample
is large enough to limit the impact of the small
in-domain corpus parallel. Further experiments

are still required to determine the minimum sam-
ple size needed to outperform both the in-domain
system and the combination of the two translation
models.

4 German-English

In this section we describe our work on German
to English subtask. Firstly we describe the De-
pendency tree to string method which we tried but
unfortunately failed due to short of time. Secondly
we discuss the baseline system and the preprocess-
ing we performed. Thirdly a system combination
method is described.

4.1 Dependency Tree to String Method

Our original plan was to address the long distance
reordering problem in German-English transla-
tion. We use Xie’s Dependency tree to string
method(Xie et al., 2011) which obtains good re-
sults on Chinese to English translation and ex-
hibits good performance at long distance reorder-
ing as our decoder.

We use Stanford dependency parser4 to parse
the English side of the data and Mate-Tool5 for
the German side. The first set of experiments did
not lead to encouraging results and due to insuffi-
cient time, we decide to switch to other decoders,
based on statistical phrase-based and hierarchical
approaches.

4.2 Baseline System

In this section we describe the three baseline sys-
tem we used as well as the preprocessing technolo-
gies and the experiments set up.

4.2.1 Preprocessing and Corpus

We first use the normalisation scripts provided by
WMT2013 to normalise both English and Ger-
man side. Then we escape special characters on
both sides. We use Stanford tokeniser for English
and OpenNLP tokeniser6 for German. Then we
train a true-case model using with Europarl and
News-Commentary corpora, and true-case all the
corpus we used. The parallel corpus is filtered
with the standard cleaning scripts provided with

4http://nlp.stanford.edu/software/
lex-parser.shtml

5http://code.google.com/p/mate-tools/
6http://opennlp.sourceforge.net/

models-1.5/
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MOSES. We split the German compound words
with jWordSplitter7.

All the corpus provided for the shared task are
used for training our translation models, while
WMT2011 and WMT2012 test sets are used to
tune the models parameters. For the LM, we
use all the monolingual data provided, including
LDC Gigaword. Each LM is trained with the
SRILM toolkit, before interpolating all the LMs
according to their weights obtained by minimiz-
ing the perplexity on the tuning set (WMT2011
and WMT2012 test sets). As SRILM can only
interpolate 10 LMs, we first interpolate a LM with
Europarl, News Commentary, News Crawl (2007-
2012, each year individually, 6 separate parts),
then we interpolate a new LM with this interpo-
lated LM and LDC Gigawords (we kept the Gi-
gaword subsets separated according to the news
sources as distributed by LDC, which leads to 7
corpus).

4.2.2 Three baseline systems
We use the data set up described by the former
subsection and build up three baseline systems,
namely PB MOSES (phrase-based), Hiero MOSES

(hierarchical) and CDEC (Dyer et al., 2010). The
motivation of choosing Hierarchical Models is to
address the German-English’s long reorder prob-
lem. We want to test the performance of CDEC and
Hiero MOSES and choose the best. PB MOSES is
used as our benchmark. The three results obtained
on the development and test sets for the three base-
line system and the system combination are shown
in the Table 6.

Development Test
PB MOSES 22.0 24.0
Hiero MOSES 22.1 24.4
CDEC 22.5 24.4
Combination 23.0 24.8

Table 6: BLEU scores obtained by our systems on
the development and test sets for the German to
English translation task.

From the Table 6 we can see that on develop-
ment set, CDEC performs the best, and its much
better than MOSES’s two decoder, but on test
set, Hiero MOSES and CDEC performs as well as
each other, and they both performs better than PB
Model.

7http://www.danielnaber.de/
jwordsplitter/

4.3 System Combination

We also use a word-level combination strat-
egy (Rosti et al., 2007) to combine the three trans-
lation hypotheses. To combine these systems, we
first use the Minimum Bayes-Risk (MBR) (Kumar
and Byrne, 2004) decoder to obtain the 5 best hy-
pothesis as the alignment reference for the Con-
fusion Network (CN) (Mangu et al., 2000). We
then use IHMM (He et al., 2008) to choose the
backbone build the CN and finally search for and
generate the best translation.

We tune the system parameters on development
set with Simple-Simplex algorithm. The param-
eters for system weights are set equal. Other pa-
rameters like language model, length penalty and
combination coefficient are chosen when we see a
good improvement on development set.

5 Conclusion

This paper presented a set of experiments con-
ducted on Spanish-English, French-English and
German-English language pairs. For the Spanish-
English pair, we have explored the use of linguistic
information to select parallel data and use this as
the training for SMT. However, the comparison of
the performance obtained using this method and
the purely statistical one (i.e. perplexity on word
forms) remains to be carried out. Another open
question regards the optimal size of the selected
data. As we have seen, minimum perplexity alone
cannot be considered an optimal metric since us-
ing a larger set, even if it has higher perplexity,
allowed us to obtain notably higher BLEU scores.
The question is then how to decide the optimal size
of parallel data to select.

For the French-English language pair, we inves-
tigated the usefulness of the small in-domain par-
allel data compared to out-of-domain parallel data
sub-sampling. We show that with a sample con-
taining ∼ 3.7M sentence pairs extracted from the
out-of-domain parallel data, it is not necessary to
use the small domain-specific parallel data. Fur-
ther experiments are still required to determine the
minimum sample size needed to outperform both
the in-domain system and the combination of the
two translation models.

Finally, for the German-English language pair,
we presents our exploitation of long ordering
problem. We compared two hierarchical models
with one phrase-based model, and we also use a
system combination strategy to further improve
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the translation systems performance.
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Abstract

This paper describes QCRI-MES’s sub-
mission on the English-Russian dataset to
the Eighth Workshop on Statistical Ma-
chine Translation. We generate improved
word alignment of the training data by
incorporating an unsupervised translitera-
tion mining module to GIZA++ and build
a phrase-based machine translation sys-
tem. For tuning, we use a variation of PRO
which provides better weights by optimiz-
ing BLEU+1 at corpus-level. We translit-
erate out-of-vocabulary words in a post-
processing step by using a transliteration
system built on the transliteration pairs
extracted using an unsupervised translit-
eration mining system. For the Russian
to English translation direction, we apply
linguistically motivated pre-processing on
the Russian side of the data.

1 Introduction

We describe the QCRI-Munich-Edinburgh-
Stuttgart (QCRI-MES) English to Russian and
Russian to English systems submitted to the
Eighth Workshop on Statistical Machine Trans-
lation. We experimented using the standard
Phrase-based Statistical Machine Translation
System (PSMT) as implemented in the Moses
toolkit (Koehn et al., 2007). The typical pipeline
for translation involves word alignment using
GIZA++ (Och and Ney, 2003), phrase extraction,
tuning and phrase-based decoding. Our system is
different from standard PSMT in three ways:

• We integrate an unsupervised transliteration
mining system (Sajjad et al., 2012) into the
GIZA++ word aligner (Sajjad et al., 2011).

So, the selection of a word pair as a correct
alignment is decided using both translation
probabilities and transliteration probabilities.

• The MT system fails when translating out-of-
vocabulary (OOV) words. We build a statis-
tical transliteration system on the translitera-
tion pairs mined by the unsupervised translit-
eration mining system and transliterate them
in a post-processing step.

• We use a variation of Pairwise Ranking Op-
timization (PRO) for tuning. It optimizes
BLEU at corpus-level and provides better
feature weights that leads to an improvement
in translation quality (Nakov et al., 2012).

We participate in English to Russian and Rus-
sian to English translation tasks. For the Rus-
sian/English system, we present experiments with
two variations of the parallel corpus. One set of
experiments are conducted using the standard par-
allel corpus provided by the workshop. In the sec-
ond set of experiments, we morphologically re-
duce Russian words based on their fine-grained
POS tags and map them to their root form. We
do this on the Russian side of the parallel corpus,
tuning set, development set and test set. This im-
proves word alignment and learns better transla-
tion probabilities by reducing the vocabulary size.

The paper is organized as follows. Section
2 talks about unsupervised transliteration mining
and its incorporation to the GIZA++ word aligner.
In Section 3, we describe the transliteration sys-
tem. Section 4 describes the extension of PRO
that optimizes BLEU+1 at corpus level. Section
5 and Section 6 present English/Russian and Rus-
sian/English machine translation experiments re-
spectively. Section 7 concludes.
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2 Transliteration Mining

Consider a list of word pairs that consists of either
transliteration pairs or non-transliteration pairs.
A non-transliteration pair is defined as a word
pair where words are not transliteration of each
other. They can be translation, misalignment,
etc. Transliteration mining extracts transliteration
pairs from the list of word pairs. Sajjad et al.
(2012) presented an unsupervised transliteration
mining system that trains on the list of word pairs
and filters transliteration pairs from that. It models
the training data as the combination of a translit-
eration sub-model and a non-transliteration sub-
model. The transliteration model is a joint source
channel model. The non-transliteration model as-
sumes no correlation between source and target
word characters, and independently generates a
source and a target word using two fixed uni-
gram character models. The transliteration mining
model is defined as an interpolation of the translit-
eration model and the non-transliteration model.

We apply transliteration mining to the list of
word pairs extracted from English/Russian paral-
lel corpus and mine transliteration pairs. We use
the mined pairs for the training of the translitera-
tion system.

2.1 Transliteration Augmented-GIZA++

GIZA++ aligns parallel sentences at word level. It
applies the IBM models (Brown et al., 1993) and
the HMM model (Vogel et al., 1996) in both direc-
tions i.e. source to target and target to source. It
generates a list of translation pairs with translation
probabilities, which is called the t-table. Sajjad
et al. (2011) used a heuristic-based transliteration
mining system and integrated it into the GIZA++
word aligner. We follow a similar procedure but
use the unsupervised transliteration mining system
of Sajjad et al. (2012).

We define a transliteration sub-model and train
it on the transliteration pairs mined by the unsuper-
vised transliteration mining system. We integrate
it into the GIZA++ word aligner. The probabil-
ity of a word pair is calculated as an interpolation
of the transliteration probability and the transla-
tion probability stored in the t-table of the differ-
ent alignment models used by the GIZA++ aligner.
This interpolation is done for all iterations of all
alignment models.

2.1.1 Estimating Transliteration Probabilities
We use the algorithm for the estimation of translit-
eration probabilities of Sajjad et al. (2011). We
modify it to improve efficiency. In step 6 of Al-
gorithm 1 instead of taking all f that coocur with
e, we take only those that have a word length ra-
tio in range of 0.8-1.2.1 This reduces cooc(e) by
more than half and speeds up step 9 of Algorithm
1. The word pairs that are filtered out from cooc(e)
won’t have transliteration probability pti(f |e). We
do not interpolate in these cases and use the trans-
lation probability as it is.

Algorithm 1 Estimation of transliteration proba-
bilities, e-to-f direction
1: unfiltered data← list of word pairs
2: filtered data←transliteration pairs extracted using unsu-

pervised transliteration mining system
3: Train a transliteration system on the filtered data
4: for all e do
5: nbestTI(e) ← 10 best transliterations for e accord-

ing to the transliteration system
6: cooc(e)← set of all f that cooccur with e in a parallel

sentence with a word length in ratio of 0.8-1.2
7: candidateTI(e)← cooc(e) ∪ nbestTI(e)
8: for all f do
9: pmoses(f, e) ← joint transliteration probability of e

and f according to the transliterator
10: Calculate conditional transliteration probability

pti(f |e)← pmoses(f,e)∑
f′∈CandidateTI(e) pmoses(f ′,e)

2.1.2 Modified EM Training
Sajjad et al. (2011) modified the EM training of
the word alignment models. They combined the
translation probabilities of the IBM models and
the HMM model with the transliteration proba-
bilities. Consider pta(f |e) = fta(f, e)/fta(e) is
the translation probability of the word alignment
models. The interpolated probability is calcu-
lated by adding the smoothed alignment frequency
fta(f, e) to the transliteration probability weight
by the factor λ. The modified translation probabil-
ities is given by:

p̂(f |e) = fta(f, e) + λpti(f |e)
fta(e) + λ

(1)

where fta(f, e) = pta(f |e)fta(e). pta(f |e) is ob-
tained from the original t-table of the alignment
model. fta(e) is the total corpus frequency of e.
λ is the transliteration weight which is defined as
the number of counts the transliteration model gets
versus the translation model. The model is not

1We assume that the words with very different character
counts are less likely to be transliterations.
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very sensitive to the value of λ. We use λ = 50
for our experiments. The procedure we described
of estimation of transliteration probabilities and
modification of EM is also followed in the oppo-
site direction f-to-e.

3 Transliteration System

The unsupervised transliteration mining system
(as described in Section 2) outputs a list of translit-
eration pairs. We consider transliteration word
pairs as parallel sentences by putting a space af-
ter every character of the words and train a PSMT
system for transliteration. We apply the transliter-
ation system to OOVs in a post-processing step on
the output of the machine translation system.

Russian is a morphologically rich language.
Different cases of a word are generally represented
by adding suffixes to the root form. For OOVs
that are named entities, transliterating the inflected
forms generates wrong English transliterations as
inflectional suffixes get transliterated too. To han-
dle this, first we need to identify OOV named en-
tities (as there can be other OOVs that are not
named entities) and then transliterate them cor-
rectly. We tackle the first issue as follows: If
an OOV word is starting with an upper case let-
ter, we identify it as a named entity. To correctly
transliterate it to English, we stem the named en-
tity based on a list of suffixes ( , , , , , )
and transliterate the stemmed form. For morpho-
logically reduced Russian (see Section 6.1), we
follow the same procedure as OOVs are unknown
to the POS tagger too and are (incorrectly) not re-
duced to their root forms. For OOVs that are not
identified as named entities, we transliterate them
without any pre-processing.

4 PRO: Corpus-level BLEU

Pairwise Ranking Optimization (PRO) (Hopkins
and May, 2011) is an extension of MERT (Och,
2003) that can scale to thousands of parameters.
It optimizes sentence-level BLEU+1 which is an
add-one smoothed version of BLEU (Lin and Och,
2004). The sentence-level BLEU+1 has a bias
towards producing short translations as add-one
smoothing improves precision but does not change
the brevity penalty. Nakov et al. (2012) fixed this
by using several heuristics on brevity penalty, ref-
erence length and grounding the precision length.
In our experiments, we use the improved version
of PRO as provided by Nakov et al. (2012). We

call it PROv1 later on.

5 English/Russian Experiments

5.1 Dataset

The amount of bitext used for the estimation of the
translation model is ≈ 2M parallel sentences. We
use newstest2012a for tuning and newstest2012b
(tst2012) as development set.

The language model is estimated using large
monolingual corpus of Russian ≈ 21.7M sen-
tences. We follow the approach of Schwenk and
Koehn (2008) by training domain-specific lan-
guage models separately and then linearly inter-
polate them using SRILM with weights optimized
on the held-out development set. We divide the
tuning set newstest2012a into two halves and use
the first half for tuning and second for test in or-
der to obtain stable weights (Koehn and Haddow,
2012).

5.2 Baseline Settings

We word-aligned the parallel corpus using
GIZA++ (Och and Ney, 2003) with 5 iterations
of Model1, 4 iterations of HMM and 4 iterations
of Model4, and symmetrized the alignments us-
ing the grow-diag-final-and heuristic (Koehn et al.,
2003). We built a phrase-based machine transla-
tion system using the Moses toolkit. Minimum er-
ror rate training (MERT), margin infused relaxed
algorithm (MIRA) and PRO are used to optimize
the parameters.

5.3 Main System Settings

Our main system involves a pre-processing step
– unsupervised transliteration mining, and a post-
processing step – transliteration of OOVs. For the
training of the unsupervised transliteration min-
ing system, we take the word alignments from
our baseline settings and extract all word pairs
which occur as 1-to-1 alignments (like Sajjad et
al. (2011)) and later refer to them as a list of
word pairs. The unsupervised transliteration min-
ing system trains on the list of word pairs and
mines transliteration pairs. We use the mined pairs
to build a transliteration system using the Moses
toolkit. The transliteration system is used in Algo-
rithm 1 to generate transliteration probabilities of
candidate word pairs and is also used in the post-
processing step to transliterate OOVs.

We run GIZA++ with identical settings as de-
scribed in Section 5.2. We interpolate for ev-
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GIZA++ TA-GIZA++ OOV-TI

MERT 23.41 23.51 23.60
MIRA 23.60 23.73 23.85
PRO 23.57 23.68 23.70
PROv1 23.65 23.76 23.87

Table 1: BLEU scores of English to Russian ma-
chine translation system evaluated on tst2012 us-
ing baseline GIZA++ alignment and translitera-
tion augmented-GIZA++. OOV-TI presents the
score of the system trained using TA-GIZA++ af-
ter transliterating OOVs

ery iteration of the IBM Model1 and the HMM
model. We had problem in applying smoothing
for Model4 and did not interpolate transliteration
probabilities for Model4. The alignments are re-
fined using the grow-diag-final-and heuristic. We
build a phrase-based system on the aligned pairs
and tune the parameters using PROv1. OOVs are
transliterated in the post-processing step.

5.4 Results
Table 1 summarizes English/Russian results on
tst2012. Improved word alignment gives up to
0.13 BLEU points improvement. PROv1 improves
translation quality and shows 0.08 BLEU point
increase in BLEU in comparison to the parame-
ters tuned using PRO. The transliteration of OOVs
consistently improve translation quality by at least
0.1 BLEU point for all systems.2 This adds to a
cumulative gain of up to 0.2 BLEU points.

We summarize results of our systems trained on
GIZA++ and transliteration augmented-GIZA++
(TA-GIZA++) and tested on tst2012 and tst2013
in Table 2. Both systems use PROv1 for tuning
and transliteration of OOVs in the post-processing
step. The system trained on TA-GIZA++ per-
formed better than the system trained on the base-
line aligner GIZA++.

6 Russian/English Experiments

In this section, we present translation experiments
in Russian to English direction. We morphologi-
cally reduce the Russian side of the parallel data in
a pre-processing step and train the translation sys-
tem on that. We compare its result with the Rus-
sian to English system trained on the un-processed
parallel data.

2We see similar gain in BLEU when using operation se-
quence model (Durrani et al., 2011) for decoding and translit-
erating OOVs in a post-processing step (Durrani et al., 2013).

SYS tst2012 tst2013

GIZA++ 23.76 18.4
TA-GIZA++ 23.87 18.5*

Table 2: BLEU scores of English to Russian ma-
chine translation system evaluated on tst2012 and
tst2013 using baseline GIZA++ alignment and
transliteration augmented-GIZA++ alignment and
post-processed the output by transliterating OOVs.
Human evaluation in WMT13 is performed on
TA-GIZA++ tested on tst2013 (marked with *)

6.1 Morphological Processing

The linguistic processing of Russian involves POS
tagging and morphological reduction. We first tag
the Russian data using a fine grained tagset. The
tagger identifies lemmas and the set of morpholog-
ical attributes attached to each word. We reduce
the number of these attributes by deleting some
of them, that are not relevant for English (for ex-
ample, gender agreement of verbs). This gener-
ates a morphologically reduced Russian which is
used in parallel with English for the training of
the machine translation system. Further details on
the morphological processing of Russian are de-
scribed in Weller et al. (2013).

6.1.1 POS Tagging

We use RFTagger (Schmid and Laws, 2008) for
POS tagging. Despite the good quality of tagging
provided by RFTagger, some errors seem to be un-
avoidable due to the ambiguity of certain gram-
matical forms in Russian. A good example of
this is neuter nouns that have the same form in
all cases, or feminine nouns, which have identi-
cal forms in singular genitive and plural nomina-
tive (Sharoff et al., 2008). Since Russian sentences
have free word order, and the case of nouns can-
not be determined on that basis, this imperfection
can not be corrected during tagging or by post-
processing the tagger output.

6.1.2 Morphological Reduction

English in comparison to Slavic group of lan-
guages is morphologically poor. For example, En-
glish has no morphological attributes for nouns
and adjectives to express gender or case; verbs in
English have no gender either. Russian, on the
contrary, has rich morphology. It suffices to say
that the Russian has 6 cases and 3 grammatical
genders, which manifest themselves in different
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suffixes for nouns, pronouns, adjectives and some
verb forms.

When translating from Russian into English, a
lot of these attributes become meaningless and ex-
cessive. It makes sense to reduce the number of
morphological attributes before the text is sup-
plied for the training of the MT system. We ap-
ply morphological reduction to nouns, pronouns,
verbs, adjectives, prepositions and conjunctions.
The rest of the POS (adverbs, particles, interjec-
tions and abbreviations) have no morphological at-
tributes and are left unchanged.

We apply morphological reduction to train,
tune, development and test data. We refer to this
data set as morph-reduced later on.

6.2 Dataset

We use two variations of the parallel corpus to
build and test the Russian to English system. One
system is built on the data provided by the work-
shop. For the second system, we preprocess the
Russian side of the data as described in Section
6.1. Both the provided parallel corpus and the
morph-reduced parallel corpus consist of 2M par-
allel sentences each. We use them for the estima-
tion of the translation model. We use large train-
ing data for the estimation of monolingual lan-
guage model – en≈ 287.3M sentences. We follow
the identical procedure of interpolated language
model as described in Section 5.1. We use new-
stest2012a for tuning and newstest2012b (tst2012)
for development.

6.3 System Settings

We use identical system settings to those described
in Section 5.3. We trained the systems sepa-
rately on GIZA++ and transliteration augmented-
GIZA++ to compare their results. All systems are
tuned using PROv1. The translation output is post-
processed to transliterate OOVs.

6.4 Results

Table 3 summarizes results of Russian to English
machine translation systems trained on the orig-
inal parallel corpus and on the morph-reduced
corpus and using GIZA++ and transliteration
augmented-GIZA++ for word alignment. The sys-
tem using TA-GIZA++ for alignment shows the
best results for both tst2012 and tst2013. The im-
proved alignment gives a BLEU improvement of
up to 0.4 points.

Original corpus
SYS tst2012 tst2013

GIZA++ 32.51 25.5
TA-GIZA++ 33.40 25.9*

Morph-reduced

SYS tst2012 tst2013

GIZA++ 31.22 24.30
TA-GIZA++ 31.40 24.45

Table 3: Russian to English machine translation
system evaluated on tst2012 and tst2013. Human
evaluation in WMT13 is performed on the system
trained using the original corpus with TA-GIZA++
for alignment (marked with *)

The system built on the morph-reduced data
shows degradation in results by 1.29 BLEU points.
However, the percentage of OOVs reduces for
both test sets when using the morph-reduced data
set compared to the original parallel corpus. We
analyze the output of the system and find that the
morph-reduced system makes mistakes in choos-
ing the right tense of the verb. This might be one
reason for poor performance. This implies that the
morphological reduction is slightly damaging the
data, perhaps for specific parts of speech. In the
future, we would like to investigate this issue in
detail.

7 Conclusion

In this paper, we described the QCRI-Munich-
Edinburgh-Stuttgart machine translation systems
submitted to the Eighth Workshop on Statistical
Machine Translation. We aligned the parallel cor-
pus using transliteration augmented-GIZA++ to
improve the word alignments. We built a phrase-
based system using the Moses toolkit. For tun-
ing the feature weights, we used an improvement
of PRO that optimizes for corpus-level BLEU. We
post-processed the output of the machine transla-
tion system to transliterate OOV words.

For the Russian to English system, we mor-
phologically reduced the Russian data in a pre-
processing step. This reduced the vocabulary size
and helped to generate better word alignments.
However, the performance of the SMT system
dropped by 1.29 BLEU points in decoding. We
will investigate this issue further in the future.
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san Sajjad, and Richárd Farkas. 2013. Munich-
Edinburgh-Stuttgart submissions of OSM systems at
WMT13. In Proceedings of the Eighth Workshop on
Statistical Machine Translation, Sofia, Bulgaria.

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
Edinburgh, United Kingdom.

Philipp Koehn and Barry Haddow. 2012. Towards
effective use of training data in statistical machine
translation. In Proceedings of the Seventh Work-
shop on Statistical Machine Translation, Montréal,
Canada.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceed-
ings of the Human Language Technology and North
American Association for Computational Linguis-
tics Conference, Edmonton, Canada.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation for Computational Linguistics, Demonstra-
tion Program, Prague, Czech Republic.

Chin-Yew Lin and Franz Josef Och. 2004. OR-
ANGE: a method for evaluating automatic evalua-
tion metrics for machine translation. In Proceed-
ings of the 20th international conference on Compu-
tational Linguistics, Geneva, Switzerland.

Preslav Nakov, Francisco Guzmán, and Stephan Vo-
gel. 2012. Optimizing for sentence-level BLEU+1
yields short translations. In Proceedings of the
24th International Conference on Computational
Linguistics, Mumbai, India.

Franz J. Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1).

Franz J. Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, Sapporo, Japan.

Hassan Sajjad, Alexander Fraser, and Helmut Schmid.
2011. An algorithm for unsupervised translitera-
tion mining with an application to word alignment.
In Proceedings of the 49th Annual Conference of
the Association for Computational Linguistics, Port-
land, USA.

Hassan Sajjad, Alexander Fraser, and Helmut Schmid.
2012. A statistical model for unsupervised and
semi-supervised transliteration mining. In Proceed-
ings of the 50th Annual Conference of the Associa-
tion for Computational Linguistics, Jeju, Korea.

Helmut Schmid and Florian Laws. 2008. Estimation
of conditional probabilities with decision trees and
an application to fine-grained pos tagging. In Pro-
ceedings of the 22nd International Conference on
Computational Linguistics - Volume 1, Manchester,
United Kingdom.

Holger Schwenk and Philipp Koehn. 2008. Large and
Diverse Language Models for Statistical Machine
Translation. In International Joint Conference on
Natural Language Processing, Hyderabad, India.

Serge Sharoff, Mikhail Kopotev, Tomaz Erjavec, Anna
Feldman, and Dagmar Divjak. 2008. Designing
and evaluating a russian tagset. In Proceedings of
the Sixth International Conference on Language Re-
sources and Evaluation.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical
translation. In 16th International Conference on
Computational Linguistics, Copenhagen, Denmark.

Marion Weller, Max Kisselew, Svetlana Smekalova,
Alexander Fraser, Helmut Schmid, Nadir Durrani,
Hassan Sajjad, and Richárd Farkas. 2013. Munich-
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Abstract

We describe the Uppsala University sys-
tem for WMT13, for English-to-German
translation. We use the Docent decoder,
a local search decoder that translates at
the document level. We add tunable dis-
tortion limits, that is, soft constraints on
the maximum distortion allowed, to Do-
cent. We also investigate cleaning of the
noisy Common Crawl corpus. We show
that we can use alignment-based filtering
for cleaning with good results. Finally we
investigate effects of corpus selection for
recasing.

1 Introduction

In this paper we present the Uppsala University
submission to WMT 2013. We have submitted one
system, for translation from English to German.
In our submission we use the document-level de-
coder Docent (Hardmeier et al., 2012; Hardmeier
et al., 2013). In the current setup, we take advan-
tage of Docent in that we introduce tunable dis-
tortion limits, that is, modeling distortion limits as
soft constraints instead of as hard constraints. In
addition we perform experiments on corpus clean-
ing. We investigate how the noisy Common Crawl
corpus can be cleaned, and suggest an alignment-
based cleaning method, which works well. We
also investigate corpus selection for recasing.

In Section 2 we introduce our decoder, Docent,
followed by a general system description in Sec-
tion 3. In Section 4 we describe our experiments
with corpus cleaning, and in Section 5 we describe
experiments with tunable distortion limits. In Sec-
tion 6 we investigate corpus selection for recasing.
In Section 7 we compare our results with Docent
to results using Moses (Koehn et al., 2007). We
conclude in Section 8.

2 The Docent Decoder

Docent (Hardmeier et al., 2013) is a decoder for
phrase-based SMT (Koehn et al., 2003). It differs
from other publicly available decoders by its use
of a different search algorithm that imposes fewer
restrictions on the feature models that can be im-
plemented.

The most popular decoding algorithm for
phrase-based SMT is the one described by Koehn
et al. (2003), which has become known as stack
decoding. It constructs output sentences bit by
bit by appending phrase translations to an initially
empty hypothesis. Complexity is kept in check,
on the one hand, by a beam search approach that
only expands the most promising hypotheses. On
the other hand, a dynamic programming technique
called hypothesis recombination exploits the lo-
cality of the standard feature models, in particu-
lar the n-gram language model, to achieve a loss-
free reduction of the search space. While this de-
coding approach delivers excellent search perfor-
mance at a very reasonable speed, it limits the
information available to the feature models to an
n-gram window similar to a language model his-
tory. In stack decoding, it is difficult to implement
models with sentence-internal long-range depen-
dencies and cross-sentence dependencies, where
the model score of a given sentence depends on
the translations generated for another sentence.

In contrast to this very popular stack decod-
ing approach, our decoder Docent implements a
search procedure based on local search (Hard-
meier et al., 2012). At any stage of the search pro-
cess, its search state consists of a complete docu-
ment translation, making it easy for feature mod-
els to access the complete document with its cur-
rent translation at any point in time. The search
algorithm is a stochastic variant of standard hill
climbing. At each step, it generates a successor
of the current search state by randomly applying
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one of a set of state changing operations to a ran-
dom location in the document. If the new state
has a better score than the previous one, it is ac-
cepted, else search continues from the previous
state. The operations are designed in such a way
that every state in the search space can be reached
from every other state through a sequence of state
operations. In the standard setup we use three op-
erations: change-phrase-translation replaces the
translation of a single phrase with another option
from the phrase table, resegment alters the phrase
segmentation of a sequence of phrases, and swap-
phrases alters the output word order by exchang-
ing two phrases.

In contrast to stack decoding, the search algo-
rithm in Docent leaves model developers much
greater freedom in the design of their feature func-
tions because it gives them access to the transla-
tion of the complete document. On the downside,
there is an increased risk of search errors because
the document-level hill-climbing decoder cannot
make as strong assumptions about the problem
structure as the stack decoder does. In prac-
tice, this drawback can be mitigated by initializing
the hill-climber with the output of a stack decod-
ing pass using the baseline set of models without
document-level features (Hardmeier et al., 2012).
Since its inception, Docent has been used to ex-
periment with document-level semantic language
models (Hardmeier et al., 2012) and models to
enhance text readability (Stymne et al., 2013b).
Work on other discourse phenomena is ongoing.
In the present paper, we focus on sentence-internal
reordering by exploiting the fact that Docent im-
plements distortion limits as soft constraints rather
than strictly enforced limitations. We do not in-
clude any of our document-level feature functions.

3 System Setup

In this section we will describe our basic system
setup. We used all corpora made available for
English–German by the WMT13 workshop. We
always concatenated the two bilingual corpora Eu-
roparl and News Commentary, which we will call
EP-NC. We pre-processed all corpora by using
the tools provided for tokenization and we also
lower-cased all corpora. For the bilingual corpora
we also filtered sentence pairs with a length ra-
tio larger than three, or where either sentence was
longer than 60 tokens. Recasing was performed as
a post-processing step, trained using the resources

in the Moses toolkit (Koehn et al., 2007).

For the language model we trained two sepa-
rate models, one on the German side of EP-NC,
and one on the monolingual News corpus. In
both cases we trained 5-gram models. For the
large News corpus we used entropy-based prun-
ing, with 10−8 as a threshold (Stolcke, 1998). The
language models were trained using the SRILM
toolkit (Stolcke, 2002) and during decoding we
used the KenLM toolkit (Heafield, 2011).

For the translation model we also trained two
models, one with EP-NC, and one with Common
Crawl. These two models were interpolated and
used as a single model at decoding time, based on
perplexity minimization interpolation (Sennrich,
2012), see details in Section 4. The transla-
tion models were trained using the Moses toolkit
(Koehn et al., 2007), with standard settings with
5 features, phrase probabilities and lexical weight-
ing in both directions and a phrase penalty. We ap-
plied significance-based filtering (Johnson et al.,
2007) to the resulting phrase tables. For decod-
ing we used the Docent decoder with random ini-
tialization and standard parameter settings (Hard-
meier et al., 2012; Hardmeier et al., 2013), which
beside translation and language model features in-
clude a word penalty and a distortion penalty.

Parameter optimization was performed using
MERT (Och, 2003) at the document-level (Stymne
et al., 2013a). In this setup we calculate both
model and metric scores on the document-level
instead of on the sentence-level. We produce k-
best lists by sampling from the decoder. In each
optimization run we run 40,000 hill-climbing it-
erations of the decoder, and sample translations
with interval 100, from iteration 10,000. This
procedure has been shown to give competitive re-
sults to standard tuning with Moses (Koehn et
al., 2007) with relatively stable results (Stymne
et al., 2013a). For tuning data we concate-
nated the tuning sets news-test 2008–2010 and
newssyscomb2009, to get a higher number of doc-
uments. In this set there are 319 documents and
7434 sentences.

To evaluate our system we use newstest2012,
which has 99 documents and 3003 sentences. In
this article we give lower-case Bleu scores (Pap-
ineni et al., 2002), except in Section 6 where we
investigate the effect of different recasing models.
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Cleaning Sentences Reduction
None 2,399,123
Basic 2,271,912 5.3%
Langid 2,072,294 8.8%
Alignment-based 1,512,401 27.0%

Table 1: Size of Common Crawl after the different
cleaning steps and reduction in size compared to
the previous step

4 Cleaning of Common Crawl

The Common Crawl (CC) corpus was collected
from web sources, and was made available for the
WMT13 workshop. It is noisy, with many sen-
tences with the wrong language and also many
non-corresponding sentence pairs. To make better
use of this resource we investigated two methods
for cleaning it, by making use of language identi-
fication and alignment-based filtering. Before any
other cleaning we performed basic filtering where
we only kept pairs where both sentences had at
most 60 words, and with a length ratio of maxi-
mum 3. This led to a 5.3% reduction of sentences,
as shown in Table 1.

Language Identification For language identifi-
cation we used the off-the-shelf tool langid.py (Lui
and Baldwin, 2012). It is a python library, cover-
ing 97 languages, including English and German,
trained on data drawn from five different domains.
It uses a naive Bayes classifier with a multino-
mial event model, over a mixture of byte n-grams.
As for many language identification packages it
works best for longer texts, but Lui and Bald-
win (2012) also showed that it has good perfor-
mance for short microblog texts, with an accuracy
of 0.89–0.94.

We applied langid.py for each sentence in the
CC corpus, and kept only those sentence pairs
where the correct language was identified for both
sentences with a confidence of at least 0.999. The
total number of sentences was reduced by a further
8.8% based on the langid filtering.

We performed an analysis on a set of 1000 sen-
tence pairs. Among the 907 sentences that were
kept in this set we did not find any cases with
the wrong language. Table 2 shows an analysis
of the 93 sentences that were removed from this
test set. The overall accuracy of langid.py is much
higher than indicated in the table, however, since
it does not include the correctly identified English
and German sentences. We grouped the removed

sentences into four categories, cases where both
languages were correctly identified, but under the
confidence threshold of 0.999, cases where both
languages were incorrectly identified, and cases
where one language was incorrectly identified.
Overall the language identification was accurate
on 54 of the 93 removed sentences. In 18 of the
cases where it was wrong, the sentences were not
translation correspondents, which means that we
only wrongly removed 21 out of 1000 sentences.
It was also often the case when the language was
wrongly identified, that large parts of the sentence
consisted of place names, such as “Forums about
Conil de la Frontera - Cádiz.” – “Foren über Conil
de la Frontera - Cádiz.”, which were identified as
es/ht instead of en/de. Even though such sentence
pairs do correspond, they do not contain much use-
ful translation material.

Alignment-Based Cleaning For the alignment-
based cleaning, we aligned the data from the pre-
vious step using GIZA++ (Och and Ney, 2003)
in both directions, and used the intersection of
the alignments. The intersection of alignments is
more sparse than the standard SMT symmetriza-
tion heuristics, like grow-diag-final-and (Koehn et
al., 2005). Our hypothesis was that sentence pairs
with very few alignment points in the intersection
would likely not be corresponding sentences.

We used two types of filtering thresholds based
on alignment points. The first threshold is for the
ratio of the number of alignment points and the
maximum sentence length. The second threshold
is the absolute number of alignment points in a
sentence pair. In addition we used a third thresh-
old based on the length ratio of the sentences.

To find good values for the filtering thresholds,
we created a small gold standard where we man-
ually annotated 100 sentence pairs as being cor-
responding or not. In this set the sentence pairs
did not match in 33 cases. Table 3 show results for
some different values for the threshold parameters.
Overall we are able to get a very high precision
on the task of removing non-corresponding sen-
tences, which means that most sentences that are
removed based on this cleaning are actually non-
corresponding sentences. The recall is a bit lower,
indicating that there are still non-corresponding
sentences left in our data. In our translation sys-
tem we used the bold values in Table 3, since it
gave high precision with reasonable recall for the
removal of non-corresponding sentences, meaning
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Identification Total Wrong lang. Non-corr Corr Languages identified
English and German < 0.999 15 0 7 8
Both English and German wrong 6 2 2 2 2:na/es, 2:et/et, 1: es/an, 1:es/ht
English wrong 13 1 6 6 5: es 4: fr 1: br, it, de, eo
German wrong 59 51 3 5 51: en 3: es 2:nl 1: af, la, lb
Total 93 54 18 21

Table 2: Reasons and correctness for removing sentences based on language ID for 93 sentences out of
a 1000 sentence subset, divided into wrong lang(uage), non-corr(esponding) pairs, and corr(esponding)
pairs.

Ratio align Min align Ratio length Prec. Recall F Kept
0.1 4 2 0.70 0.77 0.73 70%
0.28 4 2 0.94 0.72 0.82 57%
0.42 4 2 1.00 0.56 0.72 41%
0.28 2 2 0.91 0.73 0.81 59%
0.28 6 2 0.94 0.63 0.76 51%
0.28 4 1.5 0.94 0.65 0.77 52%
0.28 4 3 0.91 0.75 0.82 60%

Table 3: Results of alignment-based cleaning for different values of the filtering parameters, with pre-
cision, recall and F-score for the identification of erroneous sentence pairs and the percentage of kept
sentence pairs

that we kept most correctly aligned sentence pairs.
This cleaning method is more aggressive than

the other cleaning methods we described. For the
gold standard only 57% of sentences were kept,
but in the full training set it was a bit higher, 73%,
as shown in Table 1.

Phrase Table Interpolation To use the CC cor-
pus in our system we first trained a separate phrase
table which we then interpolated with the phrase
table trained on EP-NC. In this way we could al-
ways run the system with a single phrase table. For
interpolation, we used the perplexity minimization
for weighted counts method by Sennrich (2012).
Each of the four weights in the phrase table, back-
ward and forward phrase translation probabilities
and lexical weights, are optimized separately. This
method minimizes the cross-entropy based on a
held-out corpus, for which we used the concate-
nation of all available News development sets.

The cross-entropy and the contribution of CC
relative to EP-NC, are shown for phrase transla-
tion probabilities in both directions in Table 4. The
numbers for lexical weights show similar trends.
For each cleaning step the cross-entropy is re-
duced and the contribution of CC is increased. The
difference between the basic cleaning and langid is
very small, however. The alignment-based clean-
ing shows a much larger effect. After that cleaning
step the CC corpus has a similar contribution to
EP-NC. This is an indicator that the final cleaned
CC corpus fits the development set well.

p(S|T ) p(T |S)
Cleaning CE IP CE IP
Basic 3.18 0.12 3.31 0.06
Langid 3.17 0.13 3.29 0.07
Alignment-based 3.02 0.47 3.17 0.61

Table 4: Cross-entropy (CE) and relative interpo-
lation weights (IP) compared to EP-NC for the
Common Crawl corpus, with different cleaning

Results In Table 5 we show the translation re-
sults with the different types of cleaning of CC,
and without it. We show results of different corpus
combinations both during tuning and testing. We
see that we get the overall best result by both tun-
ing and testing with the alignment-based cleaning
of CC, but it is not as useful to do the extra clean-
ing if we do not tune with it as well. Overall we
get the best results when tuning is performed in-
cluding a cleaned version of CC. This setup gives
a large improvement compared to not using CC at
all, or to use it with only basic cleaning. There is
little difference in Bleu scores when testing with
either basic cleaning, or cleaning based on lan-
guage ID, with a given tuning, which is not sur-
prising given their small and similar interpolation
weights. Tuning was, however, not successful
when using CC with basic cleaning.

Overall we think that alignment-based corpus
cleaning worked well. It reduced the size of the
corpus by over 25%, improved the cross-entropy
for interpolation with the EP-NC phrase-table, and
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Testing
Tuning not used basic langid alignment
not used 14.0 13.9 13.9 14.0
basic 14.2 14.5 14.3 14.3
langid 15.2 15.3 15.3 15.3
alignment 12.7 15.3 15.3 15.7

Table 5: Bleu scores with different types of clean-
ing and without Common Crawl

gave an improvement on the translation task. We
still think that there is potential for further improv-
ing this filtering and to annotate larger test sets to
investigate the effects in more detail.

5 Tunable Distortion Limits

The Docent decoder uses a hill-climbing search
and can perform operations anywhere in the sen-
tence. Thus, it does not need to enforce a strict
distortion limit. In the Docent implementation, the
distortion limit is actually implemented as a fea-
ture, which is normally given a very large weight,
which effectively means that it works as a hard
constraint. This could easily be relaxed, however,
and in this work we investigate the effects of using
soft distortion limits, which can be optimized dur-
ing tuning, like other features. In this way long-
distance movements can be allowed when they are
useful, instead of prohibiting them completely. A
drawback of using no or soft distortion limits is
that it increases the search space.

In this work we mostly experiment with variants
of one or two standard distortion limits, but with a
tunable weight. We also tried to use separate soft
distortion limits for left- and right-movement. Ta-
ble 6 show the results with different types of dis-
tortion limits. The system with a standard fixed
distortion limits of 6 has a somewhat lower score
than most of the systems with no or soft distortion
limits. In most cases the scores are similar, and
we see no clear affects of allowing tunable lim-
its over allowing unlimited distortion. The system
that uses two mono-directional limits of 6 and 10
has slightly higher scores than the other systems,
and is used in our final submission.

One possible reason for the lack of effect of al-
lowing more distortion could be that it rarely hap-
pens that an operator is chosen that performs such
distortion, when we use the standard Docent set-
tings. To investigate this, we varied the settings of
the parameters that guide the swap-phrases opera-
tor, and used the move-phrases operator instead of
swap-phrases. None of these changes led to any

DL type Limit Bleu
No DL – 15.5
Hard DL 6 15.0
One soft DL 6 15.5

8 14.2
10 15.5

Two soft DLs 4,8 15.5
6,10 15.7

Bidirectional soft DLs 6,10 15.5

Table 6: Bleu scores for different distortion limit
(DL) settings

improvements, however.
While we saw no clear effects when using tun-

able distortion limits, we plan to extend this work
in the future to model movement differently based
on parts of speech. For the English–German lan-
guage pair, for instance, it would be reasonable to
allow long distance moves of verb groups with no
or little cost, but use a hard limit or a high cost for
other parts of speech.

6 Corpus Selection for Recasing

In this section we investigate the effect of using
different corpus combinations for recasing. We
lower-cased our training corpus, which means that
we need a full recasing step as post-processing.
This is performed by training a SMT system on
lower-cased and true-cased target language. We
used the Moses toolkit to train the recasing system
and to decode during recasing. We investigate the
effect of using different combinations of the avail-
able training corpora to train the recasing model.

Table 7 show case sensitive Bleu scores, which
can be compared to the previous case-insensitive
scores of 15.7. We see that there is a larger effect
of including more data in the language model than
in the translation model. There is a performance
jump both when adding CC data and when adding
News data to the language model. The results
are best when we include the News data, which
is not included in the English–German translation
model, but which is much larger than the other cor-
pora. There is no further gain by using News in
combination with other corpora compared to using
only News. When adding more data to the trans-
lation model there is only a minor effect, with the
difference between only using EP-NC and using
all available corpora is at most 0.2 Bleu points.
In our submitted system we use the monolingual
News corpus both in the LM and the TM.

There are other options for how to treat recas-
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Language model
TM EP-NC EP-NC-CC News EP-NC-News EP-NC-CC-News
EP-NC 13.8 14.4 14.8 14.8 14.8
EP-NC-CC 13.9 14.5 14.9 14.8 14.8
News 13.9 14.5 14.9 14.9 14.9
EP-NC-News 13.9 14.5 14.9 14.9 14.9
EP-NC-CC-News 13.9 14.5 14.9 14.9 15.0

Table 7: Case-sensitive Bleu scores with different corpus combinations for the language model and
translation model (TM) for recasing

ing. It is common to train the system on true-
cased data instead of lower-cased data, which has
been shown to lead to small gains for the English–
German language pair (Koehn et al., 2008). In this
framework there is still a need to find the correct
case for the first word of each sentence, for which
a similar corpus study might be useful.

7 Comparison to Moses

So far we have only shown results using the Do-
cent decoder on its own, with a random initializa-
tion, since we wanted to submit a Docent-only sys-
tem for the shared task. In this section we also
show contrastive results with Moses, and for Do-
cent initialized with stack decoding, using Moses,
and for different type of tuning.

Previous research have shown mixed results for
the effect of initializing Docent with and with-
out stack decoding, when using the same feature
sets. In Hardmeier et al. (2012) there was a drop
of about 1 Bleu point for English–French trans-
lation based on WMT11 data when random ini-
tialization was used. In Stymne et al. (2013a),
on the other hand, Docent gave very similar re-
sults with both types of initialization for German–
English WMT13 data. The latter setup is similar
to ours, except that no Common Crawl data was
used.

The results with our setup are shown in Ta-
ble 8. In this case we lose around a Bleu point
when using Docent on its own, without Moses ini-
tialization. We also see that the results are lower
when using Moses with the Docent tuning method,
or when combining Moses and Docent with Do-
cent tuning. This indicates that the document-
level tuning has not given satisfactory results in
this scenario, contrary to the results in Stymne et
al. (2013a), which we plan to explore further in
future work. Overall we think it is important to
develop stronger context-sensitive models for Do-
cent, which can take advantage of the document
context.

Test system Tuning system Bleu
Docent (random) Docent 15.7
Docent (stack) Docent 15.9
Moses Docent 15.9
Docent (random) Moses 15.9
Docent (stack) Moses 16.8
Moses Moses 16.8

Table 8: Bleu scores for Docent initialized ran-
domly or with stack decoding compared to Moses.
Tuning is performed with either Moses or Docent.
For the top line we used tunable distortion lim-
its 6,10 with Docent, in the other cases a standard
hard distortion limit of 6, since Moses does not al-
low soft distortion limits.

8 Conclusion

We have presented the Uppsala University system
for WMT 2013. Our submitted system uses Do-
cent with random initialization and two tunable
distortion limits of 6 and 10. It is trained with the
Common Crawl corpus, cleaned using language
identification and alignment-based filtering. For
recasing we used the monolingual News corpora.

For corpus-cleaning, we present a novel method
for cleaning noisy corpora based on the number
and ratio of word alignment links for sentence
pairs, which leads to a large reduction of corpus
size, and to small improvements on the transla-
tion task. We also experiment with tunable dis-
tortion limits, which do not lead to any consistent
improvements at this stage.

In the current setup the search algorithm of
Docent is not strong enough to compete with
the effective search in standard decoders like
Moses. We are, however, working on developing
discourse-aware models that can take advantage of
the document-level context, which is available in
Docent. We also need to further investigate tuning
methods for Docent.

230



References
Christian Hardmeier, Joakim Nivre, and Jörg Tiede-

mann. 2012. Document-wide decoding for phrase-
based statistical machine translation. In Proceed-
ings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1179–1190, Jeju Island, Korea.

Christian Hardmeier, Sara Stymne, Jörg Tiedemann,
and Joakim Nivre. 2013. Docent: A document-level
decoder for phrase-based statistical machine transla-
tion. In Proceedings of the 51st Annual Meeting of
the ACL, Demonstration session, Sofia, Bulgaria.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197, Edinburgh, Scotland.

Howard Johnson, Joel Martin, George Foster, and
Roland Kuhn. 2007. Improving translation qual-
ity by discarding most of the phrasetable. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 967–
975, Prague, Czech Republic.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of the 2003 Human Language Technology
Conference of the NAACL, pages 48–54, Edmonton,
Alberta, Canada.

Philipp Koehn, Amittai Axelrod, Alexandra Birch
Mayne, Chris Callison-Burch, Miles Osborne, and
David Talbot. 2005. Edinburgh system descrip-
tion for the 2005 IWSLT speech translation evalu-
ation. In Proceedings of the International Workshop
on Spoken Language Translation, Pittsburgh, Penn-
sylvania, USA.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL,
Demo and Poster Sessions, pages 177–180, Prague,
Czech Republic.

Philipp Koehn, Abhishek Arun, and Hieu Hoang.
2008. Towards better machine translation quality for
the German-English language pairs. In Proceedings
of the Third Workshop on Statistical Machine Trans-
lation, pages 139–142, Columbus, Ohio, USA.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In Pro-
ceedings of the 50th Annual Meeting of the ACL,
System Demonstrations, pages 25–30, Jeju Island,
Korea.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 42nd Annual Meeting of the ACL, pages 160–
167, Sapporo, Japan.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the ACL, pages 311–
318, Philadelphia, Pennsylvania, USA.

Rico Sennrich. 2012. Perplexity minimization for
translation model domain adaptation in statistical
machine translation. In Proceedings of the 16th
Annual Conference of the European Association
for Machine Translation, pages 539–549, Avignon,
France.

Andreas Stolcke. 1998. Entropy-based pruning of
backoff language models. In Proceedings of the
DARPA Broadcast News Transcription and Under-
standing Workshop, pages 270–274, Landsdowne,
Virginia, USA.

Andreas Stolcke. 2002. SRILM – an extensible
language modeling toolkit. In Proceedings of the
Seventh International Conference on Spoken Lan-
guage Processing, pages 901–904, Denver, Col-
orado, USA.

Sara Stymne, Christian Hardmeier, Jörg Tiedemann,
and Joakim Nivre. 2013a. Feature weight opti-
mization for discourse-level SMT. In Proceedings
of the ACL 2013 Workshop on Discourse in Machine
Translation (DiscoMT 2013), Sofia, Bulgaria.

Sara Stymne, Jörg Tiedemann, Christian Hardmeier,
and Joakim Nivre. 2013b. Statistical machine trans-
lation with readability constraints. In Proceedings
of the 19th Nordic Conference on Computational
Linguistics (NODALIDA’13), pages 375–386, Oslo,
Norway.

231



Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 232–239,
Sofia, Bulgaria, August 8-9, 2013 c©2013 Association for Computational Linguistics

Munich-Edinburgh-Stuttgart Submissions at WMT13:
Morphological and Syntactic Processing for SMT

Marion Weller1, Max Kisselew1, Svetlana Smekalova1, Alexander Fraser2,
Helmut Schmid2, Nadir Durrani3, Hassan Sajjad4, Richárd Farkas5
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Abstract

We present 5 systems of the Munich-
Edinburgh-Stuttgart1 joint submissions to
the 2013 SMT Shared Task: FR-EN, EN-
FR, RU-EN, DE-EN and EN-DE. The
first three systems employ inflectional gen-
eralization, while the latter two employ
parser-based reordering, and DE-EN per-
forms compound splitting. For our ex-
periments, we use standard phrase-based
Moses systems and operation sequence
models (OSM).

1 Introduction

Morphologically complex languages often lead to
data sparsity problems in statistical machine trans-
lation. For translation pairs with morphologically
rich source languages and English as target lan-
guage, we focus on simplifying the input language
in order to reduce the complexity of the translation
model. The pre-processing of the source-language
is language-specific, requiring morphological anal-
ysis (FR, RU) as well as sentence reordering (DE)
and dealing with compounds (DE). Due to time
constraints we did not deal with inflection for DE-
EN and EN-DE.

The morphological simplification process con-
sists in lemmatizing inflected word forms and deal-
ing with word formation (splitting portmanteau
prepositions or compounds). This needs to take
into account translation-relevant features (e.g. num-
ber) which vary across the different language pairs:
while French only has the features number and
gender, a wider array of features needs to be con-
sidered when modelling Russian (cf. table 6). In
addition to morphological reduction, we also apply
transliteration models learned from automatically

1The language pairs DE-EN and RU-EN were developed
in collaboration with the Qatar Computing Research Institute
and the University of Szeged.

mined transliterations to handle out-of-vocabulary
words (OOVs) when translating from Russian.

Replacing inflected word forms with simpler
variants (lemmas or the components of split com-
pounds) aims not only at reducing the general com-
plexity of the translation model, but also at decreas-
ing the amount of out-of-vocabulary words in the
input data. This is particularly the case with Ger-
man compounds, which are very productive and
thus often lack coverage in the parallel training
data, whereas the individual components can be
translated. Similarly, inflected word forms (e.g. ad-
jectives) benefit from the reduction to lemmas if
the full inflection paradigm does not occur in the
parallel training data.

For EN-FR, a translation pair with a morpho-
logically complex target language, we describe a
two-step translation system built on non-inflected
word stems with a post-processing component for
predicting morphological features and the genera-
tion of inflected forms. In addition to the advantage
of a more general translation model, this method
also allows the generation of inflected word forms
which do not occur in the training data.

2 Experimental setup

The translation experiments in this paper are car-
ried out with either a standard phrase-based Moses
system (DE-EN, EN-DE, EN-FR and FR-EN) or
with an operation sequence model (RU-EN, DE-
EN), cf. Durrani et al. (2013b) for more details.
An operation sequence model (OSM) is a state-
of-the-art SMT-system that learns translation and
reordering patterns by representing a sentence pair
and its word alignment as a unique sequence of
operations (see e.g. Durrani et al. (2011), Durrani
et al. (2013a) for more details). For the Moses sys-
tems we used the old train-model perl scripts rather
than the EMS, so we did not perform Good-Turing
smoothing; parameter tuning was carried out with
batch-mira (Cherry and Foster, 2012).
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1 Removal of empty lines
2 Conversion of HTML special characters like

&quot; to the corresponding characters
3 Unification of words that were written both

with an œ or with an oe to only one spelling
4 Punctuation normalization and tokenization
5 Putting together clitics and apostrophes like

l ’ or d ’ to l’ and d’

Table 1: Text normalization for FR-EN.

Definite determiners la / l’ / les→ le
Indefinite determiners un / une→ un
Adjectives Infl. form→ lemma
Portmanteaus e. g. au→ à le
Verb participles Reduced to
inflected for gender non-inflected
and number verb participle form
ending in ée/és/ées ending in é
Clitics and apostroph- d’→ de,
ized words are converted qu’→ que,
to their lemmas n’→ ne, ...

Table 2: Rules for morphological simplification.

The development data consists of the concate-
nated news-data sets from the years 2008-2011.
Unless otherwise stated, we use all constrained data
(parallel and monolingual). For the target-side lan-
guage models, we follow the approach of Schwenk
and Koehn (2008) and train a separate language
model for each corpus and then interpolate them
using weights optimized on development data.

3 French to English

French has a much richer morphology than English;
for example, adjectives in French are inflected with
respect to gender and number whereas adjectives
in English are not inflected at all. This causes data
sparsity in coverage of French inflected forms. We
try to overcome this problem by simplifying French
inflected forms in a pre-processing step in order to
adapt the French input better to the English output.

Processing of the training and test data The
pre-processing of the French input consists of two
steps: (1) normalizing not well-formed data (cf.
table 1) and (2) morphological simplification.

In the second step, the normalized training data
is annotated with Part-of-Speech tags (PoS-tags)
and word lemmas using RFTagger (Schmid and
Laws, 2008) which was trained on the French tree-
bank (Abeillé et al., 2003). French forms are then
simplified according to the rules given in table 2.

Data and experiments We trained a French to
English Moses system on the preprocessed and

System BLEU (cs) BLEU (ci)
Baseline 29.90 31.02
Simplified French* 29.70 30.83

Table 3: Results of the French to English system
(WMT-2012). The marked system (*) corresponds
to the system submitted for manual evaluation. (cs:
case-sensitive, ci: case-insensitive)

simplified constrained parallel data.
Due to tractability problems with word align-

ment, the 109 French-English corpus and the UN
corpus were filtered to a more manageable size.
The filtering criteria are sentence length (between
15 and 25 words), as well as strings indicating that
a sentence is neither French nor English, or other-
wise not well-formed, aiming to obtain a subset of
good-quality sentences. In total, we use 9M par-
allel sentences. For the English language model
we use large training data with 287.3M true-cased
sentences (including the LDC Giga-word data).

We compare two systems: a baseline with reg-
ular French text, and a system with the described
morphological simplifications. Results for the
WMT-2012 test set are shown in table 3. Even
though the baseline is better than the simplified
system in terms of BLEU, we assume that the trans-
lation model of the simplified system benefits from
the overall generalization – thus, human annotators
might prefer the output of the simplified system.

For the WMT-2013 set, we obtain BLEU scores
of 29,97 (cs) and 31,05 (ci) with the system built
on simplified French (mes-simplifiedfrench).

4 English to French

Translating into a morphologically rich language
faces two problems: that of asymmetry of mor-
phological information contained in the source and
target language and that of data sparsity.

In this section we describe a two-step system de-
signed to overcome these types of problems: first,
the French data is reduced to non-inflected forms
(stems) with translation-relevant morphological fea-
tures, which is used to built the translation model.
The second step consists of predicting all neces-
sary morphological features for the translation out-
put, which are then used to generate fully inflected
forms. This two-step setup decreases the complex-
ity of the translation task by removing language-
specific features from the translation model. Fur-
thermore, generating inflected forms based on word
stems and morphological features allows to gener-
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ate forms which do not occur in the parallel training
data – this is not possible in a standard SMT setup.

The idea of separating the translation into two
steps to deal with complex morphology was in-
troduced by Toutanova et al. (2008). Fraser et
al. (2012) applied this method to the language
pair English-German with an additional special
focus on word formation issues such as the split-
ting and merging of portmanteau prepositions and
compounds. The presented inflection prediction
systems focuses on nominal inflection; verbal in-
flection is not addressed.

Morphological analysis and resources The
morphological analysis of the French training data
is obtained using RFTagger, which is designed
for annotating fine-grained morphological tags
(Schmid and Laws, 2008). For generating inflected
forms based on stems and morphological features,
we use an extended version of the finite-state mor-
phology FRMOR (Zhou, 2007). Additionally, we
use a manually compiled list of abbreviations and
named entities (names of countries) and their re-
spective grammatical gender.

Stemming For building the SMT system, the
French data (parallel and monolingual) is trans-
formed into a stemmed representation. Nouns,
i.e. the heads of NPs or PPs, are marked with
inflection-relevant features: gender is considered
as part of the stem, whereas number is determined
by the source-side input: for example, we expect
source-language words in plural to be translated by
translated by stems with plural markup. This stem-
markup is necessary in order to guarantee that the
number information is not lost during translation.
For a better generalization, portmanteaus are split
into separate parts: au→ à+le (meaning, “to the”).

Predicting morphological features For predict-
ing the morphological features of the SMT output
(number and gender), we use a linear chain CRF
(Lavergne et al., 2010) trained on data annotated
with these features using n-grams of stems and part-
of-speech tags within a window of 4 positions to
each side of the current word. Through the CRF,
the values specified in the stem-markup (number
and gender on nouns) are propagated over the rest
of the linguistic phrase, as shown in column 2 of
table 4. Based on the stems and the morphological
features, inflected forms can be generated using
FRMOR (column 3).

Post-processing As the French data has been
normalized, a post-processing step is needed in or-
der to generate correct French surface forms: split
portmanteaus are merged into their regular forms
based on a simple rule set. Furthermore, apostro-
phes are reintroduced for words like le, la, ne, ... if
they are followed by a vowel. Column 4 in table 4
shows post-processing including portmanteau for-
mation. Since we work on lowercased data, an
additional recasing step is required.

Experiments and evaluation We use the same
set of reduced parallel data as the FR-EN system;
the language model is built on 32M French sen-
tences. Results for the WMT-2012 test set are given
in table 5. Variant 1 shows the results for a small
system trained only on a part of the training data
(Europarl+News Commentary), whereas variant 2
corresponds to the submitted system. A small-scale
analysis indicated that the inflection prediction sys-
tem tends to have problems with subject-verb agree-
ment. We trained a factored system using addi-
tional PoS-tags with number information which
lead to a small improvement on both variants.

While the small model is significantly better than
the baseline2 as it benefits more from the general-
ization, the result for the full system is worse than
the baseline3. Here, given the large amount of
data, the generalization effect has less influence.
However, we assume that the more general model
from the inflection prediction system produces bet-
ter translations than a regular model containing a
large amount of irrelevant inflectional information,
particularly when considering that it can produce
well-formed inflected sequences that are inaccessi-
ble to the baseline. Even though this is not reflected
in terms of BLEU, humans might prefer the inflec-
tion prediction system.

For the WMT-2013 set, we obtain BLEU scores
of 29.6 (ci) and 28.30 (cs) with the inflection pre-
diction system mes-inflection (marked in table 5).

5 Russian-English

The preparation of the Russian data includes the
following stages: (1) tokenization and tagging and
(2) morphological reduction.

Tagging and tagging errors For tagging, we use
a version of RFTagger (Schmid and Laws, 2008)

2Pairwise bootstrap resampling with 1000 samples.
3However, the large inflection-prediction system has a

slightly better NIST score than the baseline (7.63 vs. 7.61).
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SMT-output predicted generated after post- gloss
with stem-markup in bold print features forms processing
avertissement<Masc><Pl>[N] Masc.Pl avertissements avertissements warnings
sinistre[ADJ] Masc.Pl sinistres sinistres dire
de[P] – de du from
le[ART] Masc.Sg le the
pentagone<Masc><Sg>[N] Masc.Sg pentagone pentagone pentagon
sur[P] – sur sur over
de[P] – de d’ of
éventuel[ADJ] Fem.Pl éventuelles éventuelles potential
réduction<Fem><Pl>[N] Fem.Pl réductions réductions reductions
de[P] – de du of
le[ART] Masc.Sg le the
budget<Masc><Sg>[N] Masc.Sg budget budget budget
de[P] – de de of
le[ART] Fem.Sg la la the
défense<Fem><Sg>[N] Fem.Sg défense défense défense

Table 4: Processing steps for the input sentence dire warnings from pentagon over potential defence cuts.

that has been developed based on data tagged with
TreeTagger (Schmid, 1994) using a model from
Sharoff et al. (2008). The data processed by Tree-
Tagger contained errors such as wrong definition
of PoS for adverbs, wrong selection of gender for
adjectives in plural and missing features for pro-
nouns and adverbs. In order to train RFTagger, the
output of TreeTagger was corrected with a set of
empirical rules. In particular, the morphological
features of nominal phrases were made consistent
to train RFTagger: in contrast to TreeTagger, where
morphological features are regarded as part of the
PoS-tag, RFTagger allows for a separate handling
of morphological features and POS tags.

Despite a generally good tagging quality, some
errors seem to be unavoidable due to the ambiguity
of certain grammatical forms in Russian. A good
example of this are neuter nouns that have the same
form in all cases, or feminine nouns, which have
identical forms in singular genitive and plural nom-
inative (Sharoff et al., 2008). Since Russian has no
binding word order, and the case of nouns cannot
be determined on that basis, such errors cannot be
corrected with empirical rules implemented as post-

System BLEU (ci) BLEU (cs)
1 Baseline 24.91 23.40

InflPred 25.31 23.81
InflPred-factored 25.53 24.04

2 Baseline 29.32 27.65
InflPred* 29.07 27.40
InflPred-factored 29.17 27.46

Table 5: Results for French inflection prediction
on the WMT-2012 test set. The marked system (*)
corresponds to the system submitted for manual
evaluation.

processing. Similar errors occur when specifying
the case of adjectives, since the suffixes of adjec-
tives are even less varied as compared to the nouns.
In our application, we hope that this type of error
does not affect the result due to the following sup-
pression of a number of morphological attributes
including the case of adjectives.

Morphological reduction In comparison to
Slavic languages, English is morphologically poor.
For example, English has no morphological at-
tributes for nouns and adjectives to express gender
or case; verbs have no gender either. In contrast,
Russian is morphologically very rich – there are
e.g. 6 cases and 3 grammatical genders, which
manifest themselves in different suffixes for nouns,
pronouns, adjectives and some verb forms. When
translating from Russian into English, many of
these attributes are (hopefully) redundant and are
therefore deleted from the training data. The mor-
phological reduction in our system was applied to
nouns, pronouns, verbs, adjectives, prepositions
and conjunctions. The rest of the POS (adverbs,
particles, interjections and abbreviations) have no
morphological attributes. The list of the original
and the reduced attributes is given in Table 6.

Transliteration mining to handle OOVs The
machine translation system fails to translate out-of-
vocabulary words (OOVs) as they are unknown to
the training data. Most of the OOVs are named en-
tities and transliterating them to the target language
script could solve this problem. The transliteration
system requires a list of transliteration pairs for
training. As we do not have such a list, we use
the unsupervised transliteration mining system of
Sajjad et al. (2012) that takes a list of word pairs for
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Part of Attributes Reduced
Speech RFTagger attributes
Noun Type Type

Gender Gender
Number Number
Case Case
nom,gen,dat,acc,instr,prep gen,notgen

Animate
Case 2

Pronoun Person Person
Gender Gender
Number Number
Case Case
nom,gen,dat,acc,instr,prep nom,notnom

Syntactic type
Animated

Verb Type Type
VForm VForm
Tense Tense
Person Person
Number Number
Gender
Voice Voice
Definiteness
Aspect Aspect
Case

Adjec- Type Type
tive Degree Degree

Gender
Number
Case
Definiteness

Prep- Type
osition Formation

Case
Conjunc- Type Type
tion Formation Formation

Table 6: Rules for simplifying the morphological
complexity for RU.

training and extracts transliteration pairs that can
be used for the training of the transliteration system.
The procedure of mining transliteration pairs and
transliterating OOVs is described as follows: We
word-align the parallel corpus using GIZA++ and
symmetrize the alignments using the grow-diag-
final-and heuristic. We extract all word pairs which
occur as 1-to-1 alignments (Sajjad et al., 2011) and
later refer to them as a list of word pairs. We train
the unsupervised transliteration mining system on
the list of word pairs and extract transliteration
pairs. We use these mined pairs to build a transliter-
ation system using the Moses toolkit. The translit-
eration system is applied as a post-processing step
to transliterate OOVs.

The morphological reduction of Russian (cf. sec-
tion 5) does not process most of the OOVs as they
are also unknown to the POS tagger. So OOVs that
we get are in their original form. When translit-

Original corpus
SYS WMT-2012 WMT-2013
GIZA++ 32.51 25.5
TA-GIZA++ 33.40 25.9*

Morph-reduced
SYS WMT-2012 WMT-2013
GIZA++ 31.22 24.3
TA-GIZA++ 31.40 24.45

Table 7: Russian to English machine translation
system evaluated on WMT-2012 and WMT-2013.
Human evaluation in WMT13 is performed on the
system trained using the original corpus with TA-
GIZA++ for alignment (marked with *).

erating them, the inflected forms generate wrong
English transliterations as inflectional suffixes get
transliterated too, specially OOV named entities.
We solved this problem by stemming the OOVs
based on a list of suffixes ( , , , , , ) and
transliterating the stemmed forms.

Experiments and results We trained the sys-
tems separately on GIZA++ and transliteration
augmented-GIZA++ (TA-GIZA++) to compare
their results; for more details see Sajjad et al.
(2013). All systems are tuned using PROv1 (Nakov
et al., 2012). The translation output is post-
processed to transliterate OOVs.

Table 7 summarizes the results of RU-EN trans-
lation systems trained on the original corpus and
on the morph-reduced corpus. Using TA-GIZA++
alignment gives the best results for both WMT-
2012 and WMT-2013, leading to an improvement
of 0.4 BLEU points.

The system built on the morph-reduced data
leads to decreased BLEU results. However, the per-
centage of OOVs is reduced for both test sets when
using the morph-reduced data set compared to the
original data. An analysis of the output showed
that the morph-reduced system makes mistakes in
choosing the right tense of the verb, which might
be one reason for this outcome. In the future, we
would like to investigate this issue in detail.

6 German to English and English to
German

We submitted systems for DE-EN and EN-DE
which used constituent parses for pre-reordering.
For DE-EN we also deal with word formation is-
sues such as compound splitting. We did not per-
form inflectional normalization or generation for
German due to time constraints, instead focusing
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our efforts on these issues for French and Russian
as previously described.

German to English German has a wider diver-
sity of clausal orderings than English, all of which
need to be mapped to the English SVO order. This
is a difficult problem to solve during inference, as
shown for hierarchical SMT by Fabienne Braune
and Fraser (2012) and for phrase-based SMT by
Bisazza and Federico (2012).

We syntactically parsed all of the source side
sentences of the parallel German to English data
available, and the tuning, test and blindtest sets.
We then applied reordering rules to these parses.
We use the rules for reordering German constituent
parses of Collins et al. (2005) together with the
additional rules described by Fraser (2009). These
are applied as a preprocess to all German data.

For parsing the German sentences, we used the
generative phrase-structure parser BitPar with opti-
mizations of the grammar, as described by Fraser
et al. (2013). The parser was trained on the Tiger
Treebank (Brants et al., 2002) along with utilizing
the Europarl corpus as unlabeled data. At the train-
ing of Bitpar, we followed the targeted self-training
approach (Katz-Brown et al., 2011) as follows. We
parsed the whole Europarl corpus using a grammar
trained on the Tiger corpus and extracted the 100-
best parse trees for each sentence. We selected the
parse tree among the 100 candidates which got the
highest usefulness scores for the reordering task.
Then we trained a new grammar on the concatena-
tion of the Tiger corpus and the automatic parses
from Europarl.

The usefulness score estimates the value of a
parse tree for the reordering task. We calculated
this score as the similarity between the word order
achieved by applying the parse tree-based reorder-
ing rules of Fraser (2009) and the word order indi-
cated by the automatic word alignment between
the German and English sentences in Europarl.
We used the Kendall’s Tau Distance as the simi-
larity metric of two word orderings (as suggested
by Birch and Osborne (2010)).

Following this, we performed linguistically-
informed compound splitting, using the system of
Fritzinger and Fraser (2010), which disambiguates
competing analyses from the high-recall Stuttgart
Morphological Analyzer SMOR (Schmid et al.,
2004) using corpus statistics. We also split German
portmanteaus like zum→ zu dem (meaning to the).

system BLEU BLEU system name
(ci) (cs)

DE-EN (OSM) 27.60 26.12 MES
DE-EN (OSM) 27.48 25.99 not submitted
BitPar not self-trained
DE-EN (Moses) 27.14 25.65 MES-Szeged-

reorder-split
DE-EN (Moses) 26.82 25.36 not submitted
BitPar not self-trained
EN-DE (Moses) 19.68 18.97 MES-reorder

Table 8: Results on WMT-2013 (blindtest)

English to German The task of mapping En-
glish SVO order to the different clausal orders in
German is difficult. For our English to German
systems, we solved this by parsing the English and
applying the system of Gojun and Fraser (2012) to
reorder English into the correct German clausal or-
der (depending on the clause type which is detected
using the English parse, see (Gojun and Fraser,
2012) for further details).

We primarily used the Charniak-Johnson gener-
ative parser (Charniak and Johnson, 2005) to parse
the English Europarl data and the test data. How-
ever, due to time constraints we additionally used
Berkeley parses of about 400K Europarl sentences
and the other English parallel training data. We
also left a small amount of the English parallel
training data unparsed, which means that it was
not reordered. For tune, test and blindtest (WMT-
2013), we used the Charniak-Johnson generative
parser.

Experiments and results We used all available
training data for constrained systems; results for
the WMT-2013 set are given in table 8. For the
contrastive BitPar results, we reparsed WMT-2013.

7 Conclusion

We presented 5 systems dealing with complex mor-
phology. For two language pairs with a morpho-
logically rich source language (FR and RU), the
input was reduced to a simplified representation
containing only translation-relevant morphologi-
cal information (e.g. number on nouns). We also
used reordering techniques for DE-EN and EN-DE.
For translating into a language with rich morphol-
ogy (EN-FR), we applied a two-step method that
first translates into a stemmed representation of
the target language and then generates inflected
forms based on morphological features predicted
on monolingual data.
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4.2.2.C-11/1/KONV-2012-0013). This publication
only reflects the authors’ views.

References
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Abstract

Supervised approaches to NLP tasks rely
on high-quality data annotations, which
typically result from expensive manual la-
belling procedures. For some tasks, how-
ever, the subjectivity of human judgements
might reduce the usefulness of the an-
notation for real-world applications. In
Machine Translation (MT) Quality Esti-
mation (QE), for instance, using human-
annotated data to train a binary classifier
that discriminates between good (useful
for a post-editor) and bad translations is
not trivial. Focusing on this binary task,
we show that subjective human judge-
ments can be effectively replaced with an
automatic annotation procedure. To this
aim, we compare binary classifiers trained
on different data: the human-annotated
dataset from the 7th Workshop on Statis-
tical Machine Translation (WMT-12), and
an automatically labelled version of the
same corpus. Our results show that human
labels are less suitable for the task.

1 Introduction

With the steady progress in the field of Statistical
Machine Translation (SMT), the translation indus-
try is now faced with the possibility of significant
productivity increases (i.e. amount of publishable
output per unit of time). One way to achieve this
goal, in Computer Assisted Translation (CAT) en-
vironments, is the integration of (precise, but of-
ten partial) suggestions obtained through “fuzzy
matches” from a Translation Memory (TM), with
(complete, but potentially less precise) translations
produced by an MT system. Such integration can
loosely consist in presenting translators with un-
ranked suggestions obtained from the MT and the
TM, or rely on tighter combination strategies. For

instance, MT and TM translations can be automat-
ically ranked to ease the selection of the most suit-
able one for post-editing (He et al., 2010), or the
TM can be used to constrain and improve MT sug-
gestions (Ma et al., 2011). In all cases, the ef-
fectiveness of the integration is conditioned by:
i) the quality of MT, and ii) the accuracy in au-
tomatically predicting such quality. Higher pro-
ductivity increases depend on the capability of the
MT system to output useful material that is close
to be publishable “as is” (Denkowski and Lavie,
2012), and the capability to automatically identify
and present to human translators only such sug-
gestions.

Recognizing good translations falls in the scope
of research on automatic MT Quality Estimation
(QE), which addresses the problem of estimating
the quality of a translated sentence at run-time,
without access to reference translations (Specia et
al., 2009; Soricut and Echihabi, 2010; Bach et al.,
2011; Specia, 2011; Mehdad et al., 2012b). In
recent years QE gained increasing interest in the
MT community, resulting in several datasets avail-
able for training and evaluation (Callison-Burch et
al., 2012), the definition of features showing good
correlation with human judgements (Soricut et al.,
2012), and the release of open-source software.1

The proposed solutions to the QE problem rely
on supervised methods that strongly depend on the
availability of labelled data. While early works
(Blatz et al., 2003) exploited annotations obtained
with automatic MT evaluation metrics like BLEU
(Papineni et al., 2002), the current trend is to
rely on human annotations, which seem to lead
to more accurate models (Quirk, 2004; Specia et
al., 2009). Along this direction, the QE task con-
sists in predicting scores that reflect human quality
judgements, by learning from manually annotated
datasets (e.g. collections of source-target pairs la-

1http://www.quest.dcs.shef.ac.uk/
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belled according to an n-point Likert scale or with
real numbers in a given interval). Within this dom-
inant supervised framework, we explore different
ways to obtain labelled data for training a bi-
nary QE classifier suitable for integration in a
CAT tool. Since, to the best of our knowledge,
labelled data with binary judgements are currently
not available, we consider two alternative options.

The first option is to adapt an existing dataset,
checking whether it can be partitioned in a way
that reflects the distinction between good (use-
ful for the translator, suitable for post editing)
and bad translations (that need complete rewrit-
ing).2 To this aim we experiment with the QE
data released within the 7th Workshop on Ma-
chine Translation (WMT-12). The corpus con-
sists of source-target pairs annotated with manual
QE labels (1-5 scores) indicating the post-editing
needed to correct the translations. Besides explicit
human judgements, the availability of post-edited
translations makes also possible to calculate the
actual HTER values (Snover et al., 2009), indicat-
ing the minimum edit distance between the ma-
chine translation and its manually post-edited ver-
sion in the [0,1] interval.

The second option is to automatically re-
annotate the same dataset, trying to produce labels
that reflect an objective and more reliable binary
distinction based on empirical observations.

Our analysis aims to answer the following ques-
tions:

1. Are human labels reliable and coherent
enough to train accurate binary models?

2. Are arbitrarily-set thresholds useful to parti-
tion QE data for this task?

3. Is it possible to obtain reliable binary annota-
tions from an automatic procedure?

Negative answers to the first two questions would
respectively call into question: i) the intuitive idea
that human labels are the most reliable for a super-
vised approach to binary QE, and ii) the possibility
that thresholds on a single metric (e.g. the HTER)
can be set to capture the subtle differences separat-
ing useful from useless translations. A positive an-
swer to the third question would open to the possi-
bility to create training datasets in a more coherent

2In the remainder of the paper we will consider as “good”
translations those for which post-editing requires a smaller
effort than translation from scratch. Conversely, we will label
as “bad” the translations that need complete rewriting.

and replicable way compared to current data anno-
tation methods. By answering these questions, this
paper provides the following main contributions:

• We show that training a binary classifier on
arbitrary partitions of an existing dataset is
difficult. Our experiments with the WMT-
12 corpus demonstrate that neither following
standard indications (e.g. “if more than 70%
of the MT output needs to be edited, a trans-
lation from scratch is necessary”)3, nor con-
sidering arbitrary HTER thresholds, it is pos-
sible to obtain accurate binary classifiers suit-
able for integration in a CAT environment;
• We propose a replicable automatic (hence

non subjective) method to re-annotate an ex-
isting dataset in a way that the resulting bi-
nary classifier outperforms those trained with
human labels.
• We show that, with our method, a smaller

amount of training data is sufficient to ob-
tain similar or better performance compared
to that of the human-annotated dataset used
for comparison.

2 Binary QE for CAT environments

QE has been mainly addressed as a classification
or regression task, where a quality score (respec-
tively an integer or a real value) has to be automat-
ically assigned to MT output sentences given their
source (Specia et al., 2010). Casting the problem
in this way, the integration of a QE component
in a CAT environment makes possible to present
translators with estimates of the expected quality
of each MT suggestion. Such intuitive solution,
however, disregards the fact that even precise QE
scores would not alleviate translators from the ef-
fort of reading useless MT output (or at least the
associated score).

A more effective alternative is to use the esti-
mated QE scores to filter out poor MT suggestions,
presenting only those worth for post-editing. Bi-
nary classification, however, has to confront with
the problem of setting reasonable cut-off criteria.
The arbitrary thresholds, used in several previous
works (Quirk, 2004; Specia et al., 2010; Specia
et al., 2011) are in fact hard to justify, and even
harder to learn from human-labelled training data.

3This was a guideline for the professional trans-
lators involved in the annotation of a previous ver-
sion of the dataset used for the WMT-12 evalua-
tion (see http://www.statmt.org/wmt12/
quality-estimation-task.html).

241



On one side, for instance, there is no evi-
dence that the 70% HTER threshold used in some
datasets yields the optimal separation between ac-
ceptable and totally useless suggestions. Such ar-
bitrary criterion, based on the raw count of post-
editing operations, is likely to reflect a partial view
on a complex problem, disregarding important as-
pects such as the distribution of the corrections in
the MT output. However, in some cases, having
the first 30% of words correctly translated might
take less post-editing effort than having 50% of
correctly translated terms scattered throughout the
whole sentence. In these cases, a 70% HTER
threshold would wrongly consider useless trans-
lations as positive instances and vice-versa.

On the other side, when arbitrary thresholds are
used as annotation guidelines (Callison-Burch et
al., 2012), the moderate agreement between hu-
man judges might make manual labels ill-suited to
learn accurate models.

Under the constraints posed by a CAT envi-
ronment, where only useful suggestions can lead
to a significant productivity increase, the ideal
model should maximize the number of true posi-
tives (useful translations recognized as good) min-
imizing, at the same time, the number of false pos-
itives (useless translations recognized as good). To
this aim, the more the training data are partitioned
according to objective criteria, the higher the ex-
pected reliability of the corresponding cut-off and,
in turn, the higher the expected performance of the
binary classifier.

Focusing on these issues, the following sections
discuss various methods to obtain training data for
binary QE geared to the integration in a CAT en-
vironment. Partitions based on human judgements
from the WMT-12 dataset will be compared with
an automatic method to re-annotate the same cor-
pus. The suitability of the resulting training sets
for binary classification will be assessed by mea-
suring the performance of classifiers built from
each training set. Metrics sensitive to the number
of false positives will be used for this purpose.

3 Partitioning the WMT-12 dataset

Due to the lack of datasets annotated with ex-
plicit binary (good, bad) judgements about transla-
tion quality, the most intuitive way to obtain train-
ing data for our QE classifier is to adapt exist-
ing manually-labelled data. The reasonable size
of the WMT-12 dataset makes it a good candidate

for our purposes. The corpus consists of 2,254
English-Spanish news sentences (1,832 for train-
ing, 422 for test) produced by the Moses phrase-
based SMT system (Koehn et al., 2007) trained
on Europarl (Koehn, 2005) and News Commen-
taries corpora,4 along with their source sentences,
reference translations and post-edited translations.
Training and test instances have been annotated by
professional translators with scores (1 to 5) indi-
cating the estimated post-editing effort (percent-
age of MT output that has to be corrected). Ac-
cording to the proposed scheme, the highest score
indicates lowest effort (MT output requires little or
no editing), while the lowest score indicates that
the MT output needs to be translated from scratch.
To cope with systematic biases among the anno-
tators,5 the judgements were combined in a final
score obtained from their weighted average, re-
sulting in a labelled dataset with real numbers in
the [1, 5] interval as effort scores.

In order to obtain suitable data for binary QE,
the WMT-12 training set (1,832 instances) has
been partitioned in different ways, leaving the test
set for evaluation (see Section 5). The goal, for
each partition strategy, was to label as bad (the as-
signed label is -1) only the translations that need
complete rewriting, keeping all the other transla-
tions as good instances (labelled with +1). Consid-
ering the averaged effort scores, the actual human
judgements, and the HTER values calculated be-
tween the translations and the corresponding post-
edited version, we experimented with the follow-
ing three partition criteria.

Average effort scores (AES). Three partitions
have been generated based on the effort scores
of 2, 2.5, and 3, labelling the WMT-12 train-
ing instances with scores below or equal to each
threshold as negative examples (-1), and the in-
stances with scores above the threshold as posi-
tive examples (+1). Partitions with thresholds be-
low 2 were also considered, including the most
intuitive partition with cut-off set to 1. However,
the resulting number of negative instances, if any,
was too scarce, and the overall dataset too unbal-
anced, to make standard supervised learning meth-
ods effective The creation of highly unbalanced
data is a recurring issue for all the partition meth-

4http://www.statmt.org/wmt11/
translation-task.html#download

5Such biases support the idea that labelling translations
with quality scores is per se a highly subjective task.
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ods we applied to the WMT-12 corpus. Together
with the low homogeneity of human labels (even
for very poor translations the three judges do not
agree in assigning the lowest score), in most of
the cases the small number of low-quality transla-
tions in the dataset makes the negative class con-
siderably smaller than the positive one. This can
be observed in Table 1, which provides the to-
tal number of positive and negative instances for
each partition method. For instance, with our low-
est AES threshold (2) the total number of nega-
tive instances is 113, while the positive ones are
1,719. Although considering different cut-off cri-
teria aims to make our investigation more com-
plete, it’s also worth remarking that the higher the
threshold, the higher the distance of the result-
ing experimental setting from our target scenario.
While 2, as an effort score threshold, is likely
to reflect a reasonable separation between useless
and post-editable translations, higher values are in
principle more appropriate for “soft” separations
into worse versus better translations.

Human scores (HS). Five partitions have been
generated using the actual labels assigned by the
three annotators to each translation instead of the
average effort scores. In particular, we considered
the following score combinations (“X” stands for
any integer between 1 and 5): 1-X-X, 2-2-2, 2-
2-X, 2-3-3, 3-3-3. Also in this case, as shown
in Table 1, partitions based on lower scores lead
to highly unbalanced datasets of limited usability,
while those based on higher scores are increas-
ingly more distant to our application scenario.6

HTER scores (HTER). Seven partitions have
been generated considering the following HTER
thresholds: 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45.
In this case, being the HTER an error measure,
training instances with scores above or equal to
the threshold were labelled as negative examples
(-1), while instances with lower scores were la-
belled as positive examples (+1). Similar to the
other partition criteria, some of our threshold val-
ues reflect our task more closely than others, but
result in more unbalanced datasets. In particular,
thresholds around 0.7 substantially adhere to the
WMT-12 annotation guidelines (as far as transla-
tions that need complete rewriting are concerned)

6The partition most closely related to our task (i.e. 1-1-1)
was impossible to produce since none of the examples was
labelled with 1 by all the annotators. Even for 1-1-X, the
negative class contains only one example.

and produce training data with fewer negative in-
stances. Other thresholds, which is still worth ex-
ploring since we do not know the optimal cut-off
value, are in principle less suitable to our task but
produce more balanced training data.

Training instances
Average effort scores (AES) Positive Negative

2 1,719 113
2.5 1,475 357
3 1,194 638

Human scores (HS) Positive Negative
1-X-X 1,736 96
2-2-2 1,719 113
2-2-X 1,612 220
2-3-3 1,457 375
3-3-3 1,360 472

HTER scores (HTER) Positive Negative
0.75 1,798 34
0.7 1,786 46
0.65 1,756 76
0.6 1,708 124
0.55 1,653 179
0.5 1,531 301
0.45 1,420 412

Table 1: Number of positive/negative instances for
each partition of the WMT-12 training set.

4 Re-annotating the WMT-12 dataset

As an alternative to partitioning methods, we in-
vestigated the possibility to re-annotate the WMT-
12 training set with an automatic procedure.

4.1 Approach

Our approach, which does not involve subjec-
tive human judgements, is based on the observa-
tion of similarities and dissimilarities between an
automatic translation (TGT), its post-edited ver-
sion (PE) and the corresponding reference trans-
lation (RT). Such comparisons provide useful in-
dications about the behaviour of a post-editor
when correcting automatic translations and, in
turn, about MT output quality.

Typically, the PE version of a good-quality TGT
preserves some characteristics (e.g. lexical, struc-
tural) that indicate a moderate correction activity
by the post editor. Conversely, in the PE ver-
sion of a low-quality TGT, such characteristics
are more difficult to observe, indicating an in-
tense correction activity. At the two extremes, the
PE of a perfect TGT preserves all its characteris-
tics, while the PE of a useless TGT looses most
of them. In the first case TGT and PE are iden-
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tical, and their similarity is the highest possible
(i.e. sim(TGT, PE) = 1). In the second case,
TGT and PE show a degree of similarity close to
that of TGT and a completely rewritten transla-
tion featuring different lexical choices and struc-
ture. This is where reference translations come
into play: considering RT as a good example of
rewritten sentence,7 for low-quality TGT we will
have sim(TGT, PE) ≈ sim(TGT,RT ).

In light of these considerations, we hypothe-
size that the automatic re-annotation of WMT-12
training data can take advantage of a classifier that
learns a similarity threshold T such that:

• a PE sentence with sim(TGT, PE) ≤ T
will be considered as a rewritten translation
(hence TGT is useless, and the correspond-
ing source-TGT pair a negative example to
be labelled as “-1”);
• a PE sentence with sim(TGT, PE) > T

will be considered as a real post-edition
(hence TGT is useful for the post-editor, and
the corresponding source-TGT pair a positive
example to be labelled as “+1”).

Based on this hypothesis, to perform our au-
tomatic re-annotation procedure we: 1) create a
training set Z of positive and negative examples
(i.e. [TGT, correct translation] pairs, where cor-
rect translation is either a post-editing or a rewrit-
ten translation); 2) design a feature set capable
to capture different aspects of the similarity be-
tween TGT and correct translation; 3) build a bi-
nary classifier using Z; 4) use the classifier to label
the [TGT, PE] pairs as instances of post-editings
or rewritings; 5) assess the quality of the resulting
annotation.

4.2 Building the classifier

Training corpus. To build a classifier capable
of labelling PE sentences as rewritten/post-edited
material, we first created a set of positive and neg-
ative instances from the WMT-12 training set. For
each tuple [source, TGT, PE, RT] of the dataset,
one positive and one negative instance have been
respectively obtained as the combination of [TGT,
PE] and [TGT, RT]. Figure 1, which plots the dis-
tribution of positive and negative instances against
HTER, shows a fairly good separation between the

7Such assumption is supported by the fact that reference
sentences are, by definition, free translations manually pro-
duced without any influence from the target.
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Figure 1: Distribution of [TGT, PE] and [TGT,
RT] pairs plotted against the HTER.

two classes. This indicates that our use of the
references as examples of rewritten translations
builds on a reasonable assumption.

Features. Crucial to our classification task, a
number of features can be used to estimate sen-
tence similarity. Differently from the binary QE
task, where the possibility to catch common char-
acteristics between two sentences is limited by
language barriers, in our re-annotation task all the
features are extracted by comparing two monolin-
gual sentences (i.e. TGT and a correct translation,
either a PE or a RT). Although the problem of
measuring sentence similarity can be addressed
in many ways, the solutions should not overlook
the specificities of the task. In our case, for in-
stance, the scarce importance of the semantic as-
pect (TGT, PE and RT typically show a high se-
mantic similarity) makes features used for other
tasks (e.g. based on distributional similarity) less
effective than shallow features looking at the sur-
face form of the input sentences. Our problem
presents some similarities with the plagiarism de-
tection task, where subtle lexical and structural
similarities have to be identified to spot suspicious
plagiarized texts (Potthast et al., 2010). For this
reason, part of our features (e.g. ROUGE scores)
are inspired by research in such field (Chen et al.,
2010), while others have been designed ad-hoc,
based on the specific requirements of our task. The
resulting feature set aims to capture text similar-
ity by measuring word/n-gram matches, as well as
the level of sparsity and density of the common
words as a shallow indicator of structural similar-
ity. In total, from each [TGT, correct translation]
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pair, the following 22 features are extracted:

• Human-targeted Translation Error Rate –
HTER. The editing operations considered
are: shift, insertion, substitution and deletion.
• Number of words in common.
• Number of words in common, normalized by

TGT length and correct translation length (2
features).
• Number of words in TGT and in the cor-

rect translation (2 features).
• Size of the longest common subsequence.
• Size of the longest common subsequence,

normalized by TGT length.
• Aligned word density: total number of

aligned words,8 divided by the number of
aligned blocks (more than 1 aligned word).
• Unaligned word density: total number of un-

aligned words, divided by the number of un-
aligned blocks (more than 1 unaligned word).
• Normalized number of aligned blocks: total

number of aligned blocks, divided by TGT
length.
• Normalized number of unaligned blocks: to-

tal number of unaligned blocks, divided by
TGT length.
• Normalized density difference: difference

between aligned word density and unaligned
word density, divided by TGT length.
• Modified Lesk score (Lesk, 1986): sum of

the squares of the length of n-gram matches,
normalized by the product of the sentence
lengths.
• ROUGE-1/2/3/4: n-gram recall with n=1,...,4

(4 features).9

• ROUGE-L: size of longest common
subsequence, normalized by the cor-
rect translation length.
• ROUGE-W: the ROUGE-L using different

weights for consecutive matches of length L
(default weight = 1.2).
• ROUGE-S: the ROUGE-L allowing for the

presence of skip-bigrams (pairs of words,
even not adjacent, in their sentence order).
• ROUGE-SU: the extension of ROUGE-S

adding unigrams as counting unit.

8Monolingual stem-to-stem exact matches between TGT
and correct translation are inferred by computing the HTER,
as in (Blain et al., 2012).

9All ROUGE scores, described in (Lin, 2004), have been
calculated using the software available at http://www.
berouge.com.

To increase the capability of identifying simi-
lar sentences, all sentences are tokenized, lower-
cased and stemmed using the Snowball algorithm
(Porter, 2001).

Classifier. On the resulting corpus, an SVM
classifier has been trained using the LIBSVM tool-
box (Chang and Lin, 2011). The selection of the
kernel (linear) and the optimization of the param-
eters (C=0.8) were carried out through grid search
in 5-fold cross-validation.

Labelling the dataset. Using the best parameter
setting obtained, [TGT, PE] and [TGT, RT] pairs
have been re-labelled as post-editings or rewrit-
ings through 5 rounds of cross-validation. The fi-
nal label of each instance was set to the mode of
the predictions produced by each cross-validation
round. Since we assume that the quality of the tar-
get sentence can be inferred from the amount of
correction activity done by the post-editor, the la-
bels assigned to the [TGT, PE] pairs represent the
result of our re-annotation of the corpus into posi-
tive and negative instances.

At the end of the process, of the 1,832 [TGT,
PE] pairs of the WMT 2012 training set, 1.394 are
labelled as examples of post-editing (TGT is use-
ful), and 438 as examples of complete rewriting
(TGT is useless). Compared to the distribution
of positive and negative instances obtained with
most of the partition methods described in Section
3, our automatic annotation produces a fairly bal-
anced dataset. The resulting proportion of nega-
tive examples (∼1:3) is similar to what could be
reached only by partitions reflecting a “soft” sep-
aration into worse versus better translations rather
than a strict separation into useless versus useful
translations.10 In Figure 2, the labelling results
plotted against the HTER show that there is a quite
clear separation between [TGT, PE] pairs marked
as post-editings (lower HTER values) and pairs
marked as rewritings (higher HTER values). Such
separation corresponds to an HTER value around
0.4, which is significantly lower than the thresh-
old of 0.7 proposed by the WMT-12 guidelines as
a criterion to label sentences for which “a trans-
lation from scratch is necessary”. This confirms
that our separation differs from those produced by
partition methods based on human annotations or
arbitrary HTER thresholds. Furthermore, our au-

10Such partitions are: average effort scores = 3, human
scores = 3-3-3, HTER score = 0.45.
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Figure 2: TGT-PE classification in post-editings
and rewritings.

tomatic annotation procedure relies on the contri-
bution of features designed to capture different as-
pects of the similarity between the TGT and a cor-
rect translation, while some of the partition meth-
ods discussed in Section 3 rely on thresholds set on
a single score (e.g. HTER). Considering the many
facets of the binary QE problem, we expect that
our features are more effective to deal with latent
aspects disregarded by such thresholds.

5 Experiments and results

At this point, the question is: are the automatically
labelled data more suitable than partitions based
on human labels to train a binary QE classifier?
To answer this question, all the proposed separa-
tions of the WMT-12 training set have been eval-
uated on different test sets. For each separation
we trained a binary classifier able to assign a label
(good or bad) to unseen source-target pairs. Since
the classifiers use the same algorithm and feature
set, differences in performance will mainly depend
on the quality of the training data on which they
are built. Using task-oriented metrics sensitive to
the number of false positives, results highlighting
such differences will indicate the best separation.

5.1 Experimental Setting

Binary QE classifier. Each separation of the
WMT-12 training data was used to train a binary
SVM classifier. Different kernels and parameters
were optimized through a grid search in 5-fold
cross-validation on each training set. Being the
number of positive and negative training instances
highly unbalanced, the best models were selected

optimizing a metric that takes into account the
number of true and false positives (see below).

Seventeen features proposed in (Specia et al.,
2009) were extracted from each source-target pair.
This feature set, fully described in (Callison-
Burch et al., 2012), mainly takes into account the
complexity of the source sentence (e.g. number
of tokens, number of translations per source word)
and the fluency of the target translation (e.g. lan-
guage model probabilities). Results of the WMT
2012 QE task shown that these “baseline” features
are particularly competitive in the regression task,
with only few systems able to beat them. All the
features are extracted using the Quest software11

and the model files released by the organizers of
the WMT 2013 workshop.

Test sets. To obtain different separations be-
tween good and bad translations, artificial test sets
have been created using arbitrary thresholds on
the HTER (the same used to partition the train-
ing set on a HTER basis) and the post-editing time
(PET).12 Two different datasets were split: i) the
WMT-12 test (422 source, target, post-edited and
reference sentences); ii) the WMT-13 training set
for Task 1.3 (800 source, target and post-edited
sentences labelled with PET). The first dataset, the
most similar to the WMT-12 training set, should
better reflect (and reward) the HTER-based parti-
tions proposed in Section 3. The WMT-13 dataset
contains sentences translated with a different con-
figuration (data and parameters) of the SMT en-
gine. This can result in different HTER-based par-
titions in good and bad, useful to test the portabil-
ity of our automatic re-annotation method across
different datasets. Finally, testing on data parti-
tions based on PET allows us to check the stability
of the automatic re-annotation method when eval-
uated on a test set divided according to a different
concept of translation quality. In the end, the com-
bination of different partition methods, thresholds
and datasets results in 21 different test sets (see
Table 2).

Evaluation metrics. F-score and accuracy are
the classic evaluation metrics used in classifica-
tion. In our evaluation, however, they would al-
ways result in high uninformative values due to
the unbalanced nature of the test sets (positive in-
stances � negative instances). In order to bet-

11http://www.quest.dcs.shef.ac.uk/
12PET is the time spent by a post-editor to transform the

target into a publishable sentence.
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Test instances
WMT-12 HTER Positive Negative

0.45 289 133
0.5 319 103
0.55 352 70
0.6 371 51
0.65 386 36
0.70 398 24
0.75 406 16

WMT-13 Task 1.3 HTER Positive Negative
0.45 582 218
0.5 622 178
0.55 695 105
0.6 724 76
0.65 748 52
0.70 763 37
0.75 773 27

WMT-13 Task 1.3 PET Positive Negative
4 499 301

4.16∗ 517 283
4.50 554 246

5 594 206
6 659 141
7 698 102
8 727 73

Table 2: Number of positive and negative in-
stances for each partition of the WMT-12 test set
and WMT-13 training set. “*”: Average PET com-
puted on all the instances in the WMT-13 dataset.

ter understand the real quality of the classifica-
tion, we hence opted for two task-oriented evalua-
tion metrics sensitive to the number of false posi-
tives (the main issue in a CAT environment, where
false positives and true positives should be re-
spectively minimized and maximized). These are:
i) the weighted combination of the false positive
rate (FPR) and false discovery rate (FDR) (Ben-
jamini and Hochberg, 1995), and ii) the weighed
average of sensitivity and specificity (also called
balanced/weighted accuracy). FPR measures the
level of false positives, but does not provide infor-
mation about the number of true positives. For this
reason, we combined it with FDR (1-precision),
which indirectly controls the level of true posi-
tives. FPR and FDR were equally weighted in
the average; lower values indicate good perfor-
mance. Furthermore, in our scenario it is desir-
able to have a classifier with high prediction ac-
curacy over the minority class (specificity), while
maintaining reasonable accuracy for the majority
class (sensitivity). Weighted accuracy is useful in
such situations. To better asses the performance on
the minority (negative) class, we hence gave more

importance to specificity (0.7 vs 0.3). As regards
weighted accuracy higher values in indicate bet-
ter performance. Penalizing majority voting clas-
sifiers, both metrics are particularly appropriate in
our framework. Besides evaluation, the weighted
average of FPR and FDR was also used to tune the
parameters of the SVM classifier.

5.2 Results
Table 3 presents the results achieved by classifiers
trained on different datasets, on the 21 splits pro-
duced from the test sets used for evaluation.

Although the total number of classifiers tested
is 16 (15 resulting from partitions based on human
labels, and 1 obtained with our automatic annota-
tion method), most of them are not present in the
table since they predict the majority class for all
the test points. These are, in general, trained on
highly unbalanced training sets where the number
of negative samples is really small. However, it
is interesting to note that increasing the number
of instances in the negative class does not always
result in a better classifier. For instance, the classi-
fier built on an HTER separation with threshold at
0.55 performs majority voting even if it is built on
a more balanced (but probably more noisy) train-
ing set than the classifier obtained with threshold
at 0.6. This suggests that the quality of the sep-
aration is as important as the actual proportion of
positive and negative instances.

On all test sets, and for both the evaluation met-
rics used, the results achieved by the classifier built
from the automatically annotated training set (AA)
produces lower error rates (Weighted FPR-FDR)
and higher accuracy (Weighted Accuracy), outper-
forming all the other classifiers. The effective-
ness of the automatic annotation is confirmed by
the fact that classifiers 3 (based on the average
of effort scores - AES) and 3-3-3 (based on the
actual human scores - HS), which are trained on
more balanced training sets, achieve worse perfor-
mances than the AA classifier.13

Results on the WMT-13 PET test set are not as
good as in the other two test sets. This shows that
test data labelled in terms of time are more dif-
ficult to be correctly classified compared to those
based on the HTER. This can be explained consid-
ering the intrinsic differences between the HTER
and the PET as approximations of the post-editing

13The distribution of positive/negative instances in the
training sets is: 1194/638 for classifier 3, 1360/472 for clas-
sifier 3-3-3, 1394/438 for classifier AA.
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Weighted Training: WMT-12 Separations
FPR-FDR 3 2-2-X 2-3-3 3-3-3 0.5 0.6 AA

AES HS HS HS HTER HTER
Te

st
:W

M
T-

12
H

T
E

R 0.45 0.61 0.66 0.66 0.66 0.66 0.66 0.55
0.5 0.57 0.62 0.62 0.62 0.62 0.62 0.49
0.55 0.52 0.58 0.58 0.58 0.58 0.58 0.42
0.6 0.5 0.56 0.56 0.56 0.56 0.56 0.4
0.65 0.5 0.54 0.54 0.54 0.54 0.54 0.39
0.7 0.49 0.53 0.53 0.53 0.53 0.53 0.39
0.75 0.49 0.52 0.52 0.52 0.52 0.52 0.35

Te
st

:W
M

T-
13

H
T

E
R 0.45 0.59 0.63 0.63 0.64 0.64 0.63 0.54

0.5 0.57 0.6 0.6 0.61 0.61 0.6 0.5
0.55 0.51 0.56 0.56 0.57 0.57 0.56 0.41
0.6 0.49 0.54 0.54 0.55 0.55 0.54 0.37
0.65 0.47 0.53 0.53 0.53 0.53 0.53 0.33
0.7 0.44 0.52 0.52 0.52 0.52 0.52 0.29
0.75 0.44 0.52 0.52 0.52 0.52 0.52 0.28

Te
st

:W
M

T-
13

PE
T

4 0.61 0.68 0.68 0.69 0.69 0.68 0.58
4.16 0.61 0.67 0.67 0.67 0.67 0.67 0.56
4.5 0.58 0.65 0.64 0.65 0.65 0.65 0.54
5 0.55 0.63 0.62 0.63 0.63 0.62 0.51
6 0.49 0.58 0.58 0.58 0.58 0.58 0.45
7 0.45 0.55 0.55 0.56 0.56 0.55 0.43
8 0.45 0.54 0.54 0.54 0.54 0.54 0.41

Weighted Training: WMT-12 Separations
Accuracy 3 2-2-X 2-3-3 3-3-3 0.5 0.6 AA

AES HS HS HS HTER HTER

Te
st

:W
M

T-
12

H
T

E
R 0.45 0.35 0.3 0.3 0.3 0.3 0.3 0.41

0.5 0.35 0.3 0.3 0.3 0.3 0.3 0.44
0.55 0.37 0.3 0.3 0.3 0.3 0.3 0.48
0.6 0.37 0.3 0.3 0.3 0.3 0.3 0.49
0.65 0.35 0.3 0.3 0.3 0.3 0.3 0.47
0.7 0.35 0.3 0.3 0.3 0.3 0.3 0.45
0.75 0.33 0.3 0.3 0.3 0.3 0.3 0.49

Te
st

:W
M

T-
13

H
T

E
R 0.45 0.33 0.31 0.31 0.3 0.3 0.31 0.4

0.5 0.34 0.31 0.31 0.3 0.3 0.31 0.42
0.55 0.35 0.31 0.31 0.3 0.3 0.31 0.48
0.6 0.35 0.31 0.31 0.3 0.3 0.31 0.51
0.65 0.36 0.3 0.3 0.3 0.3 0.3 0.54
0.7 0.39 0.3 0.3 0.3 0.3 0.3 0.56
0.75 0.38 0.3 0.3 0.3 0.3 0.3 0.59

Te
st

:W
M

T-
13

PE
T

4 0.37 0.3 0.31 0.3 0.3 0.3 0.4
4.16 0.37 0.3 0.31 0.3 0.3 0.3 0.4
4.5 0.37 0.3 0.31 0.3 0.3 0.3 0.4
5 0.38 0.31 0.31 0.3 0.3 0.31 0.41
6 0.41 0.31 0.31 0.3 0.3 0.31 0.43
7 0.42 0.31 0.31 0.3 0.3 0.31 0.44
8 0.4 0.31 0.31 0.3 0.3 0.31 0.43

Table 3: Weighted FPR-FDR (left table) and weighted Accuracy (right table) obtained by the binary QE
classifiers trained on different separations of the WMT-12 training set. Several arbitrary partitions of the
WMT-12 Test set and WMT-13 Training set are considered.

effort, as pointed out by several recent works (Spe-
cia, 2011; Koponen, 2012).

Comparing the results calculated with the two
metrics, we note that weighted accuracy seems to
be less sensible to small variations in terms of true
and false negatives returned by the classifier, even
if the specificity (accuracy on our minority class)
is weighted more than sensitivity (accuracy on our
majority class). This often results in scores very
close (differences ≤ 10−3) to the accuracy ob-
tained by majority voting classification (0.3).

Overall, our experiments demonstrate that the
proposed automatic separation method is more ef-
fective than arbitrary partitions of datasets anno-
tated with subjective human judgements.

5.3 Learning Curve

Our automatic re-annotation approach requires
post-edited and reference sentences. Although all
the datasets annotated for QE include post-edited
sentences, this is not always true for the refer-
ences. The cost of having both resources is in
fact not negligible. For this reason, we investi-
gated the minimal number of training data needed
to re-annotate the WMT-12 training set without
altering performance on binary classification. To
this aim, we selected two of the test sets on which
our re-annotation method produces classifiers with

high performance results (WMT-13 HTER 0.6 and
0.75), and measured score variations with increas-
ing amounts of data.

Nine subsets of the WMT-12 training set cor-
pus were created (with 10%, 20%,..., 100% of the
dataset) by sub-sampling sentences from a uni-
form distribution. The process was iterated 10
times. Then, for each subset, a new re-annotation
process was run, the resulting training set was used
to build the relative binary QE classifier, which
was eventually evaluated on the test set in terms of
weighted FPR-FDR. Figures 3 and 4 show the ob-
tained learning curves. Each point is the average
result of the 10 runs; the error bars show ±1std.

As can be seen from both curves, performance
results with 60% of the training data are already
comparable with those obtained using the whole
training data. Similar trends have been observed
for several learning curves created with different
test sets. This shows that, besides avoiding the
use of human labelled data, our approach allows
to drastically reduce the amount of training in-
stances. Considering the high costs of collecting
post-editions, and the fact that reference transla-
tions can be taken from parallel corpora, our solu-
tion represents a viable way to overcome the lack
of training data for binary QE geared towards in-
tegration in a CAT environment.
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Figure 3: Learning curve for WMT-13 HTER 0.60.
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Figure 4: Learning curve for WMT-13 HTER 0.75.

6 Conclusion

We presented a task-oriented analysis of the use-
fulness of human-labelled data for binary qual-
ity estimation. Our target scenario is computer-
assisted translation, which calls for solutions to
present human translators with useful MT sugges-
tions (i.e. easier to correct than to rewrite from
scratch). Within this framework, the integration
of binary classifiers capable to distinguish “good”
(useful) from “bad” (useless) suggestions would
make possible to significantly increase translators’
productivity. Such binary classifiers, however,
need labelled training data (possibly of good qual-
ity) that are currently not available.

An intuitive solution to fill this gap is to take
advantage of an existing dataset, adapting its man-
ual annotations to our task. Exploring this solu-
tion (the first contribution of this paper) has to
face problems related to the subjectivity of human
judgements about translation quality, and the re-
sulting variability in the annotation. In particular,
our experiments with the WMT-12 dataset show
that any adaptation (either based on human judge-
ments or arbitrarily-set HTER thresholds) collides
with the problem of setting reasonable partition
criteria. Our results suggest that the subtle dif-
ferences between useful and useless translations
make subjective human judgements inadequate to
learn effective models.

Instead of relying on manually-assigned qual-
ity labels, an alternative solution to the problem
is to re-annotate an existing dataset. Proposing
an automatic way to do that (the second contri-
bution of this paper), we argue that reliable data
separations into positive and negative examples

can be obtained by measuring the similarities be-
tween: i) automatic translations and post-editings,
and ii) automatic translations and their references.
Our results demonstrate that binary classifiers built
from training data produced with our supervised
method are less prone to the misclassification of
bad suggestions.

As in any supervised learning framework, the
amount of data needed to obtain good results is of
crucial importance. By analysing the demand of
our automatic annotation method in terms of train-
ing data (the third contribution of this paper), we
show that competitive results can be obtained with
a fraction of the data needed by methods based on
human labels. Our results indicate that a good-
quality training set for binary classification can
be obtained with 40% less instances of [training,
post edited sentence, reference sentence], totally
avoiding manually-assigned quality judgements.

Our future works will address the improvement
of the automatic annotation procedure using super-
vised methods suitable to learn from unbalanced
training sets (e.g. one-class SVM, weighted ran-
dom forests), and the integration of new features
(e.g. GTM, meteor) to refine our classification of a
correct sentence into rewritten/post-edited. Then,
to boost binary QE results on the resulting corpora,
the “baseline” features used for experiments in this
paper will be extended with new features explored
in recent works (Mehdad et al., 2012a; de Souza
et al., 2013; Turchi and Negri, 2013).

Acknowledgments

This work has been partially supported by the EC-
funded project MateCat (ICT-2011.4.2-287688).

249



References
Nguyen Bach, Fei Huang, and Yaser Al-Onaizan.

2011. Goodness: a Method for Measuring Ma-
chine Translation Confidence. In The 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, Proceed-
ings of the Conference, 19-24 June, 2011, Portland,
Oregon, USA, pages 211–219. The Association for
Computer Linguistics.

Yoav Benjamini and Yosef Hochberg. 1995. Control-
ling the False Discovery Rate: a Practical and Pow-
erful Approach to Multiple Testing. Journal of the
Royal Statistical Society. Series B (Methodological),
pages 289–300.

Frédéric Blain, Holger Schwenk, and Jean Senellart.
2012. Incremental Adaptation Using Translation In-
formation and Post-Editing Analysis. In Interna-
tional Workshop on Spoken Language Translation,
pages 234–241, Hong-Kong (China).

John Blatz, Erin Fitzgerald, George Foster, Simona
Gandrabur, Cyril Goutte, Alex Kulesza, Alberto
Sanchis, and Nicola Ueffing. 2003. Confidence Es-
timation for Machine Translation. Summer work-
shop final report, JHU/CLSP.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 Workshop on Statistical Ma-
chine Translation. In Proceedings of the Sev-
enth Workshop on Statistical Machine Translation
(WMT’12), pages 10–51, Montréal, Canada.
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Abstract
Many tasks in NLP and IR require ef-
ficient document similarity computations.
Beyond their common application to ex-
ploratory data analysis, latent variable
topic models have been used to represent
text in a low-dimensional space, indepen-
dent of vocabulary, where documents may
be compared. This paper focuses on the
task of searching a large multilingual col-
lection for pairs of documents that are
translations of each other. We present
(1) efficient, online inference for repre-
senting documents in several languages in
a common topic space and (2) fast ap-
proximations for finding near neighbors in
the probability simplex. Empirical evalu-
ations show that these methods are as ac-
curate as—and significantly faster than—
Gibbs sampling and brute-force all-pairs
search.

1 Introduction

Statistical topic models, such as latent Dirich-
let allocation (LDA) (Blei et al., 2003), have
proven to be highly effective at discovering hid-
den structure in document collections (Hall et al.,
2008, e.g.). Often, these models facilitate ex-
ploratory data analysis, by revealing which col-
locations of terms are favored in different kinds
of documents or which terms and topics rise and
fall over time (Blei and Lafferty, 2006; Wang and
McCallum, 2006). One of the greatest advan-
tages in using topic models to analyze and process
large document collections is their ability to rep-
resent documents as probability distributions over
a small number of topics, thereby mapping doc-
uments into a low-dimensional latent space—the

T -dimensional probability simplex, where T is the
number of topics. A document, represented by
some point in this simplex, is said to have a par-
ticular “topic distribution”.

Representing documents as points in a low-
dimensional shared latent space abstracts away
from the specific words used in each document,
thereby facilitating the analysis of relationships
between documents written using different vocab-
ularies. For instance, topic models have been used
to identify scientific communities working on re-
lated problems in different disciplines, e.g., work
on cancer funded by multiple Institutes within the
NIH (Talley et al., 2011). While vocabulary mis-
match occurs within the realm of one language,
naturally this mismatch occurs across different
languages. Therefore, mapping documents in dif-
ferent languages into a common latent topic space
can be of great benefit when detecting document
translation pairs (Mimno et al., 2009; Platt et al.,
2010). Aside from the benefits that it offers in the
task of detecting document translation pairs, topic
models offer potential benefits to the task of creat-
ing translation lexica, aligning passages, etc.

The process of discovering relationship be-
tween documents using topic models involves: (1)
representing documents in the latent space by in-
ferring their topic distributions and (2) comparing
pairs of topic distributions to find close matches.
Many widely used techniques do not scale ef-
ficiently, however, as the size of the document
collection grows. Posterior inference by Gibbs
sampling, for instance, may make thousands of
passes through the data. For the task of comparing
topic distributions, recent work has also resorted
to comparing all pairs of documents (Talley et al.,
2011).

This paper presents efficient methods for both
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of these steps and performs empirical evaluations
on the task of detected translated document pairs
embedded in a large multilingual corpus. Unlike
some more exploratory applications of topic mod-
els, translation detection is easy to evaluate. The
need for bilingual training data in many language
pairs and domains also makes it attractive to mit-
igate the quadratic runtime of brute force transla-
tion detection. We begin in §2 by extending the
online variational Bayes approach of Hoffman et
al. (2010) to polylingual topic models (Mimno et
al., 2009). Then, in §3, we build on prior work
on efficient approximations to the nearest neighbor
problem by presenting theoretical and empirical
evidence for applicability to topic distributions in
the probability simplex and in §4, we evaluate the
combination of online variational Bayes and ap-
proximate nearest neighbor methods on the trans-
lation detection task.

2 Online Variational Bayes for
Polylingual Topic Models

Hierarchical generative Bayesian models, such as
topic models, have proven to be very effective
for modeling document collections and discover-
ing underlying latent semantic structures. Most
current topic models are based on Latent Dirich-
let Allocation (LDA) (Blei et al., 2003). In some
early work on the subject, Blei and Jordan (2003)
showed the usefulness of LDA on the task of auto-
matic annotation of images. Hall et al. (2008) used
LDA to analyze historical trends in the scientific
literature; Wei and Croft (2006) showed improve-
ments on an information retrieval task. More re-
cently Eisenstein et al. (2010) modeled geographic
linguistic variation using Twitter data.

Aside from their widespread use on monolin-
gual text, topic models have also been used to
model multilingual data (Boyd-Graber and Blei,
2009; Platt et al., 2010; Jagarlamudi and Daumé,
2010; Fukumasu et al., 2012), to name a few.
In this paper, we focus on the Polylingual Topic
Model, introduced by Mimno et al. (2009). Given
a multilingual set of aligned documents, the PLTM
assumes that across an aligned multilingual doc-
ument tuple, there exists a single, tuple-specific,
distribution across topics. In addition, PLTM as-
sumes that for each language–topic pair, there ex-
ists a distribution over words in that language βl.
As such, PLTM assumes that the multilingual cor-
pus is created through a generative process where
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1
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1
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Figure 1: Polylingual topic model (PLTM)

first a document tuple is generated by drawing a
tuple-specific distribution over topics θ1 which, as
it is the case with LDA, is drawn from a Dirich-
let prior θ ∼ Dir (α) . For each of the languages
l in the tuple and for each of the N words wl

n in
the document the generative process: first chooses
a topic assignment zl

n ∼ Multinomial (θ) which
is then followed by choosing a word wl

n from a
multinomial distribution conditioned on the topic
assignment and the language specific topics distri-
bution over words βl∼Dir (ηl). Both α and η1,...,L

are symmetric priors, i.e. the priors are exchange-
able Dirichlet distributions. Finally, each word
is generated from a language- and topic-specific
multinomial distribution βl

t as selected by the topic
assignment variable zl

n:

wl
n ∼ p

(
wl

n | zl
n, βl

n

)
(1)

Figure 1 shows a graphical representation of
the PLTM using plate notation. In their original
work Mimno et al. (2009) used the Gibbs sam-
pling approach as a posterior inference algorithm
to assign topics distributions over their test collec-
tion. While more straightforward to implement,
this sampling approach is inherently slow when
applied to large collections which makes the orig-
inal PLTM work practically infeasible to be used
on real-world data sets.

In general, performing posterior inference over
the latent variables of a Bayesian model is usu-
ally done with two of the three approximate ap-
proaches, Gibbs sampling, variational Bayes (VB)
and expectation-propagation. While Gibbs Sam-
pling is a variation of Markov Chain Monte Carlo
method (MCMC) which generates a sample from
the true posterior after converging to a stationary

1In the traditional LDA model θ is used to specify the
document specific distribution over topics.
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distribution; in VB, a set of free variational param-
eters characterizes a simpler family of probabil-
ity distributions. These variational parameters are
then optimized by finding the minimum Kullback-
Leibler (KL) divergence between the variational
distribution q (θ, z, β|γ, φ, λ) and the true pos-
terior P (θ, z, β|w, α, η). From an algorithmic
perspective, the variational Bayes approach fol-
lows the Expectation-Maximization (EM) proce-
dure where for a given document, the E-step up-
dates the per document variational parameters γd

and φd while holding the per words-topic distribu-
tion parameter λ fixed. It then updates the vari-
ational parameter λ using the sufficient statistics
computed in the E step. In order to converge to
a stationary point, both approaches require going
over the whole collection multiple times which
makes their time complexity to grown linearly
with the size of the data collection. The mere fact
that they require continuous access to the whole
collection makes both inference approaches im-
practicable to use on very large or streaming col-
lections. To alleviate this problem, several algo-
rithms have been proposed that draws from belief
propagation (Zeng et al., 2012), the Gibbs sam-
pling approach such as (Canini et al., 2009), vari-
ational Bayes (Hoffman et al., 2010) as well as
a combination of the latter two (Hoffman et al.,
2012) to name a few. In this paper we use Hoff-
man et al. (2010) approach. Hoffman et al. (2010)
proposed a new inference approach called Online
LDA which relies on the stochastic gradient de-
scent to optimize the variational parameters. This
approach can produce good estimates of LDA pos-
teriors in a single pass over the whole collection.

2.1 Algorithmic Implementation

We now derive an online variational Bayes algo-
rithm for PLTM to infer topic distributions over
multilingual collections. Figure 2 shows the vari-
ational model and free parameters used in our ap-
proach. As in the case of Hoffman et al. (2010),
our algorithm updates the variational parameters
γl

d and φl
d on each batch of documents while the

variational parameter λ is computed as a weighted
average of the value on the previous batch and its
approximate version λ̃. Averaging is performed
using a decay function whose parameters control
the rate at which old values of λl are forgotten.
Within the E step of the VB approach, we com-
pute the updates over the variational parameter φl

T
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Figure 2: Graphical model representation of the
free variational parameters for the online varia-
tional Bayes approximation of the PLTM posterior

for each language L present in our document tuple
while the update on the γ parameter accumulates
the language specific sufficient statistics:

γm
k = α +

∑

l

∑

w

φml
wk nml

w (2)

We detail these steps in Algorithm 1.

2.2 Performance Analysis

To demonstrate the efficacy of online PLTM, we
ran topic inference on a subset of the English-
Spanish Europarl collection consisting of ∼64k
parallel speeches and compared the accuracy re-
sults vs. the training and inference speed against
the original PLTM model using topic sets of
T=50,100, 200 and 500. We explain in details
the evaluation task and the performance metric
used in §4. Shown in Figure 3 are the results of
these comparisons. Our speed measurements were
performed on Xeon quad processors with a clock
speed of 2.66GHz and a total of 16GB of memory.

As we increase the number of topics we gain in
accuracy over the evaluation task across both in-
ference approaches. When we increase the num-
ber of topics from 50 to 500 the speed improve-
ment obtained by Online VB PLTM drops by a
factor of 2.9 within the training step and by a
factor of 4.45 in the test step. Our total running
time for the Online VB PLTM with T=500 ap-
proaches the running time of the Gibbs sampling
approach with T=50. The gradual drop in speed
improvement with the increase of the number top-
ics is mostly attributed to the commutation of the
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Algorithm 1 Online variational Bayes for PLTM
initialize λl randomly
obtain the tth mini-batch of tuples Mt

for t = 1 to ∞ do

ρt ←
(

1
t0+t

)κ

E step:
initialize γt randomly
for each document tuple in mini-batch t
for m in Mt do

repeat
for l ∈ 1, . . . ,L do

φml
wk ∝

exp {Eq [log θm
k ]} ∗

exp
{
Eq

[
log βml

kw

]}

end for
γm

k = α +
∑

l

∑
w φml

wk nml
w

until convergence
end for
M step:
for l ∈ 1, . . . ,L do

λ̃l
kw = η + D

∑
m φml

wkn
ml
w

λlt
kw ← (1 − ρt) λ

l(t−1)
kw + ρtλ̃

l
kw

end for
end for
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Figure 3: Speed vs. accuracy comparison between
Online VB PLTM and Gibbs Sampling PLTM at
T=50,100, 200 and 500. We used a Python imple-
mentation of Online VB and Mallet’s Java imple-
mentation of PLTM with in-memory Gibbs Sam-
pling using 1000 iterations.
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Figure 4: Collection size vs. training time compar-
ison between Online VB PLTM and Gibbs Sam-
pling PLTM using multilingual collections of 50k,
100k, 250k, 500k, 750k and 1M speech pairs.

digamma function (Asuncion et al., 2009) whose
time complexity increases linearly with the num-
ber of topics.

While a multilingual collection of ∼64k docu-
ment pairs is considered relatively big, our goal
of deriving the Online VB PLTM approach was to
be able to utilize PLTM on very large multilingual
collections. To analyze the potential of using On-
line VB PLTM on such collections we ran speed
comparisons within the training step by creating
multilingual collections of different lengths multi-
plying the original English-Spanish Europarl col-
lection. Speed comparisons using collections of
length 50K, 100K, 250K, 500K, 750K and 1M are
shown in Figure 4. Training was performed with
the number of topics T set to T=50 and T=500.

As we increase the collection size we observe
the real benefit of using Online VB compared to
Gibbs sampling. This is mostly attributed to the
fact that the Gibbs sampling approach requires
multiple iterations over the whole collection in or-
der to achieve a convergence point. For collec-
tion sizes of 50k and 100k the training time for
the Online VB PLTM with T=500 approaches the
training time of Gibbs sampling with T=50 and as
we increase the collection size this proximity dis-
sipates.

In Figure 5 we show a sample set of the aligned
topics extracted using Online VB PLTM with
T=400 on the English-Spanish Europarl collec-
tion. For a given topic tuple words are ordered
based on probability of occurrence within the
given topic.
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Figure 5: Sample set of topics extracted from Europarl English-Spanish collection of 64k speeches using
Online PLTM with T=400 ordered based on their probability of occurrence within the topic.

3 Approximate NN Search in the
Probability Simplex

One of the most attractive applications for topic
models has involved using the latent variables as
a low-dimensional representation for document
similarity computations (Hall et al., 2008; Boyd-
Graber and Resnik, 2010; Talley et al., 2011). Af-
ter computing topic distributions for documents,
however, researchers in this line of work have al-
most always resorted to brute-force all-pairs simi-
larity comparisons between topic distributions.

In this section, we present efficient methods for
approximate near neighbor search in the proba-
bility simplex in which topic distributions live.
Measurements for similarity between two proba-
bility distributions are information-theoretic, and
distance metrics, typical for the metric space, are
not appropriate (measurements such as Euclidean,
cosine, Jaccard, etc.). Divergence metrics, such as
Kullback-Leibler (KL), Jensen-Shannon (JS), and
Hellinger distance are used instead. Shown in Fig-
ure 6 are the formulas of the divergence metrics
along with the Euclidean distance. When dealing
with a large data set of N documents, the O(N2)
time complexity of all-pairs comparison makes the
task practically infeasible. With some distance
measures, however, the time complexity on near
neighbor tasks has been alleviated using approxi-
mate methods that reduce the time complexity of
each query to a sub-linear number of comparisons.
For example, Euclidean distance (3) has been effi-
ciently used on all-pairs comparison tasks in large

data sets thanks to its approximate based versions
developed using locality sensitive hashing (LSH)
(Andoni et al., 2005) and k-d search trees (Fried-
man et al., 1977). In order to alleviate the all-pairs
computational complexity in the probability sim-
plex, we will use a reduction of the Hellinger di-
vergence measure (4) to Euclidean distance and
therefore utilize preexisting approximation tech-
niques for the Euclidean distance in the probability
simplex.

This reduction comes from the fact that both
measurements have similar algebraic expressions.
If we discard the square root used in the Euclidean
distance, Hellinger distance (4) becomes equiva-
lent to the Euclidean distance metric (3) between√

pi and
√

qi. The task of finding nearest neigh-
bors for a given point (whether in the metric space
or the probability simplex) involves ranking all
nearest points discovered and as such not com-
puting the square root function does not affect the
overall ranking and the nearest neighbor discov-
ery. Moreover, depending on its functional form,
the Hellinger distance is often defined as square
root over the whole summation. Aside from the
Hellinger distance, we also approximate Jensen-
Shannon divergence which is a symmetric ver-
sion of the Kullback-Liebler divergence. For the
JS approximation, we will use a constant factor
relationship between the Jensen-Shannon diver-
gence an Hellinger distance previously explored
by (Topsøe, 2000). More specifically, we will be
using its more concise form (7) also presented by
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He(p, q) ≤ JS(p, q) ≤ 2 ln(2)He(p, q) (7)

Figure 6: Distance measures and bounds

(Guha et al., 2006). The constant factor relation-
ship provides us with the theoretical guarantees
necessary for this approximation.

In practice, we can often do much better than
this theoretical bound. Figure 7 shows the empiri-
cal relation of JS and Hellinger on a translation-
detection task. As will be described in §4, we
computed the JS and Hellinger divergences be-
tween topic distributions of English and Spanish
Europarl speeches for a total of 1 million docu-
ment pairs. Each point in the figure represents
one Spanish-English document pair that might or
might not be translations of each other. In this
figure we emphasize the lower left section of the
plot where the nearest neighbors (i.e., likely trans-
lations) reside, and the relationship between JS
and Hellinger is much tighter than the theoretical
bounds and from pratical perspective as we will
show in the next section. As a summary for the
reader, using the above approaches, we will ap-
proximate JS divergence by using the Euclidean
based representation of the Hellinger distance. As
stated earlier, the Euclidean based representation
is computed using well established approximation
approaches and in our case we will use two such
approaches: the Exact Euclidean LSH (E2LSH)
(Andoni et al., 2005) and the k-d trees implemen-
tation within the Approximate Nearest Neighbor
(ANN) library (Mount and Arya, 2010).
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Figure 7: Empirical evidence of the bounds pre-
sented in Eq. 7 on 1 million document pairs—
zoomed section where nearest neighbors reside.
The lower bound is He(p, q) = 1

2 ln(2)JS(p, q)

while the upper bound is He(p, q) = 2JS(p, q).

4 Efficient Approximate Translation
Detection

Mapping multilingual documents into a common,
language-independent vector space for the pur-
pose of improving machine translation (MT) and
performing cross-language information retrieval
(CLIR) tasks has been explored through vari-
ous techniques. Mimno et al. (2009) introduced
polylingual topic models (PLTM), an extension of
latent Dirichlet allocation (LDA), and, more re-
cently, Platt et al. (2010) proposed extensions of
principal component analysis (PCA) and proba-
bilistic latent semantic indexing (PLSI). Both the
PLTM and PLSI represent bilingual documents in
the probability simplex, and thus the task of find-
ing document translation pairs is formulated as
finding similar probability distributions. While
the nature of both works was exploratory, results
shown on fairly large collections of bilingual doc-
uments (less than 20k documents) offer convinc-
ing argument of their potential. Expanding these
approaches to much large collections of multilin-
gual documents would require utilizing fast NN
search for computing similarity in the probabil-
ity simplex. While there are many other proposed
approaches to the task of finding document trans-
lation pairs that represent documents in metric
space, such as Krstovski and Smith (2011) which
utilizes LSH for cosine distance, there is no evi-
dence that they yield good results on documents
of small lengths such as paragraphs and even sen-
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tences.

In this section, we empirically show how to uti-
lize approaches that deal with representing docu-
ments in the probability simplex without a signif-
icant loss in accuracy while significantly improv-
ing the processing time. We use PLTM represen-
tations of bilingual documents. In addition, we
show how the results as reported by Platt et al.
(2010) can be obtained using the PLTM represen-
tation with a significant speed improvement.

As in (Platt et al., 2010) and (Mimno et al.,
2009) the task is to find document translation pairs
in a multilingual collection of documents by rep-
resenting documents in the probability simplex
and computing similarity between their probabil-
ity distribution representation across all document
pairs. For this experimental setup, accuracy is de-
fined as the number of times (in percentage) that
the target language document was discovered at
rank 1 (i.e. % @Rank 1.) across the whole test
collection.

4.1 Experimental Setup

We use Mallet’s (McCallum, 2002) implementa-
tion of the PLTM to train and infer topics on the
same data set used in Platt et al. (2010). That
paper used the Europarl (Koehn, 2005) multilin-
gual collection of English and Spanish sessions.
Their training collection consists of speeches ex-
tracted from all Europarl sessions from the years
1996 through 1999 and the year 2002 and a devel-
opment set which consists of speeches from ses-
sions in 2001. The test collection consists of Eu-
roparl speeches from the year 2000 and the first
nine months of 2003. While Platt et al. (2010) do
offer absolute performance comparison between
their JPLSA approach and previous results pub-
lished by (Mimno et al., 2009), these performance
comparisons are not done on the same training and
test sets—a gap that we fill below.

We train PLTM models with number of topics T
set to 50, 100, 200, and 500. In order to compare
exactly the same topic distributions when comput-
ing speed vs. accuracy of various approximate and
exhaustive all-pairs comparisons we focus only on
one inference approach - the Gibbs sampling and
ignore the online VB approach as it yields sim-
ilar performance. For all four topic models, we
use the same settings for PLTM (hyperparame-
ter values and number of Gibbs sampling itera-

tions) as in (Mimno et al., 2009)2. Topic distribu-
tions were then inferred on the test collection us-
ing the trained topics. We then performed all-pairs
comparison using JS divergence, Hellinger dis-
tance, and approximate, LSH and kd-trees based,
Hellinger distance. We measured the total time
that it takes to perform exhaustive all-pairs com-
parison using JS divergence, the LSH and kd-
trees version on a single machine consisting of a
core 2 duo quad processors with a clock speed of
2.66GHz on each core and a total of 8GB of mem-
ory. Since the time performance of the E2LSH de-
pends on the radius R of data set points considered
for each query point (Indyk and Motwani, 1998),
we performed measurements with different values
of R. For this task, the all-pairs JS code implemen-
tation first reads both source and target sets of doc-
uments and stores them in hash tables. We then go
over each entry in the source table and compute di-
vergence against all target table entries.We refer to
this code implementation as hash map implemen-
tation.

4.2 Evaluation Task and Results

Performance of the four PLTM models and the
performance across the four different similarity
measurements was evaluated based on the percent-
age of document translation pairs (out of the whole
test set) that were discovered at rank one. This
same approach was used by (Platt et al., 2010) to
show the absolute performance comparison. As in
the case of the previous two tasks, in order to eval-
uate the approximate, LSH based, Hellinger dis-
tance we used values of R=0.4, R=0.6 and R=0.8.
Since in (Platt et al., 2010) numbers were reported
on the test speeches whose word length is greater
or equal to 100, we used the same subset (to-
tal of 14150 speeches) of the original test col-
lection. Shown in Table 1 are results across the
four different measurements for all four PLTM
models. When using regular JS divergence, our
PLTM model with 200 topics performs the best
with 99.42% of the top one ranked candidate trans-
lation documents being true translations. When
using approximate, kd-trees based, Hellinger dis-
tance, we outperform regular JS and Hellinger
divergence across all topics and for T=500 we
achieve the best overall accuracy of 99.61%. We
believe that this is due to the small amount of error

2We start off by first replicating the results as in (Mimno
et al., 2009) and thus verifying the functionality of our exper-
imental setup.
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Divergence T=50 100 200 500
JS 94.27 98.48 99.42 99.33
He 94.30 98.45 99.40 99.31
He LSH R=0.4 93.95 97.46 98.27 98.01
He LSH R=0.6 94.30 98.46 99.40 99.31
He LSH R=0.8 94.30 98.45 99.34 99.31
He kd-trees 94.86 98.90 99.50 99.61

Table 1: Percentage of document pairs with the
correct translation discovered at rank 1: compari-
son of different divergence measurements and dif-
ferent numbers T of PLTM topics.

Divergence T=50 100 200 500
JS 7.8 4.6 2.4 1.0
He LSH R=0.4 511.5 383.6 196.7 69.7
He LSH R=0.6 142.1 105.0 59.0 18.6
He LSH R=0.8 73.8 44.7 29.5 16.3
He kd-trees 196.7 123.7 76.7 38.5

Table 2: Relative speed improvement between all-
pairs JS divergence and approximate He diver-
gence via kd-trees and LSH across different values
of radius R. The baseline is brute-force all-pairs
comparison with Jensen-Shannon and 500 topics.

in the search introduced by ANN, due to its ap-
proximate nature, which for this task yields pos-
itive results. On the same data set, (Platt et al.,
2010) report accuracy of 98.9% using 50 topics, a
slightly different prior distribution, and MAP in-
stead of posterior inference.

Shown in Table 2 are the relative differences in
time between all pairs JS divergence, approximate
kd-trees and LSH based Hellinger distance with
different value of R. Rather than showing abso-
lute speed numbers, which are often influenced by
the processor configuration and available memory,
we show relative speed improvements where we
take the slowest running configuration as a refer-
ent value. In our case we assign the referent speed
value of 1 to the configuration with T=500 and all-
pairs JS computation. Results shown are based
on comparing running time of E2LSH and ANN
against the all-pairs similarity comparison imple-
mentation that uses hash tables to store all docu-
ments in the bilingual collection which is signifi-
cantly faster than the other code implementation.

For the approximate, LSH based, Hellinger dis-
tance with T=100 we obtain a speed improve-
ment of 24.2 times compared to regular all-pairs

JS divergence while maintaining the same per-
formance compared to Hellinger distance metric
and insignificant loss over all-pairs JS divergence.
From Table 2 it is evident that as we increase the
radius R we reduce the relative speed of perfor-
mance since the range of points that LSH consid-
ers for a given query point increases. Also, as the
number of topics increases, the speed benefit is re-
duced for both the LSH and k-d tree techniques.

5 Conclusion

Hierarchical Bayesian models, such as Polylin-
gual Topic Models, have been shown to offer
great potential in analyzing multilingual collec-
tions, extracting aligned topics and finding docu-
ment translation pairs when trained on sufficiently
large aligned collections. Online stochastic opti-
mization inference allows us to generate good pa-
rameter estimates. By combining these two ap-
proaches we are able to infer topic distributions
across documents in large multilingual document
collections in an efficient manner. Utilizing ap-
proximate NN search techniques in the probability
simplex, we showed that fast document translation
detection could be achieved with insignificant loss
in accuracy.
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Abstract

Statistical machine translation (SMT) per-
formance suffers when models are trained
on only small amounts of parallel data.
The learned models typically have both
low accuracy (incorrect translations and
feature scores) and low coverage (high
out-of-vocabulary rates). In this work, we
use an additional data resource, compa-
rable corpora, to improve both. Begin-
ning with a small bitext and correspond-
ing phrase-based SMT model, we improve
coverage by using bilingual lexicon induc-
tion techniques to learn new translations
from comparable corpora. Then, we sup-
plement the model’s feature space with
translation scores estimated over compa-
rable corpora in order to improve accu-
racy. We observe improvements between
0.5 and 1.7 BLEU translating Tamil, Tel-
ugu, Bengali, Malayalam, Hindi, and Urdu
into English.

1 Introduction

Standard statistical machine translation (SMT)
models (Koehn et al., 2003) are trained using
large, sentence-aligned parallel corpora. Unfortu-
nately, parallel corpora are not always available in
large enough quantities to train robust models (Ko-
lachina et al., 2012). In this work, we consider the
situation in which we have access to only a small
amount of bitext for a given low resource language
pair, and we wish to supplement an SMT model
with additional translations and features estimated
using comparable corpora in the source and tar-
get languages. Assuming access to a small amount

∗Performed while faculty at Johns Hopkins University

of parallel text is realistic, especially considering
the recent success of crowdsourcing translations
(Zaidan and Callison-Burch, 2011; Ambati, 2011;
Post et al., 2012).

We frame the shortcomings of SMT models
trained on limited amounts of parallel text1 in
terms of accuracy and coverage. In this con-
text, coverage refers to the number of words and
phrases that a model has any knowledge of at all,
and it is low when the training text is small, which
results in a high out-of-vocabulary (OOV) rate.
Accuracy refers to the correctness of the transla-
tion pairs and their corresponding probability fea-
tures that make up the translation model. Because
the quality of unsupervised automatic word align-
ments correlates with the amount of available par-
allel text and alignment errors result in errors in
extracted translation pairs, accuracy tends to be
low in low resource settings. Additionally, esti-
mating translation probabilities2 over sparse train-
ing sets results in inaccurate feature scores.

Given these deficiencies, we begin with a base-
line SMT model learned from a small parallel cor-
pus and supplement the model to improve its ac-
curacy and coverage. We apply techniques pre-
sented in prior work that use comparable corpora
to estimate similarities between word and phrases.
In particular, we build on prior work in bilingual
lexicon induction in order to predict translations
for OOV words, improving coverage. We then use
the same corpora to estimate additional translation
feature scores, improving model accuracy. We see
improvements in translation quality between 0.5

1We consider low resource settings to be those with par-
allel datasets of fewer than 1 million words. Most standard
MT datasets contain tens or hundreds of millions of words.

2Estimating reordering probabilities over sparse data also
leads to model inaccuracies; we do not tackle that here.
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and 1.7 BLEU points translating the following low
resource languages into English: Tamil, Telugu,
Bengali, Malayalam, Hindi, and Urdu.

2 Previous Work

Prior work shows that a variety of signals, in-
cluding distributional, temporal, topic, and string
similarity, may inform bilingual lexicon induc-
tion (Rapp, 1995; Fung and Yee, 1998; Rapp,
1999; Schafer and Yarowsky, 2002; Koehn and
Knight, 2002; Monz and Dorr, 2005; Huang
et al., 2005; Schafer, 2006; Klementiev and
Roth, 2006; Haghighi et al., 2008; Mimno et al.,
2009; Mausam et al., 2010). Other work has
used decipherment techniques to learn translations
from monolingual and comparable data (Ravi and
Knight, 2011; Dou and Knight, 2012; Nuhn et al.,
2012). Daumé and Jagarlamudi (2011) use con-
textual and string similarity to mine translations
for OOV words in a high resource language do-
main adaptation for a machine translation setting.
Unlike most other prior work on bilingual lexicon
induction, Daumé and Jagarlamudi (2011) use the
translations in end-to-end SMT.

More recently, Irvine and Callison-Burch
(2013) combine a variety of the techniques for
estimating word pair similarity using source and
target language comparable corpora. That work
shows that only a small amount of supervision is
needed to learn how to effectively combine simi-
larity features into a single model for doing bilin-
gual lexicon induction. In this work, because we
assume access to a small amount of bilingual data,
it is natural to take such a supervised approach to
inducing new translations, and we directly apply
that of Irvine and Callison-Burch (2013).

Klementiev et al. (2012) use comparable cor-
pora to score an existing Spanish-English phrase
table extracted from the Europarl corpus. In this
work, we directly apply their technique for scor-
ing an existing phrase table. However, unlike that
work, our initial phrase tables are estimated from
small parallel corpora for genuine low resource
languages. Additionally, we include new transla-
tions discovered in comparable corpora.

Other prior work has mined supplemental paral-
lel data from comparable corpora (Munteanu and
Marcu, 2006; AbduI-Rauf and Schwenk, 2009;
Smith et al., 2010; Uszkoreit et al., 2010; Smith et
al., 2013). Such efforts are orthogonal and com-
plementary to the approach that we take.

Language Train Words (k) Dev Types Dev Tokens
Sent Dict % OOV % OOV

Tamil 335 77 44 25
Telugu 414 41 39 21
Bengali 240 7 37 18
Malayalam 263 151 6 3
Hindi 659 n/a 34 11
Urdu 616 116 23 6

Table 1: Information about datasets released by Post et al.
(2012): thousands of words in the source language parallel
sentences and dictionaries, and percent of development set
word types (unique word tokens) and word tokens that are
OOV (do not appear in either section of the training data).

Language Web Crawls Wikipedia
Tamil 0.1 4.4
Telugu 0.4 8.6
Bengali 2.7 3.3
Malayalam 0.1 3.7
Hindi 18.1 6.4
Urdu 285 2.5

Table 2: Millions of words of time-stamped web crawls and
Wikipedia text, by language.

3 Using Comparable Corpora to
Improve Accuracy and Coverage

After describing our bilingual and comparable cor-
pora, we briefly describe the techniques proposed
by Irvine and Callison-Burch (2013) and Klemen-
tiev et al. (2012). The contribution of this paper
is the application and combination of these tech-
niques in truly low resource translation conditions.

3.1 Datasets

Post et al. (2012) used Mechanical Turk to col-
lect small parallel corpora for the following Indian
languages and English: Tamil, Telugu, Bengali,
Malayalam, Hindi, and Urdu. They collected both
parallel sentence pairs and a dictionary of word
translations.3 We use all six datasets, which pro-
vide real low resource data conditions for six truly
low resource language pairs. Table 1 shows statis-
tics about the datasets.

Table 2 lists the amount of comparable data
that we use for each language. Following both
Klementiev et al. (2012) and Irvine and Callison-
Burch (2013), we use time-stamped web crawls
as well as interlingually linked Wikipedia docu-
ments. We use the time-stamped data to estimate
temporal similarity and the interlingual Wikipedia
links, which indicate documents about the same
topic written in different languages, to estimate

3No dictionary was provided for Hindi.
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topic similarity. We use both datasets in combina-
tion with a dictionary derived from the small par-
allel corpora to estimate contextual similarity.

3.2 Improving Coverage

In order to improve the coverage of our low re-
source translation models, we use bilingual lexi-
con induction techniques to learn translations for
words which appear in our test sets but not in our
training data (OOVs). Bilingual lexicon induction
is the task of inducing pairs of words that are trans-
lations of one another from monolingual or com-
parable corpora. Irvine and Callison-Burch (2013)
use a diverse set of features estimated over compa-
rable corpora and a small set of known translations
as supervision for training a discriminative classi-
fier, which makes predictions (translation or not a
translation) on test set words paired with all pos-
sible translations. Possible translations are taken
from the set of all target words appearing in the
comparable corpora. Candidates are ranked ac-
cording to their classification scores. They achieve
very good performance on the induction task itself
compared with an unsupervised baseline that ag-
gregates the same similarity features uniformly. In
our setting, we have access to a small parallel cor-
pus, which makes such a supervised approach to
bilingual lexicon induction a natural choice.

We use the framework described in Irvine and
Callison-Burch (2013) directly, and further details
may be found there. In particular, we use the same
feature set, which includes the temporal, contex-
tual, topic, orthographic, and frequency similarity
between a candidate translation pair. We derive
translations to serve as positive supervision from
our automatically aligned parallel text4 and, like
the prior work, use random word pairs as nega-
tive supervision. Figure 1 shows some examples
of Bengali words, their correct translations, and
the top-3 translations that this framework induces.

In our initial experiments, we add the high-
est ranked English candidate translation for each
source language OOV to our phrase tables. Be-
cause all of the OOVs appear at least once in our
comparable corpora,5 we are able to mine transla-
tions for all of them. Adding these translations by
definition improves the coverage of our MT mod-
els. Then, in additional sets of experiments, we

4GIZA++ intersection alignments over all training data.
5The Post et al. (2012) datasets are crowdsourced English

translations of source Wikipedia text. Using Wikipedia as
comparable corpora, we observe all OOVs at least once.

Source Induced Translations Correct Translation

গািণিতকভােব
mathematical

mathematicallyগািণিতকভােব equal mathematicallyগািণিতকভােব
ganitikovabe

mathematically

ফাংশন 
function

functionফাংশন functions functionফাংশন 
variables

function

অিভেষক 
made

inaugurationঅিভেষক goal inaugurationঅিভেষক 
earned

inauguration

Figure 1: Examples of OOV Bengali words, our top-3
ranked induced translations, and their correct translations.

also induce translations for source language words
which are low frequency in the training data and
supplement our SMT models with top-k transla-
tions, not just the highest ranked.

3.3 Improving Accuracy

In order to improve the accuracy of our mod-
els, we use comparable corpora to estimate ad-
ditional features over the translation pairs in our
phrase tables and include those features in tuning
and decoding. This approach follows that of Kle-
mentiev et al. (2012). We compute both phrasal
features and lexically smoothed features (using
word alignments, like the Moses lexical transla-
tion probabilities) for all of the following except
orthographic similarity, for which we only use lex-
ically smoothed features,6 resulting in nine addi-
tional features: temporal similarity based on time-
stamped web crawls, contextual similarity based
on web crawls and Wikipedia (separately), ortho-
graphic similarity using normalized edit distance,
and topic similarity based on inter-lingually linked
Wikipedia pages. Our hope is that by adding a di-
verse set of similarity features to the phrase tables,
our models will better distinguish between good
and bad translation pairs, improving accuracy.

4 Experiments

4.1 Experimental setup

We use the data splits given by Post et al. (2012)
and, following that work, include the dictionaries
in the training data and report results on the devtest
set using case-insensitive BLEU and four refer-
ences. We use the Moses phrase-based MT frame-
work (Koehn et al., 2007). For each language, we
extract a phrase table with a phrase limit of seven.
In order to make our results comparable to those
of Post et al. (2012), we follow that work and use

6Because the words within a phrase pair are often re-
ordered, phrase-level orthographic similarity is unreliable.
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Language Top-1 Acc. Top-10 Acc.
Tamil 4.5 10.2
Telugu 32.8 47.9
Bengali 17.9 29.8
Malayalam 12.9 23.0
Hindi 44.3 57.6
Urdu 16.1 33.8

Table 3: Percent of word types in a held out portion of the
training data which are translated correctly by our bilingual
lexicon induction technique. Evaluation is over the top-1 and
top-10 outputs in the ranked lists for each source word.

the English side of the training data to train a lan-
guage model. Using a language model trained on
a larger corpus (e.g. the English side of our com-
parable corpora) may yield better results, but such
an improvement is orthogonal to the focus of this
work. Throughout our experiments, we use the
batch version of MIRA (Cherry and Foster, 2012)
for tuning the feature set.7 We rerun tuning for
all experimental conditions and report results av-
eraged over three tuning runs (Clark et al., 2011).

Our baseline uses the bilingually extracted
phrase pairs and standard translation probability
features. We supplement it with the top ranked
translation for each OOV to improve coverage (+
OOV Trans) and with additional features to im-
prove accuracy (+Features). In Section 4.2, we
make each modification separately and then to-
gether. Then we present additional experiments
where we induce translations for low frequency
words, in addition to OOVs (4.3), append top-k
translations (4.4), vary the amount of training data
used to induce the baseline model (4.5), and vary
the amount of comparable corpora used to esti-
mate features and induce translations (4.6).

4.2 Results

Before presenting end-to-end MT results, we ex-
amine the performance of the supervised bilingual
lexicon induction technique that we use for trans-
lating OOVs. In Table 3, top-1 accuracy is the per-
cent of source language words in a held out portion
of the training data8 for which the highest ranked
English candidate is a correct translation.9 Perfor-
mance is lowest for Tamil and highest for Hindi.
For all languages, top-10 accuracy is much higher
than the top-1 accuracy. In Section 4.4, we explore

7We experimented with MERT and PRO as well but saw
consistently better baseline performance using batch MIRA.

8Described in Section 3.2. We retrain with all training
data for MT experiments.

9Post et al. (2012) gathered up to six translations for each
source word, so some have multiple correct translations

appending the top-k translations for OOV words to
our model instead of just the top-1.

Table 4 shows our results adding OOV transla-
tions, adding features, and then both. Additional
translation features alone, which improve our
models’ accuracy, increase BLEU scores between
0.18 (Bengali) and 0.60 (Malayalam) points.

Adding OOV translations makes a big differ-
ence for some languages, such as Bengali and
Urdu, and almost no difference for others, like
Malayalam and Tamil. The OOV rate (Table 1) is
low in the Malayalam dataset and high in the Tamil
dataset. However, as Table 3 shows, the translation
induction accuracy is low for both. Since few of
the supplemental translations are correct, we don’t
observe BLEU gains. In contrast, induction ac-
curacies for the other languages are higher, OOV
rates are substantial, and we do observe moderate
BLEU improvements by supplementing phrase ta-
bles with OOV translations.

In order to compute the potential BLEU gains
that we could realize by correctly translating all
OOV words (achieving 100% accuracy in Table
3), we perform an oracle experiment. We use au-
tomatic word alignments over the test sets to iden-
tify correct translations and append those to the
phrase tables.10 The results, in Table 4, show pos-
sible gains between 4.3 (Telugu and Bengali) and
0 (Malayalam) BLEU points above the baseline.
Not surprisingly, the possible gain for Malayalam,
which has a very low OOV rate, is very low. Our
+OOV Trans. model gains between 0% (Tamil)
and 38% (Urdu) of the potential improvement.

Using comparable corpora to improve both ac-
curacy (+Features) and coverage (+OOV Trans.)
results in translations that are better than apply-
ing either technique alone for five of the six lan-
guages. BLEU gains range from 0.48 (Bengali)
to 1.39 (Urdu). We attribute the particularly good
Urdu performance to the relatively large compa-
rable corpora (Table 2). As a result, we have al-
ready begun to expand our web crawls for all lan-
guages. In Section 4.6, we present results varying
the amount of Urdu-English comparable corpora
used to induce translations and estimate additional
features.

Table 4 also shows the Hiero (Chiang, 2005)
and SAMT (Zollmann and Venugopal, 2006) re-
sults that Post et al. (2012) report for the same

10Because the automatic word alignments are noisy, this
oracle is conservative.
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Tamil Telugu Bengali Malayalam Hindi Urdu
Experiment BLEU Diff. BLEU Diff. BLEU Diff. BLEU Diff. BLEU Diff. BLEU Diff.
Baseline 9.45 11.72 12.07 13.55 15.01 20.39
+Features 9.77 +0.32 11.96 +0.24 12.25 +0.18 14.15 +0.60 15.34 +0.33 20.97 +0.58
+OOV Trans. 9.45 0.00 12.20 +0.48 12.74 +0.67 13.65 +0.10 15.59 +0.58 21.30 +0.91
+Feats & OOV 9.98 +0.53 12.25 +0.53 12.55 +0.48 14.18 +0.63 16.08 +1.07 21.78 +1.39
OOV Oracle 12.32 +2.87 16.04 +4.32 16.41 +4.34 13.55 0.00 17.72 +2.71 22.80 2.41
Hiero 9.81 12.46 12.72 13.72 15.53 19.53
SAMT 9.85 12.61 13.53 14.28 17.29 20.99

Table 4: BLEU performance gains that target coverage (+OOV Trans.) and accuracy (+Features), and both (+Feats & OOV).
OOV oracle uses OOV translations from automatic word alignments. Hiero and SAMT results are reported in Post et al. (2012).

datasets. Both syntax-based models outperform
the phrase-based MT baseline for each language
except Urdu, where the phrase-based model out-
performs Hiero. Here, we extend a phrase-based
rather than a syntax-based system because it is
simpler. However, our improvements may also ap-
ply to syntactic models (future work). Because our
efforts have focused on the accuracy and cover-
age of translation pairs and have not addressed re-
ordering or syntax, we expect that combining them
with an SAMT grammar will result in state-of-the
art performance.

4.3 Translations of Low Frequency Words

Given the positive results in Section 4.2, we hy-
pothesize that mining translations for low fre-
quency words, in addition to OOV words, may im-
prove accuracy. For source words which only ap-
pear a few times in the parallel training text, the
bilingually extracted translations in the standard
phrase table are likely to be inaccurate. There-
fore, we perform additional experiments varying
the minimum source word training data frequency
for which we induce additional translations. That
is, if freq(wsrc) ≤ M , we induce a new transla-
tion for it and include that translation in our phrase
table. Note that in the results presented in Table 4,
M = 0. In these experiments, we include our ad-
ditional phrase table features estimated over com-
parable corpora and hope that these scores will as-
sist the model in choosing among multiple trans-
lation options for low frequency words, one or
more of which is extracted bilingually and one of
which is induced using comparable corpora. Table
5 shows the results when we vary M . As before,
we average BLEU scores over three tuning runs.

In general, modest BLEU score gains are made
as we supplement our phrase-based models with
induced translations of low frequency words. The
highest performance is achieved when M is be-
tween 5 and 50, depending on language. The

Language Base. M : trans added for freq(wsrc) ≤M
0 1 5 10 25 50

Tamil 9.5 10.0 9.9 10.2 10.2 9.9 10.2
Telugu 11.7 12.3 12.2 12.3 12.4 12.3 11.9
Bengali 12.1 12.6 12.8 13.0 12.9 13.1 13.0
Malayalam 13.6 14.2 14.1 14.2 14.2 13.9 13.9
Hindi 15.0 16.1 16.1 16.2 16.2 16.0 15.8
Urdu 20.4 21.8 21.8 21.8 21.9 22.1 21.8

Table 5: Varying minimum parallel training data frequency
of source words for which new translations are induced and
included in the phrase-based model. In all cases, the top-1
induced translation is added to the phrase table and features
estimated over comparable corpora are included (i.e. +Feats
& Trans model).

largest gains are 0.5 and 0.3 BLEU points for Ben-
gali and Urdu, respectively, at M = 25. This
is not surprising; we also saw the largest rela-
tive gains for those two languages when we added
OOV translations to our baseline model. With the
addition of low frequency translations, our highest
performing Urdu model achieves a BLEU score
that is 1.7 points higher than the baseline.

In different data conditions, inducing transla-
tions for low frequency words may result in better
or worse performance. For example, the size of the
training set impacts the quality of automatic word
alignments, which in turn impacts the reliability
of translations of low frequency words. However,
the experiments detailed here suggest that includ-
ing induced translations of low frequency words
will not hurt performance and may improve it.

4.4 Appending Top-K Translations
So far we have only added the top-1 induced trans-
lation for OOV and low frequency source words to
our phrase-based model. However, the bilingual
lexicon induction results in Table 3 show that ac-
curacies in the top-10 ranked translations are, on
average, nearly twice the top-1 accuracies. Here,
we explore adding the top-k induced translations.
We hope that our additional phrase table features
estimated over comparable corpora will enable the
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Language Base. k: top-k translations added
1 3 5 10 25

Tamil 9.5 10.0 10.0 9.8 10.0 10.0
Telugu 11.7 12.3 11.7 11.9 11.7 11.6
Bengali 12.1 12.6 12.6 12.6 12.7 12.8
Malayalam 13.6 14.2 14.2 14.2 14.2 14.1
Hindi 15.0 16.1 16.0 15.9 15.9 15.9
Urdu 20.4 21.8 21.8 21.7 21.5 21.6

Table 6: Adding top-k induced translations for source lan-
guage OOV words, varying k. Features estimated over com-
parable corpora are included (i.e. +Feats & Trans model).
The highest BLEU score for each language is highlighted. In
many cases differences are less than 0.1 BLEU.

decoder to correctly choose between the k trans-
lation options. We induce translations for OOV
words only (M = 0) and include all comparable
corpora features.

Table 6 shows performance as we append the
top-k ranked translations for each OOV word and
vary k. With the exception of Bengali, using a
k greater than 1 does not increase performance.
In the case of Bengali, and additional 0.2 BLEU
is observed when the top-25 translations are ap-
pended. In contrast, we see performance decrease
substantially for other languages (0.7 BLEU for
Telugu and 0.2 for Urdu) when the top-25 trans-
lations are used. Therefore, we conclude that, in
general, the models do not sufficiently distinguish
good from bad translations when we append more
than just the top-1. Although using a k greater than
1 means that more correct translations are in the
phrase table, it also increases the number of possi-
ble outputs over which the decoder must search.

4.5 Learning Curves over Parallel Data

In the experiments above, we only evaluated our
methods for improving the accuracy and coverage
of models trained on small amounts of bitext us-
ing the full parallel training corpora released by
Post et al. (2012). Here, we apply the same tech-
niques but vary the amount of parallel data in order
to generate learning curves. Figure 2 shows learn-
ing cures for all six languages. In all cases, results
are averaged over three tuning runs. We sample
both parallel sentences and dictionary entries.

All six learning curves show similar trends. In
all experimental conditions, BLEU performance
increases approximately linearly with the log of
the amount of training data. Additionally, supple-
menting the baseline with OOV translations im-
proves performance more than supplementing the
baseline with additional phrase table scores based
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Figure 3: English to Urdu translation results using vary-
ing amounts of comparable corpora to estimate features and
induce translations.

on comparable corpora. However, in most cases,
supplementing the baseline with both translations
and features improves performance more than ei-
ther alone. Performance gains are greatest when
very little training data is used. The Urdu learning
curve shows the most gains as well as the clean-
est trends across training data amounts. As before,
we attribute this to the relatively large comparable
corpora available for Urdu.

4.6 Learning Curves over Comparable
Corpora

In our final experiment, we consider the effect of
the amount of comparable corpora that we use
to estimate features and induce translations. We
present learning curves for Urdu-English because
we have the largest amount of comparable corpora
for that pair. We use the full amount of paral-
lel data to train a baseline model, and then we
randomly sample varying amounts of our Urdu-
English comparable corpora. Sampling is done
separately for the web crawl and Wikipedia com-
parable corpora. Figure 3 shows the results. As
before, results are averaged over three tuning runs.

The phrase table features estimated over com-
parable corpora improve end-to-end MT perfor-
mance more with increasing amounts of compa-
rable corpora. In contrast, the amount of com-
parable corpora used to induce OOV translations
does not impact the performance of the resulting
MT system as much. The difference may be due
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Figure 2: Comparison of learning curves over lines of parallel training data for four SMT systems: our
baseline phrase-based model (baseline), model that supplements the baseline with translations of OOV
words induced using our supervised bilingual lexicon induction framework (+Trans), model that supple-
ments the baseline with additional phrase table features estimated over comparable corpora (+Feats), and
a system that supplements the baseline with both OOV translations and additional features (+Trans &
Feats).
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to the fact that data sparsity is always more of an
issue when estimating features over phrase pairs
than when estimating features over word pairs be-
cause phrases appear less frequently than words
in monolingual corpora. Our comparable cor-
pora features are estimated over phrase pairs while
translations are only induced for OOV words, not
phrases. So, it makes sense that the former would
benefit more from larger comparable corpora.

5 Conclusion

As Post et al. (2012) showed, it is reasonable
to assume a small parallel corpus for training an
SMT model even in a low resource setting. We
have used comparable corpora to improve the ac-
curacy and coverage of phrase-based MT models
built using small bilingual corpora for six low re-
source languages. We have shown that our meth-
ods improve BLEU score performance indepen-
dently and that their combined impact is nearly ad-
ditive. Additionally, our results show that adding
induced translations of low frequency words im-
proves performance beyond what is achieved by
inducing translations for OOVs alone. Finally, our
results show that our techniques improve relative
performance most when very little parallel train-
ing data is available.
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Abstract
We propose a technique for improving
the quality of phrase-based translation
systems by creating synthetic translation
options—phrasal translations that are gen-
erated by auxiliary translation and post-
editing processes—to augment the de-
fault phrase inventory learned from par-
allel data. We apply our technique to
the problem of producing English deter-
miners when translating from Russian and
Czech, languages that lack definiteness
morphemes. Our approach augments the
English side of the phrase table using a
classifier to predict where English arti-
cles might plausibly be added or removed,
and then we decode as usual. Doing
so, we obtain significant improvements in
quality relative to a standard phrase-based
baseline and to a to post-editing complete
translations with the classifier.

1 Introduction

Phrase-based translation works as follows. A set
of candidate translations for an input sentence is
created by matching contiguous spans of the in-
put against an inventory of phrasal translations,
reordering them into a target-language appropri-
ate order, and choosing the best one according to a
discriminative model that combines features of the
phrases used, reordering patterns, and target lan-
guage model (Koehn et al., 2003). This relatively
simple approach to translation can be remarkably
effective, and, since its introduction, it has been
the basis for further innovations, including devel-
oping better models for distinguishing the good
translations from bad ones (Chiang, 2012; Gim-
pel and Smith, 2012; Cherry and Foster, 2012;

Eidelman et al., 2013), improving the identifica-
tion of phrase pairs in parallel data (DeNero et al.,
2008; DeNero and Klein, 2010), and formal gen-
eralizations to gapped rules and rich nonterminal
types (Chiang, 2007; Galley et al., 2006). This
paper proposes a different mechanism for improv-
ing phrase-based translation: the use of synthetic
translation options to supplement the standard
phrasal inventory used in phrase-based translation
systems.

In the following, we argue that phrase tables ac-
quired in usual way will be expected to have gaps
in their coverage in certain language pairs and
that supplementing these with synthetic translation
options is a priori preferable to alternative tech-
niques, such as post processing, for generalizing
beyond the translation pairs observable in training
data (§2). As a case study, we consider the prob-
lem of producing English definite/indefinite arti-
cles (the, a, and an) when translating from Russian
and Czech, two languages that lack overt definite-
ness morphemes (§3). We develop a classifier that
predicts the presence and absence of English arti-
cles (§4). This classifier is used to generate syn-
thetic translation options that are used to augment
phrase tables used the usual way (§5). We eval-
uate their performance relative to post-processing
approach and to a baseline phrase-based system,
finding that synthetic translation options reliably
outperform the other approaches (§6). We then
discuss how our approach relates to previous work
(§7) and conclude by discussing further applica-
tions of our technique (§8).

2 Why Synthetic Translation Options?

Before turning to the problem of generating En-
glish articles, we give arguments for why syn-
thetic translation options are a useful extension of
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standard phrase-based translation approaches, and
why this technique might be better than some al-
ternative proposals that been made for generaliz-
ing beyond translation examples directly observ-
able in the training data.

In language pairs that are typologically sim-
ilar (i.e., when both languages lexicalize the
same kinds of semantic and syntactic informa-
tion), words and phrases map relatively directly
from source to target languages, and the standard
approach to learning phrase pairs is quite effec-
tive.1 However, in language pairs in which in-
dividual source language words have many dif-
ferent possible translations (e.g., when the target
language word could have many different inflec-
tions or could be surrounded by different func-
tion words that have no direct correspondence in
the source language), we can expect the standard
phrasal inventory to be incomplete, except when
very large quantities of parallel data are available
or for very frequent words. There simply will not
be enough examples from which to learn the ideal
set of translation options. Therefore, since phrase
based translation can only generate input/output
word pairs that were directly observed in the train-
ing corpus, the decoder’s only hope for produc-
ing a good output is to find a fluent, meaning-
preserving translation using incomplete transla-
tion lexicons. Synthetic translation option genera-
tion seeks to fill these gaps using secondary gener-
ation processes that produce possible phrase trans-
lation alternatives that are not directly extractable
from the training data. We hypothesize that by
filling in gaps in the translation options, discrim-
inative translation models will be more effective
(leading to better translation quality).

The creation of synthetic translation options can
be understood as a kind of translation or post-
editing of phrasal units/translations. This raises
a question: if we have the ability to post-edit a
phrasal translation or retranslate a source phrase
so as to fill in gaps in the phrasal inventory, we
should be able to use the same technique to trans-
late the sentence; why not do this? While the ef-
fectiveness of this approach will ultimately be as-
sessed empirically, translation option generation is
appealing because the translation option synthe-
sizer need not produce only single-best guesses—

1When translating from a language with a richer lexical
inventory to a simpler one, approximate matching or backing
off to (e.g.) morphologically simpler forms likewise reliably
produces good translations.

увиделЯ кошку
saw +1SG +PST cat+ACC1SG+NOM

I saw
saw a
saw the

cat
a

the cat
cat

saw the cat
saw a cat

I saw
I saw a

I saw the

Figure 1: Russian-English phrase-based transla-
tion example. Since Russian lacks a definiteness
morpheme the determiners a, the must be part of
a translation option containing óâèäåë or êîøêó
in order to be present in the right place in the En-
glish output. Translation options that are in dashed
boxes should exist but were not observed in the
training data. This work seeks to produce such
missing translation options synthetically.

if multiple possibilities appear to be equally good
(say, multiple inflections of a translated lemma),
then multiple translation options may be synthe-
sized. Ultimately, of course, the global translation
model must select one translation for every phrase
it uses, but the decoder will have access to global
information that it can use to pick better transla-
tion options.

3 Case Study: English Definite Articles

We now turn to a translation problem that we will
use to assess the value of synthetic translation op-
tions: generating English in/definite articles when
translating from Russian.

Definiteness is a semantic property of noun
phrases that expresses information such as iden-
tifiability, specificity, familiarity and unique-
ness (Lyons, 1999). In English, it is expressed
through the use of article determiners and non-
article determiners. Although languages may ex-
press definiteness through such morphemes, many
languages use alternative mechanisms. For exam-
ple they may use noncanonical word orders (Mo-
hanan, 1994)2 or different constructions such as
existentials, differential object marking (Aissen,
2003), and the ba (吧) construction in Chinese

2See pp. 11–12 for an example in Hindi, a language with-
out articles.

272



(Chen, 2004). While these languages lack arti-
cles, they may use demonstratives and the quan-
tifier one to emphasize definiteness and indefinite-
ness, respectively.

Russian and Czech are examples of languages
that use non-lexical means to express definiteness.
As such, in Russian to English translation systems,
we expect that most Russian nouns should have at
least three translation options—the bare noun, the
noun preceded by the, and the noun preceded a/an.

Fig. 1 illustrates how the definiteness mismatch
between Russian and English can result in “gaps”
in the phrasal inventory learned from a relatively
large parallel corpus. The Russian input should
translate (depending on context) as either I saw a
cat or I saw the cat; however, the phrase table we
learned is only able to generate the former.3

4 Predicting English Definite Articles

Although English articles express semantic con-
tent, their use is largely predictable in context,
both for native English speakers and for automated
systems (Knight and Chander, 1994).4 In this sec-
tion we describe a classifier that uses local contex-
tual features to predict whether an article belongs
in a particular position in a sequence of words, and
if so, whether it is definite or indefinite (the form
of the indefinite article is deterministic given the
pronunciation of the following word).

4.1 Model

The classifier takes an English word sequence w =
〈w1, w2, . . . , w|w|〉with missing articles and an in-
dex i and predicts whether no article, a definite ar-
ticle, or an indefinite article should appear before
wi. We parameterize the classifier as a multiclass

3The phrase table for this example was extracted from the
WMT 2013 shared task training data consisting of 1.2M sen-
tence pairs.

4An interesting contribution of this work is a discussion
on lower and upper bounds that can be achieved by native
English speakers in predicting determiners. 67% is a lower
bound, obtained by guessing the for every instance. The up-
per bound was obtained experimentally, and was measured on
noun phrases (NP) without context, in a context of 4 words
(2 before and 2 after NP), and given full context. Human
subjects achieved an accuracy of 94-96% given full context,
83-88% for NPs in a context of 4 words, and 79-80% for NPs
without context. Since in the current state-of-the-art building
an automated determiners prediction in a full context (repre-
senting meaning computationally) is not a feasible task, we
view 83-88% accuracy as our goal, and 88% as an upper
bound for our method.

logistic regression:

p(y | w, i) ∝ exp
∑

j

λjhj(y,w, i),

where hj(·) are feature functions, λj are the corre-
sponding weights, and y ∈ {D,I,N} refer, respec-
tively, to the outputs: definite article, indefinite ar-
ticle, and no article.5

4.2 Features

The English article system is extremely com-
plex (as non-native English speakers will surely
know!): in addition to a general placement rule
that articles must precede a noun or its modifiers
in an NP, multiple other factors can also affect ar-
ticle selection, including countability of the head
noun, syntactic properties of an adjective modi-
fying a noun (superlative, ordinal), discourse fac-
tors, general knowledge, etc. In this section, we
define morphosyntactic features aimed at reflect-
ing basic grammatical rules, we define statistical,
semantic and shallow lexical features to capture
additional regular and idiosyncratic usages of def-
inite and indefinite articles in English. Below we
provide brief details of the features and their mo-
tivation.

Lexical. Because training data can be con-
structed inexpensively (from any unannotated En-
glish corpus), n-gram indicator features, such as
[[wi−1ywiwi+1 = with y lot of]], can be es-
timated reliably and capture construction-specific
article use.

Morphosyntactic. We used part-of-speech
(POS) tags produced by the Stanford POS tagger
(Toutanova and Manning, 2000) to capture gen-
eral article patterns. These are relevant features
in the prediction of articles as we observe certain
constraints regarding the use of articles in the
neighborhood of certain POS tags. For example,
we do not expect to predict an article following an
adjective (JJ).

Semantic. We extract further information indi-
cating whether a named entity, as identified by the
Stanford NE Recognizer (Finkel et al., 2005) be-
gins at wi. These features are relevant as there

5Realization of the classes D and N as lexical items is
straightforward. To convert I into a or an, we use the
CMU pronouncing dictionary (http://www.speech.
cs.cmu.edu/cgi-bin/cmudict) and select an if wi

starts with a phonetic vowel.
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is, in general, a constraint on the co-occurrence
of articles with named entities which can help us
predict the use of articles in such constructions.
For example, proper nouns do not tend to co-
occur with articles in English. Although there are
some proper nouns that have an article included in
them, such as the Netherlands, the United States
of America, but these are fixed expressions and the
model is easily able to capture such cases with lex-
ical features.

Statistical. Statistical features capture probabil-
ity of co-occurrences of a sample with each of
the determiner classes, e.g., for wi−1ywi we
collect probabilities of wi−1Iwi, wi−1Dwi, and
wi−1Nwi.6

4.3 Training and evaluation

We employ the creg regression modeling frame-
work to train a ternary logistic regression classi-
fier.7 All features were computed for the target-
side of the Russian-English TED corpus (Cettolo
et al., 2012); from 117,527 sentences we removed
5K sentences used as tuning and test sets in the
MT system. We extract statistical features from
monolingual English corpora released for WMT-
11 (Callison-Burch et al., 2011).

In the training corpus there are 65,075 I in-
stances, 114,571 D instances, and 2,435,287 N in-
stances. To create a balanced training set we
randomly sample 65K instances from each set of
collected instances.8 This training set of feature
vectors has 142,604 features and 285,210 param-
eters. To minimize the number of free parame-
ters in our model we use `1 regularization. We
perform 10-fold cross validation experiments with
various feature combinations, evaluating the clas-
sifier accuracy for all classes and for each class
independently. The performance of the classifier
on individual classes and consolidated results for
all classes are listed in Table 1.

We observe that morphosyntactic and lexical
features are highly significant, reducing the er-
ror rate of statistical features by 25%. A combi-

6Although statistical features are de rigeur in NLP, they
are arguably justified for this problem on linguistic grounds
since human subjects use frequency-based in addition to their
grammatical knowledge. For example, we say He is at school
rather than He is at the school, but Americans say He is in
the hospital while UK English speakers might prefer He is in
hospital.

7https://github.com/redpony/creg
8Preliminary experiments indicated that the excess of N

labels resulted in poor performance.

Feature combination All I D N
Statistical 0.80 0.76 0.79 0.87
Lexical 0.82 0.79 0.80 0.87
Morphosyntactic 0.75 0.71 0.64 0.86
Semantic 0.35 0.99 0.02 0.04
Statistical+Lexical 0.85 0.83 0.82 0.89

+ Morphosyntactic 0.87 0.86 0.83 0.92
+ Semantic 0.87 0.86 0.83 0.92

Table 1: 10-fold cross validation accuracy of the
classifier over all and by class.

nation of morphosyntactic, lexical, and statistical
features is also helpful, reducing 13% more errors.
Semantic features do not contribute to the classi-
fier accuracy (we believe, mainly due to the feature
sparsity).

5 Experimental Setup

Our experimental workflow includes the follow-
ing steps. First, we select a phrase table PTsource
from which we generate synthetic phrases. For
each phrase pair 〈f, e〉 in PTsource we generate n
synthetic variants of the target side phrase e which
we then append to PTbaseline. We annotate both
the original and synthetic phrases with additional
translation features in PTbaseline.

For this language pair, we have several options
for how to construct PTsource. The most straight-
forward way is to extract the phrasal inventory as
usual; a second option is to extract phrases from
training data from which definite articles have
been removed (since we will rely on the classifier
to reinsert them where they belong).

To synthesize phrases, we employ two differ-
ent techniques: LM-based and classifier-based.
We use a LM for one- or two-word phrases or
an auxiliary classifier for longer phrases and cre-
ate a new phrase in which we insert, remove or
substitute an article between each adjacent pair of
words in the original phrase. Such distinction be-
tween short and longer phrases has clear motiva-
tion: phrases without context may allow alterna-
tive, equally plausible options for article selection,
therefore we can just rely on a LM, trained on
large monolingual corpora, to identify phrases un-
observed in MT training corpus. Longer context
restricts determiners usage and statistical model
decisions are less prone to generating ungrammat-
ical synthetic phrases.

LM-based method is applied to phrases shorter
than three words. These phrases are numerous,
roughly 20% of a phrase table, and extracted from
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many sites in the training data. For each short (tar-
get) phrase we add all possible alternative entries
observed in the LM and not observed in the orig-
inal translation model. For example, for a short
target phrase a cat we extract the cat.

We apply an auxiliary classifier to longer
phrases, containing three or more words. Based
on the classifier prediction, we use the maximally
probable class to insert, remove or substitute an
article between each adjacent pair of words in
the original phrase. Synthetic phrases are gener-
ated by linguistically-informed features and can
introduce alternative grammatically-correct trans-
lations of source phrases by adding or removing
existing articles (since the English article selection
in a local context is often ambiguous and not cat-
egorical). We add a synthetic phrase only if the
phrase pair not observed in the original model.

We compare two possible applications of a clas-
sifier: one-pass and iterative prediction. With
one-pass prediction we decide on the prediction
for each position independently of other deci-
sions. With iterative update we adopt the best
first (greedy) strategy, selecting in each iteration
the update-location in which the classifier obtains
highest confidence score. In each iteration we in-
corporate a prediction in a target phrase, and in the
next iteration the best first decision is made on an
updated phrase. Iterative prediction stops when no
updates are introduced.

Synthetic phrases are added to a phrase table
with the five standard phrasal translation features
that were found in the source phrase, and with sev-
eral new features. First, we add a boolean fea-
ture indicating the origin of a phrase: synthetic or
original. Second, we experiment with a posterior
probability of a classifier averaged over all loca-
tions where it could be extracted from the training
data. The next feature is derived from this score:
it is a boolean feature indicating a confidence of
the classifier: the feature value is 1 iff the average
classifier score is higher than some threshold.

Consider again a phrase I saw a cat discussed
in Section 1. Synthetic entry generation from the
original phrase table entry is illustrated in Fig-
ure 2.

6 Translation Results

We now review the results of experiments using
synthetic translation options in a machine trans-
lation system. We use the Moses toolkit (Koehn

et al., 2007) to train a baseline phrase-based SMT
system. Each configuration we compare has a dif-
ferent phrase table, with synthetic phrases gen-
erated with best-first or iterative strategies, from
a phrase table with- or without-determiners, with
variable number of translation features. To verify
that system improvement is consistent, and is not a
result of optimizer instability (Clark et al., 2011),
we replicate each experimental setup three times,
and then estimate the translation quality of the me-
dian MT system using the MultEval toolkit.9

The corpus is the same as in Section 4.3:
the training part contains 112,527 sentences from
Russian-English TED corpus, randomly sampled
3K sentences are used for tuning and a disjoint set
of 2K sentences is used for test. We lowercase
both sides, and use Stanford CoreNLP10 tools to
tokenize the corpora. We employ SRILM toolkit
(Stolcke, 2002) to linearly interpolate the target
side of the training corpus with the WMT En-
glish corpus, optimizing towards the MT tuning
set. This LM is used in all experiments.

The rest of this section is organized as follows.
First, we compare two approaches to the deter-
miners classifier application. Then, we provide
detailed description of experiments with synthetic
phrases. We evaluate various aspects of synthetic
phrases generation and summarize all the results
in Table 3. In Table 5 we show examples of im-
proved translations.

Classifier application: one-pass vs. iterative.
First, as an intrinsic evaluation of the prediction
strategy we remove definite and indefinite articles
from the reference translations (2K test sentences)
and then employ the determiners classifier to re-
produce the original sentences. In Table 2 we re-
port on the word error rate (WER) derived from
the Levenshtein distance between the original sen-
tences and the sentences (1) without articles, (2)
with articles recovered using one-pass prediction,
and (3) articles recovered using iterative predic-
tion. The WER is averaged over all test sentences.
Both one-pass and iterative approaches are effec-
tive in the task of determiners prediction, reducing
the number of errors by 44%. The iterative ap-
proach yields slightly lower WER, hence we em-
ploy the iterative prediction in the future experi-
ments with synthetic phrases.

9https://github.com/jhclark/multeval
10http://nlp.stanford.edu/software/corenlp.shtml
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the

я увидел кошку ||| i saw the cat ||| f0 f1 f2 f3 f4 exp(1) exp(0) |||

<s>      I      saw   a   cat </s>

None

None

я увидел кошку ||| i saw a cat ||| f0 f1 f2 f3 f4 exp(0) exp(0) |||original phrase

post-processing

synthetic phrase

is synthetic

is no-context

Figure 2: Synthetic entry generation example. The original parallel phrase has two additional boolean
features (set to false) indicating that this is not a synthetic phrase and not a short phrase. We apply
our determiners classifier to predict an article at each location marked with a dashed box. Based on a
classifier prediction we derive a new phrase I saw the cat. Since corresponding parallel entry is not in
the original phrase table, we set the synthetic indicator feature to 1.

Post-processing WER
None 5.6%
One-pass 3.2%
Iterative 3.1%

Table 2: WER (lower is better) of reference trans-
lations without articles and of post-processed ref-
erence translations. Both one-pass and iterative
approaches are effective in the task of determin-
ers prediction.

MT output post-processing. We then evaluate
the post-processing strategy directly on the MT
output. We experiment with one-pass and itera-
tive post-processing of two variants of the base-
line system outputs: original output and the out-
put without articles (we remove the articles prior
to post-processing). The results are listed in Ta-
ble 3. Interestingly, we do not obtain any improve-
ments applying the determiners classifier in a con-
ventional way of a MT output post-processing. It
is the combination of linguistically-motivated fea-
tures with synthetic phrases that contribute to the
best performance.

LM-based synthetic phrases. As discussed
above, LM-based (short) phrases are shorter than
3 tokens and their synthetic variants contain same
words with articles inserted or deleted between
each adjacent pair of words. The phrase table
of the baseline system contains 2,441,678 phrase
pairs. There are 518,453 original short phrases,
and our technique yields 842,252 new synthetic
entries which we append to the baseline phrase ta-

ble. Table 3 shows the evaluation of the median
SMT system (derived from three systems) with
short phrases. In these systems the five phrasal
translation features are the same as in the base-
line systems. Improvement in the BLEU score
(Papineni et al., 2002) is statistically significant
(p < .05), compared to the baseline system

Classifier-generated synthetic phrases We ap-
ply classifier with the iterative prediction directly
on the baseline phrase table entries and synthe-
size 944,145 new parallel phrases, increasing the
phrase table size by 38%. The phrasal transla-
tion features in each synthetic phrase are the same
as in the phrase it was derived from. The BLEU
score of the median SMT system with synthetic
phrases is 22.9 ± .1, the improvement is statisti-
cally significant (p < .01). Post-processing of a
phrase table created from corpora without articles
and adding synthetic phrases to the baseline phrase
table yielded similar results.

Translation features for synthetic phrases In
the following experiments we aim to establish the
optimal set of translation features that should be
used with synthetic phrases. We train several SMT
systems, each containing synthetic phrases derived
from the original phrase table by iterative classifi-
cation, and with LM-based short phrases. Each
synthetic phrase has five translation features as an
original phrase it was derived from. The additional
features that we evaluate are:

1. Boolean feature for LM-based synthetic
phrases
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MT System BLEU
Baseline 22.6± .1

MT output post-processing
one-pass, MT output with articles 20.8
one-pass, MT output without articles 19.7
iterative, MT output with articles 22.6
iterative, MT output without articles 21.8

With synthetic phrases
LM-based phrases 22.9± .1

+ classifier-generated phrases 22.9± .1
+ features 1,2 23.0± .1
+ features 1,2,3 22.8± .1
+ features 1,2,3,4 22.8± .1
+ feature 5 22.9± .1

Table 3: Summary of experiments with MT out-
put post-processing and with synthetic translation
options in a phrase table. Post-processing of the
MT output do not improve translations. Best per-
forming system with synthetic phrases has five
original phrase translation features and two addi-
tional boolean features indicating if the phrase is
LM-based or not, is classifier-generated or not. All
the synthetic systems are significantly better than
the baseline system.

2. Boolean feature for classifier-generated syn-
thetic phrases

3. Classifier confidence: posterior probability of
the classifier averaged over all samples in a tar-
get phrase.

4. Boolean feature indicating a confidence of the
classifier: the feature value is 1 iff the Fea-
ture 3 scores higher than some threshold. The
threshold was set to 0.8, we did not experiment
with other values.

5. Boolean feature for a synthetic phrase of any
type: LM-based or classifier-generated

Table 3 details the change in the BLEU score
of each experimental setup. The best perform-
ing system has five original phrase translation fea-
tures and two additional boolean features indicat-
ing if the phrase is LM-based or not, is classifier-
generated or not. Note that all the synthetic sys-
tems are significantly better than the baseline.

Czech-English. Our technique was developed
using Russian-English system in the TED domain,
so we want to see how our method generalizes to a
different domain when translating from a different
language. We therefore applied our most success-
ful configuration to a Czech-English news transla-

tion task.11 For training, we use the WMT Czech-
English parallel corpus CzEng0.7; we tune using
the WMT2011 test set and test on the WMT2012
test set. The LM is trained on the target side of the
training corpus. Determiners classifier, re-trained
on the English side of this corpus, with statistical,
lexical, morphosyntactic and dependency features
obtained an accuracy of 88%.

In Table 4, we report the results of evaluat-
ing the performance of the Russian-to-English
and Czech-to-English MT systems with synthetic
phrases. The results of both systems show a statis-
tically significant (p < .01) improvement in terms
of BLEU score.

Russian Czech
Baseline 22.6± .1 16.0± .05
Synthetic 23.0± .1 16.2± .03

Table 4: BLEU score of Russian-to-English
and Czech-to-English MT systems with synthetic
phrases and features 1 and 2 show a significant im-
provement.

Qualitative analysis. Table 5 shows some ex-
amples from the output of our Russian-to-English
systems. Although both systems produce compre-
hensible translations, the system augmented with
determiner classifier is more fluent. The first ex-
ample represents a case where a singular count
noun (piece) is present which requires an article.
The baseline is not able to identify this require-
ment and hence does not insert the article an be-
fore the phrase extraordinary engineering piece.
Our system, however, correctly identifies the con-
struction requiring an article and thus provides an
appropriate form of the article (an- Indefinite arti-
cle for lexical items beginning with a vowel). Thus
we see that our system is able to capture the lin-
guistic requirement of the singular count nouns to
co-occur with an article. In the second row, the
lexical item poor is used as an adjective. The base-
line has inserted an article in front of it, chang-
ing it to a noun. Our system, however, is able to
maintain the status of poor as an adjective since
it has the option not to insert an article. Thus we
see that besides fluency, our system also does bet-
ter in maintaining the grammatical category of a
lexical item. In the third row, the phrase three

11Like Russian, Czech is a Slavic language that does not
have definite or indefinite articles.
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Source: íî òåì íå ìåíåå , ýòî âûäàþùååñÿ ïðîèçâåäåíèå èíæåíåðíîãî èñêóññòâà .
Reference: but nonetheless , it ’s an extraordinary piece of engineering .
Baseline: but nevertheless , it ’s extraordinary engineering piece of art .
Ours: but nevertheless , it ’s an extraordinary piece of engineering art .
Source: è ïî ìíîãèì äåôèíèöèÿì îíà óæå íå áåäíàÿ .
Reference: and by many definitions she is no longer poor .
Baseline: and in a lot definitions , it ’s not a poor .
Ours: and in a lot definitions she ’s not poor .
Source: íàì íóæíî íàêîðìèòü òðè ìèëëèàðäà ãîðîäñêèõ æèòåëåé .
Reference: we must feed three billion people in cities .
Baseline: we need to feed the three billion urban hundreds of them .
Ours: we need to feed three billion people in the city .

Table 5: Examples of translations with improved articles handling.

billion people refers to a nonidentifiable referent.
The baseline inserts the definite article the. If a
human subject reads this translation, it would mis-
lead him/her to interpret the object three billion
people as referring to a specific identifiable set.
Our system, on the other hand, correctly selects
the determiner class N and hence does not insert an
article. Thus we see that our system does not just
add fluency but it also captures a semantic distinc-
tion, namely identifiability, that a human subject
makes when producing or interpreting a phrase.

7 Related Work

Automated determiner prediction has been found
beneficial in a variety of applications, including
postediting of MT output (Knight and Chander,
1994), text generation (Elhadad, 1993; Minnen
et al., 2000), and more recently identification and
correction of ESL errors (Han et al., 2006; De Fe-
lice and Pulman, 2008; Gamon et al., 2009; Ro-
zovskaya and Roth, 2010). Our work on determin-
ers extends previous studies in several dimensions.
While all previous approaches were tested only on
NP constructions, we evaluate our classifier on any
sequence of tokens.

To the best of our knowledge, the only stud-
ies that directly address generation of synthetic
phrase table entries was conducted by Chen et al.
(2011) and Koehn and Hoang (2007). The former
find semantically similar source phrases and pro-
duce “fabricated” translations by combining these
source phrases with a set of their target phrases;
however, they do not observe improvements. The
later work integrates the synthesis of translation
options into the decoder. While related in spirit,
their method only supports a limited set of gen-
erative processes for producing the candidate set
(lacking, for instance, the simple and effective
phrase post-editing process we have used), and

their implementation has been plagued by compu-
tational challenges.

Post-processing techniques have been ex-
tremely popular. These can be understood as using
a translation model to generate a translation skele-
ton (or k-best skeletons) and then post-editing
these in various ways. These have been applied
to translation into morphologically rich languages,
such as Japanese, German, Turkish, and Finnish
(de Gispert et al., 2005; Suzuki and Toutanova,
2006; Suzuki and Toutanova, 2007; Fraser et al.,
2012; Clifton and Sarkar, 2011; Oflazer and Dur-
gar El-Kahlout, 2007).

8 Conclusions and future work

The contribution of this work is twofold. First, we
propose a new supervised method to predict defi-
nite and indefinite articles. Our log-linear model
trained on a linguistically-motivated set of fea-
tures outperforms previously reported results, and
obtains an upper bound of an accuracy achieved
by human subjects given a context of four words.
However, more important result of this work is the
experimentally verified idea of improving phrase-
based SMT via synthetic phrases. While we have
focused on a limited problem in this paper, there
are numerous alternative applications including
translation into morphologically rich languages, as
a method for incorporating (source) contextual in-
formation in making local translation decisions,
enriching the target language lexicon using lexical
translation resources, and many others.
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Abstract

Our field has seen significant improve-
ments in the quality of machine translation
systems over the past several years. The
single biggest factor in this improvement
has been the accumulation of ever larger
stores of data. However, we now find our-
selves the victims of our own success, in
that it has become increasingly difficult to
train on such large sets of data, due to
limitations in memory, processing power,
and ultimately, speed (i.e., data to mod-
els takes an inordinate amount of time).
Some teams have dealt with this by focus-
ing on data cleaning to arrive at smaller
data sets (Denkowski et al., 2012a; Rarrick
et al., 2011), “domain adaptation” to ar-
rive at data more suited to the task at hand
(Moore and Lewis, 2010; Axelrod et al.,
2011), or by specifically focusing on data
reduction by keeping only as much data as
is needed for building models e.g., (Eck
et al., 2005). This paper focuses on tech-
niques related to the latter efforts. We have
developed a very simple n-gram counting
method that reduces the size of data sets
dramatically, as much as 90%, and is ap-
plicable independent of specific dev and
test data. At the same time it reduces
model sizes, improves training times, and,
because it attempts to preserve contexts for
all n-grams in a corpus, the cost in quality
is minimal (as measured by BLEU ). Fur-
ther, unlike other methods created specif-
ically for data reduction that have similar
effects on the data, our method scales to
very large data, up to tens to hundreds of
millions of parallel sentences.

1 Introduction

The push to build higher and higher quality Sta-
tistical Machine Translation systems has led the
efforts to collect more and more data. The
English-French (nearly) Gigaword Parallel Corpus
(Callison-Burch et al., 2009), which we will refer
to henceforth as EnFrGW, is the result of one such
effort. The EnFrGW is a publicly available cor-
pus scraped from Canadian, European and inter-
national Web sites, consisting of over 22.5M par-
allel English-French sentences. This corpus has
been used regularly in the WMT competition since
2009.

As the size of data increases, BLEU scores in-
crease, but the increase in BLEU is not linear in re-
lation to data size. The relationship between data
size and BLEU flattens fairly quickly, as demon-
strated in Figure 1. Here we see that BLEU scores
increase rapidly with small amounts of data, but
they taper off and flatten at much larger amounts.
Clearly, as we add more data, the value of the new
data diminishes with each increase, until very little
value is achieved through the addition of each new
sentence. However, given that this figure repre-
sents samples from EnFrGW, can we be more effi-
cient in the samples we take? Can we achieve near
equivalent BLEU scores on much smaller amounts
of data drawn from the same source, most espe-
cially better than what we can achieve through ran-
dom sampling?

The focus of this work is three-fold. First, we
seek to devise a method to reduce the size of train-
ing data, which can be run independently of par-
ticular dev and test data, so as to maintain the in-
dependence of the data, since we are not interested
here in domain adaptation or selective tuning. Sec-
ond, we desire an algorithm that is (mostly) qual-
ity preserving, as measured by BLEU, OOV rates,
and human eval, ultimately resulting in decreased
training times and reduced model sizes. Reduced
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Figure 1: BLEU score increase as more data is
added (in millions of words), random samples
from EnFrGW

training times provide for greater iterative capac-
ity, since we can make more rapid algorithmic
improvements and do more experimentation on
smaller data than we can on much larger data.
Since we operate in a production environment, de-
ploying smaller models is also desirable. Third,
we require a method that scales to very large data.
We show in the sections below the application of
an algorithm at various settings to the 22.5M sen-
tence EnFrGW corpus. Although large, 22.5M
sentences does not represent the full total of the
English-French data on the Web. We require an
algorithm that can apply to even larger samples of
data, on the order of tens to hundreds of millions
of sentences.

2 Related Work

In statistical machine translation, selection, prepa-
ration and processing of parallel training data is
often done to serve one of the following scenarios:

• Low Resource Languages: In languages with
low parallel data availability, a subset of a
monolingual corpus is selected for human
translation ((Ananthakrishnan et al., 2010),
(Eck et al., 2005) and (Haffari et al., 2009)).

• Mobile device deployment: For many lan-
guages, translation model sizes built on all
available parallel data are too large to be
hosted on mobile devices. In addition to
translation model pruning, a common solu-
tion is selecting a subset of the data to be
trained on ((Ananthakrishnan et al., 2010)
and (Yasuda et al., 2008)).

• Quick turn-around time during development:

A common motivation for training on a sub-
set of a parallel corpus is to reduce training
time during the development cycle of a sta-
tistical machine translation system ((Lin and
Bilmes, 2011) and (Chao and Li, 2011a)).

• Noise reduction: Simple noise reduction
techniques like sentence length and alpha nu-
meric ratio are often used in data preparation.
However, more sophisticated techniques have
been developed to filter out noise from par-
allel data ((Denkowski et al., 2012a) and
(Taghipour et al., 2010)).

• Domain Adaptation: Recently there has been
significant interest in domain adaptation for
statistical machine translation. One of the ap-
proaches to domain adaptation is selecting a
subset of a data that is closer to the target do-
main ((Moore and Lewis, 2010), (Axelrod et
al., 2011)).

• Improve translation quality: An interesting
area of research is selecting a subset of the
training data that is more suitable for sta-
tistical machine translation learning ((Okita,
2009)).

In comparison, the goal of this work is to effi-
ciently reduce very large parallel data sets (in ex-
cess of tens of billions of tokens) to a desired size
in a reasonable amount of time. In the related work
referenced above two primary methods have been
used.

1. Maximizing n-gram coverage with minimal
data.

2. Filtering out noisy data based on sentence-
pair based features.

One of the earliest and most cited works using
the first method is (Eck et al., 2005). In this work,
a greedy algorithm is developed to select a subset
of the entire corpus that covers most n-grams with
minimum number of words. In a later work by the
same author, the algorithm was modified to give
higher weight to more frequent words. Although
this is a greedy algorithm and does not provide the
optimum solution, its complexity is quadratic in
the number of sentences. Hence it is not practical
to run this algorithm over very large data sets.

Recently (Ananthakrishnan et al., 2010) intro-
duced a new algorithm that is an improvement
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over (Eck et al., 2005). In this work discriminative
training is used to train a maximum entropy pair-
wise comparator with n-gram based features. The
pair-wise comparator is used to select the highest
scoring sentence followed by discounting features
used for the sentence, which are drawn from the
global pool of features. The complexity of this al-
gorithm after training the pairwise comparator is
O (N ×K × log(F )) where N is the number of
sentences in the entire corpus, K is the number of
sentences to be selected and F is the size of the fea-
ture space. Although this method works well for
a constant K, its complexity is quadratic when K
is a fraction of N . This method is reported to im-
prove the BLEU score close to 1% over the work
done by (Eck et al., 2005).

(Denkowski et al., 2012a) have developed rela-
tively scalable algorithms that fit in the second cat-
egory above. This algorithm automatically filters
out noisy data primarily based on the following
feature functions: normalized source and target
language model scores, word alignment scores and
fraction of aligned words. Sentences that don’t
score above a certain threshold (mean minus one
or two standard deviations) for all their features
are filtered out. In a similar work, (Taghipour
et al., 2010) use an approach where they incor-
porate similar features based on translation table
entries, word alignment models, source and target
language models and length to build a binary clas-
sifier that filters out noisy data.

Our work incorporates both methods listed
above in a scalable fashion where it selects a sub-
set of the data that is less noisy with a reasonable
n-gram representation of the superset parallel cor-
pus. To put the scalability of our work in perspec-
tive we compiled Table 1, which shows the max-
imum size of the data sets reported in each of the
relevant papers on the topic. Despite the public
availability of parallel corpora in excess of tens
of millions of sentence pairs, none of the related
works, using the first method above, exceed cou-
ple of millions of sentences pairs. This demon-
strates the importance of developing a scalable al-
gorithm when addressing the data selection prob-
lem.

The careful reader may observe that an alter-
nate strategy for reducing model sizes (e.g., use-
ful for the Mobile scenario noted above, but also
in any scenario where space concerns are an is-
sue), would be to reduce phrase table size rather

Reference Total Sentences
(Ananthakrishnan et al., 2010) 253K
(Eck et al., 2005) 123K
(Haffari et al., 2009) 1.8M1

(Lin and Bilmes, 2011) 1.2M2

(Chao and Li, 2011b) 2.3M

Table 1: Data Sizes for Related Systems

than reduce training data size. A good example
of work in this space is shown in (Johnson et al.,
2007), who describe a method for phrase table re-
duction, sometimes substantial (>90%), with no
impact on the resulting BLEU scores. The prin-
cipal of our work versus theirs is where the data
reductions occur: before or after training. The pri-
mary benefit of manipulating the training data di-
rectly is the impact on training performance. Fur-
ther, given the increasing sizes of training data,
it has become more difficult and more time con-
suming to train on large data, and in the case of
very large data (say tens to hundreds of millions
of sentence pairs), it may not even be possible to
train models at all. Reduced training data sizes in-
creases iterative capacity, and is possible in cases
where phrase table reduction may not be (i.e., with
very big data).

3 Vocabulary Saturation Filter (VSF)

The effects of more data on improving BLEU
scores is clearly discernible from Figure 1: as
more data is added, BLEU scores increase. How-
ever, the relationship between quantity of data and
BLEU is not linear, such that the effects of more
data diminishes with each increase in data size, ef-
fectively approaching some asymptote. One might
say that the vocabulary of the phrase mappings de-
rived from model training “saturate” as data size
increases, since less and less novel information
can be derived from each succeeding sentence of
data added to training. It is this observation that
led us to develop the Vocabulary Saturation Filter
(VSF).

VSF makes the following very simple assump-
tion: for any given vocabulary item v there is some
point where the contexts for v—that is, the n-gram

1Sentence count was not reported. We estimated it based
on 18M tokens.

2This is a very interesting work, but is only done for se-
lecting speech data. The total number of sentences is not re-
ported. We given a high-end estimate based on 128K selected
tokens.
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sequences that contain v—approach some level
of saturation, such that each succeeding sentence
containing v contributes few or no additional con-
texts, and thus has little impact on the frequency
distributions over v. In other words, at a point
where the diversity of contexts for v approach a
maximum, there is little value in adding additional
contexts containing v, e.g., to translation models.

The optimal algorithm would then, for each v
∈ V, identify the number of unique contexts that
contain v up to some threshold and discard all oth-
ers. An exhaustive algorithm which sets thresh-
olds for all n-gram contexts containing v, however,
would take a large amount of time to run (mini-
mally quadratic), and may also overrun memory
limitations on large data sets.

For VSF, we made the following simplifying as-
sumption: we set an arbitrary count threshold t for
all vocabulary items. For any given v, when we
reach t, we no longer need to keep additional sen-
tences containing v. However, since each instance
of v does not exist in isolation, but is rather con-
tained within sentences that also contain other vo-
cabulary items v, which, in turn, also need to be
counted and thresholded, we simplified VSF even
further with the following heuristic: for any given
sentence s, if all v ∈ V within s have not reached
t, then the sentence is kept. This has the direct
consequence that many vocabulary items will have
frequencies above t in the output corpus.

The implementation of VSF is described in Al-
gorithm 1 below.

VSF clearly makes a number of simplifying as-
sumptions, many of which one might argue would
reduce the value of the resulting data. Although
easy to implement, it may not achieve the most
optimal results. Assuming that VSF might be de-
fective, we then looked into other algorithms at-
tempting to achieve the same or similar results,
such as those described in Section 2, and explored
in-depth the algorithms described in (Eck et al.,
2005).

4 An Alternative: (Eck et al., 2005)

In our pursuit of better and generic data reduction
algorithms, we did a number of experiments using
the algorithms described in (Eck et al., 2005). In
the n-gram based method proposed by this work
the weight of each function is calculated using
Equation 1, where j is the n-gram length. In
each iteration of the algorithm, the weight of each

Input: ParallelCorpus, N, L
Output: SelectedCorpus
foreach sp ∈ ParallelCorpus do

S ← EnumNgrams(sp.src, L);
T ← EnumNgrams(sp.tgt, L);
selected← false;
foreach (s, t) ∈ (S, T ) do

if SrcCnt [s]<N ∨ TgtCnt [t]<N
then

selected← true;
end

end
if selected then

SelectedCorpus.Add(sp);
foreach (s, t) ∈ (S, T ) do

SrcCnt [s]++;
TgtCnt [t]++;

end
end

end
Algorithm 1: Pseudocode for implementing
VSF. L: n-gram length, N: n-gram threshold.

sentence is calculated and the sentence with the
highest weight is selected. Once a sentence is se-
lected, the n-grams in the sentence are marked as
seen and have a zero weight when they appear in
subsequent sentences. Therefore, the weights of
all remaining sentences have to be recalculated be-
fore the next sentence can be selected. We refer to
this algorithm henceforth as the Eck algorithm.

Wj (sentence) =

j∑
i=1


 ∑

unseen
ngrams

Freq(ngram)




|sentence| (1)

To compare VSF against the Eck algorithm
we selected the English-Lithuanian parallel corpus
from JRC-ACQUIS (Steinberger et al., 2006). We
selected the corpus for the following reasons:

• VSF performance on this particular data set
was at its lowest compared to a number of
other data sets, so there was room for im-
provement by a potentially better algorithm.

• With almost 50 million tokens combined (En-
glish and Lithuanian) we were able to opti-
mize the Eck algorithm and run it on this data
set in a reasonable amount of time. The ex-
periments run by the original paper in 2005
were run on only 800,000 tokens.
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Using the Eck algorithm with n-gram length set
to one (j ← 1 in Equation 1) only 10% (5,020,194
tokens total) of the data is sorted, since all n-grams
of size one have been observed by that point and
the weight function for the remaining sentences
returns zero. In other words, since there are no
unseen unigrams after 10% of the data has been
sorted, in Equation 1, the numerator becomes zero
there after and therefore the remaining 90% of
sentence pairs are not sorted. This must be taken
into consideration when examining the compari-
son between unigram VSF and the Eck algorithm
with n-gram length set to one in Figure 2. VSF
with its lowest setting, that is threshold t=1, se-
lects 20% of the data, so this chart may not be a
fair comparison between the two algorithms.

Figure 2: Unigram Eck vs. Unigram VSF

In an attempt to do a fairer comparison, we also
tried n-grams of length two in the Eck algorithm,
where 50% of the data can be sorted (since all uni-
grams and bigrams are observed by that point). As
seen in Figure 3, the BLEU scores for the Eck and
VSF systems built on the similar sized data score
very closely on the WMT 2009 test set.3

Further exploring options using Eck, we devel-
oped the following two extensions to the Eck algo-
rithm, none of which resulted in a significant gain
in BLEU score over VSF with n-gram lengths set
up to three.

• Incorporating target sentence n-grams in ad-
dition to source side sentence n-grams.

• Dividing the weight of an n-gram (its fre-
3The careful reader may note that there is no official

WMT09 test set for Lithuanian, since Lithuanian is not (yet)
a language used in the WMT competition. The test set men-
tioned here was created from a 1,000 sentence sample from
the English-side of the WMT09 test sets, which we then man-
ually translated into Lithuanian.

quency) by a constant number each time a
sentence that contains the n-gram is selected,
as opposed to setting the weight of an n-gram
to zero after it has been seen for the first
time.4

In relatively small data sets there is not a signif-
icant difference between the two algorithms. The
Eck algorithm does not scale to larger data sets
and higher n-grams. Since a principal focus of our
work is on scaling to very large data sets, and since
Eck could not scale to even moderately sized data
sets, we decided to continue our focus on VSF and
improvements to that algorithm.

Figure 3: Bigram Eck vs. Unigram VSF

5 Data Order

Unlike the Eck algorithm, VSF is sensitive to the
order of the input data due to the nature of the al-
gorithm. Depending on the order of sentences in
the input parallel corpus, VSF could select differ-
ent subsets of the parallel corpus that would even-
tually (after training and test) result in different
BLEU scores. To address this concern we use
a feature function inspired by (Denkowski et al.,
2012a) which is a normalized combined alignment
score. This feature score is obtained by geomet-
ric averaging of the normalized forward and back-
ward alignment scores which in turn are calculated
using the process described in (Denkowski et al.,
2012a). To keep the algorithm as scalable as pos-
sible we use radix sort. This ordering of the data
ensures sentences with high normalized alignment
scores appear first and sentences with low normal-
ized alignment appear last. As a result, for each
n-gram, VSF will choose the top-N highest scor-
ing sentence pairs that contain that n-gram.

4Further details of the modifications to the Eck algorithm
are not discussed here as they did not yield improvements
over the baseline algorithm and the focus of our work pre-
sented here was shifted to improvements over VSF.
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5.1 Data Ordering Complexity

Ordering the data based on normalized combined
alignment score requires two steps. First, the
normalized combined alignment score is com-
puted for each sentence pair using an exist-
ing HMM alignment model. Next, sentence
pairs are sorted based on the calculated score.
The computational complexity of aligning a sin-
gle sentence pair is O

(
J + I2

)
where J is the

number of words in the source sentence and I
is the number of words in the target sentence
(Gao and Vogel, 2008). Therefore the com-
plexity of calculating the combined alignment
score would be O

(
N × (J2 + I + I2 + J)

)
or

O
(
N ×max(I, J)2

)
after simplification. Since

radix sort is used for sorting the data, the data can
be sorted in O(d × N) where d is the number of
significant digits used for sorting. Since d is kept
constant5, the overall computational complexity
for data ordering is O

(
N +N ×max(I, J)2

)
.

6 Experiments

6.1 The Machine Translation and Training
Infrastructure

We used a custom-built tree-to-string (T2S) sys-
tem for training the models for all experiments.
The T2S system that we developed uses tech-
nology described in (Quirk et al., 2005), and re-
quires a source-side dependency parser, which we
have developed for English.6 We trained a 5-
gram French LM over the entire EnFrGW, which
we used in all systems. We used Minimum Error
Rate Training (MERT) (Och, 2003) for tuning the
lambda values for all systems, tuned using the of-
ficial WMT2010 dev data.

6.2 Test and Training Data

In all experiments, we used the EnFrGW cor-
pus, or subsets thereof. 7 We used three test sets

5In experiments described in Section 6 five significant
digits were used for radix sort.

6Further details about the decoders is beyond the scope of
this paper. The reader is encouraged to refer to the sources
provided for additional information.

7Because of some data cleaning filters we applied to the
data, the actual full sized corpus we used consisted of slightly
less data than that used in the WMT competitions. Every
team has its own set of favorite data cleaning heuristics, and
ours is no different. The filters applied to this data are focused
mostly on noise reduction, and consist of a set of filters re-
lated to eliminating content that contains badly encoded char-
acters, removing content that is too long (since there is little
value in training on very long sentences), removing content
where the ratio between numeric versus alphabetic characters

t = Random VSF Ordered VSF
1 1.83 M 1.83 M 1.68 M
2 2.53 M 2.53 M 2.34 M
5 3.62 M 3.62 M 3.35 M
10 4.62 M 4.62 M 4.29 M
20 5.83 M 5.83 M 5.44 M
40 7.26 M 7.26 M 6.83 M
60 8.21 M 8.21 M 7.78 M
100 9.53 M 9.53 M 9.13 M
150 10.67 M 10.67 M 10.33 M
200 11.53 M 11.53 M 11.23 M
250 12.22 M 12.22 M 11.97 M
All 22.5 M

Table 2: English-side Sentence Counts (in mil-
lions) for different thresholds for VSF, VSF after
ordering the data based on normalized combined
alignment score and random baselines.

in all experiments, as well. Two consisted of
the WMT 2009 and 2010 test sets, used in the
WMT competitions in the respective years. The
third consisted of 5,000 parallel English/French
sentences sampled from logs of actual traffic re-
ceived by our production service, Bing Transla-
tor (http://bing.com/translator), which were then
manually translated. The first two test sets are
publicly available, but are somewhat news fo-
cused. The third, which we will call ReqLog, con-
sists of a mix of content and sources, so can be
considered a truly “general” test set.

To discern the effects of VSF at different de-
grees of “saturation”, we tried VSF with different
threshold values t, ranging from 1 to 250. For each
t value we actually ran VSF twice. In the first case,
we did no explicit sorting of the data. In the sec-
ond case, we ranked the data using the method de-
scribed in Section 5.

Finally, we created random baselines for each
t, where each random baseline is paired with the
relevant VSF run, controlled for the number of
sentences (since t has no relevance for random
samples). The different t values and the resulting
training data sizes (sentence and word counts) are
shown in Tables 2 and 3.

Since our interest in this study is scaling paral-
lel data, for all trainings we used the same LM,
which was built over all training data (the French
side of the full EnFrGW). Because monolingual
training scales much more readily than parallel,

is excessively large, deleting content where the script of the
content is mostly not in latin1 (relevant for French), and some
additional filters described in (Denkowski et al., 2012b). If
the reader wishes additional material on data filtration, please
see (Denkowski et al., 2012b) and (Lewis and Quirk, 2013).

286



t = Random VSF Ordered VSF
1 46.1 M 64.52 M 65.74 M
2 63.99 M 87.41 M 88.12 M
5 91.55 M 121.3 M 120.86 M
10 116.83 M 151.53 M 149.95 M
20 147.31 M 186.99 M 184.14 M
40 183.46 M 228.14 M 224.29 M
60 207.42 M 254.89 M 250.68 M
100 240.88 M 291.45 M 287.02 M
150 269.77 M 322.5 M 318.33 M
200 291.4 M 345.37 M 341.69 M
250 308.83 M 363.44 M 360.32 M
All 583.97 M

Table 3: English-side Word Counts for different
thresholds for VSF, VSF after ordering the data
based on normalized combined alignment score
and random baselines.

this seemed reasonable. Further, using one LM
controls one parameter that would otherwise fluc-
tuate across trainings. The result is a much more
focused view on parallel training diffs.

6.3 Results

We trained models over each set of data. In ad-
dition to calculating BLEU scores for each result-
ing set of models in (Table 5), we also compared
OOV rates (Table 6) and performance differences
(Table 4). The former is another window into the
“quality” of the resulting models, in that it de-
scribes vocabulary coverage (in other words, how
much vocabulary is recovered from the full data).
The latter gives some indication regarding the time
savings after running VSF at different thresholds.

On the WMT09 data set, both sets of VSF
models outperformed the relevant random base-
lines. On the WMT10 and ReqLog test sets, the
pre-sorted VSF outperformed all random base-
lines, with the unsorted VSF outperforming most
random baselines, except at t=60 and t=200 for
WMT10. For the ReqLog, unsorted VSF drops be-
low random starting at t=200. Clearly, the t=200
results show that there is less value in VSF as we
approach the total data size.

The most instructive baseline, however, is the
one built over all training data. It is quite obvi-
ous that at low threshold values, the sampled data
is not a close approximation of the full data: not
enough vocabulary and contextual information is
preserved for the data to be taken as a proxy for
the full data. However, with t values around 20-
60 we recover enough BLEU and OOVs to make
the datasets reasonable proxies. Further, because

t = Random VSF Ordered VSF
1 1:07 2:17 1:56
2 1:33 2:55 2:39
5 2:15 4:05 3:47
10 2:43 4:49 4:50
20 3:23 5:25 5:14
40 4:12 6:16 5:56
60 4:45 6:41 7:15
100 5:31 7:32 7:55
150 6:07 8:20 8:18
200 6:36 8:31 8:52
250 7:30 9:19 9:11
All 13:12

Table 4: Word alignment times (hh:mm) for dif-
ferent thresholds for VSF, VSF after model score
ordering, and a random baseline

we see a relative reduction in data sizes of 32-
44%, model size reductions of 27-39%, and per-
formance improvements of 41-50% at these t val-
ues further argues for the value of VSF at these set-
tings. Even at t=250, we have training data that is
54% of the full data size, yet fully recovers BLEU.

7 Discussion

VSF is a simple but effective algorithm for reduc-
ing the size of parallel training data, and does so
independently of particular dev or test data. It per-
forms as well as related algorithms, notably (Eck
et al., 2005), but more importantly, it is able to
scale to much larger data sets than other algo-
rithms. In this paper, we showed VSF applied
to the EnFrGW corpus. It should be noted, how-
ever, that we have also been testing VSF on much
larger sets of English-French data. Two notable
tests are one applied to 65.2M English-French sen-
tence pairs and another applied to one consisting
of 162M. In the former case, we were able to re-
duce the corpus size from 65.2M sentences/1.28B
words8 to 26.2M sentences/568M words. The
BLEU score on this test was stable on the three
test sets, as shown in Table 7. When applied to the
162M sentence/2.1B word data set, we were able
to reduce the data size to 40.5M sentences/674M
words. In this case, sorting the data using model
scores produced the most desirable results, actu-
ally increasing BLEU by 0.90 on WMT09, but,
unfortunately, showing a 0.40 drop on WMT10.

The fact that VSF runs in one pass is both an
asset and a liability. It is an asset since the algo-
rithm is able to operate linearly with respect to the
size the data. It is a liability since the algorithm is

8Word counts based on the English-side, unwordbroken.
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WMT09 WMT10 ReqLog
t = Random VSF S+VSF Random VSF S+VSF Random VSF S+VSF
1 23.76 23.83 23.84 25.69 25.78 25.68 26.34 26.63 26.67
2 23.91 24.04 24.07 25.76 26.21 26.14 26.54 26.99 26.94
5 24.05 24.29 24.40 26.10 26.40 26.32 26.79 27.22 27.12
10 24.15 24.37 24.45 26.21 26.63 26.32 26.98 27.37 27.62
20 24.20 24.40 24.55 26.30 26.46 26.56 27.22 27.38 27.44
40 24.37 24.43 24.65 26.40 26.55 26.53 27.30 27.38 27.62
60 24.32 24.43 24.64 26.56 26.56 26.61 27.38 27.50 27.64
100 24.37 24.49 24.71 26.46 26.75 26.70 27.37 27.52 27.75
150 24.37 24.61 24.71 26.67 26.67 26.70 27.48 27.62 27.75
200 24.48 24.63 24.69 26.56 26.65 26.78 27.57 27.47 27.72
250 24.41 24.57 24.85 26.62 26.74 26.68 27.63 27.45 27.76
All 24.37 26.54 27.63

Table 5: BLEU Score results for VSF, S+VSF (Sorted VSF), and Random Baseline at different thresholds
t.

WMT09 WMT10 ReqLog
t = Random VSF S+VSF Random VSF S+VSF Random VSF S+VSF
1 630 424 450 609 420 445 1299 973 1000
2 588 374 395 559 385 393 1183 906 919
5 520 343 347 492 350 356 1111 856 853
10 494 336 335 458 344 344 1092 837 848
20 453 335 335 432 339 341 1016 831 834
40 423 330 331 403 336 337 986 828 833
60 419 329 330 407 333 336 964 831 832
100 389 330 329 391 333 335 950 830 830
150 397 330 330 384 332 332 930 828 828
200 381 328 330 371 331 332 912 827 826
250 356 329 328 370 333 331 884 823 823
All 325 331 822

Table 6: OOV rates for VSF, S+VSF (Sorted VSF), and Random Baseline at different thresholds t.

Figure 4: Comparative BLEU scores for two VSF implementations, against a randomly sampled baseline.

Figure 5: Comparative OOV rates for two VSF implementations, against a randomly sampled baseline.
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ReqLog WMT09 WMT10
65.2 snts 32.90 26.77 29.05
VSF 26.2M snts 33.34 26.75 29.07

Table 7: VSF applied to a 65.2M sentence baseline
system.

sensitive to the order of the data. The latter leads
to issues of reproducibility: with poorly ordered
data, one could easily arrive at a much less than
optimal set of data. However, by adding an addi-
tional pass to build model scores, and then ranking
the data by these scores, we address the serious is-
sue of reproducibility. Further, the ranking tends
to arrive at a better selection of data.

In an attempt to better understand the behavior
of VSF and how VSF changes the n-gram distribu-
tions of vocabulary items in a sample as compared
to the full corpus, we created log2-scale scatter
plots, as seen in Figure 6. In these plots, uni-
gram frequencies of unfiltered data (i.e., the full
corpus, EnFrGW) are on the vertical axis, and un-
igram frequencies of the VSF filtered data are on
the horizontal axis. The three plots show three dif-
ferent settings for t. There following observations
can be made about these plots:

1. On the horizontal axis before we reach
log2(t), all data points fall on the x = y line.

2. As the threshold increases the scatter plot
gets closer to the x = y line.

3. VSF has the highest impact on the “medium”
frequency unigrams, that is, those with a fre-
quency higher than the threshold.

The third point speaks the most to the ef-
fects that VSF has on data: Very low frequency
items, specifically those with frequencies below
the threshold t, are unaffected by the algorithm,
since we guarantee including all contexts in which
they occur. Low frequency items are at the lower
left of the plots, and their frequencies follow the
x = y line (point 1 above). Medium frequency
items, however, specifically those with frequen-
cies immediately above t, are the most affected
by the algorithm. The “bulge” in the plots shows
where these medium frequency items begin, and
one can see plainly that their distributions are per-
turbed. The “bulge” dissipates as frequencies in-
crease, until the effects diminish as we approach
much higher frequencies. The latter is a conse-
quence of a simplifying heuristic applied in VSF

(as described in Section 3): t is not a hard ceil-
ing, but rather a soft one. Vocabulary items that
occur very frequently in a corpus will be counted
many more times than t; for very high frequency
items, their sampled distributions may approach
those observed in the full corpus, and converge on
the x = y line. The authors suspect that the BLEU
loss that results from the application of VSF is the
result of the perturbed distributions for medium
frequency items. Adjusting to higher t values de-
creases the degree of the perturbation, as noted in
the second point, which likewise recovers some of
the BLEU loss observed in lower settings.

8 Future Work

There are several future directions we see with
work on VSF. Because one threshold t for all vo-
cabulary items may be too coarse a setting, we first
plan to explore setting t based on frequency, es-
pecially for vocabulary in the most affected mid-
range (at and above t). If we set t based on uni-
grams falling into frequency buckets, rather than
one setting for all unigrams, we may arrive ear-
lier at a more distributionally balanced corpus, one
that may better match the full corpus. That said,
additional passes over the data come at additional
cost.

Second, we plan to explore applying the VSF al-
gorithm to higher order n-grams (all experiments
thus far have been on unigrams). Preliminary
experiments on bigram VSF, however, show that
with even the lowest setting (t=1), we already pre-
serve well over 50% of the data.

In this work we only experimented with sorting
the data based on the normalized combined align-
ment score inspired by (Eck et al., 2005). A third
direction for future work would be to consider or-
dering the data based on other feature functions
presented in Eck, e.g., source and target language
model, alignment ratio, as well as and feature
functions introduced in (Taghipour et al., 2010),
or a combination of all of these feature functions.

In the fourth case, we plan to do more sophis-
ticated statistical analysis of the effects of VSF
on n-gram distributions and phrase-table entropy.
We also plan to explore the interactions between
VSF and data “diversity”. For instance, VSF may
have a greater positive impact on more narrowly
focused domains than on those that are more gen-
erally focused.
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(a) VSF t = 1
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(b) VSF t = 40
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(c) VSF t = 200

Figure 6: log2-scale Unigram Frequency scatter plot before VSF versus after VSF
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Abstract
Multi-task learning has been shown to be
effective in various applications, including
discriminative SMT. We present an exper-
imental evaluation of the question whether
multi-task learning depends on a “natu-
ral” division of data into tasks that bal-
ance shared and individual knowledge, or
whether its inherent regularization makes
multi-task learning a broadly applicable
remedy against overfitting. To investi-
gate this question, we compare “natural”
tasks defined as sections of the Interna-
tional Patent Classification versus “ran-
dom” tasks defined as random shards in
the context of patent SMT. We find that
both versions of multi-task learning im-
prove equally well over independent and
pooled baselines, and gain nearly 2 BLEU
points over standard MERT tuning.

1 Introduction

Multi-task learning is motivated by situations
where a number of statistical models need to be es-
timated from data belonging to different tasks. It is
assumed that the data are not completely indepen-
dent of one another as they share some common-
alities, yet they differ enough to counter a simple
pooling of data. The goal of multi-task learning is
to take advantage of commonalities among tasks
by learning a shared model without neglecting in-
dividual knowledge. For example, Obozinski et
al. (2010) present an optical character recognition
scenario where data consist of samples of hand-
written characters from several writers. While the
styles of different writers vary, it is expected that
there are also commonalities on a pixel- or stroke-
level that are shared across writers. Chapelle et al.
(2011) present a scenario where data from search
engine query logs are available for different coun-
tries. While the rankings for some queries will

have to be country-specific (they cite “football”
as a query requiring different rankings in the US
and the UK), a large fraction of queries will be
country-insensitive. Wäschle and Riezler (2012b)
present multi-task learning for statistical machine
translation (SMT) of patents from different classes
(so-called sections) according to the International
Patent Classification (IPC)1. While the vocabulary
may differ between the different IPC sections, spe-
cific legal jargon and a typical textual structure
will be shared across IPC sections. As shown in
the cited works, treating data from different writ-
ers, countries, or IPC classes as data from differ-
ent tasks, and applying generic multi-task learning
to the specific scenario, improves learning results
over learning independent or pooled models.

The research question we ask in this paper is
as follows: Is multi-task learning dependent on a
“natural” task structure in the data, where shared
and individual knowledge is properly balanced?
Or can multi-task learning be seen as a general
regularization technique that prevents overfitting
irrespective of the task structure in the data?

We investigate this research question on the ex-
ample of discriminative training for patent trans-
lation, using the algorithm for multi-task learn-
ing with `1/`2 regularization presented by Simi-
aner et al. (2012). We compare multi-task learning
on “natural” tasks given by IPC sections to multi-
task learning on “random” tasks given by random
shards and to baseline models trained on indepen-
dent tasks and pooled tasks. We find that both
versions of multi-task learning improve over inde-
pendent or pooled training. However, differences
between multi-task learning on IPC tasks and ran-
dom tasks are small. This points to a more general
regularization effect of multi-task learning and in-
dicates a broad applicability of multi-task learning
techniques. Another advantage of the `1/`2 reg-

1http://wipo.int/classifications/ipc/
en/
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ularization technique of Simianer et al. (2012) is
a considerable efficiency gain due to paralleliza-
tion and iterative feature selection that makes the
algorithm suitable for big data applications and
for large-scale training with millions of sparse fea-
tures. Last but not least, our best result for multi-
task learning improves by nearly 2 BLEU points
over the standard MERT baseline.

2 Related Work

Multi-task learning is an active area in machine
learning, dating back at least to Caruana (1997). A
regularization perspective was introduced by Ev-
geniou and Pontil (2004), who formalize the cen-
tral idea of trading off optimality of parameter vec-
tors for each task-specific model and closeness of
these model parameters to the average parame-
ter vector across models in an SVM framework.
Equivalent formalizations replace parameter reg-
ularization by Bayesian prior distributions on the
parameters (Finkel and Manning, 2009) or by aug-
mentation of the feature space with domain inde-
pendent features (Daumé, 2007). Besides SVMs,
several learning algorithms have been extended
to the multi-task scenario in a parameter regu-
larization setting, e.g., perceptron-type algorithms
(Dredze et al., 2010) or boosting (Chapelle et
al., 2011). Further variants include different for-
malizations of norms for parameter regularization,
e.g., `1/`2 regularization (Obozinski et al., 2010)
or `1/`∞ regularization (Quattoni et al., 2009),
where only the features that are most important
across all tasks are kept in the model.

Early research on multi-task learning for SMT
has investigated pooling of IPC sections, with
larger pools improving results (Utiyama and Isa-
hara, 2007; Tinsley et al., 2010; Ceauşu et al.,
2011). Wäschle and Riezler (2012b) apply multi-
task learning to tasks defined as IPC sections and
compare patent translation on independent tasks,
pooled tasks, and multi-task learning, using same-
sized training data. They show small but sta-
tistically significant improvements for multi-task
learning over independent and pooled training.
Duh et al. (2010) introduce random tasks as n-best
lists of translations and showed significant im-
provements by applying various multi-task learn-
ing techniques to discriminative reranking. Song
et al. (2011) define tasks as bootstrap samples
from the development set and show significant im-
provements for a bagging-based system combina-

tion over individual MERT training.
In this paper we apply the multi-task learning

technique of Simianer et al. (2012) to tasks de-
fined as IPC sections and to random tasks. Their
algorithm can be seen as a weight-based back-
ward feature elimination variant of Obozinski et
al. (2010)’s gradient-based forward feature selec-
tion algorithm for `1/`2 regularization. The lat-
ter approach is related to the general methodol-
ogy of using block norms to select entire groups
of features jointly. For example, such groups can
be defined as non-overlapping subsets of features
(Yuan and Lin, 2006), or as hierarchical groups
of features (Zhao et al., 2009), or they can be
grouped by the general structure of the prediction
problem (Martins et al., 2011). However, these
approaches are concerned with grouping features
within a single prediction problem whereas multi-
task learning adds an orthogonal layer of multiple
task-specific prediction problems. By virtue of av-
eraging selected weights after each epoch, the al-
gorithm of Simianer et al. (2012) is related to Mc-
Donald et al. (2010)’s iterative mixing procedure.
This algorithm is itself related to the bagging pro-
cedure of Breiman (1996), if random shards are
considered from the perspective of random sam-
ples. In both cases averaging helps to reduce the
variance of the per-sample classifiers.

3 Multi-task Learning for Discriminative
Training in SMT

In multi-task learning, we have data points
{(xiz, yiz), i = 1, . . . , Nz, z = 1, . . . , Z}, sampled
from a distribution Pz on X × Y . The subscript
z indexes tasks and the superscript i indexes i.i.d.
data for each task. For the application of discrimi-
native ranking in SMT, the spaceX can be thought
of as feature representations of n-best translations,
and the space Y denotes corresponding sentence-
level BLEU scores.2 We assume that Pz is differ-
ent for each task but that the Pz’s are related as,
for example, considered in Evgeniou and Pontil
(2004). The standard approach is to fit an inde-
pendent model involving a D-dimensional param-
eter vector wz for each task z. In multi-task learn-
ing, we consider a Z-by-D matrix W = (wd

z)z,d
of stacked D-dimensional row vectors wz , and Z-
dimensional column vectors wd of weights asso-
ciated with feature d across tasks. The central al-

2See Duh et al. (2010) for a similar formalization for the
case of n-best reranking via multi-task learning.

293



gorithms in most multi-task learning techniques
can be characterized as a form of regularization
that enforces closeness of task-specific parameter
vectors to shared parameter vectors, or promotes
sparse models that only contain features that are
shared across tasks. In this paper, we will fol-
low the approach of Simianer et al. (2012), who
formalize multi-task learning as a distributed fea-
ture selection algorithm using `1/`2 regulariza-
tion. `1/`2 regularization can be described as pe-
nalizing weights W by the weighted `1/`2 norm,
which is defined following Obozinski et al. (2010),
as

λ||W||1,2 = λ
D∑

d=1

||wd||2.

Each `2 norm of a weight column wd represents
the relevance of the corresponding feature across
tasks. The `1 sum of the `2 norms enforces a
selection of features by encouraging several fea-
ture columns wd to be 0 and others to have high
weights across all tasks. This results in shrinking
the matrix to the features that are useful across all
tasks.

Simianer et al. (2012) achieve this behavior by
the following weight-based iterative feature elimi-
nation algorithm that is wrapped around a stochas-
tic gradient descent (SGD) algorithm for pairwise
ranking (Shen and Joshi, 2005):

Algorithm 1 Multi-task SGD
Get data for Z tasks, each including S sentences;
distribute to machines.
Initialize v← 0.
for epochs t← 0 . . . T − 1: do

for all tasks z ∈ {1 . . . Z}: parallel do
wz,t,0,0 ← v
for all sentences i ∈ {0 . . . S − 1}: do

Decode ith input with wz,t,i,0.
for all pairs j ∈ {0 . . . P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
end for
wz,t,i+1,0 ← wz,t,i,P

end for
end for
Stack weights W← [w1,t,S,0| . . . |wZ,t,S,0]

T

Select top K feature columns of W by `2 norm
for k ← 1 . . .K do

v[k] = 1
Z

Z∑
z=1

W[z][k].

end for
end for
return v

The innermost loop of the algorithm computes
an SGD update based on the subgradient ∇lj of a
pairwise loss function. `1/`2-based feature selec-
tion is done after each epoch of SGD training for

each task in parallel. The `2 norm of the weights
is computed for each feature column across tasks;
features are sorted by this value; K top features
are kept in the model; reduced weight vectors are
mixed and the result is re-sent to each task-specific
model to start another epoch of parallel training
for each task.

We compare two different loss functions for
pairwise ranking, one corresponding to the orig-
inal perceptron algorithm (Rosenblatt, 1958), and
an improved version called the margin perceptron
(Collobert and Bengio, 2004). To create train-
ing data for a pairwise ranking setup, we gener-
ate preference pairs by ordering translations ac-
cording to smoothed sentence-wise BLEU score
(Nakov et al., 2012). Let each translation candi-
date in the n-best list be represented by a feature
vector x ∈ IRD: For notational convenience, we
denote by xj a preference pair xj = (x

(1)
j ,x

(2)
j )

where x
(1)
j is ordered above x

(2)
j w.r.t. BLEU. Fur-

thermore, we use the shorthand x̄j = x
(1)
j − x

(2)
j

to denote aD-dimensional difference vector repre-
senting an input pattern. For completeness, a label
y = +1 can be assigned to patterns x̄j where x

(1)
j

is ordered above x
(2)
j (y = −1 otherwise), how-

ever, since the ordering relation is antisymmetric,
we can consider an ordering in one direction and
omit the label entirely.

The original perceptron algorithm is based on
the following hinge loss-type objective function:

lj(w) = (−〈w, x̄j 〉)+

where (a)+ = max(0, a) , w ∈ IRD is a weight
vector, and 〈·, ·〉 denotes the standard vector dot
product. Instantiating SGD to the stochastic sub-
gradient

∇lj(w) =

{
−x̄j if 〈w, x̄j〉 ≤ 0,

0 else.

leads to the perceptron algorithm for pairwise
ranking (Shen and Joshi, 2005).

Collobert and Bengio (2004) presented a ver-
sion of perceptron learning that includes a margin
term in order to control the capacity and thus the
generalization performance. Their margin percep-
tron algorithm follows from applying SGD to the
loss function

lj(w) = (1− 〈w, x̄j 〉)+
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with the following stochastic subgradient

∇lj(w) =

{
−x̄j if 〈w, x̄j〉 < 1,

0 else.

Collobert and Bengio (2004) argue that the use of
a margin term justifies not using an explicit regu-
larization, thus making the margin perceptron an
efficient and effective learning machine.

4 Experiments

4.1 Data & System Setup
For training, development and testing, we use data
extracted from the PatTR3 corpus for the experi-
ments in Wäschle and Riezler (2012b). Training
data consists of about 1.2 million German-English
parallel sentences. We translate from German into
English. German compound words were split us-
ing the technique of Koehn and Knight (2003). We
use the SCFG decoder cdec (Dyer et al., 2010)4

and build grammars using its implementation of
the suffix array extraction method described in
Lopez (2007). Word alignments are built from all
parallel data using mgiza5 and the Moses scripts6.
SCFG models use the same settings as described
in Chiang (2007). We built a modified Kneser-
Ney smoothed 5-gram language model using the
English side of the training data and performed
querying with KenLM (Heafield, 2011)7.

The International Patent Classification (IPC)
categorizes patents hierarchically into 8 sections,
120 classes, 600 subclasses, down to 70,000 sub-
groups at the leaf level. The eight top classes
(called sections) are listed in Table 1.

Typically, a patent belongs to more than one
section, with one section chosen as main classi-
fication. Our development and test sets for each
of the classes, A to H, comprise 2,000 sentences
each, originating from a patent with the respec-
tive class. These sets were built so that there is no
overlap of development sets and test sets, and no
overlap between sets of different classes. These
eight test sets are referred to as independent test
sets. Furthermore, we test on a combined set,

3http://www.cl.uni-heidelberg.de/
statnlpgroup/pattr

4https://github.com/redpony/cdec
5http://www.kyloo.net/software/doku.

php/mgiza:overview
6http://www.statmt.org/moses/?n=Moses.

SupportTools
7http://kheafield.com/code/kenlm/

estimation/

A Human Necessities
B Performing Operations, Transporting
C Chemistry, Metallurgy
D Textiles, Paper
E Fixed Constructions
F Mechanical Engineering, Lighting,

Heating, Weapons
G Physics
H Electricity

Table 1: IPC top level sections.

called pooled-cat, that is constructed by concate-
nating the independent sets. Additionally we use
two pooled sets for development and testing, each
containing 2,000 sentences with all classes evenly
represented.

Our tuning baseline is an implementation of hy-
pergraph MERT (Kumar et al., 2009), directly op-
timizing IBM BLEU4 (Papineni et al., 2002). Fur-
thermore, we present a regularization baseline by
applying `1 regularization with clipping (Carpen-
ter, 2008; Tsuruoka et al., 2009) to the standard
pairwise ranking perceptron. All pairwise ranking
methods use a smoothed sentence-wise BLEU+1
score (Nakov et al., 2012) to create gold standard
rankings. Our multi-task learning experiments are
based on pairwise ranking perceptrons that differ
in their objective, corresponding either to the orig-
inal perceptron or to the margin-perceptron. Both
versions of the perceptron are used for single-task
tuning and multi-task tuning. In the multi-task
setting, we compare three different methods for
defining a task: “natural” tasks given by IPC sec-
tions where each independent data set is consid-
ered as task; “random” tasks, defined by sharding
where data is shuffled and split once, tasks are kept
fixed throughout, and by resharding where after an
epoch data is shuffled and new random tasks are
constructed. In all cases a task/shard is defined to
contain 2,000 sentences8, resulting in eight shards
for each setting. The number of features selected
after each epoch was set to K = 100, 000.

For all perceptron runs, the following meta pa-
rameters were fixed: A cube pruning pop limit of
200 and non-terminal span limit of 15; 100-best
lists with unique entries; constant learning rate;
multipartite pair selection. Single-task perceptron
runs on independent and pooled tasks were done

8This number is determined by the size of the original de-
velopment sets; variations of this size did not change results.
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single-task tuning

indep. 0 pooled 1 pooled-cat 2

pooled test – 51.18 51.22

A 54.92 0255.27 055.17
B 51.53 51.48 0151.69
C 1256.31 255.90 55.74
D 49.94 050.33 050.26
E 149.19 48.97 149.13
F 1251.26 51.02 51.12
G 149.61 49.44 49.55
H 49.38 49.50 0149.67

average test 51.52 51.49 51.54

Table 2: BLEU4 results of MERT baseline using dense
features for three different tuning sets: independent (sepa-
rate tuning sets for each IPC class), pooled and pooled-cat
(concatenated independent sets). Significant superior per-
formance over other systems in the same row is denoted by
prefixed numbers. The first row shows, e.g., that the result
of pooled 1 is significantly better than independent 0, and
pooled-cat 2.

for 15 epochs; multi-task perceptron runs used
10 epochs. Single-task tuning on pooled-cat data
increases computation time by a factor of eight
which makes this setup infeasible in practice. For
the sake of comparison we performed 10 epochs
in this setup.

MERT (with default parameters) is used to op-
timize the weights of 12 dense default features;
eight translation model features, a word penalty,
the passthrough weight, the language model (LM)
score, and an LM out-of-vocabulary penalty. Per-
ceptron training allows to add millions of sparse
features which are directly derived from grammar
rules: rule shape, rule identifier, bigrams in rule
source and target. For a further explanation of
these features see Simianer et al. (2012).

For testing we measured IBM BLEU4 on tok-
enized and lowercased data. Significance results
were obtained by approximate randomization tests
using the approach of Clark et al. (2011)9 to ac-
count for optimizer instability. Tuning methods
with a random component (MERT, randomized
experiments) were repeated three times, scores re-
ported in the tables are averaged over optimizer
runs.

4.2 Experimental Results

In single-task tuning mode, systems are tuned
on the eight independent data sets separately, the
pooled data set, and the independent data sets con-

9https://github.com/jhclark/multeval

single-task tuning

indep. 0 pooled 1 pooled-cat 2

pooled test – 50.75 1 52.08

A 1 55.11 54.32 01 55.94
B 1 52.61 50.84 1 52.57
C 56.18 56.11 01 56.75
D 1 50.68 49.48 01 51.22
E 1 50.27 48.69 1 50.01
F 1 51.68 50.71 1 51.95
G 1 49.90 49.06 01 50.51
H 1 50.48 49.16 1 50.53

average test 52.11 51.05 52.44

model size 430,092.5 457,428 1,574,259

Table 3: BLEU4 results for standard perceptron with `1 reg-
ularization baseline using sparse rule features, tuned on in-
dependent, pooled and pooled-cat sets. Prefixed superscripts
denote a significant improvement over the result in the same
row indicated by the superscript.

catenated (pooled-cat). Testing is done on each of
the eight IPC sections separately, and on a pooled
test set of 2,000 sentences where all sections are
equally represented. Furthermore, we report aver-
age test results over runs for all independent data
sets.

Results for the MERT baseline are shown in
Table 2: Neither pooling nor concatenating inde-
pendent sets leads to significant performance im-
provements on all sets with averaged scores being
nearly identical.

Evaluation results obtained with the standard
perceptron algorithm (Table 4) show improve-
ments over MERT in single-task tuning mode. The
gain on pooled-cat data shows that in contrast to
MERT training on 12 dense features, discrimi-
native training using large feature sets is able to
benefit from large data sets. However, since the
pooled-cat scenario increases computation time
by a factor of 8, it is quite infeasible when used
with large sets of sparse features. Single-task tun-
ing on a small set of pooled data seems to show
overfitting behavior.

Table 3 shows evaluation results for a regular-
ization baseline that applies `1 regularization with
clipping to the the single-task tuned standard per-
ceptron in Table 4. We see gains in BLEU on in-
dependent and pooled-cat tuning data, but not on
the small pooled data set.

Multi-task tuning for the standard perceptron
is shown in the right half of Table 4. Because
of parallelization, this scenario is as efficient as
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single-task tuning multi-task tuning

indep. 0 pooled 1 pooled-cat 2 IPC 3 sharding 4 resharding 5

pooled test – 51.33 1 51.77 12 52.56 12 52.54 12 52.60

A 54.79 54.76 01 55.31 012 56.35 012 56.22 012 56.21
B 12 52.45 51.30 1 52.19 012 52.78 0123 52.98 012 52.96
C 2 56.62 56.65 1 56.12 01245 57.76 012 57.30 012 57.44
D 1 50.75 49.88 1 50.63 01245 51.54 012 51.33 012 51.20
E 1 49.70 49.23 01 49.92 012 50.51 012 50.52 012 50.38
F 1 51.60 51.09 1 51.71 012 52.28 012 52.43 012 52.32
G 1 49.50 49.06 01 49.97 012 50.84 012 50.88 012 50.74
H 1 49.77 49.50 01 50.64 012 51.16 012 51.07 012 51.10

average test 51.90 51.42 52.06 52.90 52.84 52.79

model size 366,869.4 448,359 1,478,049 100,000 100,000 100,000

Table 4: BLEU4 results for standard perceptron algorithm using sparse rule features, tuned in single-task mode on independent,
pooled, and pooled-cat sets, and in multi-task mode on eight tasks taken from IPC sections or by random (re)sharding. Prefixed
superscripts denote a significant improvement over the result in the same row indicated by the superscript.

single-task tuning multi-task tuning

indep. 0 pooled 1 pooled-cat 2 IPC 3 sharding 4 resharding 5

pooled test – 51.33 1 52.58 12 52.98 12 52.95 12 52.99

A 1 56.09 55.33 1 55.92 0124556.78 012 56.62 012 56.53
B 1 52.45 51.59 1 52.44 01253.31 012 53.35 012 53.21
C 1 57.20 56.85 01 57.54 0157.46 1 57.42 1 57.43
D 1 50.51 50.18 01 51.38 0124552.14 0125 51.82 012 51.66
E 1 50.27 49.36 01 50.72 012451.13 012 50.89 012 51.02
F 1 52.06 51.20 01 52.61 0124553.07 012 52.80 012 52.87
G 1 50.00 49.58 01 50.90 0124551.36 012 51.19 012 51.11
H 1 50.57 49.80 01 51.32 01251.57 012 51.62 01 51.47

average test 52.39 51.74 52.85 53.35 53.21 53.16

model size 423,731.5 484,483 1,697,398 100,000 100,000 100,000

Table 5: BLEU4 results for margin-perceptron algorithm using sparse rule features, tuned in single-task mode on independent
tasks, and in multi-task mode on eight tasks taken from IPC sections or by random (re)sharding. Prefixed superscripts denote
a significant improvement over the result in the same row indicated by the superscript.

single-task tuning on small data. We see improve-
ments in BLEU over single-task tuning on small
and large tuning data sets. Concerning our initial
research questions, we see that the performance
difference between “natural” tasks (IPC) and “ran-
dom” tasks is not conclusive. However, multi-
task learning using `1/`2 regularization consis-
tently outperforms the standard perceptron under
`1 regularization as shown in Table 3 and MERT
tuning as shown in Table 2.

Table 5 shows the evaluation results of the
margin-perceptron algorithm. Evaluation results
on single-task tuning show that this algorithm im-
proves over the standard perceptron (Table 4),
even in its `1-regularized version (Table 3), on
all tuning sets. Results for multi-task tuning

show improvements over the same scenario for the
standard perceptron (Table 4). This means that
the improvements due to the orthogonal regular-
ization techniques in example space and feature
space, namely large-margin learning and multi-
task learning, add up. A comparison between
single-task and multi-task tuning modes of the
margin-perceptron shows a gain for the latter sce-
narios. Differences between multi-task learning
on IPC classes versus random sharding or re-
sharding are again small, with the best overall re-
sult obtained by multi-task learning of the margin-
perceptron on IPC classes.

Overall, our best multi-task learing result is
nearly 2 BLEU points better than MERT training.
The algorithm to achieve this result is efficient due
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to parallelization and due to iterative feature se-
lection. As shown in the last rows of Tables 3-5 ,
the average size is around 400K features for inde-
pendently tuned models and around 1.6M features
for models tuned on pooled-cat data. In multi-task
learning, models can be iteratively cut to 100K
shared features whose weights are tuned in par-
allel.

5 Conclusion

We presented an experimental investigation of the
question whether the power of multi-task learning
depends on data structured along tasks that exhibit
a proper balance of shared and individual knowl-
edge, or whether its inherent feature selection and
regularization makes multi-task learning a widely
applicable remedy against overfitting. We com-
pared multi-task patent SMT for “natural” tasks
of IPC sections and “random” tasks of shards in
distributed learning. Both versions of multi-task
learning yield significant improvements over in-
dependent and pooled training, however, the dif-
ference between “natural” and “random” tasks is
marginal. This is an indication for the useful-
ness of multi-task learning as a generic regulariza-
tion tool. Considering also the efficiency gained
by iterative feature selection, the `1/`2 regulariza-
tion algorithm presented in Simianer et al. (2012)
presents itself as an efficient and effective learning
algorithm for general big data and sparse feature
applications. Furthermore, the improvements by
multi-task feature selection add up with improve-
ments by large-margin learning, delivering overall
improvements of nearly 2 BLEU points over the
standard MERT baseline.

Our research question regarding the superiority
of “natural” or “random” tasks was shown to be
undetermined for the application of patent trans-
lation. The obvious question for future work is if
and how a task division can be found that improves
multi-task learning over our current results. Such
an investigation will have to explore various sim-
ilarity metrics and clustering techniques for IPC
sub-classes (Wäschle and Riezler, 2012a), e.g., for
the goal of optimizing clustering with respect to
the ratio of between-cluster to within-cluster sim-
ilarity for a given metric. However, the final crite-
rion for the usefulness of a clustering is necessar-
ily application specific (von Luxburg et al., 2012),
in our case specific to patent translation perfor-
mance. Nevertheless, we hope that the presented

and future work will prove useful and generaliz-
able for related multi-task learning scenarios.
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Abstract

We present a novel online learning ap-
proach for statistical machine translation
tailored to the computer assisted transla-
tion scenario. With the introduction of
a simple online feature, we are able to
adapt the translation model on the fly
to the corrections made by the transla-
tors. Additionally, we do online adaption
of the feature weights with a large mar-
gin algorithm. Our results show that our
online adaptation technique outperforms
the static phrase based statistical machine
translation system by 6 BLEU points abso-
lute, and a standard incremental adaptation
approach by 2 BLEU points absolute.

1 Introduction

The growing needs of the localization and trans-
lation industry have recently boosted research
around computer assisted translation (CAT) tech-
nology. The purpose of CAT is to increase the pro-
ductivity of a human translator. A CAT tool comes
as a package of a Translation Memory (TM), built-
in spell checkers, a dictionary, a terminology list
etc. which help the translator while translating
a sentence. Recent research has led to the in-
tegration of CAT tools with statistical machine
translation (SMT) engines. SMT makes use of a
large available parallel corpus to generate statisti-
cal models for translation. Due to their generaliza-
tion capability, SMT systems are a good fit in this
scenario and a seamless integration of SMT en-
gines in CAT have shown to increase translator’s
productivity (Federico et al., 2012).

Although automatic systems generate reliable
translations they are not accurate enough to be
used directly and need postedition by human trans-
lators. In state-of-the-art CAT tools, the SMT sys-
tems are static in nature and so they cannot adapt

to these corrections. When a SMT system keeps
repeating the same error, productivity of transla-
tors as well as their trust in SMT technology are
negatively affected. As an example, technical doc-
umentation typically contains a lot of repetitions
due to the employed writing style and pervasive
use of terminology. Hence, in order to provide
useful hints, SMT systems are expected to behave
consistently regarding the translation of domain-
specific terms. However, if the user edits the trans-
lation of a technical term in the target text, most
current SMT systems are incapable to learn from
those corrections.

Online learning is a machine learning task
where a predictor iteratively: (1) receives an input
and outputs a label, (2) receives the correct label
from a human and if the two labels do not match, it
learns from the mistake. The task of learning from
user corrections at the sentence level fits well the
online learning scenario, and its expected useful-
ness is clearly related to the amount of repetitions
occurring in the text. The higher the number of
repetititions in a document the more the SMT sys-
tem has chances to translate consistently through
the use of online learning.

In this paper, we implemented two online learn-
ing methods through which a phrase-based SMT
system evolves over time, sentence after sentence,
by taking advantage of the post-edition or transla-
tion of the previous sentence by the user.1

In the first approach, we focus on the translation
model aspect of SMT which is represented by five
conventional features, namely lexical and phrase
translation probabilities in both directed and in-
verted directions, plus a phrase penalty score.
Translation, language and reordering models are
combined in a linear fashion to obtain a score for

1Moses code is available in the github reposi-
tory. https://github.com/mtresearcher/
mosesdecoder/tree/moses_onlinelearning
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the translation hypothesis as shown in Equation 1.

score(e∗, f) = Σiλihi(e
∗, f) (1)

where hi(·) are the feature functions representing
the models and λi are the linear weights. The
highest scored translation is the best hypothesis
e∗ output by the system. We extend the transla-
tion model with a new feature which provides ex-
tra phrase-pair scores changing according to the
user feedback. The scores of the new feature are
adapted in a discriminative fashion, by reward-
ing phrase-pairs observed in the search space and
in the reference, and penalizing phrase-pairs ob-
served in the search space but not in the reference.

In the second approach, we also adapt the model
weights of the linear combination after each test
sentence by using a margin infused relaxed algo-
rithm (MIRA).

For assessing the robustness of our methods, we
performed experiments on two datasets from dif-
ferent domains and language pairs (§6). More-
over, our online learning approaches are compared
against a static baseline system and against the in-
cremental adaptation approach proposed by Lev-
enberg et. al. (2010) (§5).

2 Related Works

Several online adaptation strategies have been pro-
posed in the past, only a few deal with adaptation
of post-edited/evaluation data while most works
are on adaptation over development data during
tuning of parameters (Och and Ney, 2003).

2.1 Online Adaptation during Tuning

Liang et. al. (2006) improved SMT perfor-
mance by online adaptation of scaling factors (λ in
(1)) using averaged perceptron algorithm (Collins,
2002). They presented different strategies to up-
date the SMT models towards reference or oracle
translation: (1) aggressively updating towards ref-
erence, bold update; (2) update towards the ora-
cle translation in N-Best list, local update; (3) a
hybrid approach in which a bold update is per-
formed when the reference is reachable, other-
wise a local update is performed. Liang and Klein
(2009) compared two online EM algorithms, step-
wise online EM (Sato and Ishii, 2000; Cappé and
Moulines, 2007) and incremental EM (Neal and
Hinton, 1998) which they use to update the align-
ment models (the generative component of SMT)

on the fly. However, stepwise EM is prone to fail-
ure if mini-batch size and stepsize parameters are
not chosen correctly, while incremental EM re-
quires substantial storage costs because it has to
store sufficient statistics for each sample. Other
works on online minimum error rate training in
SMT (Och and Ney, 2003) that deserve mention-
ing are (Hopkins and May, 2011; Hasler et al.,
2011).

2.2 Online Adaptation during Decoding

Cesa-Bianchi et. al. (2008) proposed an online
learning approach during decoding. They con-
struct a layer of online weights over the regu-
lar feature weights and update these weights at
sentence level using margin infused relaxed algo-
rithm (Crammer and Singer, 2003); to our knowl-
edge, this is the first work on online adaptation
during decoding. Martı́nez-Gómez et. al. (2011;
2012) presented a comparison of online adapta-
tion techniques in post editing scenario. They
compared different adaptation strategies on scal-
ing factors and feature functions (respectively, λ
and h(·) in (1)). However, they modified the fea-
ture values during adaptation without any normal-
ization, which disregards the initial assumption of
the feature values being probabilities.

In our approach, the value of the additional on-
line feature can be modified during decoding with-
out changing other feature values (probabilities)
and thus preserving their probability distribution.

3 Feature Adaptation

In the CAT scenario, the user receives a translation
suggestion for each source segment, post-edits it
and finally approves it. From the SMT point of
view, for each source segment the decoder ex-
plores a search space of possible translations and
finally returns the best scoring one (bestHyp) to
the user. The user possibly corrects this suggestion
thus generating the final translation (postedit).

Our online learning procedure is based on the
following idea. For each N-best translation (candi-
date) in the search space, we compute a similarity
score against the postedit using the sentence-level
BLEU metric (Lin and Och, 2004), a smoothed
variant of the popular BLEU metric (Papineni
et al., 2001). We hence compare the similar-
ity score of each candidate against the similar-
ity score achieved by the bestHyp, that was also
computed against the postedit. If the candidate
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scores better than the bestHyp, then we promote
the building blocks, i.e. phrase-pairs, of candi-
date that were not used in bestHyp and demote the
phrase-pairs used in bestHyp that were not used
for candidate. On the contrary, if the candidate
scores worse than the bestHyp, we promote the
building blocks of bestHyp that are not in candi-
date and demote those of candidate that are not in
bestHyp.

Our promotion/demotion mechanism could be
implemented by updating the features values of
the phrase pairs used in the candidate and bestHyp
translations. However, features in the translation
models are conditional probabilities and perturb-
ing a subset of them by also preserving their nor-
malization constraints can be computationally ex-
pensive. Instead, we propose to introduce an addi-
tional online feature which represents a goodness
score of each phrase-pair in the test set.

We call the set of phrase pairs used to generate
a candidate as candidatePP and the set of phrase
pairs used to generate the bestHyp as bestPP . The
online feature value of each phrase-pair is initial-
ized to a constant and is updated according to the
perceptron update (Rosenblatt, 1958) method. In
particular, the amount by which a current feature
value is rewarded or penalized depends on a learn-
ing rate α and on the difference between the model
scores (i.e. h ·w) of candidate and bestHyp as cal-
culated by the MT system. A sketch of our online
learning procedure is shown in Algorithm 1.

Algorithm 1: Online Learning
foreach sourceSeg do

bestHyp = Translate(sourceSeg);
postedit = Human(bestHyp);
for i = 1 → iterations do

N-best=Nbest(source);
foreach candidate ∈ N-best do

sign = sgn |sBLEU(candidate) -
sBLEU(bestHyp)| ;
foreach phrasePair ∈ candidatePP do

if phrasePair /∈ bestPP then
f i = f i−1 + (α · (∆h · w) ·
sign);

end
end
foreach phrasePair ∈ bestPP do

if phrasePair /∈ candidatePP then
f i = f i−1 - (α · (∆h · w) ·
sign);

end
end

end
end

end

In Algorithm 1, ∆h · w is the above mentioned
score difference as computed by the decoder; mul-
tiplied by α, it is the margin, that is the value with
which the online feature score (f ) of the phrase
pair under processing is modified. We can observe
that the feature scores are unbounded and could
lead to instability of the algorithm; therefore, we
normalise the scores through the sigmoid function:

f(x) =
2

1 + exp(x)
− 1 (2)

4 Weight Adaptation

In addition to adapting the online feature values,
we can also apply online adaptation on the fea-
ture weights of the linear combination (eq. 1). In
particular, after translating each sentence we can
adapt the parameters depending on how good the
last translation was. A commonly used algorithm
in this online paradigm for tuning of parameters is
the Margin Infused Relaxed Algorithm (MIRA).

MIRA is an online large margin algorithm that
updates the parameter ŵ of a given model accord-
ing to the loss that is occurred due to incorrect
classification. In the case of SMT this margin
can be coupled with the loss function, which in
this case is the complement of the sentence level
BLEU(sBLEU). Thus, the loss function can be
formulated as:

l(ŷ) = sBLEU(y∗) − sBLEU(ŷ) (3)

where y∗ is the oracle (closest translation to the
reference) and ŷ is the candidate being processed.
Ideally, this loss should correspond to the differ-
ence between the model scores:

∆h · ŵ = score(y∗) − score(ŷ) (4)

MIRA is an ultraconservative algorithm, meaning
that the update of the current weight vector is the
smallest possible value satisfying the constraint
that the variation incurred by the objective func-
tion must not be larger than the variation incurred
by the model (plus a non-negative slack variable
ξ). Formally, weight update at ith iteration is de-
fined as:

wi = arg min
w

1

2η
||w − wi−1||2︸ ︷︷ ︸

conservative

+ C︸︷︷︸
aggressive

∑

j

ξj

subject to

lj ≤ ∆hj · w + ξj ∀j ∈ J ⊆ {1 . . . N}
(5)
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where j ranges over all candidates in the N-
best list, lj is the loss between oracle and the
candidate j, and ∆hj · w is the corresponding
difference in the model scores. C is an aggressive
parameter which controls the size of the update, η
is the learning rate of the algorithm and ξ is usu-
ally a very small value (in our experiments we kept
it as 0.0001). After partial differentiation and lin-
earizing the loss, equation 5 can be rewritten as:

wi = wi−1 + η ·
∑

j

αj · ∆hj

where

αj = min

{
C,

lj − ∆hj · w

||∆hj ||2
}

(6)

We solve equation 5, by computing α with
the optimizer integrated in the Moses toolkit by
(Hasler et al., 2011). Algorithm 2 gives an
overview of the online margin infused relaxed al-
gorithm we implemented in Moses.

Algorithm 2: Online Margin Infused Relaxed

foreach sourceSeg do
bestHyp = Translate(sourceSeg);
postedit = Human(bestHyp);
w0 = w;
for i = 1 → iterations do

N-best=Nbest(sourceSeg,wi−1);
foreach candidatej ∈ N-best do

if ∆hj · w + ξj ≥ lj then
αj = Optimize(lj , hj , w, C);
wi = wi−1 + η ·∑j αj∆hj ;

end
end

end
end

In the following section we overview a stream
based adaptation method with which we exper-
imentally compared our two online learning ap-
proaches as it well fits the framework we are work-
ing in.

5 Stream based adaptation

Continuously updating an SMT system to an in-
coming stream of parallel data comes under stream
based adaptation. Levenberg et. al. (2010) pro-
posed an incremental adaptation technique for the
core generative component of the SMT system,

word alignments and language models (Leven-
berg and Osborne, 2009). To get the word align-
ments on the new data they use a Stepwise online
EM algorithm, where old counts (from previous
alignment models) are interpolated with the new
counts.

Since we work at the sentence level, on-the-
fly computation of probabilities of translation and
reordering models is expensive in terms of both
computational and memory requirements. To save
these costs, we prefer using dynamic suffix ar-
ray approach described in (Levenberg et al., 2010;
Callison-Burch et al., 2005; Lopez, 2008). They
are used to efficiently store the source and the tar-
get corpus and alignments in efficient data struc-
ture, namely the suffix array. When a phrase
translation is asked by the decoder, the corpus is
searched, the counts are collected and its probabil-
ities are computed on the fly. However, the current
implementation in Moses of the stream based MT
relying on the suffix arrays is severely limited as
it allows the computation of only three translation
features, namely the two direct translation proba-
bilities and the phrase penalty. This results in a
significant degradation of performance.

6 Experiments

6.1 Datasets

We compared our online learning approaches
(Sections 3 and 4) and the stream based adapta-
tion method (Section 5) on two datasets from dif-
ferent domains, namely Information Technology
(IT) and TED talks, and two different language
pairs. The IT domain dataset is proprietary, it in-
volves the translation of technical documents from
English to Italian and has been used in the field
test carried out under the MateCat project2. Ex-
periments are also conducted on English to French
TED talks dataset (Cettolo et al., 2012) to assess
the robustness of the proposed approaches in a dif-
ferent scenario and to provide results on a publicly
available dataset for the sake of reproducibility.
The training, development (dev2010) and evalu-
ation (tst20103) sets are the same as used in the
last IWSLT last evaluation campaigns. In experi-
ments on TED data, we considered the human ref-
erence translations as post edits, even if they were

2www.matecat.com
3As the size of evaluation set in TED data is too large with

respect to the current implementation of our algorithms, we
performed evaluation on the first 200 sentences only.
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actually generated from scratch.
In our experiments, the extent of usefulness of

online learning highly depends on the amount of
repetition of text. A reasonable way to measure the
quantity of repetition in each document is through
the repetition rate (Bertoldi et al., 2013). It com-
putes the rate of non-singleton n-grams, n=1...4,
averaging the values over sub-samples S of thou-
sand words from the text, and then combining the
rate of each n-gram to a single score by using the
geometric mean. Equation 7 shows the formula
for calculating the repetition rate of a document,
where dict(n) represents the total number of
different n-grams and nr is the number of different
n-grams occurring exactly r times:

RR =

(
4∏

n=1

∑
S dict(n) − n1∑

S dict(n)

)1/4

(7)

Statistics of the parallel sets and their repetition
rate on both sides are reported in Table 1.

Domain Set #srcTok srcRR #tgtTok tgtRR

ITen→it

Train 57M na 60M na
Dev 3.3k 12.03 3.5k 11.87
Test 3.3k 15.00 3.3k 14.57

TEDen→fr

Train 2.6M na 2.8M na
Dev 20k 3.43 20k 5.27
Test 32k 4.08 34k 3.57

Table 1: Statistics of the parallel data along with
the corresponding repetition rate (RR).

It can be noted that the repetition rates of IT
and TED sets are significantly different, partic-
ularly high in IT documents, much lower in the
TED talks.

6.2 Systems

The SMT systems were built using the Moses
toolkit (Koehn et al., 2007). Training data in each
domain was used to create translation and lexical
reordering models. We created a 5-gram LM for
TED talks and a 6-gram LM for the IT domain
using IRSTLM (Federico et al., 2008) with im-
proved Kneser-Ney smoothing (Chen and Good-
man, 1996) on the target side of the training paral-
lel corpora. The log linear weights for the baseline
systems are optimized using MERT (Och, 2003)
provided in the Moses toolkit. To counter the in-
stability of MERT, we averaged the weights of
three MERT runs in each case. Performance is

measured in terms of BLEU and TER (Snover
et al., 2006) computed using the MultEval script
(Clark et al., 2011). Since the implementations of
standard Giza and of incremental Giza combined
with dynamic suffix arrays are not comparable,
we constructed two baselines, a standard phrase
based SMT system and an incremental Giza base-
line (§5). Details on experimental SMT systems
we built follow.

Baseline This system was built on the parallel
training data for each domain. We run 5 iterations
of model 1, 5 of HMM (Vogel et al., 1996), 3 of
model 3, 3 of model 4 (Brown et al., 1993) us-
ing MGiza (Gao and Vogel, 2008) toolkit to align
the parallel corpus at word level. Translation and
reordering models were built using Moses, while
log-linear weights were optimized with MERT on
the corresponding development sets. The same IT
baseline system was used in the field test of Mate-
Cat and the references in the IT data are actual
postedits of its translation.

IncGiza Baseline We trained alignment models
with incGiza++4 with 5 iterations of model 1 and
10 iterations of the HMM model. To build in-
cremental Giza baselines, we used dynamic suf-
fix arrays as implemented in Moses which allow
the addition of new parallel data during decod-
ing. In the incremental Giza baseline, once a sen-
tence of the test set is translated, the sentence pair
(source and target post-edit/reference) along with
the alignment provided by incGiza are added to
the models.

Online learning systems We developed several
online systems on top of the two aforementioned
baseline systems: (1) +O employ the additional
online feature (Section 3) updated with Algorithm
1; (2) +O+NS as (1) but with the online fea-
ture normalized with the sigmoid function; (3)
+W weights updated (Section 4) with Algorithm
2; (4) +O+W combination of online feature and
weight update; (5) +O+NS+W as system (4) with
normalized online feature score.

In the online learning system we have three ad-
ditional parameters: a weight for the online fea-
ture, a learning rate for features (used in the per-
ceptron update), and a learning rate for feature
weights used by MIRA. These additional param-
eters were optimized by maximizing the BLEU

4http://code.google.com/p/inc-giza-pp/
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score on the devset and on top of already opti-
mized feature weights. For practical reasons, opti-
mization of the parameters was run with the Sim-
plex algorithm (Nelder and Mead, 1965).

7 Results and Discussion

Tables 2 and 3 collect results by the systems de-
scribed in Section 6.2 on the IT and TED transla-
tion tasks, respectively.

In Table 2, the online system (1st block
”+O+NS+W” system with 10 iterations of online
learning) shows significant improvements, over 6
BLEU points absolute above the baseline. In this
case the online feature can clearly take advantage
of the high repetition rates observed in the IT dev
and test sets (Table 1). Similarly, in the second
block, the online system (2nd block ”+O+NS+W”
with 10 iterations of online learning) outperforms
IncGiza baseline, too. It is interesting to note that
by continuously updating the baseline system af-
ter each translation step, even the plain translation
models are capable to learn from the correction in
the post-edited text.

Figure 1 depicts learning curve of Baseline sys-
tem, “+O+NS” (referred as +online feature) and
“+O+NS+W” (referred as +MIRA). We plotted in-
cremental BLEU scores after translation of each
sentence, thereby the last point on the plot shows
the corpus level BLEU on the whole test set.

In Table 3, from the first block we can observe
that online learning systems perform only slightly
better than the baseline systems, the main reason
being the low repetition rate observed in the eval-
uation set (as shown in Table 1). The positive re-
sults observed in the second block (”+O+W” with
10 iterations) are probably due to the larger room
for improvement available for translation models
implemented with dynamic suffix arrays, as they
only incorporate 3 features instead of 5. Some-
times, online learning systems show worse results
with higher numbers of iterations, which seems
due to overfitting. It is also interesting to notice
that after optimization the weight value of the on-
line feature was 0.509 for the IT task and 0.072 for
the TED talk task. This confirms the different use
and potential assigned to the online feature by the
SMT systems in the two tasks.

8 Conclusion

We have shown a new way to update the transla-
tion model on the fly without changing the original

probability distribution. We empirically proved
that this method is robust and works for differ-
ent domain datasets be it Information Technology
or TED talks. In addition, if the repetition rate is
high in the text, online learning works much bet-
ter than if the rate is low. We tested both with an
unbounded and a bounded range on the online fea-
ture and found out that bounded values produce
more stable and consistent results. From previous
works, it has been proven that MIRA works well
with sparse features too, so, as for the future plan
we would like to treat each phrase pair as a sparse
feature and tune the sparse weights using MIRA.
From the results, it is evident that we have not used
any sort of stopping criterion for online learning; a
random of 1, 5 and 10 iterations were chosen in a
naive way. Our future plan will extend to working
on finding a stopping criterion for online learning
process.
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Figure 1: Incremental BLEU vs. evaluation test size on the information-technology task. Three systems
are tracked: Baseline, +online feature, +MIRA

System Bleu (σ) TER (σ)
1 Iter 5 Iter 10 Iter 1 Iter 5 Iter 10 Iter

Baseline 22.18(1.23) - - 58.70(1.38) - -
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has the online feature, +NS adds normalization of online feature, +W includes online weight adaptation.
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Abstract

We present an iterative technique to gener-
ate phrase tables for SMT, which is based
on force-aligning the training data with
a modified translation decoder. Differ-
ent from previous work, we completely
avoid the use of a word alignment or
phrase extraction heuristics, moving to-
wards a more principled phrase generation
and probability estimation. During train-
ing, we allow the decoder to generate new
phrases on-the-fly and increment the max-
imum phrase length in each iteration. Ex-
periments are carried out on the IWSLT
2011 Arabic-English task, where we are
able to reach moderate improvements on a
state-of-the-art baseline with our training
method. The resulting phrase table shows
only a small overlap with the heuristically
extracted one, which demonstrates the re-
strictiveness of limiting phrase selection
by a word alignment or heuristics. By
interpolating the heuristic and the trained
phrase table, we can improve over the
baseline by 0.5% BLEU and 0.5% TER.

1 Introduction

Most state-of-the-art SMT systems get the statis-
tics from which the different component models
are estimated via heuristics using a Viterbi word
alignment. The word alignment is usually gener-
ated with tools like GIZA++ (Och and Ney, 2003),
that apply the EM algorithm to estimate the align-
ment with the HMM or IBM-4 translation mod-
els. This is also the case for the phrases or rules
which serve as translation units for the decoder.
All phrases that do not violate the word alignment

are extracted and their probabilities are estimated
as relative frequencies (Koehn et al., 2003).

A number of different approaches have tried to
do away with the heuristics and close this gap be-
tween the phrase table generation and translation
decoding. However, most of these approaches ei-
ther fail to achieve state-of-the-art performance or
still make use of the word alignment or the ex-
traction heuristics, e.g. as a prior in discriminative
training or to initialize a generative or generatively
inspired training procedure and are thus biased by
their weaknesses. Here, we aim at moving towards
the ideal situation, where a unified framework in-
duces the phrases based on the same models as in
decoding.

We train the phrase table without using a word
alignment or the extraction heuristics. Different
from previous work, we are able to generate all
possible phrase pairs on-the-fly during the train-
ing procedure. A further advantage of our pro-
posed algorithm is that we use basically the same
beam search as in translation. This makes it easy
to re-implement by modifying any translation de-
coder, and makes sure that training and translation
are consistent. In principle, we apply the forced
decoding approach described in (Wuebker et al.,
2010) with cross-validation to prevent over-fitting,
but we initialize the phrase table with IBM-1 lex-
ical probabilities (Brown et al., 1993) instead of
heuristically extracted relative frequencies. The
algorithm is extended with the concept of back-
off phrases, so that new phrase pairs can be gener-
ated at training time. The size of the newly gener-
ated phrases is incremented over the training iter-
ations. By introducing fallback decoding runs, we
are able to successfully align the complete training
data. Local language models are used for better
phrase pair pre-selection.
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The experiments are carried out on the IWSLT
2011 Arabic-English shared task. We are able to
show that it is possible and feasible to reach state-
of-the-art performance without the need to word-
align the bilingual training data. The small over-
lap of 18.5% between the trained and the heuristi-
cally extracted phrase table demonstrates the limi-
tations of previous work, where training is initial-
ized by the baseline phrase table or phrase selec-
tion is restricted by a word alignment. With a lin-
ear interpolation of phrase tables an improvement
of 0.5% BLEU and 0.5% TER over the baseline
can be achieved. The result in BLEU is statisti-
cally significant on the test set with 90% confi-
dence. Further, we can confirm the observation
of previous work, that phrases with near-zero en-
tropies seem to be a disadvantage for translation
quality. Although we use a phrase-based decoder
here, the principles of our work can be applied to
any statistical machine translation paradigm. The
software used for our experiments is available un-
der a non-commercial open source licence.

The paper is organized as follows. We review
related work in Section 2. The decoder and its
features are described in Section 3 and we give
an overview of the training procedure in Section
4. The complete algorithm is described in Section
5 and experiments are presented in Section 6. We
conclude with Section 7.

2 Related Work

Marcu and Wong (2002) present a joint probabil-
ity model, which is trained with a hill-climbing
technique based on break, merge, swap and move
operations. Due to the computational complexity
they are only able to consider phrases, which ap-
pear at least five times in the data. The model is
shown to slightly underperform heuristic extrac-
tion in (Koehn et al., 2003). For higher efficiency,
it is constrained by a word alignment in (Birch et
al., 2006). DeNero et al. (2008) introduce a differ-
ent training procedure for this model based on a
Gibbs sampler. They make use of the word align-
ment for initialization.

A generative phrase model trained with the
Expectation-Maximization (EM) algorithm is
shown in (DeNero et al., 2006). It also does not
reach the same top performance as heuristic ex-
traction. The authors identify the hidden segmen-
tation variable, which results in over-fitting, as the
main problem.

Liang et al. (2006) present a discriminative
translation system. One of the proposed strategies
for training, which the authors call bold updating,
is similar to our training scheme. They use heuris-
tically extracted phrase translation probabilities as
blanket features in all setups.

Another iteratively-trained phrase model is de-
scribed by Moore and Quirk (2007). Their model
is segmentation-free and, confirming the findings
in (DeNero et al., 2006), can close the gap to
phrase tables induced from surface heuristics. It
relies on word alignment for phrase selection.

Mylonakis and Sima’an (2008) present a phrase
model, whose training procedure uses prior prob-
abilities based on Inversion Transduction Gram-
mar and smoothing as learning objective to pre-
vent over-fitting. They also rely on the word align-
ment to select phrase pairs.

Blunsom et al. (2009) perform inference over
latent synchronous derivation trees under a non-
parametric Bayesian model with a Gibbs sampler.
Training is also initialized by extracting rules from
a word alignment, but the authors let the sampler
diverge from the initial value for 1000 passes over
the data, before the samples are used. However,
as the model is to weak for actual translation, the
usual extraction heuristics are applied on the hier-
archical alignments to infer a distribution over rule
tables.

Wuebker et al. (2010) use a forced decoding
training procedure, which applies a leave-one-out
technique to prevent over-fitting. They are able to
show improvements over a heuristically extracted
phrase table, which is used for initialization of the
training.

In (Saers and Wu, 2011), the EM algorithm is
applied for principled induction of bilexica based
on linear inversion transduction grammar. The
model itself underperforms the baseline, but the
authors show moderate improvements by combin-
ing it with the baseline phrase table, which is sim-
ilar to our results.

(Neubig et al., 2011) also propose a probabilis-
tic model based on inversion transduction gram-
mar, which allows for direct phrase table extrac-
tion from unaligned data. They show results simi-
lar to the heuristic baseline on several tasks.

A number of different models that can be
trained from forced derivation trees are shown in
(Duan et al., 2012), including a re-estimated trans-
lation model, two reordering models and a rule se-
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quence model. For inference, they optimize their
parameters towards alignment F-score. The forced
derivations are initialized with the standard heuris-
tic extraction scheme.

He and Deng (2012) describe a discriminative
phrase training procedure, where n-best transla-
tions are produced by the decoder on the whole
training data. The heuristically extracted relative
frequencies serve as a prior, and the probabili-
ties are updated with a maximum BLEU criterion
based on the n-best lists.

3 Translation Model

We use the standard phrase-based translation de-
coder from the open source toolkit Jane 2 (Wue-
bker et al., 2012a) for both the training proce-
dure and the translation experiments. It makes use
of the usual features: Translation channel mod-
els in both directions, lexical smoothing models in
both directions, an n-gram language model (LM),
phrase and word penalty and a jump-distance-
based distortion model. Formally, the best trans-
lation êÎ1 as defined by the models hm(eI1, s

K
1 , f

J
1 )

can be written as (Och and Ney, 2004)

êÎ1 = argmax
I,eI1

{
M∑

m=1

λmhm(eI1, s
K
1 , f

J
1 )

}
, (1)

where fJ1 = f1 . . . fJ is the source sentence,
eI1 = e1 . . . eI the target sentence and sK1 =
s1 . . . sK their phrase segmentation and align-
ment. We define sk := (ik, bk, jk), where ik is
the last position of kth target phrase, and (bk, jk)
are the start and end positions of the source phrase
aligned to the kth target phrase. Different from
many standard systems, the lexical smoothing
scores are not estimated by extracting counts from
a word alignment, but with IBM-1 model scores
trained on the bilingual data with GIZA++. They
are computed as (Zens, 2008)

hlex(e
I
1, s

K
1 , f

J
1 ) =

K∑

k=1

jk∑

j=bk

log


p(fj |e0) +

ik∑

i=ik−1+1

p(fj |ei)




(2)

Here, e0 denotes the empty target word. The
lexical smoothing model for the inverse direc-
tion is computed analogously. The log-linear fea-
ture weights λm are optimized on a development

data set with minimum error rate training (MERT)
(Och, 2003). As optimization criterion we use
BLEU (Papineni et al., 2001).

4 Training

4.1 Overview

In this work we employ a training procedure in-
spired by the Expectation-Maximization (EM) al-
gorithm.

The E-step corresponds to force-aligning the
training data with a modified translation decoder,
which yields a distribution over possible phrasal
segmentations and their alignment. Different from
original EM, we make use of not only the two
translation channel models that are being learned,
but the full log-linear combination of models as in
translation decoding. Formally, we are searching
for the best phrase segmentation and alignment for
the given sentence pair, which is defined by

ŝK̂1 = argmax
K,sK1

{
M∑

m=1

λmhm(eI1, s
K
1 , f

J
1 )

}
(3)

To force-align the training data, the translation
decoder is constrained to the given target sentence.
The translation candidates applicable for each sen-
tence pair are selected through a bilingual phrase
matching before the actual search.

In the M-step, we re-estimate the phrase table
from the phrase alignments. The translation prob-
ability of a phrase pair (f̃ , ẽ) is estimated as

pFA(f̃ |ẽ) =
CFA(f̃ , ẽ)∑

f̃ ′

CFA(f̃
′, ẽ)

(4)

where CFA(f̃ , ẽ) is the count of the phrase pair
(f̃ , ẽ) in the phrase-aligned training data.

In contrast to original EM, this is done by tak-
ing the phrase counts from a uniformly weighted
n-best list. The limitation to n phrase alignments
helps keeping the number of considered phrases
reasonably small. Because the log-linear feature
weights have been tuned in a discriminative fash-
ion to optimize the ranking of translation hypothe-
ses, rather than their probability distribution, pos-
terior probabilities received by exponentiation and
renormalization need to be scaled similar to (Wue-
bker et al., 2012b). Uniform weights can alle-
viate this mismatch between the discriminatively
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trained log-linear feature weights and the actual
probability distribution, without having to resort
to an arbitrarily chosen global scaling factor. This
corresponds to the count model in (Wuebker et al.,
2010) and was shown by the authors to perform
similar or better than using actual posterior proba-
bilities. In our experiments, we set the size of the
n-best list to n = 1000.

The first iteration of phrase training is initialized
with an empty phrase table. We use the notion of
backoff phrases to generate new phrase pairs on-
the-fly. To avoid over-fitting, we apply the cross-
validation technique presented in (Wuebker et al.,
2010) with a batch-size of 2000 sentences. This
means that for each batch the phrase and marginal
counts from the full phrase table are reduced by
the statistics taken from the same batch in the pre-
vious iteration. The phrase translation probabili-
ties are then estimated from these updated counts.
Phrase pairs only appearing in a single batch are
assigned a fixed penalty.

4.2 Backoff Phrases

Backoff phrases are phrase pairs that are generated
on-the-fly by the decoder at training time. When
aligning a sentence pair, for a given maximum
phrase length m, the decoder inserts all combi-
nations of source ms-grams and target mt-grams
into the translation options, that are present in the
sentence pair and with ms,mt ≤ m. Formally,
for the sentence pair (fJ1 , e

I
1), f

J
1 = f1 . . . fJ ,

eI1 = e1 . . . eI , and maximum length m, we gen-
erate all phrase pairs (f̃ , ẽ) where

∃ms,mt, j, i :

1 ≤ ms,mt ≤ m ∧ 1 ≤ j ≤ J −ms + 1

∧ 1 ≤ i ≤ I −mt + 1

∧ f̃ = f
(j+ms−1)
j ∧ ẽ = e

(i+mt−1)
i . (5)

These generated phrase pairs are given a fixed
penalty penp per phrase, pens per source word and
pent per target word, which are summed up and
substituted for the two channel models. The lex-
ical smoothing scores are computed in the usual
way based on an IBM-1 table. Note that this table
is not extracted from a word alignment, but con-
tains the real probabilities trained with the IBM-1
model by GIZA++.

We use backoff phrases in two different con-
texts. In the first mmax = 6 iterations, they are

applied as a means to generate new phrase pairs on
the fly. We increase the maximum phrase length
m in each iteration and always generate all possi-
ble backoff phrases before aligning each sentence.
Later, when a sufficient number of phrases have
been generated in the previous iterations, they are
used as a last resort in order to avoid alignment
failures.

At the later stage of the length-incremental
training, we also make use of a modified version,
where we only allow new phrase pairs (f̃ , ẽ) to be
generated, if no translation candidates exist for f̃
after the bilingual phrase matching. However, in
this case, backoff phrases are only used if a first
decoding run fails and we have to resort to fallback
runs, which are described in the next Section.

4.3 Fallback Decoding Runs
To maximize the number of successfully aligned
sentences, we allow for fallback decoding runs
with slightly altered parameterization, whenever
constrained decoding fails. In this work, we
only change the parameterization of the backoff
phrases. After mmax = 6 iterations, we no longer
generate any backoff phrases in the first decoding
run. If it fails, a second run is performed, where
we allow to generate backoff phrases for all source
phrases, which have no target candidates after the
bilingual phrase matching. Finally, if this one also
fails, all possible phrases are generated in the third
run. Here, the maximum backoff phrase length is
fixed to m = 1. We denote the number of fallback
runs with nfb = 2. In our experiments, the two
fallback runs enable us to align every sentence pair
of the training data after the sixth iteration.

4.4 Local Language Models
To make the training procedure feasible, it is par-
allelized by splitting the training data into batches
of 2000 sentences. The batches are aligned inde-
pendently. For each batch, we produce a local
language model, which is a unigram LM trained
on the target side of the current batch. We pre-
sort the phrases before search by their log-linear
model score, which uses the phrase-internal uni-
gram LM costs as one feature function. One ef-
fect of this is that the order in which phrase candi-
dates are considered is adjusted to the local part of
the data, which has a positive effect on decoding
speed. Secondly, we limit the number of transla-
tion candidates for each source phrase to the best
scoring 500 before the bilingual phrase matching.
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Figure 1: BLEU scores and word coverages on
dev over the first 6 training iterations with dif-
ferent word penalties (wp).

Using the local LM for this means that the pre-
selection better suits the current data batch. As a
result, the number of phrases remaining after the
phrase matching is increased as compared to the
same setup without a local language model.

4.5 Parameterization

The training procedure has a number of hyper pa-
rameters, most of which do not seem to have a
strong impact on the results. This section de-
scribes the parameters that have to be chosen care-
fully. To successfully align a sentence pair, our
decoder is required to fully cover the source sen-
tence. However, in order to achieve a good suc-
cess rate in terms of number of aligned sentence
pairs, we allow for incompletely aligned target
sentences. We denote the percentage of success-
fully aligned sentence pairs as sentence coverage.
Note that we count a sentence pair as successfully
aligned, even if the target sentence is not fully
covered. the word penalty (wp) feature weight
λwp needs to be adjusted carefully. A high value
leads to a high sentence coverage, but many of
their target sides may be incompletely aligned. A
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Figure 2: BLEU scores and percentage of surplus
phrases on dev over the first 6 training iterations
with different backoff phrase penalties pen0.

low word penalty can decrease the sentence cover-
age, while aligning larger parts of the target sen-
tences. We denote the total percentage of suc-
cessfully aligned target words as word coverage.
Please note the distincton to the sentence cover-
age, which is defined above. Figure 1 shows the
word coverages and BLEU scores for training iter-
ations 2 through 6 with different word penalties. In
the first iteration, the results are identical, as only
one-to-one phrases are allowed and the number of
aligned target words is therefore predetermined.
For λwp = −0.1, the word coverages are continu-
ously decreasing with each iteration, although not
by much. For λwp = −0.3 to λwp = −0.7 the
word coverage slightly increases from iteration 2
to 3 and then decreases again. In terms of BLEU

score, λwp = −0.3 has a slight advantage over the
other values and we decided to continue using this
value in all subsequent experiments.

The backoff phrase penalties directly affect
the learning rate of the training procedure. With
low penalties, only few, very good phrases get
an advantage over the ones generated on-the-fly,
which corresponds to a slow learning rate. In-
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1. Initialize with empty phrase table

2. Set backoff phrase penalties to
pen0 = 3 and m = 1

3. Until m = mmax, iterate:

• If iteration > 1: set
m = m+ 1
λs2t = λs2t + δ
λt2s = λt2s + δ

• Force-align training data and
re-estimate phrase table

4. Set m = 1 and nfb = 2

5. Iterate:

• Force-align training data and
re-estimate phrase table

Figure 3: The complete training algorithm.

creasing the penalties means that a larger per-
centage of the phrase pairs generated in the pre-
vious iterations will be favored over new back-
off phrases, which corresponds to a faster learn-
ing rate. We denote phrase pairs that are more
expensive than their backoff phrase counterparts
as surplus phrases. Figure 2 shows the behavior
over the training iterations 2 through 6 with differ-
ent penalties pen0 in terms of percentage of sur-
plus phrase pairs and BLEU score. Here we set
pens = pent = pen0 and penp = 5pen0. We can
see that pen0 = 4 yields less than 0.1% surplus
phrases through all iterations, whereas pen0 = 0.5
starts off with 98.2% surplus phrases and goes
down to 55.9% in iteration 6. In terms of BLEU, a
fast learning rate seems to be preferable. The best
results are achieved with pen0 = 3, where the rate
of surplus phrases starts at 6.8% and decreases to
1.7% until iteration 6. In all subsequent experi-
ments, we set pen0 = 3.

5 Length-incremental Training

In this section we describe the complete training
algorithm. The first training iteration is initial-
ized with an empty phrase table. The phrases used
in alignment are backoff phrases, which are gen-
erated on-the-fly. The maximum backoff phrase
length is set to m = 1. Then the forced alignment
is iterated, increasing m by 1 in each iteration, up
to a maximum of mmax = 6.

After mmax = 6 iterations, we have created a
sufficient number of phrase pairs and continue it-
erating the training procedure with new parame-

Arabic English
train Sentences 305K

Running Words 6.5M 6.5M
Vocabulary 104K 74K

dev Sentences 934
Run. Words 19K 20K
Vocabulary 4293 3182

OOVs (run. words) 445 182
test Sentences 1664

Run. Words 31K 32K
Vocabulary 5415 3650

OOVs (run. words) 658 159

Table 1: Statistics for the IWSLT 2011 Arabic-
English data. The out-of-vocabulary words are de-
noted as OOVs.

ters. Now, we do not allow usage of any back-
off phrases in the first decoding run. If the first
run fails, we allow a fallback decoding run, where
backoff phrases are generated only for source
phrases without translation candidates. If this
one also fails, in a final fallback run all possible
phrases are generated. Here we allow a maximum
backoff phrase length of m = 1.

The log-linear feature weights λi used for train-
ing are mostly standard values. Only λwp for
the word penalty is adjusted as described in Sec-
tion 4.5, and λs2t,λt2s for the two phrasal channel
models are incremented with each iteration. We
start off with λs2t = λt2s = 0 and increment the
weights by δ = 0.02 in each iteration, until the
standard value λs2t = λt2s = 0.1 is reached in
iteration 6, after which the values are kept fixed.
MERT is not part of the training procedure, but
only used afterwards for evaluation. The full algo-
rithm is illustrated in Figure 3.

6 Experiments

6.1 Data

We carry out our experiments on the IWSLT 2011
Arabic-English shared task1. It focuses on the
translation of TED talks, a collection of lectures
on a variety of topics ranging from science to cul-
ture. Our bilingual training data is composed of all
available in-domain (TED) data and a selection of
the out-of-domain MultiUN data provided for the
evaluation campaign. The bilingual data selection

1www.iwslt2011.org
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Figure 4: BLEU scores on dev and test over 20
training iterations.

is based on (Axelrod et al., 2011). Data statistics
are given in Table 1. The language model is a 4-
gram LM trained on all provided in-domain mono-
lingual data and a selection based on (Moore and
Lewis, 2010) of the out-of-domain corpora. To ac-
count for statistical variation, all reported results
are average scores over three independent MERT
runs.

6.2 Results

To build the baseline phrase table, we perform
the standard phrase extraction from a symmetrized
word alignment created with the IBM-4 model by
GIZA++. The length of the extracted phrases is
limited to a maximum of six words. The lexical
smoothing scores are computed from IBM-1 prob-
abilities. We run MERT on the development set
(dev) and evaluate on the test set (test). A sec-
ond baseline is the technique described in (Wue-
bker et al., 2010), which we denote as leave-one-
out. It is initialized with the heuristically extracted
table and run for one iteration, which the authors
have shown to be sufficient.

Length-incremental training is performed as de-
scribed in Section 5. After each iteration, we run
MERT on dev using the resulting phrase table and
evaluate. The set of models used here is identical
to the baseline.

The results in BLEU are plotted in Figure 4. We
can see that the performance increases up to it-
eration 5, after which only small changes can be
observed. The performance on dev is similar to

dev test
BLEU TER BLEU TER

[%] [%] [%] [%]
baseline 27.4 54.0 24.6 57.8
leave-one-out 27.3 54.2 24.6 57.7
length-increm. 27.5 53.8 24.9 57.4
lin. interp. 27.9 53.5 25.1† 57.3

Table 2: BLEU and TER scores of the baseline,
phrase training with leave-one-out and length-
incremental training after 12 iterations, as well as
a linear interpolation of the baseline with length-
incremental phrase table. Results marked with †
are statistically significant with 90% confidence.

the baseline, on test the trained phrase tables
are consistently slightly above the baseline. The
optimum on dev is reached in iteration 12. Ex-
act BLEU and TER (Snover et al., 2006) scores of
the optimum on dev and the baseline are given
in Table 2. The phrase table trained with leave-
one-out (Wuebker et al., 2010) performs simlar to
the heuristic baseline. Length-incremental train-
ing is slightly superior to the baseline, yielding
an improvement of 0.3% BLEU and 0.4% TER

on test. Similar to results observed in (DeN-
ero et al., 2006) and (Wuebker et al., 2010), a lin-
ear interpolation with the baseline containing all
phrase pairs from either of the two tables yields a
moderate improvement of 0.5% BLEU and 0.5%
TER both data sets. The BLEU improvement on
test is statistically significant with 90% confi-
dence based on bootstrap resampling as described
by Koehn (2004).

6.3 Analysis

In Figure 5 we plot the number of phrase pairs
present in the phrase tables after each iteration.
In the first 6 iterations, we keep generating new
phrase pairs via backoff phrases. The maximum
of 14.4M phrase pairs is reached after three itera-
tions. For comparison, the size of the heuristically
extracted table is 19M phrase pairs. Afterwards,
backoff phrases are only used in fallback decoding
runs, which leads to drop in the number of phrase
pairs that are being used. It levels out at 10.4M
phrases.

When we take a look at the phrase length distri-
butions in both the baseline and the trained phrase
table shown in Figure 6, we can see that in the lat-
ter the phrases are generally shorter, which con-
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Figure 5: Number of generated phrase pairs over
20 training iterations.

firms observations from previous work. In the
trained phrase table, phrases of length one and two
make up 47% of all phrases. In the heuristically
extracted table it is only 32%. This is even more
pronounced in the intersection of the two tables,
where 68% of the phrases are of length one and
two.

Interestingly, the total overlap between the two
phrase tables is rather small. Only about 18.5%
of the phrases from the trained table also appear in
the heuristically extracted one. This shows that, by
generating phrases on-the-fly without restrictions
based on a word alignment or a bias from intializa-
tion, our training procedure strongly diverges from
the baseline phrase table. We conclude that most
previous work in this area, which adhered to the
above mentioned restrictions, was only able to ex-
plore a fraction of the full potential of real phrase
training.

Following (DeNero et al., 2006), we compute
the entropy of the distributions within the phrase
tables to quantify the ’smoothness’ of the distri-
bution. For a given source phrase f̃ , it is defined
as

H(f̃) =
∑

ẽ

p(ẽ|f̃)log(p(ẽ|f̃)). (6)

A flat distribution with a high level of uncer-
tainty yields a high entropy, whereas a peaked dis-
tribution with little uncertainty produces a low en-
tropy. We analyze the phrase tables filtered to-
wards the dev and test sets. The average en-
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Figure 6: Histogram of the phrase lengths present
in the phrase tables.

tropy, weighted by frequency, is 3.1 for the ta-
ble learned with length-incremental training, com-
pared to 2.7 for the heuristically extracted one.
However, the interpolated table, which has the best
performance, lies in between with an average en-
tropy of 2.9. When we consider the histogram of
entropies for the phrase tables in Figure 7, we can
see that in the baseline phrase table 3.8% of the
phrases haven an entropy below 0.5, compared to
0.90% for length-incremental training and 0.16%
for the linear interpolation. Therefore, we can
confirm the observation in (DeNero et al., 2006),
that phrases with a near-zero entropy are undesir-
able for decoding. The distribution of the higher
entropies, however, does not seem to matter for
translation quality. This also gives us a handle for
understanding, why phrase table interpolation of-
ten improves results: It largely seems to eliminate
near-zero entropies from either table.

6.4 Training time

The training was not run under controlled condi-
tions, so we can only give a rough estimate of
how the training times between the different meth-
ods compare. Also, some of the steps were par-
allelized while others are not. To account for
the computational resources needed, we report the
trainig times on a single machine by summing the
times for all parallel and sequential processes.

Heuristc phrase extraction from the word align-
ment took us about 1.7 hours. A single itera-
tion of standard phrase training (leave-one-out)
needs about 24 hours. The first iteration of length-
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phrase tables.

incremental training as well as all iterations after
the sixth also took roughly 24 hours. The itera-
tions two through six of length-incremental train-
ing are considerably more expensive due to the
larger size of backoff phrases. Iteration six, with
a maximum backoff phrase size of six words on
source and target side, was the slowest with around
740 hours.

7 Conclusion

In this work we presented a training procedure for
phrase or rule tables in statistical machine trans-
lation. It is based on force-aligning the training
data with a modified version of the translation de-
coder. Different from previous work, we com-
pletely avoid the use of a word alignment on the
bilingual training corpus. Instead, we initialize the
procedure with an empty phrase table and gener-
ate all possible phrases on-the-fly through the con-
cept of backoff phrases. Starting with a maximum
phrase length of m = 1, we increment m in each
iteration, until we reach mmax. Then, we con-
tinue training in a more conventional fashion, al-
lowing creation of new phrases only in fallback
runs. As additional extensions to previous work
we introduce fallback decoding runs for higher
coverage of the data and local language models
for better pre-selection of phrases. The effects
of the most important hyper parameters of our
procedure are discussed and we show how they
were selected in our setup. The experiments are
carried out with a phrase-based decoder on the
IWSLT 2011 Arabic-English shared task. The

trained phrase table slightly outperforms our state-
of-the-art baseline and a linear interpolation yields
an improvement of 0.5% BLEU and 0.5% TER.
The BLEU improvement on test is statistically
significant with 90% confidence. The small over-
lap of 18.5% between the trained and the heuris-
tically extracted phrase table shows how initial-
ization or restrictions based on word alignments
would have biased the training procedure. We also
analyzed the distribution of entropies within the
phrase tables, confirming the previous observation
that fewer near-zero entropy phrases are advanta-
geous for decoding. We also showed that, in our
setup, near-zero entropies are largely eliminated
by phrase table interpolation.

In future work we plan to apply this technique
as a more principled way to train a wider range of
models similar to (Duan et al., 2012). But even
for the phrase models, we have only scratched the
surface of its potential. We hope that by finding
a meaningful way to set the hyper parameters of
our training procedure, better and smaller phrase
tables can be created.
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Abstract
We present Positive Diversity Tuning, a
newmethod for tuningmachine translation
models specifically for improved perfor-
mance during system combination. Sys-
tem combination gains are often limited
by the fact that the translations produced
by the different component systems are
too similar to each other. We propose a
method for reducing excess cross-system
similarity by optimizing a joint objective
that simultaneously rewards models for
producing translations that are similar to
reference translations, while also punish-
ing them for translations that are too sim-
ilar to those produced by other systems.
The formulation of the Positive Diversity
objective is easy to implement and allows
for its quick integration with most machine
translation tuning pipelines. We find that
individual systems tuned on the same data
to Positive Diversity can be even more
diverse than systems built using different
data sets, while still obtaining good BLEU
scores. When these individual systems are
used together for system combination, our
approach allows for significant gains of 0.8
BLEU even when the combination is per-
formed using a small number of otherwise
identical individual systems.

1 Introduction

The best performing machine translation sys-
tems are typically not individual decoders but
rather are ensembles of two ormore systemswhose
output is then merged using system combination
algorithms. Since combining multiple distinct
equally good translation systems reliably produces
gains over any one of the systems in isolation, it is
widely used in situations where high quality is es-
sential.

Exploiting system combination brings signifi-
cant cost: Macherey and Och (2007) showed that
successful system combination requires the con-
struction of multiple systems that are simultane-
ously diverse and well-performing. If the systems
are not distinct enough, they will bring very lit-
tle value during system combination. However,
if some of the systems produce diverse transla-
tions but achieve lower overall translation quality,
their contributions risk being ignored during sys-
tem combination.
Prior work has approached the need for diverse

systems by using different system architectures,
model components, system build parameters, de-
coder hyperparameters, as well as data selection
and weighting (Macherey and Och, 2007; DeNero
et al., 2010; Xiao et al., 2013). However, during
tuning, each individual system is still just trained to
maximize its own isolated performance on a tune
set, or at best an error-driven reweighting of the
tune set, without explicitly taking into account the
diversity of the resulting translations. Such tuning
does not encourage systems to rigorously explore
model variations that achieve both good translation
quality and diversity with respect to the other sys-
tems. It is reasonable to suspect that this results in
individual systems that under exploit the amount
of diversity possible, given the characteristics of
the individual systems.
For better system combination, we propose

building individual systems to attempt to simulta-
neously maximize the overall quality of the indi-
vidual systems and the amount of diversity across
systems. We operationalize this problem formu-
lation by devising a new heuristic measure called
Positive Diversity that estimates the potential use-
fulness of individual systems during system com-
bination. We find that optimizing systems toward
Positive Diversity leads to significant performance
gains during system combination even when the
combination is performed using a small number of
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otherwise identical individual translation systems.
The remainder of this paper is organized as fol-

lows. Section 2 and 3 briefly review the tuning
of individual machine translation systems and how
system combination merges the output of multiple
systems into an improved combined translation.
Section 4 introduces our Positive Diversity mea-
sure. Section 5 introduces an algorithm for training
a collection of translation systems toward Positive
Diversity. Experiments are presented in sections 6
and 7. Sections 8 and 9 conclude with discussions
of prior work and directions for future research.

2 Tuning Individual Translation Systems

Machine translation systems are tuned toward
somemeasure of the correctness of the translations
produced by the system according to one or more
manually translated references. As shown in equa-
tion (1), this can be written as finding parameter
valuesΘ that produce translations sysΘ that in turn
achieve a high score on some correctness measure:

argmax
Θ

Correctness(ref[],sysΘ) (1)

The correctness measure that systems are typi-
cally tuned toward is BLEU (Papineni et al., 2002),
which measures the fraction of the n-grams that
are both present in the reference translations and
the translations produced by a system. The BLEU
score is computed as the geometric mean of the
resulting n-gram precisions scaled by a brevity
penalty.
The most widely used machine translation

tuning algorithm, minimum error rate training
(MERT) (Och, 2003), attempts to maximize the
correctness objective directly. Popular alternatives
such as pairwise ranking objective (PRO) (Hop-
kins and May, 2011), MIRA (Chiang et al., 2008),
and RAMPION (Gimpel and Smith, 2012) use sur-
rogate optimization objectives that indirectly at-
tempt to maximize the correctness function by us-
ing it to select targets for training discriminative
classification models. In practice, either optimiz-
ing correctness directly or optimizing a surrogate
objective that uses correctness to choose optimiza-
tion targets results in roughly equivalent transla-
tion performance (Cherry and Foster, 2012).
Even when individual systems are being built

to be used in a larger combined system, they are
still usually tuned to maximize their isolated in-
dividual system performance rather than to maxi-

mize the potential usefulness of their contribution
during system combination.1 To our knowledge,
no effort has been made to explicitly tune toward
criteria that attempts to simultaneously maximize
the translation quality of individual systems and
their mutual diversity. This is unfortunate since the
most valuable component systems for system com-
bination should not only obtain good translation
performance, but also produce translations that are
different from those produced by other systems.

3 System Combination

Similar to speech recognition’s Recognizer Out-
put Voting Error Reduction (ROVER) algorithm
(Fiscus, 1997), machine translation system com-
bination typically operates by aligning the transla-
tions produced by two or more individual transla-
tion systems and then using the alignments to con-
struct a search space that allows new translations to
be pieced together by picking and choosing parts
of the material from the original translations (Ban-
galore et al., 2001; Matusov et al., 2006; Rosti et
al., 2007a; Rosti et al., 2007b; Karakos et al., 2008;
Heafield and Lavie, 2010a).2 The alignment of the
individual system translations can be performed
using alignment driven evaluation metrics such as
invWER, TERp, METEOR (Leusch et al., 2003;
Snover et al., 2009; Denkowski and Lavie, 2011).
The piecewise selection of material from the orig-
inal translations is performed using the combina-
tion model’s scoring features such as n-gram lan-
guage models, confidence models over the indi-
vidual systems, and consensus features that score a
combined translation using n-gramsmatches to the
individual system translations (Rosti et al., 2007b;
Zhao and He, 2009; Heafield and Lavie, 2010b).
Both system confidence model features and n-

gram consensus features score contributions based
in part on how confident the system combination
model is in each individual machine translation
system. This means that little or no gains will typ-
ically be seen when combining a good system with
poor performing systems even if the systems col-

1The exception being Xiao et al. (2013)’s work using
boosting for error-driven reweighting of the tuning set

2Other system combination techniques exist such as can-
didate selection systems, whereby the combination model at-
tempts to find the best single candidate produced by one of the
translation engines (Paul et al., 2005; Nomoto, 2004; Zwarts
and Dras, 2008), decoder chaining (Aikawa and Ruopp,
2009), re-decoding informed by the decoding paths taken
by other systems (Huang and Papineni, 2007), and decoding
model combination (DeNero et al., 2010).
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Input : systems [], tune(), source, refs [], α, EvalMetric (), SimMetric ()
Output: models []

// start with an empty set of translations from prior iterations
other_sys []← []

for i← 1 to len(systems []) do
// new Positive Diversity measure using prior translations
PDα,i()← new PD(α, EvalMetric(), SimMetric(), refs [], other_sys [])

// tune a new model to fit PDα,i

// e.g., using MERT, PRO, MIRA, RAMPION, etc.
models [i]← tune(systems [i], source, PDα,i())

// Save translations from tuned modeli for use during
// the diversity computation for subsequent systems
push(other_sys [], translate(systems [i], models [i], source))

end

return models []
Algorithm 1: Positive Diversity Tuning (PDT)

lectively produce very diverse translations.3
The requirement that the systems used for sys-

tem combination be both of high quality and di-
verse can be and often is met by building several
different systems using different system architec-
tures, model components or tuning data. However,
as will be shown in the next few sections, by ex-
plicitly optimizing an objective that targets both
translation quality and diversity, it is possible to
obtain meaningful system combination gains even
using a single system architecture with identical
model components and the same tuning set.

4 Positive Diversity

We propose Positive Diversity as a heuristic
measurement of the value of potential contribu-
tions from an individual system to system combi-
nation. As given in equation (2), PositiveDiversity
is defined as the correctness of the translations pro-
duced by a systemminus a penalty term that scores
how similar the systems translations are with those
produced by other systems:

PDα = α Correctness(ref[],sysΘ)−
(1 − α) Similarity(other_sys[],sysΘ)

(2)
The hyperparameter α explicitly trades-off the

preference for a well performing individual sys-
3The machine learning theory behind boosting suggests

that it should be possible to combine a very large number of
poor performing systems into a single good system. However,
for machine translation, using a very large number of individ-
ual systems brings with it difficult computational challenges.

tem with system combination diversity. Higher
α values result in a Positive Diversity metric that
mostly favors good quality translations. However,
even for large α values, if two translations are of
approximately the same quality, the Positive Di-
versity metric will prefer the one that is the most
diverse given the translations being produced by
other systems.
The Correctness() and Similarity()

measures are any function that can score transla-
tions from a single system against other transla-
tions. This includes traditionalmachine translation
evaluation metrics (e.g, BLEU, TER, METEOR)
as well as any other measure of textual similarity.
For the remainder of this paper, we use BLEU to

measure both correctness and the similarity of the
translations produced by the individual systems.
When tuning individual translation systems toward
Positive Diversity, our task is then to maximize
equation (3) rather than equation (1):

argmaxΘ α BLEU(ref[],sys)−
(1 − α) BLEU(other_sys[],sys)

(3)

Since this learning objective is simply the differ-
ence between two BLEU scores, it should be easy
to integrate into most existing machine translation
tuning pipelines that are already designed to op-
timize performance on translation evaluation met-
rics.
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PDT Individual System Diversity
System \ Iteration 1 2 3 4 5 6 7 8 9 10
α = 0.95 36.6 32.0 19.0 13.6 11.9 8.2 15.9 8.7 7.3 2.3
α = 0.97 32.9 21.7 17.7 10.4 2.7 7.4 2.3 7.3 2.1 2.9
α = 0.99 23.9 13.1 7.9 2.3 3.2 2.6 2.2 1.5 3.4 0.7

Table 1: Diversity scores for PDT individual systems onBOLT dev12 dev. Individual systems are tuned to
Positive Diversity on GALE dev10 web tune. A system’s diversity score is measured as its 1.0−BLEU
score on the translations produced by PDT systems from earlier iterations. Higher scores mean more
diversity.

Diversity of Baseline System vs. Individual PDT Systems Available at Iteration i

PDT Systems \ Iteration 0 1 2 3 4 5 6 7 8 9 10
α = 0.95 27.3 20.4 16.8 14.9 12.8 11.4 9.4 8.6 8.3 8.1 7.9
α = 0.97 28.4 21.3 15.8 14.7 13.3 13.0 12.5 12.2 10.3 10.0 9.7
α = 0.99 27.5 22.6 18.5 17.1 16.8 15.9 15.4 14.6 14.3 13.5 13.4

Table 2: Diversity scores of a baseline system tuned to BOLT dev12 tune, a different tuning set than what
was used for the PDT individual systems. The baseline system diversity is scored against all of the PDT
individual systems available at iteration i for a given α value and over translations of BOLT dev12 dev.

5 Tuning to Positive Diversity

To tune a collection of machine transla-
tion systems using Positive Diversity, we pro-
pose a staged process, whereby systems are
tuned one-by-one to maximize equation (2)
using the translations produced by previously
trained systems to compute the diversity term,
Similarity(other_sys[], sysΘ).
As shown in Algorithm 1, Positive Diversity

Tuning (PDT) takes as input: a list of machine
translation systems, systems[]; a tuning proce-
dure for training individual systems, tune(); a
tuning data set with source and reference trans-
lations, source and refs; a hyperparameter α
to adjust the trade-off between fitting the refer-
ence translations and diversity between the sys-
tems; and metrics to measure correctness and
cross-system similarity, Correctness() and
Similarity().
The list of systems can contain any translation

system that can be parameterized using tune().
This can be a heterogeneous collection of substan-
tially different systems (e.g., phrase-based, hier-
archical, syntactic, or tunable hybrid systems) or
even multiple copies of a single machine transla-
tion system. In all cases, systems later in the list
will be trained to produce translations that both fit
the references and are encouraged to be distinct
from the systems earlier in the list.
During each iteration, the system constructs a

new Positive Diversity measure PDα,i using the
translations produced during prior iterations of
training. This PDα,i measure is then given to
tune() as the the training criteria for modeli

of systemi. The function tune() is any al-
gorithm that allows a translation system’s perfor-
mance to be fit to an evaluation metric. This
includes both minimum error rate training algo-
rithms (MERT) that attempt to directly optimize a
system’s performance on a metric, as well as other
techniques such as Pairwaise Ranking Objective
(PRO),MIRA, and RAMPION that optimize a sur-
rogate loss based on the preferences of an evalua-
tion metric.
After training a model for each system, the re-

sulting model-system pairs can be combined using
any arbitrary system combination strategy.

6 Experiments

Experiments are performed using a single
phrase-based Chinese-to-English translation sys-
tem, built with the Stanford Phrasal machine trans-
lation toolkit (Cer et al., 2010). The system was
built using all of the parallel data available for
Phase 2 of the DARPA BOLT program. The Chi-
nese data was segmented to the Chinese Tree-
Bank (CTB) standard using a maximum match
word segmenter, trained on the output of a CRF
segmenter (Xiang et al., 2013). The bitext was
word aligned using the Berkeley aligner (Liang et
al., 2006). Standard phrase-pair extraction heuris-
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BLEU scores from individual systems
tuned during iteration i of PDT

PDT System 0 1 2 3 4 5 6 7 8 9 10
α = 0.95 16.2 16.0 15.7 15.9 16.1 16.1 15.9 15.4 16.1 15.9 16.2
α = 0.97 16.4 15.8 15.8 15.9 16.0 16.2 16.1 16.2 16.2 16.4 16.1
α = 0.99 16.3 16.1 16.2 15.9 16.3 16.4 16.4 16.3 16.4 16.5 16.3

Table 3: BLEU scores on BOLT dev12 dev achieved by the individual PDT systems tuned on GALE
dev10 web tune. Scores report individual system performance before system combination.

tics were used to extract a phrase-table over word
alignments symmetrized using grow-diag (Koehn
et al., 2003). We made use of a hierarchical re-
ordering model (Galley and Manning, 2008) as
well as a 5-gram languagemodel trained on the tar-
get side of the bi-text and smoothed usingmodified
Kneeser-Ney (Chen and Goodman, 1996).
Individual PDT systems were tuned on the

GALE dev10 web tune set using online-PRO
(Green et al., 2013; Hopkins and May, 2011)
to the Positive Diversity Tuning criterion.4 The
Multi-EngineMachine Translation (MEMT) pack-
age was used for system combination (Heafield
and Lavie, 2010a). We used BOLT dev12 dev as
a development test set to explore different α pa-
rameterizations of the Positive Diversity criteria.

7 Results

Table 1 illustrates the amount of diversity
achieved by individual PDT systems on the BOLT
dev12 dev evaluation set for α values 0.95, 0.97,
and 0.99.5 Using different tuning sets is one of the
common strategies for producing diverse compo-
nent systems for system combination. Thus, as a
baseline, Table 2 gives the diversity of a system
tuned to BLEU using a different tuning set, BOLT
dev12 tune, with respect to the PDT systems avail-
able at each iteration. As in Table 1, the diver-
sity computation is performed using translations of
BOLT dev12 dev.
Like the cross-system diversity term in the for-

mulation of Positive Diversity using BLEU in

4Preliminary experiments performed using MERT to train
the individual systems produced similar results to those seen
here. However, we switched to online-PRO since it dramat-
ically reduced the amount time required to train each indi-
vidual system. We expect similar results when using other
tuning algorithms for the individual systems, such as MIRA
or RAMPION.

5Due to time constraints, wewere not able to try additional
α values. Given that our results suggest the lowest α value
from the ones we tried works best (i.e., α = 0.95), it would
be worth trying additional smaller α values such as 0.90

equation (3), we measure the diversity of trans-
lations produced by an individual system as the
negative BLEU score of the translations with re-
spect to the translations from systems built during
prior iterations. For clarity of presentation, these
diversity scores are reported as 1.0−BLEU. Using
1.0−BLEU to score cross-system diversity, means
that the reported numbers can be roughly inter-
preted as the fraction of n-grams from the individ-
ual systems built during iteration i that have not
been previously produced by other systems built
during any iteration < i.6

In our experiments, we find that for α ≤ 0.97,
during the first three iterations of PDT, there is
more diversity among the PDT systems tuned on a
single data set (GALE dev10 web tune) than there
is between systems tuned on different datasets
(BOLT dev12 tune vs. GALE dev10 wb tune). This
is significant since using different tuning sets is a
common strategy for increasing diversity during
system combination. These results suggest PDT
is better at producing additional diversity than us-
ing different tuning sets. The PDT systems also
achieve good coverage of the n-grams present in
the baseline system that was tuned using different
data. At iteration 10 and using α = 0.95, the base-
line systems receive a diversity score of only 7.9%
when measured against the PDT systems.7

As PDT progresses, it becomes more difficult to
tune systems to produce high quality translations
that are substantially different from those already
being produced by other systems. This is seen in
the per iteration diversity scores, whereby during
iteration 5, the individual PDT translation systems
have a 1.0−BLEU diversity score with prior sys-
tems ranging from 11.9%, when using an α value

6This intuitive interpretation assumes a brevity penalty
that is approximately 1.0.

7For this diversity score, the brevity penalty is 1.0, mean-
ing the diversity score is based purely on the n-grams present
in the baseline system that are not present in translations pro-
duced by one or more of the PDT systems
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Figure 1: System combination BLEU score achieved using Positive Diversity Tuning with the α values
0.95, 0.97, and 0.99. Four iterations of PDT with α = 0.95 results in a 0.8 BLEU gain over the initial
BLEU tuned system. We only examine combinations of up to 6 systems (i.e., iterations 0-5), as the time
required to tune MEMT increases dramatically as additional systems are added.

of 0.95, to 3.2% when using an α value of 0.99.
A diversity score of 3.2% when using α = 0.99
suggests that by iteration 5, very high α values
put insufficient pressure on learning to find mod-
els that produce diverse translations. When using
an α of 0.95, a sizable amount of diversity still ex-
ists across the systems translations all the way to
iteration 7. By iteration 10, only a small amount
of additional diversity is contributed by each addi-
tional system for all of the alpha values (< 3%).8

Table 3 shows the BLEU scores obtained on the
BOLT dev12 dev evaluation set by the individual
systems tuned during each iteration of PDT. The
0th iteration for each α value has an empty set of
translations for the diversity term. This means the
resulting systems are effectively tuned to just max-
imize BLEU. Differences in system performance
during this iteration are only due to differences in
the random seeds used during training. Starting at
iteration 1, the individual systems are optimized to
produce translations that both score well on BLEU

8We speculate that if heterogeneous translation systems
were used with PDT, it could be possible to run with higher α
values and still obtain diverse translations after a large number
of PDT iterations

and are diverse from the systems produced dur-
ing prior iterations. It is interesting to note that
the systems trained during these subsequent itera-
tions obtain BLEU scores that are usually competi-
tive with those obtained by the iteration 0 systems.
Taken together with the diversity scores in Table
1, this strongly suggests that PDT is succeeding
at increasing diversity while still producing high
quality individual translation systems.
Figure 1 graphs the system combination BLEU

score achieved by using varying numbers of Pos-
itive Diversity Tuned translation systems and dif-
ferent α values to trade-off translation quality with
translation diversity. After running 4 iterations of
PDT, the best configuration, α = 0.95, achieves a
BLEU score that is 0.8 BLEU higher than the cor-
responding BLEU trained iteration 0 system.9

From the graph, it appears that PDT perfor-
mance initially increases as additional systems are
added to the system combination and then later
plateaus or even drops after too many systems are
included. The combinations using PDT systems

9Recall that the iteration 0 system is effectively just tuned
to maximize BLEU since we have an empty set of translations
from other systems that are used to compute diversity
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built with higher α values reach the point of di-
minishing returns faster than combinations using
systems built with lower alpha values. For in-
stance, α = 0.99 plateaus on iteration 2, while
α = 0.95 peaks on iteration 4. It might be pos-
sible to identify the point at which additional sys-
tems will likely not be useful by using the diversity
scores in Table 1. Scoring about 10% or less on
the 1−BLEUdiversitymeasure, with respect to the
other systems being used within the system combi-
nation, seems to suggest the individual system will
not be very helpful to add into the combination.

8 Related Work

While the idea of encouraging diversity in indi-
vidual systems that will be used for system combi-
nation has been proven effective in speech recogni-
tion and document summarization (Hinton, 2002;
Breslin and Gales, 2007; Carbonell and Goldstein,
1998; Goldstein et al., 2000), there has only been
a modest amount of prior work exploring such
approaches for machine translation. Prior work
within machine translation has investigated adapt-
ing machine learning techniques for building en-
sembles of classifiers to translation system tuning,
encouraging diversity by varying both the hyper-
parameters and the data used to build the individual
systems, and chaining together individual transla-
tion systems.
Xiao et al. (2013) explores using boosting to

train an ensemble of machine translation systems.
Following the standard Adaboost algorithm, each
system was trained in sequence on an error-driven
reweighting of the tuning set that focuses learning
on the material that is the most problematic for the
current ensemble. They found that using a single
system to tune a large number of decoding mod-
els to different Adaboost guided weightings of the
tuning data results in significant gains during sys-
tem combination.
Macherey and Och (2007) investigated system

combination using automatic generation of diverse
individual systems. They programmatically gener-
ated variations of systems using different build and
decoder hyperparameters such as choice of word-
alignment algorithm, distortion limit, variations of
model feature function weights, and the set of lan-
guage models used. Then, in a process similar to
forward feature selection, they constructed a com-
bined system by iteratively adding the individual
automatically generated system that produced the

largest increase in quality when used in conjunc-
tion with the systems already selected for the com-
bined system. They also explored producing varia-
tion by using different samplings of the the training
data. The individual and combined systems pro-
duced by sampling the training data were inferior
to systems that used all of the available data. How-
ever, the experiments facilitated insightful analysis
on what properties an individual system must have
in order to be useful during system combination.
They found that in order to be useful within a com-
bination, individual systems need to produce trans-
lations of similar quality to other individual sys-
tems within the system combination while also be-
ing as uncorrelated as possible from the other sys-
tems. The Positive Diversity Tuning method in-
troduced in our work is an explicit attempt to build
individual translation systems that meet this crite-
ria, while being less computationally demanding
than the diversity generating techniques explored
by Macherey and Och (2007).
Aikawa and Ruopp (2009) investigated build-

ing machine translations systems specifically for
use in sequential combination with other systems.
They constructed chains of systems whereby the
output of one decoder is feed as input to the next
decoder in the pipeline. The downstream systems
are built and tuned to correct errors produced by
the preceding system. In this approach, the down-
stream decoder acts as a machine learning based
post editing system.

9 Conclusion

We have presented Positive Diversity as a new
way of jointly measuring the quality and diversity
of the contribution of individual machine transla-
tion systems to system combination. This method
heuristically assesses the value of individual trans-
lation systems by measuring their similarity to the
reference translations as well as their dissimilarity
from the other systems being combined. We op-
erationalize this metric by reusing existing tech-
niques from machine translation evaluation to as-
sess translation quality and the degree of similar-
ity between systems. We also give a straightfor-
ward algorithm for training a collection of individ-
ual systems to optimize Positive Diversity. Our
experimental results suggest that tuning to Positive
Diversity leads to improved cross-system diversity
and system combination performance even when
combining otherwise identical machine translation
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systems.
The Positive Diversity Tuning method explored

in this work can be used to tune individual systems
for any ensemble in which individual models can
be fit to multiple extrinsic loss functions. Since
Hall et al. (2011) demonstrated the general purpose
application of multiple extrinsic loss functions to
training structured prediction models, Positive Di-
versity Tuning could be broadly useful within nat-
ural language processing and for other machine
learning tasks.
In future work within machine translation, it

may prove fruitful to examine more sophisticated
measures of dissimilarity. For example, one could
imagine a metric that punishes instances of simi-
lar material in proportion to some measure of the
expected diversity of the material. It might also be
useful to explore joint rather than sequential train-
ing of the individual translation systems.
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Abstract

This paper describes a set of experi-
ments on two sub-tasks of Quality Esti-
mation of Machine Translation (MT) out-
put. Sentence-level ranking of alternative
MT outputs is done with pairwise classi-
fiers using Logistic Regression with black-
box features originating from PCFG Pars-
ing, language models and various counts.
Post-editing time prediction uses regres-
sion models, additionally fed with new
elaborate features from the Statistical MT
decoding process. These seem to be better
indicators of post-editing time than black-
box features. Prior to training the models,
feature scoring with ReliefF and Informa-
tion Gain is used to choose feature sets of
decent size and avoid computational com-
plexity.

1 Introduction

During the recent years, Machine Translation
(MT) has reached levels of performance which al-
low for its integration into real-world translation
workflows. Despite the high speed and various ad-
vantages of this technology, the fact that the MT
results are rarely perfect and often require man-
ual corrections has raised a need to assess their
quality, predict the required post-editing effort and
compare outputs from various systems on applica-
tion time. This has been the aim of current re-
search on Quality Estimation, which investigates
solutions for several variations of such problems.

We describe possible solutions for two prob-
lems of MT Quality Estimation, as part of
the 8th Shared Task on Machine Translation:
(a) sentence-level quality ranking (1.2) of multi-
ple translations of the same source sentence and
(b) prediction of post-editing time (1.3). We
present our approach on acquiring (section 2.1)

and selecting features (section 2.2), we explain
the generation of the statistical estimation systems
(section 2.3) and we evaluate the developed solu-
tions with some of the standard metrics (section 3).

2 Methods: Quality Estimation as
machine learning

These two Quality Estimation solutions have been
seen as typical supervised machine learning prob-
lems. MT output has been given to humans, so that
they perform either (a) ranking of the multiple MT
system outputs in terms of meaning or (b) post-
editing of single MT system output, where time
needed per sentence is measured. The output of
these tasks has been provided by the shared task
organizers as a training material, whereas a small
keep-out set has been reserved for testing pur-
poses.

Our task is therefore to perform automatic qual-
ity analysis of the translation output and the trans-
lation process in order to provide features for the
supervised machine learning mechanism, which is
then trained over the corresponding to the respec-
tive human behaviour. The task is first optimized
in a development phase in order to produce the two
best shared task submissions for each task. These
are finally tested on the keep-out set so that their
performance is compared with the ones submitted
by all other shared-task participants.

2.1 Feature acquisition

We acquire two types of sentence-level features,
that are expected to provide hints about the quality
of the generated translation, depending on whether
they have access to internal details of the MT de-
coding process (glass-box) or they are only de-
rived from characteristics of the processed and
generated sentence text (black-box).
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2.1.1 Black-box features
Features of this type are generated as a result of
automatic analysis of both the source sentence and
the MT output (when applicable), whereas many
of them are already part of the baseline infrastruc-
ture. For all features we also calculate the ratios
of the source to the target sentence. These features
include:

PCFG Features: We parse the text with a PCFG
grammar (Petrov et al., 2006) and we derive the
counts of all node labels (e.g. count of VPs, NPs
etc.), the parse log-likelihood and the number of
the n-best parse trees generated (Avramidis et al.,
2011).

Rule-based language correction is a result of
hand-written controlled language rules, that indi-
cate mistakes on several pre-defined error cate-
gories (Naber, 2003). We include the number of
errors of each category as a feature.

Language model scores include the smoothed
n-gram probability and the n-gram perplexity of
the sentence.

Count-based features include count and per-
centage of tokens, unknown words, punctuation
marks, numbers, tokens which do or do not con-
tain characters “a-z”; the absolute difference be-
tween number of tokens in source and target nor-
malized by source length, number of occurrences
of the target word within the target hypothesis av-
eraged for all words in the hypothesis (type/token
ratio).

Source frequency: A set of eight features in-
cludes the percentage of uni-grams, bi-grams and
tri-grams of the processed sentence in frequency
quartiles 1 (lower frequency words) and 4 (higher
frequency words) in the source side of a parallel
corpus (Callison-Burch et al., 2012).

Contrastive evaluation scores: For the ranking
task, each translation is scored with an automatic
metric (Papineni et al., 2002; Lavie and Agarwal,
2007), using the other translations as references
(Soricut et al., 2012).

2.1.2 Glass-box features
Glass-box features are available only for the time-
prediction task, as a result of analyzing the verbose
output of the Minimum Bayes Risk decoding pro-
cess.

Counts from the best hypothesis: Count
of phrases, tokens, average/minimum/maximum
phrase length, position of longest and shortest
phrase in the source sentence; count of words
unknown to the phrase table, average number of
unknown words first/last position of an unknown
word in the sentence normalized to the number of
tokens, variance and deviation of the position of
the unknown words.

Log probability (pC) and future cost esti-
mate (c) of the phrases chosen as part of the best
translation: minimum and maximum values and
their position in the sentence averaged to the num-
ber of sentences, and also their average, variance,
standard deviation; count of the phrases whose
probability or future cost estimate is lower and
higher than their standard deviation; the ratio of
these phrases to the total number of phrases.

Alternative translations from the search path
of the decoder: average phrase length, average of
the average/variance/standard deviation of phrase
log probability and future cost estimate, count of
alternative phrases whose log probability or future
cost estimate is lower and higher than their stan-
dard deviation.

2.2 Feature selection

Feature acquisition results in a huge number of
features. Although the machine learning mech-
anisms already include feature selection or regu-
larization, huge feature sets may be unusable for
training, due to the high processing needs and the
sparsity or noise they may infer. For this purpose
we first reduce the number of features by scoring
them with two popular correlation measurement
methods.

2.2.1 Information gain
Information gain (Hunt et al., 1966) estimates the
difference between the prior entropy of the classes
and the posterior entropy given the attribute val-
ues. It is useful for estimating the quality of each
attribute but it works under the assumption that
features are independent, so it is not suitable when
strong feature inter-correlation exists. Information
gain is only used for the sentence ranking task af-
ter discretization of the feature values.

2.2.2 ReliefF
ReliefF assesses the ability of each feature to dis-
tinguish between very similar instances from dif-
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ferent classes (Kononenko, 1994). It picks up a
number of instances in random and calculates a
feature contribution based on the nearest hits and
misses. It is a robust method which can deal with
incomplete and noisy data (Robnik-Šikonja and
Kononenko, 2003).

2.3 Machine learning algorithms

Machine learning is performed for the two sub-
tasks using common pairwise classification and
regression methods, respectively.

2.3.1 Ranking with pairwise binary
classifiers

For the sub-task on sentence-ranking we used pair-
wise classification, so that we can take advantage
of several powerful binary classification methods
(Avramidis, 2012). We used logistic regression,
which optimizes a logistic function to predict val-
ues in the range between zero and one (Cameron,
1998), given a feature set X:

P (X) =
1

1 + e−1(a+bX)
(1)

The logistic function is fitted using the Newton-
Raphson algorithm to iteratively minimize the
least squares error computed from training data
(Miller, 2002). Experiments are repeated with two
variations of Logistic Regression concerning inter-
nal features treatment: Stepwise Feature Set Selec-
tion (Hosmer, 1989) and L2-Regularization (Lin
et al., 2007).

2.3.2 Regression
For the sub-task on post-editing time prediction,
we experimented with several regression meth-
ods, such as Linear Regression, Partial Least
Squares (Stone and Brooks, 1990), Multivariate
Adaptive Regression Splines (Friedman, 1991),
LASSO (Tibshirani, 1996), Support Vector Regres-
sion (Basak et al., 2007) and Tree-based regres-
sors. Indicatively, Linear regression optimizes co-
efficient β for predicting a value y, given a feature
vector X:

y = Xβ + ε (2)

2.4 Evaluation

The ranking task is evaluated by measuring cor-
relation between the predicted and the human
ranking, with the use of Kendall tau (Kendall,
1938) including penalization of ties. We addi-
tionally consider two more metrics specialized in

ranking tasks: Mean Reciprocal Rank - MRR
(Voorhees, 1999) and Normalized Discounted Cu-
mulative Gain - NDGC (Järvelin and Kekäläinen,
2002), which give better scores to models when
higher ranks (i.e. better translations) are ordered
correctly, as these are more important than lower
ranks.

The regression task is evaluated in terms of Root
Mean Square Error (RMSE) and Mean Average
Error (MAE).

3 Experiment and Results

3.1 Implementation
Relieff is implemented for k=5 nearest neighbours
sampling m=100 reference instances. Information
gain is calculated after discretizing features into
n=100 values

N-gram features are computed with the SRILM
toolkit (Stolcke, 2002) with an order of 5, based
on monolingual training material from Europarl
(Koehn, 2005) and News Commentary (Callison-
Burch et al., 2011). PCFG parsing features are
generated on the output of the Berkeley Parser
(Petrov and Klein, 2007) trained over an English,
a German and a Spanish treebank (Taulé et al.,
2008). The open source language tool1 is used
to annotate source and target sentences with lan-
guage suggestions. The annotation process is or-
ganised with the Ruffus library (Goodstadt, 2010)
and the learning algorithms are executed using the
Orange toolkit (Demšar et al., 2004).

3.2 Sentence-ranking
The sentence-ranking sub-task has provided train-
ing data for two language pairs, German-English
and English-Spanish. For both sentence pairs,
we train the systems using the provided an-
notated data sets WMT2010, WMT2011 and
WMT2012, while the data set WMT2009 is used
for the evaluation during the development phase.
Data sets are analyzed with black-box feature gen-
eration. For each language pair, the two systems
with the highest correlation are submitted.

We start the development with two feature sets
that have shown to perform well in previous ex-
periments: #24 (Avramidis, 2012) including fea-
tures from PCFG parsing, and #31 which is the
baseline feature set of the previous year’s shared
task (Callison-Burch et al., 2012) and we combine
them (#33). Additionally, we create feature sets by

1Open source at http://languagetool.org
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de-en en-es
id feature-set tau MRR NDGC tau MRR NDGC

#24 previous (Avramidis, 2012) 0.28 0.57 0.78 0.09 0.52 0.75
#31 baseline WMT2012 0.04 0.51 0.74 -0.16 0.43 0.69
#32 vanilla WMT2013 0.04 0.51 0.74 -0.13 0.45 0.70
#33 combine #24 and #31 0.29 0.57 0.78 0.10 0.53 0.75
#41 ReliefF 15 best 0.20 0.56 0.77 0.02 0.48 0.72
#411 ReliefF 5 best 0.22 0.53 0.76 0.19 0.49 0.73
#42 InfGain 15 best 0.15 0.53 0.75 -0.14 0.43 0.69
#43 combine #41 and #42 0.22 0.56 0.77 -0.12 0.44 0.70
#431 combine #41, #42 and #24 0.27 0.60 0.80 0.11 0.54 0.75

Table 1: Development experiments for task 1.2, reporting correlation and ranking scores, tested on the
development set WMT2009.

target feature β
avg target word occurrence 2.18
pseudoMETEOR 0.71
count of unknown words 0.55
count of dots -0.25
count of commas 0.15
count of tokens -0.13
count of VPs -0.06
PCFGlog -0.02
lmprob 0.01

Table 3: Beta coefficients of the best fitted logistic
regression on the German-English data set (set #33
with Stepwise Feature Set Selection)

scoring features with ReliefF (features #41x) and
Information Gain (#42). Many combinations of all
the above feature-sets are tested and the most im-
portant of them are shown in Table 1. Feature sets
are described briefly in Table 2.

For German-English, we experiment with 14
feature sets, using both variations of Logistic Re-
gression. The two highest tau scores are given by
Stepwise Feature Set Selection using feature sets
#33 and #24. We see that although baseline fea-
tures #31 alone have very low correlation, when
combined with previously successful #24, provide
the best system in terms of tau. Feature set #431
(which combines the 15 features scored higher
with ReliefF, the 15 features scored higher with In-
formation Gain and the feature set #24) succeeds
pretty well on the additional metrics MRR and
NDGC, but it provides slightly lower tau correla-
tion.

For English-Spanish, the correlation of the pro-
duced systems is significantly lower and it ap-
pears that the L2-regularized logistic regression
performs better as classification method. We ex-
periment with 24 feature sets, after more scor-
ing with ReliefF and Inf. Gain. Surprisingly
enough, Kendall tau correlation indicates that the
best model is trained only with features based

target feature β
count of unknown words -0.55
count of VPs 0.19
count of of PCFG parse trees -0.16
count of tokens 0.15
% of tokens with only letters -0.07
lmprob -0.06
pseudoMETEOR precision -0.05
source/target ratio of parse trees -0.03

Table 4: Most indicative beta coefficients of
the best fitted logistic regression on the English-
Spanish data set (set #431 with L2-regularization)

on counts of numbers and punctuation, combined
with contrastive BLEU score. This seems to rather
overfit a peculiarity of the particular development
set and indeed performs much lower on the final
test set of the shared task (tau=0.04). The second
best feature set (#431) has been described above
and luckily generalizes better on an unknown set.
It is interesting to see that this issue would have
been avoided, if the decision was taken based on
the ranking metrics MRR and NDGC, which pri-
oritize other feature sets. We assume that further
work is needed to see whether these measures are
more expressive and reliable than Kendall tau for
similar tasks.

The fitted β coefficients (in tables 3 and 4) give
an indication of the importance of each feature
(see equation 1), for each language pair. In both
language pairs, target-side features prevail upon
other features. On the comparison of the models
for the two language pairs (and the β coefficients
as well) we can see that the model settings and
performance may vary from one language pair to
another. This also requires further investigation,
given that Kendall tau and the other two metrics
indicate different models as the best ones.

The fact that the German-English set is bet-
ter fitted with Stepwise Feature Set Selec-
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set features

#24 From previous work (Avramidis, 2012):
[s+t]: PCFGlog , count of: unknown words, tokens, PCFG trees, VPs

[t]: pseudoMETEOR

#31 Baseline from WMT12 (Callison-Burch et al., 2012)
[s+t]: tokensavg , lmprob, count of: commas, dots, tokens, avg translations per source word

[s]: avg freq. of low and high freq. bi-grams/tri-grams, % of distinct uni-grams in the corpus
[t]: type/token radio

#32 All 50 “vanilla” features provided by shared-task baseline software “Quest”

#411 ReliefF best 5 features
[s+t]: % of numbers, difference between periods of source and target (plain and averaged)

[t]: pseudoBLEU

Table 2: Description of most important feature sets for task 1.2, before internal feature selection of
Logistic Regression is applied. [s] indicates source, [t] indicates target

de-en en-es
set StepFSS L2reg StepFSS L2reg

#24 0.28 0.25 0.09 0.09
#33 0.29 0.26 0.08 0.10
#411 0.22 0.17 -0.25 0.19
#431 0.27 0.25 0.09 0.11

Table 5: Higher Kendall tau correlation (on the
dev. set) is achieved on German-English by us-
ing Stepwise Feature Set Selection, whereas on
English-Spanish by using L2-regularization

tion, whereas the English-Spanish one with L2-
Regularization (table 5) may be explained by
the statistical theory about these two methods:
The Stepwise method has has been proven to be
too bound to particular characteristics of the de-
velopment set (Flom and Cassell, 2007). L2-
Regularization has been suggested as an alterna-
tive, since it generalizes better on broader data
sets, which is probably the case for English-
Spanish.

Our method also seems to perform well when
compared to evaluation metrics which have access
to reference translations, as shown in this year’s
Metrics Shared Task (Macháček and Ondřej,
2013).

3.3 Post-editing time prediction

The training for the model predicting post-editing
time is performed over the entire given data set
and the evaluation is done with 10-fold cross-
validation. We evaluated 8 feature sets with 6 re-
gression methods each, ending up with 48 experi-
ments.

The evaluation of the most indicative regression
models (two best performing ones per feature set)
can be seen in Table 6. We start with a glass-
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Figure 1: Graphical representation of the values
predicted by the linear regression model with fea-
ture set #6 (blue) against the actual values of the
development set (red)

box feature set, scored with ReliefF and conse-
quently add black-box features. We note the mod-
els that have the lowest Root Mean Square Error
and Mean Average Error.

Our best model seems to be the one built linear
regression using feature set #6. This feature set is
chosen by collecting the 17 best features as scored
by ReliefF and includes both black-box and glass-
box features. How well this model fits the devel-
opment test is represented in Figure 1.

The second best feature set (#8) includes 29
glass-box features with the highest absolute Reli-
efF, joined with the black-box features of the suc-
cessful feature set #6.

More details about the contribution of the most
important features in the linear regression (equa-
tion 2) can be seen in table 7, where the fitted β
coefficients of each feature are given. The vast
majority of the best contributing features are glass-
box features. Some draft conclusions out of the
coefficients may be that post-editing time is lower
when:
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id feature set method RMSE MAE

#1 20 glass-box features with highest absolute ReliefF MARS 91.54 59.07
SVR 93.57 55.87

#2 9 glass-box features with highest positive ReliefF Lasso 83.20 51.57
Linear 83.32 51.72

#3 16 glass-box features with highest positive ReliefF Lasso 77.54 47.16
Linear 77.60 47.27

#4 22 glass-box features with highest positive ReliefF Lasso 76.05 46.37
Linear 76.17 46.48

#5 Combination of feature sets #1 and #2 MARS 91.54 59.07
SVR 93.57 55.87

#6 17 features of any type with highest positive ReliefF Linear 74.70 45.20
Lasso 74.75 44.99

#8 Combination of #5 and #6 + counts of tokens Lasso 75.14 44.99
PLS 77.63 47.48

#6 First submission Linear 84.27 52.41
#8 Second submission PLS 88.34 53.49

Best models 82.60 47.52

Table 6: Development and submitted experiments for task 1.3

• the longest of the source phrases used for pro-
ducing the best hypothesis appears closer to
the end of the sentence

• the phrases with the highest and the lowest
probability appear closer to the end of the
translated sentence

• there are more determiners in the source
and/or less determiners in the translation

• there are more verbs in the translation and/or
less verbs in the source

• there are fewer alternative phrases with very
high probability

Further conclusions can be drawn after examining
these observations along with the exact operation
of the statistical MT system, which is subject to
further work.

4 Conclusion

We describe two approaches for two respective
problems of quality estimation, namely sentence-
level ranking of alternative translations and pre-
diction of time for post-editing MT output. We
present efforts on compiling several feature sets
and we examine the final contribution of the fea-
tures after training Machine Learning models.
Elaborate decoding features seem to be quite help-
ful for predicting post-editing time.

feature β
best hyp: position of the longest aligned
phrase in the source sentence averaged to
the number of phrases

-16.652

best hyp: position of phrase with highest
prob. averaged to the num. of phrases -14.824

source: number of determiners -9.312
best hyp: number of determiners 6.189
best hyp: position of phrase with lowest
prob. averaged to the num. of phrases -5.261

best hyp: position of phrase with lowest
future cost estimate averaged to the
number of phrases

-4.282

best hyp: number of verbs -2.818
best hyp: position of phrase with highest
future cost estimate averaged to the
number of phrases

1.002

search: number of alternative phrases
with very low future cost est. -0.528

source: number of verbs 0.467
search: number of alternative phrases
with very high probability 0.355

search: total num. of translation options -0.153
search: number of alternative phrases
with very high future cost estimate -0.142

best hyp: number of parse trees 0.007
source: number of parse trees 0.002
search: total number of hypotheses 0.001

Table 7: Linear regression coefficients for feature
set #6 indicate the contribution of each feature in
the fitted model
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Abstract
We describe the results of our submissions
to the WMT13 Shared Task on Quality
Estimation (subtasks 1.1 and 1.3). Our
submissions use the framework of Gaus-
sian Processes to investigate lightweight
approaches for this problem. We focus on
two approaches, one based on feature se-
lection and another based on active learn-
ing. Using only 25 (out of 160) fea-
tures, our model resulting from feature
selection ranked 1st place in the scoring
variant of subtask 1.1 and 3rd place in
the ranking variant of the subtask, while
the active learning model reached 2nd
place in the scoring variant using only
∼25% of the available instances for train-
ing. These results give evidence that
Gaussian Processes achieve the state of
the art performance as a modelling ap-
proach for translation quality estimation,
and that carefully selecting features and
instances for the problem can further im-
prove or at least maintain the same per-
formance levels while making the problem
less resource-intensive.

1 Introduction

The purpose of machine translation (MT) quality
estimation (QE) is to provide a quality prediction
for new, unseen machine translated texts, with-
out relying on reference translations (Blatz et al.,
2004; Specia et al., 2009; Callison-burch et al.,
2012). A common use of quality predictions is
the decision between post-editing a given machine
translated sentence and translating its source from
scratch, based on whether its post-editing effort is
estimated to be lower than the effort of translating
the source sentence.

The WMT13 QE shared task defined a group
of tasks related to QE. In this paper, we present

the submissions by the University of Sheffield
team. Our models are based on Gaussian Pro-
cesses (GP) (Rasmussen and Williams, 2006), a
non-parametric probabilistic framework. We ex-
plore the application of GP models in two con-
texts: 1) improving the prediction performance by
applying a feature selection step based on opti-
mised hyperparameters and 2) reducing the dataset
size (and therefore the annotation effort) by per-
forming Active Learning (AL). We submitted en-
tries for two of the four proposed tasks.

Task 1.1 focused on predicting HTER scores
(Human Translation Error Rate) (Snover et al.,
2006) using a dataset composed of 2254 English-
Spanish news sentences translated by Moses
(Koehn et al., 2007) and post-edited by a profes-
sional translator. The evaluation used a blind test
set, measuring MAE (Mean Absolute Error) and
RMSE (Root Mean Square Error), in the case of
the scoring variant, and DeltaAvg and Spearman’s
rank correlation in the case of the ranking vari-
ant. Our submissions reached 1st (feature selec-
tion) and 2nd (active learning) places in the scor-
ing variant, the task the models were optimised
for, and outperformed the baseline by a large mar-
gin in the ranking variant.

The aim of task 1.3 aimed at predicting post-
editing time using a dataset composed of 800
English-Spanish news sentences also translated by
Moses but post-edited by five expert translators.
Evaluation was done based on MAE and RMSE
on a blind test set. For this task our models were
not able to beat the baseline system, showing that
more advanced modelling techniques should have
been used for challenging quality annotation types
and datasets such as this.

2 Features

In our experiments, we used a set of 160 features
which are grouped into black box (BB) and glass
box (GB) features. They were extracted using the
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open source toolkit QuEst1 (Specia et al., 2013).
We briefly describe them here, for a detailed de-
scription we refer the reader to the lists available
on the QuEst website.

The 112 BB features are based on source and
target segments and attempt to quantify the source
complexity, the target fluency and the source-
target adequacy. Examples of them include:

• Word and n-gram based features:

– Number of tokens in source and target
segments;

– Language model (LM) probability of
source and target segments;

– Percentage of source 1–3-grams ob-
served in different frequency quartiles of
the source side of the MT training cor-
pus;

– Average number of translations per
source word in the segment as given by
IBM 1 model with probabilities thresh-
olded in different ways.

• POS-based features:

– Ratio of percentage of nouns/verbs/etc
in the source and target segments;

– Ratio of punctuation symbols in source
and target segments;

– Percentage of direct object personal or
possessive pronouns incorrectly trans-
lated.

• Syntactic features:

– Source and target Probabilistic Context-
free Grammar (PCFG) parse log-
likelihood;

– Source and target PCFG average confi-
dence of all possible parse trees in the
parser’s n-best list;

– Difference between the number of
PP/NP/VP/ADJP/ADVP/CONJP
phrases in the source and target;

• Other features:

– Kullback-Leibler divergence of source
and target topic model distributions;

– Jensen-Shannon divergence of source
and target topic model distributions;

1http://www.quest.dcs.shef.ac.uk

– Source and target sentence intra-lingual
mutual information;

– Source-target sentence inter-lingual mu-
tual information;

– Geometric average of target word prob-
abilities under a global lexicon model.

The 48 GB features are based on information
provided by the Moses decoder, and attempt to in-
dicate the confidence of the system in producing
the translation. They include:

• Features and global score of the SMT model;

• Number of distinct hypotheses in the n-best
list;

• 1–3-gram LM probabilities using translations
in the n-best to train the LM;

• Average size of the target phrases;

• Relative frequency of the words in the trans-
lation in the n-best list;

• Ratio of SMT model score of the top transla-
tion to the sum of the scores of all hypothesis
in the n-best list;

• Average size of hypotheses in the n-best list;

• N-best list density (vocabulary size / average
sentence length);

• Fertility of the words in the source sentence
compared to the n-best list in terms of words
(vocabulary size / source sentence length);

• Edit distance of the current hypothesis to the
centre hypothesis;

• Proportion of pruned search graph nodes;

• Proportion of recombined graph nodes.

3 Model

Gaussian Processes are a Bayesian non-parametric
machine learning framework considered the state-
of-the-art for regression. They assume the pres-
ence of a latent function f : RF → R, which maps
a vector x from feature space F to a scalar value.
Formally, this function is drawn from a GP prior:

f(x) ∼ GP(0, k(x,x′))

which is parameterized by a mean function (here,
0) and a covariance kernel function k(x,x′). Each
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response value is then generated from the function
evaluated at the corresponding input, yi = f(xi)+
η, where η ∼ N (0, σ2n) is added white-noise.

Prediction is formulated as a Bayesian inference
under the posterior:

p(y∗|x∗,D) =
∫

f
p(y∗|x∗, f)p(f |D)

where x∗ is a test input, y∗ is the test response
value andD is the training set. The predictive pos-
terior can be solved analitically, resulting in:

y∗ ∼ N (kT∗ (K + σ2nI)
−1y,

k(x∗, x∗)− kT∗ (K + σ2nI)
−1k∗)

where k∗ = [k(x∗,x1)k(x∗,x2) . . . k(x∗,xd)]
T

is the vector of kernel evaluations between the
training set and the test input and K is the kernel
matrix over the training inputs.

A nice property of this formulation is that y∗
is actually a probability distribution, encoding the
model uncertainty and making it possible to inte-
grate it into subsequent processing. In this work,
we used the variance values given by the model in
an active learning setting, as explained in Section
4.

The kernel function encodes the covariance
(similarity) between each input pair. While a vari-
ety of kernel functions are available, here we fol-
lowed previous work on QE using GP (Cohn and
Specia, 2013; Shah et al., 2013) and employed
a squared exponential (SE) kernel with automatic
relevance determination (ARD):

k(x,x′) = σ2f exp

(
−1

2

F∑

i=1

xi − x′i
li

)

where F is the number of features, σ2f is the co-
variance magnitude and li > 0 are the feature
length scales.

The resulting model hyperparameters (SE vari-
ance σ2f , noise variance σ2n and SE length scales li)
were learned from data by maximising the model
likelihood. In general, the likelihood function is
non-convex and the optimisation procedure may
lead to local optima. To avoid poor hyperparam-
eter values due to this, we performed a two-step
procedure where we first optimise a model with all
the SE length scales tied to the same value (which
is equivalent to an isotropic model) and we used
the resulting values as starting point for the ARD
optimisation.

All our models were trained using the GPy2

toolkit, an open source implementation of GPs
written in Python.

3.1 Feature Selection

To perform feature selection, we followed the ap-
proach used in Shah et al. (2013) and ranked the
features according to their learned length scales
(from the lowest to the highest). The length scales
of a feature can be interpreted as the relevance of
such feature for the model. Therefore, the out-
come of a GP model using an ARD kernel can be
viewed as a list of features ranked by relevance,
and this information can be used for feature selec-
tion by discarding the lowest ranked (least useful)
ones.

For task 1.1, we performed this feature selection
over all 160 features mentioned in Section 2. For
task 1.3, we used a subset of the 80 most general
BB features as in (Shah et al., 2013), for which we
had all the necessary resources available for the
extraction. We selected the top 25 features for both
models, based on empirical results found by Shah
et al. (2013) for a number of datasets, and then
retrained the GP using only the selected features.

4 Active Learning

Active Learning (AL) is a machine learning
paradigm that let the learner decide which data it
wants to learn from (Settles, 2010). The main goal
of AL is to reduce the size of the dataset while
keeping similar model performance (therefore re-
ducing annotation costs). In previous work with
17 baseline features, we have shown that with only
∼30% of instances it is possible to achieve 99%
of the full dataset performance in the case of the
WMT12 QE dataset (Beck et al., 2013).

To investigate if a reduced dataset can achieve
competitive performance in a blind evaluation set-
ting, we submitted an entry for both tasks 1.1 and
1.3 composed of models trained on a subset of in-
stances selected using AL, and paired with fea-
ture selection. Our AL procedure starts with a
model trained on a small number of randomly se-
lected instances from the training set and then uses
this model to query the remaining instances in the
training set (our query pool). At every iteration,
the model selects the more “informative” instance,
asks an oracle for its true label (which in our case
is already given in the dataset, and therefore we

2http://sheffieldml.github.io/GPy/
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only simulate AL) and then adds it to the training
set. Our procedure started with 50 instances for
task 1.1 and 20 instances for task 1.3, given its re-
duced training set size. We optimised the Gaussian
Process hyperparameters every 20 new instances,
for both tasks.

As a measure of informativeness we used Infor-
mation Density (ID) (Settles and Craven, 2008).
This measure leverages between the variance
among instances and how dense the region (in the
feature space) where the instance is located is:

ID(x) = V ar(y|x)×
(

1

U

U∑

u=1

sim(x,x(u))

)β

The β parameter controls the relative impor-
tance of the density term. In our experiments, we
set it to 1, giving equal weights to variance and
density. The U term is the number of instances
in the query pool. The variance values V ar(y|x)
are given by the GP prediction while the similar-
ity measure sim(x,x(u)) is defined as the cosine
distance between the feature vectors.

In a real annotation setting, it is important to
decide when to stop adding new instances to the
training set. In this work, we used the confidence
method proposed by Vlachos (2008). This is an
method that measures the model’s confidence on
a held-out non-annotated dataset every time a new
instance is added to the training set and stops the
AL procedure when this confidence starts to drop.
In our experiments, we used the average test set
variance as the confidence measure.

In his work, Vlachos (2008) showed a correla-
tion between the confidence and test error, which
motivates its use as a stop criterion. To check if
this correlation also occurs in our task, we measure
the confidence and test set error for task 1.1 using
the WMT12 split (1832/422 instances). However,
we observed a different behaviour in our experi-
ments: Figure 1 shows that the confidence does
not raise or drop according to the test error but it
stabilises around a fixed value at the same point as
the test error also stabilises. Therefore, instead of
using the confidence drop as a stop criterion, we
use the point where the confidence stabilises. In
Figure 2 we can observe that the confidence curve
for the WMT13 test set stabilises after ∼580 in-
stances. We took that point as our stop criterion
and used the first 580 selected instances as the AL
dataset.

Figure 1: Test error and test confidence curves
for HTER prediction (task 1.1) using the WMT12
training and test sets.

Figure 2: Test confidence for HTER prediction
(task 1.1) using the official WMT13 training and
test sets.

We repeated the experiment with task 1.3, mea-
suring the relationship between test confidence
and error using a 700/100 instances split (shown
on Figure 3). For this task, the curves did not fol-
low the same behaviour: the confidence do not
seem to stabilise at any point in the AL proce-
dure. The same occurred when using the official
training and test sets (shown on Figure 4). How-
ever, the MAE curve is quite flat, stabilising after
about 100 sentences. This may simply be a conse-
quence of the fact that our model is too simple for
post-editing time prediction. Nevertheless, in or-
der to analyse the performance of AL for this task
we submitted an entry using the first 100 instances
chosen by the AL procedure for training.

The observed peaks in the confidence curves re-
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Task 1.1 - Ranking Task 1.1 - Scoring Task 1.3
DeltaAvg ↑ Spearman ↑ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

SHEF-Lite-FULL 9.76 0.57 12.42 15.74 55.91 103.11
SHEF-Lite-AL 8.85 0.50 13.02 17.03 64.62 99.09
Baseline 8.52 0.46 14.81 18.22 51.93 93.36

Table 1: Submission results for tasks 1.1 and 1.3. The bold value shows a winning entry in the shared
task.

Figure 3: Test error and test confidence curves
for post-editing time prediction (task 1.3) using a
700/100 split on the WMT13 training set.

Figure 4: Test confidence for post-editing time
prediction (task 1.3) using the official WMT13
training and test sets.

sult from steps where the hyperparameter optimi-
sation got stuck at bad local optima. These de-
generated results set the variances (σ2f , σ2n) to very
high values, resulting in a model that considers all
data as pure noise. Since this behaviour tends to
disappear as more instances are added to the train-

ing set, we believe that increasing the dataset size
helps to tackle this problem. We plan to investi-
gate this issue in more depth in future work.

For both AL datasets we repeated the feature se-
lection procedure explained in Section 3.1, retrain-
ing the models on the selected features.

5 Results

Table 1 shows the results for both tasks. SHEF-
Lite-FULL represents GP models trained on the
full dataset (relative to each task) with a feature
selection step. SHEF-Lite-AL corresponds to the
same models trained on datasets obtained from
each active learning procedure and followed by
feature selection.

For task 1.1, our submission SHEF-Lite-FULL
was the winning system in the scoring subtask, and
ranked third in the ranking subtask. These results
show that GP models achieve the state of the art
performance in QE. These are particularly positive
results considering that there is room for improve-
ment in the feature selection procedure to identify
the optimal number of features to be selected. Re-
sults for task 1.3 were below the baseline, once
again evidencing the fact that the noise model used
in our experiments is probably too simple for post-
editing time prediction. Post-editing time is gener-
ally more prone to large variations and noise than
HTER, especially when annotations are produced
by multiple post-editors. Therefore we believe that
kernels that encode more advanced noise models
(such as the multi-task kernel used by Cohn and
Specia (2013)) should be used for better perfor-
mance. Another possible reason for that is the
smaller set of features used for this task (black-
box features only).

Our SHEF-Lite-AL submissions performed bet-
ter than the baseline in both scoring and ranking
in task 1.1, ranking 2nd place in the scoring sub-
task. Considering that the dataset is composed by
only ∼25% of the full training set, these are very
encouraging results in terms of reducing data an-
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notation needs. We note however that these results
are below those obtained with the full training set,
but Figure 1 shows that it is possible to achieve
the same or even better results with an AL dataset.
Since the curves shown in Figure 1 were obtained
using the full feature set, we believe that advanced
feature selection strategies can help AL datasets to
achieve better results.

6 Conclusions

The results obtained by our submissions confirm
the potential of Gaussian Processes to become the
state of the art approach for Quality Estimation.
Our models were able to achieve the best perfor-
mance in predicting HTER. They also offer the ad-
vantage of inferring a probability distribution for
each prediction. These distributions provide richer
information (like variance values) that can be use-
ful, for example, in active learning settings.

In the future, we plan to further investigate these
models by devising more advanced kernels and
feature selection methods. Specifically, we want
to employ our feature set in a multi-task kernel set-
ting, similar to the one proposed by Cohn and Spe-
cia (2013). These kernels have the power to model
inter-annotator variance and noise, which can lead
to better results in the prediction of post-editing
time.

We also plan to pursue better active learning
procedures by investigating query methods specif-
ically tailored for QE, as well as a better stop cri-
teria. Our goal is to be able to reduce the dataset
size significantly without hurting the performance
of the model. This is specially interesting in the
case of QE, since it is a very task-specific problem
that may demand a large annotation effort.
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Abstract
We introduce referential translation ma-
chines (RTM) for quality estimation of
translation outputs. RTMs are a computa-
tional model for identifying the translation
acts between any two data sets with re-
spect to a reference corpus selected in the
same domain, which can be used for esti-
mating the quality of translation outputs,
judging the semantic similarity between
text, and evaluating the quality of student
answers. RTMs achieve top performance
in automatic, accurate, and language inde-
pendent prediction of sentence-level and
word-level statistical machine translation
(SMT) quality. RTMs remove the need to
access any SMT system specific informa-
tion or prior knowledge of the training data
or models used when generating the trans-
lations. We develop novel techniques for
solving all subtasks in the WMT13 qual-
ity estimation (QE) task (QET 2013) based
on individual RTM models. Our results
achieve improvements over last year’s QE
task results (QET 2012), as well as our
previous results, provide new features and
techniques for QE, and rank 1st or 2nd in
all of the subtasks.

1 Introduction

Quality Estimation Task (QET) (Callison-Burch et
al., 2012; Callison-Burch et al., 2013) aims to de-
velop quality indicators for translations and pre-
dictors without access to the references. Predic-
tion of translation quality is important because the
expected translation performance can help in esti-
mating the effort required for correcting the trans-
lations during post-editing by human translators.

Bicici et al. (2013) develop the Machine Trans-
lation Performance Predictor (MTPP), a state-of-
the-art, language independent, and SMT system

extrinsic machine translation performance predic-
tor, which achieves better performance than the
competitive QET baseline system (Callison-Burch
et al., 2012) by just looking at the test source sen-
tences and becomes the 2nd overall after also look-
ing at the translation outputs in QET 2012.

In this work, we introduce referential translation
machines (RTM) for quality estimation of transla-
tion outputs, which is a computational model for
identifying the acts of translation for translating
between any given two data sets with respect to
a reference corpus selected in the same domain.
RTMs reduce our dependence on any task depen-
dent resource. In particular, we do not use the
baseline software or the SMT resources provided
with the QET 2013 challenge. We believe having
access to glass-box features such as the phrase ta-
ble or the n-best lists is not realistic especially for
use-cases where translations may be provided by
different MT vendors (not necessarily from SMT
products) or by human translators. Even the prior
knowledge of the training corpora used for build-
ing the SMT models or any other model used when
generating the translations diverges from the goal
of independent and unbiased prediction of trans-
lation quality. Our results show that we do not
need to use any SMT system dependent informa-
tion to achieve the top performance when predict-
ing translation output quality.

2 Referential Translation Machine
(RTM)

Referential translation machines (RTMs) provide
a computational model for quality and seman-
tic similarity judgments using retrieval of rele-
vant training data (Biçici and Yuret, 2011a; Biçici,
2011) as interpretants for reaching shared seman-
tics (Biçici, 2008). RTMs achieve very good per-
formance in judging the semantic similarity of
sentences (Biçici and van Genabith, 2013a) and
we can also use RTMs to automatically assess the
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correctness of student answers to obtain better re-
sults (Biçici and van Genabith, 2013b) than the
state-of-the-art (Dzikovska et al., 2012).

RTM is a computational model for identifying
the acts of translation for translating between any
given two data sets with respect to a reference cor-
pus selected in the same domain. RTM can be
used for predicting the quality of translation out-
puts. An RTM model is based on the selection of
common training data relevant and close to both
the training set and the test set of the task where
the selected relevant set of instances are called the
interpretants. Interpretants allow shared semantics
to be possible by behaving as a reference point for
similarity judgments and providing the context. In
semiotics, an interpretant I interprets the signs
used to refer to the real objects (Biçici, 2008).
RTMs provide a model for computational seman-
tics using interpretants as a reference according
to which semantic judgments with translation acts
are made. Each RTM model is a data translation
model between the instances in the training set
and the test set. We use the FDA (Feature De-
cay Algorithms) instance selection model for se-
lecting the interpretants (Biçici and Yuret, 2011a)
from a given corpus, which can be monolingual
when modeling paraphrasing acts, in which case
the MTPP model (Section 2.1) is built using the
interpretants themselves as both the source and the
target side of the parallel corpus. RTMs map the
training and test data to a space where translation
acts can be identified. We view that acts of transla-
tion are ubiquitously used during communication:

Every act of communication is an act of
translation (Bliss, 2012).

Translation need not be between different lan-
guages and paraphrasing or communication also
contain acts of translation. When creating sen-
tences, we use our background knowledge and
translate information content according to the cur-
rent context. Given a training set train, a test
set test, and some monolingual corpus C, prefer-
ably in the same domain as the training and test
sets, the RTM steps are:

1. T = train ∪ test.
2. select(T, C)→ I
3. MTPP(I,train)→ Ftrain
4. MTPP(I,test)→ Ftest
5. learn(M,Ftrain)→M
6. predict(M,Ftest)→ q̂

Step 2 selects the interpretants, I, relevant to the
instances in the combined training and test data.
Steps 3 and 4 use I to map train and test
to a new space where similarities between transla-
tion acts can be derived more easily. Step 5 trains
a learning model M over the training features,
Ftrain, and Step 6 obtains the predictions. RTM
relies on the representativeness of I as a medium
for building translation models for translating be-
tween train and test.

Our encouraging results in the QET challenge
provides a greater understanding of the acts of
translation we ubiquitously use when communi-
cating and how they can be used to predict the
performance of translation, judging the semantic
similarity between text, and evaluating the qual-
ity of student answers. RTM and MTPP models
are not data or language specific and their mod-
eling power and good performance are applicable
across different domains and tasks. RTM expands
the applicability of MTPP by making it feasible
when making monolingual quality and similarity
judgments and it enhances the computational scal-
ability by building models over smaller but more
relevant training data as interpretants.

2.1 The Machine Translation Performance
Predictor (MTPP)

In machine translation (MT), pairs of source and
target sentences are used for training statistical
MT (SMT) models. SMT system performance is
affected by the amount of training data used as
well as the closeness of the test set to the training
set. MTPP (Biçici et al., 2013) is a state-of-the-
art and top performing machine translation per-
formance predictor, which uses machine learning
models over features measuring how well the test
set matches the training set to predict the quality
of a translation without using a reference trans-
lation. MTPP measures the coverage of individ-
ual test sentence features and syntactic structures
found in the training set and derives feature func-
tions measuring the closeness of test sentences to
the available training data, the difficulty of trans-
lating the sentence, and the presence of acts of
translation for data transformation.

2.2 MTPP Features for Translation Acts
MTPP uses n-gram features defined over text or
common cover link (CCL) (Seginer, 2007) struc-
tures as the basic units of information over which
similarity calculations are made. Unsupervised
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parsing with CCL extracts links from base words
to head words, resulting in structures represent-
ing the grammatical information instantiated in the
training and test data. Feature functions use statis-
tics involving the training set and the test sen-
tences to determine their closeness. Since they are
language independent, MTPP allows quality esti-
mation to be performed extrinsically.

We extend MTPP (Biçici et al., 2013) in its
learning module, the features included, and their
representations. Categories for the 308 features
(S for source, T for target) used are listed below
where the number of features are given in {#} and
the detailed descriptions for some of the features
are presented in (Biçici et al., 2013).

• Coverage {110}: Measures the degree to
which the test features are found in the train-
ing set for both S ({56}) and T ({54}).
• Synthetic Translation Performance {6}: Cal-

culates translation scores achievable accord-
ing to the n-gram coverage.
• Length {7}: Calculates the number of words

and characters for S and T and their average
token lengths and their ratios.
• Feature Vector Similarity {16}: Calculates

similarities between vector representations.
• Perplexity {90}: Measures the fluency of

the sentences according to language models
(LM). We use both forward ({30}) and back-
ward ({15}) LM features for S and T.
• Entropy {9}: Calculates the distributional

similarity of test sentences to the training set
over top N retrieved sentences.
• Retrieval Closeness {24}: Measures the de-

gree to which sentences close to the test set
are found in the selected training set, I, us-
ing FDA (Biçici and Yuret, 2011a).
• Diversity {6}: Measures the diversity of co-

occurring features in the training set.
• IBM1 Translation Probability {16}: Cal-

culates the translation probability of test
sentences using the selected training set,
I, (Brown et al., 1993).
• IBM2 Alignment Features {11}: Calculates

the sum of the entropy of the distribution of
alignment probabilities for S (

∑
s∈S −p log p

for p = p(t|s) where s and t are tokens) and
T, their average for S and T, the number of en-
tries with p ≥ 0.2 and p ≥ 0.01, the entropy
of the word alignment between S and T and
its average, and word alignment log probabil-
ity and its value in terms of bits per word.

• Minimum Bayes Retrieval Risk {4}: Calcu-
lates the translation probability for the trans-
lation having the minimum Bayes risk among
the retrieved training instances.
• Sentence Translation Performance {3}: Cal-

culates translation scores obtained accord-
ing to q(T,R) using BLEU (Papineni et
al., 2002), NIST (Doddington, 2002), or
F1 (Biçici and Yuret, 2011b) for q.
• Character n-grams {4}: Calculates cosine

between character n-grams (for n=2,3,4,5)
obtained for S and T (Bär et al., 2012).
• LIX {2}: Calculates the LIX readability

score (Wikipedia, 2013; Björnsson, 1968) for
S and T. 1

For retrieval closeness, we use FDA instead
of dice for sentence selection. We also improve
FDA’s instance selection score by scaling with the
length of the sentence (Biçici and Yuret, 2011a).
IBM2 alignments and their probabilities are ob-
tained by first obtaining IBM1 alignments and
probabilities, which become the starting point for
the IBM2 model. Both models are trained for 25
to 75 iterations or until convergence.

3 Quality Estimation Task Results

We participate in all of the four challenges of the
quality estimation task (QET) (Callison-Burch
et al., 2013), which include English to Spanish
(en-es) and German to English translation direc-
tions. There are two main categories of chal-
lenges: sentence-level prediction (Task 1.*) and
word-level prediction (Task 2). Task 1.1 is about
predicting post-editing effort (PEE), Task 1.2 is
about ranking translations from different systems,
Task 1.3 is about predicting post-editing time
(PET), and Task 2 is about binary or multi-class
classification of word-level quality.

For each task, we develop RTM mod-
els using the parallel corpora and the LM
corpora distributed by the translation task
(WMT13) (Callison-Burch et al., 2013) and the
LM corpora provided by LDC for English and
Spanish 2. The parallel corpora contain 4.3M
sentences for de-en with 106M words for de and
111M words for en and 15M sentences for en-es
with 406M words for en and 455M words for

1LIX= A
B

+ C 100
A

, where A is the number of words, C is
words longer than 6 characters, B is words that start or end
with any of “.”, “:”, “!”, “?” similar to (Hagström, 2012).

2English Gigaword 5th, Spanish Gigaword 3rd edition.
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es. We do not use any resources provided by
QET including data, software, or baseline features
since they are SMT system dependent or language
specific. Instance selection for the training set and
the language model (LM) corpus is handled by a
parallel implementation of FDA (Biçici, 2013).
We tokenize and true-case all of the corpora. The
true-caser is trained on all of the training corpus
using Moses (Koehn et al., 2007). We prepare the
corpora by following this procedure: tokenize →
train the true-caser → true-case. Table 1 lists the
statistics of the data used in the training and test
sets for the tasks.

Task 1.1 1.2 (de-en) 1.2 (en-es) 1.3 & 2

Train
sents 2254 32730 22338 803

words 63K (en) 762K (de) 528K (en) 18K (en)
67K (es) 786K (en) 559K (es) 20K (es)

Test sents 500 1810 1315 284

Table 1: Data statistics for different tasks. The
number of words is listed after tokenization.

Since we do not know the best training set
size that will maximize the performance, we rely
on previous SMT experiments (Biçici and Yuret,
2011a; Biçici and Yuret, 2011b) and quality es-
timation challenges (Biçici and van Genabith,
2013a; Biçici and van Genabith, 2013b) to select
the proper training set size. For each training and
test sentence provided in each subtask, we choose
between 65 and 600 sentences from the parallel
training corpora to be added to the training set,
which creates roughly 400K sentences for train-
ing. We add the selected training set to the 8 mil-
lion sentences selected for each LM corpus. The
statistics of the training data selected by the par-
allel FDA and used as interpretants in the RTM
models is given in Table 2.

Task 1.1 1.2 (de-en) 1.2 (en-es) 1.3 2
sents 406K 318K 299K 398K 397K

words 6.3M (en) 4.8M (de) 4.3M (en) 6.6M (en) 6.6M (en)
6.9M (es) 4.9M (en) 4.6M (es) 7.2M (es) 7.2M (es)

Table 2: Statistics of the training data used as in-
terpretants in the RTM models in thousands (K) of
sentences or millions (M) of words.

3.1 Evaluation
In this section, we describe the metrics we use to
evaluate the learning performance. Let yi repre-
sent the actual target value for instance i, ȳ the
mean of the actual target values, ŷi the value es-
timated by the learning model, and ¯̂y the mean of

the estimated target values, then we use the fol-
lowing metrics to evaluate the learning models:

• Mean Absolute Error (MAE): |̄ε| =
∑n

i=1 |ŷi−yi|
n

• Relative Absolute Error (RAE) :
−→|ε| =

∑n
i=1 |ŷi−yi|∑n
i=1 |ȳ−yi|

• Root Mean Squared Error: RMSE =√∑n
i=1(ŷi−yi)2

n

• DeltaAvg: ∆̄(V, S) =

1
|S|/2−1

∑|S|/2
n=2

(∑n−1
k=1

∑
s∈⋃k

i=1
qi

V (s)

|⋃k
i=1 qi|

)

• Correlation: r =
∑n

i=1(ŷi−¯̂y)(yi−ȳ)√∑n
i=1(ŷi−¯̂y)2

√∑n
i=1(yi−ȳ)2

DeltaAvg (Callison-Burch et al., 2012) calculates
the average quality difference between the scores
for the top n − 1 quartiles and the overall quality
for the test set. Relative absolute error measures
the error relative to the error when predicting the
actual mean. We use the coefficient of determina-
tion, R2 = 1 −∑n

i=1(ŷi − yi)2/
∑n

i=1(ȳ − yi)2,
during optimization where the models are
regression based and higher R2 values are better.

3.2 Task 1: Sentence-level Prediction of
Quality

In this subsection, we develop techniques for the
prediction of quality at the sentence-level. We first
discuss the learning models we use and how we
optimize them and then provide the results for the
individual subtasks and the settings used.

3.2.1 Learning Models and Optimization
The learning models we use for predicting the
translation quality include the ridge regression
(RR) and support vector regression (SVR) with
RBF (radial basis functions) kernel (Smola and
Schölkopf, 2004). Both of these models learn
a regression function using the features to esti-
mate a numerical target value such as the HTER
score, the F1 score (Biçici and Yuret, 2011b), or
the PET score. We also use these learning models
after a feature subset selection with recursive fea-
ture elimination (RFE) (Guyon et al., 2002) or a
dimensionality reduction and mapping step using
partial least squares (PLS) (Specia et al., 2009),
both of which are described in (Biçici et al., 2013).
The learning parameters that govern the behavior
of RR and SVR are the regularization λ for RR and
the C, ε, and γ parameters for SVR. We optimize
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the learning parameters, the number of features
to select, and the number of dimensions used for
PLS. More detailed description of the optimiza-
tion process is given in (Biçici et al., 2013). In
our submissions, we only used the results we ob-
tained from SVR and SVR after PLS (SVRPLS)
since they perform the best during training.

Optimization can be a challenge for SVR due to
the large number of parameter settings to search.
In this work, we decrease the search space by se-
lecting ε close to the theoretically optimal values.
We select ε close to the standard deviation of the
noise in the training set since the optimal value
for ε is shown to have linear dependence to the
noise level for different noise models (Smola et al.,
1998). We use RMSE of RR on the training set as
an estimate for the noise level (σ of noise) and the
following formulas to obtain the ε with τ = 3:

ε = τσ

√
lnn

n
(1)

and the C (Cherkassky and Ma, 2004; Chal-
imourda et al., 2004):

C = max(|ȳ + 3σy|, |ȳ − 3σy|) (2)

Since the C obtained could be low (Chalimourda
et al., 2004), we use a range of C values in ad-
dition to the obtained C value including C values
with a couple of σy values larger.

Table 3 lists the RMSE of the RR model on the
training set and the corresponding ε and C val-
ues for different subtasks. We also present the op-
timized parameter values for SVR and SVRPLS.
Table 3 shows that, empirically, Equation 1 and
Equation 2 gives results close to the best parame-
ters found after optimization.

Task 1.1 1.2 (de-en) 1.2 (en-es) 1.3
RMSE RR .1397 .1169 .1569 68.06
ε .0245 .0062 .01 18.64
C .8398 .8713 1.02 371.28
Ĉ (SVR) .8398 .5 .5 100
γ (SVR) .0005 .001 .0001 .0005
Ĉ (SVRPLS) 1.5 .8713 1.02 100
γ (SVRPLS) .0001 .0001 .0001 .001
# dim (SVRPLS) 60 60 60 60

Table 3: Optimal parameters predicted by Equa-
tion 1 and Equation 2 and the optimized parame-
ter values, Ĉ and γ for SVR and SVRPLS and the
number of dimensions (# dim) for SVRPLS.

3.2.2 Task 1.1: Scoring and Ranking for
Post-Editing Effort

Task 1.1 involves the prediction of the case insen-
sitive translation edit rate (TER) scores obtained
by TERp (Snover et al., 2009) and their ranking.
In contrast, we derive features over sentences that
are true-cased. We obtain the rankings by sorting
according to the predicted TER scores.

Task 1.1 R2 r RMSE MAE RAE
RR 0.3510 0.5965 0.1393 0.1086 0.7888
RR PLS 0.4232 0.6509 0.1313 0.1023 0.7430
SVR 0.4394 0.6647 0.1295 0.0967 0.7023
SVR PLS 0.4305 0.6569 0.1305 0.1003 0.7284

Table 4: Task1.1 results on the training set.

Table 4 presents the learning performance on
the training set using the optimized parameters.
We are able to significantly improve the results
when compared with the QET 2012 (Callison-
Burch et al., 2012) and our previous results (Biçici
et al., 2013) especially in terms of MAE and RAE.

The results on the test set are given in Table 5.
Rank lists the overall ranking in the task. RTMs
with SVR PLS learning is able to achieve the top
rank in this task.

Ranking DeltaAvg r Rank
CNGL SVRPLS 11.09 0.55 1
CNGL SVR 9.88 0.51 4
Scoring MAE RMSE Rank
CNGL SVRPLS 13.26 16.82 3
CNGL SVR 13.85 17.28 8

Table 5: Task1.1 results on the test set.

3.2.3 Task 1.2: Ranking Translations from
Different Systems

Task 1.2 involves the prediction of the ranking
among up to 5 translation outputs produced by dif-
ferent MT systems. Evaluation is done against
the human rankings using the Kendall’s τ corre-
lation (Callison-Burch et al., 2013): τ = (c −
d)/n(n−1)

2 = c−d
c+d where a pair is concordant, c, if

the ordering agrees, discordant, d, if their ordering
disagrees, and neither concordant nor discordant if
their rankings are equal.

We use sentence-level F1 scores (Biçici and
Yuret, 2011b) as the target to predict. We use
F1 because it can be easily interpreted and it cor-
relates well with human judgments (more than
TER) (Biçici and Yuret, 2011b; Callison-Burch et
al., 2011). We also found that the τ of the rank-
ings obtained according to the F1 score over the
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training set (0.2040) is better than BLEU (Pap-
ineni et al., 2002) (0.1780) and NIST (Dodding-
ton, 2002) (0.1907) for de-en. Table 6 presents the
learning performance on the training set using the
optimized parameters. Learning F1 becomes an
easier task than learning TER as observed from the
results but we have significantly more training in-
stances. We use the SVR model for predicting the
F1 scores on the training set and the test set. MAE
is a more important performance metric here since
we want to be as precise as possible when predict-
ing the actual performance.

Task 1.2 R2 r RMSE MAE RAE

de-en RR 0.6320 0.7953 0.1169 0.0733 0.5535
SVR 0.7528 0.8692 0.0958 0.0463 0.3494

en-es RR 0.5101 0.7146 0.1569 0.1047 0.6323
SVR 0.4819 0.7018 0.1613 0.0973 0.5873

Table 6: Task1.2 results on the training set.

Our next goal is to learn a threshold for judg-
ing if two translations are equal over the predicted
F1 scores. This threshold is used to determine
whether we need to alter the ranking. We try
to mimic the human decision process when de-
termining whether two translations are equivalent.
On some occasions where the sentences are close
enough, humans give them equal ranking. This
is also related to the granularity of the differences
visible with a 1 to 5 ranking schema.

We compared different threshold formulations
and used the following condition in our submis-
sions to decide whether the ranking of item i in a
set S of translations, i ∈ S, should be different:

∑

j 6=i

F1(j)− F1(i)

|j − i| /|S| > t, (3)

where t is the optimized threshold minimizing the
following loss for n training instances:

n∑

i=1

τ(f(t, qi), ri) (4)

where f(t, qi) is a function returning rankings
based on the threshold t and the quality scores for
instance i, qi and τ(rj , ri) calculates the τ score
based on the rankings rj and ri.

For both de-en and en-es subtasks, we found the
thresholds obtained to be very similar or the same.
The optimized values are given in Table 7. On the
test set, we used the same threshold, t = 0.00275
for both de-en and en-es, which is a little higher
than the optimal t to prevent overfitting.

Task 1.2 τ t # same # all

de-en .2339 .00013 236 25644.2287 .00275 494

en-es .2801 .00073 136 17752.2764 .00275 233

Table 7: Task1.2 optimized thresholds and the
corresponding comparisons that were found to be
equal (# same) over all comparisons (# all).

We believe that human judgments of linguis-
tic equality and the corresponding thresholds we
learned in this work can be useful for developing
better automatic evaluation metrics and can im-
prove the correlation of the scores obtained with
human judgments (as we did here). The results on
the test set are given in Table 8. We are also able
to achieve the top ranking in this task.

Ties penalized model τ Rank

de-en CNGL SVRPLS F1 0.17 3
CNGL SVR F1 0.17 4

en-es CNGL SVRPLS F1 0.15 1
CNGL SVR F1 0.13 2

Ties ignored model τ Rank

de-en CNGL SVRPLS F1 0.17 3
CNGL SVR F1 0.17 4

en-es CNGL SVRPLS F1 0.16 2
CNGL SVR F1 0.13 3

Table 8: Task1.2 results on the test set.

3.2.4 Task 1.3: Predicting Post-Editing Time
Task 1.3 involves the prediction of the post-editing
time (PET) for a translator to post-edit the MT out-
put. Table 9 presents the learning performance on
the training set using the optimized parameters.

Task 1.3 R2 r RMSE MAE RAE
RR 0.4463 0.6702 68.0628 39.5250 0.6694
RR PLS 0.5917 0.7716 58.4464 35.8759 0.6076
SVR 0.4062 0.6753 70.4853 36.5132 0.6184
SVR PLS 0.5316 0.7604 62.6031 33.5490 0.5682

Table 9: Task1.3 results on the training set.

The results on the test set are given in Table 10.
We are able to become the 2nd best system accord-
ing to MAE in this task.

3.3 Task 2: Word-level Prediction of Quality
In this subsection, we develop a learning model,
global linear models with dynamic learning rate
(GLMd), for the prediction of quality at the word-
level where the word-level quality is a binary (K:
keep, C: change) or multi-class classification prob-
lem (K: keep, S: substitute, D: delete). We first
discuss the GLMd learning model, then we present
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Task 1.3 MAE Rank
CNGL SVR 49.2121 3
CNGL SVRPLS 49.6161 4

RMSE Rank
CNGL SVRPLS 86.6175 4
CNGL SVR 90.3650 7

Table 10: Task1.3 results on the test set.

the word-level features we use, and then present
our results on the test set.

3.3.1 Global Linear Models with Dynamic
Learning (GLMd)

Collins (2002) develops global learning models
(GLM), which rely on Viterbi decoding, percep-
tron learning, and flexible feature definitions. We
extend the GLM framework by parallel percep-
tron training (McDonald et al., 2010) and dynamic
learning with adaptive weight updates in the per-
ceptron learning algorithm:

w = w + α (Φ(xi, yi)− Φ(xi, ŷ)) , (5)

where Φ returns a global representation for in-
stance i and the weights are updated by α =
exp(log10(3ε−1/ε0)) with ε−1 and ε0 representing
the error of the previous and first iteration respec-
tively. α decays the amount of the change during
weight updates at later stages and prevents large
fluctuations with updates. We used both the GLM
model and the GMLd models in our submissions.

3.3.2 Word-level Features
We introduce a number of novel features for the
prediction of word-level translation quality. In
broad categories, these word-level features are:

• CCL: Uses CCL links.
• Word context: Surrounding words.
• Word alignments: Alignments, their probabili-

ties, source and target word contexts.
• Length: Word lengths, n-grams over them.
• Location: Location of the words.
• Prefix and Suffix: Word prefixes, suffixes.
• Form: Capital, contains digit or punctuation.

We found that CCL links are the most discrimi-
native feature among these. In total, we used 511K
features for binary and 637K for multi-class clas-
sification. The learning curve is given in Figure 1.

The results on the test set are given in Table 11.
P, R, and A stand for precision, recall, and accu-
racy respectively. We are able to become the 2nd
according to A in this task.

Figure 1: Learning curve with the parallel GLM
and GLMd models.

Binary A P R F1 Rank (A)
CNGL dGLM .7146 .7392 .9261 .8222 2
CNGL GLM .7010 .7554 .8581 .8035 5
Multi-class A Rank
CNGL dGLM .7162 3
CNGL GLM .7116 4

Table 11: Task 2 results on the test set.

4 Contributions

Referential translation machines achieve top per-
formance in automatic, accurate, and language in-
dependent prediction of sentence-level and word-
level statistical machine translation (SMT) qual-
ity. RTMs remove the need to access any SMT
system specific information or prior knowledge of
the training data or models used when generating
the translations. We develop novel techniques for
solving all subtasks in the quality estimation (QE)
task (QET 2013) based on individual RTM mod-
els. Our results achieve improvements over last
year’s QE task results (QET 2012), as well as our
previous results, provide new features and tech-
niques for QE, and rank 1st or 2nd in all of the
subtasks.
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Abstract
In this paper we present the approach and
system setup of the joint participation of
Fondazione Bruno Kessler and University
of Edinburgh in the WMT 2013 Quality
Estimation shared-task. Our submissions
were focused on tasks whose aim was pre-
dicting sentence-level Human-mediated
Translation Edit Rate and sentence-level
post-editing time (Task 1.1 and 1.3, re-
spectively). We designed features that
are built on resources such as automatic
word alignment, n-best candidate transla-
tion lists, back-translations and word pos-
terior probabilities. Our models consis-
tently overcome the baselines for both
tasks and performed particularly well for
Task 1.3, ranking first among seven parti-
cipants.

1 Introduction

Quality Estimation (QE) for Machine Transla-
tion (MT) is the task of evaluating the quality
of the output of an MT system without relying
on reference translations. The WMT 2013 QE
Shared Task defined four different tasks covering
both word and sentence level QE. In this work
we describe the Fondazione Bruno Kessler (FBK)
and University of Edinburgh approach and system
setup of our participation to the shared task. We
developed models for two sentence-level tasks:
Task 1.1: Scoring and ranking for post-editing ef-
fort, and Task 1.3: Predicting post-editing time.

The first task aims at predicting the Human-
mediated Translation Edit Rate (HTER) (Snover
et al., 2006) between a suggestion generated by
a machine translation system and its manually
post-edited version. The data set contains 2,754
English-Spanish sentence pairs post-edited by one
translator (2,254 for training and 500 for test). We
participated only in the scoring mode of this task.

The second task requires to predict the time, in
seconds, that was required to post edit a transla-
tion given by a machine translation system. Par-
ticipants are provided with 1,087 English-Spanish
sentence pairs, source and suggestion, along with
their respective post-edited sentence and post-
editing time in seconds (803 data points for train-
ing and 284 for test).

For both tasks we applied supervised learning
methods and made use of information about word
alignments, n-best diversity scores, word posterior
probabilities, pseudo-references, and back trans-
lation to train our models. In the remainder of
this paper we describe the features designed for
our participation (Section 2), the learning methods
used to build our models (Section 3), the experi-
ments that led to our submitted systems (Section
4), and we briefly conclude our experience in this
evaluation task (Section 5).

2 Features

2.1 Word Alignment

Information about word alignments is used to ex-
tract quantitative (amount and distribution of the
alignments) and qualitative features (importance
of the aligned terms) under the assumption that
features that explore what is aligned can bring im-
provements to tasks where sentence-level seman-
tic relations need to be identified. Among the pos-
sible applications, Souza et al. (2013) recently in-
vestigated with success their application in Cross-
lingual Textual Entailment for content synchro-
nization (Mehdad et al., 2012; Negri et al., 2013).

For our experiments in both tasks we built word
alignment models using the resources made avail-
able for the evaluation campaign. To train the
word alignment models we used the MGIZA++
implementation (Gao and Vogel, 2008) of the IBM
models (Brown et al., 1993) and the concatenation
of Europarl, News Commentary, MultiUN, paral-
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lel corpora made available for task 1.3. The train-
ing data comprises about 12.8 million sentence
pairs.

The word alignment features are divided into
three main groups: AL, POS and IDF. The
AL group regards quantitative information about
aligned and unaligned words between source
sentence (src) and machine translation output
(tgt). The features of this group are computed
for both src and tgt:

• proportion of aligned words;

• number of contiguous unaligned words nor-
malized by the length of the sentence;

• length of the longest sequence of
aligned/unaligned words normalized by
the length of the sentence;

• average length of aligned/unaligned se-
quences of words;

• position of the first/last unaligned word nor-
malized by the length of the sentence;

• proportion of aligned n-grams in the sen-
tence.

To compute the features of the POS group
we use part-of-speech (PoS) information for each
word in src and tgt. Training and test data for
both tasks were preprocessed with the TreeTag-
ger (Schmid, 1995) and mapped to a more coarse-
grained set of part-of-speech tags (P ) based on the
universal PoS tag set by Petrov et al. (2012). In
this group there are two different types of features:
one is computed for the alignments (the mapping
between a word in src and a word in tgt) and
the other is computed for aligned words (words in
src that are aligned to one or more words in tgt
and vice-versa). The features computed over the
alignments are:

• proportion of alignments connecting words
with the same PoS tag;

• proportion of alignments connecting words
with the same PoS tag for each tag p ∈ P .

The features implemented for aligned words
are:

• proportion of aligned words tagged with p in
the sentence (p ∈ P ). This feature is pro-
cessed for both src and tgt;

• proportion of words in src aligned with
words in tgt that share the same PoS tag
(and vice-versa);

• proportion of words tagged with p in src and
that are aligned to words with the same tag
p in tgt (and vice-versa). This is done for
every p ∈ P .

The last group, IDF, is composed by one fea-
ture that explores the notion of inverse document
frequency as another source of qualitative infor-
mation. The idea is that rare words (with higher
IDF) are more informative than frequent words.
The IDF scores for each word are calculated for
English and Spanish on each side of the parallel
corpora used to build the alignment models. This
feature is calculated for both src and tgt (at test
stage, the average IDF value of each language is
assigned to unseen terms):

• summation of the IDF scores of aligned
words in src divided by the sum of IDF
scores of the aligned words in tgt (and vice-
versa).

Preliminary experiments have been executed to
find the best word alignment algorithm for each
task. We explored three different word alignment
algorithms: the hidden Markov model (HMM)
(Vogel et al., 1996) and IBM models 3 and 4
(Brown et al., 1993). We also tried three sym-
metrization models (Koehn et al., 2005): union,
intersection, and grow-diag-final-and, a more
complex symmetrization method which combines
intersection with some alignments from the union.
The best alignment and symmetrization combina-
tion found for Task 1.1 was IBM4 with intersec-
tion and for task 1.3 was HMM with intersec-
tion. These experiments were carried out in 10-
fold cross-validation on the training set and used
only the alignment features.

2.2 N-best Diversity scores
Our n-best diversity features are based on the intu-
ition that a large number of possible choices gen-
erally leads to more errors. While a similar notion
can be expressed locally by counting the transla-
tion options for each word or phrase, we consider
n-best lists as a good approximation of the search
space. This allows us to circumvent problems as-
sociated with the local measures, such as ambigu-
ous alignment and segmentation, and limitations
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of using the search graph directly such as the in-
ability compute edit distance between hypotheses.

Thus, to quantify the coherence of translation
options we compute a (symmetrical) matrix of
pairwise Levenshtein distances, either on token or
character level, for n-best lists of size up to 100k1

using the baseline system and the systems we de-
scribe in Section 2.4. For this matrix the following
features are produced:

1. The index of the central hypothesis, i.e. the
translation with the minimum average dis-
tance to all other entries.

2. The average edit distance between the cen-
tral hypothesis and all other entries normal-
ized by the length of top scoring hypothesis.

3. Edit distance between top scoring and central
hypothesis

4. Number of hypotheses with an edit distance
to the top-scoring hypothesis below a set
threshold.

2.3 Word Posterior Probabilities

Following previous work on word posterior prob-
abilities (WPPs) (Ueffing et al., 2003) we com-
puted the sequence of edit operations needed to
transform the MT suggestion into all entries of an
n-best list in which we normalized the logarithmic
model scores to resemble probabilities. Tokens are
considered incorrect is the operation is either in-
sert or substitute, otherwise the probability of the
hypothesis counts towards the correctness of the
word. These word-level features were then nor-
malized by taking the geometric mean of the in-
dividual probabilities. We did this for all systems
described in Section 2.4 and varying sizes of n be-
tween 10 and 100k.

2.4 Pseudo-references and back-translation

Motivated by the success of pseudo-reference fea-
tures (Soricut et al., 2012) we employed three ad-
ditional MT systems: one similar to the original
system but trained on more data, a hierarchical
phrase-based system, and a Spanish-English sys-
tem to translate back into English. All models

1Computing the pair-wise edit-distances between all 100k
entries is computationally expensive. However, we found the
n-best lists to be highly repetitive, so that on average only
3.7% of the values had to be computed. The computation is
also trivially parallel.

have been estimated using publicly available soft-
ware (SRILM (Stolcke, 2002), Moses (Koehn et
al., 2007)), and corpora (Europarl, News Com-
mentary, MultiUN, Gigaword). Using the predic-
tions of the English-Spanish systems as pseudo-
references and likewise the original source as ref-
erence for the back-translation system we com-
puted a number of automatic metrics including
BLEU (Papineni et al., 2002), GTM (Turian et al.,
2003), PER (Tillmann et al., 1997), TER (Snover
et al., 2006) and Meteor (Denkowski and Lavie,
2011).

3 Learning algorithms

To build our models using the features presented
in Section 2 we tried different learning algorithms.
After some preliminary experiments for both tasks
we decided to use mainly two: support vector
machines (SVM) and extremely randomized trees
(Geurts et al., 2006). For all experiments pre-
sented in this paper we use the Scikit-learn (Pe-
dregosa et al., 2011) implementations of the above
algorithms.

In preliminary experiments we noticed that the
number of features that we were using for both
tasks was leading to poor results when using the
SVM regression (SVR) models. In order to cope
with this problem we performed feature selection
prior to the SVM regression training. For that
we used Randomized Lasso, or stability selec-
tion (Meinshausen and Bühlmann, 2010). It re-
samples the training data several times and fits a
Lasso regression model on each sample. Features
that appear in a given number of samples are re-
tained. Both the fraction of the data to be sam-
pled and the threshold to select the features can be
configured. In our experiments we set the sam-
pling fraction to 75%, the selection threshold to
25% and the number of re-samples to 200.

To optimize the SVR with radial basis function
(RBF) kernel hyper-parameters we used random
search (Bergstra and Bengio, 2012) instead of the
traditional grid search procedure. We found ran-
dom search to be as efficient or better than grid
search and it drastically reduced the time required
to compute the best parameter combination.

Finally, we trained an extremely randomized
forest, i.e. an ensemble of extremely randomized
trees. Each tree can be parameterized differently.
The results of the individual trees are combined by
averaging their predictions. When a tree is built,
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System Features MAE RMSE Predict. Interval Parameters
SVR Base 0.127 0.163 [0.046, 0.671] 347.5918, 0.001, 0.0001
SVR Base + All 0.121 0.155 [0.090, 0.714] 0.4052, 0.0753, 0.0010
RL + SVR Sel(Base + All) 0.119 0.1534 [0.084, 0.745] 40.5873, 0.0484, 0.0002
ET Base + All 0.123 0.156 [0.142, 0.708] 100
ET Base + All 0.122 0.155 [0.164, 0.712] 1000

Table 1: Experiments results for Task 1.1 on 10-fold cross-validation. “Base” are the 17 baseline features.
“All” corresponds to all the features described in Section 2 in a total of 141 features. “SVR” is support
vector regression, “RL” is randomized Lasso and “ET” is extremely randomized trees. MAE stands for
the average mean absolute error and RMSE is the root mean squared error. Parameters for SVR are C, ε,
γ and for ET is the number of estimators.

the node splitting step is done at random by pick-
ing the best split among a random subset of the
input features.

4 Experiments

For both tasks we set up a baseline system that
uses the same 17 black box “baseline” features
provided for the WMT 2012 QE shared task
(Callison-Burch et al., 2012). The baseline model
is trained with an SVM regression with RBF ker-
nel and optimized parameters. Parameter opti-
mization for SVM regression models was per-
formed with 1000 iterations of random search for
which the process was set to minimize the mean
absolute error (MAE)2. The parameters of SVR
with RBF kernel (the penalty parameter C, the
width of the insensitivity zone ε, and the RBF pa-
rameter γ) are sampled from an exponential distri-
bution.

Experiments for both tasks were run using
10-fold cross-validation on the training set. In
Task 1.3 some data points were annotated by
2 or more post-editors and, in a normal cross-
validation scheme, the same data point might ap-
pear in the training and test set but annotated by
different post-editors. To address this characteris-
tic we implemented a cross-validation that divides
along source sentences, so that all translations of a
source segment end up in either the training or test
portion of a split. The number of features available
for both tasks is not the same (112 for Task 1.1
and 141 for Task 1.3) because there were fewer n-
best diversity, pseudo-references and word poste-
rior probability based features developed with dif-
ferent parameters due to time constraints.

2Given by MAE =

∑N

i=1
|H(si)−V (si)|

N
, where H(si)

is the hypothesis score for the entry si and V (si) is the gold
standard value for si in a dataset with N entries.

During our experiments with the training set,
the best model for Task 1.1 was the combination
of randomized Lasso feature selection with SVR
(0.119 MAE). The extremely randomized trees
presented results around 0.12 MAE worse than the
figures obtained by the SVR models. Results ob-
tained for Task 1.1 are summarized in Table 1.

As for Task 1.3, training results are presented in
Table 2. The best model combines feature selec-
tion (randomized Lasso) with SVR. During train-
ing it obtained the lowest average MAE (38.6).
Compared to the models built with extremely ran-
domized trees, the prediction interval of this sys-
tem is narrower. This indicates that the tree-based
models cover a wider range of data points than the
SVR-based models.

In the official results released by the organiz-
ers our submissions had close performances for
Task 1.1. The difference between the SVR and the
extremely randomized tree models is very small
(around 0.0012 MAE points). For Task 1.3 our
best submission is the one based on ensembles of
trees, a trend that was not observed during train-
ing. Our hypothesis is that the tree-based ensem-
ble model was capable of generalizing the train-
ing data better than the SVR-based ones and that
despite the low number of employed features the
latter was prone to overfitting.

Table 3 presents the official evaluation numbers
for both tasks.

4.1 Feature analysis

To gain some insight about the relevance of the
features we explored in our submissions, we com-
pared the output of the randomized Lasso with
the most important features computed by the ex-
tremely randomized tree algorithm. Below we
present the features that appear in the intersection
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System Features MAE RMSE Predict. Interval Parameters
SVR Base 41.3 69.2 [5.6, 315.7] 138.7359, 2.3331, 0.0185
SVR Base + All 40.2 70.6 [8.6, 335.6] 308.3817, 0.2194, 0.0009
RL + SVR Sel(Base + All) 38.6 69.1 [11.5, 332.0] 161.5705, 7.3370, 0.0460
ET Base + All 44.1 72.2 [11.9, 446.2] 100
ET Base + All 43.7 72.0 [12.6, 446.2] 1000

Table 2: Experiments results for Task 1.3 on 10-fold cross-validation. “Base” are the 17 baseline features.
“All” corresponds to all the features described in Section 2 in a total of 141 features. “SVR” is support
vector regression, “RL” is randomized Lasso and “ET” is extremely randomized trees. MAE stands for
the average mean absolute error and RMSE is the root mean squared error. Parameters for SVR are C, ε,
γ and for ET is the number of estimators.

System MAE RMSE
Task 1.1

Official Baseline 0.1491 0.1822
RL + SVR 0.1450 0.1773
ET 0.1438 0.1768

Task 1.3
Official Baseline 51.93 93.35
RL + SVR 47.92 86.66
ET 47.52 82.60

Table 3: Official results for tasks 1.1 and 1.3 on
the test set.

of these two sets for each task.
In Task 1.1, the feature selection algorithm re-

tained 29 out of 112 features. We take the intersec-
tion of this set with the 29 most relevant features
computed by the ensemble tree-based method.
This selection comes from features based on dif-
ferent resources:

• proportion of words in src aligned with
words in tgt that share the same PoS tag;

• average number of translations per source
word according to IBM Model 1 thresholded
P (t|s) > 0.01;

• average number of translations per source
word according to IBM Model 1 thresholded
P (t|s) > 0.2;

• average source sentence token length;

• number of times the top-scoring hypothesis is
repeated in an 10k-best list;

• position of the first unaligned word normal-
ized by the length of the sentence for src
and tgt;

• position of the last unaligned word normal-
ized by the length of the sentence for src
and tgt;

• summation of the IDF scores of aligned
words in tgt divided by the summation of
IDF scores of the aligned words in src;

• length of the longest sequence of unaligned
words normalized by the length of the src;

• percentage of bigrams in the 4th quartile of
frequency of the source language corpus;

• percentage of trigrams in the 4th quartile of
frequency of the source language corpus;

• proportion of alignments connecting words
with the same PoS tag;

• proportion of aligned words in src.

For Task 1.3, the randomized Lasso selection
reduced the input feature vector from 141 fea-
tures to 19. We compared these features with the
19 most important features computed by the ex-
tremely randomized tree algorithm. As above the
intersection of both sets utilizes many resources:

• proportion of aligned words in src with the
adjective PoS tag.

• rank of central hypothesis (see Section 2.2)
and average edit distance to all other entries
in 10k-best list of Spanish-English backtrans-
lation system;

• language model probability for tgt;

• length of the longest sequence of aligned
words in tgt;
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• number of occurrences of the target word
within the target hypothesis averaged for all
words in the hypothesis;

• percentage of bigrams in the 4th quartile of
frequency of the source language corpus;

• percentage of trigrams in the 4th quartile of
frequency of the source language corpus;

• number of contiguous unaligned words in
tgt normalized by the length of tgt.

5 Conclusion

This paper presented the participation of FBK
and University of Edinburgh to the WMT 2013
Quality Estimation shared task. Our approach
explored features based on word alignment, n-
best diversity scores, pseudo-references and back-
translations, and word posterior probabilities. We
experimented with two different learning methods,
SVR and extremely randomized trees for predict-
ing sentence-level post-editing time and HTER.

Our submitted systems were particularly suc-
cessful for predicting sentence-level post-editing
time, ranking 1st among seven participants. The
submitted models for predicting HTER consis-
tently overcome the baseline for the task. In addi-
tion to the description of our approach and system
setup, we presented a first analysis of the features
used in our models with the objective of assess-
ing the importance of the features used either for
predicting time or HTER.
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Lluı́s Formiga1, Meritxell Gonzàlez1, Alberto Barrón-Cedeño1,2
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Abstract

This paper describes the TALP-UPC par-
ticipation in the WMT’13 Shared Task
on Quality Estimation (QE). Our partic-
ipation is reduced to task 1.2 on System
Selection. We used a broad set of fea-
tures (86 for German-to-English and 97
for English-to-Spanish) ranging from stan-
dard QE features to features based on
pseudo-references and semantic similarity.
We approached system selection by means
of pairwise ranking decisions. For that,
we learned Random Forest classifiers es-
pecially tailored for the problem. Evalua-
tion at development time showed consider-
ably good results in a cross-validation ex-
periment, with Kendall’s τ values around
0.30. The results on the test set dropped
significantly, raising different discussions
to be taken into account.

1 Introduction

In this paper we discuss the TALP-UPC1 partici-
pation in the WMT’13 Shared Task on Quality Es-
timation (QE). Our participation is circumscribed
to task 1.2, which deals with System Selection.
Concretely, we were required to rank up to five al-
ternative translations for the same source sentence
produced by multiple MT systems, in the absence
of any reference translation.

We used a broad set of features; mainly avail-
able through the last version of the ASIYA toolkit
for MT evaluation2 (Giménez and Màrquez,
2010). Concretely, we derived 86 features for
the German-to-English subtask and 97 features for
English-to-Spanish. These features cover different
approaches and include standard Quality Estima-
tion features, as provided by the above mentioned

1Center for Language and Speech Technologies and Ap-
plications (TALP), Technical University of Catalonia (UPC).

2http://asiya.lsi.upc.edu

ASIYA toolkit and Quest (Specia et al., 2010),
but also a variety of features based on pseudo-
references (Soricut and Echihabi, 2010), explicit
semantic analysis (Gabrilovich and Markovitch,
2007) and specialized language models. See sec-
tion 3 for details.

In order to model the ranking problem associ-
ated to the system selection task, we adapted it
to a classification task of pairwise decisions. We
trained Random Forest classifiers (and compared
them to SVM classifiers), expanding the work of
Formiga et al. (2013), from which a full ranking
can be derived and the best system per sentence
identified.

Evaluation at development time, using cross-
validation, showed considerably good and stable
results for both language pairs, with correlation
values around 0.30 (Kendall τ coefficient) classi-
fication accuracies around 52% (pairwise classifi-
cation) and 41% (best translation identification).
Unfortunately, the results on the test set were sig-
nificantly lower. Current research is devoted to ex-
plain the behavior of the system at testing time. On
the one hand, it seems clear that more research re-
garding the assignment of ties is needed in order
to have a robust model. On the other hand, the re-
lease of the gold standard annotations for the test
set will facilitate a deeper analysis and understand-
ing of the current results.

The rest of the paper is organized as follows.
Section 2 describes the ranking models studied for
the system selection problem. Section 3 describes
the features used for learning. Section 4 presents
the setting for parameter optimization and feature
selection and the results obtained. Finally, Sec-
tion 5 summarizes the lessons learned so far and
outlines some lines for further research.

2 Ranking Model

We considered two learning strategies to obtain the
best translation ranking model: SVM and Random
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Forests. Both strategies were based on predicting
pairwise quality ranking decisions by means of su-
pervised learning. These decision was motivated
from our previous work (Formiga et al., 2013)
were we learned that they were more consistent to
select the best system (according to human and au-
tomatic metrics) compared to absolute regression
approaches. In that work we used only the subset
of features 1, 2, 3 and 8 described in Section 3.
For this shared task we have introduced additional
similarity measures (subsets 4 to 7) that feature se-
mantic analysis and automatic alignments between
the source and the translations.

The rationale for transforming a ranking prob-
lem to a pairwise classification problem has been
described previously in several work (Joachims,
2002; Burges et al., 2005). The main idea is to en-
semble the features of both individuals and assign
a class {-1,1} which tries to predict the pairwise
relation among them. For linear based approach
this adaptation is as simple to compute the differ-
ence between features between all the pairs of the
training data.

We used two different learners to perform that
task. First, we trained a Support Vector Machine
ranker by means of pairwise comparison using
the SVMlight toolkit (Joachims, 1999), but with
the “-z p” parameter, which can provide system
rankings for all the members of different groups.
The learner algorithm was run according to the
following parameters: RBF-kernel, expanding the
working set by 9 variables at each iteration, for a
maximum of 50,000 iterations and with a cache
size of 100 for kernel evaluations. The trade-off
parameter was empirically set to 0.001. This im-
plementation ignores the ties for the training step
as it only focuses in better than/ worse than rela-
tions.

Secondly, we used Random Forests (Breiman,
2001), the rationale was the same as ranking-to-
pairwise implementation from SVMlight. How-
ever, SVMlight considers two different data pre-
processing methods depending on the kernel of
the classifier: LINEAR and RBF-Kernel. We
used the same data-preprocessing algorithm from
SVMlight in order to train a Random Forest clas-
sifier with ties (three classes: {0,-1,1}) based
upon the pairwise relations. We used the Random
Forests implementation of scikit-learn toolkit (Pe-
dregosa et al., 2011) with 50 estimators.

Once the classes are given by the Random For-

est, we build a graph by means of the adjacency
matrix of the pairwise decision. Once the adja-
cency matrix has been built, we assign the final
ranking through a dominance scheme similar to
Pighin et al. (2012). In that case, however, there
are not topological problems as the pairwise rela-
tions are complete across all the edges.

3 Features Sets

We considered a broad set of features: 97 and
86 features for English-to-Spanish (en-es) and
German-to-English (de-en), respectively. We
grouped them into the following categories: base-
line QE metrics, comparison against pseudo-
references, source-translation, and adapted lan-
guage models. We describe them below. Unless
noted otherwise, the features apply to both lan-
guage pairs.

3.1 Baseline Features
The baseline features are composed of well-known
quality estimation metrics:

1. Quest Baseline (QQE)
Seventeen baseline features from Specia et
al. (2010). This set includes token counts
(and their ratio), LM probabilities for source
and target sentences, percentage of n-grams
in different quartiles of a reference corpus,
number of punctuation marks, and fertility
ratios. We used these features in the en-es
partition only.

2. ASIYA’s QE-based features (AQE)
Twenty-six QE features provided by
ASIYA (Gonzàlez et al., 2012), comprising
bilingual dictionary ambiguity and overlap;
ratios concerning chunks, named-entities and
PoS; source and candidate LM perplexities
and inverse perplexities over lexical forms,
chunks and PoS; and out-of-vocabulary word
indicators.

3.2 Pseudo-Reference-based Features
Soricut and Echihabi (2010) introduced the con-
cept of pseudo-reference-based features (PR) for
translation ranking estimation. The principle is
that, in the lack of human-produced references,
automatic ones are still good for differentiating
good from bad translations. One or more sec-
ondary MT systems are required to generate trans-
lations starting from the same input, which are
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taken as pseudo-references. The similarity to-
wards the pseudo-references can be calculated
with any evaluation measure or text similarity
function, which gives us all feature variants in this
group. We consider the following PR-based fea-
tures:

3. Derived from ASIYA’s metrics (APR)
Twenty-three PR features, including GTM-l
(l∈{1,2,3}) to reward different length match-
ing (Melamed et al., 2003), four variants of
ROUGE (-L, -S*, -SU* and -W) (Lin and
Och, 2004), WER (Nießen et al., 2000),
PER (Tillmann et al., 1997), TER, and
TERbase (i.e., without stemming, synonymy
look-up, nor paraphrase support) (Snover et
al., 2009), and all the shallow and full pars-
ing measures (i.e., constituency and depen-
dency parsing, PoS, chunking and lemmas)
that ASIYA provides either for Spanish or En-
glish as target languages.

4. Lexical similarity (NGM)
Cosine and Jaccard coefficient similarity
measures for both token and character
n-grams considering n ∈ [2, 5] (i.e., sixteen
features). Additionally, one Jaccard-based
similarity measure for “pseudo-prefixes”
(considering only up to four initial characters
for every token).

5. Based on semantic information (SEM)
Twelve features calculated with named
entity- and semantic role-based evaluation
measures (again, provided by ASIYA). Sen-
tences are automatically annotated using
SwiRL (Surdeanu and Turmo, 2005) and
BIOS (Surdeanu et al., 2005). We used these
features in the de-en subtask only.

6. Explicit semantic analysis (ESA)
Two versions of explicit semantic analy-
sis (Gabrilovich and Markovitch, 2007), a
semantic similarity measure, built on top of
Wikipedia (we used the opening paragraphs
of 100k Wikipedia articles as in 2010).

3.3 Source-Translation Extra Features
Source-translation features include explicit com-
parisons between the source sentence and its trans-
lation. They are meant to measure how adequate
the translation is, that is, to what extent the trans-
lation expresses the same meaning as the source.

Note that a considerable amount of the features
described in the baseline group (QQE and AQE)
fall in this category. In this subsection we include
some extra features we devised to capture source–
translation dependencies.

7. Alignment-based features (ALG / ALGPR)
One measure calculated over the aligned
words between a candidate translation and
the source (ALG); and two measures based on
the comparison between these alignments for
two different translations (e.g., candidate and
pseudo-reference) and the source (ALGPR).3

8. Length model (LeM)
A measure to estimate the quality likeli-
hood of a candidate sentence by considering
the “expected length” of a proper translation
from the source. The measure was introduced
by (Pouliquen et al., 2003) to identify docu-
ment translations. We estimated its param-
eters over standard MT corpora, including
Europarl, Newswire, Newscommentary and
UN.

3.4 Adapted Language-Model Features

We interpolated different language models com-
prising the WMT’12 Monolingual corpora (EPPS,
News, UN and Gigafrench for English). The in-
terpolation weights were computed as to minimize
the perplexity according to the WMT Translation
Task test data (2008-2010)4. The features are as
follow:

9. Language Model Features (LM)
Two log-probabilities of the translation can-
didate with respect to the above described in-
terpolated language models over word forms
and PoS labels.

4 Experiments and Results

In this section we describe the experiments car-
ried out to select the best feature set, learner, and
learner configuration. Additionally, we present
the final performance within the task. The set-
up experiments were addressed doing two separate
10-fold cross validations on the training data and
averaging the final results. We evaluated the re-
sults through three indicators: Kendall’s τ with no

3Alignments were computed with the Berkeley aligner
https://code.google.com/p/berkeleyaligner/

4http://www.statmt.org/wmt13/translation-task.html
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penalization for the ties, accuracy in determining
the pairwise relationship between candidate trans-
lations, and global accuracy in selecting the best
candidate for each source sentence.

First, we compared our SVM learner against
Random Forests with the two variants of data
preprocessing (LINEAR and RBF). In terms of
Kendall’s τ , we found that the Random Forests
(RF) were clearly better compared to SVM imple-
mentation. Concretely, depending on the final fea-
ture set, we found that RF achieved a τ between
0.23 and 0.29 while SVM achieved a τ between
0.23 and 0.25. With respect to the accuracy mea-
sures we did not find noticeable differences be-
tween methods as their results moved from 49% to
52%. However, considering the accuracy in terms
of selecting only the best system there was a dif-
ference of two points (42.2% vs. 40.0%) between
methods, being RF again the best system. Regard-
ing the pairwise preprocessing the results between
RBF and LINEAR based preprocessing were com-
parable, being RBF slightly better than LINEAR.
Hence, we selected Random Forests with RBF
pairwise preprocessing as our final learner.

de-en τ with ties Accuracy
Ignored Penalized All Best

AQE+LeM+ALGPR+LM 33.70 15.72 52.56 41.57
AQE+SEM+LM 32.49 14.61 52.72 40.92
AQE+LeM+ALGPR+ESA+LM 32.08 13.81 52.71 41.37
AQE+ALG+ESA+SEM+LM 32.06 13.96 52.20 40.64
AQE+ALG+LM 31.97 14.29 52.00 40.83
AQE+LeM+ALGPR+SEM+LM 31.93 13.57 52.52 40.98
AQE+ESA+SEM+LM 31.79 13.68 52.50 40.76
AQE+LeM+ALGPR+ESA+SEM+LM 31.72 14.01 52.65 40.83
AQE+ALG+SEM+LM 31.17 12.86 52.18 40.51
AQE+ALG+SEM 30.72 12.58 51.75 39.66
AQE+LeM+ALGPR+ESA+SEM 30.47 11.79 51.85 39.58
AQE+ESA+LM 30.31 12.23 52.60 40.69
AQE+ALG+ESA+LM 30.26 12.40 52.03 40.99
AQE+LeM+ALGPR 30.24 11.83 51.96 40.42
AQE+LeM+ALGPR+SEM 30.23 11.84 52.10 40.32
AQE+LeM+ALGPR+ESA 29.89 11.87 51.83 40.07
AQE+ALG+ESA 29.81 11.30 51.37 39.47
AQE+SEM 29.80 12.06 51.75 39.52
AQE+NGM+APR+ESA+SEM+LM 29.34 10.58 51.33 38.55
AQE+ESA+SEM 29.31 11.46 51.66 39.24
AQE+ESA 29.13 11.12 51.82 39.90
AQE+ALG+ESA+SEM 28.35 10.32 51.37 38.98
AQE+NGM+APR+ESA+SEM 27.55 9.22 51.01 38.12

Table 1: Set-up results for de-en

For the feature selection process, we considered
the most relevant combinations of feature groups.
Table 1 shows the set-up results for the de-en sub-
task and Table 2 shows the results for the en-es
subtask.

In terms of τ we observed similar results be-
tween the two language pairs. However accura-
cies for the de-en subtask were one point above
the ones for en-es. Regarding the features used, we
found that the best feature combination to use was
composed of: i) a baseline QE feature set (Asiya

or Quest) but not both of them, ii) Length Model,
iii) Pseudo-reference aligned based features and
the use of iv) adapted language models. However,
within the de-en subtask, we found that substitut-
ing Length Model and Aligned Pseudo-references
by the features based on Semantic Roles (SEM)
could bring marginally better accuracy. We also
noticed that the learner was sensitive to the fea-
tures used so selecting the appropriate set of fea-
tures was crucial to achieve a good performance.

en-es τ with ties Accuracy
Ignored Penalized All Best

QQE+LeM+ALGPR+LM 33.81 15.87 51.66 41.01
AQE+LeM+ALGPR+LM 33.75 16.44 51.56 41.52
QQE+AQE+LM 32.71 14.59 51.18 41.02
QQE+AQE+LM+ESA 32.69 15.30 51.48 41.30
QQE+AQE+LeM+ALGPR+LM+ESA 32.63 13.64 51.39 40.48
QQE+AQE+LeM+ALGPR+LM 32.41 14.06 51.43 40.49
QQE+LeM+ALGPR+LM+ESA 31.66 13.39 51.37 41.05
QQE+AQE+ALG+LM 31.46 13.62 51.28 41.29
AQE+LeM+ALGPR+LM+ESA 31.29 14.10 51.55 41.43
QQE+AQE+ALG+LM+ESA 31.25 13.58 51.64 41.66
QQE+AQE+NGM+APR+LM+ESA 30.58 12.48 50.93 40.66
QQE+AQE+NGM+APR+LM 29.94 12.54 50.95 40.25
QQE+AQE 28.98 10.92 49.97 39.65
QQE+AQE+LeM+ALGPR 28.94 10.48 49.99 39.71
QQE+AQE+NGM+ESA+LM 28.85 11.88 50.90 40.22
AQE+LeM+ALGPR 28.81 10.11 50.06 40.01
QQE+AQE+ESA 28.68 10.31 49.96 39.27
AQE+ESA 28.67 10.81 50.35 39.18
AQE 28.65 10.68 49.76 38.90
QQE+AQE+ALG 28.47 9.63 49.67 39.66
QQE+AQE+NGM+APR+ESA 28.43 9.75 49.67 38.74
QQE+AQE+NGM 27.23 9.10 49.44 38.98
QQE+AQE+ALG+ESA 27.08 7.93 50.26 39.71
QQE+AQE+LeM+ALGPR+ESA 27.03 8.65 50.35 40.49
AQE+LeM+ALGPR+ESA 26.96 8.26 50.30 39.47
QQE+AQE+NGM+ESA 26.59 7.56 49.52 38.62
QQE+AQE+NGM+APR 25.39 6.97 49.90 39.53

Table 2: Setup results for en-es

de-en τ (ties penalized,
ID non-symmetric between [-1,1])

Best 0.31
UPC AQE+SEM+LM 0.11
UPC AQE+LeM+ALGPR+LM 0.10
Baseline Random-ranks-with-ties -0.12
Worst -0.49

Table 3: Official results for the de-en subtask (ties
penalized)

en-es τ (ties penalized,
ID non-symmetric between [-1,1])

Best 0.15
UPC QQE+LeM+ALGPR+LM -0.03
UPC AQE+LeM+ALGPR+LM -0.06
Baseline Random-ranks-with-ties -0.23
Worst -0.63

Table 4: Official results for the en-es subtask (ties
penalized)

In Tables 3, 4, 5 and 6 we present the official re-
sults for the WMT’13 Quality Estimation Task, in
all evaluation variants. In each table we compare
to the best/worst performing systems and also to
the official baseline.

We can observe that in general the results on
the test sets drop significantly, compared to our
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de-en τ (ties ignored, Non-ties

ID symmetric /
between [-1,1]) (882 dec.)

Best 0.31 882
UPC AQE+SEM+LM 0.27 768
UPC AQE+LeM+ALGPR+LM 0.24 788
Baseline Random-ranks-with-ties 0.08 718
Worst -0.03 558

Table 5: Official results for the de-en subtask (ties
ignored)

en-es τ (ties ignored, Non-ties

ID symmetric /
between [-1,1]) (882 dec.)

Best 0.23 192
UPC QQE+LeM+ALGPR+LM 0.11 554
UPC AQE+LeM+ALGPR+LM 0.08 554
Baseline Random-ranks-with-ties 0.03 507
Worst -0.11 633

Table 6: Official results for the en-es subtask (ties
ignored)

set-up experiments. Restricting to the evaluation
setting in which ties are not penalized (i.e., cor-
responding to our setting during system and pa-
rameter tuning), we can see that the results corre-
sponding to de-en (Table 5) are comparable to our
set-up results and close to the best performing sys-
tem. However, in the en-es language pair the final
results are comparatively much lower (Table 6).
We find this behavior strange. In this respect, we
analyzed the inter-annotator agreement within the
gold standard. Concretely we computed the Co-
hen’s κ for all overlapping annotations concerning
at least 4 systems for both language pairs. The re-
sults of our analysis are presented in Table 7 and
therefore it confirms our hypothesis that en-es an-
notations had more noise providing an explanation
for the accuracy decrease of our QE models and
setting the subtask into a more challenging sce-
nario. However, further research will be needed to
analyze other factors such as oracles and improve-
ment on automatic metrics prediction and reliabil-
ity compared to linguistic expert annotators.

Another remaining issue for our research con-
cerns investigating better ways to deal with ties,
as their penalization lowered our results dramati-
cally. In this direction we plan to work further on

# of Lang Cohen’s # of
systems κ elements

4 en-es 0.210 560
de-en 0.369 640

5 en-es 0.211 130
de-en 0.375 145

Table 7: Golden standard test set agreement coef-
ficients measured by Cohen’s κ

the adjacency matrix reconstruction heuristics and
presenting the features to the learner in a struc-
tured form.

5 Conclusions

This paper described the TALP-UPC participation
in the WMT’13 Shared Task. We approached the
Quality Estimation task based on system selection,
where different systems have to be ranked accord-
ing to their quality. We derive a full ranking and
identify the best system per sentence on the basis
of Random Forest classifiers.

After the model set-up, we observed consid-
erably good and robust results for both transla-
tion directions, German-to-English and English-
to-Spanish: Kendall’s τ around 0.30 as well as
accuracies around 52% on pairwise classification
and 41% on best translation identification. How-
ever, the results over the official test set were
significantly lower. We have found that the low
inter-annotator agreement between users on that
set might provide an explanation to the poor per-
formance of our QE models.

Our current efforts are centered on explaining
the behavior of our QE models when facing the of-
ficial test sets. We are following two directions: i)
studying the ties’ impact to come out with a more
robust model and ii) revise the English-to-Spanish
gold standard annotations in terms of correlation
with automatic metrics to facilitate a deeper un-
derstanding of the results.
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Abstract 

This paper is to introduce our participation in 

the WMT13 shared tasks on Quality Estima-

tion for machine translation without using ref-

erence translations. We submitted the results 

for Task 1.1 (sentence-level quality estima-

tion), Task 1.2 (system selection) and Task 2 

(word-level quality estimation). In Task 1.1, 

we used an enhanced version of BLEU metric 

without using reference translations to evalu-

ate the translation quality. In Task 1.2, we uti-

lized a probability model Naïve Bayes (NB) as 

a classification algorithm with the features 

borrowed from the traditional evaluation met-

rics. In Task 2, to take the contextual infor-

mation into account, we employed a discrimi-

native undirected probabilistic graphical mod-

el Conditional random field (CRF), in addition 

to the NB algorithm. The training experiments 

on the past WMT corpora showed that the de-

signed methods of this paper yielded promis-

ing results especially the statistical models of 

CRF and NB. The official results show that 

our CRF model achieved the highest F-score 

0.8297 in binary classification of Task 2. 

 

1 Introduction 

Due to the fast development of Machine transla-

tion, different automatic evaluation methods for 

the translation quality have been proposed in re-

cent years. One of the categories is the lexical 

similarity based metric. This kind of metrics in-

cludes the edit distance based method, such as 

WER (Su et al., 1992), Multi-reference WER 

(Nießen et al., 2000), PER (Tillmann et al., 

1997), the works of (Akiba, et al., 2001), 

(Leusch et al., 2006) and (Wang and Manning, 

2012); the precision based method, such as 

BLEU (Papineni et al., 2002), NIST (Doddington, 

2002), and SIA (Liu and Gildea, 2006); recall 

based method, such as ROUGE (Lin and Hovy 

2003); and the combination of precision and re-

call, such as GTM (Turian et al., 2003), METE-

OR (Lavie and Agarwal, 2007), BLANC (Lita et 

al., 2005), AMBER (Chen and Kuhn, 2011), 

PORT (Chen et al., 2012b), and LEPOR (Han et 

al., 2012). 

Another category is the using of linguistic fea-

tures. This kind of metrics includes the syntactic 

similarity, such as the POS information used by 

TESLA (Dahlmeier et al., 2011), (Liu et al., 

2010) and (Han et al., 2013), phrase information 

used by (Povlsen, et al., 1998) and (Echizen-ya 

and Araki, 2010), sentence structure used by 

(Owczarzak et al., 2007); the semantic similarity, 

such as textual entailment used by (Mirkin et al., 

2009) and (Castillo and Estrella, 2012), Syno-

nyms used by METEOR (Lavie and Agarwal, 

2007), (Wong and Kit, 2012), (Chan and Ng, 

2008); paraphrase used by (Snover et al., 2009). 

The traditional evaluation metrics tend to 

evaluate the hypothesis translation as compared 

to the reference translations that are usually of-

fered by human efforts. However, in the practice, 

there is usually no golden reference for the trans-

lated documents, especially on the internet works. 

How to evaluate the quality of automatically 

translated documents or sentences without using 

the reference translations becomes a new chal-

lenge in front of the NLP researchers. 
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ADJ ADP ADV CONJ DET NOUN NUM PRON PRT VERB X . 

ADJ PREP, 

PREP/DEL 

ADV, 

NEG 

CC, 

CCAD, 

CCNEG, 

CQUE, 

CSUBF, 

CSUBI, 

CSUBX 

ART NC, 

NMEA, 

NMON, 

NP, 

PERCT,  

UMMX 

CARD, 

CODE, 

QU 

DM, 

INT, 

PPC, 

PPO, 

PPX, 

REL 

SE VCLIger, 

VCLIinf, 

VCLIfin, 

VEadj, 

VEfin, 

VEger, 

VEinf, 

VHadj, 

VHfin, 

VHger, 

VHinf, 

VLadj, 

VLfin, 

VLger, 

VLinf, 

VMadj, 

VMfin, 

VMger, 

VMinf, 

VSadj, 

VSfin, 

VSger, 

VSinf 

ACRNM, 

ALFP, 

ALFS, 

FO, ITJN, 

ORD, 

PAL, 

PDEL, 

PE, PNC, 

SYM 

BACKSLASH, 

CM, COLON, 

DASH, DOTS, 

FS, LP, QT, 

RP, SEMICO-

LON, SLASH 

Table 1: Developed POS mapping for Spanish and universal tagset 
 

2 Related Works 

Gamon et al. (2005) perform a research about 

reference-free SMT evaluation method on sen-

tence level. This work uses both linear and non-

linear combinations of language model and SVM 

classifier to find the badly translated sentences. 

Albrecht and Hwa (2007) conduct the sentence-

level MT evaluation utilizing the regression 

learning and based on a set of weaker indicators 

of fluency and adequacy as pseudo references. 

Specia and Gimenez (2010) use the Confidence 

Estimation features and a learning mechanism 

trained on human annotations. They show that 

the developed models are highly biased by diffi-

culty level of the input segment, therefore they 

are not appropriate for comparing multiple sys-

tems that translate the same input segments. Spe-

cia et al. (2010) discussed the issues between the 

traditional machine translation evaluation and the 

quality estimation tasks recently proposed. The 

traditional MT evaluation metrics require refer-

ence translations in order to measure a score re-

flecting some aspects of its quality, e.g. the 

BLEU and NIST. The quality estimation ad-

dresses this problem by evaluating the quality of 

translations as a prediction task and the features 

are usually extracted from the source sentences 

and target (translated) sentences. They also show 

that the developed methods correlate better with 

human judgments at segment level as compared 

to traditional metrics. Popović et al. (2011) per-

form the MT evaluation using the IBM model 

one with the information of morphemes, 4-gram 

POS and lexicon probabilities. Mehdad et al. 

(2012) use the cross-lingual textual entailment to 

push semantics into the MT evaluation without 

using reference translations. This evaluation 

work mainly focuses on the adequacy estimation. 

Avramidis (2012) performs an automatic sen-

tence-level ranking of multiple machine transla-

tions using the features of verbs, nouns, sentenc-

es, subordinate clauses and punctuation occur-

rences to derive the adequacy information. Other 

descriptions of the MT Quality Estimation tasks 

can be gained in the works of (Callison-Burch et 

al., 2012) and (Felice and Specia, 2012). 

3 Tasks Information  

This section introduces the different sub-tasks we 

participated in the Quality Estimation task of 

WMT 13 and the methods we used.  

3.1 Task 1-1 Sentence-level QE 

Task 1.1 is to score and rank the post-editing 

effort of the automatically translated English-

Spanish sentences without offering the reference 

translation. 

Firstly, we develop the English and Spanish 

POS tagset mapping as shown in Table 1. The 75 

Spanish POS tags yielded by the Treetagger 

(Schmid, 1994) are mapped to the 12 universal 

tags developed in (Petrov et al., 2012). The Eng-

lish POS tags are extracted from the parsed sen-

tences using the Berkeley parser (Petrov et al., 

2006). 

Secondly, the enhanced version of BLEU 

(EBLEU) formula is designed with the factors of 

modified length penalty (   ), precision, and 

recall, the   and   representing the lengths of 

hypothesis (target) sentence and source sentence 

respectively. We use the harmonic mean of pre-

cision and recall, i.e.  (       ). We assign 

the weight values     and    , i.e. higher 

weight value is assigned to precision, which is 

different with METEOR (the inverse values). 
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Lastly, the scoring for the post-editing effort 

of the automatically translated sentences is per-

formed on the extracted POS sequences of the 

source and target languages. The evaluated per-

formance of EBLEU on WMT 12 corpus is 

shown in Table 2 using the Mean-Average-Error 

(MAE), Root-Mean-Squared-Error (RMSE).  

 

 Precision Recall MLP EBLEU 

MAE 0.17 0.19 0.25 0.16 

RMSE 0.22 0.24 0.30 0.21 

Table 2: Performance on the WMT12 corpus 

The official evaluation scores of the testing re-

sults on WMT 13 corpus are shown in Table 3. 

The testing results show similar scores as com-

pared to the training scores (the MAE score is 

around 0.16 and the RMSE score is around 0.22), 

which shows a stable performance of the devel-

oped model EBLEU. However, the performance 

of EBLEU is not satisfactory currently as shown 

in the Table 2 and Table 3. This is due to the fact 

that we only used the POS information as lin-

guistic feature. This could be further improved 

by the combination of lexical information and 

other linguistic features such as the sentence 

structure, phrase similarity, and text entailment. 

 

 MAE RMSE DeltaAvg 
Spearman 

Corr 

EBLEU 16.97 21.94 2.74 0.11 

Baseline 

SVM 
14.81 18.22 8.52 0.46 

Table 3: Performance on the WMT13 corpus 

3.2 Task 1-2 System Selection 

Task 1.2 is the system selection task on EN-ES 

and DE-EN language pairs. Participants are re-

quired to rank up to five alternative translations 

for the same source sentence produced by multi-

ple translation systems.  

Firstly, we describe the two variants of 

EBLEU method for this task. We score the five 

alternative translation sentences as compared to 

the source sentence according to the closeness of 

their POS sequences. The German POS is also 

extracted using Berkeley parser (Petrov et al., 

2006). The mapping of German POS to universal 

POS tagset is using the developed one in the 

work of (Petrov et al., 2012). When we convert 

the absolute scores into the corresponding rank 

values, the variant EBLEU-I means that we use 

five fixed intervals (with the span from 0 to 1) to 

achieve the alignment as shown in Table 4. 

[1,0.4) [0.4, 0.3) [0.3, 0.25) [0.25, 0.2) [0.2, 0] 

5 4 3 2 1 

Table 4: Convert absolute scores into ranks 

 

The alignment work from absolute scores to 

rank values shown in Table 4 is empirically de-

termined. We have made a statistical work on the 

absolute scores yielded by our metrics, and each 

of the intervals shown in Table 4 covers the simi-

lar number of sentence scores. 

On the other hand, in the metric EBLEU-A, 

“A” means average. The absolute sentence edit 

scores are converted into the five rank values 

with the same number (average number). For 

instance, if there are 1000 sentence scores in to-

tal then each rank level (from 1 to 5) will gain 

200 scores from the best to the worst. 

Secondly, we introduce the NB-LPR model 

used in this task. NB-LPR means the Naïve 

Bayes classification algorithm using the features 

of Length penalty (introduced in previous sec-

tion), Precision, Recall and Rank values. NB-

LPR considers each of its features independently. 

Let’s see the conditional probability that is also 

known as Bayes’ rule. If the  ( | )  is given, 

then the  ( | ) can be calculated as follows: 

 

  ( | )  
 ( | ) ( )

 ( )
 (5) 

 

Given a data point identified as 

 (          ) and the classifications 

 (          ), Bayes’ rule can be applied to 

this statement: 

 

  (  |          )  
 (          |  ) (  )

 (          )
 (6) 

 

As in many practical applications, parameter 

estimation for NB-LPR model uses the method 

of maximum likelihood. For details of Naïve 

Bayes algorithm, see the works of (Zhang, 2004) 

and (Harrington, 2012). 

Thirdly, the SVM-LPR model means the sup-

port vector machine classification algorithm us-

ing the features of Length penalty, Precision, 

Recall and Rank values, i.e. the same features as 

in NB-LPR. SVM solves the nonlinear classifica-

tion problem by mapping the data from a low 

dimensional space to a high dimensional space 

using the Kernel methods. In the projected high 

dimensional space, the problem usually becomes 

a linear one, which is easier to solve. SVM is 

also called maximum interval classifier because 

it tries to find the optimized hyper plane that 
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separates different classes with the largest mar-

gin, which is usually a quadratic optimization 

problem. Let’s see the formula below, we should 

find the points with the smallest margin to the 

hyper plane and then maximize this margin. 

 

          {    (      ( 
    ))  

 

‖ ‖
}

 (7) 

 

where   is normal to the hyper plane, || || is 

the Euclidean norm of  , and | | || ||  is the 

perpendicular distance from the hyper plane to 

the origin. For details of SVM, see the works of 

(Cortes and Vapnik, 1995) and (Burges, 1998). 

 

EN-ES 

NB-LPR SVM-LPR 

MAE RMSE Time MAE RMSE Time 

.315 .399 .40s .304 .551 60.67s 

DE-EN 

NB-LPR SVM-LPR 

MAE RMSE Time MAE RMSE Time 

.318 .401 .79s .312 .559 111.7s 

Table 5: NB-LPR and SVM-LPR training 

In the training stage, we used all the officially 

released data of WMT 09, 10, 11 and 12 for the 

EN-ES and DE-EN language pairs. We used the 

WEKA (Hall et al., 2009) data mining software 

to implement the NB and SVM algorithms. The 

training scores are shown in Table 5. The NB-

LPR performs lower scores than the SVM-LPR 

but faster than SVM-LPR. 

 
 DE-EN EN-ES 

Methods 
Tau(ties 

penalized) 

|Tau|(ties 

ignored) 

Tau(ties 

penalized) 

|Tau|(ties 

ignored) 

EBLEU-I -0.38 -0.03 -0.35 0.02 
EBLEU-A N/A N/A -0.27 N/A 

NB-LPR -0.49 0.01 N/A 0.07 

Baseline  -0.12 0.08 -0.23 0.03 

Table 6: QE Task 1.2 testing scores 

The official testing scores are shown in Table 

6. Each task is allowed to submit up to two sys-

tems and we submitted the results using the 

methods of EBLEU and NB-LPR. The perfor-

mance of NB-LPR on EN-ES language pair 

shows higher Tau score (0.07) than the baseline 

system score (0.03) when the ties are ignored. 

Because of the number limitation of submitted 

systems for each task, we did not submit the 

SVM-LPR results. However, the training exper-

iments prove that the SVM-LPR model performs 

better than the NB-LPR model though SVM-

LPR takes more time to run. 

3.3 Task 2 Word-level QE 

Task 2 is the word-level quality estimation of 

automatically translated news sentences from 

English to Spanish without given reference trans-

lations. Participants are required to judge each 

translated word by assigning a two- or multi-

class labels. In the binary classification, a good 

or a bad label should be judged, where “bad” 

indicates the need for editing the token. In the 

multi-class classification, the labels include 

“keep”, “delete” and “substitute”. In addition to 

the NB method, in this task, we utilized a dis-

criminative undirected probabilistic graphical 

model, i.e. Conditional Random Field (CRF). 

CRF is early employed by Lefferty (Lefferty 

et al., 2001) to deal with the labeling problems of 

sequence data, and is widely used later by other 

researchers. As the preparation for CRF defini-

tion, we assume that   is a variable representing 

the input sequence, and   is another variable rep-

resenting the corresponding labels to be attached 

to  . The two variables interact as conditional 

probability  ( | )  mathematically. Then the 

definition of CRF: Let a graph model   (   ) 

comprise a set   of vertices or nodes together 

with a set   of edges or lines and      |  
  , such that   is indexed by the vertices of  , 

then (   ) shapes a CRF model. This set meets 

the following form:  

 

   ( | )      

(∑     (   |   )       ∑     (   |   )     )
 (8) 

 

where   and   represent the data sequence and 

label sequence respectively;    and    are the 

features to be defined;    and    are the parame-

ters trained from the datasets. We used the tool 

CRF++
1
 to implement the CRF algorithm. The 

features we used for the NB and CRF are shown 

in Table 7. We firstly trained the CRF and NB 

models on the officially released training corpus 

(produced by Moses and annotated by computing 

TER with some tweaks). Then we removed the 

truth labels in the training corpus (we call it 

pseudo test corpus) and labeled each word using 

the derived training models. The test results on 

the pseudo test corpus are shown in Table 8, 

                                                 
1
 https://code.google.com/p/crfpp/ 
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which specifies CRF performs better than NB 

algorithm. 

 

     (    ) 
Unigram, from antecedent 4

th
 

to subsequent 3
rd

 token 

        
 (    ) 

Bigram, from antecedent 2
nd

 

to subsequent 2
nd

 token 

      
Jump bigram, antecedent and 

subsequent token 

            
 (    ) 

Trigram, from antecedent 2
nd

 

to subsequent 2
nd

 token 

Table 7: Developed features 

 

Binary 

CRF NB 

Training Accuracy Training Accuracy 
Itera=108 

Time=2.48s 
0.944 Time=0.59s 0.941 

Multi-classes 

CRF NB 

Training Accuracy Training Accuracy 
Itera=106 

Time=3.67s 
0.933 Time=0.55s 0.929 

Table 8: Performance on pseudo test corpus 

The official testing scores of Task 2 are shown 

in Table 9. We include also the results of other 

participants (CNGL and LIG) and their ap-

proaches. 

 
 Binary Multiclass 

Methods Pre Recall F1 Acc 

CNGL-

dMEMM 
0.7392 0.9261 0.8222 0.7162 

CNGL-

MEMM 
0.7554 0.8581 0.8035 0.7116 

LIG-All N/A N/A N/A 0.7192 

LIG-FS 0.7885 0.8644 0.8247 0.7207 

LIG-

BOOSTING 
0.7779 0.8843 0.8276 N/A 

NB 0.8181 0.4937 0.6158 0.5174 

CRF 0.7169 0.9846 0.8297 0.7114 

Table 9: QE Task 2 official testing scores 

The results show that our method CRF yields 

a higher recall score than other systems in binary 

judgments task, and this leads to the highest F1 

score (harmonic mean of precision and recall). 

The recall value reflects the loyalty to the truth 

data. The augmented feature set designed in this 

paper allows the CRF to take the contextual in-

formation into account, and this contributes 

much to the recall score. On the other hand, the 

accuracy score of CRF in multiclass evaluation is 

lower than LIG-FS method. 

4 Conclusions 

This paper describes the algorithms and features 

we used in the WMT 13 Quality Estimation tasks. 

In the sentence-level QE task (Task 1.1), we de-

velop an enhanced version of BLEU metric, and 

this shows a potential usage for the traditional 

evaluation criteria. In the newly proposed system 

selection task (Task 1.2) and word-level QE task 

(Task 2), we explore the performances of several 

statistical models including NB, SVM, and CRF, 

of which the CRF performs best, the NB per-

forms lower than SVM but much faster than 

SVM. The official results show that the CRF 

model yields the highest F-score 0.8297 in binary 

classification judgment of word-level QE task. 
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Abstract
In this paper we present our entry to the
WMT’13 shared task: Quality Estima-
tion (QE) for machine translation (MT).
We participated in the 1.1, 1.2 and 1.3
sub-tasks with our QE system trained on
features from diverse information sources
like MT decoder features, n-best lists,
mono- and bi-lingual corpora and giza
training models. Our system shows com-
petitive results in the workshop shared
task.

1 Introduction

As MT becomes more and more reliable, more
people are inclined to use automatically translated
texts. If coming across a passage that is obviously
a mistranslation, any reader would probably start
to doubt the reliability of the information in the
whole article, even though the rest might be ad-
equately translated. If the MT system had a QE
component to mark translations as reliable or pos-
sibly erroneous, the reader would know to use in-
formation from passages marked as bad transla-
tions with caution, while still being able to trust
other passages. In post editing a human translator
could use translation quality annotation as an indi-
cation to whether editing the MT output or trans-
lating from scratch might be faster. Or he could
use this information to decide where to start in or-
der to improve the worst passages first or skip ac-
ceptable passages altogether in order to save time.
Confidence scores can also be useful for applica-
tions such as cross lingual information retrieval or
question answering. Translation quality could be
a valuable ranking feature there.

Most previous work in the field estimates con-
fidence on the sentence level (e.g. Quirk et

al. (2004)), some operate on the word level (e.g.
Ueffing and Ney (2007), Sanchis et al. (2007),
and Bach et al. (2011)), whereas Soricut and Echi-
habi (2010) use the document level.

Various classifiers and regression models have
been used in QE in the past. Gandrabur and Foster
(2003) compare single layer to Multi Layer Per-
ceptron (MLP), Quirk et al. (2004) report that Lin-
ear Regression (LR) produced the best results in
a comparison of LR, MLP and SVM, Gamon et
al. (2005) use SVM, Soricut and Echihabi (2010)
find the M5P tree works best among a number of
regression models, while Bach et al. (2011) define
the problem as a word sequence labeling task and
use MIRA.

The QE shared task was added to the WMT
evaluation campaign in 2012 (Callison-Burch et
al., 2012), providing standard training and test
data for system development.

2 WMT’13 Shared Task

In this WMT Shared Task for Quality Estima-
tion1 there were tasks for sentence and word level
QE. We participated in all sub-tasks for Task 1:
Sentence-level QE.

Task 1.1: Scoring and ranking for post-editing
effort focuses on predicting HTER per segment
for the translations of one specific MT system.
Task 1.2: System selection/ranking required to
predict a ranking for up to five translations of
the same source sentence by different MT sys-
tems. The training data provided manual labels for
ranking including ties. Task 1.3: Predicting post-
editing time participants are asked to predict the
time in seconds a professional translator will take
to post edit each segment.

1http://www.statmt.org/wmt13/quality-estimation-
task.html
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Besides the training data with labels, for each
of these tasks additional resources were provided.
These include bilingual training corpora, language
models, 1000-best lists, models from giza and
moses training and various other statistics and
models depending on task and language pair.

3 Features

3.1 Language Models

To calculate language model (LM) features, we
train traditional n-gram language models with n-
gram lengths of four and five using the SRILM
toolkit (Stolcke, 2002). We calculate our features
using the KenLM toolkit (Heafield, 2011). We
normalize all our features with the target sentence
length to get an average word feature score, which
is comparable for translation hypotheses of differ-
ent length. In addition to the LM probability we
record the average n-gram length found in the lan-
guage model for the sentence, the total number of
LM OOVs and OOVs per word, as well as the
maximum and the minimum word probability of
the sentence, six features total.

We use language models trained on source lan-
guage data and target language data to measure
source sentence difficulty as well as translation
fluency.

3.2 Distortion Model

The moses decoder uses one feature from a dis-
tance based reordering model and six features
from a lexicalized reordering model: Given a
phrase pair, this model considers three events
Monotone, Swap, and Discontinuous in two direc-
tions Left and Right. This results in six events:
LM (left-monotone), LS (left-swap), LD (left-
discontinuous) and RM (right-monotone), RS,
RD.

These distortion features are calculated for each
phrase. For a total sentence score we normalize by
the phrase count for each of the seven features.

3.3 Phrase Table

From the phrase table we use the features from
the moses decoder output: inverse phrase trans-
lation probability, inverse lexical weighting, di-
rect phrase translation probability and direct lex-
ical weighting. For a total sentence score we nor-
malize by the phrase count. We use the number
of phrases used to generate the hypothesis and the

average phrase length as additional features, six
features total.

3.4 Statistical Word Lexica

From giza training we use IBM-4 statistical word
lexica in both directions. We use six probabil-
ity based features as described in Hildebrand and
Vogel (2008): Normalized probability, maximum
word probability and word deletion count from
each language direction.

To judge the translation difficulty of each word
in the source sentence we collect the number of
lexicon entries for each word similar to Gandrabur
and Foster (2003). The intuition is, that a word
with many translation alternatives in the word-to-
word lexicon is difficult to translate while a word
with only a few translation choices is easy to trans-
late.

In fact it is not quite this straight forward. There
are words in the lexicon, which have many lex-
icon entries, but the probability for them is not
very equally distributed. One entry has a very
high probability while all others have a very low
one - not much ambiguity there. Other words
on the other hand have several senses in one lan-
guage and therefore are translated frequently into
two or three different words in the target language.
There the top entries in the lexicon might each
have about 30% probability. To capture this be-
havior we do not only count the total number of
entries but also the number of entries with a prob-
ability over a threshold of 0.01.

For example one word with a rather high num-
ber of different translations in the English-Spanish
statistical lexicon is the period (.) with 1570 en-
tries. It has only one translation with a probability
over the threshold which is the period (.) in Span-
ish at a probability of 0.9768. This shows a clear
choice and rather little ambiguity despite the high
number of different translations in the lexicon.

For each word we collect the number of lexi-
con entries, the number of lexicon entries over the
threshold, the highest probability from the lexicon
and whether or not the word is OOV. If a word has
no lexicon entry with a probability over the thresh-
old we exclude the word from the lexicon for this
purpose and count it as an OOV. As sentence level
features we use the sum of the word level features
normalized by the sentence length as well as the
total OOV count for the sentence, which results in
five features.
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3.5 Sentence Length Features

The translation difficulty of a source sentence is
often closely related to the sentence length, as
longer sentences tend to have a more complex
structure. Also a skewed ratio between the length
of the source sentence and its translation can be an
indicator for a bad translation.

We use plain sentence length features, namely
the source sentence length, the translation hypoth-
esis length and their ratio as introduced in Quirk
(2004).

Similar to Blatz et al. (2004) we use the n-best
list as an information source. We calculate the av-
erage hypothesis length in the n-best list for one
source sentence. Then we compare the current hy-
pothesis to that and calculate both the diversion
from that average as well as their ratio. We also
calculate the source-target ratio to this average hy-
pothesis length.

To get a representative information on the
length relationship of translations from the source
and target languages in question, we use the par-
allel training corpus. We calculate the overall lan-
guage pair source to target sentence length ratio
and record the diversion of the current hypothesis’
source-target ratio from that.

The way sentences are translated from one lan-
guage to another might differ depending on how
complex the information is, that needs to be con-
veyed, which in turn might be related to the sen-
tence length and the ratio between source and
translation. As a simple way of capturing this
phenomenon we divide the parallel training cor-
pus into three classes (short, medium, long) by
the length of the source language sentence. The
boundaries of these classes are the mean 26.84
plus and minus the standard deviation 14.54 of the
source sentence lengths seen in the parallel cor-
pus. We calculate the source/target length ratio for
each of the three classes separately. The resulting
statistics for the parallel training corpora can be
found in Table 1. For English - Spanish the ratio
for all classes is close to one, for other language
pairs these differ more clearly.

As features for each hypothesis we use a binary
indicator for its membership to each class and its
deviation from the length ratio of its class. This
results in 12 sentence length related features in to-
tal.

En train
number of sentences 1,714,385
average length 26.84
standard deviation 14.54
class short 0 - 12.29
class medium 12.29 - 41.38
class long 41.38 - 100
s/t ratio overall 0.9624
s/t ratio for short 0.9315
s/t ratio for medium 0.9559
s/t ratio for long 0.9817

Table 1: Sentence Length Statistics for the
English-Spanish Parallel Corpus

3.6 Source Language Word and Bi-gram
Frequency Features

The length of words is often related to whether
they are content words and how frequently they
are used in the language. Therefore we use the
maximum and average word length as features.

Similar to Blatz et al. (2004) we sort the vo-
cabulary of the source side of the training corpus
by occurrence frequency and then divide it into
four parts, each of which covers 25% of all to-
kens. As features we use the percentage of words
in the source sentence that fall in each quartile.
Additionally we use the number and percentage of
source words in the source sentence that are OOV
or very low frequency, using count 2 as threshold.
We also collect all bigram statistics for the cor-
pus and calculate the corresponding features for
the source sentence based on bigrams. This adds
up to fourteen features from source word and cor-
pus statistics.

3.7 N-Best List Agreement & Diversity

We use the three types of n-best list based features
described in Hildebrand and Vogel (2008): Posi-
tion Dependent N-best List Word Agreement, Po-
sition independent N-best List N-gram Agreement
and N-best List N-gram Probability.

To measure n-best list diversity, we compare
the top hypothesis to the 5th, 10th, 100th, 200th,
300th, 400th and 500th entry in the n-best list
(where they exist) to see how much the transla-
tion changes throughout the n-best list. We calcu-
late the Levenshtein distance (Levenshtein, 1966)
between the top hypothesis and the three lower
ranked ones and normalize by the sentence length
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of the first hypothesis. We also record the n-best
list size and the size of the vocabulary in the n-
best list for each source sentence normalized by
the source sentence length.

Fifteen agreement based and nine diversity
based features add up to 24 n-best list based fea-
tures.

3.8 Source Parse Features

The intuition is that a sentence is harder to trans-
late, if its structure is more complicated. A sim-
ple indicator for a more complex sentence struc-
ture is the presence of subclauses and also the
length of any clauses and subclauses. To obtain the
clause structure, we parse the source language sen-
tence using the Stanford Parser2 (Klein and Man-
ning, 2003). Features are: The number of clauses
and subclauses, the average clause length, and the
number of sentence fragments found. If the parse
does not contain a clause tag, it is treated as one
clause which is a fragment.

3.9 Source-Target Word Alignment Features

A forced alignment algorithm utilizes the trained
alignment models from the MT systems GIZA
(Och and Ney, 2003) training to align each source
sentence to each translation hypothesis.

We use the score given by the word alignment
models, the number of unaligned words and the
number of NULL aligned words, all normalized
by the sentence length, as three separate features.
We calculate those for both language directions.
Hildebrand and Vogel (2010) successfully applied
these features in n-best list re-ranking.

3.10 Cohesion Penalty

Following the cohesion constraints described in
Bach et al. (2009) we calculate a cohesion penalty
for the translation based on the dependency parse
structure of the source sentence and the word
alignment to the translation hypothesis. To obtain
these we use the Stanford dependency parser (de
Marneffe et al., 2006) and the forced alignment
from Section 3.9.

For each head word we collect all dependent
words and also their dependents to form each com-
plete sub-tree. Then we project each sub-tree onto
the translation hypothesis using the alignment. We
test for each sub-tree, whether all projected words
in the translation are next to each other (cohesive)

2http://nlp.stanford.edu/software/lex-parser.shtml

or if there are gaps. From the collected gaps we
subtract any unaligned words. Then we count the
number of gaps as cohesion violations as well as
how many words are in each gap. We go recur-
sively up the tree, always including all sub-trees
for each head word. If there was a violation in
one of the sub-trees it might be resolved by adding
in its siblings, but if the violation persists, it is
counted again.

4 Classifiers

For all experiments we used the Weka3 data min-
ing toolkit described in Hall et. al. (2009) to com-
pare four different classifiers: Linear Regression
(LR), M5P tree (M5Ptree), Multi Layer Percep-
tron (MLP) and Support Vector Machine for Re-
gression (SVM). Each of these has been identi-
fied as effective in previous publications. All but
one of the Weka default settings proved reliable,
changing the learning rate for the MLP from de-
fault: 0.3 to 0.01 improved the performance con-
siderably. We report Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) for all re-
sults.

5 Experiment Results

For Tasks 1.1 and 1.3 we used the 1000-best out-
put provided. As first step we removed duplicate
entries in these n-best list. This brought the size
down to an average of 152.9 hypotheses per source
sentence for the Task 1.1 training data, 172.7 on
the WMT12 tests set and 204.3 hypotheses per
source sentence on the WMT13 blind test data.
The training data for task 1.3 has on average 129.0
hypothesis per source sentence, the WMT13 blind
test data 129.8.

In addition to our own features described above
we extracted the 17 features used in the WMT12
baseline for all sub-tasks via the software provided
for the WMT12-QE shared task.

5.1 Task 1.1

Task 1.1 is to give a quality score between 0 and
1 for each segment in the test set, predicting the
HTER score for the segment and also to give a
rank for each segment, sorting the entire test set
from best quality of translation to worst.

For Task 1.1 our main focus was the scoring
task. We did submit a ranking for the blind test

3http://www.cs.waikato.ac.nz/ml/weka/
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wmt12-test: WMT12 manual quality labels

WMT12 best system: Language Weaver 0.61 - 0.75
WMT12 baseline system 0.69 - 0.82
feat. set #feat LR M5Pt MLP SVM
full 117 0.617 - 0.755 0.618 - 0.756 0.619 - 0.773 0.609 - 0.750
no WMT12-base 100 0.618 - 0.766 0.618 - 0.767 0.603 - 0.757 0.611 - 0.761
slim 69 0.621 - 0.767 0.621 - 0.766 0.614 - 0.768 0.627 - 0.773

wmt12-test: HTER

full 117 0.125 - 0.162 0.126 - 0.163 0.122 - 0.156 0.121 - 0.156
no WMT12-base 100 0.124 - 0.160 0.123 - 0.159 0.125 - 0.159 0.121 - 0.155
slim 69 0.125 - 0.161 0.126 - 0.161 0.124 - 0.159 0.123 - 0.158
wmt13-test: HTER

WMT12 baseline system 0.148 - 0.182
full 117 0.146 - 0.183 0.147 - 0.185 0.156 - 0.199 0.142 - 0.180
no WMT12-base 100 0.144 - 0.180 0.144 - 0.180 0.156 - 0.203 0.139 - 0.176
slim 69 0.147 - 0.182 0.147 - 0.181 0.153 - 0.194 0.142 - 0.177

Table 2: Task 1.1: Results in MAE and RMSE on the WMT12 test set for WMT12 manual labels as well
as WMT13 HTER as target class and the WMT13 test set for HTER

set as well, which resulted from simply sorting the
test set by the estimated HTER per segment.

In Table 2 we show the results for some ex-
periments comparing the performance of differ-
ent feature sets and classifiers. For development
we used the WMT12-QE test set and both the
WMT12 manual labels as well as HTER as target
class. We compared the impact of removing the
17 WMT12-baseline features ”no WMT12-base”
and training a ”slim” system by removing nearly
half the features, which showed to have a smaller
impact on the overall performance in preliminary
experiments. Among the removed features are
n-best list based features, redundant features be-
tween ours, the moses based and the base17 fea-
tures and some less reliable features like e.g. the
lexicon deletion features, who’s thresholds need to
be calibrated carefully for each new language pair.
We submitted the full+MLP and the no-WMT12-
base+SVM output to the shared task, shown in
bold in the table.

The official result for our system for task 1.1
on the WMT13 blind data is MAE 13.84, RMSE
17.46 for the no-WMT12-base+SVM system and
MAE 15.25 RMSE 18.97 for the full+MLP sys-
tem. Surprising here is the fact that our full system
clearly outperforms the 17-feature baseline on the
WMT12 test set, but is behind it on the WMT13
blind test set. (Baseline bb17 SVM: MAE 14.81,

RMSE 18.22) Looking at the WMT13 test set re-
sults, we should have chosen the slim+SVM sys-
tem variant.

5.2 Task 1.2

Task 1.2 asks to rank different MT systems by
translation quality on a segment by segment basis.

Since the manually annotated ranks in task 1.2
allowed ties, we treated them as quality scores and
ran the same QE system on this data as we did
for task 1.1. We submitted the full-MLP output
with the only difference that for this data set the
decoder based features were not available. We
rounded the predicted ranks to integer. Since the
training data contains many ties we did not employ
a strategy to resolve ties.

As a contrastive approach we ran the hypothe-
sis selection system described in Hildebrand and
Vogel (2010) using the BLEU MT metric as rank-
ing criteria. For this system it would have been
very beneficial to have access to the n-best lists
for the different system’s translations. The BLEU
score for the translation listed as the first system
for each source sentence would be 30.34 on the
entire training data. We ran n-best list re-ranking
using MERT (Och, 2003) for two feature sets: The
full feature set, 100 features in total and a slim fea-
ture set with 59 features. For the slim feature set
we removed all features that are solely based on
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the source sentence, since those have no impact on
re-ranking an n-best list. The BLEU score for the
training set improved to 45.25 for the full feature
set and to 45.76 for the slim system. Therefore
we submitted the output of the slim system to the
shared task. This system does not predict ranks
directly, but estimates ranking according to BLEU
gain on the test set. Therefore the new ranking is
always ranks 1-5 without ties.

The official result uses Kendalls tau with and
without ties penalized. Our two submissions
score: −0.11 /−0.11 for the BLEU optimized sys-
tem and−0.63 / 0.23 for the classifier system. The
classifier system is the best submission in the ”ties
ignored” category.

5.3 Task 1.3

Task 1.3 is to estimate post editing time on a per
segment basis.

In absence of a development test set we used
10-fold cross-validation on the training data to de-
termine the best feature set and classifier for the
two submissions. Table 3 shows the results on our
preliminary tests for four classifiers and three fea-
ture sets. The ”no pr.” differs from the full fea-
ture set only by removing the provided features, in
this case the 17 WMT12-baseline features and the
”translator ID” and ”nth in doc” features. For the
”slim” system run the feature set size was cut in
half in order to prevent overfitting to the training
data since the training data set is relatively small.
We used the same criteria as in Task 1.1. For
the shared task we submitted the full+SVM and
slim+LR variants, shown in bold in the table.

The official result for our entries on the WMT13
blind set in MAE and RMSE are: 53.59 - 92.21 for
the full system and 51.59 - 84.75 for the slim sys-
tem. The slim system ranks 3rd for both metrics
and outperforms the baseline at 51.93 - 93.36.

6 Conclusions

In this WMT’13 QE shared task we submitted to
the 1.1, 1.2 and 1.3 sub-tasks. In development we
focused on the scoring type tasks.

In general there don’t seem to be significant dif-
ferences between the different classifiers.

Surprising is the fact that our full system for
task 1.1 clearly outperforms the 17-feature base-
line on the WMT12 test set, but is behind it on
the WMT13 blind test set. This calls into ques-
tion whether the performance on the WMT12 test

set was the right criterium for selecting a system
variant for submission.

The relative success of the ”slim” system vari-
ant over the full feature set shows that our system
would most likely benefit from a sophisticated fea-
ture selection method. We plan to explore this in
future work.
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Abstract
In this paper we present the system we
submitted to the WMT13 shared task on
Quality Estimation. We participated in
the Task 1.1. Each translated sentence
is given a score between 0 and 1. The
score is obtained by using several numeri-
cal or boolean features calculated accord-
ing to the source and target sentences. We
perform a linear regression of the feature
space against scores in the range [0..1]. To
this end, we use a Support Vector Machine
with 66 features. In this paper, we propose
to increase the size of the training corpus.
For that, we use the post-edited and refer-
ence corpora during the training step. We
assign a score to each sentence of these
corpora. Then, we tune these scores on a
development corpus. This leads to an im-
provement of 10.5% on the development
corpus, in terms of Mean Average Error,
but achieves only a slight improvement on
the test corpus.

1 Introduction

In the scope of Machine Translation (MT), Qual-
ity Estimation (QE) is the task consisting to evalu-
ate the translation quality of a sentence or a docu-
ment. This process may be useful for post-editors
to decide or not to revise a sentence produced by
a MT system (Specia, 2011; Specia et al., 2010).
Moreover, it can be useful to decide if a translated
document can be broadcasted or not (Soricut and
Echihabi, 2010). The most obvious way to give a
score to a translated sentence consists in using a
machine learning approach. This approach is su-
pervised: experts are asked to score translated sen-
tences and with the obtained material, one learns a
prediction model of scores. The main drawback of
the machine learning approach is that it is super-
vised and requires huge data. To score a sentence

is time-consuming. Moreau et al. in (Moreau and
Vogel, 2012) dealt with this issue by proposing un-
supervised similarity measures. In fact, the score
of a translated sentence is defined by a measure
giving the distance between it and the contents of
an external corpus. The authors improve the re-
sults of the supervised approach but this method
can be used only in the ranking task. Raybaud et
al. (Raybaud et al., 2011) proposed a method to
add errors in reference sentences (deletion, sub-
stitution, insertion). By this way, they build addi-
tional corpus in which each word can be associated
with a label correct/not correct. But, it is not pos-
sible to predict the translation quality of sentences
including these erroneous words.

In this paper, we propose to increase the size
of the training corpus. For that, we use the score
given by experts to evaluate additional sentences
from the post-edited and reference corpora. Practi-
cally, we extract from source and target sentences
numerical vectors (features) and we learn a pre-
diction model of the scores. Then, we apply this
model to predict the scores of the post-edited and
the reference sentences. And finally, we tune the
predicted scores on a development corpus.

The article is structured as follows. In Section
2, we give an overview of our machine learning
approach and of the features we use. Then, in Sec-
tions 3 and 4 we describe the corpora and how we
increase the size of the training corpus by a partly-
unsupervised approach. In section 5, we give re-
sults about this method and we end by a conclu-
sion and perspectives.

2 Overview of our quality estimation
submission

We submit a system for the task 1.1: one has to
evaluate each translated sentence with a score be-
tween 0 and 1. This score is read as the HTER be-
tween the translated sentence and its post-edited
version. Each translated sentence is assigned a
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score between 0 and 1. The score is calculated
using several numerical or boolean features ex-
tracted according to the source and target sen-
tences. We perform a regression of the feature
space against [0..1]. To this end, we use the Sup-
port Vector Machine algorithm (LibSVM toolkit
(Chang and Lin, 2011)). We experimented only
the linear kernel because our experience from last
year (Langlois et al., 2012) showed that its perfor-
mance are yet good while no parameters have to
be tuned on a development corpus.

2.1 The baseline features
The QE shared task organizers provided a base-
line system including the same features as last
year: source and target sentences lengths; aver-
age source word length; source and target likeli-
hood computed with 3-gram (source) and 5-gram
(target) language models; average number of oc-
currences of the words within the target sentence;
average number of translations per source word in
the sentence, using IBM1 translation table (only
translations higher than 0.2); weighted average
number of translations per source word in the sen-
tence (similar to the previous one, but a frequent
word is given a low weight in the averaging); dis-
tribution by frequencies of the source n-gram into
the quartiles; match between punctuation in source
and target. Overall, the baseline system proposes
17 features. We remark that only 5 features take
into account the target sentence.

2.2 The LORIA features
In previous works (Raybaud et al., 2011; Langlois
et al., 2012), we tested several confidence mea-
sures. As last year (Langlois et al., 2012), we
use the same features. We extract information by
the way of language model (perplexity, level of
back-off, intra-lingual triggers) and translation ta-
ble (IBM1 table, inter-lingual triggers). The fea-
tures are defined at word level, and the features
at sentence level are computed by averaging over
each word in the sentence. In our system, we use,
in addition to baseline features, ratio of source and
target lengths; source and target likelihood com-
puted with 5-gram language models (Duchateau
et al., 2002) (in addition to 3-gram features from
baseline); level of backoff n-gram based features
(Uhrik and Ward, 1997). This feature indicates
if the 3-gram, the 2-gram or the unigram corre-
sponding to the word is in the language model. For
likelihoods and levels of backoff, we use models

trained on corpus read from left to right (classical
way), and from right to left (sentences are reversed
before training language models). This leads to
two language models, and therefore to two val-
ues for each feature and side (source and target).
Moreover, a common property of all n-gram and
backoff based features is that a word can get a low
score if it is actually correct but its neighbours are
wrong. To compensate for this phenomenon we
took into account the average score of the neigh-
bours of the word being considered. More pre-
cisely, for every relevant feature x. defined at word
level we also computed:

xleft. (wi) = x.(wi−2) ∗ x.(wi−1) ∗ x.(wi)

xcentred. (wi) = x.(wi−1) ∗ x.(wi) ∗ x.(wi+1)

xright. (wi) = x.(wi) ∗ x.(wi+1) ∗ x.(wi+2)

The other features are intra-lingual features:
each word is assigned its average mutual informa-
tion with the other words in the sentence; inter-
lingual features: each word in target sentence is
assigned its average mutual information with the
words in source sentence; IBM1 features: con-
trary to IBM1 based baseline features which take
into account the number of translations, we use
the probability values in the translation table be-
tween source and target words; basic parser (cor-
rection of bracketing, presence of end-of-sentence
symbol); number and ratio of out-of-vocabulary
words in source and target sentences. This leads
to 49 features. A few ones are equivalent to or are
strongly correlated to baseline ones. We remark
that 27 features take into account the target sen-
tence.

The union of the both sets baseline+loria im-
proved slightly the baseline system on the test set
provided by the QE Shared Task 2012 (Callison-
Burch et al., 2012).

3 Corpora

The organizers provide a set of files for training
and development. We list below the ones we used:

• source.eng: 2,254 source sentences taken
from three WMT data sets (English): news-
test2009, news-test2010, and news-test2012.
In the following, this file is named src
• target system.spa: translations for the source

sentences (Spanish) generated by a PB-SMT
system built using Moses. In the following,
this file is named syst
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• target system.HTER official-score: HTER
scores between MT and post-edited version,
to be used as the official score in the shared
task. In the following, this file is named
hteroff
• target reference.spa: reference translation

(Spanish) for source sentences as originally
given by WMT; In the following, this file is
named ref
• target postedited.spa: human post-edited ver-

sion (Spanish) of the machine translations in
target system.spa. In the following, this file
is named post

We split these files into two parts: a training part
made up of the 1,832 first sentences, and a devel-
opment part made up of the 442 remaining sen-
tences. This choice is motivated by the fact that in
the previous evaluation campaign we had exactly
the same experimental conditions.
For each given file f, we use therefore a part
named f.train for training and a part named
f.dev for development.

4 Training Algorithm

This section describes the approach we propose to
increase the size of the training corpus.

We have to train the prediction model of scores
from the source and target sentences.

The common way to train such a prediction
model consists in extracting a features vector
for each couple (source,target) from
the (src.train,syst.train) corpus.
For each vector, the score associated by ex-
perts to the corresponding sentence is assigned.
Then, we use a machine learning approach to
learn the regression between the vectors and
the scores. And finally, we use the triplet
(src.dev,syst.dev,hteroff.dev) to
tune parameters.

With machine learning approach, the number
of examples is crucial for a relevant training, but
unfortunately the evaluation campaign provides a
training corpus of only 1,832 examples.

To increase the training corpus, we propose
to use the ref and post files. But for that,
we have to associate a score to these new target
sentences. One way could be to calculate the
HTER score between each sentence and its
corresponding sentence in the post edited file.
But this leads to a drawback: all the couples
(src,post) would have a score equal to 0, and

then there is a risk of overtraining on the 0 value.
To prevent this problem, we preferred to learn
a prediction model from the (src.train,-
syst.train,hteroff.train) triplet.
Then we apply this prediction model to
the (src.train,post.train) and to
the (src.train,ref.train). By this
way, we get a training corpus made up of
1, 832 × 3 = 3, 696 examples with their scores.
Consequently, it is possible to learn a prediction
model from this new training corpus. These
scores are not optimal because the features cannot
describe all the information from sentences, and a
machine learning approach is limited if data are
not sufficiently huge. Therefore, we propose an
anytime randomized algorithm to tune the refer-
ence and post-edited scores on the development
corpus. We give below the algorithm we propose.

1. Prediction model

(a) Learn the prediction model
using only features from
(src.train,syst.train)
and HTER target scores from experts

2. Predict initial scores for postedited and
reference sentences

(a) Use this model to predict the scores
associated to the features from
(src.train,post.train)
and (src.train,ref.train).
The predicted scores for
(src.train,post.train)
are called post best and the ones
for (src.train,ref.train) are
called ref best

3. Learn initial prediction model using the 3
trains (system part, post-edited part and
reference part)

(a) Learn the prediction model using fea-
tures from the three sets of features
and the scores associated to these
sets (experts scores, post best and
ref best)

(b) Evaluate this model. This leads to a per-
formance equal to best

4. Tune scores for postedited and reference
sentences

(a) Repeat the following steps until stop
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(b) Build a new set of scores named
post new (resp. ref new) by dis-
turbing each score of post best
(resp. ref best) with a probability
equal to pdisturb. A modified score
is shifted by a value randomly chosen in
[-disturb,+disturb]

(c) Learn the prediction model using fea-
tures from the three sets of features
and the new scores associated to these
sets (experts scores for system set,
post new and ref new for the post-
edited and reference sets)

(d) Evaluate this model. This leads to a per-
formance equal to perf

(e) If perf<best then replace best by
perf, post best by post new and
ref best by ref new.

To evaluate a model, we use it to predict the
scores on the development corpus. Then we com-
pare the predicted scores to the expert scores and
we compute the Mean Average Error (MAE) given
by the formula MAE(s, r) =

∑n
i=1 |si−ri|

n × 100
where s and r are two sets of n scores.

5 Results

We used the data provided by the shared task
on QE, without additional corpus. This data is
composed of a parallel English-Spanish training
corpus. This corpus is made of the concatena-
tion of europarl-v5 and news-commentary10 cor-
pora (from WMT-2010), followed by tokeniza-
tion, cleaning (sentences with more than 80 to-
kens removed) and truecasing. It has been used
for baseline models provided in the baseline pack-
age by the shared task organizers. We used the
same training corpus to train additional language
models (5-gram with kneyser-ney discounting, ob-
tained with the SRILM toolkit) and triggers re-
quired for our features. For feature extraction, we
used the files provided by the organizers: 2,254
source english sentences, their translations by the
baseline system, and the score of these transla-
tions. This score is the HTER between the pro-
posed translation and the post-edited sentence. We
used the train part to perform the regression be-
tween the features and the scores. Therefore, the
system we propose in this campaign is the same as
the one we presented for the previous campaign in
terms of features. But, we only use a SVM with a

linear kernel and we do not use any feature selec-
tion. The added value of the new system is the fact
that we increase the size of the training corpus.

To evaluate the different configurations, we
used the MAE measure. The performance of
our system with only the classical train set
(src.train,syst.train) are given in Ta-
ble 1. In this table, BASELINE+LORIA use
both features BASELINE and LORIA (Section 2).
We remark that, contrary to last year, the BASE-
LINE+LORIA do not improve the performance of
the BASELINE features on the development set.

Set of features Dev
BASELINE 13.46
LORIA 14.04
BASELINE+LORIA 13.88

Table 1: Performance in terms of MAE without
increasing the training corpus

Now, we increase the training corpus
with the method described in previous sec-
tion. First, we use the system trained on
(src.train,syst.train) to predict
scores for the sentences in post.train and
ref.train. We know that these scores should
represent the HTER score, then a well translated
sentence should be assigned a higher score.
Therefore, we can make the hypothesis that
sentences from post.train and ref.train
are better than those in syst.train. We check
this hypothesis by comparing the distributions of
HTER scores in the three files (true HTER scores
in syst.train, and predicted scores in the two
other files). We present in Table 2 the Minimum,
Maximum, Mean and Standard Deviation of
this score for the three corpora. We remark
that the scores are not well predicted because
some of them are negative while all scores in
syst.train are between 0 and 1. This is due
to the fact that the constraint of HTER in terms of
limit values is not explicitly taken into account by
SVM. We give more details about these scores out
of [0..1] in Table 3. For post.train, 2 scores
are under 0 with a mean value equal to -0.123, and
no scores are higher than 1. For ref.train,
4 scores are under 0 with a mean value equal to
-3.023, and 26 scores are higher than 1 with a
mean equal to 1.126. Comparing to the 1,832
sentences in the training corpus, we can conclude
that the ’outliers’ are very rare. In Table 2 Mean
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and Standard Deviation are computed only for
scores predicted between 0 and 1. The obtained
mean values are quite similar, but the standard
deviation is very low for predicted scores.

This configuration leads to a performance equal
to 13.88 on the development corpus, which is
slightly worse than the BASELINE system but
slightly better than the BASELINE+LORIA sys-
tem.
Because, SVM predicts scores which do not repre-
sent exactly HTER and because the model is learnt
on a relatively small corpus (1,832 sentences), we
decided to modify randomly some scores. This
operation is called in the following the tuning pro-
cess.

Set Min Max Mean SD
syst.
train 0 1 0.317 0.169

post.
train -0.147 0.708 0.315 0.083

ref.
train -11.314 0.746 0.329 0.081

Table 2: Statistics on HTER for the three sets of
sentences used in the training corpus

lower than 0 higher than 1
Set Nb Mean Nb Mean
syst.train 0 - 0 -
post.train 2 -0.123 0 -
ref.train 4 -3.023 26 1.126

Table 3: Statistics on HTER for the three sets of
sentences used in the training corpus. Nb is the
number of sentences

For the tuning process, after several tests, we
fixed to 0.1 the probability pdisturb to modify
the score of a sentence. Then, the score is modi-
fied by randomly shifting it in [−0.01... + 0.01].
We start with the initial predicted scores (MAE
= 13.88). Then we randomly modify a subset of
scores and keep a new configuration if its MAE is
improved. The process is stopped when MAE con-
verges. Figure 1 presents the evolution of MAE on
the development corpus.

The process stopped after 22, 248 iterations.
Only 274 (1.2%) iterations led to an improvement.
We present the results of this approach on the de-
velopment corpus and on the official test set of the

Figure 1: Evolution of the MAE on the develop-
ment corpus

campaign (500 sentences). We group in Table 4
the results on development and test corpus for the
BASELINE features and the BASELINE+LORIA
features with and without using the post-edited
and reference sentences. Finally, we achieve a
MAE of 12.05 on the development set. This con-
stitutes an improvement of 10.5% in comparison
to the BASELINE system. But we improve only
slightly the performance of the baseline system on
the test set. We conclude that there is an overtrain-
ing on the development corpus. In order to prevent
from this problem, we could use a leaving-one-out
approach on training and development corpora.

With the tuned values of scores, we calculated
the same statistics as in Tables 2 and 3. We present
these statistics in Tables 5 and 6. As we can see,
the tuning process leads to an increasing of the
mean value of the scores. Moreover, the number
of scores out of range increases. This analysis re-
inforces our conclusion about overtraining: pre-
dicted scores may be strongly modified to obtain a
good performance on the development corpus.

Set of features Dev Test
BASELINE 13.46 14.81
BASELINE+LORIA 13.88 nc
+ postedited + ref 13.78 nc
+ tuning 12.05 14.79

Table 4: Performance in terms of MAE of the fea-
tures with and without increasing the training cor-
pus

To conclude the experiments, we try to fix the
problem of scores predicted out of range. For that,
we set to 0 the scores lower than 0 and to 1 the
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Set Min Max Mean SD
post.
train -0.811 1.322 0.407 0.235

ref.
train -10.485 1.320 0.409 0.242

Table 5: Statistics on HTER for the post and ref
sets of sentences used in the training corpus, after
tuning

lower than 0 higher than 1
Set of sentences Nb Mean Nb Mean
post.train 318 -0.164 29 1.118
ref.train 282 -0.205 28 1.123

Table 6: Statistics on HTER for the post and ref
sets of sentences used in the training corpus, after
tuning. Nb is the number of sentences.

ones greater than 1. Then we learn a new SVM
model using these new scores. This leads to a
MAE equal to 12.18 on the development corpus
and 14.83 on the test corpus, which is worse than
the performance without correction. This is for us
a drawback of the machine learning approach. For
this approach, the scores have no semantic. SVM
do not “know” that the scores are HTER between
0 and 1. Then, if tuning leads to no reasonable val-
ues, this is not a problem if it increases the perfor-
mance. Moreover, maybe the features do not ex-
tract from all sentences information representative
of their quality, and this quality is overestimated:
then the tuning system has to lower strongly the
corresponding scores to counteract this problem.

6 Conclusion and perpespectives

In this paper we propose a method to increase the
size of the training corpus for QE in the scope of
Task 1.1. We add to the initial training corpus
(sentences translated by a machine translation sys-
tem) the post-edited and the reference sentences.
We associate to these sentences scores predicted
by using a model learnt on the system sentences.
Then we tune the predicted scores on the devel-
opment corpus. This method leads to an improve-
ment of 10.5% on the development corpus in terms
of MAE, but achieves only a slight improvement
on the test corpus. A statistical study shows that
tuning scores leads to out of range values. This
surprising behavior have to be investigated. In ad-
dition, we will test another machine learning tools

(neural networks for example). Another point is
that, contrary to last year, the whole set of features
leads to worse performance than baseline features.
This could be explained by the fact that no select-
ing algorithm has been used to choose the best fea-
tures. In fact, we preferred, this year to investigate
the underlying knowledge on the post-edited and
reference corpora. Last, we conclude that the good
improvement on the development corpus is not re-
produced on the test corpus. In order to prevent
from this problem, we will use a leaving-one-out
approach on the training.
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Abstract

This paper presents the LIG’s systems
submitted for Task 2 of WMT13 Qual-
ity Estimation campaign. This is a
word confidence estimation (WCE) task
where each participant was asked to la-
bel each word in a translated text as
a binary ( Keep/Change) or multi-class
(Keep/Substitute/Delete) category. We in-
tegrate a number of features of various
types (system-based, lexical, syntactic and
semantic) into the conventional feature
set, for our baseline classifier training.
After the experiments with all features,
we deploy a “Feature Selection” strategy
to keep only the best performing ones.
Then, a method that combines multiple
“weak” classifiers to build a strong “com-
posite” classifier by taking advantage of
their complementarity is presented and ex-
perimented. We then select the best sys-
tems for submission and present the offi-
cial results obtained.

1 Introduction

Recently Statistical Machine Translation (SMT)
systems have shown impressive gains with many
fruitful results. While the outputs are more accept-
able, the end users still face the need to post edit
(or not) an automatic translation. Then, the issue
is to be able to accurately identify the correct parts
as well as detecting translation errors. If we fo-
cus on errors at the word level, the issue is called
Word-level Confidence Estimation (WCE).

In WMT 2013, a shared task about quality esti-
mation is proposed. This quality estimation task is
proposed at two levels: word-level and sentence-
level. Our work focuses on the word-level qual-
ity estimation (named Task 2). The objective is to
highlight words needing post-edition and to detect

parts of the sentence that are not reliable. For the
task 2, participants produce for each token a label
according to two sub-tasks:

• a binary classification: good (keep) or bad
(change) label

• a multi-class classification: the label refers to
the edit action needed for the token (i.e. keep,
delete or substitute).

Various approaches have been proposed for
WCE: Blatz et al. (2003) combine several features
using neural network and naive Bayes learning al-
gorithms. One of the most effective feature combi-
nations is the Word Posterior Probability (WPP) as
proposed by Ueffing et al. (2003) associated with
IBM-model based features (Blatz et al., 2004).
Ueffing and Ney (2005) propose an approach for
phrase-based translation models: a phrase is a se-
quence of contiguous words and is extracted from
word-aligned bilingual training corpus. The con-
fidence value of each word is then computed by
summing over all phrase pairs in which the tar-
get part contains this word. Xiong et al. (2010)
integrate target word’s Part-Of-Speech (POS) and
train them by Maximum Entropy Model, allow-
ing significative gains compared to WPP features.
Other approaches are based on external features
(Soricut and Echihabi, 2010; Felice and Specia,
2012) allowing to deal with various MT systems
(e.g. statistical, rule based etc.).

In this paper, we propose to use both internal
and external features into a conditionnal random
fields (CRF) model to predict the label for each
word in the MT hypothesis. We organize the arti-
cle as follows: section 2 explains all the used fea-
tures. Section 3 presents our experimental settings
and the preliminary experiments. Section 4 ex-
plores a feature selection refinement and the sec-
tion 5 presents work using several classifiers asso-
ciated with a boosting decision. Finally we present
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our systems submissions and propose some con-
clusions and perspectives.

2 Features

In this section, we list all 25 types of features for
building our classifier (see a list in Table 3). Some
of them are already used and described in detail in
our previous paper (Luong, 2012), where we deal
with French - English SMT Quality Estimation.
WMT13 was a good chance to re-investigate their
usefulness for another language pair: English-
Spanish, as well as to compare their contributions
with those from other teams. We categorize them
into two types: the conventional features, which
are proven to work efficiently in numerous CE
works and are inherited in our systems, and the
LIG features which are more specifically sug-
gested by us.

2.1 The conventional features

We describe below the conventional features we
used. They can be found in some previous papers
dealing with WCE.

• Target word features: the target word itself;
the bigram (trigram) it forms with one (two)
previous and one (two) following word(s); its
number of occurrences in the sentence.

• Source word features: all the source words
that align to the target one, represented in
BIO1 format.

• Source alignment context features: the com-
binations of the target word and one word be-
fore (left source context) or after (right source
context) the source word aligned to it.

• Target alignment context features: the com-
binations of the source word and each word
in the window ±2 (two before, two after) of
the target word.

• Target Word’s Posterior Probability (WPP).

• Backoff behaviour: a score assigned to the
word according to how many times the target
Language Model has to back-off in order to
assign a probability to the word sequence, as
described in (Raybaud et al., 2011).

1http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/

• Part-Of-Speech (POS) features (using Tree-
Tagger2 toolkit): The target word’s POS; the
source POS (POS of all source words aligned
to it); bigram and trigram sequences between
its POS and the POS of previous and follow-
ing words.

• Binary lexical features that indicate whether
the word is a: stop word (based on the stop
word list for target language), punctuation
symbol, proper name or numerical.

2.2 The LIG features
• Graph topology features: based on the N-best

list graph merged into a confusion network.
On this network, each word in the hypothesis
is labelled with its WPP, and belongs to one
confusion set. Every completed path passing
through all nodes in the network represents
one sentence in the N-best, and must con-
tain exactly one link from each confusion set.
Looking into a confusion set, we find some
useful indicators, including: the number of
alternative paths it contains (called Nodes),
and the distribution of posterior probabili-
ties tracked over all its words (most interest-
ing are maximum and minimum probabilities,
called Max and Min).

• Language Model (LM) features: the “longest
target n-gram length” and “longest source n-
gram length”(length of the longest sequence
created by the current target (source aligned)
word and its previous ones in the target
(source) LM). For example, with the tar-
get word wi: if the sequence wi−2wi−1wi

appears in the target LM but the sequence
wi−3wi−2wi−1wi does not, the n-gram value
for wi will be 3.

• The word’s constituent label and its depth in
the tree (or the distance between it and the
tree root) obtained from the constituent tree
as an output of the Berkeley parser (Petrov
and Klein, 2007) (trained over a Spanish tree-
bank: AnCora3).

• Occurrence in Google Translate hypothesis:
we check whether this target word appears in
the sentence generated by Google Translate
engine for the same source.

2http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
3http://clic.ub.edu/corpus/en/ancora
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• Polysemy Count: the number of senses of
each word given its POS can be a reliable in-
dicator for judging if it is the translation of
a particular source word. Here, we investi-
gate the polysemy characteristic in both tar-
get word and its aligned source word. For
source word (English), the number of senses
can be counted by applying a Perl exten-
sion named Lingua::WordNet4, which pro-
vides functions for manipulating the Word-
Net database. For target word (Spanish), we
employ BabelNet5 - a multilingual semantic
network that works similarly to WordNet but
covers more European languages, including
Spanish.

3 Experimental Setting and Preliminary
Experiment

The WMT13 organizers provide two bilingual
data sets, from English to Spanish: the training
and the test ones. The training set consists of
803 MT outputs, in which each token is anno-
tated with one appropriate label. In the binary
variant, the words are classified into “K” (Keep)
or “C” (Change) label, meanwhile in the multi-
class variant, they can belong to “K” (Keep), “S”
(Substitution) or “D” (Deletion). The test set con-
tains 284 sentences where all the labels accompa-
nying words are hidden. For optimizing parame-
ters of the classifier, we extract 50 sentences from
the training set to form a development set. Since
a number of repetitive sentences are observed in
the original training set, the dev set was carefully
chosen to ensure that there is no overlap with the
new training set (753 sentences), keeping the tun-
ing process accurate. Some statistics about each
set can be found in Table 1.

Motivated by the idea of addressing WCE as
a sequence labeling task, we employ the Con-
ditional Random Fields (CRF) model (Lafferty
et al., 2001) and the corresponding WAPITI toolkit
(Lavergne et al., 2010) to train our classifier. First,
we experiment with the combination of all fea-
tures. For the multi-class system, WAPITI’s de-
fault configuration is applied to determine the la-
bel, i.e. label which has the highest score is as-
signed to word. In case of the binary system,
the classification task is then conducted multiple
times, corresponding to a threshold increase from

4http://search.cpan.org/dist/Lingua-Wordnet/Wordnet.pm
5http://babelnet.org

0.300 to 0.975 (step = 0.025). When threshold =
α, all words in the test set which the probability of
“K” class > α will be labelled as “K”, and oth-
erwise, “C”. The values of Precision (Pr), Recall
(Rc) and F-score (F) for K and C label are tracked
along this threshold variation, allowing us to se-
lect the optimal threshold that yields the highest
Favg = F (K)+F (C)

2 .
Results for the all-feature binary system

(ALL BIN) at the optimal threshold (0.500) and
the multi-class one (ALL MULT) at the default
threshold, obtained on our dev set, are shown
in Table 2. We can notice that with ALL BIN,
“K” label scores are very promising and “C’ la-
bel reaches acceptable performance. In case of
ALL MULT we obtain the almost similar above
performance for “K” and “S”, respectively, ex-
cept the disappointing scores for “D” (which can
be explained by the fact that very few instances of
“D” words (4%) are observed in the training cor-
pus).

Data set Train Dev Test
#segments 753 50 284
#distinct segments 400 50 163
#words 18435 1306 7827
%K : %C 70: 30 77: 23 -
%K: %S: %D 70:26:4 77:19:4 -

Table 1: Statistics of training, dev and test sets

System Label Pr(%) Rc(%) F(%)
ALL BIN K 85.79 84.68 85.23

C 50.96 53.16 52.04
ALL MULT K 85.30 84.00 84.65

S 43.89 49.00 46.31
D 7.90 6.30 7.01

Table 2: Average Pr, Rc and F for labels of all-
feature binary and multi-class systems, obtained
on dev set.

4 Feature Selection

In order to improve the preliminary scores of all-
feature systems, we conduct a feature selection
which is based on the hypothesis that some fea-
tures may convey “noise” rather than “informa-
tion” and might be the obstacles weakening the
other ones. In order to prevent this drawback,
we propose a method to filter the best features
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based on the “Sequential Backward Selection” al-
gorithm6. We start from the full set of N features,
and in each step sequentially remove the most use-
less one. To do that, all subsets of (N-1) fea-
tures are considered and the subset that leads to
the best performance gives us the weakest feature
(not involved in the considered set). This proce-
dure is also called “leave one out” in the litera-
ture. Obviously, the discarded feature is not con-
sidered in the following steps. We iterate the pro-
cess until there is only one remaining feature in
the set, and use the following score for compar-
ing systems: Favg(all) =

Favg(K)+Favg(C)
2 , where

Favg(K) and Favg(C) are the averaged F scores
for K and C label, respectively, when threshold
varies from 0.300 to 0.975. This strategy enables
us to sort the features in descending order of im-
portance, as displayed in Table 3. Figure 1 shows
the evolution of the performance as more and more
features are removed.

Rank Feature name Rank Feature name
1 Source POS 14∗ Distance to root
2∗ Occur in Google Trans. 15 Backoff behaviour
3∗ Nodes 16∗ Constituent label
4 Target POS 17 Proper name
5 WPP 18 Number of occurrences
6 Left source context 19∗ Min
7 Right target context 20∗ Max
8 Numeric 21 Left target context
9∗ Polysemy (target) 22∗ Polysemy (source)
10 Punctuation 23∗ Longest target gram length
11 Stop word 24∗ Longest source gram length
12 Right source context 25 Source Word
13 Target Word

Table 3: The rank of each feature (in term of use-
fulness) in the set. The symbol “*” indicates our
proposed features.

Observations in 10-best and 10-worst perform-
ing features in Table 3 suggest that numerous fea-
tures extracted directly from SMT system itself
(source and target POS, alignment context infor-
mation, WPP, lexical properties: numeric, punc-
tuation) perform very well. Meanwhile, opposite
from what we expected, those from word statis-
tical knowledge sources (target and source lan-
guage models) are likely to be much less ben-
eficial. Besides, three of our proposed features
appear in top 10-best. More noticeable, among
them, the first-time-experimented feature “Occur-
rence in Google Translation hypothesis” is the
most prominent (rank 2), implying that such an on-
line MT system can be a reliable reference channel
for predicting word quality.

6http://research.cs.tamu.edu/prism/lectures/pr/pr l11.pdf

Figure 1: Evolution of system performance
(Favg(all)) during Feature Selection process, ob-
tained on dev set

The above selection process also brings us the
best-performing feature set (Top 20 in Table 3).
The binary classifier built using this optimal sub-
set of features (FS BIN) reaches the optimal per-
formance at the threshold value of 0.475, and
slightly outperforms ALL BIN in terms of F scores
(0.46% better for “K” and 0.69% better for “C”).
We then use this set to build the multi-class one
(FS MULT) and the results are shown to be a
bit more effective compare to ALL MULT (0.37%
better for “K”, 0.80% better for “S” and 0.15%
better for “D”). Detailed results of these two sys-
tems can be found in Table 4.

In addition, in Figure 1, when the size of fea-
ture set is small (from 1 to 7), we can observe
sharply the growth of system scores for both la-
bels. Nevertheless the scores seem to saturate as
the feature set increases from the 8 up to 25. This
phenomenon raises a hypothesis about the learn-
ing capability of our classifier when coping with
a large number of features, hence drives us to an
idea for improving the classification scores. This
idea is detailed in the next section.

System Label Pr(%) Rc(%) F(%)
FS BIN K 85.90 85.48 85.69

C 52.29 53.17 52.73
FS MULT K 85.05 85.00 85.02

S 45.36 49.00 47.11
D 9.1 5.9 7.16

Table 4: The Pr, Rc and F for labels of binary and
multi-class system built from Top 20 features, at
the optimal threshold value, obtained on dev set
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5 Using Boosting technique to improve
the system’s performance

In this section, we try to answer to the following
question: if we build a number of “weak” (or “ba-
sic”) classifiers by using subsets of our features
and a machine learning algorithm (such as Boost-
ing), would we get a single “strong” classifier?
When deploying this idea, our hope is that multi-
ple models can complement each other as one fea-
ture set might be specialized in a part of the data
where the others do not perform very well.

First, we prepare 23 feature subsets
(F1, F2, ..., F23) to train 23 basic classifiers,
in which: F1 contains all features, F2 is the Top
20 in Table 3 and Fi (i = 3..23) contains 9
randomly chosen features. Next, a 7-fold cross
validation is applied on our training set. We
divide it into 7 subsets (S1, S2, . . . , S7). Each
Si (i = 1..6) contains 100 sentences, and the
remaining 153 sentences constitute S7. In the
loop i (i = 1..7), Si is used as the test set and
the remaining data is trained with 23 feature
subsets. After each loop, we obtain the results
from 23 classifiers for each word in Si. Finally,
the concatenation of these results after 7 loops
gives us the training data for Boosting. Therefore,
the Boosting training file has 23 columns, each
represents the output of one basic classifier for
our training set. The detail of this algorithm is
described below:

Algorithm to build Boosting training data
for i :=1 to 7 do
begin

TrainSet(i) := ∪Sk (k = 1..7, k 6= i)
TestSet(i) := Si

for j := 1 to 23 do
begin

Classifier Cj := Train TrainSet(i) with Fj

Result Rj := Use Cj to test Si

Column Pj := Extract the “probability of word
to be G label” in Rj

end
Subset Di (23 columns) := {Pj} (j = 1..23)

end
Boosting training set D := ∪Di (i = 1..7)

Next, the Bonzaiboost toolkit7 (which imple-
ments Boosting algorithm) is used for building
Boosting model. In the training command, we in-
voked: algorithm = “AdaBoost”, and number of
iterations = 300. The Boosting test set is prepared
as follows: we train 23 feature subsets with the
training set to obtain 23 classifiers, then use them

7http://bonzaiboost.gforge.inria.fr/x1-20001

to test our dev set, finally extract the 23 probabil-
ity columns (like in the above pseudo code). In the
testing phase, similar to what we did in Section 4,
the Pr, Rc and F scores against threshold variation
for “K” and “C” labels are tracked, and those cor-
responding to the optimal threshold (0.575 in this
case) are represented in Table 5.

System Label Pr(%) Rc(%) F(%)
BOOST BIN K 86.65 84.45 85.54

C 51.99 56.48 54.15

Table 5: The Pr, Rc and F for labels of Boosting
binary classifier (BOOST BIN)

The scores suggest that using Boosting algo-
rithm on our CRF classifiers’ output accounts
for an efficient way to make them predict better:
on the one side, we maintain the already good
achievement on K class (only 0.15% lost), on the
other side we gain 1.42% the performance in C
class. It is likely that Boosting enables different
models to better complement each other, in terms
of the later model becomes experts for instances
handled wrongly by the previous ones. Another
advantage is that Boosting algorithm weights each
model by its performance (rather than treating
them equally), so the strong models (come from
all features, top 20, etc.) can make more dominant
impacts than the rest.

6 Submissions and Official Results

After deploying several techniques to improve the
system’s prediction capability, we select two bests
of each variant (binary and multi-class) to sub-
mit. For the binary task, the submissions in-
clude: the Boosting (BOOST BIN) and the Top
20 (FS BIN) system. For the multi-class task, we
submit: the Top 20 (FS MULT) and the all-feature
(ALL MULT) one. Before the submission, the
training and dev sets were combined to re-train
the prediction models for FS BIN, FS MULT and
ALL MULT. Table 6 reports the official results
obtained by LIG at WMT 2013, task 2. We ob-
tained the best performance among 3 participants.
These results confirm that the feature selection
strategy is efficient (FS MULT slightly better than
ALL MULT) while the contribution of Boosting
is unclear (BOOST BIN better than FS BIN if F-
measure is considered but worse if Accuracy is
considered - the difference is not significant).
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System Pr Rc F Acc
BOOST BIN 0.777882 0.884325 0.827696 0.737702

FS BIN 0.788483 0.864418 0.824706 0.738213
FS MULT - - - 0.720710

ALL MULT - - - 0.719177

Table 6: Official results of the submitted systems, obtained on test set

7 Discussion and Conclusion

In this paper, we describe the systems submitted
for Task 2 of WMT13 Quality Estimation cam-
paign. We cope with the prediction of quality
at word level, determining whether each word
is “good” or “bad” (in the binary variant), or is
“good”, or should be “substitute” or “delete” (in
the multi-class variant). Starting with the ex-
isting word features, we propose and add vari-
ous of novel ones to build the binary and multi-
class baseline classifier. The first experiment’s re-
sults show that precision and recall obtained in
“K” label (both in binary and multi-class sys-
tems) are very encouraging, and “C” (or “S”) la-
bel reaches acceptable performance. A feature se-
lection strategy is then deployed to enlighten the
valuable features, find out the best performing sub-
set. One more contribution we made is the proto-
col of applying Boosting algorithm, training mul-
tiple “weak” classifiers, taking advantage of their
complementarity to get a “stronger” one. These
techniques improve gradually the system scores
(measure with F score) and help us to choose the
most effective systems to classify the test set.

In the future, this work can be extended in the
following ways. Firstly, we take a deeper look into
linguistic features of word, such as the grammar
checker, dependency tree, semantic similarity, etc.
Besides, we would like to reinforce the segment-
level confidence assessment, which exploits the
context relation between surrounding words to
make the prediction more accurate. Moreover, a
methodology to evaluate the sentence confidence
relied on the word- and segment- level confidence
will be also deeply considered.
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Abstract

We describe the two systems submit-
ted by the DCU-Symantec team to Task
1.1. of the WMT 2013 Shared Task on
Quality Estimation for Machine Transla-
tion. Task 1.1 involve estimating post-
editing effort for English-Spanish trans-
lation pairs in the news domain. The
two systems use a wide variety of fea-
tures, of which the most effective are the
word-alignment, n-gram frequency, lan-
guage model, POS-tag-based and pseudo-
references ones. Both systems perform at
a similarly high level in the two tasks of
scoring and ranking translations, although
there is some evidence that the systems are
over-fitting to the training data.

1 Introduction

The WMT 2013 Quality Estimation Shared Task
involve both sentence-level and word-level qual-
ity estimation (QE). The sentence-level task con-
sist of three subtasks: scoring and ranking transla-
tions with regard to post-editing effort (Task 1.1),
selecting among several translations produced by
multiple MT systems for the same source sentence
(Task 1.2), and predicting post-editing time (Task
1.3). The DCU-Symantec team enter two systems
to Task 1.1. Given a set of source English news
sentences and their Spanish translations, the goals
are to predict the HTER score of each translation
and to produce a ranking based on HTER for the
set of translations. A set of 2,254 sentence pairs
are provided for training.

On the ranking task, our system DCU-SYMC
alltypes is second placed out of thirteen sys-
tems and our system DCU-SYMC combine is
ranked fifth, according to the Delta Average met-
ric. According to the Spearman rank correlation,
our systems are the joint-highest systems. In the

scoring task, the DCU-SYMC alltypes system
is placed sixth out of seventeen systems accord-
ing to Mean Absolute Error (MAE) and third ac-
cording to Root Mean Squared Error (RMSE). The
DCU-SYMC combine system is placed fifth ac-
cording to MAE and second according to RMSE.

In this system description paper, we describe the
features, the learning methods used, the results for
the two submitted systems and some other systems
we experiment with.

2 Features

Our starting point for the WMT13 QE shared task
was the feature set used in the system we submit-
ted to the WMT12 QE task (Rubino et al., 2012).
This feature set, comprising 308 features in to-
tal, extended the 17 baseline features provided by
the task organisers to include 6 additional sur-
face features, 6 additional language model fea-
tures, 17 additional features derived from the
MT system components and the n-best lists, 138
features obtained by part-of-speech tagging and
parsing the source sentences and 95 obtained by
part-of-speech tagging the target sentences, 21
topic model features, 2 features produced by a
grammar checker1 and 6 pseudo-source (or back-
translation) features.

We made the following modifications to this
2012 feature set:
• The pseudo-source (or back-translation) fea-

tures were removed, as they did not con-
tribute useful information to our system last
year.
• The language model and n-gram frequency

feature sets were extended in order to cover
1 to 5 gram sequences, as well as source and
target ratios for these feature values.
• The word-alignment feature set was also

extended by considering several thresholds

1http://www.languagetool.org/
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when counting the number of target words
aligned with source words.
• We extracted 8 additional features from the

decoder log file, including the number of dis-
carded hypotheses, the total number of trans-
lation options and the number of nodes in the
decoding graph.
• The set of topic model features was reduced

in order to keep only those that were shown
to be effective on three quality estimation
datasets (the details can be found in (Rubino
et al. (to appear), 2013)). These features en-
code the difference between source and target
topic distributions according to several dis-
tance/divergence metrics.
• Following Soricut et al. (2012), we employed

pseudo-reference features. The source sen-
tences were translated with three different
MT systems: an in-house phrase-based SMT
system built using Moses (Koehn et al.,
2007) and trained on the parallel data pro-
vided by the organisers, the rule-based sys-
tem Systran2 and the online, publicly avail-
able, Bing Translator3. The obtained trans-
lations are compared to the target sentences
using sentence-level BLEU (Papineni et al.,
2002), TER (Snover et al., 2006) and the Lev-
enshtein distance (Levenshtein, 1966).
• Also following Soricut et al. (2012), one-

to-one word-alignments, with and without
Part-Of-Speech (POS) agreement, were in-
cluded as features. Using the alignment in-
formation provided by the decoder, we POS
tagged the source and target sentences with
TreeTagger (Schmidt, 1994) and the publicly
available pre-trained models for English and
Spanish. We mapped the tagsets of both lan-
guages by simplifying the initial tags and ob-
tain a reduced set of 8 tags. We applied that
simplification on the tagged sentences before
checking for POS agreement.

3 Machine Learning

In this section, we describe the learning algo-
rithms and feature selection used in our experi-
ments, leading to the two submitted systems for
the shared task.

2Systran Enterprise Server version 6
3http://www.bing.com/translator

3.1 Primary Learning Method

To estimate the post-editing effort of translated
sentences, we rely on regression models built us-
ing the Support Vector Machine (SVM) algorithm
for regression ε-SVR, implemented in the LIB-
SVM toolkit (Chang and Lin, 2011). To build
our final regression models, we optimise SVM
hyper-parameters (C, γ and ε) using a grid-search
method with 5-fold cross-validation for each pa-
rameter triplet. The parameters leading to the best
MAE, RMSE and Pearson’s correlation coefficient
(r) are kept to build the model.

3.2 Feature Selection on Feature Types

In order to reduce the feature and obtain more
compact models, we apply feature selection on
each of our 15 feature types. Examples of feature
types are language model features or topic model
features. For each feature type, we apply a feature
subset evaluation method based on the wrapper
paradigm and using the best-first search algorithm
to explore the feature space. The M5P (Wang
and Witten, 1997) regression tree algorithm im-
plemented in the Weka toolkit (Hall et al., 2009)
is used with default parameters to train and eval-
uate a regression model for each feature subset
obtained with best-first search. A 10-fold cross-
validation is performed for each subset and we
keep the features leading to the best RMSE. We
use M5P regression trees instead of ε-SVR be-
cause grid-search with the latter is too computa-
tionally expensive to be applied so many times.
Using feature selection in this way, we obtain 15
reduced feature sets that we combine to form the
DCU-SYMC alltypes system, containing 102
features detailed in Table 1.

3.3 Feature Binarisation

In order to aid the SVM learner, we also experi-
ment with binarising our feature set, i.e. convert-
ing our features with various feature value ranges
into features whose values are either 1 or 0. Again,
we employ regression tree learning. We train
regression trees with M5P and M5P-R4 (imple-
mented in the Weka toolkit) and create a binary
feature for each regression rule found in the trees
(ignoring the leaf nodes). For example, a binary
feature indicating whether the Bing TER score is
less than or equal to 55.685 is derived from the

4We experiment with J48 decision trees as well, but this
method did not outperform regression tree methods.
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Backward LM
Source 1-gram perplexity.
Source & target 1-grams perplexity ratio.
Source & target 3-grams and 4-gram perplexity ratio.
Target Syntax
Frequency of tags: ADV, FS, DM, VLinf, VMinf, semicolon, VLger, NC, PDEL, VEfin, CC, CCNEG, PPx, ART, SYM,
CODE, PREP, SE and number of ambiguous tags
Frequency of least frequent POS 3-gram observed in a corpus.
Frequency of least frequent POS 4-gram and 6-gram with sentence padding (start and end of sentence tags) observed in a
corpus.
Source Syntax
Features from three probabilistic parsers. (Rubino et al., 2012).
Frequency of least frequent POS 2-gram, 4-gram and 9-gram with sentence padding observed in a corpus.
Number of analyses found and number of words, using a Lexical Functional Grammar of English as described in Rubino
et al. (2012).
LM
Source unigram perplexity.
Target 3-gram and 4-gram perplexity with sentence padding.
Source & target 1-gram and 5-gram perplexity ratio.
Source & target unigram log-probability.
Decoder
Component scores during decoding.
Number of phrases in the best translation.
Number of translation options.
N -gram Frequency
Target 2-gram in second and third frequency quartiles.
Target 3-gram and 5-gram in low frequency quartiles.
Number of target 1-gram seen in a corpus.
Source & target 1-grams in highest and second highest frequency quartile.
One-to-One Word-Alignment
Count of O2O word alignment, weighted by target sentence length.
Count of O2O word alignment with POS agreement, weighted by count of O2O, by source length, by target length.
Pseudo-Reference
Moses translation TER score.
Bing translation number of words and TER score.
Systran sBLEU, number of substitutions and TER score.
Surface
Source number of punctuation marks and average words occurrence in source sentence.
Target number of punctuation marks, uppercased letters and binary value if the last character of the sentence is a punctuation
mark.
Ratio of source and target sentence lengths, average word length and number of punctuation marks over sentence lengths.
Topic Model
Cosine distance between source and target topic distributions.
Jensen-Shannon divergence between source and target topic distributions.
Word Alignment
Averaged number of source words aligned per target words with p(s|t) thresholds: 1.0, 0.75, 0.5, 0.25, 0.01
Averaged number of source words aligned per target words with p(s|t) = 0.01 weighted by target words frequency
Averaged number of target words aligned per source word with p(t|s) = 0.01 weighted by source words frequency
Ratio of source and target averaged aligned words with thresholds: 1.0 and 0.1, and with threshold: 0.75, 0.5, 0.25 weighted
by words frequency

Table 1: Features selected with the wrapper approach using best-first search and M5P. These features are
included in the submitted system alltypes.
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Feature to which threshold t is applied t (≤)
Target 1-gram backward LM log-prob. −35.973
Target 3-gram backward LM perplexity 7144.99
Probabilistic parsing feature 3.756
Probabilistic parsing feature 57.5
Frequency of least frequent POS 6-gram 0.5
Source 3-gram LM log-prob. 65.286
Source 4-gram LM perplexity with padding 306.362
Target 2-gram LM perplexity 176.431
Target 4-gram LM perplexity 426.023
Target 4-gram LM perplexity with padding 341.801
Target 5-gram LM perplexity 112.908
Ratio src&trg 5-gram LM log-prob. 1.186
MT system component score −50
MT system component score −0.801
Source 2-gram frequency in low quartile 0.146
Ratio src&trg 2-gram in high freq. quartile 0.818
Ratio src&trg 3-gram in high freq. quartile 0.482
O2O word alignment 15.5
Pseudo-ref. Moses Levenshtein 19
Pseudo-ref. Moses TER 21.286
Pseudo-ref. Bing TER 16.905
Pseudo-ref. Bing TER 23.431
Pseudo-ref. Bing TER 37.394
Pseudo-ref. Bing TER 55.685
Pseudo-ref. Systran sBLEU 0.334
Pseudo-ref. Systran TER 36.399
Source average word length 4.298
Target uppercased/lowercased letters ratio 0.011
Ratio src&trg average word length 1.051
Source word align., p(s|t) > 0.75 11.374
Source word align., p(s|t) > 0.1 485.062
Source word align., p(s|t) > 0.75 weighted 0.002
Target word align., p(t|s) > 0.01 weighted 0.019
Word align. ratio p > 0.25 weighted 1.32

Table 2: Features selected with the M5P-R M50
binarisation approach. For each feature, the cor-
responding rule indicates the binary feature value.
These features are included in the submitted sys-
tem combine in addition to the features presented
in Table 1.

regression rule Bing TER score ≤ 55.685.
The primary motivation for using regression

tree learning in this way was to provide a quick
and convenient method for binarising our feature
set. However, we can also perform feature selec-
tion using this method by experimenting with vari-
ous minimum leaf sizes (Weka parameter M ). We
plot the performance of the M5P and M5P-R (opti-
mising towards correlation) over the parameter M
and select the best three values of M . To experi-
ment with the effect of smaller and larger feature
sets, we further include parameters of M that (a)
lead to an approximately 50% bigger feature set
and (b) to an approximately 50% smaller feature
set.

Our DCU-SYMC combine system was built
by combining the DCU-SYMC alltypes fea-
ture set, reduced using the best-first M5P wrap-

per approach as described in subsection 3.2, with
a binarised set produced using an M5P regres-
sion tree with a minimum of 50 nodes per leaf.
This latter configuration, containing 34 features
detailed in Table 2, was selected according to the
evaluation scores obtained during cross-validation
on the training set using ε-SVR, as described in
the next section. Finally, we run a greedy back-
ward feature selection algorithm wrapping ε-SVR
on both DCU-SYMC alltypes and DCU-SYMC
combine in order to optimise our feature sets for
the SVR learning algorithm, removing 6 and 2 fea-
tures respectively.

4 System Evaluation and Results

In this section, we present the results obtained with
ε-SVR during 5-fold cross-validation on the train-
ing set and the final results obtained on the test
set. We selected two systems to submit amongst
the different configurations based on MAE, RMSE
and r. As several systems reach the same perfor-
mance according to these metrics, we use the num-
ber of support vectors (noted SV) as an indicator
of training data over-fitting. We report the results
obtained with some of our systems in Table 3.

The results show that the submitted sys-
tems DCU-SYMC alltypes and DCU-SYMC
combine lead to the best scores on cross-
validation, but they do not outperform the system
combining the 15 feature types without feature se-
lection (15 types). This system reaches the best
scores on the test set compared to all our systems
built on reduced feature sets. This indicates that
we over-fit and fail to generalise from the training
data.

Amongst the systems built using reduced fea-
ture sets, the M5P-R M80 system, based on the
tree binarisation approach using M5P-R, yields
the best results on the test set on 3 out of 4 offi-
cial metrics. These results indicate that this sys-
tem, trained on 16 features only, tends to estimate
HTER scores more accurately on the unseen test
data. The results of the two systems based on
the M5P-R binarisation method are the best com-
pared to all the other systems presented in this
Section. This feature binarisation and selection
method leads to robust systems with few features:
31 and 16 for M5P-R M50 and M5P-R M80 re-
spectively. Even though these systems do not lead
to the best results, they outperform the two sub-
mitted systems on one metric used to evaluate the
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Cross-Validation Test
System nb feat MAE RMSE r SV MAE RMSE DeltaAvg Spearman
15 types 442 0.106 0.138 0.604 1194.6 0.126 0.156 0.108 0.625
M5P M50 34 0.106 0.138 0.600 1417.8 0.135 0.167 0.102 0.586
M5P M130 4 0.114 0.145 0.544 750.6 0.142 0.173 0.079 0.517
M5P-R M50 31 0.106 0.137 0.610 655.4 0.135 0.166 0.100 0.591
M5P-R M80 16 0.107 0.139 0.597 570.6 0.134 0.165 0.106 0.597
alltypes? 96 0.104 0.135 0.624 1130.6 0.135 0.171 0.101 0.589
combine? 134 0.104 0.134 0.629 689.8 0.134 0.166 0.098 0.588

Table 3: Results obtained with different regression models, during cross-validation on the training set
and on the test set, depending on the feature selection method. Systems marked with ? were submitted
for the shared task.

scoring task and two metrics to evaluate the rank-
ing task.

On the systems built using reduced feature sets,
we observe a difference of approximately 0.03pt
absolute between the MAE and RMSE scores ob-
tained during cross-validation and those on the test
set. Such a difference can be related to train-
ing data over-fitting, even though the feature sets
obtained with the tree binarisation methods are
small. For instance, the system M5P M130 is
trained on 4 features only, but the difference be-
tween cross-validation and test MAE scores is
similar to the other systems. We see on the fi-
nal results that our feature selection methods is an
over-fitting factor: by selecting the features which
explain well the training set, the final model tends
to generalise less. The selected features are suited
for the specificities of the training data, but are less
accurate at predicting values on the unseen test set.

5 Discussion

Training data over-fitting is clearly shown by the
results presented in Table 3, indicated by the per-
formance drop between results obtained during
cross-validation and the ones obtained on the test
set. While this drop may be related to data over-
fitting, it may also be related to the use of differ-
ent machine learning methods for feature selec-
tion (M5P and M5P-R) and for building the fi-
nal regression models (ε-SVR). In order to ver-
ify this aspect, we build two regression models
using M5P, based on the feature sets alltypes
and combine. Results are presented in Table 4
and show that, for the alltypes feature set, the
RMSE, DeltaAvg and Spearman scores are im-
proved using M5P compared to SVM. For the
combine feature set, the scoring results (MAE

and RMSE) are better using SVM, while the rank-
ing results are similar for both machine learning
methods.

The performance drop between the results on
the training data (or a development set) and the
test data was also observed by the highest ranked
participants in the WMT12 QE shared task. To
compare our system without feature selection to
the winner of the previous shared task, we eval-
uate the 15 types system in Table 3 using the
WMT12 QE dataset. The results are presented in
Table 5. We can see that similar MAEs are ob-
tained with our feature set and the WMT12 QE
winner, whereas our system gets a higher RMSE
(+0.01). For the ranking scores, our system is
worse using the DeltaAvg metric while it is bet-
ter on Spearman coefficient.

6 Conclusion

We presented in this paper our experiments for the
WMT13 Quality Estimation shared task. Our ap-
proach is based on the extraction of a large ini-
tial feature set, followed by two feature selection
methods. The first one is a wrapper approach us-
ing M5P and a best-first search algorithm, while
the second one is a feature binarisation approach
using M5P and M5P-R. The final regression mod-
els were built using ε-SVR and we selected two
systems to submit based on cross-validation re-
sults.

We observed that our system reaching the best
scores on the test set was not a system trained on
a reduced feature set and it did not yield the best
cross-validation results. This system was trained
using 442 features, which are the combination of
15 different feature types. Amongst the systems
built on reduced sets, the best results are obtained
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System nb feat MAE RMSE DeltaAvg Spearman
alltypes 96 0.135 0.165 0.104 0.604
combine 134 0.139 0.169 0.098 0.587

Table 4: Results obtained with the two feature sets contained in our submitted systems using M5P to
build the regression models instead of ε-SVR.

System nb feat MAE RMSE DeltaAvg Spearman
WMT12 winner 15 0.61 0.75 0.63 0.64
15 types 442 0.61 0.76 0.60 0.65

Table 5: Results obtained on WMT12 QE dataset with our best system (15 types) compared to WMT12
QE highest ranked team, in the Likert score prediction task.

using the feature binarisation approach M5P-R
80, which contains 16 features selected from our
initial set of features. The tree-based feature bina-
risation is a fast and flexible method which allows
us to vary the number of features by optimising the
leaf size and leads to acceptable results with a few
selected features.

Future work involves a deeper analysis of the
over-fitting effect and an investigation of other
methods in order to outperform the non-reduced
feature set. We are also interested in finding a ro-
bust way to optimise the leaf size parameter for
our tree-based feature binarisation method, with-
out using cross-validation on the training set with
an SVM algorithm.
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Abstract
This paper describes the machine learning
algorithm and the features used by LIMSI
for the Quality Estimation Shared Task.
Our submission mainly aims at evaluating
the usefulness for quality estimation of n-
gram posterior probabilities that quantify
the probability for a given n-gram to be
part of the system output.

1 Introduction

The dissemination of statistical machine transla-
tion (SMT) systems in the professional translation
industry is still limited by the lack of reliability of
SMT outputs, the quality of which varies to a great
extent. In this context, a critical piece of informa-
tion would be for MT systems to assess their out-
put translations with automatically derived quality
measures. This problem is the focus of a shared
task, the aim of which is to predict the quality
of a translation without knowing any human ref-
erence(s).

To the best of our knowledge, all approaches
so far have tackled quality estimation as a super-
vised learning problem (He et al., 2010; Soricut
and Echihabi, 2010; Specia et al., 2010; Specia,
2011). A wide variety of features have been pro-
posed, most of which can be described as loosely
‘linguistic’ features that describe the source sen-
tence, the target sentence and the association be-
tween them (Callison-Burch et al., 2012). Sur-
prisingly enough, information used by the decoder
to choose the best translation in the search space,
such as its internal scores, have hardly been con-
sidered and never proved to be useful. Indeed, it is
well-known that these scores are hard to interpret
and to compare across hypotheses. Furthermore,
mapping scores of a linear classifier (such as the
scores estimated by MERT) into consistent prob-
abilities is a difficult task (Platt, 2000; Lin et al.,
2007).

This work aims at assessing whether informa-
tion extracted from the decoder search space can
help to predict the quality of a translation. Rather
than using directly the decoder score, we propose
to consider a finer level of information, the n-gram
posterior probabilities that quantifies the probabil-
ity for a given n-gram to be part of the system
output. These probabilities can be directly inter-
preted as the confidence the system has for a given
n-gram to be part of the translation. As they are
directly derived from the number of hypotheses in
the search space that contains this n-gram, these
probabilities might be more reliable than the ones
estimated from the decoder scores.

We first quickly review, in Section 2, the n-gram
posteriors introduced by (Gispert et al., 2013) and
explain how they can be used in the QE task; we
then describe, in Section 3 the different systems
that have developed for our participation in the
WMT’13 shared task on Quality Estimation and
assess their performance in Section 4.

2 n-gram Posterior Probabilities in SMT

Our contribution to the WMT’13 shared task on
quality estimation relies on n-gram posteriors. For
the sake of completeness, we will quickly formal-
ize this notion and summarize the method pro-
posed by (Gispert et al., 2013) to efficiently com-
pute them. We will then describe preliminary ex-
periments to assess their usefulness for predicting
the quality of a translation hypothesis.

2.1 Computing n-gram Posteriors
For a given source sentence F , the n-gram pos-
terior probabilities quantifies the probability for
a given n-gram to be part of the system output.
Their computation relies on all the hypotheses
considered by a SMT system during decoding: in-
tuitively, the more hypotheses a n-gram appears
in, the more confident the system is that this n-
gram is part of the ‘correct’ translation, and the

398



higher its posterior probability is. Formally, the
posterior of a given n-gram u is defined as:

P (u|E) =
∑

(A,E)∈E
δu(E) · P (E,A|F )

where the sum runs over the translation hypothe-
ses contained in the search space E (generally rep-
resented as a lattice); δu(E) has the value 1 if u
occurs in the translation hypothesis E and 0 oth-
erwise and P (E,A|F ) is the probability that the
source sentence F is translated by the hypothesis
E using a derivation A. Following (Gispert et al.,
2013), this probability is estimated by applying a
soft-max function to the score of the decoder:

P (A,E|F ) = exp (α×H(E,A, F ))∑
(A′,E′)∈E exp (H(E′, A′, F ))

where the decoder score H(E,A, F ) is typically
a linear combination of a handful of features, the
weights of which are estimated by MERT (Och,
2003).
n-gram posteriors therefore aggregate two

pieces of information: first, the number of paths in
the lattice (i.e. the number of translation hypothe-
ses of the search path) the n-gram appears in; sec-
ond, the decoder scores of these paths that can be
roughly interpreted as a quality of the path.

Computing P (u|E) requires to enumerate all n-
gram contained in E and to count the number of
paths in which this n-gram appears at least once.
An efficient method to perform this computation
in a single traversal of the lattice is described
in (Gispert et al., 2013). This algorithm has been
reimplemented1 to generate the posteriors used in
this work.

2.2 Analysis of n-gram Posteriors
Figure 1 represents the distribution of n-gram pos-
teriors on the training set of the task 1-1. This dis-
tribution is similar to the ones observed for task 1-
3 and for higher n-gram orders. It appears that, the
distribution is quite irregular and has two modes.
The minor modes corresponds to n-grams that ap-
pear in almost every translation hypotheses and
have posterior probability close to 1. Further anal-
yses show that these n-grams are mainly made of
stop words and of out-of-vocabulary words. The
major mode corresponds to very small n-gram
posteriors (less than 10−1) that the system has only

1Our implementation can be downloaded from http://
perso.limsi.fr/Individu/wisniews/.

a very small confidence in producing. The num-
ber of n-grams that have such a small posterior
suggests that most n-grams occur only in a small
number of paths.
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Figure 1: Distribution of the unigram posteriors
observed on the training set of the task 1-1

Using n-gram posteriors to predict the quality
of translation raises a representation issue: the
number of n-grams contained in a sentence varies
with the sentence length (and hence with the num-
ber of posteriors) but this information needs to be
represented in a fixed-length vector describing the
sentence. Similarly to what is usually done in the
quality estimation task, we chose to represent pos-
teriors probability by their histogram: for a given
n-gram order, each posterior is mapped to a bin;
each bin is then represented by a feature equal to
the number of n-gram posteriors it contains. To
account for the irregular distribution of posteriors,
bin breaks are chosen on the training set so as to
ensure that each bin contains the same number of
examples. In our experiments, we considered a
partition of the training data into 20 bins.

3 Systems Description

LIMSI has participated to the tasks 1-1 (predic-
tion of the hTER) and 1-3 (prediction of the post-
edition time). Similar features and learning algo-
rithms have been considered for the two tasks. We
will first quickly describe them before discussing
the specific development made for task 1-3.
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3.1 Features

In addition to the features described in the previ-
ous section, 176 ‘standard’ features for quality es-
timation have been considered. The full list of fea-
tures we have considered is given in (Wisniewski
et al., 2013) and the features set can be down-
loaded from our website.2 These features can be
classified into four broad categories:

• Association Features: Measures of the qual-
ity of the ‘association’ between the source
and the target sentences like, for instance,
features derived from the IBM model 1
scores;

• Fluency Features: Measures of the ‘fluency’
or the ‘grammaticality’ of the target sentence
such as features based on language model
scores;

• Surface Features: Surface features extracted
mainly from the source sentence such as
the number of words, the number of out-
of-vocabulary words or words that are not
aligned;

• Syntactic Features: some simple syntactic
features like the number of nouns, modifiers,
verbs, function words, WH-words, number
words, etc., in a sentence;

These features sets differ, in several ways, from
the baseline feature set provided by the shared task
organizers. First, in addition to features derived
from a language model, it also includes several
features based on large span continuous space lan-
guage models (Le et al., 2011). Such language
models have already proved their efficiency both
for the translation task (Le et al., 2012) and the
quality estimation task (Wisniewski et al., 2013).
Second, each feature was expanded into two ‘nor-
malized forms’ in which their value was divided
either by the source length or the target length
and, when relevant, into a ‘ratio form’ in which
the feature value computed on the target sentence
is divided by its value computed in the source sen-
tence. At the end, when all possible feature expan-
sions are considered, each example is described by
395 features.

2http://perso.limsi.fr/Individu/
wisniews/

3.2 Learning Methods

The main focus of this work is to study the rel-
evance of features for quality estimation; there-
fore, only very standard learning methods were
used in our work. For this year submission
both random forests (Breiman, 2001) and elas-
tic net regression (Zou and Hastie, 2005) have
been used. The capacity of random forests to take
into account complex interactions between fea-
tures has proved to be a key element in the re-
sults achieved in our experiments with last year
campaign datasets (Zhuang et al., 2012). As we
are considering a larger features set this year and
the number of examples is comparatively quite
small, we also considered elastic regression, a lin-
ear model trained with L1 and L2 priors as regu-
larizers, hoping that training a sparse model would
reduce the risk of overfitting.

In this study, we have used the implementation
provided by scikit-learn (Pedregosa et al.,
2011). As detailed in Section 4.1, cross-validation
has been used to choose the hyper-parameters of
all regressors, namely the number of estimators,
the maximal depth of a tree and the minimum
number of examples in a leaf for the random
forests and the importance of the L1 and the L2

regularizers for the elastic net regressor.

3.3 System for Task 1-3

Like task 1-1, task 1-3 is a regression task that
aims at predicting the time needed to post-edit a
translation hypothesis. From a machine learning
point of view, this task differs from task 1-1 in
three aspects. First, the distributed training set
is much smaller: it is made of only 803 exam-
ples, which increases the risk of overfitting. Sec-
ond, contrary to hTER scores, post-edition time is
not normalized and the label of this task can take
any positive value. Finally and most importantly,
as shown in Figure 2, the label distributions es-
timated on the training set has a long tail which
indicates the presence of several outliers: in the
worse case, it took more than 18 minutes to cor-
rect a single sentence made of 35 words! Such
a long post-edition time most certainly indicates
that the corrector has been distracted when post-
editing the sentence rather than a true difficulty in
the post-edition.

These outliers have a large impact on training
and on testing, as their contributions to both MAE
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Figure 2: Kernel density estimate of the post-
edition time distribution used as label in task 1-3.

and MSE,3 directly depends on label values and
can therefore be very large in the case of outliers.
For instance, a simple ridge regression with the
baseline features provided by the shared task or-
ganizer achieves a MAE of 42.641 ± 2.126 on
the test set. When all the examples having a la-
bel higher than 300 are removed from the training
set, the MAE drops to 41.843± 4.134. When out-
liers are removed from both the training and the
test sets, the MAE further drops to 32.803±1.673.
These observations indicate that special care must
be taken when collecting the data and that, maybe,
post-edition times should be clipped to provide a
more reliable estimation of the predictor perfor-
mance.

In the following (and in our submission) only
examples for which the post-edition time was less
than 300 seconds were considered.

4 Results

4.1 Experimental Setup

We have tested different combinations of features
and learning methods using a standard metric for
regression: Mean Absolute Error (MAE) defined
by:

MAE =
1

n

n∑

i=1

|ŷi − yi|

3The two standard loss functions used to train and evalu-
ate a regressor

where n is the number of examples, yi and ŷi
the true label and predicted label of the ith exam-
ple. MAE can be understood as the averaged error
made in predicting the quality of a translation.

Performance of both task 1-1 and task 1-34 was
also evaluated by the Spearman rank correlation
coefficient ρ that assesses how well the relation-
ship between two variables can be described using
a monotonic function. While the value of the cor-
relation coefficient is harder to interpret as it not
directly related to the value to predict, it can be
used to compare the performance achieved when
predicting different measures of the post-editing
effort. Indeed, several sentence-level (or docu-
ment level) annotation types can be used to reflect
translation quality (Specia, 2011), such as the time
needed to post-edit a translation hypothesis, the
hTER, or qualitative judgments as it was the case
for the shared task of WMT 2012. Comparing di-
rectly these different settings is complicated, since
each of them requires to optimize a different loss,
and even if the losses are the same, their actual
values will depend on the actual annotation to be
predicted (refer again to the discussion in (Specia,
2011, p5)). Using a metric that relies on the pre-
dicted rank of the example rather than the actual
value predicted allows us to directly compare the
performance achieved on the two tasks.

As the labels for the different tasks were not re-
leased before the evaluation, all the reported re-
sults are obtained on an ‘internal’ test set, made of
20% of the data released by the shared task or-
ganizers as ‘training’ data. The remaining data
were used to train the regressor in a 10 folds cross-
validation setting. In order to get reliable estimate
of our methods performances, we used bootstrap
resampling (Efron and Tibshirani, 1993) to com-
pute confidence intervals of the different scores:
10 random splits of the data into a training and
sets were generated; a regressor was then trained
and tested for each of these splits and the resulting
confidence intervals at 95% computed.

4.2 Results
Table 1and Table 2 contain the results achieved by
our different conditions. We used, as a baseline,
the set of 17 features released by the shared task
organizers.

It appears that the differences in MAE between
4The Spearman ρ was an official metric only for task 1-

1. For reasons explained in this paragraph, we also used it to
evaluate our results for task 1-3.
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the different configurations are always very small
and hardly significant. However, the variation of
the Spearman ρ are much larger and the difference
observed are practically significant when the inter-
pretation scale of (Landis and Koch, 1977) is used.
We will therefore mainly consider ρ in our discus-
sion.

For the two tasks 1-1 and 1-3, the features we
have designed allow us to significantly improve
prediction performance in comparison to the base-
line. For instance, for task 1-1, the correlation
is almost doubled when the features described in
Section 3.1 are used. As expected, random forests
are overfitting and did not manage to outperform
a simple linear classifier. That is why we only
used the elastic net method for our official submis-
sion. Including posterior probabilities in the fea-
ture set did not improve performance much (ex-
cept when only the baseline features are consid-
ered) and sometimes even hurt performance. This
might be caused by an overfitting problem, the
training set becoming too small when new features
are added. We are conducting further experiments
to explain this paradoxical observation.

Another interesting observation that can be
made looking at the results of Table 1 and Ta-
ble 2 is that the prediction of the post-edition time
seems to be easier than the prediction of the hTER:
using the same classifiers and the same features,
the performance for the former task is always far
better than the performance for the latter.

5 Conclusion

In this paper, we described our submission to the
WMT’13 shared task on quality estimation. We
have explored the use of posteriors probability,
hoping that information about the search space
could help in predicting the quality of a transla-
tion. Even if features derived from posterior prob-
abilities have shown to have only a very limited
impact, we managed to significantly improve the
baseline with a standard learning method and sim-
ple features. Further experiments are required to
understand the reasons of this failure.

Our results also highlight the need to continue
gathering high-quality resources to train and in-
vestigate quality estimation systems: even when
considering few features, our systems were prone
to overfitting. Developing more elaborated sys-
tems will therefore only be possible if more train-
ing resource is available. Our experiments also

stress that both the choice of the quality measure
(i.e. the quantity to predict) and of the evaluation
metrics for quality estimation are still open prob-
lems.
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Canada, June. Association for Computational Lin-
guistics.

402



MAE ρ

train test train test

Baseline Features
RandomForest 0.109± 0.013 0.130± 0.004 0.405± 0.008 0.314± 0.016
Elastic 0.127± 0.001 0.129± 0.003 0.336± 0.004 0.319± 0.015

‘Linguistic’ Features
RandomForest 0.082± 0.019 0.118± 0.003 0.689± 0.003 0.625± 0.009
Elastic 0.107± 0.004 0.115± 0.003 0.705± 0.009 0.660± 0.009

‘Linguistic’ Features + posteriors
RandomForest 0.088± 0.017 0.116± 0.003 0.694± 0.003 0.615± 0.014
Elastic 0.105± 0.006 0.114± 0.002 0.699± 0.007 0.662± 0.011

Table 1: Results for the task 1-1

MAE ρ

train test train test

Baseline Features
RandomForest 25.145± 3.745 33.279± 1.687 0.669± 0.007 0.639± 0.017
Elastic 32.776± 0.795 33.702± 2.328 0.678± 0.006 0.657± 0.018

Baseline Features + Posteriors
RandomForest 33.707± 0.309 35.646± 0.889 0.674± 0.004 0.637± 0.017
Elastic 31.487± 0.261 32.922± 0.789 0.698± 0.004 0.681± 0.016

‘Linguistic’ Features
RandomForest 25.236± 4.400 33.017± 1.582 0.735± 0.007 0.666± 0.023
Elastic 28.706± 1.273 31.630± 1.612 0.760± 0.006 0.701± 0.017

‘Linguistic’ Features + Posteriors
RandomForest 22.951± 3.903 33.013± 1.514 0.741± 0.003 0.695± 0.013
Elastic 28.911± 1.020 31.865± 1.636 0.761± 0.008 0.710± 0.017

Table 2: Results for the task 1-3

403



Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng.
2007. A note on platt’s probabilistic outputs for
support vector machines. Mach. Learn., 68(3):267–
276, October.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 160–167, Sap-
poro, Japan.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine Learn-
ing in Python . Journal of Machine Learning Re-
search, 12:2825–2830.

John C. Platt, 2000. Probabilities for SV Machines,
pages 61–74. MIT Press.

Radu Soricut and Abdessamad Echihabi. 2010.
Trustrank: Inducing trust in automatic translations
via ranking. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 612–621, Uppsala, Sweden, July. As-
sociation for Computational Linguistics.

Lucia Specia, Dhwaj Raj, and Marco Turchi. 2010.
Machine translation evaluation versus quality esti-
mation. Machine Translation, 24(1):39–50, March.

Lucia Specia. 2011. Exploiting objective annotations
for measuring translation post-editing effort. In Pro-
ceedings of the 15th conference of EAMT, pages 73–
80, Leuven, Belgium.

Guillaume Wisniewski, Anil Kumar Singh, and
François Yvon. 2013. Quality estimation for ma-
chine translation: Some lessons learned. Machine
Translation. accepted for publication.

Yong Zhuang, Guillaume Wisniewski, and François
Yvon. 2012. Non-linear models for confidence es-
timation. In Proceedings of the Seventh Workshop
on Statistical Machine Translation, pages 157–162,
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Abstract

We describe TerrorCat, a submission to
this year’s metrics shared task. It is a ma-
chine learning-based metric that is trained
on manual ranking data from WMT shared
tasks 2008–2012. Input features are
generated by applying automatic transla-
tion error analysis to the translation hy-
potheses and calculating the error cate-
gory frequency differences. We addition-
ally experiment with adding quality es-
timation features in addition to the er-
ror analysis-based ones. When evaluated
against WMT’2012 rankings, the system-
level agreement is rather high for several
language pairs.

1 Introduction

Recently a couple of methods of automatic analy-
sis of translation errors have been described (Ze-
man et al., 2011; Popović and Ney, 2011). Both of
these compare a hypothesis translation to a refer-
ence and draw detailed conclusions from the dif-
ferences between the two.

TerrorCat, a metric submitted to the metrics
shared task of WMT’2012 (Callison-Burch et al.,
2012) used the output of those two error analysis
methods as input features, which yielded mildly
promising results (Fishel et al., 2012). How-
ever the submitted version of TerrorCat was lan-
guage pair-specific, which means that the classifier
model used by the metric has to be retrained on
new manual pairwise ranking data for every new
language pair. This in turn complicates its usage.

Our main aim in this work is to make Terror-
Cat usable out-of-the-box. We compare models
specific to the language pair (baseline), target lan-
guage and a universal model for all languages. The
updated metric is applied to the WMT’13 metrics
shared task.

An additional modification to the metric uses
input features from quality estimation. Using the
resources of the quality estimation shared task of
WMT’13 the modified model is applied to the
English–Spanish language pair.

We start by briefly re-introducing the TerrorCat
metric.

2 Baseline

The baseline TerrorCat metric is a machine
learning-based metric: it uses manually ranked
translation hypothesis pairs to train a classifier
model. The trained model is then used to predict a
ranking for new sentence pairs that have not been
ranked yet.

To convert the binary comparisons between
translation hypothesis pairs into a numeric score
per translation hypothesis the wins per hypothe-
sis are summed together. Previous year’s work
has shown (Fishel et al., 2012) that weighting
the wins with the classifier’s confidence for the
summed score improves agreement with human
judgements.

The input features for learning and classifica-
tion are obtained by

1. applying translation error analysis software
to the compared hypotheses,

2. getting the frequencies of every error type,
i.e. the ratio of words marked with that er-
ror type to the hypothesis sentence length,

3. and using each error type’s frequency differ-
ences between the two hypotheses as input
features.

Relative frequencies are used on both system and
segment level: i.e. the ratios of words marked with
a particular error type to the hypothesis translation
length. This guarantees that feature values lie in
the [−1, 1] range.
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Translation error analysis is done with two
tools: Addicter (Zeman et al., 2011) and Hjer-
son (Popović and Ney, 2011). Both perform error
analysis by comparing the hypothesis and refer-
ence translations on word level and treating each
difference as an error of one or the other kind.
Translation error taxonomies as well as the way
word differences and their contexts are interpreted
differ between the two tools. In order to enable
independent input from both tools the feature vec-
tors obtained from them both tools are concate-
nated.

To increase the level of detail the frequencies of
each error category are counted separately for each
part-of-speech separately. As a result, e.g. instead
of having the information of order errors having a
particular frequency, the classifier will separately
see the frequencies of misplaced nouns, adjectives,
particles, etc.

3 Experiments

The usage of part-of-speech tags improves agree-
ment with human judgements (Fishel et al., 2012);
however, it also introduces language dependency
for the metric. In the first set of experiments we try
to remove this imposed dependency without losing
the achieved benefit.

3.1 Common Settings

We focused on six language pairs: between En-
glish and German, French and Spanish. Manual
ranking data for training was taken from WMT
shared task evaluations 2008–2011; data from
WMT’2012 was used as a development set to as-
sess the performance of metric variations.

Final models for the WMT’2013 shared task
were re-trained on the whole set of manual rank-
ings, from WMT 2008–2012.

The classifier used by TerrorCat is an SVM with
a linear kernel; more powerful kernels, such as ra-
dial basis function-based ones scaled poorly to the
high number of features and thus were not tested.

PoS-tagging was done using TreeTagger
(Schmid, 1995) with the pre-trained models for
English, German, French and Spanish.

3.2 Language Independence

It is natural to expect error categories to have
varying importance on the quality comparison be-
tween two translation candidates. For instance,
one might expect order differences between trans-

lations into functional languages (e.g. English,
Chinese) to have a greater importance than in case
of languages with a more flexible word order (e.g.
German, Russian); on the other hand inflection er-
rors are likely to do more damage to the meaning
in morphologically complex languages (e.g. Rus-
sian, Finnish) than in languages with simpler mor-
phology (e.g. English, French). However, we want
to see whether we can train a classifier that would
generalize over all language pairs.

The main obstacle for training a general model
on all language pairs are the different taxonomies
of part-of-speech tags for different target lan-
guages: the arity of the input feature vectors is dif-
ferent for different target languages, which makes
the data incompatible between them.

To overcome the difference we define a map-
ping from every used taxonomy to a common gen-
eral set of PoS-tags, which is supposed to cover
any language. It consists of general part-of-speech
categories (such as noun, verb, particle, etc., a to-
tal of 15), without any morphological information
(tense, case, person, etc.).

By using the same set of generalized PoS-tags
for every language we ensure that the used Terror-
Cat classifier model is language-independent; the
PoS-tagging step is naturally language-dependent
still.

Tables 1 and 2 present system-level and
segment-level correlations of TerrorCat based on
this common PoS-tag set and three models, spe-
cific to the language pair, target language only
and a general model for any language. Both sets
of results show that using a language-independent
model neither improves nor worsens the perfor-
mance.

3.3 Quality Estimation for Ranking

To further improve the agreement between Terror-
Cat and human assessment we experimented with
adding input features from quality estimation.

The input features were adopted from this year’s
shared task on quality estimation. We selected the
smaller set of black-box features, which included
the sentence lenghts, their language model proba-
bilities, average numbers of translations per word,
percentages of uni-, bi- and tri-grams in the dif-
ferent frequency quartiles, etc. All resources were
taken from the shared task, which also meant that
this modified model was applied only to English–
Spanish.
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de-en en-de es-en en-es fr-en en-fr
Language pair-specific 0.94 0.56 0.94 0.59 0.85 0.82
Target language-specific 0.92 0.56 0.97 0.59 0.84 0.82
Language-independent 0.93 0.71 0.94 0.66 0.84 0.88
BLEU 0.67 0.22 0.87 0.40 0.81 0.71
METEOR 0.89 0.18 0.95 0.45 0.84 0.82
TER 0.62 0.41 0.92 0.45 0.82 0.66

Table 1: System-level correlation between TerrorCat and human ranking. Correlations of BLEU, ME-
TEOR and TER scores are given for comparison.

de-en en-de es-en en-es fr-en en-fr
Language pair-specific 0.31 0.18 0.24 0.21 0.23 0.20
Target language-specific 0.31 0.18 0.28 0.21 0.23 0.20
Language-independent 0.28 0.20 0.27 0.22 0.24 0.21

Table 2: Segment-level correlation between TerrorCat and human ranking.

Training the model on quality estimation fea-
tures alone yields a system-level score of 0.56. Al-
though this is lower than the TerrorCat baseline,
it beats the correlations of BLEU, TER and ME-
TEOR (see Table 1). The segment-level correla-
tion is -0.01.

Next we combined features from error analysis
and quality estimation by concatenating them into
a single input feature vector. As a result system-
level correlation improved to 0.72, which is higher
than all TerrorCat variants so far (best correlation:
0.66). Segment-level correlation remained practi-
cally the same (0.22).

4 Conclusion

We have applied TerrorCat to the shared metrics
task of WMT’2013. Just like last year, the results
are mildly promising.

We were successful at achieving language inde-
pendence, provided that PoS-tagging is done be-
fore applying the metric.

The trained model as well as the metric imple-
mentation with all the necessary scripts is avail-
able online1.

It remains to be tested, whether quality es-
timation features fit well with the language-
independent models. As the extracted feature val-
ues are based on completely different, language-
specific resources, this does not seem to be a likely
outcome.

1https://github.com/fishel/TerrorCat
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Abstract

This paper gives a detailed description of
the ACT (Accuracy of Connective Trans-
lation) metric, a reference-based metric
that assesses only connective translations.
ACT relies on automatic word-level align-
ment (using GIZA++) between a source
sentence and respectively the reference
and candidate translations, along with
other heuristics for comparing translations
of discourse connectives. Using a dictio-
nary of equivalents, the translations are
scored automatically or, for more accu-
racy, semi-automatically. The accuracy of
the ACT metric was assessed by human
judges on sample data for English/French,
English/Arabic, English/Italian and En-
glish/German translations; the ACT scores
are within 2-5% of human scores.

The actual version of ACT is available
only for a limited language pairs. Conse-
quently, we are participating only for the
English/French and English/German lan-
guage pairs. Our hypothesis is that ACT
metric scores increase with better transla-
tion quality in terms of human evaluation.

1 Introduction

Discourse connectives should preserve their sense
during translation, as they are often ambiguous
and may convey more than one sense depending
on the inter-sentential relation (causality, conces-
sion, contrast or temporal). For instance, since
in English can express temporal simultaneity, but
also a causal sense.

In this paper, we present results of different Ma-
chine Translation systems for English-to-French
and English-to-German pairs. More specifically,
we measure the quality of machine translations
of eight English discourse connectives: although,

even though, meanwhile, since, though, while,
however, and yet, adopting different approaches.
This quality is measured using a dedicated met-
ric named ACT (Accuracy of Connective Transla-
tion), a reference-based metric that assesses only
connective translations.

The paper is organized as follows. In Section 2,
we present the ACT metric and its error rate. In
section 3, we compare the ACT metric to previous
machine translation evaluation metrics. Finally,
we present the results of the different English-to-
German and English-to-French MT systems (Sec-
tion 4).

2 ACT Metric

We described the ACT metric in (Hajlaoui and
Popescu-Belis, 2013) and (Hajlaoui and Popescu-
Belis, 2012). Its main idea is to detect, for a given
explicit source discourse connective, its transla-
tion in a reference translation and in a candidate
translation. ACT then compares and scores these
translations. To identify the translations, ACT first
uses a dictionary of possible translations of each
discourse connective type, collected from training
data and validated by humans. If a reference or a
candidate translation contains more than one pos-
sible translation of the source connective, align-
ment information is used to detect the correct con-
nective translation. If the alignment information is
irrelevant (not equal to a connective), it then com-
pares the word position (word index) of the source
connective alignment with the index in the trans-
lated sentence (candidate or reference) and the set
of candidate connectives to disambiguate the con-
nective’s translation. Finally, the nearest connec-
tive to the alignment is taken.

ACT proceeds by checking whether the refer-
ence translation contains one of the possible trans-
lations of the connective in question. After that, it
similarly checks if the candidate translation con-
tains a possible translation of the connective. Fi-
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nally, it checks if the reference connective found
is equal (case 1), synonymous (case 2) or incom-
patible 1(case 3) to the candidate connective. Dis-
course relations can be implicit in the candidate
(case 4), or in the reference (case 5) translation or
in both of them (case 6). These different compar-
isons can be represented by the following 6 cases:

• Case 1: same connective in the reference
(Ref) and candidate translation (Cand).

• Case 2: synonymous connective in Ref and
Cand.

• Case 3: incompatible connective in Ref and
Cand.

• Case 4: source connective translated in Ref
but not in Cand.

• Case 5: source connective translated in Cand
but not in Ref.

• Case 6: the source connective neither trans-
lated in Ref nor in Cand.

Based on the connective dictionary categorised
by senses, ACT gives one point for identical (case
1) and equivalent translations (case 2), otherwise
zero. ACT proposes a semi-automatic option by
manually checking instances of case 5 and case
62.

ACT returns the ratio of the total number of
points to the number of source connectives ac-
cording to the three versions: (1) ACTa counts
only case 1 and case 2 as correct and all others
cases as wrong, (2) ACTa5+6 excludes case 5 and
case 6 and (3) ACTm considers the correct transla-
tions found by manual scoring of case 5 and case 6
noted respectively case5corr and case6corr to bet-
ter consider these implicit cases.

ACTa = (| case1 | + | case2 |)/
6∑

i=1

| casei | (1)

ACTa5 + 6 = (| case1 | + | case2 |)/
4∑

i=1

| casei | (2)

ACTm = ACTa + (| case5corr | + | case6corr | /
6∑

i=1

| casei |)

(3)

1In terms of connective sense.
2We do not check manually case 4 because we observed

that its instances propose generally explicit translations that
do not belong to our dictionary, it means the SMT system
tends to learn explicit translations for explicit source connec-
tive.

2.1 Configurations of ACT metric

As shown in Figure 1, ACT can be configured to
use an optional disambiguation module. Two ver-
sions of this disambiguation module can be used:
(1) without training, which means without sav-
ing an alignment model and only using GIZA++
as alignment tool; (2) with training and saving
an alignment model using MGIZA++ (a multi-
threaded version of GIZA++) trained on an exter-
nal corpus to align the (Source, Reference) and the
(Source, Candidate) data.

Figure 1: ACT architecture

ACT is more accurate using the disambiguation
module. We encourage to use the version without
training since it only requires the installation of
the GIZA++ tool. Based on its heuristics and on
its connective dictionaries categorised by senses,
ACT has a higher precision to detect the right con-
nective when more than one translation is possible.
The following example illustrates the usefulness
of the disambiguation module when we have more
than one possible translation of the source con-
nective. Without disambiguation, ACT detects the
same connective si in both target sentences (wrong
case 1), while the right translation of the source
connective although is bien que and même si re-
spectively in the reference and the candidate sen-
tence (case 2).

Without disambiguation, case 1: Csrc= although,
Cref = si, Ccand = si

With disambiguation, case 2: Csrc= although
(concession), Cref = bien que, Ccand = même si

• SOURCE: we did not have it so bad in ireland
this time although we have had many serious
wind storms on the atlantic .
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• REFERENCE: cette fois-ci en irlande . ce n’
était pas si grave . bien que de nombreuses
tempêtes violentes aient sévi dans l’ atlan-
tique .
• CANDIDATE: nous n’ était pas si mauvaise

en irlande . cette fois . même si nous avons
eu vent de nombreuses graves tempêtes sur
les deux rives de l’ atlantique .

In the following experiments, we used the rec-
ommended configuration of ACT (without train-
ing).

2.2 Error rate of the ACT metric
ACT is a free open-source Perl script licensed un-
der GPL v33. It has a reasonable and accept-
able error score when comparing its results to
human judgements (Hajlaoui and Popescu-Belis,
2013). Its accuracy was assessed by human judges
on sample data for English-to-French, English-to-
Arabic, English-to-Italian and English-to-German
translations; the ACT scores are within 2-5% of
human scores.

2.3 Multilingual architecture of ACT Metric
The ACT architecture is multilingual: it was ini-
tially developed for the English-French language
pair, then ported to English-Arabic, English-
Italian and English-German.

The main resource needed to port the ACT met-
ric to another language pair is the dictionary of
connectives matching possible synonyms and clas-
sifying connectives by sense. To find these pos-
sible translations of a given connective, we pro-
posed an automatic method based on a large cor-
pus analysis (Hajlaoui and Popescu-Belis, 2012).
This method can be used for any language pair.

Estimating the effort that would have to be taken
to port the ACT metric to new language pairs fo-
cusing on the same linguistic phenomena mainly
depends on the size of parallel data sets contain-
ing the given source connective. The classifi-
cation by sense depends also on the number of
possible translations detected for a given source
connective. This task is sometimes difficult, as
some translations (target connectives) can be as
ambiguous as the source connective. Native lin-
guistic knowledge of the target language is there-
fore needed in order to complete a dictionary with
the main meanings and senses of the connectives.

3Available from https://github.com/idiap/
act.

We think that the same process and the same
effort can be taken to adapt ACT to new linguistic
phenomena (verbs, pronouns, adverbs, etc).

3 Related works

ACT is different from existing MT metrics. The
METEOR metric (Denkowski and Lavie, 2011)
uses monolingual alignment between two trans-
lations to be compared: a system translation and
a reference one. METEOR performs a mapping
between unigrams: every unigram in each trans-
lation maps to zero or one unigram in the other
translation. Unlike METEOR, the ACT metric
uses a bilingual alignment (between the source and
the reference sentences and between the source
and the candidate sentences) and the word posi-
tion information as additional information to dis-
ambiguate the connective situation in case there is
more than one connective in the target (reference
or candidate) sentence. ACT may work without
this disambiguation.

The evaluation metric described in (Max et al.,
2010) indicates for each individual source word
which systems (among two or more systems or
system versions) correctly translated it according
to some reference translation(s). This allows car-
rying out detailed contrastive analyses at the word
level, or at the level of any word class (e.g. part
of speech, homonymous words, highly ambiguous
words relative to the training corpus, etc.). The
ACT metric relies on the independent compari-
son of one system’s hypothesis with a reference.
An automatic diagnostics of machine translation
and based on linguistic checkpoints (Zhou et al.,
2008), (Naskar et al., 2011) constitute a different
approach from our ACT metric. The approach es-
sentially uses the BLEU score to separately eval-
uate translations of a set of predefined linguis-
tic checkpoints such as specific parts of speech,
types of phrases (e.g., noun phrases) or phrases
with a certain function word. A different ap-
proach was proposed by (Popovic and Ney, 2011)
to study the distribution of errors over five cate-
gories (inflectional errors, reordering errors, miss-
ing words, extra words, incorrect lexical choices)
and to examine the number of errors in each cat-
egory. This proposal was based on the calcu-
lation of Word Error Rate (WER) and Position-
independent word Error Rate (PER), combined
with different types of linguistic knowledge (base
forms, part-of-speech tags, name entity tags, com-
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pound words, suffixes, prefixes). This approach
does not allow checking synonym words having
the same meaning like the case of discourse con-
nectives.

4 ACT-based comparative evaluation

We used the ACT metric to assess connective
translations for 21 English-German systems and
23 English-French systems. It was computed on
tokenized and lower-cased text using its second
configuration ”without training” (Hajlaoui and
Popescu-Belis, 2013).

Table 1 shows only ACTa scores for the
English-to-German translation systems since
ACTa5+6 gives the same rank as ACTa. Table 2
present the same for the English-to-French sys-
tems. We are not presenting ACTm either because
we didn’t check manually case 5 and case 6.

Metric System Value Avg SD

A
C

Ta

cu-zeman.2724 0.772
rbmt-3 0.772
TUBITAK.2633 0.746
KITprimary.2663 0.737
StfdNLPG.2764 0.733
JHU.2888 0.728
LIMSI-N-S-p.2589 0.720
online-G 0.720
Shef-wproa.2748 0.720
RWTHJane.2676 0.711 0.697 0.056
uedin-wmt13.2638 0.707
UppslaUnv.2698 0.707
online-A 0.698
rbmt-1 0.694
online-B 0.677
uedin-syntax.2611 0.672
online-C 0.664
FDA.2842 0.664
MES-reorder.2845 0.664
PROMT.2789 0.621
rbmt-4 0.513

Table 1: Metric scores for all En-De systems:
ACTa and ACTa5+6 scores give the same rank;
ACT V1.7. SD is the Standard Deviation.

5 Conclusion

The connective translation accuracy of the can-
didate systems cannot be measured correctly by
current MT metrics such as BLEU and NIST. We
therefore developed a new distance-based metric,
ACT, to measure the improvement in connective
translation. ACT is a reference-based metric that
only compares the translations of discourse con-
nectives. It is intended to capture the improvement
of an MT system that can deal specifically with
discourse connectives.

Metric System Value Avg SD

A
C

Ta

cu-zeman.2724 0.772
online-B 0.647
LIMSI-N-S.2587 0.647
MES.2802 0.647
FDA.2890 0.638
KITprimary.2656 0.638
cu-zeman.2728 0.634
online-G 0.634
PROMT.2752 0.634
uedin-wmt13.2884 0.634
MES-infl-pr.2672 0.629
StfdNLPGPTP.2765 0.629 0.608 0.04
DCUprimary.2827 0.625
JHU.2683 0.625
online-A 0.621
OmniFTEn-to-Fr.2647 0.616
RWTHph-Janepr.2639 0.612
OFlTEnFr.2645 0.591
rbmt-1 0.586
Its-LATL.2667 0.565
rbmt-3 0.565
rbmt-4 0.543
Its-LATL.2652 0.543
online-C 0.500

Table 2: Metric scores for all En-Fr systems:
ACTa and ACTa5+6 scores give the same rank;
ACT V1.7. SD is the Standard Deviation.

ACT can be also used semi-automatically. Con-
sequently, the scores reflect more accurately the
improvement in translation quality in terms of dis-
course connectives.

Theoretically, a better system should preserve
the sense of discourse connectives. Our hypothe-
sis is thus that ACT scores are increasing with bet-
ter translation quality. We need access the human
rankings of this task to validate if ACT’s scores
indeed correlate with overall translation quality
rankings.
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Abstract 

This paper is to describe our machine transla-

tion evaluation systems used for participation 

in the WMT13 shared Metrics Task. In the 

Metrics task, we submitted two automatic MT 

evaluation systems nLEPOR_baseline and 

LEPOR_v3.1. nLEPOR_baseline is an n-gram 

based language independent MT evaluation 

metric employing the factors of modified sen-

tence length penalty, position difference penal-

ty, n-gram precision and n-gram recall. 

nLEPOR_baseline measures the similarity of 

the system output translations and the refer-

ence translations only on word sequences. 

LEPOR_v3.1 is a new version of LEPOR met-

ric using the mathematical harmonic mean to 

group the factors and employing some linguis-

tic features, such as the part-of-speech infor-

mation. The evaluation results of WMT13 

show LEPOR_v3.1 yields the highest average-

score 0.86 with human judgments at system-

level using Pearson correlation criterion on 

English-to-other (FR, DE, ES, CS, RU) lan-

guage pairs. 

1 Introduction 

Machine translation has a long history since the 

1950s (Weaver, 1955) and gains a fast develop-

ment in the recent years because of the higher 

level of computer technology. For instances, Och 

(2003) presents Minimum Error Rate Training 

(MERT) method for log-linear statistical ma-

chine translation models to achieve better trans-

lation quality; Menezes et al. (2006) introduce a 

syntactically informed phrasal SMT system for 

English-to-Spanish translation using a phrase 

translation model, which is based on global reor-

dering and the dependency tree; Su et al. (2009) 

use the Thematic Role Templates model to im-

prove the translation; Costa-jussà et al. (2012) 

develop the phrase-based SMT system for Chi-

nese-Spanish translation using a pivot language. 

With the rapid development of Machine Transla-

tion (MT), the evaluation of MT has become a 

challenge in front of researchers. However, the 

MT evaluation is not an easy task due to the fact 

of the diversity of the languages, especially for 

the evaluation between distant languages (Eng-

lish, Russia, Japanese, etc.). 

2 Related works 

The earliest human assessment methods for ma-

chine translation include the intelligibility and 

fidelity used around 1960s (Carroll, 1966), and 

the adequacy (similar as fidelity), fluency and 

comprehension (improved intelligibility) (White 

et al., 1994). Because of the expensive cost of 

manual evaluations, the automatic evaluation 

metrics and systems appear recently. 

The early automatic evaluation metrics in-

clude the word error rate WER (Su et al., 1992) 

and position independent word error rate PER 

(Tillmann et al., 1997) that are based on the Le-

venshtein distance. Several promotions for the 

MT and MT evaluation literatures include the 

ACL’s annual workshop on statistical machine 

translation WMT (Koehn and Monz, 2006; Calli-

son-Burch et al., 2012), NIST open machine 

translation (OpenMT) Evaluation series (Li, 

2005) and the international workshop of spoken 

language translation IWSLT, which is also orga-

nized annually from 2004 (Eck and Hori, 2005; 
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Paul, 2008, 2009; Paul, et al., 2010; Federico et 

al., 2011). 

BLEU (Papineni et al., 2002) is one of the 

commonly used evaluation metrics that is de-

signed to calculate the document level precisions. 

NIST (Doddington, 2002) metric is proposed 

based on BLEU but with the information weights 

added to the n-gram approaches. TER (Snover et 

al., 2006) is another well-known MT evaluation 

metric that is designed to calculate the amount of 

work needed to correct the hypothesis translation 

according to the reference translations. TER in-

cludes the edit categories such as insertion, dele-

tion, substitution of single words and the shifts of 

word chunks. Other related works include the 

METEOR (Banerjee and Lavie, 2005) that uses 

semantic matching (word stem, synonym, and 

paraphrase), and (Wong and Kit, 2008), (Popovic, 

2012), and (Chen et al., 2012) that introduces the 

word order factors, etc. The traditional evalua-

tion metrics tend to perform well on the language 

pairs with English as the target language. This 

paper will introduce the evaluation models that 

can also perform well on the language pairs that 

with English as source language. 

3 Description of Systems 

3.1 Sub Factors 

Firstly, we introduce the sub factor of modified 

length penalty inspired by BLEU metric. 

 

    {

   
 

            
                  

   
 

            

 (1) 

 

In the formula,    means sentence length 

penalty that is designed for both the shorter or 

longer translated sentence (hypothesis translation) 

as compared to the reference sentence. Parame-

ters   and   represent the length of candidate 

sentence and reference sentence respectively. 

Secondly, let’s see the factors of n-gram pre-

cision and n-gram recall. 

 

    
              

                           
 (2) 

 

    
              

                          
  (3) 

 

The variable                represents the 

number of matched n-gram chunks between hy-

pothesis sentence and reference sentence. The n-

gram precision and n-gram recall are firstly cal-

culated on sentence-level instead of corpus-level 

that is used in BLEU (  ). Then we define the 

weighted n-gram harmonic mean of precision 

and recall (WNHPR). 

 

          (∑       (        
 
    (4) 

 

Thirdly, it is the n-gram based position differ-

ence penalty (NPosPenal). This factor is de-

signed to achieve the penalty for the different 

order of successfully matched words in reference 

sentence and hypothesis sentence. The alignment 

direction is from the hypothesis sentence to the 

reference sentence. It employs the  -gram meth-

od into the matching period, which means that 

the potential matched word will be assigned 

higher priority if it also has nearby matching. 

The nearest matching will be accepted as a back-

up choice if there are both nearby matching or 

there is no other matched word around the poten-

tial pairs. 
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The variable           means the length of 

the hypothesis sentence; the variables 

          and           represent the posi-

tion number of matched words in hypothesis sen-

tence and reference sentence respectively.  

3.2 Linguistic Features 

The linguistic features could be easily employed 

into our evaluation models. In the submitted ex-

periment results of WMT Metrics Task, we used 

the part of speech information of the words in 

question. In grammar, a part of speech, which is 

also called a word class, a lexical class, or a lexi-

cal category, is a linguistic category of lexical 

items. It is generally defined by the syntactic or 

morphological behavior of the lexical item in 

question. The POS information utilized in our 

metric LEPOR_v3.1, an enhanced version of 

LEPOR (Han et al., 2012), is extracted using the 

Berkeley parser (Petrov et al., 2006) for English, 

German, and French languages, using COM-

POST Czech morphology tagger (Collins, 2002) 

for Czech language, and using TreeTagger 

(Schmid, 1994) for Spanish and Russian lan-

guages respectively. 

415



Ratio 
other-to-English English-to-other 

CZ-EN DE-EN ES-EN FR-EN EN-CZ EN-DE EN-ES EN-FR 

HPR:LP:NPP(word) 7:2:1 3:2:1 7:2:1 3:2:1 7:2:1 1:3:7 3:2:1 3:2:1 

HPR:LP:NPP(POS) NA 3:2:1 NA 3:2:1 7:2:1 7:2:1 NA 3:2:1 

    (      1:9 9:1 1:9 9:1 9:1 9:1 9:1 9:1 

    (     NA 9:1 NA 9:1 9:1 9:1 NA 9:1 

        NA 1:9 NA 9:1 1:9 1:9 NA 9:1 

Table 1. The tuned weight values in LEPOR_v3.1 system 

 

System 

Correlation Score with Human Judgment 

other-to-English English-to-other Mean 

score CZ-EN DE-EN ES-EN FR-EN EN-CZ EN-DE EN-ES EN-FR 

LEPOR_v3.1 0.93 0.86 0.88 0.92 0.83 0.82 0.85 0.83 0.87 

nLEPOR_baseline 0.95 0.61 0.96 0.88 0.68 0.35 0.89 0.83 0.77 

METEOR 0.91 0.71 0.88 0.93 0.65 0.30 0.74 0.85 0.75 

BLEU 0.88 0.48 0.90 0.85 0.65 0.44 0.87 0.86 0.74 

TER 0.83 0.33 0.89 0.77 0.50 0.12 0.81 0.84 0.64 

Table 2. The performances of nLEPOR_baseline and LEPOR_v3.1 systems on WMT11 corpora 

 

3.3 The nLEPOR_baseline System 

The nLEPOR_baseline system utilizes the simple 

product value of the factors: modified length 

penalty, n-gram position difference penalty, and 

weighted n-gram harmonic mean of precision 

and recall. 

 

                           (8) 

 

The system level score is the arithmetical 

mean of the sentence level evaluation scores. In 

the experiments of Metrics Task using the 

nLEPOR_baseline system, we assign N=1 in the 

factor WNHPR, i.e. weighted unigram harmonic 

mean of precision and recall. 

3.4 The LEPOR_v3.1 System 

The system of LEPOR_v3.1 (also called as 

hLEPOR) combines the sub factors using 

weighted mathematical harmonic mean instead 

of the simple product value. 

 

        
                   
   
  

 
          
         

 
    
   

 (9) 

 

Furthermore, this system takes into account 

the linguistic features, such as the POS of the 

words. Firstly, we calculate the hLEPOR score 

on surface words            (the closeness of 

the hypothesis translation and the reference 

translation). Then, we calculate the hLEPOR 

score on the extracted POS sequences 

          (the closeness of the corresponding 

POS tags between hypothesis sentence and refer-

ence sentence). The final score             is 

the combination of the two sub-scores 

           and          . 

 

             
 

       
(              

               (10) 

 

4 Evaluation Method 

In the MT evaluation task, the Spearman rank 

correlation coefficient method is usually used by 

the authoritative ACL WMT to evaluate the cor-

relation of different MT evaluation metrics. So 

we use the Spearman rank correlation coefficient 

  to evaluate the performances of 

nLEPOR_baseline and LEPOR_v3.1 in system 

level correlation with human judgments. When 

there are no ties,   is calculated using: 

 

     
 ∑  

 

 (     
  (11) 

 

The variable    is the difference value be-

tween the ranks for         and   is the number 

of systems. We also offer the Pearson correlation 

coefficient information as below. Given a sample 

of paired data (X, Y) as (      ,         , the 

Pearson correlation coefficient is: 
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where    and    specify the mean of discrete 

random variable X and Y respectively. 

 

Directions 
EN-

FR 

EN-

DE 

EN-

ES 

EN-

CS 

EN-

RU 
Av 

LEPOR_v3.1 .91 .94 .91 .76 .77 .86 

nLEPOR_baseline .92 .92 .90 .82 .68 .85 

SIMP-

BLEU_RECALL 
.95 .93 .90 .82 .63 .84 

SIMP-

BLEU_PREC 
.94 .90 .89 .82 .65 .84 

NIST-mteval-

inter 
.91 .83 .84 .79 .68 .81 

Meteor .91 .88 .88 .82 .55 .81 

BLEU-mteval-

inter 
.89 .84 .88 .81 .61 .80 

BLEU-moses .90 .82 .88 .80 .62 .80 

BLEU-mteval .90 .82 .87 .80 .62 .80 

CDER-moses .91 .82 .88 .74 .63 .80 

NIST-mteval .91 .79 .83 .78 .68 .79 

PER-moses .88 .65 .88 .76 .62 .76 

TER-moses .91 .73 .78 .70 .61 .75 

WER-moses .92 .69 .77 .70 .61 .74 

TerrorCat .94 .96 .95 na na .95 

SEMPOS na na na .72 na .72 

ACTa .81 -.47 na na na .17 

ACTa5+6 .81 -.47 na na na .17 

Table 3. System-level Pearson correlation scores 

on WMT13 English-to-other language pairs 

5 Experiments 

5.1 Training 

In the training stage, we used the officially re-

leased data of past WMT series. There is no Rus-

sian language in the past WMT shared tasks. So 

we trained our systems on the other eight lan-

guage pairs including English to other (French, 

German, Spanish, Czech) and the inverse transla-

tion direction. In order to avoid the overfitting 

problem, we used the WMT11 corpora as train-

ing data to train the parameter weights in order to 

achieve a higher correlation with human judg-

ments at system-level evaluations. For the 

nLEPOR_baseline system, the tuned values of   

and   are 9 and 1 respectively for all language 

pairs except for (   ,    ) for CS-EN lan-

guage pair. For the LEPOR_v3.1 system, the 

tuned values of weights are shown in Table 1. 

The evaluation scores of the training results on 

WMT11 corpora are shown in Table 2. The de-

signed methods have shown promising correla-

tion scores with human judgments at system lev-

el, 0.87 and 0.77 respectively for 

nLEPOR_baseline and LEPOR_v3.1 of the mean 

score on eight language pairs. As compared to 

METEOR, BLEU and TER, we have achieved 

higher correlation scores with human judgments.  

5.2 Testing 

In the WMT13 shared Metrics Task, we also 

submitted our system performances on English-

to-Russian and Russian-to-English language 

pairs. However, since the Russian language did 

not appear in the past WMT shared tasks, we 

assigned the default parameter weights to Rus-

sian language for the submitted two systems. The 

officially released results on WMT13 corpora are 

shown in Table 3, Table 4 and Table 5 respec-

tively for system-level and segment-level per-

formance on English-to-other language pairs. 

 

Directions 
EN-

FR 

EN-

DE 

EN-

ES 

EN-

CS 

EN-

RU 
Av 

SIMP-

BLEU_RECALL 
.92 .93 .83 .87 .71 .85 

LEPOR_v3.1 .90 .9 .84 .75 .85 .85 

NIST-mteval-

inter 
.93 .85 .80 .90 .77 .85 

CDER-moses .92 .87 .86 .89 .70 .85 

nLEPOR_baseline .92 .90 .85 .82 .73 .84 

NIST-mteval .91 .83 .78 .92 .72 .83 

SIMP-

BLEU_PREC 
.91 .88 .78 .88 .70 .83 

Meteor .92 .88 .78 .94 .57 .82 

BLEU-mteval-

inter 
.92 .83 .76 .90 .66 .81 

BLEU-mteval .89 .79 .76 .90 .63 .79 

TER-moses .91 .85 .75 .86 .54 .78 

BLEU-moses .90 .79 .76 .90 .57 .78 

WER-moses .91 .83 .71 .86 .55 .77 

PER-moses .87 .69 .77 .80 .59 .74 

TerrorCat .93 .95 .91 na na .93 

SEMPOS na na na .70 na .70 

ACTa5+6 .81 -.53 na na na .14 

ACTa .81 -.53 na na na .14 

Table 4. System-level Spearman rank correlation 

scores on WMT13 English-to-other language 

pairs 

 

Table 3 shows LEPOR_v3.1 and 

nLEPOR_baseline yield the highest and the sec-

ond highest average Pearson correlation score 

0.86 and 0.85 respectively with human judg-

ments at system-level on five English-to-other 

language pairs. LEPOR_v3.1 and 
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nLEPOR_baseline also yield the highest Pearson 

correlation score on English-to-Russian (0.77) 

and English-to-Czech (0.82) language pairs re-

spectively. The testing results of LEPOR_v3.1 

and nLEPOR_baseline show better correlation 

scores as compared to METEOR (0.81), BLEU 

(0.80) and TER-moses (0.75) on English-to-other 

language pairs, which is similar with the training 

results.  

On the other hand, using the Spearman rank 

correlation coefficient, SIMPBLEU_RECALL 

yields the highest correlation score 0.85 with 

human judgments. Our metric LEPOR_v3.1 also 

yields the highest Spearman correlation score on 

English-to-Russian (0.85) language pair, which 

is similar with the result using Pearson correla-

tion and shows its robust performance on this 

language pair.  

 

Directions 
EN-

FR 

EN-

DE 

EN-

ES 

EN-

CS 

EN-

RU 
Av 

SIMP-

BLEU_RECALL 
.16 .09 .23 .06 .12 .13 

Meteor .15 .05 .18 .06 .11 .11 

SIMP-

BLEU_PREC 
.14 .07 .19 .06 .09 .11 

sentBLEU-moses .13 .05 .17 .05 .09 .10 

LEPOR_v3.1 .13 .06 .18 .02 .11 .10 

nLEPOR_baseline .12 .05 .16 .05 .10 .10 

dfki_logregNorm-

411 
na na .14 na na .14 

TerrorCat .12 .07 .19 na na .13 

dfki_logregNormS

oft-431 
na na .03 na na .03 

Table 5. Segment-level Kendall’s tau correlation 

scores on WMT13 English-to-other language 

pairs 

 

However, we find a problem in the Spearman 

rank correlation method. For instance, let two 

evaluation metrics MA and MB with their evalu-

ation scores   ⃗⃗⃗⃗⃗⃗                   and  

  ⃗⃗⃗⃗ ⃗⃗                   respectively reflecting 

three MT systems  

 ⃗⃗            . Before the calculation of cor-

relation with human judgments, they will be 

converted into   ⃗⃗⃗⃗⃗⃗  ̌          and   ⃗⃗⃗⃗ ⃗⃗  ̌          
with the same rank sequence using Spearman 

rank method; thus, the two evaluation systems 

will get the same correlation with human judg-

ments whatever are the values of human judg-

ments. But the two metrics reflect different re-

sults indeed: MA gives the outstanding score 

(0.95) to M1 system and puts very low scores 

(0.50 and 0.45) on the other two systems M2 and 

M3 while MB thinks the three MT systems have 

similar performances (scores from 0.74 to 0.77). 

This information is lost using the Spearman rank 

correlation methodology. 

The segment-level performance of 

LEPOR_v3.1 is moderate with the average Ken-

dall’s tau correlation score 0.10 on five English-

to-other language pairs, which is due to the fact 

that we trained our metrics at system-level in this 

shared metrics task. Lastly, the officially released 

results on WMT13 other-to-English language 

pairs are shown in Table 6, Table 7 and Table 8 

respectively for system-level and segment-level 

performance.  

 

Directions 
FR-
EN 

DE-
EN 

ES-
EN 

CS-
EN 

RU-
EN 

Av 

Meteor .98 .96 .97 .99 .84 .95 

SEMPOS .95 .95 .96 .99 .82 .93 

Depref-align .97 .97 .97 .98 .74 .93 

Depref-exact .97 .97 .96 .98 .73 .92 

SIMP-

BLEU_RECALL 
.97 .97 .96 .94 .78 .92 

UMEANT .96 .97 .99 .97 .66 .91 

MEANT .96 .96 .99 .96 .63 .90 

CDER-moses .96 .91 .95 .90 .66 .88 

SIMP-

BLEU_PREC 
.95 .92 .95 .91 .61 .87 

LEPOR_v3.1 .96 .96 .90 .81 .71 .87 

nLEPOR_baseline .96 .94 .94 .80 .69 .87 

BLEU-mteval-

inter 
.95 .92 .94 .90 .61 .86 

NIST-mteval-inter .94 .91 .93 .84 .66 .86 

BLEU-moses .94 .91 .94 .89 .60 .86 

BLEU-mteval .95 .90 .94 .88 .60 .85 

NIST-mteval .94 .90 .93 .84 .65 .85 

TER-moses .93 .87 .91 .77 .52 .80 

WER-moses .93 .84 .89 .76 .50 .78 

PER-moses .84 .88 .87 .74 .45 .76 

TerrorCat .98 .98 .97 na na .98 

Table 6. System-level Pearson correlation scores 

on WMT13 other-to-English language pairs 

 

METEOR yields the highest average correla-

tion scores 0.95 and 0.94 respectively using 

Pearson and Spearman rank correlation methods 

on other-to-English language pairs. The average 

performance of nLEPOR_baseline is a little bet-

ter than LEPOR_v3.1 on the five language pairs 

of other-to-English even though it is also moder-

ate as compared to other metrics. However, using 
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the Pearson correlation method, 

nLEPOR_baseline yields the average correlation 

score 0.87 which already wins the BLEU (0.86) 

and TER (0.80) as shown in Table 6. 

 

Directions 
FR-

EN 

DE-

EN 

ES-

EN 

CS-

EN 

RU-

EN 
Av 

Meteor .98 .96 .98 .96 .81 .94 

Depref-align .99 .97 .97 .96 .79 .94 

UMEANT .99 .95 .96 .97 .79 .93 

MEANT .97 .93 .94 .97 .78 .92 

Depref-exact .98 .96 .94 .94 .76 .92 

SEMPOS .94 .92 .93 .95 .83 .91 

SIMP-

BLEU_RECALL 
.98 .94 .92 .91 .81 .91 

BLEU-mteval-

inter 
.99 .90 .90 .94 .72 .89 

BLEU-mteval .99 .89 .89 .94 .69 .88 

BLEU-moses .99 .90 .88 .94 .67 .88 

CDER-moses .99 .88 .89 .93 .69 .87 

SIMP-

BLEU_PREC 
.99 .85 .83 .92 .72 .86 

nLEPOR_baseline .95 .95 .83 .85 .72 .86 

LEPOR_v3.1 .95 .93 .75 0.8 .79 .84 

NIST-mteval .95 .88 .77 .89 .66 .83 

NIST-mteval-inter .95 .88 .76 .88 .68 .83 

TER-moses .95 .83 .83 0.8 0.6 
0.8

0 

WER-moses .95 .67 .80 .75 .61 .76 

PER-moses .85 .86 .36 .70 .67 .69 

TerrorCat .98 .96 .97 na na .97 

Table 7. System-level Spearman rank correlation 

scores on WMT13 other-to-English language 

pairs 

 

Once again, our metrics perform moderate at 

segment-level on other-to-English language pairs 

due to the fact that they are trained at system-

level. We notice that some of the evaluation met-

rics do not submit the results on all the language 

pairs; however, their performance on submitted 

language pair is sometimes very good, such as 

the dfki_logregFSS-33 metric with a segment-

level correlation score 0.27 on German-to-

English language pair. 

6 Conclusion 

This paper describes our participation in the 

WMT13 Metrics Task. We submitted two sys-

tems nLEPOR_baseline and LEPOR_v3.1. Both 

of the two systems are trained and tested using 

the officially released data. LEPOR_v3.1 yields 

the highest Pearson correlation average-score 

0.86 with human judgments on five English-to-

other language pairs, and nLEPOR_baseline 

yields better performance than LEPOR_v3.1 on 

other-to-English language pairs. Furthermore, 

LEPOR_v3.1 shows robust system-level perfor-

mance on English-to-Russian language pair, and 

nLEPOR_baseline shows best system-level per-

formance on English-to-Czech language pair us-

ing Pearson correlation criterion. As compared to 

nLEPOR_baseline, the experiment results of 

LEPOR_v3.1 also show that the proper use of 

linguistic information can increase the perfor-

mance of the evaluation systems. 

 

Directions 
FR-

EN 

DE-

EN 

ES-

EN 

CS-

EN 

RU-

EN 
Av 

SIMP-

BLEU_RECALL 
.19 .32 .28 .26 .23 .26 

Meteor .18 .29 .24 .27 .24 .24 

Depref-align .16 .27 .23 .23 .20 .22 

Depref-exact .17 .26 .23 .23 .19 .22 

SIMP-

BLEU_PREC 
.15 .24 .21 .21 .17 .20 

nLEPOR_baseline .15 .24 .20 .18 .17 .19 

sentBLEU-moses .15 .22 .20 .20 .17 .19 

LEPOR_v3.1 .15 .22 .16 .19 .18 .18 

UMEANT .10 .17 .14 .16 .11 .14 

MEANT .10 .16 .14 .16 .11 .14 

dfki_logregFSS-

33 
na .27 na na na .27 

dfki_logregFSS-

24 
na .27 na na na .27 

TerrorCat .16 .30 .23 na na .23 

Table 8. Segment-level Kendall’s tau correlation 

scores on WMT13 other-to-English language 

pairs 
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Abstract

The linguistically transparentMEANT and
UMEANT metrics are tunable, simple
yet highly effective, fully automatic ap-
proximation to the human HMEANT MT
evaluation metric which measures seman-
tic frame similarity between MT output
and reference translations. In this pa-
per, we describe HKUST’s submission
to the WMT 2013 metrics evaluation
task, MEANT and UMEANT. MEANT
is optimized by tuning a small number
of weights—one for each semantic role
label—so as to maximize correlation with
human adequacy judgment on a devel-
opment set. UMEANT is an unsuper-
vised version where weights for each se-
mantic role label are estimated via an in-
expensive unsupervised approach, as op-
posed to MEANT’s supervised method re-
lying on more expensive grid search. In
this paper, we present a battery of exper-
iments for optimizing MEANT on differ-
ent development sets to determine the set
of weights that maximize MEANT’s accu-
racy and stability. Evaluated on test sets
from the WMT 2012/2011 metrics evalua-
tion, bothMEANT and UMEANT achieve
competitive correlations with human judg-
ments using nothing more than a monolin-
gual corpus and an automatic shallow se-
mantic parser.

1 Introduction

We evaluate in the context of WMT 2013 the
MEANT (Lo et al., 2012) and UMEANT (Lo
andWu, 2012) semantic machine translation (MT)
evaluation metrics—tunable, simple yet highly ef-
fective, fully-automatic semantic frame based ob-
jective functions that score the degree of similarity

between the MT output and the reference transla-
tions via semantic role labels (SRL). Recent stud-
ies (Lo et al., 2013; Lo and Wu, 2013) show that
tuningMT systems againstMEANTmore robustly
improves translation adequacy, compared to tun-
ing against BLEU or TER.
In the past decade, the progress of machine

translation (MT) research is predominantly driven
by the fast and cheap n-gram based MT eval-
uation metrics, such as BLEU (Papineni et al.,
2002), which assume that a good translation is one
that shares the same lexical choices as the ref-
erence translation. Despite enforcing fluency, it
has been established that these metrics do not en-
force translation utility adequately and often fail to
preserve meaning closely (Callison-Burch et al.,
2006; Koehn and Monz, 2006). Unlike BLEU,
or other n-gram based MT evaluation metrics,
MEANT adopts at outset the principle that a good
translation is one from which the human readers
may successfully understand at least the central
meaning of the input sentence as captured by the
basic event structure—“who did what to whom,
when, where and why”(Pradhan et al., 2004).
Lo et al. (2012) show that MEANT correlates

better with human adequacy judgment than other
commonly used automatic MT evaluation metrics,
such as BLEU (Papineni et al., 2002), NIST (Dod-
dington, 2002), METEOR (Banerjee and Lavie,
2005), CDER (Leusch et al., 2006), WER (Nießen
et al., 2000), and TER (Snover et al., 2006). Re-
cent studies (Lo et al., 2013; Lo andWu, 2013) also
show that tuning MT system against MEANT pro-
duces more robustly adequate translations on both
formal news text genre and informal web forum
or public speech genre compared to tuning against
BLEU or TER. These studies show thatMEANT is
a tunable and highly-accurate MT evaluation met-
ric that drives MT system development towards
higher utility.
As described in Lo and Wu (2011a), the pa-
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rameters in MEANT, i.e. the weight for each se-
mantic role label, could be estimated using simple
grid search to optimize the correlation with human
adequacy judgments. Later, Lo and Wu (2012)
described an unsupervised approach for estimat-
ing the parameters of MEANT using relative fre-
quency of each semantic role label in the reference
translations under the situation when the human
judgments for the development set are unavailable.
In this paper, we refer the version of MEANT us-
ing the unsupervised approach of weight estima-
tion as UMEANT.
In this paper, we present a battery of exper-

iments for optimizing MEANT on different de-
velopment sets to determine the set of weights
that maximizes MEANT’s accuracy and stability.
Evaluated on the test sets ofWMT 2012/2011 met-
rics evaluation, MEANT and UMEANT achieve
a competitive correlation score with human judg-
ments by nothing more than a monolingual corpus
and an automatic shallow semantic parser.

2 Related work

2.1 Lexical similarity based metrics

N-gram or edit distance based metrics such as
BLEU (Papineni et al., 2002), NIST (Dodding-
ton, 2002), METEOR (Banerjee and Lavie, 2005),
CDER (Leusch et al., 2006), WER (Nießen et
al., 2000), and TER (Snover et al., 2006) do not
correctly reflect the similarity of the basic event
structure— “who did what to whom, when, where
and why”— of the input sentence. In fact, a
number of large scale meta-evaluations (Callison-
Burch et al., 2006; Koehn and Monz, 2006) report
cases where BLEU strongly disagrees with human
judgments of translation adequacy.
Although AMBER (Chen et al., 2012) shows a

high correlation with human adequacy judgment
(Callison-Burch et al., 2012) and claims to pre-
serve the simplicity of BLEU, the modifications it
incurred on BLEU through four different n-gram
matching strategies and several different penalties
makes it very hard to interpret and indicate what
errors the MT systems are making.

2.2 Linguistic feature based metrics

ULC (Giménez and Màrquez, 2007, 2008) is
an automatic metric that incorporates several se-
mantic similarity features and shows improved
correlation with human judgement of translation
quality (Callison-Burch et al., 2007; Giménez

and Màrquez, 2007; Callison-Burch et al., 2008;
Giménez and Màrquez, 2008) but no work has
been done towards tuning an SMT system using a
pure form of ULC perhaps due to its expensive run
time. Lambert et al. (2006) did tune on QUEEN,
a simplified version of ULC that discards the se-
mantic features of ULC and is based on pure lexi-
cal similarity. Therefore, QUEEN suffers from the
problem of failing to reflect translation adequacy
similar to other n-gram based metrics.
Similarly, SPEDE (Wang andManning, 2012) is

an integrated probabilistic FSM and probabilistic
PDA model that predicts the edit sequence needed
for the MT output to match the reference. Sagan
(Castillo and Estrella, 2012) is a semantic textual
similarity metric based on a complex textual en-
tailment pipeline. These aggregated metrics re-
quire sophisticated feature extraction steps; con-
tain several dozens of parameters to tune and em-
ploy expensive linguistic resources, like WordNet
and paraphrase table. Like ULC, these matrices
are not useful in the MT system development cy-
cle for tuning due to expensive running time. The
metrics themselves are also expensive in training
and tuning due to the large number of parameters
to be estimated. Although ROSE (Song and Cohn,
2011) is a weighted linear model of shallow lin-
guistic features which is cheaper in run time but it
still contains several dozens of weights that need to
be tuned which affects the portability of the metric
for evaluating translations across domains.
Rios et al. (2011) introduced TINE, an auto-

matic recall-oriented evaluationmetric which aims
to preserve the basic event structure, but no work
has been done toward tuning an SMT system
against it. TINE performs comparably to BLEU
and worse than METEOR on correlation with hu-
man adequacy judgment.

3 MEANT and UMEANT

MEANT (Lo et al., 2012), which is the weighted
f-measure over the matched semantic role labels
of the automatically aligned semantic frames and
role fillers, outperforms BLEU, NIST, METEOR,
WER, CDER and TER. Recent studies (Lo et al.,
2013; Lo andWu, 2013) also show that tuning MT
system against MEANT produces more robustly
adequate translations than the common practice of
tuning against BLEU or TER across different data
genres, such as formal newswire text, informal
web forum text and informal public speech. Pre-
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Figure 1: Examples of automatic shallow semantic parses. The input is parsed by a Chinese automatic
shallow semantic parser. The reference and MT output are parsed by an English automatic shallow se-
mantic parser. There are no semantic frames for MT3 since there is no predicate.

cisely, MEANT is computed as follows:

1. Apply an automatic shallow semantic parser
on both the references and MT output. (Fig-
ure 1 shows examples of automatic shallow
semantic parses on both reference and MT
output.)

2. Applymaximumweighted bipartite matching
algorithm to align the semantic frames be-
tween the references and MT output by the
lexical similarity of the predicates.

3. For each pair of aligned semantic frames,

(a) Lexical similarity scores determine the
similarity of the semantic role fillers.

(b) Apply maximum weighted bipartite
matching algorithm to align the seman-
tic role fillers between the reference and
MT output according to their lexical
similarity.

4. Compute the weighted f-measure over the
matching role labels of these aligned predi-
cates and role fillers.

Mi,j ≡ total # ARG j of aligned frame i in MT
Ri,j ≡ total # ARG j of aligned frame i in REF

Si,pred ≡ similarity of predicate in aligned frame i
Si,j ≡ similarity of ARG j in aligned frame i

wpred ≡ weight of similarity of predicates
wj ≡ weight of similarity of ARG j

mi ≡ #tokens filled in aligned frame i of MT
total #tokens in MT

ri ≡ #tokens filled in aligned frame i of REF
total #tokens in REF

precision =

∑
i mi

wpredSi,pred+
∑

j wjSi,j

wpred+
∑

j wjMi,j∑
i mi

recall =

∑
i ri

wpredSi,pred+
∑

j wjSi,j

wpred+
∑

j wjRi,j∑
i ri

where mi and ri are the weights for frame, i, in the
MT/REF respectively. These weights estimate the
degree of contribution of each frame to the overall
meaning of the sentence. Mi,j and Ri,j are the to-
tal counts of argument of type j in frame i in the
MT and REF respectively. Si,pred and Si,j are the
lexical similarities of the predicates and role fillers
of the arguments of type j between the reference
translations and the MT output. wpred and wj are
the weights of the lexical similarities of the predi-
cates and role fillers of the arguments of typej be-
tween the reference translations and the MT out-
put. There are in total 12 weights for the set of
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semantic role labels in MEANT as defined in Lo
and Wu (2011b).
For MEANT, wpred and wj are determined us-

ing supervised estimation via a simple grid search
to optimize the correlation with human adequacy
judgments (Lo and Wu, 2011a). For UMEANT,
wpred and wj are estimated in an unsupervised
manner using relative frequency of each semantic
role label in the reference translations when the hu-
man judgments on adequacy of the development
set were unavailable (Lo and Wu, 2012).
In this experiment, we use a MEANT /

UMEANT implementation along the lines de-
scribed in Lo et al. (2012) and Tumuluru et al.
(2012) but we incorporate a variant of the aggre-
gation function proposed in Mihalcea et al. (2006)
for phrasal similarity of role fillers as it normal-
izes the phrase length better than geometric mean
as described in Tumuluru et al. (2012). In case
there is no semantic frame in the sentence, we treat
the whole sentence as a phrase and calculate the
phrasal similarity, like the role fillers in step 3.1,
as the MEANT score.

4 Experimental setup

We tune the 12 weights for the set of semantic role
labels in MEANT using grid search to maximize
the correlationwith human judgment on 6 develop-
ment sets. Following the protocol inWMT12 met-
rics evaluation task (Callison-Burch et al., 2012),
we use Kendall’s correlation coefficient for the
sentence-level correlation with human judgments.
The GALE development set consists of 40 sen-

tences randomly drawn from the DARPA GALE
P2.5 Chinese-English evaluation set along with the
outputs from 3 participating MT systems and the
corresponding human adequacy judgments. The
WMT12-A development set consists of 800 sen-
tences randomly drawn from the Czech-English
test set in WMT12 metrics evaluation task along
with the output from 5 participating systems and
the corresponding human judgments. Similarly,
each of theWMT12-B,WMT12-C andWMT12-D
development sets consists of 800 randomly drawn
sentences from the WMT12 metrics evaluation
test set on German-English, Spanish-English and
French-English respectively. The WMT12-E de-
velopment set consists of 800 sentences out of
which 200 sentences were randomly drawn from
each of WMT12-A, WMT12-B, WMT12-C and
WMT12-D data set.

We evaluated MEANT and UMEANT on 3
groups of test sets. The first group is the original
(without partition) test data for each language pair
(translated in English) in WMT12. This group of
test sets is used for comparing MEANT’s perfor-
mance with the reported results from other partic-
ipants of WMT12. The second group is the held
out subset of the test data for each language pair in
WMT12. The third group is the original set of test
data for each language pair in WMT11. The lat-
ter 2 groups are used for determining which set of
tuned weights maximize the accuracy and stability
of MEANT.

5 Results

Table 1 shows that the best and the worst sentence-
level correlations reported in Callison-Burch et al.
(2012) on the original WMT12 test sets (without
partitioning) for translations into English, together
the sentence-level correlation of MEANT tuned
on different development sets and UMEANT. The
grey boxes mark the results of experiments in
which there was an overlap between parts of the
development data and the test data. A study of the
values for the 12 weights associated with the se-
mantic role labels show that a general trend of the
importance of different labels in MEANT: ”who”
is always the most important; ”did”, ”what”,
”where”, ”why”, ”extent”, ”modal” and ”other”
are quite important too; ”when”, ”manner” and
”negation” fluctuate where they are quite impor-
tant in some development sets but not quite im-
portant in some development sets; ”whom” is usu-
ally not important. Given the fact that MEANT
employs significantly less expensive linguistic re-
sources and less sophisticated machine learning al-
gorithm in tuning the parameters, the performance
of MEANT is very competitive with other partici-
pants last year.
Table 2 shows the sentence-level correlation on

the WMT12 held-out test sets and the original
WMT11 test sets of MEANT tuned on different
development sets and UMEANT together with the
average sentence-level correlation on all test sets.
The results show that MEANT tuning onWMT12-
C development set achieve the highest sentence-
level correlation with human judgments on aver-
age. UMEANT, the unsupervised wight estimated
version of MEANT, achieves a very competitive
correlation score when compared with MEANT
tuned on different development sets. As a result,
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Table 1: The best and the worst sentence-level correlation reported in Callison-Burch et al. (2012) on the
original WMT12 test sets (without partitioning) for translations into English together the sentence-level
correlation of MEANT tuned on different development sets and UMEANT. The grey box marked results
of experiments in which parts of the development data and the test data are overlapped.

WMT12 cz-en WMT12 de-en WMT12 es-en WMT12 fr-en
Best reported 0.21 0.28 0.26 0.26
MEANT (GALE) 0.13 0.16 0.15 0.15
MEANT (WMT12-A) 0.12 0.17 0.16 0.15
MEANT (WMT12-B) 0.11 0.18 0.15 0.14
MEANT (WMT12-C) 0.12 0.17 0.17 0.15
MEANT (WMT12-D) 0.12 0.17 0.16 0.16
MEANT (WMT12-E) 0.12 0.17 0.17 0.15
UMEANT 0.12 0.17 0.16 0.14
Worst reported 0.06 0.08 0.08 0.07

Table 2: Sentence-level correlation on the WMT12 held-out test sets and the original WMT11 test sets
of MEANT tuned on different development sets and UMEANT together with the average sentence-level
correlation on all test sets.

WMT12 held-out WMT11 Average
cz-en de-en es-en fr-en cz-en de-en es-en fr-en -

MEANT (GALE) 0.0657 0.1251 0.1762 0.1719 0.3460 0.1123 0.2416 0.1913 0.1788
MEANT (WMT12-A) 0.0652 0.1117 0.1663 0.1540 0.3764 0.1101 0.2314 0.1944 0.1762
MEANT (WMT12-B) 0.0458 0.1294 0.1556 0.1548 0.3992 0.1479 0.2571 0.2037 0.1867
MEANT (WMT12-C) 0.0746 0.1278 0.1833 0.1592 0.3764 0.1324 0.2674 0.1882 0.1887
MEANT (WMT12-D) 0.0628 0.1164 0.1826 0.1655 0.3802 0.1168 0.2339 0.1975 0.1820
MEANT (WMT12-E) 0.0496 0.1353 0.1791 0.1619 0.3840 0.1101 0.2596 0.1851 0.1831
UMEANT 0.0477 0.1333 0.1606 0.1548 0.3764 0.1257 0.2828 0.1913 0.1841

we submitted two metrics to WMT 2013 metrics
evaluation task. One is MEANT with weights
learned from tuning on WMT12-C development
sets and the other submission is UMEANT.

6 Conclusion

In this paper, we have evaluated in the context of
WMT2013 the MEANT and UMEANT metrics,
which are tunable, accurate yet inexpensive fully
automatic machine translation evaluation metrics
that measure similarity between theMT output and
the reference via semantic frames. Recent stud-
ies show that tuning MT system against MEANT
produces more robustly adequate translations than
the common practice of tuning against BLEU or
TER across different data genres, such as formal
newswire text, informal web forum text and infor-
mal public speech. The weight for each seman-
tic role label in MEANT is estimated by maximiz-
ing the correlation with human adequacy judgment
on a development set. UMEANT is a version of
MEANT in which weight for each semantic role
label is estimated in an unsupervised fashion us-
ing the relative frequency of the semantic role la-
bels in the reference. We present the experimen-
tal results for determining the set of weights that

maximize MEANT’s accuracy and stability by op-
timizing MEANT on different development sets.
We disagree with the notion “a good evaluation

metric is not necessarily a good tuning metric, and
vice versa” (Chen et al., 2012). Instead, we be-
lieve that a good evaluation metric should be one
that is a good objective function to drive the devel-
opment of MT systems towards higher utility. In
other words, a good evaluation metric should cor-
relate well with human adequacy judgment and at
the same time, be inexpensive in running time so as
to fit into the MT pipeline to improve MT quality.
Our results shows that MEANT is a good evalu-
ation/tuning metric because it achieves a competi-
tive correlation scorewith human judgments by us-
ing less expensive linguistic resources and training
algorithms making it possible to tune MT system
against MEANT to improve MT quality.
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Abstract

In this paper we describe our participation
to the WMT13 Shared Task on Quality Es-
timation. The main originality of our ap-
proach is to include features originally de-
signed to classify text according to some
author’s style. This implies the use of ref-
erence categories, which are meant to rep-
resent the quality of the MT output.

Preamble

This paper describes the approach followed in the
two systems that we submitted to subtask 1.3 of
the WMT13 Shared Task on Quality Estimation,
identified as TCD-DCU-CNGL 1-3 SVM1 and
TCD-DCU-CNGL 1-3 SVM2. This approach
was also used by the first author in his submissions
to subtask 1.1, identified as TCD-CNGL OPEN
and TCD-CNGL RESTRICTED1. In the remain-
ing of this paper we focus on subtask 1.3, but there
is very little difference in the application of the ap-
proach to task 1.1.

1 Introduction

Quality Estimation (QE) aims to provide a quality
indicator for machine translated sentences. There
are many cases where such an indicator would be
useful in a translation process: to compare differ-
ent Machine Translation (MT) models on a given
set of sentences, to tune automatically the param-
eters of a MT model, to select the bad sentences
for human translation or post-editing, to select the
good sentences for immediate publication and try
to apply automatic post-editing to the others, or
simply to provide users who are not fluent in the
source language information about the fluency of

1The second author’s submission to subtask 1.1 is inde-
pendent from this approach and is described in a different
paper in this volume.

the translated text they are reading. As long as ma-
chine translated text cannot be of reasonably con-
sistent quality, QE is helpful in indicating linguis-
tic quality variability.2

After focusing on automatic prediction of ad-
hoc quality scores (as estimated by professional
annotators) in the previous edition (Callison-
Burch et al., 2012), the WMT Shared Task on
Quality Estimation 2013 proposes several variants
of the task. We participated in task 1.1 which aims
to predict HTER scores (edit distance between the
MT output and its manually post-edited version),
and in task 1.3 which aims to predict the expected
time needed to post-edit the MT output.

The originality of our participation lies in the
fact that we intended to test “style classification”
features for the task of QE: the idea is to select a
set of n-grams which are particularly representa-
tive of a given level of quality. In practice we use
only two levels which simply represent low and
high quality. We explore various ways to build
these two reference categories and to select the n-
grams, as described in §2. The goal was to see
if such features can contribute to the task of pre-
dicting quality of MT. As explained in §3, how-
ever, various constraints forced us to somehow cut
corners in some parts of the features selection and
training process; therefore we think that the mod-
est results presented and discussed in §4 might not
necessarily reflect the real contribution of these
features.

2 Features

2.1 Classical features

We extract a set of features inspired by the ones
provided by the shared task organisers in their 17
baseline feature set. Using the corpora provided
for the task, we extract for each source and target

2We focus on translation fluency rather than target lan-
guage faithfulness to sources.
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segments pair:

• 24 surface features, such as the segment
length, the number of punctuation marks and
uppercased letters, words with mixed case,
etc.

• 30 language Model (LM) features, n-gram
log-probability and perplexity (with and
without start and end of sentence tags) with
n ∈ [1; 5].

• 30 backward LM features, n-gram log-
probability and perplexity (with and without
start and end of sentence tags) with n ∈
[1; 5].

• 44 n-gram frequency features, with n ∈
[1; 5], extracted from frequency quartiles.

• 24 word-alignment features according to the
alignment probability thresholds: 0.01, 0.1,
0.25, 0.5, 0.75 and 1.0, with or without words
frequency weighting.

For all these features, except the ones with binary
values, we compute the ratio between the source
and target feature values and add them to our fea-
ture set, which contains 223 classical features.

2.2 Style classification features

We call the features described below “style
classification” features because they have been
used recently in the context of author identifica-
tion/profiling (Moreau and Vogel, 2013a; Moreau
and Vogel, 2013b) (quite sucessfully in some
cases). The idea consists in representing the n-
grams which are very specific to a given “cate-
gory”, a category being a level of quality in the
context of QE, and more precisely we use only the
“good” and “bad” categories here.

Thus this approach requires the following pa-
rameters:

• At least two datasets used as reference for the
categories;

• Various n-grams patterns, from which com-
parisons based on frequency can be done;

• One or several methods to compare a sen-
tence to a category.

2.2.1 Reference categories
As reference categories we use both the training
datasets provided for task 1.1 and 1.3: both are
used in each task, that is, categories are extracted
from subtasks 1.1 dataset and 1.3 dataset and used
in task 1.1 and 1.3 as well. However we use only
half of the sentences of task 1.1 in 1.1 and sim-
ilarly in 1.3, in order to keep the other half for
the classical training process. This is necessary to
avoid using (even indirectly) a sentence as both a
fixed parameter from which features are extracted
(the category data) and an actual instance on which
features are computed. In other words this simply
follows the principle of keeping the training and
test data independent, but in this case there are two
stages of training (comparing sentences to a refer-
ence category is also a supervised process).

The two datasets are used in three different
ways, leading to three distinct pairs of categories
“good/bad”:3

• The sentences for which the quality is below
the median form the “bad” category, the one
above form the “good” category;

• The sentences for which the quality is below
the first quartile form the “bad” category, the
one above the third quartile form the “good”
category;

• The complete set of MT output sentences
form the “bad” category, their manually
post-edited counterpart form the “good” cat-
egory.

We use these three different ways to build cate-
gories because there is no way to determine a pri-
ori the optimal choice. For instance, on the one
hand the opposite quartiles probably provide more
discriminative power than the medians, but on the
other hand the latter contains more data and there-
fore possibly more useful cases.4 In the last ver-
sion the idea is to consider that, in average, the
machine translated sentences are of poor quality
compared to the manually post-edited sentences;
in this case the categories contain more data, but it
might be a problem that (1) some of the machine-
translated sentences are actually good and (2) the

3Below we call “quality” the value given by the HTER
score (1.1) or post-editing time (1.3), the level of quality be-
ing of course conversely proportional to these values.

4The datasets are not very big: only 803 sentences in task
1.3 and 2,254 sentences in task 1.1 (and we can only use half
of these for categories, as explained above).
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right translation of some difficult phrases in the
post-edited sentences might never be found in MT
output. We think that the availability of differ-
ent categories built in various ways is potentially a
good thing, because it lets the learning algorithm
decide which features (based on a particular cate-
gory) are useful and which are not, thus tuning the
model automatically while possibly using several
possibilities together, rather than relying on some
predefined categories.

It is important to notice that the correspondence
between an MT output and its post-edited version
is not used5: in all categories the sentences are
only considered as an unordered set. For instance
it would be possible to use a third-party corpus as
well (provided it shares at least a common domain
with the data).

We use only the target language (Spanish) of the
translation and not the source language in order
not to generate too many categories, and because
it has been shown that there is a high correlation
between the complexity of the source sentence and
the fluency of the translation (Moreau and Vogel,
2012). However it is possible to do so for the cat-
egories based on quantiles.

2.2.2 n-grams patterns, thresholds and
distance measures

We use a large set of 30 n-grams patterns based on
tokens and POS tags. POS tagging has been per-
formed with TreeTagger (Schmid, 1995). Various
combinations of n-grams are considered, includ-
ing standard sequential n-grams, skip-grams, and
combinations of tokens and POS tags.

Since the goal is to compare a sentence to a
category, we consider the frequency in terms of
number of sentences in which the n-gram appears,
rather than the global frequency or the local fre-
quency by sentence.6

Different frequency thresholds are considered,
from 1 to 25. Additionally we can also filter out
n-grams for which the relative frequency is too

5in the categories used as reference data; but it is used in
the final features during the (supervised) training stage (see
§3).

6The frequency by sentence is actually also taken into ac-
count in the following way: instead of considering only the
n-gram, we consider a pair (n-gram, local frequency) as an
observation. This way if a particular frequency is observed
more often in a given category, it can be interpreted as a clue
in favor of this category. However in most cases (long n-
grams sequences) the frequency by sentence is almost always
one, sometimes two. Thus this is only marginally a relevant
criterion to categorize a sentence.

similar between the “good” and “bad” categories.
For instance it is possible to keep only the n-grams
for which 80% of the occurrencies belong to the
“bad” category, thus making it a strong marker
for low quality. Once again different thresholds
are considered, in order to tradeoff between the
amount of cases and their discriminative power.

We use only three simple distance/similarity
measures when comparing a sentence to a cate-
gory:

• Binary match: for each n-gram in the sen-
tence, count 1 if it belongs to the category, 0
otherwise, then divide by the number of n-
grams in the sentence;

• Weighted match: same as above but sum the
proportion of occurrences belonging to the
category instead of 1 (this way an n-gram
which is more discriminative is given more
weight);

• Cosine similarity.

Finally for every tuple formed by the combina-
tion of

• a category,

• a quality level (“good/bad”),

• an n-gram pattern,

• a frequency threshold,

• a threshold for the proportion of the occur-
rences in the given category,

• and a distance measure

a feature is created. For every sentence the value
of the feature is the score computed using the pa-
rameters defined in the tuple. From our set of
parameters we obtain approximately 35,000 fea-
tures.7 It is worth noticing that these features
are not meant to represent the sentence entirely,
but rather particularly noticeable parts (in terms of
quality) of the sentence.

7The number of features depends on the data in the cate-
gory, because if no n-gram at all in the category satisfies the
conditions given by the parameters (which can happen with
very high thresholds), then the feature does not exist.
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2.3 Features specific to the dataset

In task 1.3 we are provided with a translator id
and a document id for each sentence. The distribu-
tion of the time spent to post-edit the sentence de-
pending on these parameters shows some signifi-
cant differences among translators and documents.
This is why we add several features intended to ac-
count for these parameters: the id itself, the mean
and the median for both the translator and the doc-
ument.

3 Design and training process

The main difficulty with so many features (around
35,000) is of course to select a subset of reason-
able size, in order to train a model which is not
overfitted. This requires an efficient optimization
method, since it is clearly impossible to explore
the search space exhaustively in this case.

Initially it was planned to use an ad-hoc genetic
algorithm to select an optimal subset of features.
But unfortunately the system designed in this goal
did not work as well as expected8, this is why we
had to switch to a different strategy: the two fi-
nal sets of features were obtained through several
stages of selection, mixing several different kinds
of correlation-based features selection methods.

The different steps described below were car-
ried out using the Weka Machine Learning toolkit9

(Hall et al., 2009). Since we have used half of the
training data as a reference corpus for some of the
categories (see §2), we use the other half as train-
ing instances in the selection and learning process,
with 10 folds cross-validation for the latter.

3.1 Iterative selection of features

Because of the failure of the initial strategy, in or-
der to meet the time constraints of the Shared Task
we had to favor speed over performance in the pro-
cess of selecting features and training a model.
This probably had a negative impact on the final
results, as discussed in section §4.

In particular the amount of features was too
big to be processed in the remaining time by a
subset selection method. This is why the fea-
tures were first ranked individually using the Re-
lief attribute estimation method (Robnik-Sikonja

8At the time of writing it is still unclear if this was due to
a design flaw or a bug in the implementation.

9Weka 3.6.9, http://www.cs.waikato.ac.nz/
ml/weka.

and Kononenko, 1997). Only the 20,00010 top fea-
tures were extracted from this ranking and used
further in the selection process.

From this initial subset of features, the follow-
ing heuristic search algorithms combined with a
correlation-based method11 to evaluate subsets of
features (Hall, 1998) are applied iteratively to a
given input set of features:

• Best-first search (forward, backward, bi-
directional);

• Hill-climbing search (forward and back-
ward);

• Genetic search with Bayes Networks.

Each of these algorithms was used with differ-
ent predefined parameters in order to trade off be-
tween time and performance. This selection pro-
cess is iterated as long as the number of features
left is (approximately) higher than 200.

3.2 Training the models

When less than 200 features are obtained, the it-
erative selection process is still applied but a 10
folds cross-validated evaluation is also performed
with the following regression algorithms:

• Support Vector Machines (SVM) (Smola and
Schölkopf, 2004; Shevade et al., 2000);

• Decision trees (Quinlan, 1992; Wang and
Witten, 1996);

• Pace regression (Wang and Witten, 2002).

These learning algorithms are also run with
several possible sets of parameters. Eventually
the submitted models are chosen among those
for which the set of features can not be reduced
anymore without decreasing seriously the perfor-
mance. Most of the best models were obtained
with SVM, although the decision trees regression
algorithm performed almost as well. It was not
possible to decrease the number of features below
60 for task 1.3 (80 for task 1.1) without causing a
loss in performance.

10For subtask 1.3. Only the 8,000 top features for subtask
1.1.

11Weka class
weka.attributeSelection.CfsSubsetEval.
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4 Results and discussion

The systems are evaluated based on the Mean Av-
erage Error, and every team was allowed to submit
two systems. Our systems ranked 10th and 11th
among 14 for task 1.1, and 13th and 15th among
17 for task 1.1.

4.1 Possible causes of loss in performance
We plan to investigate why our approach does not
perform as well as others, and in particular to
study more exhaustively the different possibilities
in the features selection process.12 It is indeed
very probable that the method can perform better
with an appropriate selection of features and opti-
mization of the parameters, in particular:

• The final number of features is too large,
which can cause overfitting. Most QE system
do not need so many features (only 15 for the
best system in the WMT12 Shared Task on
QE (Soricut et al., 2012)).

• We had to perform a first selection to discard
some of the initial features based on their in-
dividual contribution. This is likely to be a
flaw, since some features can be very useful
in conjuction with other even if poorly infor-
mative by themselves.

• We also probably made a mistake in apply-
ing the selection process to the whole set of
features, including both classical features and
style classification features: it might be rel-
evant to run two independent selection pro-
cesses at first and then gather the resulting
features together only for a more fine-grained
final selection. Indeed, the final models that
we submitted include very few classical fea-
tures; we believe that this might have made
these models less reliable, since our initial
assumption was rather that the style classifi-
cation features would act as secondary clues
in a model primarily relying on the classical
features.

4.2 Selected features
The following observations can be made on the fi-
nal models obtained for task 1.3, keeping in mind
that the models might not be optimal for the rea-
sons explained above:

12Unfortunately the results of this study are not ready yet
at the time of writing.

• Only 5% of the selected features are classical
features;

• The amount of data used in the category
seems to play an important role: most fea-
tures correspond to categories built from the
1.1 dataset (which is bigger), and the pro-
portions between the different kinds of cate-
gories are: 13% for first quartile vs. fourth
quartile (smallest dataset), 25% for below
median vs. above median, and 61% for
MT output vs. postedited sentence (largest
dataset);

• It seems more interesting to identify the low
quality n-grams (i.e. errors) rather than the
high quality ones: 76% of the selected fea-
tures represent the “bad” category;

• 81% of the selected features represent an
n-grams containing at least one POS tag,
whereas only 40% contain a token;

• Most features correspond to selecting n-
grams which are very predictive of the
“good/bad” category (high difference of the
relative proportion between the two cate-
gories), although a significant number of less
predictive n-grams are also selected;

• The cosine distance is selected about three
times more often than the two other distance
methods.

5 Conclusion and future work

In conclusion, the approach performed decently on
the Shared Task test data, but was outperformed
by most other participants systems. Thus cur-
rently it is not proved that style classification fea-
tures help assessing the quality of MT. However
the approach, and especially the contribution of
these features, have yet to be evaluated in a less
constrained environment in order to give a well-
argued answer to this question.
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Abstract
In this paper, we propose a novel syntac-
tic based MT evaluation metric which only
employs the dependency information in
the source side. Experimental results show
that our method achieves higher correla-
tion with human judgments than BLEU,
TER, HWCM and METEOR at both sen-
tence and system level for all of the four
language pairs in WMT 2010.

1 Introduction

Automatic evaluation plays a more important role
in the evolution of machine translation. At the ear-
liest stage, the automatic evaluation metrics only
use the lexical information, in which, BLEU (Pap-
ineni et al., 2002) is the most popular one. BLEU
is simple and effective. Most of the researchers
regard BLEU as their primary evaluation metric
to develop and compare MT systems. However,
BLEU only employs the lexical information and
cannot adequately reflect the structural level sim-
ilarity. Translation Error Rate (TER) (Snover et
al., 2006) measures the number of edits required to
change the hypothesis into one of the references.
METEOR (Lavie and Agarwal, 2007), which de-
fines loose unigram matching between the hypoth-
esis and the references with the help of stem-
ming and Wordnet-looking-up, is also a lexical
based method and achieves the first-class human-
evaluation-correlation score. AMBER (Chen and
Kuhn, 2011; Chen et al., 2012) incorporates recall,
extra penalties and some text processing variants
on the basis of BLEU. The main weakness of all
the above lexical based methods is that they cannot
adequately reflect the structural level similarity.

To overcome the weakness of the lexical based
methods, many syntactic based metrics were pro-
posed. Liu and Gildea (2005) proposed STM, a
constituent tree based approach, and HWCM, a
dependency tree based approach.

Both of the two methods compute the similar-
ity between the sub-trees of the hypothesis and the
reference. Owczarzak et al (2007a; 2007b; 2007c)
presented a method using the Lexical-Functional
Grammar (LFG) dependency tree. MAXSIM
(Chan and Ng, 2008) and the method proposed
by Zhu et al (2010) also employed the syntac-
tic information in association with lexical infor-
mation.With the syntactic information which can
reflect structural information, the correlation with
the human judgments can be improved to a certain
extent.

As we know that the hypothesis is potentially
noisy, and these errors expand through the parsing
process. Thus the power of syntactic information
could be considerably weakened.

In this paper, we attempt to overcome the short-
coming of the syntactic based methods and pro-
pose a novel dependency based MT evaluation
metric. The proposed metric only employs the ref-
erence dependency tree which contains both the
lexical and syntactic information, leaving the hy-
pothesis side unparsed to avoid the error propaga-
tion. In our metric, F-score is calculated using the
string of hypothesis and the dependency based n-
grams which are extracted from the reference de-
pendency tree.

Experimental results show that our method
achieves higher correlation with human judgments
than BLEU, HWCM, TER and METEOR at both
sentence level and system level for all of the four
language pairs in WMT 2010.

2 Background: HWCM

HWCM is a dependency based metric which ex-
tracts the headword chains, a sequence of words
which corresponds to a path in the dependency
tree, from both the hypothesis and the reference
dependency tree. The score of HWCM is obtained
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Figure 1: The dependency tree of the reference

Figure 2: The dependency tree of the hypothesis

by formula (1).

HWCM =
1

D

D∑

n=1

∑
g∈chainn(hyp)

countclip(g)∑
g∈chainn(hyp)

count(g)

(1)
In formula (1), D is the maximum length of the
headword chain. chainn(hyp) denotes the set of
the headword chains with length of n in the tree of
hypothesis. count(g) denotes the number of times
g appears in the headword chain of the hypothe-
sis dependency tree and countclip(g) denotes the
clipped number of times when g appears in the the
headword chain of the reference dependency trees.
Clipped means that the count computed from the
headword chain of the hypothesis tree should not
exceed the maximum number of times when g oc-
curs in headword chain of any single reference
tree. The following are two sentences represent-
ing as reference and hypothesis, and Figure 1 and
Figure 2 are the dependency trees respectively.

reference: It is not for want of trying .
hypothesis: This is not for lack of trying .

In the example above, there are 8 1-word, 7 2-
word and 3 3-word headword chains in the hy-
pothesis dependency tree. The number of 1-word
and 2-word headword chains in the hypothesis tree
which can match their counterparts in the refer-
ence tree is 5 and 4 respectively. The 3-word head-
word chains in the hypothesis dependency tree are
is for lack, for lack of and lack of trying. Due to
the difference in the dependency structures, they
have no matches in the reference side.

3 A Novel Dependency Based MT
Evaluation Method

In this new method, we calculate F-score using the
string of hypothesis and the dep-n-grams which
are extracted from the reference dependency tree.
The new method is named DEPREF since it is
a DEPendency based method only using depen-
dency tree of REference to calculate the F-score.
In DEPREF, after the parsing of the reference sen-
tences, there are three steps below being carried
out. 1) Extracting the dependency based n-gram
(dep-n-gram) in the dependency tree of the refer-
ence. 2) Matching the dep-n-gram with the string
of hypothesis. 3) Obtaining the final score of a hy-
pothesis. The detail description of our method will
be found in paper (Liu et al., 2013) . We only give
the experiment results in this paper.

4 Experiments

Both the sentence level evaluation and the system
level evaluation are conducted to assess the per-
formance of our automatic metric. At the sentence
level evaluation, Kendall’s rank correlation coeffi-
cient τ is used. At the system level evaluation, the
Spearman’s rank correlation coefficient ρ is used.

4.1 Data
There are four language pairs in our experiments
including German-to-English, Czech-to-English,
French-to-English and Spanish-to-English, which
are all derived from WMT2010. Each of the
four language pairs consists of 2034 sentences and
the references of the four language pairs are the
same. There are 24 translation systems for French-
to-English, 25 for German-to-English, 12 for
Czech-to-English and 15 for Spanish-to-English.
We parsed the reference into constituent tree by
Berkeley parser and then converted the constituent
tree into dependency tree by Penn2Malt 1. Pre-
sumably, we believe that the performance will be
even better if the dependency trees are manually
revised.

In the experiments, we compare the perfor-
mance of our metric with the widely used lexical
based metrics BLEU, TER, METEOR and a de-
pendency based metric HWCM. In order to make
a fair comparison with METEOR which is known
to perform best when external resources like stem
and synonym are provided, we also provide results
of DEPREF with external resources.

1http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html
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Metrics Czech-English German-English Spanish-English French-English
BLEU 0.2554 0.2748 0.2805 0.2197
TER 0.2526 0.2907 0.2638 0.2105

HWCM

N=1 0.2067 0.2227 0.2188 0.2022
N=2 0.2587 0.2601 0.2408 0.2399
N=3 0.2526 0.2638 0.2570 0.2498
N=4 0.2453 0.2672 0.2590 0.2436

DEPREF 0.3337 0.3498 0.3190 0.2656
Table 1.A Sentence level correlations of the metrics without external resources.

Metrics Czech-English German-English Spanish-English French-English
METEOR 0.3186 0.3482 0.3258 0.2745
DEPREF 0.3281 0.3606 0.3326 0.2834

Table 1.B Sentence level correlations of the metrics with stemming and synonym.

Table 1: The sentence level correlations with the human judgments for Czech-to-English, German-to-
English, Spanish-to-English and French-to-English. The number in bold is the maximum value in each
column. N stands for the max length of the headword chains in HWCM in Table 1.A.

4.2 Sentence-level Evaluation

Kendall’s rank correlation coefficient τ is em-
ployed to evaluate the correlation of all the MT
evaluation metrics and human judgements at the
sentence level. A higher value of τ means a bet-
ter ranking similarity with the human judges. The
correlation scores of the four language pairs and
the average scores are shown in Table 1.A (without
external resources) and Table 1.B (with stemming
and synonym), Our method performs best when
maximum length of dep-n-gram is set to 3, so we
present only the results when the maximum length
of dep-n-gram equals 3.

From Table 1.A, we can see that all our methods
are far more better than BLEU, TER and HWCM
when there is no external resources applied on all
of the four language pairs. In Table 1.B, external
resources is considered. DEPREF is also better
than METEOR on the four language pairs. From
the comparison between Table 1.A and Table 1.B,
we can conclude that external resources is help-
ful for DEPREF on most of the language pairs.
When comparing DEPREF without external re-
sources with METEOR, we find that DEPREF ob-
tains better results on Czech-English and German-
English.

4.3 System-level Evaluation

We also evaluated the metrics with the human
rankings at the system level to further investigate
the effectiveness of our metrics. The matching of
the words in DEPREF is correlated with the posi-

tion of the words, so the traditional way of com-
puting system level score, like what BLEU does,
is not feasible for DEPREF. Therefore, we resort
to the way of adding the sentence level scores to-
gether to obtain the system level score. At system
level evaluation, we employ Spearman’s rank cor-
relation coefficient ρ. The correlations of the four
language pairs and the average scores are shown
in Table 2.A (without external resources) and Ta-
ble 2.B (with stem and synonym).

From Table 2.A, we can see that the correla-
tion of DEPREF is better than BLEU, TER and
HWCM on German-English, Spanish-English and
French-English. On Czech-English, our metric
DEPREF is better than BLEU and TER. In Table
2.B (with stem and synonym), DEPREF obtains
better results than METEOR on all of the language
pairs except one case that DEPREF gets the same
result as METEOR on Czech-English. When com-
paring DEPREF without external resources with
METEOR, we can find that DEPREF gets bet-
ter result than METEOR on Spanish-English and
French-English.

From Table 1 and Table 2, we can conclude
that, DEPREF without external resources can ob-
tain comparable result with METEOR, and DE-
PREF with external resources can obtain better re-
sults than METEOR. The only exception is that at
the system level evaluation, Czech-English’s best
score is abtained by HWCM. Notice that there are
only 12 systems in Czech-English, which means
there are only 12 numbers to be sorted, we believe
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Metrics Czech-English German-English Spanish-English French-English
BLEU 0.8400 0.8808 0.8681 0.8391
TER 0.7832 0.8923 0.9033 0.8330

HWCM

N=1 0.8392 0.7715 0.7231 0.6730
N=2 0.8671 0.8600 0.7670 0.8026
N=3 0.8811 0.8831 0.8286 0.8209
N=4 0.8811 0.9046 0.8242 0.8148

DEPREF 0.8392 0.9238 0.9604 0.8687
Table 2.A System level correlations of the metrics without external resources.

Metrics Czech-English German-English Spanish-English French-English
METEOR 0.8392 0.9269 0.9516 0.8652
DEPREF 0.8392 0.9331 0.9692 0.8730

Table 2.B System level correlations of the metrics with stemming and synonym.

Table 2: The system level correlations with the human judgments for Czech-to-English, German-to-
English, Spanish-to-English and French-to-English. The number in bold is the maximum value in each
column. N stands for the max length of the headword chains in HWCM in Table 2.A.

the spareness issure is more serious in this case.

5 Conclusion

In this paper, we propose a new automatic MT
evaluation method DEPREF. The experiments are
carried out at both sentence-level and system-level
using four language pairs from WMT 2010. The
experiment results indicate that DEPREF achieves
better correlation than BLEU, HWCM, TER and
METEOR at both sentence level and system level.
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Abstract
Despite being closely related languages,
German and English are characterized by
important word order differences. Long-
range reordering of verbs, in particular,
represents a real challenge for state-of-the-
art SMT systems and is one of the main
reasons why translation quality is often so
poor in this language pair. In this work,
we review several solutions to improve
the accuracy of German-English word re-
ordering while preserving the efficiency of
phrase-based decoding. Among these, we
consider a novel technique to dynamically
shape the reordering search space and
effectively capture long-range reordering
phenomena. Through an extensive eval-
uation including diverse translation qual-
ity metrics, we show that these solutions
can significantly narrow the gap between
phrase-based and hierarchical SMT.

1 Introduction

Modeling the German-English language pair is
known to be a challenging task for state-of-the-
art statistical machine translation (SMT) methods.
A major factor of difficulty is given by word or-
der differences that yield important long-range re-
ordering phenomena.

Thanks to specific reordering modeling compo-
nents, phrase-based SMT (PSMT) systems (Zens
et al., 2002; Koehn et al., 2003; Och and Ney,
2002) are generally good at handling local re-
ordering phenomena that are not captured inside
phrases. However, they typically fail to predict
long reorderings. On the other hand, hierarchi-
cal SMT (HSMT) systems (Chiang, 2005) can
learn reordering patterns by means of discontinu-
ous translation rules, and are therefore considered
a better choice for language pairs characterized by
massive and hierarchical reordering.

Looking at the results of the Workshop of
Machine Translation’s last edition (WMT12)
(Callison-Burch et al., 2012), no particular SMT
approach appears to be clearly dominating. In
both language directions (official results excluding
the online systems) the rule-based systems outper-
formed all SMT approaches, and among the best
SMT systems we find a variety of approaches:
pure phrase-based, phrase-based and hierarchical
systems combination, n-gram based, a rich syntax-
based approach, and a phrase-based system cou-
pled with POS-based pre-ordering. This gives an
idea of how challenging this language pair is for
SMT and raises the question of which SMT ap-
proach is best suited to model it.

In this work, we aim at answering this ques-
tion by focussing on the word reordering problem,
which is known to be an important factor of SMT
performance (Birch et al., 2008). We hypothe-
size that PSMT can be as successful for German-
English as the more computationally costly HSMT
approach, provided that the reordering-related pa-
rameters are carefully chosen and the best avail-
able reordering models are used. More specifi-
cally, our study covers the following topics: dis-
tortion functions and limits, and dynamic shaping
of the reordering search space based on a discrim-
inative reordering model.

We first review these topics, and then evaluate
them systematically on the WMT task using both
generic and reordering-specific metrics, with the
aim of providing a reference for future system de-
velopers’ choices.

2 Background

Word order differences between German and En-
glish are mainly found at the clause (global) level,
as opposed to the phrase (local) level. We refer to
Collins et al. (2005) and Gojun and Fraser (2012)
for a detailed description of the German clause
structure. To briefly summarize, we can say that
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the verb-second order of German main clauses
contrasts with the rigid SVO structure of English,
as does the clause-final verb position of German
subordinate clauses. A further difficulty is given
by the German discontinuous verb phrases, where
the main verb is separated from the inflected auxil-
iary or modal. The distance between the two parts
of a verb phrase can be arbitrarily long as shown
in the following example:

[DE] Jedoch konnten sie Kinder in Teilen von Helmand
und Kandahar im Süden aus Sicherheitsgrund nicht er-
reichen.

[EN] But they could not reach children in parts of Hel-
mand and Kandahar in the south for security reasons.

Translating this sentence with a PSMT engine
implies performing two very long jumps that are
not even considered by typical systems employing
a distortion limit of 6 or 8 words. At the same
time, increasing the distortion limit to very high
values is known to have a negative impact on both
efficiency and translation quality (cf. results pre-
sented later in this paper).

Because reordering patterns of this kind are
very common between German and English, this
paper focuses on techniques that enable the PSMT
decoder to explore long jumps and thus improve
reordering accuracy without hurting efficiency nor
general translation quality.

2.1 Alternative approaches

German-English reordering in SMT has been
widely studied and is still an open topic. In this
work, we only consider efficient solutions that are
fully integrated into the decoding process, and that
do not require syntactic parsers or manual reorder-
ing rules. Still, it has to be mentioned that sev-
eral alternative solutions were proposed in the lit-
erature. A well-known strategy consists of pre-
ordering the German sentence in an English-like
order by applying a set of manually written rules
to its syntactic parse tree (Collins et al., 2005).1

Other approaches learn the pre-ordering rules au-
tomatically, from syntactic parses (Xia and Mc-
Cord, 2004; Genzel, 2010) or from part-of-speech
labels (Niehues and Kolss, 2009). In the former
case, pre-ordering decisions are typically taken de-
terministically (i. e. one permuation per sentence),
whereas in the latter, multiple alternatives are rep-
resented as word lattices, and the optimal path is

1A similar solution for the opposite translation direction
(English-German) was proposed by Gojun and Fraser (2012).

selected by the decoder at translation time. In
(Tromble and Eisner, 2009), pre-ordering is cast
as a permutation problem and solved by a model
that estimates the probability of reversing the rel-
ative order of any two input words.

In the field of tree-based SMT, positive results
in German-English were achieved by combining
syntactic translation rules with unlabeled hierar-
chical SMT rules (Hoang and Koehn, 2010). More
recently, Braune et al. (2012) proposed to improve
the long-range reordering capability of an HSMT
system by integrating constraints based on clausal
boundaries and by manually selecting the rule pat-
terns applicable to long word spans. The paper
did not analyse the impact of the technique on ef-
ficiency.

2.2 Evaluation methods

A large number of previous works on word re-
ordering measured their success with general-
purpose metrics such as BLEU (Papineni et al.,
2001) or METEOR (Banerjee and Lavie, 2005).
These metrics, however, are only indirectly sensi-
tive to word order and do not sufficiently penalize
long-range reordering errors, as demonstrated for
instance by Birch et al. (2010). While BLEU re-
mains a standard choice for many evaluation cam-
paigns, we believe it is extremely important to
complement it with metrics that are specifically
designed to capture word order differences. In this
work, we adopt two reordering-specific metrics in
addition to BLEU and METEOR:

Kendall Reordering Score (KRS). As pro-
posed by Birch et al. (2010), the KRS measures
the similarity between the input-output reordering
and the input-reference reordering. This is done by
converting word alignments to permutations and
computing a permutation distance among them.
When interpolated with BLEU, this score is called
LRscore.2

Verb-specific KRS (KRS-V). The ideal way
to automatically evaluate our systems would be
to use syntax- or semantics-based metrics, as the
impact of long reordering errors is particularly
important at these levels. As a light-weight al-
ternative, we instead concentrate the evaluation
on those word classes that are typically crucial
to guess the general structure of a sentence. To
this end, we adopt a word-weighted version of the

2Thus, our KRS results correspond exactly to the
LRscore(α=1) presented in other papers.
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KRS and set the weights to 1 for verbs and 0 for
all other words, so that only verb reordering errors
are captured. We call the resulting metric KRS-V.
The KRS-V rates a translation hypothesis as per-
fect (100%) when the translations of all source
verbs are located in their correct position, regard-
less of the other words’ ordering.

3 Early distortion cost

In its original formulation, the PSMT approach in-
cludes a basic reordering model, called distortion
cost, that exponentially penalizes longer jumps
among consecutively translated phrases simply
based on their distance. Thus, a completely mono-
tonic translation has a total distortion cost of zero.

A weakness of this model is that it penalizes
long jumps only when they are performed, rather
than accumulating their cost gradually. As an ef-
fect, hypotheses with gaps (i. e. uncovered input
positions) can proliferate and cause the pruning
of more monotonic hypotheses that could lead to
overall better translations.

To solve this problem, Moore and Quirk (2007)
proposed an improved version of the distortion
cost function that anticipates the gradual accumu-
lation of the total distortion cost, making hypothe-
ses with the same number of covered words more
comparable with one another. Early distortion
cost (as called in Moses, or “distortion penalty es-
timation” in the original paper) is computed by a
simple algorithm that keeps track of the uncovered
input positions. Note that this option affects the
distortion feature function, but not the distortion
limit, which always corresponds to the maximum
distance allowed between consecutively translated
phrases.

Early distortion cost was shown by its authors to
yield similar BLEU scores as the standard one but
with stricter pruning parameters, i. e. faster decod-
ing. Experiments were performed on an English-
French task, with a fixed distortion limit of 5 and
without lexicalized reordering models. Our study
deals with a language pair that is arguably more
difficult at the level of reordering. Moreover, we
start from a stronger baseline and measure the im-
pact of early distortion cost in various distortion
limit settings, using also reordering-specific met-
rics. Results are presented in Section 6.2.

4 Word-after-word reordering
modeling and pruning

Phrase orientation (lexicalized reordering) mod-
els (Tillmann, 2004; Koehn et al., 2005; Galley
and Manning, 2008) have proven very useful for
short and medium-range reordering and are prob-
ably the most widely used in PSMT nowadays.
However, their coarse classification of reordering
steps makes them unsuitable to capture long-range
reordering phenomena, such as those attested in
German-English. Indeed, Galley and Manning
(2008) reported a decrease of translation qual-
ity when the distortion limit was set beyond 6 in
Chinese-English and beyond 4 in Arabic-English.

To address this problem, we have developed a
different reordering model that predicts what in-
put word should be translated at a given decod-
ing state (Bisazza, 2013; Bisazza and Federico,
2013). The model is similar to the one proposed
by Visweswariah et al. (2011), however we use
it differently: that is, not simply for data pre-
processing but as an additional feature function
fully integrated in the phrase-based decoder. More
importantly, we propose to use the same model
to dynamically shape the space of reorderings ex-
plored during decoding (cf. Section 4.2), which
was never done before.

Another related work is the source-side decod-
ing sequence model by Feng et al. (2010), that is
a generative n-gram model trained on a corpus of
pre-ordered source sentences. Although reminis-
cent of a source-side bigram model, our model has
two important differences: (i) the discriminative
modeling framework enables us to design a much
richer feature set including, for instance, the con-
text of the next word to pick; (ii) all our features
are independent from the decoding history, which
allows for an efficient decoder-integration with no
effect on hypothesis recombination.

Finally, we have to mention the models by Al-
Onaizan and Papineni (2006) and Green et al.
(2010), who predict the direction and (binned)
length of a jump to perform after a given input
word. Those models too were only used as ad-
ditional feature functions, and were not shown to
maintain translation quality and efficiency at very
high distortion limits.

4.1 The model

The Word-after-word (WaW) reordering model is
trained to predict whether a given input position
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should be translated right after another, given the
words at those positions and their contexts. It is
based on the following maximum-entropy binary
classifier:

P (Ri,j=Y |fJ
1 , i, j) =

exp[
∑

m λmhm(fJ
1 , i, j, Ri,j=Y )]∑

Y ′ exp[
∑

m λmhm(fJ
1 , i, j, Ri,j=Y ′)]

where fJ
1 is a source sentence of J words, hm are

feature functions and λm the corresponding fea-
ture weights. The outcome Y can be either 1 or 0,
with Ri,j=1 meaning that the word at position j is
translated right after the word at position i.

Training examples are extracted from a corpus
of reference reorderings, obtained by converting
the word-aligned parallel data into a set of source
sentence permutations. A heuristic similar to the
one proposed by Visweswariah et al. (2011) is
used to this end. For each input word, we gen-
erate: (i) one positive example for the word that
should be translated right after it; (ii) negative ex-
amples for all the uncovered words that lie within a
given sampling window or δ. The latter parameter
serves to control the proportion between positive
and negative examples.

The WaW model builds on binary features that
are extracted from the local context of positions
i and j, and from the words occurring between
them. In addition to the actual words, the features
may include POS tags and shallow syntax labels
(i. e. chunk types and boundaries). For instance,
one feature may indicate that the last translated
word (wi) is an adjective while the currently trans-
lated one (wj) is a noun:

POS(wi)=adj ∧ POS(wj)=noun

Other features indicate that a given word or punc-
tuation is found between wi and wj :

wb=‘jedoch’ ... wb=‘.’

or that wi and wj belong to the same shallow syn-
tax chunk.

The WaW reordering model can be seamlessy
integrated into a standard phrase-based decoder
that already includes phrase orientation models.
When a partial hypothesis is expanded with a
given phrase pair, the model returns the log-
probability of translating its words in the order
defined by the phrase-internal word alignment.
Moreover, the global WaW score is independent
from phrase segmentation, and normalized across
outputs of different lengths.

The complete list of features, training data gen-
eration algorithm and other implementation details
are presented in (Bisazza, 2013) and (Bisazza and
Federico, 2013).

4.2 Early reordering pruning
Besides providing an additional feature function
for the log-linear PSMT framework, the WaW
model’s predictions can be used as an early indi-
cation of whether or not a given reordering path
should be further explored. In fact, we have men-
tioned that the existing reordering models are not
capable of guiding the search through very large
reordering search spaces. As a solution, we pro-
pose to decode with loose reordering constraints
(i. e. high distortion limit) but only explore those
long reorderings that are promising according to
the WaW model.

More specifically, at each hypothesis expansion,
we consider the set of input positions that are
reachable within the fixed distortion limit. Only
based on the WaW score, we apply histogram and
threshold pruning to this set and then proceed to
expand only the non-pruned positions.3 Further-
more, it is possible to ensure that local reorderings
are always allowed, by setting a so-called non-
prunable-zone of width ϑ around the last covered
input position.4 In this way, we can ensure that the
usual space of short to medium-range reordering is
exhaustively explored in addition to few promising
long-range reorderings.

The rationale of this approach is two-fold: First,
to avoid costly hypothesis expansions for very un-
likely reordering steps and thus speed up decod-
ing under loose reordering constraints. Second, to
decrease the risk of model errors by exploiting the
fact that some components of the PSMT log-linear
model are more important than others at different
stages of the translation process.

The WaW model is not the only scoring func-
tion that can be used for early reordering prun-
ing. In principle, even phrase orientation model
scores could be used, but we expect them to per-
form poorly due to the coarse classification of re-
ordering steps (all phrases that are not adjacent to
the current one are treated as discontinuous steps).

3The idea is reminiscent of early pruning by Moore and
Quirk (2007): an optimization technique that consists of dis-
carding hypothesis extensions based on their estimated score
before computing the exact language model score.

4See (Bisazza, 2013) for technical details on the integra-
tion of word-level pruning with phrase-level hypothesis ex-
pansion.
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5 Reordering in hierarchical SMT

To allow for a fair evaluation of our systems,
we also perform a contrastive experiment using a
tree-based SMT approach: namely, hierarchical
phrase-based SMT (HSMT) (Chiang, 2005).

Reordering in HSMT is not modeled separately
but is embedded in the translation model itself,
which contains lexicalized, non syntactically mo-
tivated rules that are directly learnt from word-
aligned parallel text. The major strength of HSMT
compared to PSMT, is the ability to learn discon-
tinous phrases and long-range lexicalized reorder-
ing rules. However, this modeling power has a cost
in terms of model size and decoding complexity.

To have a concrete idea, consider that the
phrase-table trained on our SMT training data (cf.
Section 6.1) with a maximum phrase length of 7
contains 127 million entries (before phrase table
pruning). The hierarchical rule table trained on the
same data with a comparable span constraint (10)
contains instead 1.2 billion entries – one order of
magnitude larger.

Furthermore, the HSMT decoder is based on a
chart parsing algorithm, whose complexity is cu-
bic in the input length, and even higher when tak-
ing into account the target language model. This
issue can be partially addressed by different strate-
gies such as cube pruning (Chiang, 2007), which
reduces the LM complexity to a constant, or rule
application constraints. One of such constraints is
the maximum number of source words that may
be covered by non-terminal symbols (span con-
straint). Setting a span constraint – which is essen-
tial to obtain reasonable decoding times – means
preventing long-range reordering similarly to set-
ting a distortion limit in PSMT. In our experi-
ments, we consider two settings for this parameter:
10 to capture short to medium-range reorderings,
and 20 to also capture long-range reorderings.

6 Experiments

In this section we evaluate the impact on transla-
tion quality and efficiency of the techniques pre-
sented above. Our main objective is to empiri-
cally verify the hypothesis that better reordering
modeling and better reordering space definition
can significantly improve the accuracy of PSMT in
German-English without sacrificing its efficiency.

6.1 Experimental setup

We choose the WMT German-English news trans-
lation task as our case study. More specifically
we use the WMT10 training data: Europarl (v.5)
plus News-commentary-2010 for a total of 1.6M
parallel sentences, 44M German tokens. The tar-
get LM is trained on the monolingual news data
provided for the constrained track of WMT10
(1133M English tokens). For development we use
the WMT08 news benchmark, while for testing we
use the following data sets:

tests(09-11): the concatentation of three previous
years’ benchmarks from 2009 to 2011 (8017
sentences, 21K German tokens).

test12: the latest released benchmark (3003 sen-
tences, 8K German tokens).

Each data set includes one reference translation.
Note that our goal is not to reach the performance
of the best systems participating at the last WMT
edition, but rather to assess the usefulness of our
techniques on a larger and therefore more reliable
test set, while starting from a reasonable baseline.5

For German tokenization and compound split-
ting we use Tree Tagger (Schmid, 1994) and the
Gertwol morphological analyser (Koskenniemi
and Haapalainen, 1994).6

All our SMT systems are built with the Moses
toolkit (Koehn et al., 2007; Hoang et al., 2009),
and word alignments are generated by the Berke-
ley Aligner (Liang et al., 2006). The target lan-
guage model is estimated by the IRSTLM toolkit
(Federico et al., 2008) with modified Kneser-Ney
smoothing (Chen and Goodman, 1999).

The phrase-based baseline decoder includes a
phrase translation model (two phrasal and two lex-
ical probability features), a lexicalized reorder-
ing model (six features), a 6-gram target language
model, distortion cost, word and phrase penalties.
As lexicalized reordering model, we use a hierar-
chical phrase orientation model (Galley and Man-
ning, 2008) trained on all the parallel data using
three orientation classes – monotone, swap or dis-
continuous – in bidirectional mode. Statistically

5Our results on test12 are not directly comparable to the
WMT12 submissions due to the different training data: that
is, the WMT12 parallel data includes 50M German tokens
of Europarl data and 4M of news-commentary, as opposed
to the 41M and 2.5M released for WMT10 and used in our
experiments.

6http://www2.lingsoft.fi/cgi-bin/gertwol
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improbable phrase pairs are pruned from the trans-
lation model as proposed by Johnson et al. (2007).

The hierarchical system is trained and tested
using the standard Moses configuration which in-
cludes: a rule table (two phrasal and two lexi-
cal probability features), a 6-gram target language
model, word and rule penalties. We set the span
constraint (cf. Section 5) to the default value of
10 words for rule extraction, while for decoding
we consider two different settings: the default 10
words and a large value of 20 to enable very long-
range reorderings.

Feature weights for all systems are optimized
by minimum BLEU-error training (Och, 2003) on
test08. To reduce the effects of the optimizer insta-
bility, we tune each configuration four times and
use the average of the resulting weight vectors for
testing, as suggested by Cettolo et al. (2011).

The source-to-reference word alignments that
are needed to compute the reordering scores are
generated by the Berkeley Aligner previously
trained on the training data. Source-to-output
alignments are obtained from the decoder’s trace.

6.2 Distortion function and limit

We start by measuring the difference between
standard and early distortion cost.7 Figure 1
shows the results in terms of BLEU and KRS, plot-
ted against the distortion limit (DL).

Indeed, early distortion cost (Moore and Quirk,
2007) outperforms the standard one in all the
tested configurations and according to both met-
rics. We can see that the quality of both systems
deteriorates as the distortion limit increases, how-
ever the system with early distortion cost is more
robust to this effect. In particular, when passing
from DL=12 to DL=18, the baseline system loses
1.2 BLEU and no less than 6.8 KRS, whereas the
system with early distortion cost loses 0.8 BLEU
and 4.9 KRS. Given these results, we decide to use
early distortion cost in all the remaining experi-
ments.

6.3 WaW reordering pruning

We have seen that early distortion cost can effec-
tively reduce the loss of translation quality, but
cannot totally prevent it. Moreover, increasing
the distortion limit means exploring many more

7For this first series of experiments, feature weights are
tuned in the DL=8 setting and the two resulting weight vec-
tors (one for standard, one for early distortion) are re-used in
the higher-DL experiments.

Figure 1: Standard vs early distortion cost perfor-
mance measured in terms of BLEU and KRS on
tests(09-11) under different distortion limits.

hypotheses and, consequently, slowing down the
decoding process. With our WaW model-based
reordering pruning technique, we aim at solving
both issues.

We generate the WaW training data from the
first 30K sentences of the News-commentary-
2010 parallel corpus, using a sampling window of
width δ=10. This results in 8 million training sam-
ples, which are fed to the binary classifier imple-
mentation of the MegaM Toolkit8. Features with
less than 20 occurrences are ignored and the max-
imum number of training iterations is set to 100.

Evaluated intrinsically on test08, the model
achieves the following classification accuracy:
67.0% precision, 50.0% recall, 57.2% F-score.
While these figures are rather low, we recall that
the WaW model is not meant to be used as a stand-
alone classifier, but rather as one of several SMT
feature functions and as a way to detect very un-
likely reordering steps. Hence, we also evaluate its
ability to rank a typical set of reordering options
during decoding: that is, we traverse the source
words in target order and, for each of them, we ex-

8http://www.cs.utah.edu/˜hal/megam/ (Daumé III, 2004).
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tests(09-11) test12 ms/
System DL bleu met krs krs-V bleu met krs krs-V word

Allowing only short to medium-range reordering:

PSMT, early disto
8

19.2 28.1 67.4 65.4 19.0 28.1 67.8 66.1! 202
+WaW (feature only) 19.4! 28.2! 67.6! 65.5! 19.5! 28.3! 67.8 66.2 212

HSMT, max.span=10 20.1! 28.5! 68.4! 66.7! 19.7" 28.4" 68.6! 67.3! 406

Allowing also long-range reordering:

PSMT, early disto
18

18.2 28.0 62.9 62.0 18.2 28.1 63.4 62.5 408
+WaW (feature only) 18.4! 28.0 61.8# 61.3# 18.1 28.1 62.2# 61.7# 428
+WaW reo.pruning (ϑ=5) 19.5! 28.3! 67.9! 66.3! 19.3! 28.4! 67.8! 66.3! 142

HSMT, max.span=20 20.0! 28.5! 68.1! 66.7! 19.7! 28.4 68.2! 67.1! 706

Table 1: Effects of WaW reordering model and early reordering pruning on PSMT translation quality
and efficiency, compared against a hierarchical SMT baseline. Translation quality is measured with
% BLEU, METEOR, and Kendall Reordering Score: regular (KRS) and verb-specific (KRS-V). Statistically
significant differences with respect to the previous row are marked with !# at the p ≤ .05 level and "$

at the p ≤ .10 level. Decoding time is measured in milliseconds per input word.

amine the ranking of all words that may be trans-
lated next (i. e. the uncovered positions within
a given DL). We find that, even when the DL is
very high (18), the correct jump is ranked among
the top 3 reachable jumps in the large majority of
cases (81.4%). If we only consider long jumps –
i. e. spanning more than 6 words – the Top-3 accu-
racy is 56.4% while that of a baseline that simply
favors shorter jumps (as the distortion cost does)
is only 26.5%.

For the early reordering pruning experiment, we
set the pruning parameters to 2 for histogram and
0.25 for relative threshold.9 A non-prunable-zone
of width ϑ=5 is set around the last covered posi-
tion. The resulting configuration is re-optimized
by MERT on test08 for the final experiment.

Table 1 shows the effects of integrating the
WaW reordering model into a PSMT decoder
that already includes a state-of-the-art hierarchi-
cal phrase orientation model. The same table also
presents the results of the HSMT constrastive ex-
periments. Two scenarios are considered: in the
first block, the PSMT distortion limit is set to a
medium value (8) and the HSMT maximum span
constraint is set to 10. Although not directly com-
parable, these settings have the same effect of dis-
allowing long-range reorderings. In the second
block, long-range reorderings are instead allowed

9Pruning parameters were optimized for BLEU with a
grid search over the values (1, 2, 3, 4, 5) for histogram and
(0.5, 0.25, 0.1) for threshold.

with a DL of 18 and a HSMT span constraint of
20.

Feature weights are optimized for each exper-
iment using the procedure described above (four
averaged MERT runs). Statistical significance is
computed for each experiment against the pre-
vious one (i. e. previous row), using approxi-
mate randomization as in (Riezler and Maxwell,
2005). Run times are obtained by an Intel Xeon
X5650 processor on the first 500 sentences of
tests(09-11), excluding loading time of all models.

Medium reordering space. Integrating the
WaW model as an additional feature function
yields small but consistent improvements (second
row of Table 1). Concerning the run time, we no-
tice just a small overload of about 5%: that is, from
202 to 212 ms/word.

In comparison, the tree-based system (third
row) has almost double decoding time but
achieves statistically significant higher translation
quality, especially at the level of reordering.

Large reordering space. As expected, raising
the DL to 18 with no special pruning (fourth row)
results in much slower decoding (from 202 to 408
ms/word) but also in very poor translation qual-
ity. This loss is especially visible on the reordering
scores: e. g. from 67.4 to 62.9 KRS on tests(09-
11). Unfortunately, adding the WaW model as a
feature function (fifth row) does not appear to be
helpful under the high DL condition.

On the other hand, when using the WaW model
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adv. verbmod subj. obj. compl.
Jedoch konnten sie Kinder in Teilen von Helmand und Kandahar im Süden aus Sicherheit∼ grund

SRC however could they children in parts of Helmand and Kandahar in South for security reasons
(de) neg verbinf

nicht erreichen .
not reach

REF But they could not reach children in parts of Helm. and Kand. in the south for security reasons.
BASE-8 However, they were children in parts of Helm. and Kand. in the south, for security reasons.
HIER-10 However, they were children in parts of Helm. and Kand. in the south not reach for security reasons.
BASE-18 However, they were children in parts of Helm. and Kand. in the south do not reach for security reasons.
WAWP-18 However, they could not reach children in parts of Helm. and Kand. in the south for security reasons.
HIER-20 However, they were children in parts of Helm. and Kand. in the south not reach for security reasons.

Table 2: Long-range reordering example showing the behavior of different systems: [BASE-*] are phrase-
based systems with a DL of 8 and 18 respectively; [WAWP-18] refers to the WaW-pruning PSMT system;
[HIER-*] are hierarchical SMT systems with a span constraint of 10 and 20 words respectively.

also for reordering pruning (sixth row) we are able
to recover the performance of the medium-DL
baseline performance and even to slightly improve
it. It is interesting to note that the largest improve-
ment concerns the accuracy of verb reordering on
tests(09-11): from 65.4 to 66.3 KRS-V. Although
the other gains are rather small, we emphasize the
fact that our solutions mostly affect rare and iso-
lated events, which have a limited impact on the
general purpose evaluation metrics but are are es-
sential to produce readable translations. WaW re-
ordering pruning has also a remarkable effect on
efficiency, making decoding time decrease from
428 ms/word to 142 ms/word, that is even faster
than a baseline that does not explore any long-
range reordering at all (202 ms/word).

Finally, we can see from the last row of Ta-
ble 1 that the gap between PSMT and HSMT has
been narrowed significantly. While more work is
needed to reach and outperform the quality of the
HSMT system, we were able to closely approach
it with five times lower decoding time (142 versus
706 ms/word) and about ten times smaller mod-
els (cf. Section 5). Comparing our best system
with the best HSMT system (i. e. span constraint
10), we see that the gap in translation accuracy
is slightly larger and that the decoding speed-up
is smaller (142 versus 406 ms/word). However,
the better performance and efficiency of HSMT-10
comes at the expense of all long-range reorderings.

Thus, our enhanced PSMT appears as an opti-
mal choice in terms of trade-off between transla-
tion quality and efficiency.

Table 3 reports two kinds of decoding statistics
that allow us to explain the very different decod-

ing times observed, and to verify that the WaW-
pruning system actually performs long-range re-
orderings: #hyp/sent is the average number of
partial translation hypotheses created10 per test
sentence; (#jumps/sent)×100 is the average
number of phrase-to-phrase jumps included in
the 1-best translation of every 100 test sentences.
Only medium and long jumps are shown (distor-
tion D≥6), divided into three distortion buckets.

System DL #hyp/sent
(#jumps/sent)×100

D: [6..8] [9..12] [13..18]
baseline 8 600K 90 – –
baseline 18 1278K 88 61 48
+WaW r.prun. 18 364K 52 29 17

Table 3: Decoding statistics of three PSMT sys-
tems exploring different reordering search spaces
for the translation of test12.

We can see that the early-pruning system in-
deed performed several long jumps but it explored
a much smaller search space compared to the high-
distortion baseline (364K versus 1278K partial hy-
potheses). As for the lower number of long jumps
(e. g. 29 versus 61 with D in [9..12] and 17 versus
48 in [13..18]) it suggests that the early-pruning
system is more precise, while the high-distortion
baseline is over-reordering.

The output of different systems for our exam-
ple sentence is shown in Table 2. In this sentence,
a jump forward with D=12 and a jump backward
with D=14 were necessary to achieve the correct
reordering of the verb and its negation. Although

10That is, the hypotheses that were scored by all the PSMT
model components and added to a hypothesis stack.
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Figure 2: Effects of beam size on translation quality measured by BLEU, KRS and KRS-V, in two base-
line PSMT systems (DL=8 and DL=18) and in the WaW early-pruning system (test12). For comparison,
the hierarchical system performance (span constraint 20) is provided as a dotted line.

these jumps were reachable for both the [PSMT-
18] and the [HSMT-20] systems, only the WaW-
pruning PSMT system actually performed them.

6.4 Interaction with beam-search pruning

During the beam-search decoding process, early
reordering pruning interacts with regular hypoth-
esis pruning based on the weighted sum of all
model scores. In particular, all the PSMT systems
presented so far apply a default histogram thresh-
old of 200 to each hypothesis stack. To examine
this interaction, we increase the histogram thresh-
old (beam size) from the default value of 200 up to
800, while keeping all other parameters and fea-
ture weights fixed. The results on test12 are plot-
ted against the beam size and reported in Figure 2.
The dotted line in each plot represents the perfor-
mance of the hierarchical system presented in the
last row of Table 1 (span constraint 20).

We can see that increasing the beam size is more
beneficial for the high-DL baseline (baseDL18)
than for the medium one (baseDL8). This is not
surprising as the risk of search error is higher when
a larger search space is explored with equal mod-
els and pruning parameters. Nevertheless, bas-
eDL18 remains by far the worst performing sys-
tem, even in our largest beam setting (800) corre-
sponding to four times longer decoding time (1582
ms/word). What is remarkable, instead, is that
the larger beam size also results in better perfor-
mances by the WaW-pruning system, which is the
PSMT system that explores by far the smallest
search space (cf. Table 3). The superiority of the
WaW-pruning system over the PSMT baselines is

maintained in all tested settings and according to
all metrics, which confirms the usefulness of our
methods not only as optimization techniques, but
also for reducing model errors of a baseline that
already includes strong reordering models.

With a very large beam size (800) our en-
hanced PSMT system can closely approach the
performance of HSMT-20 in terms of BLEU and
KRS-V, and even surpass it in terms of KRS (sta-
tistically significant) while still remaining faster:
that is, 554 versus 706 ms/word.

Overall HSMT-10 remains the best system, with
slightly higher KRS and KRS-V and lower de-
coding time than our best enhanced PSMT sys-
tem (406 versus 554 ms/word). However, we note
once more that this performance comes at the ex-
pense of all long-range reorderings. For a com-
pletely fair comparison, the HSMT system should
also be enhanced with similar reordering-pruning
techniques – a research path that we plan to ex-
plore in the future, possibly inspiring from the ap-
proach of Braune et al. (2012).

7 Conclusions

We have presented a few techniques that can im-
prove the accuracy of the word reordering per-
formed by a German-English phrase-based SMT
system. In particular, we have shown how long-
range reorderings can be captured without worsen-
ing the general quality of translation and without
renouncing to efficiency. Our best PSMT system
is actually faster than a system that does not even
attempt to perform long-range reordering, and it
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obtains significantly higher evaluation scores.
In comparison to a more computationally costly

tree-based approach (hierarchical SMT), our en-
hanced PSMT system produces slightly lower
translation quality but in five times lower decod-
ing time when long-range reordering is allowed.
Moreover, when a larger beam size is explored,
the performance of our system can equal that of
the long-reordering hierarchical system, but still
with faster decoding.

In summary, we have shown that an appropri-
ate modeling of the word reordering problem can
lead to narrow or even fill the gap between phrase-
based and hierarchical SMT in this difficult lan-
guage pair. We have also disproved the common
belief that sacrificing long-range reorderings by
setting a low distortion limit is the only way to
obtain well-performing PSMT systems.
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Abstract

We introduce a lexicalized reordering
model for hierarchical phrase-based ma-
chine translation. The model scores mono-
tone, swap, and discontinuous phrase ori-
entations in the manner of the one pre-
sented by Tillmann (2004). While this
type of lexicalized reordering model is a
valuable and widely-used component of
standard phrase-based statistical machine
translation systems (Koehn et al., 2007), it
is however commonly not employed in hi-
erarchical decoders.

We describe how phrase orientation prob-
abilities can be extracted from word-
aligned training data for use with hierar-
chical phrase inventories, and show how
orientations can be scored in hierarchi-
cal decoding. The model is empirically
evaluated on the NIST Chinese→English
translation task. We achieve a signifi-
cant improvement of +1.2 %BLEU over
a typical hierarchical baseline setup and
an improvement of +0.7 %BLEU over a
syntax-augmented hierarchical setup. On
a French→German translation task, we
obtain a gain of up to +0.4 %BLEU.

1 Introduction

In hierarchical phrase-based translation (Chiang,
2005), a probabilistic synchronous context-free
grammar (SCFG) is induced from bilingual train-
ing corpora. In addition to continuous lexical
phrases as in standard phrase-based translation,
hierarchical phrases with usually up to two non-
terminals are extracted from the word-aligned par-
allel training data.

Hierarchical decoding is typically carried out
with a parsing-based procedure. The parsing al-
gorithm is extended to handle translation candi-

dates and to incorporate language model scores
via cube pruning (Chiang, 2007). During decod-
ing, a hierarchical translation rule implicitly spec-
ifies the placement of the target part of a sub-
derivation which is substituting one of its non-
terminals in a partial hypothesis. The hierarchical
phrase-based model thus provides an integrated re-
ordering mechanism. The reorderings which are
being conducted by the hierarchical decoder are
a result of the application of SCFG rules, which
generally means that there must have been some
evidence in the training data for each reordering
operation. At first glance one might be tempted to
believe that any additional designated phrase ori-
entation modeling would be futile in hierarchical
translation as a consequence of this. We argue
that such a conclusion is false, and we will pro-
vide empirical evidence in this work that lexical-
ized phrase orientation scoring can be highly ben-
eficial not only in standard phrase-based systems,
but also in hierarchical ones.

The purpose of a phrase orientation model is
to assess the adequacy of phrase reordering dur-
ing search. In standard phrase-based translation
with continuous phrases only and left-to-right hy-
pothesis generation (Koehn et al., 2003; Zens and
Ney, 2008), phrase reordering is implemented by
jumps within the input sentence. The choice of the
best order for the target sequence is made based
on the language model score of this sequence and
a distortion cost that is computed from the source-
side jump distances. Though the space of admis-
sible reorderings is in most cases contrained by a
maximum jump width or coverage-based restric-
tions (Zens et al., 2004) for efficiency reasons,
the basic approach of arbitrarily jumping to un-
covered positions on source side is still very per-
missive. Lexicalized reordering models assist the
decoder in taking a good decision. Phrase-based
decoding allows for a straightforward integration
of lexicalized reordering models which assign
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different scores depending on how a currently
translated phrase has been reordered with respect
to its context. Popular lexicalized reordering mod-
els for phrase-based translation distinguish three
orientation classes: monotone, swap, and discon-
tinuous (Tillmann, 2004; Koehn et al., 2007; Gal-
ley and Manning, 2008). To obtain such a model,
scores for the three classes are calculated from the
counts of the respective orientation occurrences in
the word-aligned training data for each extracted
phrase. The left-to-right orientation of phrases
during phrase-based search can be easily deter-
mined from the start and end positions of con-
tinuous phrases. Approximations may need to be
adopted for the right-to-left scoring direction.

The utility of phrase orientation models in stan-
dard phrase-based translation is plausible and has
been empirically established in practice. In hierar-
chical phrase-based translation, some other types
of lexicalized reordering models have been inves-
tigated recently (He et al., 2010a; He et al., 2010b;
Hayashi et al., 2010; Huck et al., 2012a), but
in none of them are the orientation scores condi-
tioned on the lexical identity of each phrase in-
dividually. These models are rather word-based
and applied on block boundaries. Experimental
results obtained with these other types of lexical-
ized reordering models have been very encourag-
ing, though.

There are certain reasons why assessing the ad-
equacy of phrase reordering should be useful in
hierarchical search:

• Albeit phrase reorderings are always a result
of the application of SCFG rules, the decoder
is still able to choose from many different
parses of the input sentence.

• The decoder can furthermore choose from
many translation options for each given
parse, which result in different reorderings
and different phrases being embedded in the
reordering non-terminals.

• All other models only weakly connect an em-
bedded phrase with the hierarchical phrase it
is placed into, in particular as the set of non-
terminals of the hierarchical grammar only
contains two generic non-terminal symbols.

We therefore investigate phrase orientation mod-
eling for hierarchical translation in this work.

2 Outline

The remainder of the paper is structured as fol-
lows: We briefly outline important related pub-
lications in the following section. We subse-
quently give a summary of some essential aspects
of the hierarchical phrase-based translation ap-
proach (Section 4). Phrase orientation modeling
and a way in which a phrase orientation model can
be trained for hierarchical phrase inventories are
explained in Section 5. In Section 6 we introduce
an extension of hierarchical search which enables
the decoder to score phrase orientations. Empiri-
cal results are presented in Section 7. We conclude
the paper in Section 8.

3 Related Work

Hierarchical phrase-based translation was pro-
posed by Chiang (2005). He et al. (2010a) inte-
grated a maximum entropy based lexicalized re-
ordering model with word- and class-based fea-
tures. Different classifiers for different rule pat-
terns are trained for their model (He et al.,
2010b). A comparable discriminatively trained
model which applies a single classifier for all types
of rules was developed by Huck et al. (2012a).
Hayashi et al. (2010) explored the word-based re-
ordering model by Tromble and Eisner (2009) in
hierarchical translation.

For standard phrase-based translation, Galley
and Manning (2008) introduced a hierarchical
phrase orientation model. Similar to previous ap-
proaches (Tillmann, 2004; Koehn et al., 2007), it
distinguishes the three orientation classes mono-
tone, swap, and discontinuous. However, it differs
in that it is not limited to model local reordering
phenomena, but allows for phrases to be hierarchi-
cally combined into blocks in order to determine
the orientation class. This has the advantage that
probability mass is shifted from the rather uninfor-
mative default category discontinuous to the other
two orientation classes, which model the location
of a phrase more specifically. In this work, we
transfer this concept to a hierarchical phrase-based
machine translation system.

4 Hierarchical Phrase-Based Translation

The non-terminal set of a standard hierarchical
grammar comprises two symbols which are shared
by source and target: the initial symbol S and one
generic non-terminal symbol X . The generic non-
terminal X is used as a placeholder for the gaps
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(a) Monotone phrase orientation.
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(b) Swap phrase orientation.
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(c) Discontinuous phrase orientation.

Figure 1: Extraction of the orientation classes monotone, swap, and discontinuous from word-aligned
training samples. The examples show the left-to-right orientation of the shaded phrases. The dashed
rectangles indicate how the predecessor words are merged into blocks with regard to their word align-
ment.

within the right-hand side of hierarchical transla-
tion rules as well as on all left-hand sides of the
translation rules that are extracted from the paral-
lel training corpus.

Extracted rules of a standard hierarchical gram-
mar are of the form X → 〈α, β,∼ 〉 where 〈α, β〉
is a bilingual phrase pair that may contain X , i.e.
α ∈ ({X } ∪ VF )+ and β ∈ ({X } ∪ VE)+, where
VF and VE are the source and target vocabulary,
respectively. The non-terminals on the source side
and on the target side of hierarchical rules are
linked in a one-to-one correspondence. The ∼ re-
lation defines this one-to-one correspondence. In
addition to the extracted rules, a non-lexicalized
initial rule

S → 〈X∼0, X∼0〉 (1)

is engrafted into the hierarchical grammar, as well
as a special glue rule

S → 〈S∼0X∼1, S∼0X∼1〉 (2)

that the system can use for serial concatenation
of phrases as in monotonic phrase-based transla-
tion. The initial symbol S is the start symbol of
the grammar.

Hierarchical search is conducted with a cus-
tomized version of the CYK+ parsing algo-
rithm (Chappelier and Rajman, 1998) and cube
pruning (Chiang, 2007). A hypergraph which rep-
resents the whole parsing space is built employing
CYK+. Cube pruning operates in bottom-up topo-
logical order on this hypergraph and expands at
most k derivations at each hypernode.

5 Modeling Phrase Orientation for
Hierarchical Machine Translation

The phrase orientation model we are using was
introduced by Galley and Manning (2008). To
model the sequential order of phrases within the
global translation context, the three orientation
classes monotone (M), swap (S) and discontinu-
ous (D) are distinguished, each in both left-to-
right and right-to-left direction. In order to cap-
ture the global rather than the local context, previ-
ous phrases can be merged into blocks if they are
consistent with respect to the word alignment. A
phrase is in monotone orientation if a consistent
monotone predecessor block exists, and in swap
orientation if a consistent swap predecessor block
exists. Otherwise it is in discontinuous orientation.

Given a sequence of source words fJ1 and a se-
quence of target words eI1, a block 〈f j2j1 , e

i2
i1
〉 (with

1 ≤ j1 ≤ j2 ≤ J and 1 ≤ i1 ≤ i2 ≤ I)
is consistent with respect to the word alignment
A ⊆ {1, ..., I} × {1, ..., J} iff

∃(i, j) ∈ A : i1 ≤ i ≤ i2 ∧ j1 ≤ j ≤ j2
∧ ∀(i, j) ∈ A : i1 ≤ i ≤ i2 ↔ j1 ≤ j ≤ j2.

(3)

Consistency is based upon two conditions in this
definition: (1.) At least one source and target po-
sition within the block must be aligned, and (2.)

words from inside the source interval may only
be aligned to words from inside the target inter-
val and vice versa. These are the same condi-
tions as those that are applied for the extraction of
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(a) A monotone orientation.

Left-to-right orientation counts:

N(M |f2X∼0f4, e2X
∼0e4) = 1

N(S|f2X∼0f4, e2X
∼0e4) = 0

N(D|f2X∼0f4, e2X
∼0e4) = 0
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(b) Another monotone orientation.

Left-to-right orientation counts:

N(M |f2X∼0f4, e2X
∼0e4) = 2

N(S|f2X∼0f4, e2X
∼0e4) = 0

N(D|f2X∼0f4, e2X
∼0e4) = 0
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(c) A swap orientation.

Left-to-right orientation counts:

N(M |f2X∼0f4, e2X
∼0e4) = 2

N(S|f2X∼0f4, e2X
∼0e4) = 1

N(D|f2X∼0f4, e2X
∼0e4) = 0

Figure 2: Accumulation of orientation counts for hierarchical phrases during extraction. The hierarchical
phrase 〈f2X∼0f4, e2X∼0e4〉 (dark shaded) can be extracted from all the three training samples. Its
orientation is identical to the orientation of the continuous phrase (lightly shaded) which the sub-phrase
is cut out of, respectively. Note that the actual lexical content of the sub-phrase may differ. For instance,
the sub-phrase 〈f3, e3〉 is being cut out in Fig. 2a, and the sub-phrase 〈f6, e6〉 is being cut out in Fig. 2b.

standard continuous phrases. The only difference
is that length constraints are applied to phrases, but
not to blocks.

Figure 1 illustrates the extraction of monotone,
swap, and discontinuous orientation classes in
left-to-right direction from word-aligned bilingual
training samples. The right-to-left direction works
analogously.

We found that this concept can be neatly
plugged into the hierarchical phrase-based trans-
lation paradigm, without having to resort to ap-
proximations in decoding, which is necessary to
determine the right-to-left orientation in a standard
phrase-based system (Cherry et al., 2012). To train
the orientations, the extraction procedure from the
standard phrase-based version of the reordering
model can be used with a minor extension. The
model is trained on the same word-aligned data
from which the translation rules are extracted. For
each training sentence, we extract all phrases of
unlimited length that are consistent with the word
alignment, and store their corners in a matrix. The
corners are distinguished by their location: top-
left, top-right, bottom-left, and bottom-right. For
each bilingual phrase, we determine its left-to-
right and right-to-left orientation by checking for
adjacent corners.

The lexicalized orientation probability for the
orientation O ∈ {M,S,D} and the phrase pair
〈α, β〉 is estimated as its smoothed relative fre-
quency:

p(O) =
N(O)∑

O′∈{M,S,D}N(O′)
(4)

p(O|α, β) = σ · p(O) +N(O|α, β)
σ +

∑
O′∈{M,S,D}N(O′|f̃ , ẽ)

.

(5)
Here, N(O) denotes the global count and

N(O|α, β) the lexicalized count for the orienta-
tion O. σ is a smoothing constant.

To determine the orientation frequency for a hi-
erarchical phrase with non-terminal symbols, the
orientation counts of all those phrases are accu-
mulated from which a sub-phrase is cut out and
replaced by a non-terminal symbol to obtain this
hierarchical phrase. Figure 2 gives an example.

Negative logarithms of the values are used as
costs in the log-linear model combination (Och
and Ney, 2002). Cost 0 for all orientations is as-
signed to the special rules which are not extracted
from the training data (initial and glue rule).
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(a) Monotone non-terminal orientation.

f1

X~0

f2

f3

f4

e1 e2 e3 X~0 e4

target

so
u
rc
e

(b) Swap non-terminal orientation.
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(c) Discontinuous non-terminal orienta-
tion.

Figure 3: Scoring with the orientation classes monotone, swap, and discontinuous. Each picture shows
exactly one hierarchical phrase. The block which replaces the non-terminal X during decoding is embed-
ded with the orientation of this non-terminal X within the hierarchical phrase. The examples show the
left-to-right orientation of the non-terminal. The left-to-right orientation can be detected from the word
alignment of the hierarchical phrase, except for cases where the non-terminal is in boundary position on
target side.

6 Phrase Orientation Scoring in
Hierarchical Decoding

Our implementation of phrase orientation scoring
in hierarchical decoding is based on the observa-
tion that hierarchical rule applications, i.e. the us-
age of rules with non-terminals within their right-
hand sides, settle the target sequence order. Mono-
tone, swap, or discontinuous orientations of blocks
are each due to monotone, swap, or discontinuous
placement of non-terminals which are being sub-
stituted by these blocks.

The problem of phrase orientation scoring can
thus be mostly reduced to three steps which need
to be carried out whenever a hierarchical rule is
applied:

1. Determining the orientations of the non-
terminals in the rule.

2. Retrieving the proper orientation cost of the
topmost rule application in the sub-derivation
which corresponds to the embedded block for
the respective non-terminal.

3. Applying the orientation cost to the log-linear
model combination for the current derivation.

The orientation of a non-terminal in a hierarchi-
cal rule is dependent on the word alignments in
its context. Figure 3 depicts three examples.1 We

however need to deal with special cases where a
non-terminal orientation cannot be established at
the moment when the hierarchical rule is consid-
ered. We first describe the non-degenerate case
(Section 6.1). Afterwards we briefly discuss our
strategy in the special situation of boundary non-
terminals where the non-terminal orientation can-
not be determined from information which is in-
herent to the hierarchical rule under consideration
(Section 6.3).

We focus on left-to-right orientation scoring;
right-to-left scoring is symmetric.

6.1 Determining Orientations

In order to determine the orientation class of a
non-terminal, we rely on the word alignments
within the phrases. With each phrase, we store
the alignment matrix that has been seen most fre-
quently during phrase extraction. Non-terminal
symbols on target side are assumed to be aligned
to the respective non-terminal symbols on source

1Note that even maximal consecutive lexical intervals (ei-
ther on source or target side) are not necessarily aligned in
a way which makes them consistent bilingual blocks. In
Fig. 3a, e4 is for instance aligned both below and above
the non-terminal. In Fig. 3c, neither 〈f1f2, e1e2〉 nor
〈f1f2, e3e4〉 would be valid continuous phrases (the same
holds for 〈f3f4, e1e2〉 and 〈f3f4, e3e4〉). We actually need
the generalization of the phrase orientation model to hierar-
chical phrases as described in Section 5 for this reason. Oth-
erwise we would be able to just score neighboring consistent
sub-blocks with a model that does not account for hierarchi-
cal phrases with non-terminals.
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(a) Last previous aligned target position.
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(b) Initial box.
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(c) Expansion of the initial box.
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(d) The final box is a consistent left-to-right mono-
tone predecessor block of the non-terminal.

Figure 4: Determining the orientation class during decoding. Starting from the last previous aligned
target position, a box is spanned across the relevant alignment links onto the corner of the non-terminal.
The box is then checked for consistency.

side according to the ∼ relation. In the alignment
matrix, the rows and columns of non-terminals can
obviously contain only exactly this one alignment
link.

Starting from the last previous aligned target po-
sition to the left of the non-terminal, the algorithm
expands a box that spans across the other rele-
vant alignment links onto the corner of the non-
terminal. Afterwards it checks whether the areas
on the opposite sides of the non-terminal position
are non-aligned in the source and target intervals
of this box. The non-terminal is in discontinu-
ous orientation if the box is not a consistent block.
If the box is a consistent block, the non-terminal
is in monotone orientation if its source-side posi-
tion is larger than the maximum of the source-side
interval of the box, and in swap orientation if its
source-side position is smaller than the minimum
of the source-side interval of the box.

Figure 4 illustrates how the procedure operates.
In left-to-right direction, an initial box is spanned
from the last previous aligned target position to
the lower (monotone) or upper (swap) left cor-
ner of the non-terminal. In the example, starting
from 〈f3, e5〉 (Fig. 4a), this initial box is spanned
to the lower left corner by iterating from f3 to
f4 and expanding its target interval to the mini-
mum aligned target position within these two rows
of the alignment matrix. The initial box cov-
ers 〈f3f4, e3e4e5〉 (Fig. 4b). The procedure then
repeatedly checks whether the box needs to be
expanded—alternating to the bottom (monotone)
or top (swap) and to the left—until no alignment
links below or to the left of the box break the
consistency. Two box expansion are conducted
in the example: the first one expands the ini-
tial box below, resulting in a larger box which
covers 〈f1f2f3f4, e3e4e5〉 (Fig. 4c); the second
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(a) Left boundary non-
terminal that can be placed
in left-to-right monotone or
discontinuous orientation
when the phrase is embedded
into another one.
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(b) Left boundary non-
terminal that can be placed
in left-to-right discontinuous
or swap orientation when
the phrase is embedded into
another one.
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(c) Left boundary non-
terminal that can be placed in
left-to-right monotone, swap,
or discontinuous orientation
when the phrase is embedded
into another one.
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(d) Left boundary non-
terminal that can only be
placed in left-to-right dis-
continuous orientation when
the phrase is embedded into
another one.

Figure 5: Left boundary non-terminal symbols. Orientations the non-terminal can eventually turn out to
get placed in differ depending on existing alignment links in the rest of the phrase. Delayed left-to-right
scoring is not required in cases as in Fig. 5d. Fractional costs for the possible orientations are temporarily
applied in the other cases and recursively corrected as soon as an orientation is constituted in an upper
hypernode.

one expands this new box to the left, resulting in
a final box which covers 〈f1f2f3f4, e1e2e3e4e5〉
(Fig. 4d) and does not need to be expanded to-
wards the lower left corner any more. Afterwards
the procedure examines whether the final box is
a consistent block by inspecting whether the ar-
eas on the opposite side of the non-terminal po-
sition are non-aligned in the intervals of the box
(areas with waved lines in the Fig. 4d). These ar-
eas do not contain alignment links in the example:
the orientation class of the non-terminal is mono-
tone as it has a consistent left-to-right monotone
predecessor block. (Suppose an alignment link
〈f5, e2〉 would break the consistency: the orienta-
tion class would then be discontinuous as the final
box would not be a consistent block.)

Orientations of non-terminals could basically be
precomputed and stored in the translation table.
We however compute them on demand during de-
coding. The computational overhead did not seem
to be too severe in our experiments.

6.2 Scoring Orientations

Once the orientation is determined, the proper ori-
entation cost of the embedded block needs to be
retrieved. We access the topmost rule application
in the sub-derivation which corresponds to the em-
bedded block for the respective non-terminal and
read the orientation model costs for this rule. The
special case of delayed scoring for boundary non-
terminals as described in the subsequent section is
recursively processed if necessary. The retrieved

orientation costs of the embedded blocks of all
non-terminals are finally added to the log-linear
model combination for the current derivation.

6.3 Boundary Non-Terminals

Cases where a non-terminal orientation cannot be
established at the moment when the hierarchi-
cal rule is considered arise when a non-terminal
symbol is in a boundary position on target side.
We define a non-terminal to be in (left or right)
boundary position iff no symbols are aligned be-
tween the phrase-internal target-side index of the
non-terminal and the (left or right) phrase bound-
ary. Left boundary positions of non-terminals
are critical for left-to-right orientation scoring,
right boundary positions for right-to-left orienta-
tion scoring. We denote non-terminals in bound-
ary position as boundary non-terminals.

The procedure as described in Section 6.1 is not
applicable to boundary non-terminals because a
last previous aligned target position does not ex-
ist. If it is impossible to determine the final non-
terminal orientation in the hypothesis from infor-
mation which is inherent to the phrase, we are
forced to delay the orientation scoring of the em-
bedded block. Our solution in these cases is to
heuristically add fractional costs of all orientations
the non-terminal can still eventually turn out to get
placed in (cf. Figure 5). We do so because not
adding an orientation cost to the derivation would
give it an unjustified advantage over other ones.
As soon as an orientation is constituted in an up-
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per hypernode, any heuristic and actual orientation
costs can be collected by means of a recursive call.
Note that monotone or swap orientations in upper
hypernodes can top-down transition into discon-
tinuous orientations for boundary non-terminals,
depending on existing phrase-internal alignment
links in the context of the respective boundary
non-terminal. In the derivation at the upper hyper-
node, the heuristic costs are subtracted and the cor-
rect actual costs added. Delayed scoring can lead
to search errors; in order to keep them confined,
the delayed scoring needs to be done separately
for all derivations, not just for the first-best sub-
derivations along the incoming hyperedges.

7 Experiments

We evaluate the effect of phrase orienta-
tion scoring in hierarchical translation on the
Chinese→English 2008 NIST task2 and on the
French→German language pair using the standard
WMT3 newstest sets for development and testing.

7.1 Experimental Setup

We work with a Chinese–English parallel train-
ing corpus of 3.0 M sentence pairs (77.5 M Chi-
nese / 81.0 M English running words). To train the
German→French baseline system, we use 2.0 M
sentence pairs (53.1 M French / 45.8 M German
running words) that are partly taken from the
Europarl corpus (Koehn, 2005) and have partly
been collected within the Quaero project.4

Word alignments are created by aligning the
data in both directions with GIZA++5 and sym-
metrizing the two trained alignments (Och and
Ney, 2003). When extracting phrases, we ap-
ply several restrictions, in particular a maximum
length of ten on source and target side for lexi-
cal phrases, a length limit of five on source and
ten on target side for hierarchical phrases (includ-
ing non-terminal symbols), and no more than two
non-terminals per phrase.

A standard set of models is used in the base-
lines, comprising phrase translation probabilities
and lexical translation probabilities in both direc-
tions, word and phrase penalty, binary features
marking hierarchical rules, glue rule, and rules

2http://www.itl.nist.gov/iad/mig/
tests/mt/2008/

3http://www.statmt.org/wmt13/
translation-task.html

4http://www.quaero.org
5http://code.google.com/p/giza-pp/

with non-terminals at the boundaries, three sim-
ple count-based binary features, phrase length ra-
tios, and a language model. The language models
are 4-grams with modified Kneser-Ney smooth-
ing (Kneser and Ney, 1995; Chen and Goodman,
1998) which have been trained with the SRILM
toolkit (Stolcke, 2002).

Model weights are optimized against BLEU (Pa-
pineni et al., 2002) with MERT (Och, 2003) on
100-best lists. For Chinese→English we employ
MT06 as development set, MT08 is used as unseen
test set. For German→French we employ news-
test2009 as development set, newstest2008, news-
test2010, and newstest2011 are used as unseen test
sets. During decoding, a maximum length con-
straint of ten is applied to all non-terminals except
the initial symbol S . Translation quality is mea-
sured in truecase with BLEU and TER (Snover et
al., 2006). The results on MT08 are checked for
statistical significance over the baseline. Confi-
dence intervals have been computed using boot-
strapping for BLEU and Cochran’s approximate
ratio variance for TER (Leusch and Ney, 2009).

7.2 Chinese→English Experimental Results

Table 1 comprises all results of our empirical eval-
uation on the Chinese→English task.

We first compare the performance of the phrase
orientation model in left-to-right direction only
with the performance of the phrase orientation
model in left-to-right and right-to-left direction
(bidirectional). In all experiments, monotone,
swap, and discontinuous orientation costs are
treated as being from different feature functions
in the log-linear model combination: we assign
a separate scaling factor to each of the orienta-
tions. We have three more scaling factors than in
the baseline for left-to-right direction only, and six
more scaling factors for bidirectional phrase ori-
entation scoring. As can be seen from the results
table, the left-to-right model already yields a gain
of 1.1 %BLEU over the baseline on the unseen test
set (MT08). The bidirectional model performs just
slightly better (+1.2 %BLEU over the baseline).
With both models, the TER is reduced significantly
as well (-1.1 / -1.3 compared to the baseline). We
adopted the discriminative lexicalized reordering
model (discrim. RO) that has been suggested by
Huck et al. (2012a) for comparison purposes. The
phrase orientation model provides clearly better
translation quality in our experiments.
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MT06 (Dev) MT08 (Test)
NIST Chinese→English BLEU [%] TER [%] BLEU [%] TER [%]
HPBT Baseline 32.6 61.2 25.2 66.6
+ discrim. RO 33.0 61.3 25.8 66.0
+ phrase orientation (left-to-right) 33.3 60.7 26.3 65.5
+ phrase orientation (bidirectional) 33.2 60.6 26.4 65.3
+ swap rule 32.8 61.7 25.8 66.6

+ discrim. RO 33.1 61.2 26.0 66.1
+ phrase orientation (bidirectional) 33.3 60.7 26.5 65.3
+ binary swap feature 33.2 61.0 25.9 66.2

+ discrim. RO 33.2 61.3 26.2 66.1
+ phrase orientation (bidirectional) 33.6 60.5 26.6 65.1

+ soft syntactic labels 33.4 60.8 26.1 66.4
+ phrase orientation (bidirectional) 33.7 60.1 26.8 65.1

+ phrase-level s2t+t2s DWL + triplets 34.3 60.1 27.7 65.0
+ discrim. RO 34.8 59.8 27.7 64.7
+ phrase orientation (bidirectional) 35.3 59.0 28.4 63.7

Table 1: Experimental results for the NIST Chinese→English translation task (truecase). On the test set,
bold font indicates results that are significantly better than the baseline (p < .05).

As a next experiment, we bring in more re-
ordering capabilities by augmenting the hierarchi-
cal grammar with a single swap rule

X → 〈X∼0X∼1,X∼1X∼0〉 (6)

supplementary to the initial rule and glue rule.
The swap rule allows adjacent phrases to be trans-
posed. The setup with swap rule and bidirectional
phrase orientation model is about as good as the
setup with just the bidirectional phrase orienta-
tion model and no swap rule. If we furthermore
mark the swap rule with a binary feature (binary
swap feature), we end up at an improvement of
+1.4 %BLEU over the baseline. The phrase ori-
entation model again provides higher translation
quality than the discriminative reordering model.

In a third experiment, we investigate whether
the phrase orientation model also has a positive in-
fluence when integrated into a syntax-augmented
hierarchical system. We configured a hierarchi-
cal setup with soft syntactic labels (Stein et al.,
2010), a syntactic enhancement in the manner of
preference grammars (Venugopal et al., 2009). On
MT08, the syntax-augmented system performs 0.9
%BLEU above the baseline setup. We achieve an
additional improvement of +0.7 %BLEU and -1.3
TER by including the bidirectional phrase orien-
tation model. Interestingly, the translation quality
of the setup with soft syntactic labels (but with-
out phrase orientation model) is worse than of the

setup with phrase orientation model (but without
soft syntactic labels) on MT08. The combination
of both extensions provides the best result, though.

In a last experiment, we finally took a very
strong setup which improves over the baseline by
2.5 %BLEU through the integration of phrase-level
discriminative word lexicon (DWL) models and
triplet lexicon models in source-to-target (s2t) and
target-to-source (t2s) direction. The models have
been presented by Hasan et al. (2008), Bangalore
et al. (2007), and Mauser et al. (2009). We apply
them in a similar manner as proposed by Huck et
al. (2011). In this strong setup, the discriminative
reordering model gives gains on the development
set which barely carry over to the test set. Adding
the bidirectional phrase orientation model, in con-
trast, results in a nice gain of +0.7 %BLEU and a
reduction of 1.3 points in TER on the test set, even
on top of the DWL and triplet lexicon models.

7.3 French→German Experimental Results
Table 2 comprises the results of our empirical eval-
uation on the French→German task.

The left-to-right phrase orientation model
boosts the translation quality by up to 0.3 %BLEU.
The reduction in TER is in a similar order of
magnitude. The bidirectional model performs a
bit better again, with an advancement of up to
0.4 %BLEU and a maximal reduction in TER of
0.6 points.
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newstest2008 newstest2009 newstest2010 newstest2011
BLEU TER BLEU TER BLEU TER BLEU TER

French→German [%] [%] [%] [%] [%] [%] [%] [%]
HPBT Baseline 15.2 71.7 15.0 71.7 15.7 69.5 14.2 72.2
+ phrase orientation (left-to-right) 15.1 71.4 15.3 71.4 15.9 69.2 14.5 71.8
+ phrase orientation (bidirectional) 15.4 71.1 15.4 71.3 15.9 69.1 14.6 71.6

Table 2: Experimental results for the French→German translation task (truecase). newstest2009 is used
as development set.

8 Conclusion

In this paper, we introduced a phrase orientation
model for hierarchical machine translation. The
training of a lexicalized reordering model which
assigns probabilities for monotone, swap, and dis-
continuous orientation of phrases was generalized
from standard continuous phrases to hierarchical
phrases. We explained how phrase orientation
scoring can be implemented in hierarchical decod-
ing and conducted a number of experiments on a
Chinese→English and a French→German transla-
tion task. The results indicate that phrase orienta-
tion modeling is a very suitable enhancement of
the hierarchical paradigm.

Our implementation will be released as part of
Jane (Vilar et al., 2010; Vilar et al., 2012; Huck
et al., 2012b), the RWTH Aachen University open
source statistical machine translation toolkit.6
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Abstract

This paper presents a dependency-
constrained hierarchical machine transla-
tion model that uses Moses open-source
toolkit for rule extraction and decoding.
Experiments are carried out for the
German-English language pair in both di-
rections for projective and non-projective
dependencies. We examine effects on
SCFG size and automatic evaluation
results when constraints are applied with
respect to projective or non-projective
dependency structures and on the source
or target language side.

1 Introduction

A fundamental element of natural language syntax
is the dependency structure encoding the binary
asymmetric head-dependent relations captured in
dependency grammar theory. A main criteria for
determining the dependency structure of a given
sentence is the following: The linear position of
dependent, D, is specified with reference to its
head,H (Kübler et al., 2009). This runs in parallel
with that which hierarchical machine translation
SCFG rules encode: The linear position of a trans-
lated phrase, Xi, is specified with reference to the
lexicalised words in the rule. Figure 1 shows de-

She lives
�� ����

in
��

a white house
����

.

Ella vive
�� ����

en
��

una casa
�� ��

blanca .

Figure 1: Projective Dependency Structures

pendency structures for She lives in a white house
and its Spanish translation, with example SCFG

(1) X →< white house , casa blanca >
(2) X →< white , blanca >
(3) X →< house , casa >
(4) X →< X0 house , casa X0 >
(5) X →< white X0 , X0 blanca >

Figure 2: Initial rules (1), (2) and (3), with hierar-
chical rules (4) and (5)

rules shown in Figure 2. Given the existence of
initial rules (1), (2) and (3), hierarchical rules (4)
and (5) can be created. Rule (4) specifies the lin-
ear position of the translation of the English phrase
that precedes house with reference to lexicalised
casa.

For hierarchical machine translation models
(Chiang, 2005), there is no requirement for a syn-
tactic relationship to exist between the lexicalised
words of a rule and the words replaced by non-
terminals, the only requirement being that substi-
tuted words form an SMT phrase (Koehn et al.,
2003). The dependency structure of either the
source or target (or indeed both) can, however, be
used to constrain rule extraction as to only allow
hierarchical rules in which the linear position of
dependents are specified with reference to the po-
sition of their lexicalised heads. For example, in
the case of the hierarchical rules in Figure 2, rule
(4) satisfies such a constraint according to both the
source and target language dependency structures
(since white is the dependent of house and blanca
is the dependent of casa, and it is both white and
blanca that are replaced by non-terminals while
the heads remain lexicalised) and results in a syn-
chronous grammar rule that positions a dependent
relative to the position of its lexicalised head. Rule
(5), on the other hand, does not satisfy such a con-
straint for either language dependency structure.

In this work, we examine a dependency-
constrained model in which hierarchical rules are
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only permitted in which lexicalised heads spec-
ify the linear position of missing dependents, and
examine the effects of applying such constraints
across a variety of settings for German to English
and English to German translation.

2 Related Work

The increased computational complexity intro-
duced by hierarchical machine translation mod-
els (Chiang, 2005), has motivated techniques of
constraining model size as well as decoder search.
Among such include the work of Zollmann et al.
(2008) and Huang and Xiang (2010), in which rule
table size is vastly reduced by means of filtering
low frequency rules, while Tomeh et al. (2009),
Johnson et al. (2007) and Yang and Zheng (2009)
take the approach of applying statistical signifi-
cance tests to rule filtering, with Lee et al. (2012)
defining filtering methods that estimate transla-
tional effectiveness of rules.

Dependency-based constraints have also been
applied in a variety of settings to combat complex-
ity challenges. Xie et al. (2011) use source side
dependency constraints for translation from Chi-
nese to English, while Shen et al. (2010) apply
target-side dependency constraints for the same
language pair and direction in addition to Ara-
bic to English, Peter et al. (2011) also apply de-
pendency constraints on the target side, but rather
soft constraints that can be relaxed in the case that
an ill-formed structure does in fact yield a bet-
ter translation. Gao et al. (2011) similarly ap-
ply soft dependency constraints but to the source
side for Chinese to English translation, and Galley
and Manning (2009) show several advantages to
using maximum spanning tree non-projective de-
pendency parsing decoding for Chinese to English
translation. Li et al. (2012), although not con-
straining with dependency structure, instead cre-
ate non-terminals with part-of-speech tag combi-
nations for Chinese words identified as heads for
translation into English.

In this paper, we apply the same dependency
constraint to SCFG rule extraction in a variety
of configurations to investigate effects of apply-
ing constraints on the source or target side, to the
language with most or least free word order, as
well as constraining with non-projective depen-
dency structures.

Non-Projective Dependencies
German 38%
English 11%

Table 1: WMT Parallel Training Data

3 Non-Projective Dependencies

A non-projectivity structure is defined as follows:
A non-projective dependency structure is a depen-
dency structure in which at least one dependency
relation exists between a head, H , and its depen-
dent, D, in which the directed path from H to
D does not include at least one word positioned
linearly in the surface form between H and D.
Figure 3 shows an example non-projective depen-
dency structure arising from English Wh-fronting.

Non-projective dependencies occur frequently

When did
�� ����

the crisis
��

begin
��

?

Figure 3: Non-projective Dependency Structure

for many languages, increasingly so for languages
with high levels of free words order. An exami-
nation of Chinese treebanks, for example, reports
that Chinese displays nine different kinds of non-
projective phenomena (Yuelong, 2012) with re-
ports of as many as one in four sentences in tree
banks having non-projective dependency struc-
tures (Nivre, 2007). Even for a language with
relatively rigid word order such as English non-
projectivity is still common, due to Wh-fronting,
topicalisation, scrambling and extraposition. Ta-
ble 1 shows the frequency of non-projective de-
pendency structures in WMT parallel data sets for
German and English when parsed with a state-of-
the-art non-projective dependency parser (Bohnet,
2010).

4 Constrained Model

We define the dependency constraint as follows: to
create a hierarchical rule by replacing a word or
phrase with a non-terminal, all the words of that
phrase must belong to a single complete depen-
dency tree and its head must remain lexicalised
in the rule. In this way, the hierarchical rules of
the SCFG position missing dependents relative to
the position of lexicalised heads. Before extract-
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ing SCFG rules for the dependency-constrained
models, we transform non-projective structures
into projective ones, in order to allow the sub-
stitution of non-projective dependency trees by a
single non-terminal. Although the transformation
simplifies the dependency structure, it will intro-
duce some dis-fluency to the training data, and we
therefore include experiments to examine such ef-
fects.

Figure 4 shows a German-English translation
constrained by means of the German dependency
structure and Figure 5 shows the full set of
dependency-constrained hierarchical SCFG rules,
where dependents are specified with reference to
lexicalised heads.

5 Implementation with Moses

For rule extraction we use Moses (Williams and
Koehn, 2012) implementation of GHKM (Galley
et al., 2004; Galley et al., 2006), which although is
conventionally used to extract syntax-augmented
SCFGs from phrase-structure parses (Zollmann
and Venugopal, 2006), we apply the same rule ex-
traction tool to dependency parses. Rule extrac-
tion is implemented in such a way as not to be re-
stricted to any particular set of node labels. The
conventional input format is for example:

<tree label="NP">
<tree label="DET"> the </tree>
<tree label="NN"> cat </tree>

</tree>

The dependency-constrained ruleset can be ex-
tracted with this implementation by arranging de-
pendency structures into tree structures as fol-
lows:1

<tree label="X">
<tree label="X">
<tree label="X"> the </tree>
<tree label="X"> black </tree>
cat

</tree>
ate
<tree label="X">
<tree label="X"> the </tree>
rat

</tree>
</tree>

Since XML format requires nesting of substruc-
tures, only projective dependency structures can
be input to the tool in the way we use it, as non-
projectivity breaks nesting.

1Note that is is possible to replace X with dependency
labels.

6 Non-Projectivity Transform

We therefore transform non-projective depen-
dency structures into projective ones by relocat-
ing the dislocated dependent to a position closer
to its head so that it no longer violates projectivity.
We do this in such a way as not to break any of
the existing dependency relations between pairs of
words. Figure 6 shows an example non-projective
structure (a) before and (b) after the transforma-
tion, where the transformation results in the con-
stituent comprised of words when and begin form-
ing a continuous string, making possible the sub-
stitution of this constituent with a non-terminal.
The fact that one side of the training data from
which hierarchical rules are extracted, however, is
no longer guaranteed to be fluent, raises the ques-
tion as to what effect this disfluency might have
when the constraint is applied on the target side.
We therefore include in our evaluation for both
language directions (and for the case where the
constraints are applied to the source) the effects
of word reorder cause by the transformation. The

Figure 6: Non-Projectivity Transformation

algorithm for converting non-projective structures
is an inorder traversal of the dependency struc-
ture as follows, where words are indexed accord-
ing to their position in the original string prior to
the transformation:

Algorithm 6.1: DEP IN ORD(root)

for each d ∈ D and d.index < root.index
do dep in ord(d)

PRINT(root)
for each d ∈ D and d.index > root.index

do dep in ord(d)
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Figure 4: German English translation with German dependency structure, words surrounded by a dashed
box form a complete dependency tree.

Rules spanning source words 0-6: ich möchte nur wenige anmerkungen machen .
X0 möchte nur wenige anmerkungen machen . X0 should like to make just a few comments .
ich möchte X0 . i should like to X0 .
ich möchte X0 machen . i should like to make X0 .
ich möchte X0 anmerkungen machen . i should like to make X0 comments .
ich möchte X0 wenige anmerkungen machen . i should like to make X0 a few comments .
ich möchte nur wenige anmerkungen machen X0 i should like to make just a few comments X0

non-proj X0 möchte X1 . X0 should like to X1 .
X0 möchte X1 machen . X0 should like to make X1 .
X0 möchte X1 anmerkungen machen . X0 should like to make X1 comments .
X0 möchte X1 wenige anmerkungen machen . X0 should like to make X1 a few comments .
X0 möchte nur wenige anmerkungen machen X1 X0 should like to make just a few comments X1

ich möchte X0 X1 i should like to X0 X1

ich möchte X0 machen X1 i should like to make X0 X1

ich möchte X0 anmerkungen machen X1 i should like to make X0 comments X1

ich möchte X0 wenige anmerkungen machen X1 i should like to make X0 a few comments X1

X0 möchte X1 X2 X0 should like to X1 X2

X0 möchte X1 machen X2 X0 should like to make X1 X2

X0 möchte X1 anmerkungen machen X2 X0 should like to make X1 comments X2

X0 möchte X1 wenige anmerkungen machen X2 X0 should like to make X1 a few comments X2

Rules spanning source words 2-5: nur wenige anmerkungen machen
X0 machen make X0

X0 anmerkungen machen make X0 comments
X0 wenige anmerkungen machen X0 a few comments

Rules spanning source words 2-4: nur wenige anmerkungen
X0 anmerkungen X0 comments
X0 wenige anmerkungen X0 a few comments

Rules spanning source words 2-3: nur wenige
X0 wenige X0 a few

Figure 5: Complete set of dependency-constrained hierarchical SCFG rules for Figure 4
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7 Experiments

WMT training data sets were used for both paral-
lel (1.49 million German/English sentence pairs)
and monolingual training (11.51 million English
& 4.74 million German sentences). Mate non-
projective dependency parser (Bohnet, 2010) was
used for parsing both the German and English
parallel data with standard pre-trained models,
the same parser was used for projective parsing
with non-projectivity turned off.2 Parallel train-
ing data lines containing multiple sentences were
merged into a single pseudo-dependency structure
by adding an artificial root and head-dependent re-
lation between the head of the initial sentence and
any subsequent sentences. Non-projective depen-
dencies were converted into projective structures
using Algorithm 6.1.

Giza++ (Och et al., 1999) was employed for
automatic word alignment, and Moses GHKM
rule extraction (Williams and Koehn, 2012) was
used for hierarchical rule extraction for the
dependency-constrained models. Default settings
were used for rule extraction for all models with
the exception on non-fractional counting being
used, as well as Good-turing discounting. Both
the dependency-constrained and standard mod-
els use the same set of initial rules. For de-
coding, since only a single non-terminal, X , is
present for all models, Moses hierarchical decoder
(Koehn et al., 2007) was used with default set-
tings with the exception of rule span limit being re-
moved for all models. SRILM (Stolke, 2002) was
used for 5-gram language modeling and Kneser-
Ney smoothing (Kneser and Ney, 1995) for both
German-to-English and English-to-German trans-
lation. MERT (Och, 2003) was carried out on
WMT newstest2009 development set optimizing
for BLEU, and final results are reported for held-
out test sets, newstest2010 and newstest2011, with
BLEU (Papineni et al., 2001) and LR-score (Birch
and Osborne, 2010) for evaluation.

7.1 Results

Table 2 shows automatic evaluation results for
both the dependency-constrained and standard
hierarchical models for both language direc-
tions. Compared to the standard hierarchical
model (orig), the best performing dependency-
constrained models, sl npr (de-en) and tl npr (en-

2OpenNLP (Feinerer, 2012) sentence splitter is recom-
mended with the parser we and was used for preprocessing.

de), show significant decreases in mean BLEU
score, -0.44 for German to English and -0.13
for English to German. However, there is a
trade-off, as the dependency-constrained models
achieve vast reductions in model size, approx.
93% for German to English and 89% for English
to German in numbers of SCFG hierarchical rules.
This results in decreased decoding times, with the
best performing dependency-constrained models
achieving a decrease of 26% for German to En-
glish and 34% for English to German in mean de-
coding times.

The decrease in BLEU scores is not likely to be
attributed to less accurate long-distance reordering
for German to English translation, as the Kendall
Tau LR-scores for this language direction show an
increase over the standard hierarchical models of
+0.25 mean LR. Although this is not the case for
English to German, as mean LR scores show a
slight decrease (-0.11 LR).

The number of hierarchical rules (not including
glue rules) employed during decoding provides a
useful indication of to what degree each model ac-
tually uses hierarchical rules to construct transla-
tions, i.e. not simply concatenating phrases with
glue rules. For English to German translation,
while the number of hierarchical rules present in
the SCFG is vastly reduced, the number of hier-
archical rules used during decoding actually in-
creases, with double the number of hierarchical
rules used to translate test segments compared to
the standard hierarchical model, from an average
of only 0.58 hierarchical rules per segment for the
standard model to 1.19 per segment. This indi-
cates that the set of hierarchical rules is refined by
the dependency constraint.

When the more linguistically valid non-
projective dependency structure, as opposed to
the projective dependency structure, is used to
constrain rule extraction significant increases in
BLEU scores are achieved for all configurations.
The most significant gains in this respect occur
when constraints are applied on the source side,
+0.58 mean BLEU for German to English and
+0.50 mean BLEU for English to German.

In general, when constraints are applied to the
more free word order language, German, regard-
less of whether or not translation is into or out of
German, marginally higher BLEU scores result,
with an increase of +0.03 mean BLEU for German
to English translation and similarly an increase of
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SCFG mean hier. mean segment
hier. rules newstest 2010 newstest 2011 mean rules decode time
(millions) BLEU LR-K BLEU LR-K BLEU decoder (seconds)

de-en

hpb

orig 35.25 22.30 71.86 20.47 70.55 21.39 2.51 6.76
tl re 34.77 22.31 71.43 20.49 70.27 21.40 2.63 6.39
tl are 34.77 22.41 71.16 20.36 69.89 21.39 2.68 6.14
sl are 33.87 22.40 70.78 20.27 69.78 21.34 2.71 6.02
sl re 33.87 22.06 71.38 20.15 70.25 21.11 2.41 6.17

dc

sl npr 2.49 21.57 71.87 20.09 71.04 20.95 1.15 4.99
tl npr 1.45 21.88 72.20 19.95 71.36 20.92 2.85 4.62
tl pr 1.12 21.43 71.82 19.75 70.90 20.59 1.40 3.62
sl pr 0.34 21.05 72.20 19.69 71.36 20.37 1.10 1.98

en-de

hpb

orig 36.30 16.14 70.24 15.05 69.91 15.60 0.58 7.25
tl re 35.20 16.13 69.81 14.94 69.45 15.54 1.03 5.16
tl are 35.20 16.15 69.06 14.57 68.66 15.36 1.89 4.82
sl are 35.68 15.72 69.25 14.44 69.06 15.08 1.88 5.23
sl re 35.68 15.72 70.21 14.38 69.84 15.05 1.16 5.16

dc

tl npr 4.00 16.03 70.12 14.91 69.81 15.47 1.19 4.79
sl npr 1.09 15.94 70.07 14.85 69.69 15.40 1.78 3.46
tl pr 0.92 15.88 70.46 14.78 69.90 15.33 1.23 4.05
sl pr 0.88 15.58 70.18 14.22 69.80 14.90 1.19 2.90

Table 2: Effects of dependency constraints and dependency-based reordering on translation quality for
German-to-English (de-en) and English to German (en-de), hpb=hierarchical phrase-based, orig=no re-
ordering, ∗re=dependency-based word reordering where only hierarchical rules are extracted from re-
ordered training data, ∗are=dependency-based word reordering where all SCFG rules extracted from re-
ordered training data, dc=dependency-constrained, ∗pr=projective parse used for dependency constraint,
∗npr=non-projective parse used for dependency constraint, sl∗=constraints or reordering for source lan-
guage, tl∗=constraints or reordering for target language, numbers of hierarchical rules reported do not
include glue rules.

+0.07 mean BLEU for English to German, with
the increase being statistically significant for Ger-
man to English for the newstest2010 test set, but
not statistically significant for newstest2011 test
set or English to German (Koehn, 2004).

Overall the best performing dependency-
constrained models are those that retain the high-
est numbers of hierarchical rules in the SCFG.
This indicates that although the dependency-
constrained models produce a refined ruleset,
they nevertheless discard some SCFG rules that
would be useful to translate the unseen test data.
One possible reason is that although the non-
projective dependency structures are significantly
better, these high-quality linguistic structures may
still not be optimal for translation. Another pos-
sibility is that a the GHKM rule extraction con-
straints combined with the dependency constraint
is causing a small set of very useful rules to be
discarded.

7.2 Dependency-based Reordering

We examine the effects of the non-projective
transformation in isolation of any dependency-
constraints by training a standard hierarchical

model on the reordered corpus with no depen-
dency constraints applied. We do this in two set-
ups. First, we extract hierarchical rules from the
reordered training corpus and initial rules from the
original unaltered corpus (∗ re in Table 2), as this
is the set-up for the dependency-constrained mod-
els. Simply for interest sake, we repeat this exper-
iment but extract all rules (hierarchical and initial
rules) from the reordered corpus (∗ are in Table 2).

Surprisingly, when non-projective reordering is
carried out on the target side no significant de-
crease in BLEU scores occurs for both language
directions. In fact, a minor increase in mean
BLEU (+0.01) is observed for German to English
translation, but this small increase is not statisti-
cally significant. For the English to German direc-
tion, a minor decrease of -0.06 mean BLEU occurs
(not statistically significant).

Similarly for German to English, when reorder-
ing is applied to the source side, only a minor
decrease (-0.05) results. Non-projective reorder-
ing causes the most significant reduction in per-
formance for English to German when the English
source is reordered, with a decrease of -0.52 mean
BLEU.
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Conclusions

This paper examines non-projectivity and lan-
guage application for dependency-constrained
hierarchical models using Moses open-source
toolkit. Experiments show that when applied
to English to German translation, vastly reduced
model size and subsequently decreased decoding
times result with only a minor decrease in BLEU.
In addition, higher numbers of (non-glue) hierar-
chical rules are used to translate test segments. For
German to English translation, similar decreases
in model size and decoding times occur, but at the
expense of a more significant decrease in BLEU.

In general, results for the dependency-
constrained models show that applying constraints
on the source or target side does not have a major
impact on BLEU scores. Rather the use of high
quality linguistic structures is more important, as
significant improvements are made for all con-
figurations when the non-projective dependency
structure is used to constrain rule extraction.
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Abstract

We present a method for inference in hi-
erarchical phrase-based translation, where
both optimisation and sampling are per-
formed in a common exact inference
framework related to adaptive rejection
sampling. We also present a first imple-
mentation of that method along with ex-
perimental results shedding light on some
fundamental issues. In hierarchical transla-
tion, inference needs to be performed over
a high-complexity distribution defined by
the intersection of a translation hypergraph
and a target language model. We replace
this intractable distribution by a sequence
of tractable upper-bounds for which exact
optimisers and samplers are easy to obtain.
Our experiments show that exact inference
is then feasible using only a fraction of the
time and space that would be required by
the full intersection, without recourse to
pruning techniques that only provide ap-
proximate solutions. While the current im-
plementation is limited in the size of inputs
it can handle in reasonable time, our exper-
iments provide insights towards obtaining
future speedups, while staying in the same
general framework.

1 Introduction

In statistical machine translation (SMT), optimi-
sation — the task of searching for an optimum
translation — is performed over a high-complexity
distribution defined by the intersection between a
translation hypergraph and a target language model
(LM). This distribution is too complex to be repre-
sented exactly and one typically resorts to approx-
imation techniques such as beam-search (Koehn et
al., 2003) and cube-pruning (Chiang, 2007), where
maximisation is performed over a pruned represen-
tation of the full distribution.

Often, rather than finding a single optimum, one
is really interested in obtaining a set of proba-
bilistic samples from the distribution. This is the
case for minimum error rate training (Och, 2003;
Watanabe et al., 2007), minimum risk training
(Smith and Eisner, 2006) and minimum risk de-
coding (Kumar and Byrne, 2004). Due to the ad-
ditional computational challenges posed by sam-
pling, n-best lists, a by-product of optimisation, are
typically used as approximation to true probabilis-
tic samples. A known issue with n-best lists is that
they tend to be clustered around only one mode of
the distribution. A more direct procedure is to at-
tempt to directly draw samples from the underlying
distribution rather than rely on n-best list approxi-
mations (Arun et al., 2009; Blunsom and Osborne,
2008).

OS∗ (Dymetman et al., 2012a) is a recent ap-
proach that stresses a unified view between the two
types of inference, optimisation and sampling. In
this view, rather than resorting to pruning in or-
der to cope with the tractability issues, one upper-
bounds the complex goal distribution with a sim-
pler “proposal” distribution for which dynamic
programming is feasible. This proposal is incre-
mentally refined to be closer to the goal until the
maximum is found, or until the sampling perfor-
mance exceeds a certain level.

This paper applies the OS∗ approach to the
problem of inference in hierarchical SMT (Chi-
ang, 2007). In a nutshell, the idea is to replace
the intractable problem of intersecting a context-
free grammar with a full language model by the
tractable problem of intersecting it with a simpli-
fied, optimistic version of this LM which “forgets”
parts of n-gram contexts, and to incrementally add
more context based on evidence of the need to do
so. Evidence is gathered by optimising or sampling
from the tractable proxy distribution and focussing
on the most serious over-optimistic estimates rela-
tive to the goal distribution.
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Our main contribution is to provide an exact op-
timiser/sampler for hierarchical SMT that is effi-
cient in exploring only a small fraction of the space
of n-grams involved in a full intersection. Al-
though at this stage our experiments are limited to
short sentences, they provide insights on the be-
havior of the technique and indicate directions to-
wards a more efficient implementation within the
same paradigm.

The paper is organized as follows: §2 provides
background on OS∗ and hierarchical translation; §3
describes our approach to exact inference in SMT;
in §4 the experimental setup is presented and find-
ings are discussed; §5 discusses related work, and
§6 concludes.

2 Background

2.1 OS∗

The OS∗ approach (Dymetman et al., 2012a;
Dymetman et al., 2012b) proposes a unified view
of exact inference in sampling and optimisation,
where the two modalities are seen as extremes in a
continuum of inference tasks in Lp spaces (Rudin,
1987), with sampling associated with the L1 norm,
and optimisation with the L∞ norm.

The objective function p, over which inference
needs to be performed, is a complex non-negative
function over a discrete or continuous space X ,
which defines an unnormalised distribution over
X . The goal is to optimise or sample relative to
p — where sampling is interpreted in terms of the
normalised distribution p̄(.) = p(.)/

∫
X p(x)dx.

Directly optimising or sampling from p is unfea-
sible; however, it is possible to define an (unnor-
malized) distribution q of lower complexity than
p, which upper-bounds p everywhere (ie. p(x) ≤
q(x), ∀x ∈ X), and from which it is feasible to
optimise or sample directly.

Sampling is performed through rejection sam-
pling: first a sample x is drawn from q, and then x
is accepted or rejected with probability given by the
ratio r = p(x)/q(x), which is less than 1 by con-
struction. Accepted x’s can be shown to produce
an exact sample from p (Robert and Casella, 2004).
When the sample x from q is rejected, it is used as
a basis for “refining” q into a slightly more com-
plex q′, where p ≤ q′ ≤ q is still an upper-bound to
p. This “adaptive rejection sampling” technique in-
crementally improves the rate of acceptance, and is
pursued until some rate above a given threshold is
obtained, at which point one stops refining and uses

the current proposal to obtain further exact samples
from p.

In the case of optimisation, one finds the maxi-
mum x relative to q, and again computes the ratio
r = p(x)/q(x). If this ratio equals 1, then it is
easy to show that x is the actual maximum from
p.1 Otherwise we refine the proposal in a similar
way to the sampling case, continuing until we find
a ratio equal to 1 (or very close to 1 if we are will-
ing to accept an approximation to the maximum).
For finite spaces X , this optimisation technique is
argued to be a generalisation of A∗.

An application of the OS∗ technique to sam-
pling/optimisation with High-Order HMM’s is de-
scribed in Carter et al. (2012) and provides back-
ground for this paper. In that work, while the high-
order HMM corresponds to an intractable goal dis-
tribution, it can be upper-bounded by a sequence
of tractable distributions for which optimisers and
samplers can be obtained through standard dy-
namic programming techniques.

2.2 Hierarchical Translation

An abstract formulation of the decoding process
for hierarchical translation models such as that of
Chiang (2007) can be expressed as a sequence of
three steps. In a first step, a translation model
G, represented as a weighted synchronous context-
free grammar (SCFG) (Chiang, 2005), is applied to
(in other words, intersected with) the source sen-
tence f to produce a weighted context-free gram-
mar G(f) over the target language.2 In a second
step, G(f) is intersected with a weighted finite-
state automaton A representing the target language
model, resulting in a weighted context-free gram-
mar G′(f) = G(f) ∩ A. In a final step, a dynamic
programming procedure (see §2.4) is applied to
find the maximum derivation x in G′(f), and the
sequence of leaves of yield(x) is the result transla-
tion.

While this formulation gives the general princi-
ple, already mentioned in Chiang (2007), most im-
plementations do not exactly follow these steps or
use this terminology. In practice, the closest ap-
proach to this abstract formulation is that of Dyer
(2010) and the related system cdec (Dyer et al.,
2010); we follow a similar approach here.

1This is because if x′ was such that p(x′) > p(x), then
q(x′) ≥ p(x′) > p(x) = q(x), and hence x would not be a
maximum for q, a contradiction.

2G(f) is thus a compact representation of a forest over
target sequences, and is equivalent to a hypergraph, using dif-
ferent terminology.
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Whatever the actual implementation chosen, all
approaches face a common problem: the complex-
ity of the intersection G′(f) = G(f)∩A increases
rapidly with the order of the language model, and
can become unwieldy for moderate-length input
sentences even with a bigram model. In order to
address this problem, most implementations em-
ploy variants of a technique called cube-pruning
(Chiang, 2007; Huang and Chiang, 2007), where
the cells constructed during the intersection pro-
cess retain only a k-best list of promising candi-
dates. This is an approximation technique, related
to beam-search, which performs well in practice,
but is not guaranteed to find the actual optimum.

In the approach presented here — described in
detail in §3 — we do not prune the search space.
While we do construct the full initial grammar
G(f), we proceed by incrementally intersecting
it with simple automata associated with upper-
bounds ofA, for which the intersection is tractable.

2.3 Earley Intersection

In their classical paper Bar-Hillel et al. (1961)
showed that the intersection of a CFG with a FSA is
a CFG, and Billot and Lang (1989) were possibly
the first to notice the connection of this construct
with chart-parsing. In general, parsing with a CFG
can be seen as a special case of intersection, with
the input sequence represented as a “flat” (linear
chain) automaton, and this insight allows to gener-
alise various parsing algorithms to corresponding
intersection algorithms. One such algorithm, for
weighted context-free grammars and automata, in-
spired by the CKY parsing algorithm, is presented
in Nederhof and Satta (2008). The algorithm that
we are using is different; it is inspired by Earley
parsing, and was introduced in chapter 2 of Dyer
(2010). The advantage of Dyer’s “Earley Intersec-
tion” algorithm is that it combines top-down pre-
dictions with bottom-up completions. The algo-
rithm thus avoids constructing many non-terminals
that may be justified from the bottom-up perspec-
tive, but can never be “requested” by a top-down
derivation, and would need to be pruned in a sec-
ond pass. Our early experiments showed an impor-
tant gain in intermediary storage and in overall time
by using this Earley-based technique as opposed to
a CKY-based technique.

We do not describe the Earley Intersection algo-
rithm in detail here, but refer to Dyer (2010), which
we follow closely.

2.4 Optimisation and Sampling from a
WCFG

Optimisation in a weighted CFG (WCFG)3, that
is, finding the maximum derivation, is well stud-
ied and involves a dynamic programming proce-
dure that assigns in turn to each nonterminal, ac-
cording to a bottom-up traversal regime, a max-
imum derivation along with its weight, up to the
point where a maximum derivation is found for the
initial nonterminal in the grammar. This can be
seen as working in the max-times semiring, where
the weight of a derivation is obtained through the
product of the weights of its sub-derivations, and
where the weight associated with a nonterminal is
obtained by maximising over the different deriva-
tions rooted in that nonterminal.

The case of sampling can be handled in a very
similar way, by working in the sum-times instead
of the max-times semiring. Here, instead of max-
imising over the weights of the competing deriva-
tions rooted in the same nonterminal, one sums
over these weights. By proceeding in the same
bottom-up way, one ends with an accumulation of
all the weights on the initial nonterminal (this can
also be seen as the partition function associated
with the grammar). An efficient exact sampler is
then obtained by starting at the root nonterminal,
randomly selecting an expansion proportionally to
the weight of this expansion, and iterating in a top-
down way. This process is described in more detail
in section 4 of Johnson et al. (2007), for instance.

3 Approach

The complexity of building the full intersection
G(f) ∩ A, when A represents a language model
of order n, is related to the fact that the number of
states of A grows exponentially with n, and that
each nonterminal N in G(f) tends to generate in
the grammar G′(f) many indexed nonterminals of
the form (i,N, j), where i, j are states of A and
the nonterminal (i,N, j) can be interpreted as an
N connecting an i state to a j state.

In our approach, instead of explicitly construct-
ing the full intersection G(f) ∩ A, which, using
the notation of §2.1, is identified with the unnor-
malised goal distribution p(x), we incrementally
produce a sequence of “proposal” grammars q(t),
which all upper-bound p, where q(0) = G(f) ∩
A(0), ..., q(t+1) = q(t) ∩ A(t), etc. Here A(0) is

3Here the CFG is assumed to be acyclic, which is typically
the case in translation applications.
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an optimistic, low complexity, “unigram” version
of the automaton A, and each increment A(t) is a
small automaton that refines q(t) relative to some
specific k-gram context (i.e., sequence of k words)
not yet made explicit in the previous increments,
where k takes some value between 1 and n. This
process produces a sequence of grammars q(t) such
that q(0)(.) ≥ q(1)(.) ≥ q(2)(.) ≥ ... ≥ p(.).

In the limit
⋂M

t=0A
(t) = A for some largeM , so

that we are in principle able to reconstruct the full
intersection p(.) = q(M) = G(f)∩A(0)∩...∩A(M)

in finite time. In practice our actual process stops
much earlier: in optimisation, when the value of
the maximum derivation x∗t relative to q(t) becomes
equal to its value according to the full language
model, in sampling when the acceptance rate of
samples from q(t) exceeds a certain threshold. The
process is detailed in what follows.

3.1 OS∗ for Hierarchical Translation

Our application of OS∗ to hierarchical translation is
illustrated in Algorithm 1, with the two modes, op-
timisation and sampling, made explicit and shown
side-by-side to stress the parallelism.

On line 1, we initialise the time step to 0, and
for sampling we also initialise the current accep-
tance rate (AR) to 0. On line 2, we initialise the
initial proposal grammar q(0), where A(0) is de-
tailed in §3.2. On line 3, we start a loop: in op-
timisation we stop when we have found an x that
is accepted, meaning that the maximum has been
found; in sampling, we stop when the estimated
acceptance rate (AR) of the current proposal q(t)

exceeds a certain threshold (e.g. 20%) — this AR
can be roughly estimated by observing how many
of the last (say) one hundred samples from the pro-
posal have been accepted, and tends to reflect the
actual acceptance rate obtained by using q(t) with-
out further refinements. On line 4, in optimisation,
we compute the argmax x from the proposal, and in
sampling we draw a sample x from the proposal.4

On line 5, we compute the ratio r = p(x)/q(t)(x);
by construction q(t) is an optimistic version of p,
thus r ≤ 1.

On line 6, in optimisation we accept x if the
ratio is equal to 1, in which case we have found
the maximum, and in sampling we accept x with
probability r, which is a form of adaptive rejec-
tion sampling and guarantees that accepted sam-

4Following the OS∗ approach, taking an argmax is actually
assimilated to an extreme form of sampling, with an L∞ space
taking the place of an L1 space.

ples form exact samples from p; see (Dymetman et
al., 2012a).

If x was rejected (line 7), we then (lines 8, 9)
refine q(t) into a q(t+1) such that p(.) ≤ q(t+1)(.) ≤
q(t)(.) everywhere. This is done by defining the
incremental automatonA(t+1) on the basis of x and
q(t), as will be detailed below, and by intersecting
this automaton with q(t)

Finally, on line 11, in optimisation we return the
x which has been accepted, namely the maximum
of p, and in sampling we return the list of already
accepted x’s, which form an exact sample from p,
along with the current q(t), which can be used as a
sampler to produce further exact samples with an
acceptance rate performance above the predefined
threshold.

3.2 Incremental refinements
Initial automatonA(0) This deterministic au-

tomaton is an “optimistic” version ofA which only
records unigram information. A(0) has only one
state q0, which is both initial and final. For each
word a of the target language it has a transition
(q0, a, q0) whose weight is denoted by w1(a). This
weight is called the “max-backoff unigram weight”
(Carter et al., 2012) and it is defined as:

w1(a) ≡ max
h

plm(a|h),

where plm(a|h) is the conditional language model
probability of a relative to the history h, and where
the maximum is taken over all possible histories,
that is, over all possible sequence of target words
that might precede a.

Max-backoffs Following Carter et al. (2012),
for any language model of finite order, the unigram
max-backoff weights w1(a) can be precomputed in
a “Max-ARPA” table, an extension of the ARPA
format (Jurafsky and Martin, 2000) for the target
language model, which can be precomputed on the
basis of the standard ARPA table.

From the Max-ARPA table one can also directly
compute the following “max-backoff weights”:
w2(a|a−1), w3(a|a−2 a−1), ..., which are defined
by:

w2(a|a−1) ≡ max
h

plm(a|h, a−1)
w3(a|a−2 a−1) ≡ max

h
plm(a|h, a−2 a−1)

...

where the maximum is taken over the part of
the history which is not explicitely indicated.
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Algorithm 1 OS∗ for Hierarchical Translation: Optimisation (left) and Sampling (right).
1: t← 0
2: q(0) ← G(f) ∩A(0)

3: while not an x has been accepted do
4: Find maximum x in q(t)

5: r ← p(x)/q(t)(x)
6: Accept-or-Reject x according to r
7: if Rejected(x) then
8: define A(t+1) based on x and q(t)

9: q(t+1) ← q(t) ∩A(t+1)

10: t← t+ 1
11: return x

1: t← 0, AR← 0
2: q(0) ← G(f) ∩A(0)

3: while not AR > threshold do
4: Sample x ∼ q(t)

5: r ← p(x)/q(t)(x)
6: Accept-or-Reject x according to r
7: if Rejected(x) then
8: define A(t+1) based on x and q(t)

9: q(t+1) ← q(t) ∩A(t+1)

10: t← t+ 1
11: return already accepted x’s along with q(t)

Note that: (i) if the underlying language model
is, say, a trigram model, then w3(a|a−2 a−1)
is simply plm(a|a−2 a−1), and similarly for an
underlying model of order k in general, and
(ii) w2(a|a−1) = maxa−2 w3(a|a−2 a−1) and
w1(a) = maxa−1 w2(a|a−1).

Incremental automata A(t) The weight
assigned to any target sentence by A(0) is larger or
equal to its weight according to A. Therefore, the
initial grammar q(0) = G(f) ∩ A(0) is optimistic
relative to the actual grammar p = G(f) ∩ A: for
any derivation x in p, we have p(x) ≤ q(0)(x).
We can then apply the OS∗ technique with q(0).
In the case of optimisation, this means that
we find the maximum derivation x from q(0).
By construction, with y = yield(x), we have
A(0)(y) ≥ A(y). If the two values are equal, we
have found the maximum,5 otherwise there must
be a word yi in the sequence ym1 = y for which
plm(yi|yi−11 ) is strictly smaller than w1(yi). Let us
take among such words the one for which the ratio
α = w2(yi|yi−1)/w1(yi) ≤ 1 is the smallest, and
for convenience let us rename b = yi−1, a = yi.
We then define the (deterministic) automaton A(1)

as illustrated in the following figure:

b:1 
a:α 

else:1 

b:1 

else:1 

0 1 

Here the state 0 is both initial and final, and the
state 1 is final; all edges carry a (multiplicative)
weight equal to 1, except edge (1, a, 0), which car-
ries the weight α. We use the abbreviation “else”
to refer to any label other than bwhen starting from
0, and other than b or a when starting from 1.

5This case is very unlikely with A(0), but helps introduce
the general case.

It is easy to check that this automaton assigns to
any word sequence y a weight equal to αk, where k
is the number of occurrences of b a in y. In particu-
lar, if y is such that yi−1 = b, yi = a, then the tran-
sition in (the deterministic automaton) A(0) ∩A(1)

that consumes yi carries the weight α w1(a), in
other words, the weight w2(a|b). Thus the new
proposal grammar q(1) = q(0) ∩ A(1) has now
“incorporated” knowledge of the bigram a-in-the-
context-b, at the cost of some increase in its com-
plexity.6

The general procedure for choosing A(t+1) fol-
lows the same pattern. We find the max deriva-
tion x in q(t) along with its yield y; if p(x) =
q(t)(x), we stop and output x; otherwise we find
some subsequence yi−m−1, yi−m, ..., yi such that
the knowledge of the n-gram yi−m, ..., yi has al-
ready been registered in q(t), but not that of the
n-gram yi−m−1, yi−m, ..., yi, and we define an
automaton A(t+1) which assign to a sequence a
weight αk, where

α =
wm+1(yi|yi−m−1, yi−m, ..., yi−1)

wm(yi|yi−m, ..., yi−1)
,

and where k is the number of occurrences of
yi−m−1, yi−m, ..., yi in the sequence.7

We note that we have p ≤ q(t+1) ≤ q(t) ev-
erywhere, and also that the number of possible re-
finement operations is bounded, because at some
point we would have expanded all contexts to their
maximum order, at which point we would have re-
produced p(.) on the whole space X of possible

6Note that without further increasing q(1)’s complexity one
can incorporate knowledge about all bigrams sharing the pre-
fix b. This is because A(1) does not need additional states
to account for different continuations of the context b, all we
need is to update the weights of the transitions leaving state 1
appropriately. More generally, it is not more costly to account
for all n-grams prefixed by the same context of n − 1 words
than it is to account for only one of them.

7Building A(t+1) is a variant of the standard construction
for a “substring-searching” automaton (Cormen et al., 2001)
and produces an automaton with n states (the order of the n-
gram). This construction is omitted for the sake of space.
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derivations exactly. However, we typically stop
much earlier than that, without expanding contexts
in the regions of X which are not promising even
on optimistic assessments based on limited con-
texts.

Following the OS∗ methodology, the situation
with sampling is completely parallel to that of op-
timisation, the only difference being that, instead
of finding the maximum derivation x from q(t)(.),
we draw a sample x from the distribution asso-
ciated with q(t)(.), then accept it with probabil-
ity given by the ratio r = p(x)/q(t)(x) ≤ 1. In
the case of a reject, we identify a subsequence
yi−m−1, yi−m, ..., yi in yield(x) as in the optimi-
sation case, and similarly refine q(t) into q(t+1) =
q(t) ∩ A(t+1). The acceptance rate gradually in-
creases because q(t) comes closer and closer to p.
We stop the process at a point where the current ac-
ceptance rate, estimated on the basis of, say, the last
one hundred trials, exceeds a predefined threshold,
perhaps 20%.

3.3 Illustration

In this section, we present a small running example
of our approach. Consider the lowercased German
source sentence: eine letzte beobachtung .

Table 1 shows the translation associated with the
optimum derivation from each proposal q(i). The
n-gram whose cost, if extended by one word to the
left, would be increased by the largest factor is un-
derlined. The extended context selected for refine-
ment is highlighted in bold.

i Rules Optimum
0 311 <s> one last observation . </s>
1 454 <s> one last observation . </s>
2 628 <s> one last observation . </s>
3 839 <s> one final observation . </s>
4 1212 <s> one final observation . </s>

...
12 3000 <s> a final observation . </s>
13 3128 <s> one final observation . </s>

Table 1: Optimisation steps showing the iteration
(i), the number of rules in the grammar and the
translation associated to the optimum derivation.

Consider the very first iteration (i = 0), at which
point only unigram costs have been incorporated.
The sequence <s> one last observation . </s>
represents the translation associated to the best
derivation x in q(0). We proceed by choosing from
it one sequence to be the base for a refinement that
will lower q(0) bringing it closer to p. Amongst all
possible one-word (to the left) extensions, extend-

ing the unigram ‘one’ to the bigram ‘<s> one’ is
the operation that lowers q(0)(x) the most. It might
be helpful to understand it as the bigram ‘<s> one’
being associated to the largest LM gap observed
in x. Therefore the context ‘<s>’ is selected for
refinement, which means that an automaton A(1)

is designed to down-weight derivations compatible
with bigrams prefixed by ‘<s>’. The proposal q(0)

is intersected with A(1) producing q(1). We pro-
ceed like this iteratively, always selecting a con-
text not yet accounted for until q(i)(x) = p(x) for
the best derivation (13th iteration in our example),
when the true optimum is found with a certificate
of optimality.
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Figure 1: Certificate of optimality.

Figure 1 displays the progression of Q (score of
the best derivation) and P (that derivation’s true
score). As guaranteed by construction, Q is always
above P . B represents the score of the best deriva-
tion so far according to the true scoring function,
that is, B is a lower-bound on the true optimum8.
The optimal solution is achieved when P = Q.

Curve B in Figure 1 shows that the best scoring
solution was found quite early in the search (i = 3).
However, optimality could only be proven 10 itera-
tions later. Another way of stating the convergence
criterion Q = P is observing a zero gap (in the log
domain) between Q and P (see curve C – current
gap), or a zero gap between Q and B (see curve M
– minimum gap). Observe how M drops quickly
from 1 to nearly 0, followed by a long tail whereM

8This observation allows for error-safe pruning in optimi-
sation: if x is a lower-bound on the true optimum, derivations
in q(i) that score lower than p(x) could be safely removed.
We have left that possibility for future work.
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decreases much slower. Note that if we were will-
ing to accept an approximate solution, we could al-
ready stop the search if B remained unchanged for
a predetermined number of iterations or if changes
in B were smaller than some threshold, at the cost
of giving up on the optimality certificate.

Finally, curve R shows the number of states in
the automaton A(i) that refines the proposal at it-
eration i. Note how lower order n-grams (2-grams
in fact) are responsible for the largest drop in the
first iterations and higher-order n-grams (in fact 3-
grams) are refined later in the long tail.

Figure 2 illustrates the progression of the sam-
pler for the same German sentence. At each iter-
ation a batch of 500 samples is drawn from q(i).
The rejected samples in the batch are used to col-
lect statistics about overoptimistic n-grams and to
heuristically choose one context to be refined for
the next iteration, similar to the optimisation mode.
We start with a low acceptance rate which grows
up to 30% after 15 different contexts were incor-
porated. Note how the L1 norm of q (its partition
function) decreases after each refinement, that is,
q is gradually brought closer to p, resulting in the
increased number of exact samples and better ac-
ceptance rate.

Note that, starting from iteration one, all refine-
ments here correspond to 2-grams (i.e. one-word
contexts). This can be explained by the fact that,
in sampling, lower-order refinements are those that
mostly increase acceptance rate (rationale: high-
order n-grams are compatible with fewer grammar
rules).
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Figure 2: L1 norm of q, the number of exact sam-
ples drawn, the acceptance rate and the refinement
type at each iteration.

4 Experiments

We used the Moses toolkit (Koehn et al., 2007)
to extract a SCFG following Chiang (2005) from
the 6th version of the Europarl collection (Koehn,
2005) (German-English portion). We trained lan-
guage models using lmplz (Heafield et al., 2013)
and interpolated the models trained on the En-
glish monolingual data made available by the
WMT (Callison-Burch et al., 2012) (i.e. Eu-
roparl, newscommentaries, news-2012 and com-
moncrawl). Tuning was performed via MERT us-
ing newstest2010 as development set; test sen-
tences were extracted from newstest2011. Finally,
we restricted our SCFGs to having at most 10 tar-
get productions for a given source production.

Figure 3 shows some properties of the initial
grammar G(f) as a function of the input sentence
length (the quantities are averages over 20 sen-
tences for each class of input length). The number
of unigrams grows linearly with the input length,
while the number of unique bigrams compatible
with strings generated by G(f) appears to grow
quadratically9 and the size of the grammar in num-
ber of rules appears to be cubic — a consequence
of having up to two nonterminals on the right-hand
side of a rule.

Figure 4 shows the number of refinement oper-
ations until convergence in optimisation and sam-
pling, as well as the total duration, as a function of
the input length.10 The plots will be discussed in
detail below.

4.1 Optimisation

In optimisation (Figures 4a and 4b), the number of
refinements up to convergence appears to be lin-
ear with the input length, while the total duration
grows much quicker. These findings are further
discussed in what follows.

Table 2 shows some important quantities regard-
ing optimisation with OS∗ using a 4-gram LM. The
first column shows how many sentences we are
considering, the second column shows the sentence
length, the third column m is the average num-
ber of refinements up to convergence. Column |A|
refers to the refinement type, which is the number
of states in the automaton A, that is, the order of

9The number of unique bigrams is an estimate obtained by
combining the terminals at the boundary of nonterminals that
may be adjacent in a derivation.

10The current implementation faces timeouts depending on
the length of the input sentence and the order of the language
model, explaining why certain curves are interrupted earlier
than others in Figure 4.
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Figure 3: Properties of the initial grammar as function of input length

S Length m |A| count |Rf |
|R0|

9 4 45.0 2 20.3 74.6 ± 53.9
3 19.2
4 5.4

10 5 62.3 2 21.9 145.4 ± 162.6
3 32.9
4 7.5

9 6 102.8 2 34.7 535.8 ± 480.0
3 54.9
4 13.2

Table 2: Optimisation with a 4-gram LM.

the n-grams being re-weighted (e.g. |A| = 2 when
refining bigrams sharing a one-word context). Col-
umn count refers to the average number of refine-
ments that are due to each refinement type. Finally,
the last column compares the number of rules in the
final proposal to that of the initial one.

The first positive result concerns how much con-
text OS∗ needs to take into account for finding the
optimum derivation. Table 2 (column m) shows
that OS∗ explores a very reduced space of n-gram
contexts up to convergence. To illustrate that, con-
sider the last row in Table 2 (sentences with 6
words). On average, convergence requires incorpo-
rating only about 103 contexts of variable order, of
which 55 are bigram (2-word) contexts (remember
that |A| = 3 when accounting for a 2-word con-
text). According to Figure 3b, in sentences with
6 words, about 2,000 bigrams are compatible with
strings generated by G(f). This means that only
2.75% of these bigrams (55 out of 2,000) need to
be explicitly accounted for, illustrating how waste-
ful a full intersection would be.

A problem, however, is that the time until con-
vergence grows quickly with the length of the input
(Figure 4b). This can be explained as follows. At
each iteration the grammar is refined to account for
n-grams sharing a context of (n − 1) words. That

S Input m |A| count |Rf |
|R0|

10 5 1.0 2 1.0 1.9 ± 1.0
10 6 6.6 2 6.3 17.6 ± 13.6

3 0.3
10 7 14.5 2 12.9 93.8 ± 68.9

3 1.5
4 0.1

Table 3: Sampling with a 4-gram LM and reaching
a 5% acceptance rate.

operation typically results in a larger grammar:
most rules are preserved, some rules are deleted,
but more importantly, some rules are added to ac-
count for the portion of the current grammar that
involves the selected n-grams. Enlarging the gram-
mar at each iteration means that successive refine-
ments become incrementally slower.

The histogram of refinement types of Table 2
highlights how efficient OS∗ is w.r.t. the space of
n-grams it needs to explore before convergence.
The problem is clearly not the number of refine-
ments, but rather the relation between the growth
of the grammar and the successive intersections.
Controlling for this growth and optimising the in-
tersection as to partially reuse previously computed
charts may be the key for a more generally tractable
solution.

4.2 Sampling

Figure 4c shows that sampling is more economi-
cal than optimisation in that it explicitly incorpo-
rates even fewer contexts. Note how OS∗ con-
verges to acceptance rates from 1% to 10% in much
fewer iterations than are necessary to find an opti-
mum11. Although the convergence in sampling is

11Currently we use MERT to train the model’s weight vec-
tor — which is normalised by its L1 norm in the Moses im-
plementation. While optimisation is not sensitive to the scale
of the weights, in sampling the scale determines how flat or
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Figure 4: Convergence for different LM order as function of the input length in optimisation (top) and
sampling (bottom). We show the number of refinements up to convergence on the left, and the convergence
time on the right. In optimisation we stop when the true optimum is found. In sampling we stop at different
acceptance rate levels: (a, b and c) use a 2-gram LM to reach 1, 5 and 10% AR; (1-4) use a 3-gram LM to
reach 2, 3, 5 and 10% AR; and (X, Y) use a 4-gram LM to reach 5 and 10% AR.

faster than in optimisation, the total duration is still
an issue (Figure 4b).

Table 3 shows the same quantities as Table 2, but
now for sampling. It is worth highlighting that even
though we are using an upper-bound over a 4-gram
LM (and aiming at a 5% acceptance rate), very few
contexts are selected for refinement, most of them
lower-order ones (one-word contexts — rows with
|A| = 2).

Observe that an improved acceptance rate al-
ways leads to faster acquisition of exact samples
after we stop refining our proxy distribution. How-
ever, Figure 4d shows for example that moving
from 5% to 10% acceptance rate using a 4-gram
LM (curves X and Y) is time-consuming. Thus
there is a trade-off between how much time one
spends improving the acceptance rate and how
many exact samples one intends do draw. Figure
5 shows the average time to draw batches between

peaked the distribution is. Arun et al. (2010) experiment with
scaling MERT-trained weights as to maximise BLEU on held-
out data, as well as with MBR training. A more adequate
training algorithm along similar lines is reserved for future
work.
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Figure 5: Average time to draw 1 to 1 million sam-
ples, for input sentences of length 6, using a 4-gram
LM at 5% (curve 1) and 10% (curve 2) acceptance
rate (including the time to produce the sampler).

one and one million samples from two exact sam-
plers that were refined up to 5% and 10% accep-
tance rate respectively. The sampler at 5% AR
(which is faster to obtain) turns out to be more effi-
cient if we aim at producing less than 10K samples.

Finally, note that samples are independently
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drawn from the final proposal, making the ap-
proach an appealing candidate to parallelism in or-
der to increase the effective acceptance rate.

5 Related Work

Rush and Collins (2011) do not consider sampling,
but they address exact decoding for hierarchical
translation. They use a Dual Decomposition ap-
proach (a special case of Lagrangian Relaxation),
where the target CFG (hypergraph in their termi-
nology) component and the target language model
component “trade-off” their weights so as to ensure
agreement on what each component believes to be
the maximum. In many cases, this technique is
able to detect the actual true maximum derivation.
When this is not the case, they use a finite-state-
based intersection mechanism to “tighten” the first
component so that some constraints not satisfied by
the current solution are enforced, and iterate until
the true maximum is found or a time-out is met,
which results in a high proportion of finding the
true maximum.

Arun et al. (2009, 2010) address the question
of sampling in a standard phrase-based transla-
tion model (Koehn et al., 2003). Contrarily to our
use of rejection sampling (a Monte-Carlo method),
they use a Gibbs sampler (a Markov-Chain Monte-
Carlo (MCMC) method). Samples are obtained
by iteratively re-sampling groups of well-designed
variables in such a way that (i) the sampler does not
tend to be trapped locally by high correlations be-
tween conditioning and conditioned variables, and
(ii) the combinatorial space of possibilities for the
next step is small enough so that conditional prob-
abilities can be computed explicitly. By contrast to
our exact approach, the samples obtained by Gibbs
sampling are not independent, but form a Markov
chain that only converges to the target distribution
in the limit, with convergence properties difficult
to assess. Also by contrast to us, these papers do
not address the question of finding the maximum
derivation directly, but only through finding a max-
imum among the derivations sampled so far, which
in principle can be quite different.

Blunsom and Osborne (2008) address proba-
bilistic inference, this time, as we do, in the context
of hierarchical translation, where sampling is used
both for the purposes of decoding and training the
model. When decoding in the presence of a lan-
guage model, an approximate sampling procedure
is performed in two stages. First, cube-pruning is
employed to construct a WCFG which generates

a subset of all the possible derivations that would
correspond to a full intersection with the target lan-
guage model. In a second step this grammar is
sampled through the same dynamic programming
procedure that we have described in §2.4. By con-
trast to our approach, the paper does not attempt
to perform exact inference. However it does not
only address the question of decoding, but also that
of training the model, which requires, in addition
to sampling, an estimate of the model’s partition
function. In common with Arun et al. (2010), the
authors stress the fact that a sampler of derivations
is also a sampler of translations as strings, while a
maximiser over derivations cannot be used to find
the maximum translation string.

6 Conclusions

The approach we have presented is, to our knowl-
edge, the first one to address the problem of ex-
act sampling for hierarchical translation and to do
that in a framework that also handles exact opti-
misation. Our experiments show that only a frac-
tion of the language model n-grams need to be in-
corporated in the target grammar in order to per-
form exact inference in this approach. However,
in the current implementation, we experience time-
outs for sentences of even moderate length. We are
working on improving this situation along three di-
mensions: (i) our implementation of the Earley In-
tersection rebuilds a grammar from scratch at each
intersection, while it could capitalise on the charts
built during the previous steps; (ii) the unigram-
level max-backoffs are not as tight as they could
be if one took into account more precisely the set
of contexts in which each word can appear rela-
tive to the grammar; (iii) most importantly, while
our refinements are “local” in the sense of address-
ing one n-gram context at a time, they still affect
a large portion of the rules in the current grammar,
even rules that have very low probability of being
ever sampled by this grammar; by preventing re-
finement of such rules during the intersection pro-
cess, we may be able to make the intersection more
local and to produce much smaller grammars, with-
out losing the exactness properties of the approach.
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Abstract

Sentence alignment is an important step
in the preparation of parallel data. Most
aligners do not perform very well when
the input is a noisy, rather than a highly-
parallel, document pair. Evaluating align-
ers under noisy conditions would seem to
require creating an evaluation dataset by
manually annotating a noisy document for
gold-standard alignments. Such a costly
process hinders our ability to evaluate
an aligner under various types and lev-
els of noise. In this paper, we propose
a new evaluation framework for sentence
aligners, which is particularly suitable for
noisy-data evaluation. Our approach is
unique as it requires no manual labeling,
instead relying on small parallel datasets
(already at the disposal of MT researchers)
to generate many evaluation datasets that
mimic a variety of noisy conditions. We
use our framework to perform a compre-
hensive comparison of three aligners un-
der noisy conditions. Furthermore, our
framework facilitates the fine-tuning of a
state-of-the-art sentence aligner, allowing
us to substantially increase its recall rates
by anywhere from 5% to 14% (absolute)
across several language pairs.

1 Introduction

Virtually all training pipelines of statistical ma-
chine translation systems expect training data to
be in the form of a sequence of parallel sentence
pairs. This means that a pair of parallel documents
must first be segmented into a sequence of aligned
sentence pairs, discarding or combining sentences
when needed, and aligning sentences as appropri-
ate. The performance and output of an SMT sys-
tem is directly dependent on the amount and qual-

ity of available training data. Therefore, it is crit-
ical to perform this sentence alignment step prop-
erly, ensuring both high recall (to have as much
training data as possible) and high precision (to
avoid noisy training data).

While sentence aligners achieve excellent per-
formance on highly-parallel, clean data, the task is
much more difficult under noisy conditions. Some
prior work has investigated evaluation under noisy
conditions (see section 6), but the major focus of
prior work has been the clean-data scenario, where
accuracy rates exceed 98% (e.g. Simard et al.
(1993), Moore (2002)). For one thing, this meant
that the various sentence alignment algorithms dif-
fer only slightly in absolute terms. Similarly, fine-
tuning any one of those algorithms might not seem
to have an impact on performance. More impor-
tantly, this also meant that we do not have a clear
understanding of how well these algorithms would
perform under noisy conditions.

Arguably, there was little need to examine sen-
tence alignment of noisy datasets in early MT re-
search, since almost all training data came from
high-quality, highly-parallel sources, such as UN
documents or parliamentary proceedings.1 How-
ever, recent efforts have attempted to utilize web
resources and non-perfectly-parallel texts, such as
Wikipedia articles and news stories (e.g. Resnik
and Smith (2003), Utiyama and Isahara (2003),
Munteanu and Marcu (2005), and Smith et al.
(2010)). Such resources naturally contain signifi-
cantly more noise, at a level that would render sen-
tence alignment a much less straightforward task.

Because sentence alignment algorithms had
usually been evaluated under a clean-data sce-
nario, there are fewer empirical results to guide
those who wish to extract parallel data from noisy

1Also, parallel datasets created explicitly for MT research
(by having a source corpus translated into the target language)
would be already sentence-aligned by mere construction if
the source side is split into sentences beforehand.
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sources. Furthermore, there is also no easy way
to fine-tune an aligner of interest. For building
the Microsoft Translation service, we are con-
tinuously mining inherently-noisy web resources,
from which we extract MT training data for dozens
of the world’s languages. Therefore, having a
principled method to evaluate and fine-tune our
aligner was critical.

In this paper, we describe our framework for
evaluating sentence alignment under noisy con-
ditions. We use this framework to examine and
evaluate the Moore alignment algorithm (Moore,
2002), which was empirically shown to be state-
of-the-art under clean conditions, and which we
regularly use to extract parallel data from web re-
sources to create training data. We perform a com-
prehensive comparison of this aligner against two
other algorithms, and furthermore use our frame-
work to fine-tune the algorithm along dimensions
of interest (such as the aligner’s search parame-
ters) by quantitatively evaluating how the aligner’s
performance is affected by such changes.

The paper is organized as follows. We briefly
define sentence alignment and existing approaches
in section 2. We then discuss the evaluation of
alignment algorithms in section 3, and present our
evaluation framework. In section 4, we perform a
comparative assessment of three alignment algo-
rithms using our framework, illustrating the dif-
ferences between them under noisy conditions. In
section 5, we present two additional applications
of our framework, namely fine-tuning an aligner
and performing training data cleanup. Finally, we
give an overview in section 6 of prior work that
has tackled the specific issue of evaluating sen-
tence aligners.

2 Sentence Alignment

Sentence alignment is the process by which a pair
of parallel documents lacking explicit sentence
links are used to extract a parallel dataset consist-
ing of sentence pairs that are translations of each
other. Specifically, let S and T be the document
pair to be aligned, with S composed of the sen-
tence sequence s1, s2, ..., sm, and T composed of
the sentence sequence t1, t2, ..., tn. A sentence
alignment of S and T is a segmentation of each
of S and T into p sequences s′1, s

′
2, ..., s

′
p and

t′1, t
′
2, ..., t

′
p such that the following holds about the

segmentation of S: (a similar set of conditions ex-
ist that correspond to T )

• s′i = CS [a, b) for some 1 ≤ a ≤ b ≤ m ∀i

• s′1 = CS [1, b) for some b >= 1

• s′p = CS [a,m) for some a <= m

• If s′i = CS [a, b), then s′i+1 = CS [b, c)

• If s′i = CS [x, x), then t′i = CT [y, z) such
that y 6= z

Above, CS [a, b) is the concatenation of
sa, sa+1, ..., sb−1, which indicates the possibility
of aligning multiple source sentences to a single
sentence (or combined sequence of sentences) on
the target side. Note that CS [a, a) is the empty
string, which indicates deletion on the target side
(i.e. a target sentence is aligned to the empty
string). The last condition disallows aligning an
empty string to another empty string, thus elimi-
nating the possibility for an infinite segmentation
sequence.

Note that the result of this segmentation is q
(non-empty) sentence pairs, where q <= p (and
naturally q <= m and q <= n). The deleted sen-
tences, each aligned with an empty string, are left
out of the resulting parallel corpus.

2.1 Approaches to Sentence Alignment
Tiedemann (2007) and Santos (2011) each pro-
vide a broad overview of sentence alignment, giv-
ing a timeline of relevant research and discussing
algorithms and performance metrics for sentence
alignment. In general, there are two main ap-
proaches to sentence alignment: length-based and
lexical-based.

In length-based alignment approaches (e.g.
Brown et al. (1991), Gale and Church (1991), and
Kay and Röscheisen (1993)), the aligner relies on
a probabilistic model that describes the source-
to-target sentence length ratio for a pair of corre-
sponding sentences. Such a model would account
both for the average or typical length ratio as well
as its variance. The aligner proceeds to align sen-
tence pairs such that the output would be highly
likely under the length ratio model.

In lexical-based alignment approaches (e.g.
Chen (1993), Melamed (1997), Simard and Pla-
mondon (1998), Menezes and Richardson (2001),
and the LDC alignment tool, Champollion (Ma,
2006)), the aligner relies on a probabilistic model
that describes the lexical similarity between a pair
of sentences. The model could either be a fully-
trained translation model, or a simpler bilingual
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lexicon that finds corresponding word pairs. In
contrast to length-based algorithms, lexical-based
approaches typically require external bilingual re-
sources, and usually perform better.

Previous work on sentence alignment varies
across a few other dimensions as well. Some
lexical-based algorithms build the needed bilin-
gual resources from the very dataset that is to
be aligned, whereas other approaches assume that
such resources are externally provided. Another
dimension is the need to provide anchor points
within the text to be aligned, such as in the form
of paragraph-level alignment. Such anchor points
are typically needed to restrict the search space to
a manageable size.

Another group of aligners take a hybrid ap-
proach, relying both on sentence length and lexical
similarity (e.g. Zhao and Vogel (2002)). One no-
table example is the algorithm by Moore (2002),
which has the benefit of relying only on the in-
put data when training the lexical similarity model,
rather than needing external resources (bilingual
lexicon or parallel training data) for that purpose.
The Moore algorithm is a state-of-the-art algo-
rithm, and has been used, for example, to align
the data for the Europarl corpus (Koehn, 2005),
and is often a strong baseline in papers propos-
ing new alignment algorithms (e.g. Braune and
Fraser (2010)). In section 4, we use our pro-
posed framework to evaluate Moore’s algorithm,
and compare it against two other aligners, illustrat-
ing our framework’s utility as a comparative tool.

3 Evaluating Sentence Alignment
Algorithms under Noisy Conditions

In much of the prior work mentioned above in 2.1,
and in other comparative evaluation work (e.g.
Simard et al. (1993), Langlais et al. (1998), and
Véronis and Langlais (2000)), sentence align-
ment algorithms were evaluated using a manually-
created gold-standard dataset. This is done by
taking a parallel dataset, and manually annotating
sentence pairs that are translations of each other
(and should therefore be aligned). This evaluation
dataset is provided as input to the aligner, which
is evaluated based on the precision and recall of
its output, as measured against the set of hand-
annotated sentence pairs.

While this is a reasonable approach that mir-
rors the evaluation model in many other tasks
within machine learning (i.e. to manually create

an evaluation set with gold-standard labels, based
on which the learner’s output is judged), it suffers
from some drawbacks.

For one thing, all the difficulties of creating an
evaluation dataset apply here as well. Most signif-
icantly, manually labeling sentence pairs is costly
and time-consuming. This problem is magnified
in the context of machine translation, since one
should ideally evaluate a sentence alignment algo-
rithm under several language pairs, rather than a
single one, requiring the creation of several evalu-
ation sets, rather than a single one.

Furthermore, prior work usually used a fairly
clean dataset to annotate, on which it is relatively
easy for an aligner to achieve very high precision
and recall rates. This means that differences be-
tween algorithms are sometimes fairly small in ab-
solute terms, making it difficult to attribute such
differences to the algorithms themselves or to sta-
tistical noise.

The noisy-data scenario is extremely important
in the web domain. The web is a huge repository
of parallel documents that machine translation
systems leverage for training data, and we continu-
ally extract content from noisy online sources. Un-
like the above evaluation setup, we are concerned
with scenarios where the data has a relatively high
degree of noise, where by ‘noise’ we mean both
non-perfect translations but also additional content
on one side that is not translated at all. Both kinds
of noise should be dealt with appropriately: the
first introduces imperfect training data, while the
second could eliminate good translations, or might
send word alignment into a frenzy.

Because prior work mostly focused on the
clean-data scenario, it is unknown whether previ-
ous evaluations would hold for noisy input. This
makes it difficult to judge how these algorithms
would compare to each other under more noisy
conditions, or when any other experimental di-
mension is varied, such as domain and the lan-
guage pair in question.

3.1 Creating Noisy Datasets for Evaluation
Purposes

How can we create a noisy-data scenario under
which to evaluate a sentence alignment algorithm?
One approach is to mimic prior work: in a dataset
that is known to be noisy, have an annotator select
the sentence pairs that should be aligned to each
other. However, this approach would be expensive
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and time-consuming.
We propose a completely different approach.

Rather than attempting to annotate corresponding
sentences in a dataset that is known to be noisy,
we deliberately introduce noise into a dataset that
is already perfectly-aligned (and for which, as a
consequence, we already know the sentence cor-
respondence).

Specifically, we start with a parallel dataset
D that we know to be perfectly-aligned. Such
datasets are abundant and readily available for MT
researchers in the form of a myriad of tuning and
test datasets across many language pairs and do-
mains. We introduce noise into D (using any of
the methods described below and detailed in sub-
section 4.2) to obtain a modified dataset D′. The
source side of D′ is a subset of the source side of
D (possibly reordered), and the same holds for the
target side. Since we know what the correct sen-
tence alignments are in D, we also know, by mere
construction, what the correct alignments inD′ are
as well. This allows us to easily compute precision
and recall of a sentence alignment algorithm when
it is given D′ as input, without the need to collect
a single annotation.

We employ several methods to create a noisy
dataset D′ from a perfectly-aligned dataset D:2

• Clean dataset. The source and target sides of
D′ are exactly the unaltered source and target
sides ofD. This represents the easiest test set
for a sentence aligner, as the test set consists
entirely of 1-to-1 mappings, all of which fall
exactly along the search matrix diagonal.

• Random deletions. The source side of D′ is
a subset of the source side of D, where the
number of discarded sentences is determined
by a source deletion rate dels. For example,
for a dataset D with 1000 sentences on the
source side and dels = 0.10, the source side
of D′ consists of 900 randomly-chosen sen-
tences from the source side of D (with no re-
ordering). The target side of D′ is created
similarly, using a target deletion rate delt.
Note that the deletion on the target side is
done independently from the deletion on the

2In a few of our experiments, we make use of two datasets
(that are non-overlapping and non-related), say D1 and D2,
to create D′. The way we frame the creation of D′, as a map-
ping from a single dataset D, still applies here: D is simply
the concatenation of D1 and D2.

source side. That is, the probability of delet-
ing the ith sentence on the target side is delt,
regardless of whether the ith sentence on the
source side was deleted or not.

• Random combinations. The source and tar-
get sides of D′ are the same as those from
D, but with random consecutive pairs of sen-
tences combined into a single sentence. The
degree to which sentences are combined is
determined by source and target combination
rates combs and combt. For example, for a
dataset D with 1000 sentences on the source
side and combs = 0.10, 100 sentence pairs
(each consisting of consecutive sentences)
are chosen randomly, and each pair is com-
bined into a single sentence, yielding a set
of 900 source sentences in D′. The goal of
this scenario is to test the aligner’s ability to
recover 1-to-many and many-to-1 mappings,
rather than focusing solely on 1-to-1 map-
pings.3 As with random deletions, the combi-
nation processes on the source side and on the
target side are independent from each other.

• Randomized order. The source side of D′

consists of the source side of D, but in ran-
dom order. The target side of D is also ran-
domized.

• Length-aligned from same dataset. The
source side of D′ is exactly the same as the
source side of D. The noise is introduced
into the target side, where all the target sen-
tences from D are preserved, but they are re-
ordered. The reordering is not completely
stochastic. Rather, an attempt is made to have
the sentences length-aligned as much as pos-
sible. This is somewhat of an adversarial sce-
nario, since a length-based alignment method
would align too many sentences that are com-
pletely unrelated to each other.

• Different datasets. The dataset D′ is formed
by taking two datasets D1 and D2, and align-
ing the source side of D1 with the target side
of D2, and vice versa. A good sentence
aligner would deem that the source and tar-
get sides are unrelated, yielding a very low
alignment rate.

3With high enough combination rates, many-to-many
mappings arise as well.
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4 Experimental Results

Even though this paper is not mainly concerned
with comparing aligners to each other, we utilize
our proposed framework and apply it to three dif-
ferent aligners as a demonstration. In this section,
we describe the aligners to be compared, and pro-
vide specific details about how our test sets were
generated. We then describe the metrics we use,
and present results based on these metrics.

4.1 Sentence Aligners

The first aligner (LEN) is a length-based aligner
based on the algorithm described in Brown et al.
(1991). It segments the source and target sides
by finding the highest-likelihood segmentation ac-
cording to a model describing the relationship be-
tween source sentence length and target sentence
length. In particular, this relationship is modeled
using a Poisson distribution that has as its mean
the length ratio observed in the dataset to align.4

The second aligner (MRE) is based on Moore’s
algorithm (Moore, 2002), which makes use of the
length-based aligner’s output to build a tentative
model 1. Moore’s algorithm takes the output from
this “first phase” and builds a bilingual lexicon that
allows it to compute translation model scores. For
a given pair of sentences, the likelihood that they
are translations of each other is now computed
based not only on their lengths, but also on their
lexical similarity.

The third aligner (MRE+) is similar to the sec-
ond aligner, but uses a much stronger translation
model. The stronger translation model is simply
the translation system that has already been built
for that particular language pair and now helps
aligning new data. While this requires the avail-
ability of external resources, this setup closely re-
sembles the resources we have, given our parallel
training datasets. We note here that our evaluation
datasets have no overlap with the data used to train
the translation models used by MRE+.

4.2 Noisy Dataset Generation

For random deletions, we use six different dele-
tion rates (from 0.00 to 0.25, with 0.05 incre-
ments), both on the source side and the target side,
for a total of 35 test sets. For random combi-
nations, we use four different combination rates
(from 0.00 to 0.15, with 0.05 increments), both

4Note that we follow Moore (2002) in using a Poisson
distribution instead of the Gaussian of Brown et al.

on the source side and the target side, for a to-
tal of 15 test sets. Note that we do not consider
the case when both deletion/combination rates are
0.00, since that mimics the clean-dataset scenario.

For the length-aligned scenario, we align each
source sentence with a randomly-selected sen-
tence from the target side that is closest in length
to that source sentence. (We take the target-to-
source length ratio into consideration, and multi-
ply the source length by that ratio before trying to
find the closest-length target sentence.) If several
target sentences have lengths that are equally close
to the desired length, we pick one at random.

We note here that if the source sentences are
processed sequentially, there will be a clustering
of overly long target sentences at the bottom of
the dataset, since such sentences are never chosen
based on length – they are simply too long. There-
fore, we process the source sentences in random
order rather than sequentially, to avoid this clus-
tering of long sentences.

4.3 Performance Metrics
We report the following metrics for quantitatively
evaluating and describing the output of the sen-
tence aligner:

• Precision: of the sentence pairs produced
by the aligner, what percentage are sentence
pairs in the gold-standard dataset D?

• Recall: of the sentence pairs in the gold-
standard dataset D, what percentage are pro-
duced by the aligner?

• Alignment rate: what proportion of the sen-
tences in the input dataset D′ were aligned
by the aligner? Due to the possibility that the
source and target sides of D′ have different
sizes, there are two alignment rates, and we
report their average.5

Higher precision and higher recall are, by defi-
nition, indicators of better performance. This can-
not be said of the alignment rate. For instance,
consider the noisy deletion scenario of 3.1 above.
By mere construction of D′, there will be source
(resp. target) sentences that should not be aligned
to anything on the target (resp. source) side, since
we deliberately deleted the corresponding sen-
tence. In such cases, an alignment rate of 100%

5Of course, the dataset returned by the aligner always has
source and target sides of equal sizes.
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Language Test Scenario LEN MRE MRE+
Pair

Clean (no noise) 100%, 82%, 82% 100%, 85%, 85% 100%, 99%, 99%
dels = delt = 0.05 100%, 46%, 44% 99%, 71%, 68% 100%, 96%, 91%

EN-ES combs = combt = 0.05 100%, 39%, 38% 99%, 66%, 64% 100%, 92%, 89%
Randomized 0%, 0%, 1% 0%, 0%, 4% 34%, 1%, 4%
Length-aligned 0%, 0%, 82% 0%, 0%, 15% 0%, 0%, 7%
Clean (no noise) 100%, 55%, 55% 100%, 60%, 60% 100%, 89%, 89%
dels = delt = 0.05 99%, 27%, 26% 99%, 44%, 42% 100%, 82%, 78%

EN-AR combs = combt = 0.05 99%, 22%, 21% 99%, 41%, 39% 99%, 77%, 74%
Randomized N/A, 0%, 0% 17%, <1%, <1% 26%, <1%, 1%
Length-aligned 0%, 0%, 59% 0%, 0%, 9% 5%, <1%, 2%
Clean (no noise) 100%, 66%, 66% 100%, 72%, 72% 100%, 97%, 97%
dels = delt = 0.05 100%, 40%, 39% 99%, 56%, 55% 100%, 92%, 88%

EN-CH combs = combt = 0.05 99%, 35%, 34% 99%, 52%, 50% 99%, 87%, 82%
Randomized 0%, 0%, <1% 0%, 0%, <1% 29%, <1%, 2%
Length-aligned 0%, 0%, 62% 0%, 0%, 13% 2%, <1%, 5%
Clean (no noise) 100%, 68%, 68% 100%, 72%, 72% 100%, 95%, 95%

Average dels = delt = 0.05 100%, 38%, 36% 99%, 57%, 55% 100%, 90%, 86%
(over the combs = combt = 0.05 99%, 32%, 31% 99%, 53%, 51% 99%, 85%, 82%
3 LP’s) Randomized 0%, 0%, <1% 6%, <1%, 2% 30%, 1%, 2%

Length-aligned 0%, 0%, 68% 0%, 0%, 12% 2%, <1%, 5%

Table 1: Results of the comparative experiment of the three aligners. For brevity, we report the results
for only five scenarios (per language pair and aligner) out of the more than fifty scenarios we propose.
Each cell contains three percentages: precision, recall, and alignment rate. The N/A precision value for
LEN in the EN-AR randomized scenario indicates the aligner produced no output.

for example (i.e. all input sentences were aligned
to some other sentence) is indicative of pervasive
alignment rather than good performance.6

Hence, alignment rate is not a performance
measure in the conventional sense, as it is not an
objective to be maximized or minimized. Still, it is
a useful descriptor that sheds light on the aligner’s
behavior, as we see in the next subsection.

4.4 Results

We carried out experiments covering three lan-
guage pairs: English-Spanish, English-Arabic,
and English-Chinese. The comparative experi-
ment is quite telling, and the results (Table 1) point
to consistent and noticeable differences between
the three examined aligners. While all aligners
have very high alignment precision rates in non-
adversary scenarios, always exceeding 99%, the
difference is in how well they recover sentence
pairs that should be aligned to each other, illus-

6Even an oracle aligner with perfect precision and recall
will almost surely have an alignment rate less than 100% (or
even 90%) when D′ is constructed using high deletion rates.

trated by significant differences in recall rates.
The clearest trend is that the length-based al-

gorithm (LEN) performs worse than Moore’s al-
gorithm (MRE), which in turn benefits quite a bit
when it’s aided by an external strong translation
model (MRE+). It is worth pointing out that the gap
between MRE and MRE+ is typically larger than the
gap between LEN and MRE, suggesting the impor-
tant of external bilingual resources to aid the sen-
tence aligner.

The results of the adversary scenarios (random-
ized and length-aligned) are particularly interest-
ing. Looking at precision and recall alone, it might
seem that there is not much to separate the three
algorithms. For example, they all have 0% pre-
cision and 0% recall in the length-aligned EN-ES
scenario (fifth row of Table 1). However, looking
at the alignment rate, we find that LEN was prone
to over-aligning the data, having an (unnecessarily
very high) alignment rate of 82%. On the other
hand, MRE and MRE+, have much lower alignment
rates of 15% and 7%, respectively. This means
that they would introduce only a fraction of the

489



bad data that LEN would, which is a great advan-
tage for MRE and especially MRE+.

5 Applications of the Evaluation
Framework

In the previous section, we utilized our framework
to perform a comparison between three different
aligners, by evaluating them under various noisy-
data circumstances. In this section, we use our
framework in two more applications relevant to
sentence alignment and machine translation.

5.1 Fine-tuning Aligner Parameters

We explore using the evaluation setup to fine-tune
the parameters of the MRE+ algorithm. Lacking
a principled way to evaluate the aligner’s output,
it was not possible to fine-tune the aligner’s var-
ious parameters. Now, equipped with our eval-
uation framework, it is possible to quantitatively
determine the effect of changing the value of any
parameter, and pick the best value. This is prefer-
able to accepting whatever default parameters are
in already place, which are more than likely suit-
able for a specific domain, dataset, or low-to-
nonexistent noise.

5.1.1 Experimental Design
We fine-tune the parameters of the MRE+ algo-
rithm by optimizing its performance on a tuning
dataset generated using the noisy deletion setup,
and then measure its performance on a different
evaluation set that was also generated using the
noisy deletion setup. We investigate two cases,
one with dels = delt = 0.05, and one with
dels = delt = 0.20, to examine the benefit of
fine-tuning both under a relatively low noise level
and under a relatively high noise level.

We optimize the performance of the MRE+ algo-
rithm along three dimensions:

• Prior probabilities (PRIOR). As explained
in section 2, sentence alignment is essentially
a segmentation of the source and target sides
of the parallel dataset. In addition to relying
on length similarity and lexical correspon-
dence, the MRE+ aligner also relies on a set of
prior probabilities for each insert/delete/align
action it could take. By default, the probabil-
ity assigned to deletion and insertion was set
at 0.02. It is reasonable to assume that this
might be too low, especially for highly-noisy

input data, and so this is the first dimension
that we optimize.

• Search beam size (SIZE). The algorithm also
pays attention to the location of a candidate
sentence pair. While positional similarity
does not play a direct role in computing the
alignment probability, the aligner does prune
the search space based on location. For ex-
ample, when considering a sentence half-way
through the source side, only sentences that
are close to the half-way point in the target
side will be considered. How far the aligner
is willing to deviate from the diagonal7 is a
tunable parameter, making it our second di-
mension.

• Alignment threshold (THRESHOLD). The
aligner assigns a probability to each sentence
pair it considers for alignment, reflecting its
confidence that the sentence pair should be
aligned. By default, the aligner eliminates
any sentence pair that fails to meet a thresh-
old of 0.99. This alignment threshold is the
third dimension we optimize, as it should be
lowered or increased to reflect our confidence
in the translation model and/or the variability
of the length-correspondence model.

5.1.2 Experimental Results
The results in Tables 2 and 3 show the benefit of
optimizing the aligner’s parameters. It is bene-
ficial to optimize the prior probabilities and the
alignment threshold, as indicated by higher recall
rates compared to the default values. On the other
hand, the tuning of the search beam size had mini-
mal impact. This indicates that the mistakes made
by the sentence aligner are usually model errors
rather than search error.

The effect of optimizing the prior probabilities
is more pronounced in the high-noise scenario (Ta-
ble 3), where it proves to provide the most gain
over the baseline. Contrast this with the low-noise
scenario (Table 2), where optimizing the align-
ment threshold is at least equally important, if not
more so. This is to be expected, since the de-
fault prior of 0.02 in the high-noise scenario sig-
nificantly underestimates the amount of deletion
that has actually taken place, making the prior the
most important parameter to optimize.

7If we were to create a grid of alignment probabilities, this
pruning of the search space means that grid cells far off the
diagonal of this grid are never considered.
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Tuned EN-ES EN-AR EN-CH
parameter(s)
None 95.7% 82.4% 92.0%
PRIOR 96.2% 85.6% 93.5%
SIZE 95.8% 82.8% 92.0%
THRESHOLD 96.8% 86.7% 92.9%
All 97.1% 87.5% 93.7%

Table 2: Results of the MRE+ fine-tuning experi-
ment for the 0.05 deletion rate scenario. For clar-
ity, we show only recall rates – all precision rates
are 99% or higher.

Tuned EN-ES EN-AR EN-CH
parameter(s)
None 87.8% 68.1% 81.9%
PRIOR 92.7% 81.5% 88.4%
SIZE 88.0% 68.8% 82.3%
THRESHOLD 89.3% 70.4% 84.3%
All 93.0% 82.8% 90.6%

Table 3: Results of the MRE+ fine-tuning experi-
ment for the 0.20 deletion rate scenario. For clar-
ity, we show only recall rates – all precision rates
are 98% or higher.

It is worth pointing out the work of Yu et al.
(2012), who perform a comparative study of sen-
tence aligners, and show that Moore’s algorithm
does not perform as well as other aligners on a
noisy dataset. As they provide no details regarding
the values of the various parameters of Moore’s
algorithm, one can assume that they used default
values and performed no tuning. Of course, such
tuning would not have been easy to perform, given
the lack of a tuning dataset. This is exactly why
we propose our evaluation framework, so that fu-
ture researchers would not have to guess parame-
ter values or accept default values if they believe
that would lead to suboptimal performance. Given
the results of our experiments, it is conceivable
that the performance of Moore’s algorithm in Yu
et al.’s work (and other algorithms they examined
as well) might have been improved had their pa-
rameters been optimized.

5.2 Using Sentence Alignment to Filter
Training Data

Much of our training data comes from noisy
sources, both online and otherwise. Due to the vast
amount of data, it is not possible to go through it to

discard noisy sentence pairs. Now, equipped with
a better understanding of our sentence aligner and
its performance, we use it to trim down our train-
ing data by eliminating sentence pairs to which the
aligner does not assign a high weight.

5.2.1 Experimental Design
We provide our current training data as input to the
sentence aligner, and treat the output of the aligner
as a filtered version of our data, since sentences
that are discarded (not aligned) by the aligner tend
to be noisy data. To evaluate the effectiveness
of this process, we compare models trained with
pre-filtered data vs. ones trained with the filtered
data. We examine how the filtering affects the
data and model size, since trimming those down
would speed up training and translation. This is
especially relevant for us given the large number
of language pairs for which we train models. To
ensure the translation quality doesn’t degrade, we
measure the effect on translation quality for two
in-house evaluation datasets.

We consider three scenarios:

• No filtering. As a baseline, we use our train-
ing data as-is to train the MT system, without
any filtering.

• Uniform filtering. We provide our training
data as input to the sentence aligner, and use
the aligner’s output as the training data to
train the MT system. (We refer to this as
‘uniform’ filtering in contrast to the next sce-
nario.)

• Filtering ‘web’ datasets. Here, we apply
sentence alignment filtering only to certain
hand-picked datasets that we believe to con-
tain a relatively high level of noise. The
datasets are not picked by inspecting their
content, but simply by deciding that any
dataset that came from online sources (aka
‘web’ data) should undergo filtering.

5.2.2 Experimental Results
We performed our filtering experiments on two
systems, Arabic-English and Urdu-English, with
the results displayed in Tables 4 and 5, respec-
tively. In all cases but one, the BLEU score went
up or down by less than a quarter of a point, indi-
cating general stability in performance quality.

This line of experiments is still in progress. We
plan to carry out another set of experiments where
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Scenario Data Model Test1 Test2
Size Size BLEU BLEU

No filtering 100% 100% 31.44 30.57
All filtered 94.8% 96.7% 31.29 30.34
Web only 96.6% 96.0% 31.54 30.52

Table 4: Results of the data filtering experiments
for the Arabic-English system.

Scenario Data Model Test1 Test2
Size Size BLEU BLEU

No filtering 100% 100% 38.03 13.32
All filtered 81.6% 85.9% 38.19 13.13
Web only 99.1% 99.1% 37.80 12.78

Table 5: Results of the data filtering experiments
for the Urdu-English system.

the prior deletion probability is customized for
each portion of our training data, based on our
belief of how noisy that portion of the dataset is.
We are also expanding the experiments to include
more language pairs.

6 Related Work

Singh and Husain (2005) evaluate several sentence
alignment algorithms. Their work does have a hint
of proposing a fuller evaluation framework, in that
they have one test scenario where noise is added to
their test set (in the form of adding sentences from
another, unrelated dataset). Another major differ-
ence from our work is that they rely on manual
evaluation of the output, as is the case for much of
prior work.

Moore does point out that the error rates ob-
tained by his algorithm are very low partly because
the data being aligned is highly parallel, there-
fore making it “fairly easy data to align” (Moore
(2002), p. 142). He therefore presents one ad-
ditional experiment where a single block of sen-
tences is deleted from one side of the input to
mimic a noisy condition. While this is similar in
spirit to our noisy deletions scenario, it introduces
only a very small amount of noise in practice. This
is because the deleted sentences are all sequential
rather than being at different positions in the cor-
pus, are all on one side of the corpus, and since
the deletion rate was very low (varied up to only
3.0%). Case in point, the resulting dataset was still
very easy to align, with error rates that remained
below 2.0% even for the baseline aligner.

Yu et al. (2012) use the BAF dataset (Simard,
2006) as an evaluation dataset, since it is known
to contain a relatively high degree of 0-1 and 1-0
beads (what they call “null links”), and use that
dataset specifically to evaluate an alignment al-
gorithm customized to handle noisy data. Simi-
larly, Rosen (2005) evaluates several aligners us-
ing three datasets, one of which is characterized
as being more noisy than the others.

Abdul-Rauf et al. (2012) compare several algo-
rithms to each other, across several datasets, in-
cluding the noisy BAF dataset. However, they do
not propose a full framework for evaluating sen-
tence alignment itself, and instead emphasize the
differences in performance of MT systems trained
on the aligned data.

There is a good amount of prior work deal-
ing with filtering noisy data from parallel datasets.
Taghipour et al. (2010) propose a discriminative
framework to filter noisy sentence pairs from par-
allel data, and apply it to a Farsi-English dataset.
Denkowski et al. (2012) briefly describe a filter-
ing method to clean up training data for a French-
English system submitted to WMT 2010, relying
on deviations from typical values for certain sta-
tistical measures to identify noisy sentence pairs.

7 Conclusion

In this paper, we proposed a new evaluation frame-
work for sentence aligners, which is specifically
designed with noisy-data conditions in mind. Our
approach is unique in that it requires absolutely
no manual labeling, and relies on parallel datasets
that are already in existence. We provide sev-
eral methods to deliberately introduce noise into a
dataset that is already perfectly-aligned, thus cre-
ating a whole host of evaluation test sets quickly
and at no cost.

Our framework allows us and other researchers
to easily compare and contrast several aligners to
each other. Furthermore, our framework can be
used to improve the performance of an aligner by
facilitating the fine-tuning of any or all of its hy-
perparameters.
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André Santos. 2011. A survey on parallel corpora
alignment. In Proceedings of MI-Star, pages 117–
128.

Michel Simard and Pierre Plamondon. 1998. Bilin-
gual sentence alignment: Balancing robustness and
accuracy. Machine Translation, 13:59–80.

Michel Simard, George F. Foster, and Pierre Isabelle.
1993. Using cognates to align sentences in bilin-
gual corpora. In Proceedings of the Conference of
the Centre for Advanced Studies on Collaborative
Research: Distributed Computing - Volume 2, pages
1071–1082.

Michel Simard. 2006. The BAF: A corpus of English-
French bitext. In Proceedings of LREC, pages 489–
494.

Anil Kumar Singh and Samar Husain. 2005. Com-
parison, selection and use of sentence alignment al-
gorithms for new language pairs. In Proceedings of
the ACL Workshop on Building and Using Parallel
Texts, pages 99–106.

Jason R. Smith, Chris Quirk, and Kristina Toutanova.
2010. Extracting parallel sentences from compara-
ble corpora using document level alignment. In Pro-
ceedings of NAACL, pages 403–411.

Kaveh Taghipour, Nasim Afhami, Shahram Khadivi,
and Saeed Shiry. 2010. A discriminative approach
to filter out noisy sentence pairs from bilingual cor-
pora. In Proceedings of International Symposium on
Telecommunications, pages 537–541.

Jörg Tiedemann. 2007. Improved sentence alignment
for movie subtitles. In Proceedings of Recent Ad-
vances in Natural Language Processing.

Masao Utiyama and Hitoshi Isahara. 2003. Reliable
measures for aligning japanese-english news articles
and sentences. In Proceedings of ACL, pages 72–79.
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Abstract

We apply multi-rate HMMs, a tree struc-
tured HMM model, to the word-alignment
problem. Multi-rate HMMs allow us to
model reordering at both the morpheme
level and the word level in a hierarchical
fashion. This approach leads to better ma-
chine translation results than a morpheme-
aware model that does not explicitly model
morpheme reordering.

1 Introduction

We present an HMM-based word-alignment
model that addresses transitions between mor-
pheme positions and word positions simultane-
ously. Our model is an instance of a multi-scale
HMM, a widely used method for modeling dif-
ferent levels of a hierarchical stochastic process.
In multi-scale modeling of language, the deepest
level of the hierarchy may consist of the phoneme
sequence, and going up in the hierarchy, the next
level may consist of the syllable sequence, and
then the word sequence, the phrase sequence, and
so on. By the same token, in the hierarchical word-
alignment model we present here, the lower level
consists of the morpheme sequence and the higher
level the word sequence.

Multi-scale HMMs have a natural application in
language processing due to the hierarchical nature
of linguistic structures. They have been used for
modeling text and handwriting (Fine et al., 1998),
in signal processing (Willsky, 2002), knowledge
extraction (Skounakis et al., 2003), as well as in
other fields of AI such as vision (Li et al., 2006;
Luettgen et al., 1993) and robotics (Theocharous
et al., 2001). The model we propose here is most
similar to multi-rate HMMs (Çetin et al., 2007),
which were applied to a classification problem in
industrial machine tool wear.

The vast majority of languages exhibit morphol-
ogy to some extent, leading to various efforts in
machine translation research to include morphol-
ogy in translation models (Al-Onaizan et al., 1999;
Niessen and Ney, 2000; Čmejrek et al., 2003;
Lee, 2004; Chung and Gildea, 2009; Yeniterzi and
Oflazer, 2010). For the word-alignment problem,
Goldwater and McClosky (2005) and Eyigöz et al.
(2013) suggested word alignment models that ad-
dress morphology directly.

Eyigöz et al. (2013) introduced two-level align-
ment models (TAM), which adopt a hierarchi-
cal representation of alignment: the first level in-
volves word alignment, the second level involves
morpheme alignment. TAMs jointly induce word
and morpheme alignments using an EM algorithm.
TAMs can align rarely occurring words through
their frequently occurring morphemes. In other
words, they use morpheme probabilities to smooth
rare word probabilities.

Eyigöz et al. (2013) introduced TAM 1, which is
analogous to IBM Model 1, in that the first level is
a bag of words in a pair of sentences, and the sec-
ond level is a bag of morphemes. By introducing
distortion probabilities at the word level, Eyigöz
et al. (2013) defined the HMM extension of TAM
1, the TAM-HMM. TAM-HMM was shown to
be superior to its single-level counterpart, i.e., the
HMM-based word alignment model of Vogel et al.
(1996).

The alignment example in Figure 1 shows a
Turkish word aligned to an English phrase. The
morphemes of the Turkish word are aligned to
the English words. As the example shows, mor-
phologically rich languages exhibit complex re-
ordering phenomena at the morpheme level, which
is left unutilized in TAM-HMMs. In this paper,
we add morpheme sequence modeling to TAMs
to capture morpheme level distortions. The ex-
ample also shows that the Turkish morpheme or-
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from our people who sell eyeglasses

gözlükçülerimizden

Figure 1: Turkish word aligned to an English
phrase.

der is the reverse of the English word order. Be-
cause this pattern spans several English words, it
can only be captured by modeling morpheme re-
ordering across word boundaries. We chose multi-
rate HMMs over other hierarchical HMM mod-
els because multi-rate HMMs allow morpheme se-
quence modeling across words over the entire sen-
tence.

It is possible to model the morpheme sequence
by treating morphemes as words: segmenting the
words into morphemes, and using word-based
word alignment models on the segmented data.
Eyigöz et al. (2013) showed that TAM-HMM per-
forms better than treating morphemes as words.

Since the multi-rate HMM allows both word
and morpheme sequence modeling, it is a gener-
alization of TAM-HMM, which allows only word
sequence modeling. TAM-HMM in turn is a gen-
eralization of the model suggested by Goldwater
and McClosky (2005) and TAM 1. Our results
show that multi-rate HMMs are superior to TAM-
HMMs. Therefore, multi-rate HMMs are the best
two-level alignment models proposed so far.

2 Two-level Alignment Model (TAM)

The two-level alignment model (TAM) takes the
approach of assigning probabilities to both word-
to-word translations and morpheme-to-morpheme
translations simultaneously, allowing morpheme-
level probabilities to guide alignment for rare word
pairs. TAM is based on a concept of alignment
defined at both the word and morpheme levels.

2.1 Morpheme Alignment

A word alignment aw is a function mapping a set
of word positions in a target language sentence e

to a set of word positions in a source language sen-
tence f , as exemplified in Figure 2. A morpheme
alignment am is a function mapping a set of mor-
pheme positions in a target language sentence to

a set of morpheme positions in a source language
sentence. A morpheme position is a pair of inte-
gers (j, k), which defines a word position j and a
relative morpheme position k in the word at posi-
tion j, as shown in Figure 3. The word and mor-
pheme alignments below are depicted in Figures 2
and 3.

aw(1) = 1 am(2, 1) = (1, 1) aw(2) = 1

A morpheme alignment am and a word alignment
aw are compatible if and only if they satisfy the
following conditions: If the morpheme alignment
am maps a morpheme of e to a morpheme of f ,
then the word alignment aw maps e to f . If the
word alignment aw maps e to f , then the mor-
pheme alignment am maps at least one morpheme
of e to a morpheme of f . If the word align-
ment aw maps e to null, then all of its morphemes
are mapped to null. Figure 3 shows a morpheme
alignment that is compatible with, i.e., restricted
by, the word alignment in Figure 2. The smaller
boxes embedded inside the main box in Figure 3
depict the embedding of the morpheme level in-
side the word level in two-level alignment models
(TAM).

2.2 TAM 1

We call TAM without sequence modeling TAM 1,
because it defines an embedding of IBM Model 1
(Brown et al., 1993) for morphemes inside IBM
Model 1 for words. In TAM 1, p(e|f), the prob-
ability of translating the sentence f into e is com-
puted by summing over all possible word align-
ments and all possible morpheme alignments that
are compatible with a given word alignment aw:

Word Morpheme

Rw

|e|∏

j=1

|f |∑

i=0


t(ej |fi) Rm

|ej |∏

k=1

|fi|∑

n=0

t(ekj |fni )




(1)

where fni is the nth morpheme of the word at po-
sition i. The probability of translating the word fi
into the word ej is computed by summing over all
possible morpheme alignments between the mor-
phemes of ej and fi. Rw substitutes P (le|lf )

(lf+1)le
for

easy readability.1 Rm is equivalent to Rw except
1le = |e| is the number of words in sentence e and lf =

|f |.
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Figure 2: Word alignment Figure 3: Morpheme alignment

for the fact that its domain is not the set of sen-
tences but the set of words. The length of a word is
the number of morphemes in the word. The length
of words ej and fi in R(ej , fi) are the number of
morphemes of ej and fi. We assume that all un-
aligned morphemes in a sentence map to a special
null morpheme.

TAM 1 with the contribution of both word and
morpheme translation probabilities, as in Eqn. 1, is
called ‘word-and-morpheme’ version of TAM 1.
The model is technically deficient probabilisti-
cally, as it models word and morpheme transla-
tion independently, and assigns mass to invalid
word/morpheme combinations. We can also de-
fine the ‘morpheme-only’ version of TAM 1 by
canceling out the contribution of word translation
probabilities and assigning 1 to t(ej |fi) in Eqn. 1.
Please note that, although this version of the two-
level alignment model does not use word transla-
tion probabilities, it is also a word-aware model, as
morpheme alignments are restricted to correspond
to a valid word alignment. As such, it also allows
for word level sequence modeling by HMMs. Fi-
nally, canceling out the contribution of morpheme
translation probabilities reduces TAM 1 to IBM
Model 1. Just as IBM Model 1 is used for initial-
ization before HMM-based word-alignment mod-
els (Vogel et al., 1996; Och and Ney, 2003), TAM
Model 1 is used to initialize its HMM extensions,
which are described in the next section.

3 Multi-rate HMM

Like other multi-scale HMM models such as hi-
erarchical HMM’s (Fine et al., 1998) and hidden
Markov trees (Crouse et al., 1998), the multi-rate
HMM characterizes the inter-scale dependencies
by a tree structure. As shown in Figure 5, scales
are organized in a hierarchical manner from coarse
to fine, which allows for efficient representation of
both short- and long-distance context simultane-
ously.

We found that 51% of the dependency relations
in the Turkish Treebank (Oflazer et al., 2003) are
between the last morpheme of a dependent word
and the first morpheme (the root) of the head word
that is immediately to its right, which is exempli-
fied below. The following examples show English
sentences in Turkish word/morpheme order. The
pseudo Turkish words are formed by concatena-
tion of English morphemes, which are indicated
by the ‘+’ between the morphemes.

• – I will come from X.
– X+ABL come+will+I

• – I will look at X.
– X+DAT look+will+I

In English, the verb ‘come’ subcategorizes for
a PP headed by ‘from’ in the example above.
In the pseudo Turkish version of this sentence,
‘come’ subcategorizes for a NP marked with abla-
tive case (ABL), which corresponds to the prepo-
sition ‘from’. Similarly, ‘look’ subcategorizes for
a PP headed by ‘at’ in English, and a NP marked
with dative case (DAT) in Turkish. Just as the verb
and the preposition that it subcategorizes for are
frequently found adjacent to each other in English,
the verb and the case that it subcategorizes for are
frequently found adjacent to each other in Turk-
ish. Thus, we have a pattern of three correspond-
ing morphemes appearing in reverse order in En-
glish and Turkish, spanning two words in Turkish
and three words in English. In order to capture
such regularities, we chose multi-rate HMMs over
other hierarchically structured HMM models be-
cause, unlike other models, multi-rate HMMs al-
low morpheme sequence modeling across words
over the entire sentence. This allows us to capture
morpheme-mediated syntactic relations between
words (Eryiğit et al., 2008), as exemplified above.

Morpheme sequence modeling across words is
shown in Figure 4 by the arrows after the nodes
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Figure 4: Multi-rate HMM graph.

representing fam(0,2) and fam(1,2). The circles
represent the words and morphemes of the source
language, the squares represent the words and
morphemes of the target language. e0,2 is the last
morpheme of word e0, and e1,0 is the first mor-
pheme of the next word e1. fam(1,0) is conditioned
on fam(0,2), which is in the previous word.

In order to model the morpheme sequence
across words, we define the function prev(j, k),
which maps the morpheme position (j, k) to the
previous morpheme position:

prev(j, k) =

{
(j, k − 1) if k > 1

(j − 1, |ej−1|) if k = 1

If a morpheme is the first morpheme of a word,
then the previous morpheme is the last morpheme
of the previous word.

3.1 Transitions

3.1.1 Morpheme transitions
Before introducing the morpheme level transition
probabilities, we first restrict morpheme level tran-
sitions according to the assumptions of our model.
We consider only the morpheme alignment func-
tions that are compatible with a word alignment
function. If we allow unrestricted transitions be-
tween morphemes, then this would result in some
morpheme alignments that do not allow a valid
word alignment function.

To avoid this problem, we restrict the transi-
tion function as follows: at each time step, we
allow transitions between morphemes in sentence
f if the morphemes belong to the same word.
This restriction reduces the transition matrix to a

block diagonal matrix. The block diagonal matrix
Ab below is a square matrix which has blocks of
square matrices A1 · · ·An on the main diagonal,
and the off-diagonal values are zero.

Ab =




A0 0 · · · 0

0 A1 · · · 0
...

...
. . .

...
0 0 · · · An




The square blocks A0, . . . ,An have the dimen-
sions |f0|, . . . , |fn|, the length of the words in sen-
tence f . In each step of the forward-backward al-
gorithm, multiplying the forward (or backward)
probability vectors with the block diagonal ma-
trix restricts morpheme transitions to occur only
within the words of sentence f .

In order to model the morpheme sequence
across words, we also allow transitions between
morphemes across the words in sentence f . How-
ever, we allow cross-word transitions only at cer-
tain time steps: between the last morpheme of a
word in sentence e and the first morpheme of the
next word in sentence e. This does not result in
morpheme alignments that do not allow a valid
word alignment function. Instead of the block di-
agonal matrix Ab, we use a transition matrix A

which is not necessarily block diagonal, to model
morpheme transitions across words.

In sum, we multiply the forward (or backward)
probability vectors with either the transition ma-
trix Ab or the transition matrix A, depending on
whether the transition is occurring at the last mor-
pheme of a word in e. We introduce the function
δ(p, q, r, s) to indicate whether a transition is al-
lowed from source position (p, q) to source posi-
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tion (r, s) when advancing one target position:

δ(p, q, r, s) =

{
1 if p = r or s = 1

0 otherwise

Morpheme transition probabilities have four
components. First, the δ function as described
above. Second, the jump width:

J (p, q, r, s) = abs(r, s)− abs(p, q)
where abs(j, k) maps a word-relative morpheme
position to an absolute morpheme position, i.e., to
the simple left-to-right ordering of a morpheme in
a sentence. Third, the morpheme class of the pre-
vious morpheme:2

M(p, q) = Class(f qp )

Fourth, as the arrow from faw(0) to fam(0,0) in Fig-
ure 4 shows, there is a conditional dependence on
the word class that the morpheme is in:

W(r) = Class(fr)

Putting together these components, the morpheme
transitions are formulated as follows:

p(am(j, k) = (r, s) | am(prev(j, k)) = (p, q)) ∝
p
(
J (p, q, r, s)|M(p, q),W(r)

)
δ(p, q, r, s)

(2)

The block diagonal matrix Ab consists of mor-
pheme transition probabilities.

3.1.2 Word transitions
In the multi-rate HMM, word transition probabili-
ties have two components. First, the jump width:

J (p, r) = r − p
Second, the word class of the previous word:

W(p) = Class(fp)

The jump width is conditioned on the word class
of the previous word:

p(aw(j) = r | aw(j − 1) = p) ∝
p(J (p, r) | W(p)) (3)

The transition matrix A, which is not necessarily
block diagonal, consists of values which are the
product of a morpheme transition probability, as
defined in Eqn. 2, and a word transition probabil-
ity, as defined in Eqn. 3.

2We used the mkcls tool in GIZA (Och and Ney, 2003)
to learn the word and the morpheme classes.

3.2 Probability of translating a sentence

Finally, putting together Eqn. 1, Eqn. 2 and Eqn. 3,
we formulate the probability of translating a sen-
tence p(e|f) as follows:

Rw

∑

aw

|e|∏

j=1

(
t(ej |faw(j))p(aw(j)|aw(j−1))

Rm

∑

am

|ej |∏

k=1

t(ej,k|fam(j,k))

p(am(j,k)|am(prev(j,k)))

)

Rw is the same as it is in Eqn. 1, whereas
Rm = P (le|lf ). If we cancel out morpheme tran-
sitions by setting p(am(j, k)|am(prev(j, k))) =
1/|fam(j,k)|, i.e., with a uniform distribution, then
we get TAM with only word-level sequence mod-
eling, which we call TAM-HMM.

The complexity of the multi-rate HMM is
O(m3n3), where n is the number of words, and
m is the number of morphemes per word. TAM-
HMM differs from multi-rate HMM only by the
lack of morpheme-level sequence modeling, and
has complexity O(m2n3).

For the HMM to work correctly, we must han-
dle jumping to and jumping from null positions.
We learn the probabilities of jumping to a null po-
sition from the data. To compute the transition
probability from a null position, we keep track of
the nearest previous source word (or morpheme)
that does not align to null, and use the position of
the previous non-null word to calculate the jump
width. In order to keep track of the previous non-
null word, we insert a null word between words
(Och and Ney, 2003). Similarly, we insert a null
morpheme after every non-null morpheme.

3.3 Counts

We use Expectation Maximization (EM) to learn
the word and morpheme translation probabili-
ties, as well as the transition probabilities of the
reordering model. This is done with forward-
backward training at the morpheme level, collect-
ing translation and transition counts for both the
word and the morphemes from the morpheme-
level trellis.

In Figure 5, the grid on the right depicts the
morpheme-level trellis. The grid on the left is
the abstraction of the word-level trellis over the
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Figure 5: Multi-rate HMM trellis

morpheme-level trellis. For each target word e and
for each source word f , there is a small HMM trel-
lis with dimensions |e|×|f | inside the morpheme-
level trellis, as shown by the shaded area inside the
grid on the right. We collect counts for words by
summing over the values in the small HMM trellis
associated with the words.

3.3.1 Translation counts
Morpheme translation counts We compute ex-
pected counts over the morpheme-level trellis.
The morpheme translation count function below
collects expected counts for a morpheme pair
(h, g) in a sentence pair (e, f):

cm(h|g; e, f) =
∑

(j,k)
s.t.

h=ekj

∑

(p,q)
s.t.

g=fq
p

γj,k(p, q)

where γj,k(p, q) stands for the posterior mor-
pheme translation probabilities for source position
(p, q) and target position (i, j) that are computed
with the forward-backward algorithm.

Word translation counts For each target word
e and source word f , we collect word transla-
tion counts by summing over posterior morpheme
translation probabilities that are in the small trellis
associated with e and f .

Since δ allows only within-word transitions to
occur inside the small trellis, the posterior proba-
bility of observing the word e given the word f
is preserved across time points within the small
trellis associated with e and f . In other words,
the sum of the posterior probabilities in each col-
umn of the small trellis is the same. Therefore, we
collect word translation counts only from the last
morphemes of the words in e.

The word translation count function below col-
lects expected counts from a sentence pair (e, f)
for a particular source word f and target word e:

cw(e|f ; e, f) =
∑

j
s.t.
e=ej

∑

p
s.t.

f=fp

∑

1≤q≤|f |
γj,|e|(p, q)

3.3.2 Transition counts
Morpheme transition counts For all target po-
sitions (j, k) and all pairs of source positions (p, q)
and (r, s), we compute morpheme transition pos-
teriors:

ξj,k((p, q), (r, s))

using the forward-backward algorithm. These
expected counts are accumulated to esti-
mate the morpheme jump width probabilities
p
(
J (p, q, r, s)|M(p, q),W(r)

)
used in Eqn. 2.

Word transition counts We compute posterior
probabilities for word transitions by summing over
morpheme transition posteriors between the mor-
phemes of the words fl and fn:

ξj(p, r) =
∑

1≤q≤|fp|

∑

1≤s≤|fr|
ξj,|ej |((p, q), (r, s))

Like the translation counts, the transition counts
are collected from the last morphemes of words
in e. These expected counts are accumulated
to estimate the word jump width probabilities
p(J (p, r) | W(p)) used in Eqn. 3.

Finally, Rm = P (le|lf ) does not cancel out in
the counts of the multi-rate HMM. To compute the
conditional probability P (le|lf ), we assume that
the length of word e varies according to a Poisson
distribution with a mean that is linear with length
of the word f (Brown et al., 1993).

3.4 Variational Bayes

In order to prevent overfitting, we use the Varia-
tional Bayes extension of the EM algorithm (Beal,
2003). This amounts to a small change to the
M step of the original EM algorithm. We in-
troduce Dirichlet priors α to perform an inexact
normalization by applying the function f(v) =

exp(ψ(v)) to the expected counts collected in the
E step, where ψ is the digamma function (John-
son, 2007). The M-step update for a multinomial
parameter θx|y becomes:

θx|y =
f(E[c(x|y)] + α)

f(
∑

j E[c(xj |y)] + α)
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Multi-rate
HMM

TAM-HMM WORD

Word-
Morph 

Morph 
only

IBM 4 Baseline

BLEU
TR to EN 30.82 29.48 29.98 29.13 27.91

EN to TR 23.09 22.55  22.54 21.95 21.82

AER 0.254 0.255 0.256 0.375 0.370

Table 1: AER and BLEU Scores

We set α to 10−20, a very low value, to have the
effect of anti-smoothing, as low values of α cause
the algorithm to favor words which co-occur fre-
quently and to penalize words that co-occur rarely.
We used Dirichlet priors on morpheme translation
probabilities.

4 Experiments and Results

4.1 Data

We trained our model on a Turkish-English paral-
lel corpus of approximately 50K sentences which
have a maximum of 80 morphemes. Our parallel
data consists mainly of documents in international
relations and legal documents from sources such
as the Turkish Ministry of Foreign Affairs, EU,
etc. The Turkish data was first morphologically
parsed (Oflazer, 1994), then disambiguated (Sak
et al., 2007) to select the contextually salient inter-
pretation of words. In addition, we removed mor-
phological features that are not explicitly marked
by an overt morpheme. For English, we use part-
of-speech tagged data. The number of English
words is 1,033,726 and the size of the English vo-
cabulary is 28,647. The number of Turkish words
is 812,374, the size of the Turkish vocabulary is
57,249. The number of Turkish morphemes is
1,484,673 and the size of the morpheme vocab-
ulary is 16,713.

4.2 Experiments

We initialized our implementation of the single
level ‘word-only’ model, which we call ‘baseline’
in Table 1, with 5 iterations of IBM Model 1, and
further trained the HMM extension (Vogel et al.,
1996) for 5 iterations. Similarly, we initialized
TAM-HMM and multi-rate HMM with 5 iterations

of TAM 1 as explained in Section 2.2. Then we
trained TAM-HMM and the multi-rate HMM for 5
iterations. We also ran GIZA++ (IBM Model 1–4)
on the data. We translated 1000 sentence test sets.

We used Dirichlet priors in both IBM Model 1
and TAM 1 training. We experimented with using
Dirichlet priors on the HMM extensions of both
IBM-HMM and TAM-HMM. We report the best
results obtained for each model and translation di-
rection.

We evaluated the performance of our model in
two different ways. First, we evaluated against
gold word alignments for 75 Turkish-English sen-
tences. Table 1 shows the AER (Och and Ney,
2003) of the word alignments; we report the grow-
diag-final (Koehn et al., 2003) of the Viterbi align-
ments. Second, we used the Moses toolkit (Koehn
et al., 2007) to train machine translation systems
from the Viterbi alignments of our various models,
and evaluated the results with BLEU (Papineni et
al., 2002).

In order to reduce the effect of nondetermin-
ism, we run Moses three times per experiment set-
ting, and report the highest BLEU scores obtained.
Since the BLEU scores we obtained are close,
we did a significance test on the scores (Koehn,
2004). In Table 1, the colors partition the table
into equivalence classes: If two scores within the
same row have different background colors, then
the difference between their scores is statistically
significant. The best scores in the leftmost column
were obtained from multi-rate HMMs with Dirich-
let priors only during the TAM 1 training. On the
contrary, the best scores for TAM-HMM and the
baseline-HMM were obtained with Dirichlet pri-
ors both during the TAM 1 and the TAM-HMM
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training. In Table 1, as the scores improve grad-
ually towards the left, the background color gets
gradually lighter, depicting the statistical signifi-
cance of the improvements. The multi-rate HMM
performs better than the TAM-HMM, which in
turn performs better than the word-only models.

5 Conclusion

We presented a multi-rate HMM word alignment
model, which models the word and the morpheme
sequence simultaneously. We have tested our
model on the Turkish-English pair and showed
that our model is superior to the two-level word
alignment model which has sequence modeling
only at the word level.
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Abstract

We propose a novel unsupervised word
alignment model based on the Hidden
Markov Tree (HMT) model. Our model
assumes that the alignment variables have
a tree structure which is isomorphic to the
target dependency tree and models the dis-
tortion probability based on the source de-
pendency tree, thereby incorporating the
syntactic structure from both sides of the
parallel sentences. In English-Japanese
word alignment experiments, our model
outperformed an IBM Model 4 baseline
by over 3 points alignment error rate.
While our model was sensitive to poste-
rior thresholds, it also showed a perfor-
mance comparable to that of HMM align-
ment models.

1 Introduction

Automatic word alignment is the first step in the
pipeline of statistical machine translation. Trans-
lation models are usually extracted from word-
aligned bilingual corpora, and lexical translation
probabilities based on word alignment models are
also used for translation.

The most widely used models are the IBM
Model 4 (Brown et al., 1993) and Hidden Markov
Models (HMM) (Vogel et al., 1996). These mod-
els assume that alignments are largely monotonic,
possibly with a few jumps. While such assump-
tion might be adequate for alignment between sim-
ilar languages, it does not necessarily hold be-
tween a pair of distant languages like English and
Japanese.

Recently, several models have focused on in-
corporating syntactic structures into word align-
ment. As an extension to the HMM alignment,
Lopez and Resnik (2005) present a distortion
model conditioned on the source-side dependency

tree, and DeNero and Klein (2007) propose a
distortion model based on the path through the
source-side phrase-structure tree. Some super-
vised models receive syntax trees as their input
and use them to generate features and to guide the
search (Riesa and Marcu, 2010; Riesa et al., 2011),
and other models learn a joint model for pars-
ing and word alignment from word-aligned par-
allel trees (Burkett et al., 2010). In the context of
phrase-to-phrase alignment, Nakazawa and Kuro-
hashi (2011) propose a Bayesian subtree align-
ment model trained with parallel sampling. None
of these models, however, can incorporate syntac-
tic structures from both sides of the language pair
and can be trained computationally efficiently in
an unsupervised manner at the same time.

The Hidden Markov Tree (HMT) model
(Crouse et al., 1998) is one such model that sat-
isfies the above-mentioned properties. The HMT
model assumes a tree structure of the hidden vari-
ables, which fits well with the notion of word-to-
word dependency, and it can be trained from un-
labeled data via the EM algorithm with the same
order of time complexity as HMMs.

In this paper, we propose a novel word align-
ment model based on the HMT model and show
that it naturally enables unsupervised training
based on both source and target dependency trees
in a tractable manner. We also compare our HMT
word alignment model with the IBM Model 4 and
the HMM alignment models in terms of the stan-
dard alignment error rates on a publicly available
English-Japanese dataset.

2 IBM Model 1 and HMM Alignment

We briefly review the IBM Model 1 (Brown et
al., 1993) and the Hidden Markov Model (HMM)
word alignment (Vogel et al., 1996) in this section.
Both are probabilistic generative models that fac-
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tor as

p(f |e) =
∑

a

p(a, f |e)

p(a, f |e) =

J∏

j=1

pd(aj |aj )pt(fj |eaj )

where e = {e1, ..., eI} is an English (source) sen-
tence and f = {f1, ..., fJ} is a foreign (target)
sentence. a = {a1, ..., aJ} is an alignment vec-
tor such that aj = i indicates the j-th target word
aligns to the i-th source word and aj = 0 means
the j-th target word is null-aligned. j is the index
of the last non null-aligned target word before the
index j.

In both models, pt(fj |eaj ) is the lexical transla-
tion probability and can be defined as conditional
probability distributions. As for the distortion
probability pd(aj |aj ), pd(aj = 0|aj = i′) = p0
where p0 is NULL probability in both models.
pd(aj = i|aj = i′) is uniform in the Model 1
and proportional to the relative count c(i − i′) in
the HMM for i 6= 0. DeNero and Klein (2007)
proposed a syntax-sensitive distortion model for
the HMM alignment, in which the distortion prob-
ability depends on the path from the i-th word to
the i′-th word on the source-side phrase-structure
tree, instead of the linear distance between the two
words.

These models can be trained efficiently using
the EM algorithm. In practice, models in two di-
rections (source to target and target to source) are
trained and then symmetrized by taking their in-
tersection, union or using other heuristics. Liang
et al. (2006) proposed a joint objective of align-
ment models in both directions and the probability
of agreement between them, and an EM-like algo-
rithm for training.

They also proposed posterior thresholding for
decoding and symmetrization, which take

a = {(i, j) : p(aj = i|f , e) > τ}

with a threshold τ . DeNero and Klein (2007) sum-
marized some criteria for posterior thresholding,
which are

• Soft-Union
√
pf (aj = i|f , e) · pr(ai = j|f , e)

• Soft-Intersection

pf (aj = i|f , e) + pr(ai = j|f , e)
2

• Hard-Union

max(pf (aj = i|f , e), pr(ai = j|f , e))

• Hard-Intersection

min(pf (aj = i|f , e), pr(ai = j|f , e))

where pf (aj = i|f , e) is the alignment probabil-
ity under the source-to-target model and pr(ai =
j|f , e) is the one under the target-to-source model.

They also propose a posterior decoding heuris-
tic called competitive thresholding. Given a j × i
matrix of combined weights c and a threshold τ , it
choose a link (j, i) only if its weight cji ≥ τ and it
is connected to the link with the maximum weight
both in row j and column i.

3 Hidden Markov Tree Model

The Hidden Markov Tree (HMT) model was first
introduced by Crouse et al. (1998). Though it has
been applied successfully to various applications
such as image segmentation (Choi and Baraniuk,
2001), denoising (Portilla et al., 2003) and biol-
ogy (Durand et al., 2005), it is largely unnoticed
in the field of natural language processing. To
the best of our knowledge, the only exception is
Žabokrtskỳ and Popel (2009) who used a variant
of the Viterbi algorithm for HMTs in the transfer
phase of a deep-syntax based machine translation
system.

An HMT model consists of an observed random
tree X = {x1, ..., xN} and a hidden random tree
S = {s1, ..., sN}, which is isomorphic to the ob-
served tree.

The parameters of the model are

• P (s1 = j), the initial hidden state prior

• P (st = j|sρ(t) = i), transition probabilities

• P (xt = h|st = j), emission probabilities,

where ρ() is a function that maps the index of a
hidden node to the index of its parent node. These
parameters can be trained via the EM algorithm.

The “upward-downward” algorithm proposed
in Crouse et al. (1998), an HMT analogue of the
forward-backward algorithm for HMMs, can be
used in the E-step. However, it is based on the de-
composition of joint probabilities and suffers from
numerical underflow problems.

Durand et al. (2004) proposed a smoothed vari-
ant of the upward-downward algorithm, which is
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based on the decomposition of smoothed probabil-
ities and immune to underflow. In the next section,
we will explain this variant in the context of word
alignment.

4 Hidden Markov Tree Word Alignment

We present a novel word alignment model based
on the HMT model. Given a target sentence f =
{f1, ..., fJ}with a dependency tree F and a source
sentence e = {e1, ..., eI} with a dependency tree
E, an HMT word alignment model factors as

p(f |e) =
∑

a

p(a, f |e)

p(a, f |e) =
J∏

j=1

pd(aj |aj )pt(fj |eaj ).

While these equations appear identical to the ones
for the HMM alignment, they are different in that
1) e, f and a are not chain-structured but tree-
structured, and 2) j is the index of the non null-
aligned lowest ancestor of the j-th target word1,
rather than that of the last non null-aligned word
preceding the j-th word as in the HMM alignment.
Note that A, the tree composed of alignment vari-
ables a = {a1, ..., aJ}, is isomorphic to the target
dependency tree F.

Figure 1 shows an example of a target depen-
dency tree with an alignment tree, and a source
dependency tree. Note that English is the target
(or foreign) language and Japanese is the source
(or English) language here. We introduce the fol-
lowing notations following Durand et al. (2004),
slightly modified to better match the context of
word alignment.

• ρ(j) denotes the index of the head of the j-th
target word.

• c(j) denotes the set of indices of the depen-
dents of the j-th target word.

• Fj = f j denotes the target dependency sub-
tree rooted at the j-th word.

As for the parameters of the model, the initial
hidden state prior described in Section 3 can be
defined by assuming an artificial ROOT node for
both dependency trees, forcing the target ROOT
node to be aligned only to the source ROOT

1This dependence on aj can be implemented as a first-
order HMT, analogously to the case of the HMM alignment
(Och and Ney, 2003).

node and prohibiting other target nodes from be-
ing aligned to the source ROOT node. The lexi-
cal translation probability pt(fj |eaj ), which corre-
sponds to the emission probability, can be defined
as conditional probability distributions just like in
the IBM Model 1 and the HMM alignment.

The distortion probability pd(aj = i|aj = i′),
which corresponds to the transition probability,
depends on the distance between the i-th source
word and the i′-th source word on the source de-
pendency tree E, which we denote d(i, i′) here-
after. We model the dependence of pd(aj =
i|aj = i′) on d(i, i′) with the counts c(d(i, i′)).

In our model, d(i, i′) is represented by a pair
of non-negative distances (up, down), where up
is the distance between the i-th word and the
lowest common ancestor (lca) of the two words,
down is the one between the i′-th word and the
lca. For example in Figure 1b, d(0, 2) = (0, 4),
d(2, 5) = (2, 2) and d(4, 7) = (3, 0). In practice,
we clip the distance by a fixed window size w and
store c(d(i, i′)) in a two-dimensional (w + 1 ) ×
(w + 1 ) matrix. When w = 3, for example, the
distance d(0, 2) = (0, 3) after clipping.

We can use the smoothed variant of upward-
downward algorithm (Durand et al., 2004) for the
E-step of the EM algorithm. We briefly explain
the smoothed upward-downward algorithm in the
context of tree-to-tree word alignment below. For
the detailed derivation, see Durand et al. (2004).

In the smoothed upward-downward algorithm,
we first compute the state marginal probabilities

p(aj = i)

=
∑

i′
p(aρ(j) = i′)pd(aj = i|aρ(j) = i′)

for each target node and each state, where

pd(aj = i|aρ(j) = i′) = p0

if the j-th word is null-aligned, and

pd(aj = i|aρ(j) = i′)

= (1− p0) ·
c(d(i′, i))∑

i′′ 6=0 c(d(i
′, i′′))

if the j-th word is aligned. Note that we must ar-
tificially normalize pd(aj = i|aρ(j) = i′), because
unlike in the case of the linear distance, multiple
words can have the same distance from the j-th
word on a dependency tree.
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a0 a1 a2 a3 a4 a5
↓ ↓ ↓ ↓ ↓ ↓

−ROOT−f0 Thatf1 wasf2 Mountf3 Kuramaf4 .f5

(a) Target sentence with its dependency/alignment tree. Target words {f0, ..., f5} are emitted from
alignment variables {a0, ..., a5}. Ideally, a0 = 0, a1 = 1, a2 = 7, a3 = 5, a4 = 4 and a5 = 9.

−ROOT−e0 そのe1 山e2 がe3 鞍馬e4 山e5 でe6 あっe7 たe8 。e9
that mountain Kurama mountain be .

(b) Source sentence with its dependency tree. None of the target words are aligned to e2, e3, e6 and e8.

Figure 1: An example of sentence pair under the Hidden Markov Tree word alignment model. If we
ignore the source words to which no target words are aligned, the dependency structures look similar to
each other.

In the next phase, the upward recursion, we
compute p(aj = i|Fj = f j) in a bottom-up man-
ner. First, we initialize the upward recursion for
each leaf by

βj(i) = p(aj = i|Fj = fj)

=
pt(fj |ei)p(aj = i)

Nj
,

where

Nj = p(Fj = fj) =
∑

i

pt(fj |ei)p(aj = i).

Then, we proceed from the leaf to the root with the
following recursion,

βj(i) = p(aj = i|Fj = f j)

=
{∏j′∈c(j) βj,j′(i)}pt(fj |ei)p(aj = i)

Nj
,

where

Nj =
p(Fj = f j)∏

j′∈c(j) p(Fj′ = f j′)

=
∑

i

{
∏

j′∈c(j)
βj,j′(i)}pt(fj |ei)p(aj = i)

and

βρ(j),j(i) =
p(Fj = f j |aρ(j) = i)

p(Fj = f j)

=
∑

i′

βj(i
′)pd(aj = i′|aρ(j) = i)

p(aj = i′)
.

After the upward recursion is completed, we
compute p(aj = i|F0 = f0) in the downward
recursion. It is initialized at the root node by

ξ0(i) = p(a0 = i|F0 = f0).

Then we proceed in a top-down manner, comput-
ing

ξj(i) = p(aj = i|F0 = f0)

=
βj(i)

p(aj = i)
·

∑

i′

pd(aj = i|aρ(j) = i′)ξρ(j)(i′)

βρ(j),j(i′)
.

for each node and each state.
The conditional probabilities

p(aj = i, aρ(j) = i′|F0 = f0)

=
βj(i)pd(aj = i|aρ(j) = i′)ξρ(j)(i′)

p(aj = i)βρ(j),j(i′)
,
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which is used for the estimation of distortion prob-
abilities, can be extracted during the downward re-
cursion.

In the M-step, the lexical translation model can
be updated with

pt(f |e) =
c(f, e)

c(e)
,

just like the IBM Models and HMM alignments,
where c(f, e) and c(e) are the count of the word
pair (f, e) and the source word e. However, the
update for the distortion model is a bit compli-
cated, because the matrix that stores c(d(i, i′))
does not represent a probability distribution. To
approximate the maximum likelihood estimation,
we divide the counts c(d(i, i′)) calculated during
the E-step by the number of distortions that have
the distance d(i, i′) in the training data. Then we
normalize the matrix by

c(d(i, i′)) =
c(d(i, i′))∑w

i=0

∑w
i′=0 c(d(i, i

′))
.

Given initial parameters for the lexical trans-
lation model and the distortion counts, an HMT
aligner collects the expected counts c(f, e), c(e)
and c(d(i, i′)) with the upward-downward algo-
rithm in the E-step and re-estimate the parameters
in the M-Step. Dependency trees for the sentence
pairs in the training data remain unchanged during
the training procedure.

5 Experiment

We evaluate the performance of our HMT align-
ment model in terms of the standard alignment er-
ror rate2 (AER) on a publicly available English-
Japanese dataset, and compare it with the IBM
Model 4 (Brown et al., 1993) and HMM alignment
with distance-based (HMM) and syntax-based (S-
HMM) distortion models (Vogel et al., 1996;
Liang et al., 2006; DeNero and Klein, 2007).

We use the data from the Kyoto Free Transla-
tion Task (KFTT) version 1.3 (Neubig, 2011). Ta-
ble 1 shows the corpus statistics. Note that these
numbers are slightly different from the ones ob-
served under the dataset’s default training proce-
dure because of the difference in the preprocessing
scheme, which is explained below.

2Given sure alignments S and possible alignments P , the
alignment error rate of alignments A is 1 − |A∩S|+|A∩P |

|A|+|S|
(Och and Ney, 2003).

The tuning set of the KFTT has manual align-
ments. As the KFTT doesn’t distinguish between
sure and possible alignments, F-measure equals
1−AER on this dataset.

5.1 Preprocessing

We tokenize the English side of the data using the
Stanford Tokenizer3 and parse it with the Berkeley
Parser4 (Petrov et al., 2006). We use the phrase-
structure trees for the Berkeley Aligner’s syntactic
distortion model, and convert them to dependency
trees for our dependency-based distortion model5.
As the Berkeley Parser couldn’t parse 7 (out of
about 330K) sentences in the training data, we re-
moved those lines from both sides of the data. All
the sentences in the other sets were parsed suc-
cessfully.

For the Japanese side of the data, we first con-
catenate the function words in the tokenized sen-
tences using a script6 published by the author
of the dataset. Then we re-segment and POS-
tag them using MeCab7 version 0.996 and parse
them using CaboCha8 version 0.66 (Kudo and
Matsumoto, 2002), both with UniDic. Finally,
we modify the CoNLL-format output of CaboCha
where some kind of symbols such as punctuation
marks and parentheses have dependent words. We
chose this procedure for a reasonable compromise
between the dataset’s default tokenization and the
dependency parser we use.

As we cannot use the default gold alignment due
to the difference in preprocessing, we use a script9

published by the author of the dataset to modify
the gold alignment so that it better matches the
new tokenization.

5.2 Training

We initialize our models in two directions with
jointly trained IBM Model 1 parameters (5 itera-
tions) and train them independently for 5 iterations

3http://nlp.stanford.edu/software/
4We use the model trained on the WSJ portion of

Ontonotes (Hovy et al., 2006) with the default setting.
5We use Stanford’s tool (de Marneffe et al., 2006)

with options -conllx -basic -makeCopulaHead
-keepPunct for conversion.

6https://github.com/neubig/
util-scripts/blob/master/
combine-predicate.pl

7http://code.google.com/p/mecab/
8http://code.google.com/p/cabocha/
9https://github.com/neubig/

util-scripts/blob/master/
adjust-alignments.pl
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Sentences English Tokens Japanese Tokens
Train 329,974 5,912,543 5,893,334
Dev 1,166 24,354 26,068
Tune 1,235 30,839 33,180
Test 1,160 26,730 27,693

Table 1: Corpus statistics of the KFTT.

Precision Recall AER
HMT (Proposed) 71.77 55.23 37.58

IBM Model 4 60.58 57.71 40.89
HMM 69.59 56.15 37.85

S-HMM 71.60 56.14 37.07

Table 2: Alignment error rates (AER) based on
each model’s peak performance.

with window size w = 4 for the distortion model.
The entire training procedure takes around 4 hours
on a 3.3 GHz Xeon CPU.

We train the IBM Model 4 using GIZA++ (Och
and Ney, 2003) with the training script of the
Moses toolkit (Koehn et al., 2007).

The HMM and S-HMM alignment models are
initialized with jointly trained IBM Model 1 pa-
rameters (5 iterations) and trained independently
for 5 iterations using the Berkeley Aligner. We
find that though initialization with jointly trained
IBM Model 1 parameters is effective, joint train-
ing of HMM alignment models harms the perfor-
mance on this dataset (results not shown).

5.3 Result

We use posterior thresholding for the HMT and
HMM alignment models, and the grow-diag-final-
and heuristic for the IBM Model 4.

Table 2 and Figure 2 show the result. As
the Soft-Union criterion performed best, we don’t
show the results based on other criteria. On the
other hand, as the peak performance of the HMT
model is better with competitive thresholding and
those of HMM models are better without it, we
compare Precision/Recall curves and AER curves
both between the same strategy and the best per-
forming strategy for each model.

As shown in Table 2, the peak performance of
the HMT alignment model is better than that of
the IBM Model 4 by over 3 point AER, and it was
somewhere between the HMM and the S-HMM.
Taking into account that our distortion model is

simpler than that of S-HMM, these results seem
natural, and it would be reasonable to expect that
replacing our distortion model with more sophisti-
cated one might improve the performance.

When we look at Precision/Recall curves and
AER curves in Figures 2a and 2d, the HMT model
is performing slightly better in the range of 50 to
60 % precision and 0.15 to 0.35 posterior thresh-
old with the Soft-Union strategy. Results in Fig-
ures 2b and 2e show that the HMT model performs
better around the range around 60 to 70 precision
and it corresponds to 0.2 to 0.4 posterior thresh-
old with the competitive thresholding heuristic. In
addition, results on both strategies show that per-
formance curve of the HMT model is more peaked
than those of HMM alignment models.

We suspect that a part of the reason behind such
behavior can be attributed to the fact that the HMT
model’s distortion model is more uniform than that
of HMM models. For example, in our model, all
sibling nodes have the same distortion probability
from their parent node. This is in contrast with the
situation in HMM models, where nodes within a
fixed distance have different distortion probabili-
ties. With more uniform distortion probabilities,
many links for a target word may have a consider-
able amount of posterior probability. If that is true,
too many links will be above the threshold when it
is set low, and too few links can exceed the thresh-
old when it is set high. More sophisticated distor-
tion model may help mitigate such sensitivity to
the posterior threshold.

6 Related Works

Lopez and Resnik (2005) consider an HMM
model with distortions based on the distance in
dependency trees, which is quite similar to our
model’s distance. DeNero and Klein (2007) pro-
pose another HMM model with syntax-based dis-
tortions based on the path through constituency
trees, which improves translation rule extraction
for tree-to-string transducers. Both models as-
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(a) Precision/Recall Curve with Soft-Union. (b) Precision/Recall Curve with Soft-Union + Competi-
tive Thresholding.

(c) Precision/Recall Curve with the Best Strategy. (d) Alignment Error Rate with Soft-Union.

(e) Precision/Recall Curve with Soft-Union + Competi-
tive Thresholding.

(f) Alignment Error Rate with with the Best Strategy.

Figure 2: Precision/Recall Curve and Alignment Error Rate with Different Models and Strategies.
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sume a chain structure for hidden variables (align-
ment) as opposed to a tree structure as in our
model, and condition distortions on the syntactic
structure only in one direction.

Nakazawa and Kurohashi (2011) propose
a dependency-based phrase-to-phrase alignment
model with a sophisticated generative story, which
leads to an increase in computational complexity
and requires parallel sampling for training.

Several supervised, discriminative models use
syntax structures to generate features and to guide
the search (Burkett et al., 2010; Riesa and Marcu,
2010; Riesa et al., 2011). Such efforts are orthog-
onal to ours in the sense that discriminative align-
ment models generally use statistics obtained by
unsupervised, generative models as features and
can benefit from their improvement. It would be
interesting to incorporate statistics of the HMT
word alignment model into such discriminative
models.

Žabokrtskỳ and Popel (2009) use HMT mod-
els for the transfer phase in a tree-based MT sys-
tem. While our model assumes that the tree struc-
ture of alignment variables is isomorphic to tar-
get side’s dependency tree, they assume that the
deep-syntactic tree of the target side is isomorphic
to that of the source side. The parameters of the
HMT model is given and not learned by the model
itself.

7 Conclusion

We have proposed a novel word alignment model
based on the Hidden Markov Tree (HMT) model,
which can incorporate the syntactic structures of
both sides of the language into unsupervised word
alignment in a tractable manner. Experiments on
an English-Japanese dataset show that our model
performs better than the IBM Model 4 and com-
parably to the HMM alignment models in terms
of alignment error rates. It is also shown that the
HMT model with a simple tree-based distortion
is sensitive to posterior thresholds, perhaps due to
the flat distortion probabilities.

As the next step, we plan to improve the dis-
tortion component of our HMT alignment model.
Something similar to the syntax-sensitive distor-
tion model of DeNero and Klein (2007) might be
a good candidate.

It is also important to see the effect of our
model on the downstream translation. Apply-
ing our model to recently proposed models that

directly incorporate dependency structures, such
as string-to-dependency (Shen et al., 2008) and
dependency-to-string (Xie et al., 2011) models,
would be especially interesting.

Last but not least, though the dependency struc-
tures don’t pose a hard restriction on the align-
ment in our model, it is highly likely that parse
errors have negative effects on the alignment ac-
curacy. One way to estimate the effect of parse
errors on the accuracy is to parse the input sen-
tences with inferior models, for example trained
on a limited amount of training data. Moreover,
preserving some ambiguities using k-best trees or
shared forests might help mitigate the effect of 1-
best parse errors.
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Abstract

The Discriminative Word Lexicon (DWL)
is a maximum-entropy model that pre-
dicts the target word probability given the
source sentence words. We present two
ways to extend a DWL to improve its abil-
ity to model the word translation probabil-
ity in a phrase-based machine translation
(PBMT) system. While DWLs are able to
model the global source information, they
ignore the structure of the source and tar-
get sentence. We propose to include this
structure by modeling the source sentence
as a bag-of-n-grams and features depend-
ing on the surrounding target words. Fur-
thermore, as the standard DWL does not
get any feedback from the MT system, we
change the DWL training process to ex-
plicitly focus on addressing MT errors.

By using these methods we are able to im-
prove the translation performance by up
to 0.8 BLEU points compared to a system
that uses a standard DWL.

1 Introduction

In many state-of-the-art SMT systems, the phrase-
based (Koehn et al., 2003) approach is used. In
this approach, instead of building the translation
by translating word by word, sequences of source
and target words, so-called phrase pairs, are used
as the basic translation unit. A table of correspon-
dences between source and target phrases forms
the translation model. Target language fluency is
modeled by a language model storing monolingual
n-gram occurrences. A log-linear combination of
these main models as well as additional features is
used to score the different translation hypotheses.
Then the decoder searches for the translation with
the highest score.

One problem of this approach is that bilingual
context is only modeled within the phrase pairs.
Therefore, different approaches to increase the
context available during decoding have been pre-
sented (Haque et al., 2011; Niehues et al., 2011;
Mauser et al., 2009). One promising approach is
the Discriminative Word Lexicon (DWL). In this
approach, a discriminative model is used to predict
the probability of a target word given the words in
the source sentence.

In contrast to other models in the phrase-based
system, this approach is capable of modeling the
translation probability using information from the
whole sentence. Thus it is possible to model
long-distance dependencies. But the model is not
able to use the structure of the sentence, since
the source sentence is modeled only as a bag-
of-words. Furthermore, the DWL is trained to
discriminate between all translation options with-
out knowledge about the other models used in a
phrase-based machine translation system such as
the translation model, language model etc. In
contrast, we try to feedback information about
possible errors of the MT system into the DWL.
Thereby, the DWLs are able to focus on improving
the errors of the other models of an MT system.

We will introduce features that encode infor-
mation about the source sentence structure. Fur-
thermore, the surrounding target words will also
be used in the model to encode information about
the target sentence structure. Finally, we incor-
porate information from the other models into the
creation of the training examples. We create the
negative training examples using possible errors of
the other models.

2 Related Work

Bangalore et al. (2007) presented an approach to
machine translation using discriminative lexical
selection. Motivated by their results, Mauser et
al. (2009) integrated the DWL into the PBMT ap-
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proach. Thereby, they are able to use global source
information.

This was extended by Huck et al. (2010) by a
feature selection strategy in order to reduce the
number of weights. In Mediani et al. (2011) a first
approach to use information about MT errors in
the training of DWLs was presented. They select
the training examples by using phrase table infor-
mation also.

The DWLs are related to work that was done
in the area of word sense disambiguation (WSD).
Carpuat and Wu (2007) presented an approach to
disambiguate between different phrases instead of
performing the disambiguation at word level.

A different lexical model that uses target side
information was presented in Jeong et al. (2010).
The focus of this work was to model complex mor-
phology on the target language.

3 Discriminative Word Lexicon

The DWL is a maximum entropy model used to
determine the probability of using a target word
in the translation. Therefore, we train individ-
ual models for every target word. Each model is
trained to return the probability of this word given
the input sentence.

The input of the model is the source sentence.
Therefore, we need to represent the input sentence
by features. In this approach this is done by using
binary features. We use an indicator feature for
every input word. Therefore, the sentence is mod-
eled as a bag-of-words and the order of the words
is ignored. More formally, a given source sen-
tence F = f1 . . . fI is represented by the features
I(F ) = {if (F ) : f ∈ SourceV ocabulary}:

if (F ) =

{
1 : f ∈ F
0 : f /∈ F (1)

The models are trained on examples generated
by the parallel training data. The labels for train-
ing the classifier of target word e are defined as
follows:

labele(F,E) =

{
1 : e ∈ E
0 : e /∈ E (2)

We used the MegaM Toolkit1 to train the maxi-
mum entropy models. This model approximates
the probability p(ej |F ) of a target word ej given
the source sentence F .

1http://www.umiacs.umd.edu/ hal/megam/index.html

When we have the probability for every word ej
given the source sentence F , we need to combine
these probabilities into a probability of the whole
target sentence E = e1 . . . eJ given F . Making an
assumption of independence on the target side as
well, the models can be combined to the probabil-
ity of E given F :

p(E|F ) =
∏

ej∈e
p(ej |F ) (3)

In this equation we multiply the probability of
one word only once even if the word occurs sev-
eral times in the sentence. Since we build the tar-
get sentence from left to right during decoding,
we would need to change the score for this fea-
ture only if a new word is added to the hypothesis.
If a word is added second time we do not want
to change the feature value. In order to keep track
of this, additional bookkeeping would be required.
But the other models in our translation system will
prevent us from using a word too often in any case.
Therefore, we approximate the probability of the
sentence differently as defined in Equation 4.

p(E|F ) =
J∏

j=1

p(ej |F ) (4)

In this case we multiply the probabilities of all
word occurrences in the target sentence. There-
fore, we can calculate the score for every phrase
pair before starting with the translation.

4 Modeling Sentence Structure

As mentioned before one main drawback of DWLs
is that they do not encode any structural informa-
tion about the source or target sentence. We in-
corporated this information with two types of fea-
tures. First, we tried to encode the information
from the source sentence better by using a bag-of-
n-grams approach. Secondly, we introduced new
features to be able to encode information about the
neighboring target words also.

4.1 Source Sentence Structure
In the default approach the sentence is represented
as a bag-of-words. This has the advantage that
the model can use a quite large context of the
whole sentence. In contrast to the IBM models,
where the translation probability only depends on
the aligned source word, here the translation prob-
ability can be influenced by all words in the sen-
tence.
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On the other hand, the local context is ignored
by the bag-of-words approach. Information about
the word order get lost. No information about the
previous and next word is available. The problem
is illustrated in the example in Figure 1.

Figure 1: Example for source structural informa-
tion

Source: Die Lehrer wussten nicht, ...
Reference: The teachers didn’t know ...

The German word Lehrer (engl. teacher) is the
same word for singular or plural. It is only pos-
sible to distinguish whether singular or plural is
meant through the context. This can be determined
by the plural article die. If only one teacher would
be meant, the corresponding article would be der.

In order be able to use the DWL to distinguish
between these two translations, we need to im-
prove the representation of the input sentence. As
shown in the example, it would be helpful to know
the order of the words. If we know that the word
die precedes Lehrer, it would be more probable
that the word is translated into teachers rather than
teacher.

Therefore, we propose to use a bag-of-n-grams
instead of a bag-of-words to represent the input
sentence. In this case we will use an indicator fea-
ture for every n-gram occurring in the input sen-
tence and not only for every word. This way we
are also able to encode the sequence of the words.
For the example, we would have the input feature
die Lehrer, which would increase the probability
of using teachers in the translation compared to
teacher.

By increasing the order of the n-grams, we will
also increase the number of features and run into
data sparseness problems. Therefore, we used
count filtering on the features for higher order n-
grams. Furthermore, we combine n-grams of dif-
ferent orders to better handle the data sparseness
problem.

4.2 Target Sentence Structure

In the standard DWL approach, the probability of
the target word depends only on the source words
in the input sentence. But this is a quite rough ap-
proximation. In reality, the probability of a target
word occurring in the sentence also depends on the
other target words in the sentence.

If we look at the word langsam (engl. slow or

slowly) in the example sentence in Figure 2, we
can only determine the correct translation by using
the target context. The word can be translated as
slow or slowly depending on how it is used in the
English sentence.

In order to model the translation probability bet-
ter we need structural information of the target
side. For example, if the preceding word on the
target side is be, the translation will be more prob-
ably slow than slowly.

We encoded the target context of the word by
features indicating the preceding or next word.
Furthermore, we extend the context to up to three
words before and after the word. Therefore the
following target features are added to the set of
features for the classifier of word e:

iTC e′ k(E) =

{
1 : ∃j : ej = e ∧ ej+k = e′

0 : else

(5)
where k ∈ {−1, 1} for a context of one word

before and after.

5 Training

Apart from the missing sentence structure the
DWL is not able to make use of feedback from
the other models in the MT system. We try to in-
corporate information about possible errors intro-
duced by the other models into the training of the
DWL.

The DWL is trained on the paral-
lel data that is available for the task
T = (F1, E1), . . . , (FM , EM ). In order to
train it, we need to create positive and negative
examples from this data. We will present different
approaches to generate the training examples,
which differ in the information used for creating
the negative examples.

In the original approach, one training example
is created for every sentence of the parallel data
and for every DWL classifier. If the target word
occurs in the sentence, we create a positive ex-
ample and if not the source sentence is used as a
negative example as described in Equation 2. For
most words, this results in a very unbalanced set of
training examples. Most words will only occur in
quite few sentences and therefore, we have mostly
negative examples.

Mediani et al. (2011) presented an approach
to create the training examples that is driven by
looking at possible errors due to the different
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Figure 2: Example for target structural information

Source: Die Anerkennung wird langsam sein in den Vereinigten Staaten ...
Reference: The recognition is going to be slow in the United States, ...

translations in the phrase table (Phrase pair ap-
proach). Since a translation is generated always
using phrase pairs (f̃ , ẽ) with matching source
side, wrong words can only be generated in the
translation if the word occurs in the target side
words of those matching phrase pairs. There-
fore, we can define the possible target vocabulary
TV (F ) of a source sentence:

TV (F ) = {e|∃(f̃ , ẽ) : f̃ ⊆ F ∧ e ∈ ẽ} (6)

As a consequence, we generate a negative train-
ing example for one target word only from those
training sentences where the word is in the target
vocabulary but not in the reference.

labele(F,E) =

{
1 : e ∈ E
0 : e /∈ E ∧ e ∈ TV (F )

(7)
All training sentences for which the label is not
defined are not used in the training of the model
for word e. Thereby, not only can we focus the
classifiers on improving possible errors made by
the phrase table, but also reduce the amount of
training examples and therefore the time needed
for training dramatically.

In the phrase pair approach we only use in-
formation about possible errors of the translation
model for generating the negative training exam-
ples. But it would be preferable to consider possi-
ble errors of the whole MT system instead of only
using the phrase table. Some of the errors of the
phrase table might already be corrected by the lan-
guage model. The possible errors of the whole
system can be approximated by using the N -Best
list.

We first need to translate the whole cor-
pus and save the N -Best list for all sentences
NBEST (F ) = {E′1 . . . E′N}. Then we can
approximate the possible errors of the MT sys-
tem with the errors that occur in the N -Best list.
Therefore, we create a negative example for a tar-
get word only if it occurs in the N -Best list and
not in the reference. Compared to the phrase pair
approach, the only difference is the definition of
the target vocabulary:

TV (F ) = {e|e ∈ NBEST (F )} (8)

The disadvantage of the N-Best approach is, of
course, that we need to translate the whole cor-
pus. This is quite time consuming, but it can be
parallelized.

5.1 Training Examples for Target Features
If we use target features, the creation of the train-
ing examples gets more difficult. When using only
source features, we can create one example from
every training sentence. Even if the word occurs
in several phrase pairs or in several entries of the
N -Best list, all of them will create the same train-
ing example, since the features only depend on the
source sentence.

When we use target features, the features of the
training example depend also on the target words
that occur around the word. Therefore, we can
only use theN -Best list approach to create the tar-
get features since previous approaches mentioned
in the last part do not have the target context in-
formation. Furthermore, we can create different
examples from the same sentence. If we have, for
example, theN -Best list entries I think ... and I be-
lieve .., we can use the context think or the context
believe for the model of I.

In the approach using all target features (All
TF), we created one training example for every
sentence where the word occurs. If we see the
word in different target contexts, we create all the
features for these contexts and use them in the
training example.

I(F,E) = max( I(F ); I(E); (9)

I(E′)|E′ ∈ NBEST (F ))

The maximum is defined component-wise. So
all features, which have in I(F ),I(E) or I(E′) the
value one, also have the value one in I(F,E). If
we use the context that was given by the reference,
this might not exist in the phrase-based MT sys-
tem. Therefore, in the next approach (N-Best TF),
we only used target features from the N -Best list.

I(F,E) = max(I(F ); I(E′)|E′ ∈ NBEST (F ))
(10)

In both examples, we still have the problem that
we can use different contexts in one training ex-
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ample. This condition can not happen when ap-
plying the DWL model. Therefore, we changed
the set of training examples in the separate target
features approach (Separate TF). We no longer
create one training example for every training sen-
tence (F,E), but one for every training sentence
N -Best list translation (F,E,E′). We only con-
sidered the examples for the classifier of target
word e, where e occurs in theN -Best list entryE′.
If the word does not occur in any N -Best list en-
try of a training sentence, but in the reference, we
created an additional example (F,E, ””). The fea-
tures of this examples can then be created straight
forward as:

I((F,E,E′)) = max(I(F ); I(E′)) (11)

If we have seen the word only in the reference,
we create an training example without target fea-
tures. Therefore, we have again a training exam-
ple which can not happen when using the DWL
model. Therefore, we removed these examples in
the last method (Restricted TF).

6 Experiments

After presenting the different approaches to per-
form feature and example selection, we will now
evaluate them. First, we will give a short overview
of the MT system. Then we will give a detailed
evaluation on the task of translating German lec-
tures into English and analyze the influence of the
presented approaches. Afterwards, we will present
overview experiments on the German-to-English
and English-to-German translation task of WMT
13 Shared Translation Task.

6.1 System Description
The translation system was trained on the EPPS
corpus, NC corpus, the BTEC corpus and TED
talks.2 The data was preprocessed and compound
splitting (Koehn and Knight, 2003) was applied
for German. Afterwards the discriminative word
alignment approach as described in Niehues and
Vogel (2008) was applied to generate the align-
ments between source and target words. The
phrase table was built using the scripts from the
Moses package (Koehn et al., 2007). A 4-gram
language model was trained on the target side of
the parallel data using the SRILM toolkit (Stolcke,
2002). In addition we used a bilingual language
model as described in Niehues et al. (2011).

2http://www.ted.com

Reordering was performed as a preprocessing
step using part-of-speech information generated
by the TreeTagger (Schmid, 1994). We used
the reordering approach described in Rottmann
and Vogel (2007) and the extensions presented in
Niehues and Kolss (2009) to cover long-range re-
orderings, which are typical when translating be-
tween German and English.

An in-house phrase-based decoder was used to
generate the translation hypotheses and the opti-
mization was performed using MERT (Venugopal
et al., 2005).

We optimized the weights of the log-linear
model on a separate set of TED talks and also
used TED talks for testing. The development set
consists of 1.7k segments containing 16k words.
As test set we used 3.5k segments containing 31k
words. We will refer to this system as System 1.

In order to show the influence of the approaches
better, we evaluated them also in a second system.
In addition to the models used in the first system
we performed a log-linear language model and
phrase table adaptation as described in Niehues
and Waibel (2012). To this system we refer as Sys-
tem 2 in the following experiments.

6.2 German - English TED Experiments

6.2.1 Source Features
In a first set of experiments, we analyzed the dif-
ferent types of source structure features described
in Section 4.1. In all the experiments, we generate
the negative training examples using the candidate
translations generated by the phrase pairs. The re-
sults can be found in Table 1.

First, we added the unigram DWL to the base-
line system. The higher improvements for the Sys-
tem 1 is due to the fact that the DWL is only
trained on the TED corpus and therefore also per-
forms some level of domain adaptation. This is
more important for the System 1, since System 2
is already adapted to the TED domain.

If we use features based on bigrams instead of
unigrams, the number of features increases by a
factor of eight. Furthermore, in both cases the
translation quality drops. Especially for System
1, we have a significant drop in the BLEU score
of the test set by 0.6 BLEU points. One prob-
lem might be that most of the bigrams occur quite
rarely and therefore, we have a problem of data
sparseness and generalization.

If we combine the features of unigram and bi-
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Table 1: Experiments using different source features

System FeatureSize System 1 System 2
Dev Test Dev Test

Baseline 0 26.32 24.24 28.40 25.89
Unigram 40k 27.46 25.56 28.58 26.15
Bigram 319k 27.34 24.92 28.53 25.82
Uni+bigram 359k 27.69 25.55 28.66 26.51
+ Count filter 2 122k 27.75 25.71 28.75 26.74
+ Count filter 5 63k 27.81 25.67 28.72 26.81
+ Trigram 77k 27.76 25.76 28.82 26.94

gram features, for System 1, we get an improve-
ment of 0.2 BLEU points on the development data
and the same translation quality on the test data
as the baseline DWL system using only unigrams.
For System 2, we can improve by 0.1 on the devel-
opment data and 0.4 on the test data. So we can get
a first improvement using these additional source
features, but the number of features increased by a
factor of nine.

In order to decrease the number of features
again, we applied count filtering to the bigram
features. In a first experiment we only used the
bigram features that occur at least twice. This
reduced the number of features dramatically by
a factor of three. Furthermore, this even im-
proved the translation quality. In both systems we
could improve the translation quality by 0.2 BLEU
points. So it seems to be quite important to add
only the relevant bigram features.

If we use a minimum occurrence of five for the
bigram features, we can even decrease the num-
ber of features further by a factor of two without
losing any translation performance.

Finally, we added the trigram features. For
these features we applied count filtering of five.
For System 1, the translation quality stays the
same, but for System 2 we can improve the trans-
lation quality by additional 0.2 BLEU points.

In summary, we could improve the translation
quality by 0.2 for the System 1 and 0.8 BLEU
points for the System 2 on the test set. Due to the
count filtering, this is achieved by only using less
than twice as many features.

6.3 Training Examples

In a next step we analyzed the different exam-
ple selection approaches. The results are summa-
rized in Table 2. In these experiments we used the
source features using unigrams, bigrams and tri-

grams with count filtering in all experiments.
In the first experiment, we used the original ap-

proach to create the training examples. In this
case, all sentences where the word does not occur
in the reference generate negative examples. In
our setup, we needed 8,461 DWL models to trans-
late the development and test data. These are all
target words that occur in phrase pairs that can be
used to translate the development or test set.

In each of approaches we have 0.75M posi-
tive examples for these models. In the origi-
nal approach, we have 428M negative examples.
So in this case the number of positive and nega-
tive examples is very unbalanced. This training
data leads to models with a total of 659M feature
weights.

If we use the target side of the phrase pairs to
generate our training examples, we dramatically
reduce the number of negative training examples.
In this case only 5M negative training examples
are generated. The size of the models is reduced
dramatically to 38M weights. Furthermore, we
could improve the translation quality by 0.3 BLEU
points on both System 1 and System 2.

If we use the 300-Best lists produced by Sys-
tem 1 to generate the training examples, we can
reduce the model size further. This approach leads
to models only half the size of the phrase pairs ap-
proach using only 1.59M negative examples. Fur-
thermore, for System 1 the translation quality can
be improved further to 25.87 BLEU points. For
System 2 the BLEU score on the development data
increases, but the score on the test sets drops by 0.4
BLEU points.

In the next experiment we used the N -Best lists
generated by System 2. The results are shown in
the line N -Best list 2. In this case, the model size
is slightly reduced further. And on the adapted
system a similar performance is achieved. But for
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Table 2: Experiments using different methods to create training examples

System #weight #neg. Examples System 1 System 2
Dev Test Dev Test

Original Approach 659 M 428 M 27.39 25.44 28.64 26.63
Phrase pairs 38 M 5.26 M 27.76 25.76 28.82 26.94
N -Best list 1 16 M 1.59 M 27.93 25.87 29.07 26.57
N -Best list 2 11 M 1.22 M 27.46 25.37 28.79 26.59
N -Best list 1 nonUnique 16 M 1.41M 27.99 25.97 29.07 26.65

System 1 the performance of this approach drops.
Consequently, it seems to be fine to use an N -

Best list of a more general system to generate the
negative examples. But the N -Best list should not
stem from an adapted system.

Finally, the phrase table was trained on the same
corpus as the one that was used to generate the N -
Best lists for DWL training. Since we have seen
the data before, longer phrases can be used than
in a real test scenario. To compensate partly for
that, we removed all phrase pairs that occur only
once in the phrase table. The results are shown in
the last line. This approach could slightly improve
the translation quality leading to a BLEU score of
25.97 for System 1 and 26.65 for the System 2.

6.4 Target Features

After evaluating the different approaches to gen-
erate the negative examples, we also evaluated the
different approaches for the target features. The
results are summarized in Table 3. In all these ex-
periments we use the training examples generated
by the N -Best list of System 1 using the phrase
table without unique phrase pairs.

First, we tested the four different methods using
a context of one word before and one word after
the word.

In the experiments the first two methods, All
TF and N-Best TF , perform worse than the last
two approaches, Separate TF and Restricted TF.
So it seems to be important to have realistic exam-
ples and not to mix different target contexts in one
example. The Separate and Restricted approach
perform similarly well. In both cases the perfor-
mance can be improved slightly by using a context
of three words before and after instead of using
only one word.

If we look at the model size, the number of
weights increases from 16M to 17M, when using
a context of one word and to 21M using a context
of three words.

If we compare the results to the systems using
no target features in the first row, no or only slight
improvements can be achieved. One reason might
be that the morphology of English is not very com-
plex and therefore, the target context is not as im-
portant to determine the correct translation.

6.4.1 Overview
In Table 4, we give an overview of the results us-
ing the different extensions to DWLs given in this
paper. The baseline system does not use any DWL
at all. If we use a DWL using only bag-of-words
features and the training examples from the phrase
pairs, we can improve by 1.3 BLEU points on Sys-
tem 1 and 0.3 BLEU points on System 2.

By adding the source-context features, the first
system can be improved by 0.2 BLEU points and
the second one by 0.8 BLEU points. If we use the
training examples from the N -Best list instead of
using the ones from the phrase table, we improve
by 0.2 on System 1, but perform 0.3 worse on Sys-
tem 2. Adding the target context features does not
improve System 1, but System 2 can be improved
by 0.3 BLEU points. This system results in the
best average performance. Compared to the base-
line system with DWLs, we can improve by 0.4
and 0.8 BLEU points, respectively.

Table 4: Overview of results for TED lectures

System System 1 System 2
Dev Test Dev Test

Baseline 26.32 24.24 28.40 25.89
DWL 27.46 25.56 28.58 26.15
sourceContext 27.76 25.76 28.82 26.94
N -Best 27.99 25.97 29.07 26.65
TargetContext 28.15 25.91 29.12 26.90

6.5 German - English WMT 13 Experiments
In addition to the experiments on the TED data,
we also tested the models in the systems for the
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Table 3: Experiments using different target features

System Context System 1 System 2
Dev Test Dev Test

No Target Features 0-0 27.99 25.97 29.07 26.65
All TF 1-1 27.80 25.48 28.80 26.38
N-Best TF 1-1 27.99 25.74 28.86 26.37
Separate TF 1-1 28.06 25.81 28.98 26.80
Restricted TF 1-1 28.13 25.84 28.94 26.68
Separate TF 3-3 27.87 25.90 28.99 26.75
Restricted TF 3-3 28.15 25.91 29.12 26.90

WMT 2013. The systems are similar to the one
used before, but were trained on all available train-
ing data and use additional models. The systems
were tested on newstest2012. The results for Ger-
man to English are summarized in Table 5. In this
case the DWLs were trained on the EPPS and the
NC corpus. Since the corpora are bigger, we per-
form an additional weight filtering on the models.

The baseline system uses already a DWL
trained with the bag-of-words features and the
training examples were created using the phrase
table. If we add the bag-of-n-grams features up
to a n-gram length of 3, we cannot improve the
translation quality on this task. But by addition-
ally generating the negative training examples us-
ing the 300-Best list, we can improve this system
by 0.2 BLEU points.

Table 5: Experiments on German to English WMT
2013

System Dev Test
Unigram DWL 25.79 24.36
+ Bag-of-n-gram 25.85 24.33
+ N -Best 25.84 24.52

6.6 English - German WMT 13 Experiments

We also tested the approach also on the reverse
direction. Since the German morphology is much
more complex than the English one, we hope that
in this case the target features can help more. The
results for this task are shown in Table 6. Here, the
baseline system again already uses DWLs. If we
add the bag-of-n-grams features and generate the
training examples from the 300-Best list, we can
again slightly improve the translation quality. In
this case we can improve the translation quality by
additional 0.1 BLEU points by adding the target

features. This leads to an overall improvement by
nearly 0.2 BLEU points.

Table 6: Experiments on English to German WMT
2013

System Dev Test
unigram DWL 16.97 17.41
+ Bag-of-n-gram 16.89 17.45
+ N -Best 17.10 17.47
+ Target Features 17.08 17.58

7 Conclusion

Discriminative Word Lexica have been recently
used in several translation systems and have shown
to improve the translation quality. In this work, we
extended the approach to improve its modeling of
the translation process.

First, we added features which represent the
structure of the sentence better. By using bag-of-
n-grams features instead of bag-of-words features,
we are able to encode the order of the source sen-
tence. Furthermore, we use features for the sur-
rounding target words to also model the target con-
text of the word. In addition, we tried to train the
DWLs in a way that they help to address possi-
ble errors of the MT system by feeding informa-
tion from the MT system back into the generation
of the negative training examples. Thereby, we
could reduce the size of the models and improve
the translation quality. Overall, we were able to
improve the translation quality on three different
tasks in two different translation directions. Im-
provements of up to 0.8 BLEU points could be
achieved.
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