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Abstract. We present how TTR (Type Theory with Records) can model
both geometric perception and conceptual (world) knowledge relating to
the meaning of spatial descriptions for a robotic agent.

1 Introduction

TTR [2,3] is a type theory with records which leads to a view of meaning which
is tightly linked to perception and classification. An agent makes judgements
that an object a (an individual or a situation) is of type T (written as a : T ).
The notion of truth is related to such judgements. A type T is “true” just in
case there is something a such that a : T . However, types are independent of
their extensions (also known as proof objects or witnesses), for example, an agent
may know a type but not its extension or two agents may disagree about the
extension of a type. An agent learns judgements through his interaction with its
environment and other agents. The type systems that agents develop converge
to a common standard through constant refinements.

Types are either basic or complex (that is constructed from components).
Examples of basic types in this paper are Ind and Real whose witnesses are
individuals and real numbers respectively. Examples of complex types are types
constructed from predicates and arguments (p-types) such as left(a,b) (intu-
itively the type of situation where a is to the left of b) and record types such

as

a:Ind
b:Ind
cleft:left(a,b)

. Record types are sets of fields, pairs which consist of a label

(represented to the left of the ‘:’) and a type (to the right). There may not be
two fields with the same label. A witness for this record type will be a record
with fields with the same labels and witnesses of the corresponding type (and
possibly also additional fields with other unique labels). Labels with a ‘c’ are
used here where the type is a p-type (intuitively a constraint on the objects in
the record). Such types are often dependent in that they are constructed from
objects in other fields of the record being judged.

Type theory is attractive as a theory for relating perception to higher level
conceptual reasoning because it is based on the notion of judging objects to
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be of types which can be regarded as an abstract theory of perception. Thus
it provides us with a theory that encompasses both low-level perception and
high-level semantic reasoning in a way that is not usual in standard linguistic
approaches to formal semantics. Thus it offers the possibility of connecting the
kind of work in implementations of perception by robots to high level semantics.
It is frequently not trivial to connect models of robot perception to natural lan-
guage semantics in a systematic way (for an approach see [13]). Furthermore, by
keeping linguistic and perceptual meaning representations in separate modules
their interaction can be hard to explore. We are attempting to bridge this gap.

We attempt to illustrate this approach by sketching how this type theory
might model how spatial relations can be generated by a mobile agent’s percep-
tion of its environment. We show how types representing geometric knowledge
required for the meaning representations of spatial descriptions are built from
sensory observations (perceptual knowledge). We also demonstrate how percep-
tual types interact with linguistic type representations (conceptual knowledge).
Our aim here is not to say anything new about either sensory perception or
about the semantic analysis of the semantics of spatial expression but to give
some idea of how both could be comprehended in a single theory.

2 Representing robot states and updates

We can do little more here than indicate some of the types involved and how
they are related to each other. See [6] for a more detailed proposal concerning
how robot learning might be modelled. We will use types to model the partial
information that the robot has about the state that it is in. The type of the
initial state of the robot may be:

InitRobotState =

self :



a : Ind

pnt =

[
x = 0

y = 0

]
: Point

orient=0 : Real

cpoint : observed point(self.pnt)

cloc : located(self.a,self.pnt)


crobot : robot(self.a)

pm = [self.pnt] : PointMap

objects=[self] : [Object(pm)]

cobject map : obj map(objects, pm)

beliefs=[] : RecType

time=0 : Time


The ‘self’-field requires a record corresponding to a located individual, a point in

(two-dimensional) space represented as a record with fields for the x- and y-coordinates
(initially set to 0), an orientation represented as a real number, initially 0, and two
constraints which require that the robot has observed the point at which it is located.



The notation label=value:Type used in the ‘pnt’ and ‘orient’ fields here is known as
a manifest field and is used to represent a field label:Typevalue , where the Typevalue is
a restriction of Type so that its unique witness is value. The ‘pm’-field is for a point
map modelled as a list of points, initially the singleton list containing the location of
‘self’. The point map is a list of individuated point landmarks as built with a SLAM
procedure [5] . The ‘objects’-field is for a list of objects assembled from the point map
(that is, an object map based on ‘pm’), initially the singleton list containing ‘self’. This
is an object map. As the robot moves around it discovers new landmarks which are
added to the point map and their estimate of global location (relative to the robot’s
origin) is continuously improved. Since at this point no point landmarks have been
discovered yet, the list of objects built from these landmarks, and the list of beliefs
about these objects is also empty. At the time t+ 1 the agent may transition to a new
state by moving and making new observations. It may also hear an utterance made by
its conversational partner.

SLAM gives us a geometric representation of the environment containing abstracted
point landmarks in a global coordinate frame from which angles and distances required
for geometric representation of spatial descriptions can be determined [10,12,14]. The
robot’s list of objects represented in the ‘objects’-field of the state are located at points
and regions within this point map. A geometric representation of a region or a volume
consists of a group of 2-dimensional points from the point map that can be hulled with
a convex hull.

The types PointObject and RegionObject are relative to a point map, and this is rep-
resented by functions returning a type (dependent types):

PointObject = λp:PointMap(


a : Ind

pnt : Point

orient : Real

cpoint : observed point(pnt,p)

cloc : located(a,pnt)


)

RegionObject = λp:PointMap(


a : Ind

reg : PointMap

orient : Real

cregion : region(reg,p)

cloc : located(a,reg)


)

Object = λp:PointMap(PointObject(p) ∨ RegionObject(p))

(See [6, p.8] for a characterization of the predicates ‘observed point’ and ‘region’.)
Once the robot has identified located objects in this way it can compute spatial relations
between these objects by comparing their ‘pnt’ (location point) or ‘reg’ (location region)
fields. Beliefs about such spatial relations, coded by p-types) will be added to the
‘beliefs’-field in the robot state.



3 Representing spatial relations

Geometrically, the spatial relation ‘to the left of’1 holds between three individuals con-
ceptualised as objects of type RegionObject : the located object, the reference object
and the viewpoint which determines the orientation of the reference frame [7,9]. If o1, o2,
o3:RegionObject andfrelation is a spatial relation classifier2 of type Region→Region→Orientation→Type
then

e:left(o1.a,o2.a,o3.a) iff e : frelation(o1.reg, o2.reg, o3.orient)
and frelation(o1.reg, o2.reg, o3.orient) = leftgeom(o1.reg, o2.reg, o3.orient).

Two relativisations or transformations of region locations must be performed before
the classification can take place (both of which can be expressed in our formalism):
(i) the (global) coordinate frame must be rotated to correspond to the orientation of
o3; and (ii) the origin of the global coordinate frame must be transposed so that it is
identical to the centre point of the region of location of o2 (cf. [11]). Since o1’s region of
location has been relativised we only need to learn one classifier function regardless of
the viewpoint. The TTR representation allows us to combine perceptual classification
with qualitative spatial representation [1].

The new belief [e:left(o1.a,o2.a,o3.a)] is merged with the robot’s beliefs in the
‘beliefs’-field of the robot state and can be used, for example to answer a question
about the location of o1.3

The influence of world knowledge on the semantics of the spatial descriptions goes
beyond conceptualisation of objects. For example, [4] describe experiments involving
pictures of a man holding an umbrella at various angles and with various degrees
of exposure to rain presented to human observers and conclude that for the spatial
relation ‘over’ the satisfaction of the constraint ‘umbrella provides protection from
rain’ is more than ‘the umbrella is within the geometric spatial template for ‘over’. A
predicate representing ‘over’ would obey something like the following conditional (not
biconditional):

e:over(o1.a,o2.a,o3.a) if e:


crain : rain(o3.a)

cumbrella : umbrella(o2.a)

covergeom : overgeom(o2.vol,o1.vol)

cprotects : protects(o3.a,o1.a,o2.a)


where o1, o2 and o3 are of type VolumeObject similar to RegionObject except that three
dimensional volumes are used rather than two dimensional regions.

Geometrically (covergeom), the umbrella must be in a particular spatial configuration
with the man which can be trained as a classifier . ‘overgeom’ is typically not susceptible
to perspective shifts as the viewpoint is fixed by the gravity and hence the third object
that would determine the viewpoint is not necessary. Hence, before the classification

1 We are considering the relative notion here, not that which is based on the intrinsic
orientation of some object which has a front and a back.

2 See [8] for a TTR account of classifier learning from human interaction.
3 Objects o2 and o3 would have to be selected separately beforehand. The reference

object o2 should be some contextually salient object. The viewpoint object o3 should
be the agreed viewpoint in the discourse.



takes place only the origin of the global coordinate frame must be transposed to the
centre point of the volume of location of o2.

The constraint cprotects represents a conceptual constraint on witnesses of the ptype
over(o1.a, o2.a, o3.a) where the ptype protects(o3, o1, o2) may in its turn also rely on
a perceptual classifier. What is important here is that this constraint can have been
learned by the agent not through perceptual observation but through linguistic commu-
nication, for example by being explicitly told that protection from the rain is required.
Alternatively it could have been learned by hypothesising this fact after observing
situations of humans, umbrellas and rain. Through reasoning humans are able to cre-
ate increasingly more abstract types which are ultimately grounded in perception4. In
our view there is no clear cut-off point between low level perceptual knowledge and
high-level conceptual knowledge as traditionally assumed.

Since we assume that the geometric meaning constraint covergeom is determined by a
probabilistic classifier, the acceptable deviations of the umbrella from the prototypical
vertical upright position and their gradience are accounted for. The representation pre-
dicts that a situation where a man holds an umbrella in the upright position and there-
fore the covergeom constraint is defined with high probability but the umbrella does not
provide protection from the rain cannot have the denotation of the ptype over(o3,o1,o2)
since the constraint cprotects is not satisfied. Since ptypes such as over(o3,o1,o2) may
be characterised by probabilistic knowledge as well, we could regard all constraints as
expressing a degree of belief that particular situations are of particular types (see [6,
p.17–18] for more details and also probabilistic TTR [in prep.]).

4 Conclusion and further work

We have presented a brief sketch how TTR can be used to represent different meaning
components of spatial descriptions. Its strengths are that it considers meaning rep-
resentations to be based on perception and that it can represent different meaning
modalities in a unified way. It thus bridges the gap between models of natural lan-
guage and models of perception. In such a model it becomes transparent that there are
many similarities in the way an agent learns and applies the meanings of linguistic and
non linguistic representations. Being a formal computational model it is well suited for
modelling language and perception in artificial agents which will be the focus of our
work in the future.
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Deriving Salience Models from Human Route
Directions
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Abstract. We present an approach to derive individual preferences in
the use of landmarks for route instructions in a city environment.1 Each
possible landmark that a person can refer to in a given situation is mod-
elled as a feature vector, and the preference (or salience) associated with
the landmark can be computed as a weighted sum of these features. The
weight vector, representing the person’s personal salience model, is auto-
matically derived from the person’s own route descriptions. Experiments
show that the derived salience models can correctly predict the user’s
choice of landmark in 69% of the cases.

1 Introduction

Automatically providing real-time route instructions to city pedestrians is an
increasingly important problem, as more and more people have smartphones with
GPS receivers. Such wayfinding systems use data from a geographic database to
construct a route from the user’s starting position to his stated goal, and then
give the instructions as the user is moving: When the user reaches a node pi in
the planned route, the system informs the user how he should go to get to the
next node pi+1. Obviously, it is vital that each instruction is unambiguous and
understandable, lest the user takes a wrong turn.

It would be preferable if wayfinding systems would base their instructions on
landmarks, by which we understand distinctive objects in the city environment,
since it is well established that it is predominantly by landmarks people describe
routes to one another (see e.g. [2]). However, even on this basic premise, there
are a number of options to consider. At each decision point, there are a number
of possible landmarks to choose from, and which one(s) to use in a specific route
instruction is a difficult problem. In the literature, it is generally assumed that
the candidate landmarks can be assigned a salience measure, by which they can
be compared, and the most salient features are also the most suitable to use
in route descriptions. Many researchers have proposed schemes for computing
salience from a variety of factors (see e.g. [3, 6, 9]).

In this article, we investigate to what extent salience computations can be
data-driven, that is, (semi-)automatically estimated from human route descrip-
tions. Our aim is to create empirically motivated personalized salience models,
and integrate them into our spoken-dialogue system for city exploration [1]. Two

1 Supported by the European Commission, project Spacebook, grant no 270019.



hypotheses underlie our work: Firstly, that salience is user-dependent . Secondly,
if a user is asked to give a routing instruction in a specific situation, he would
do so using the landmarks he himself thinks are most salient.

The second hypothesis suggests a kind of tuning mechanism for a wayfinding
system: Before being guided by the system, the user first walks around and
describes the way he is going by means of landmarks. The system interprets
the user’s descriptions and uses them to derive a personalized salience model,
which can later be used when guiding the same user in other parts of the city.
The present paper presents a preliminary study showing that this idea is indeed
viable.

2 Deriving Salience Models

For the learning of salience models, we use the Large Margin Algorithm, intro-
duced in [4]. Each landmark can be described as a vector of numerical features,
x = (x1, . . . , xn) specifying costs along n dimensions. The dimensions might rep-
resent scalar attributes such as distance, or categorical attributes (e.g. 1 if the
landmark is a restaurant, 0 if it is not). The salience s(x) is a linear combination
w · x, where w = (w1, . . . , wn) is the salience model that specifies the relative
importance of the different features for the user. Naturally we do not assume
that the user knows the values of his salience model, or indeed even that such a
model exists. Instead we automatically infer the model as follows:

Whenever a person uses a landmark A in a description, he is preferring A
over a number of other candidates that could have been used in the description
but were not. That is to say that A has a lower cost according to the person’s
personal salience model than has any other candidate B, i.e. w · (xB −xA) > 0,
where xA and xB are the vectors representing A, and B, respectively. Each
route description from the user involving a landmark thus generates a number
of inequalities, all in the form w · (xBi

− xAi
) > 0, for 1 ≤ i ≤ m. Our goal is

to find appropriate values for the weights in w that satisfy all these inequalities.
This can be done by solving the following linear optimization problem, e.g. with
the Simplex method [7]:

minimize
n∑

j=1

wj

subject to w · (xBi
− xAi

) ≥ 1, 1 ≤ i ≤ m
wj ≥ 0, 1 ≤ j ≤ n

This formulation of the problem assumes that a person is always consistent in
his preferences. For the case he is not, we use a slightly extended version of the
basic Large Margin Algorithm (see [4] for details).

3 Problem Description and Encoding

Consider the example in Figure 3. The figure shows a situation in one of our
experiments where the subject chooses to describe the way using a supermarket,



A
B

L

Fig. 1. An example route segment from A to B. The squares represent the landmarks
in the contexts of A and B. L represents a landmark referred to by the user (a super-
market).

indicated by the larger square: “and then when you’ve reached a crossroad [. . . ]
you turn to your left and you’ll see there’s gonna be an ica, a foodstore, and a
little bit further down the road there’s gonna be a bus stop”. In the figure, the
“crossroad” is indicated by “A”, and the bus stop by “B”.

Every landmark belongs to the context of its closest node. When describing
the way from A (the starting node of the segment) to B (the goal node of the
segment), all landmarks in the contexts of these two nodes are possible referents.
We will refer to this set of landmarks as the candidate set for A and B. This set
is visualized as square-shaped icons in the figures. The candidate set is obtained
from the OpenStreetMap (osm) geographic database [5].

The method described in Section 2 requires every landmark L to which the
user can refer to be modelled as a vector of features. In this experiment, we
use a vector of 12 features that are computable from our geographic database.
These features form an initial set of structural landmark features [8] and we are
planning to further explore which other features are important for computing
salience. The features used here are the following:

– Distance between the user’s position A and the landmark L.
– Distance between the landmark L and the goal node B.
– Angle between the lines AL and AB.
– Name: Categorial attribute having the value 1 if the landmark has a name

(e.g. “7-Eleven”), or belongs to something that has a name, e.g. a node on
X street, and 0 otherwise.

– Type: These 8 features represent the type of the landmark according to
whether they belong into the categories road network, i.e. the landmark node
is part of a street, building, eating & pleasure, e.g. a restaurant or a theater,



shops, entrances, i.e. a specific house number on a street, areas, e.g. a park
or a construction site, structures, e.g. a statue or a fountain, or other. Each
landmark is of at least one type, which is indicated by the value 1 in the
corresponding slot.

In the example in Figure 3, the supermarket that is referenced by the user (the
larger square), is represented by the vector (5.0, 5.0, 40, 1, 0, 0, 0, 1, 0, 0, 0, 0). The
first two positions contain the distances (the 2-logarithm of the actual distance
in metres, rounded to the nearest integer). The third position represents the
angle (in degrees). The ‘1’ in the succeeding slot indicates that the landmark
has a name “ica”. The values in the final 8 slots indicate that the landmark is
a shop, but no other type.

4 Data Collection

A number of subjects (engineering students) were asked to describe a route
to someone unfamiliar with the area, imagining that they were talking to this
person on the phone. The subjects had just walked the same route themselves and
should therefore remember it well. To further help them recall their trajectory,
they were also shown their route on a map on the screen by a moving mouse
cursor (i.e. without using speech), and they could also look at the map while
they described the route.

The subjects’ speech was recorded and segmented according to route seg-
ments before transcription. Each route segment starts at a node A and ends at
a goal node B. The nodes A and B were inferred from the subjects’ instructions,
as they used phrases like “and when you are at the intersection, turn left and
walk until the bus stop”. While the route as a whole differed only slightly from
subject to subject, the routes do not necessarily consist of the same number
of segments. The segmentation here is derived from the subjects’ descriptions.
Each segment was also annotated with all landmarks in the database that the
subject referred to. The set of landmarks used by the subjects often includes the
goal node B itself, as in the example in Figure 3. In that example, the instruc-
tion was annotated with the node representing the supermarket and the node
representing the bus stop. It can also be the case that the goal node B is not
mentioned explicitly, as in “and when you are at the traffic light, cross street S”.
In this case, the goal node B is implicit, and not part of the landmarks referred
to by the subject.

Prior to describing the route, the subjects had walked them themselves, fol-
lowing instructions given by our prototype system. This means that their own
instructions might be influenced by what they just heard. However, the sys-
tem’s instructions only partly used landmarks and otherwise relied on relative
instructions such as “turn left”. This strategy sometimes resulted in ambigu-
ous or wrong instructions, and the subjects were asked to “improve upon the
system’s behavior”.

For each subject, we thus have a number of annotated segments, each con-
sisting of a start node, an end node, and at least one landmark that the subject



referred to (his preferred landmark(s) in this segment). Segments where the sub-
ject didn’t refer to anything at all were excluded from this experiment. The
candidate set for the segment (i.e. the landmarks the user could have referred
to) was automatically computed from the osm database and contains on average
22 landmarks.

The preferred landmarks might or might not be part of the candidate set.
There are two possible reasons for a preferred landmark not to be part of the
candidate set: Either the user referred to something that is not in the database
at all (in which case we removed the reference), or he referred to something that
is farther away, and doesn’t belong to the context of neither A nor B (this latter
case actually never happened in our experiments).

An instance, of the salience model learning problem, then, is a candidate set
together with one or several preferred landmarks, at least one of which is part of
the candidate set. The set of all instances for a particular user was split into a
training set and a test set. The training set was used to derive a salience model
w according to the method presented in Section 2. To evaluate w, the salience of
each member of each instance of the test set was computed. A successful instance
is one in which one of the preferred landmarks had the best salience according
to w. The number of successful instances in the test set is an indicator of how
well the learned salience model actually reflects the preferences of the user.

5 Results

The results are presented in Table 1. For all individual salience models, at least
half of the test instances are successful. In one case, the model even returns all
the instances as successful. To get an insight into how well the models perform
on those landmarks that did not receive the lowest cost but were used by the
subject, we also compute the measure rank. For this measure, we compute
the percentage of landmarks receiving costs that were equal or higher than the
preferred landmark’s cost (recall that the lower the cost, the more salient the
landmark). The number of landmarks that can be referred to differs depending
on the particular route segment and this measure reflects how high the salience
model ranked a landmark in comparison to all available landmarks. For example,
subject 1’s model has two successful test instances, and in the other two ranks
the preferred landmark as 3 of 14 in one instance, and as 5 of 39 in the other.

6 Discussion

The results are encouraging insofar that in 69%, the method actually managed
to mimic the user’s own salience preferences, although the model is built from
very few training examples. Note that the ratio of training vs. testing segments
differs between the subjects. Initially, the training set contains two thirds of the
route segments. For some subjects, the training size had to be reduced, because
our algorithm is limited in the number and size of route segments it can process.



Table 1. For evaluation, we used the induced weights to compute costs on test sets
and counted in how many cases the best option was a landmark used by the subject,
including also reference to streets and squares. segments: total number of route seg-
ments, tests: number of test instances, succ: number (and percentage) of successful
test instances, rank: percentage of landmarks with equal or higher cost

subj segments tests succ rank

1 13 4 2 (0.50) 0.93

2 16 5 3 (0.60) 0.94

3 9 3 2 (0.67) 0.94

4 9 3 2 (0.67) 0.94

5 16 10 7 (0.70) 0.95

6 12 4 4 (1.00) 1.00

total 75 29 20 (0.69) 0.95

Future work includes a user study in which users are recorded as they walk
around the city describing their environment in real-time (rather than describing
a route after having walked it). We also plan to analyse in detail whether the
individual preference models all have something in common (i.e. whether there
are general properties of salience models that always hold). The results of such an
analysis might allow us to restrict our candidate sets, thereby making it possible
to build the models from more examples. Furthermore, we aim to investigate
which other features, apart from the ones we are considering in this article, are
important for the salience computation problem.
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Abstract. We present a human evaluation of the usefulness of conceptual route 

graphs (CRGs) when it comes to route following using spoken route descrip-

tions. We describe a method for data-driven semantic interpretation of route de-

scriptions into CRGs. The comparable performances of human participants in 

sketching a route using the manually transcribed CRGs and the CRGs produced 

on speech recognized route descriptions indicate the robustness of our method 

in preserving the vital conceptual information required for route following de-

spite speech recognition errors. 

1 Introduction 

It is desirable to endow urban robots with capabilities for engaging in spoken dia-

logue with passersby to seek route directions for autonomous navigation in unknown 

environments. Understanding spoken route descriptions mandates a robot’s dialogue 

system to have a spoken language understanding (SLU) component that (i) is robust 

in handling automatic speech recognition (ASR) errors, (ii) learns generalization to 

deal with unseen concepts in free speech, and (iii) preserve the highly structured rela-

tions among various spatial and linguistic concepts present in route descriptions. 

A SLU component in a dialogue system takes an ASR hypothesis as input and out-

puts a semantic representation that can be used by the dialogue manager to decide the 

next course of actions. A common way of representing navigational knowledge is the 

route graph. While varying level of details could be specified in a route graph (e.g. 

metric route graph), they are not representative of how humans structure information 

in route descriptions. Thus, a conceptual route graph (CRG) [1], is needed that can be 

used to represent human route descriptions semantically. In [2], we have presented a 

novel approach for data-driven semantic interpretation of manually transcribed route 

descriptions into CRGs. More recently, in [3] we applied this approach for semantic 

interpretation of spoken route descriptions. The results indicate that our approach is 

robust in handling ASR errors. The question as to whether the generated CRGs could 

actually be used by an agent in following the described route and arrive at the intend-

ed destination was left as future work.  

In this paper, we evaluate the usefulness of the automatically extracted CRGs by 

asking human participants to sketch the described route on a map. Such an objective 

evaluation offers an alternative approach to evaluate our method: comparable human 

performances using the manually transcribed CRGs and the CRGs produced from 

speech recognized results would confirm the robustness of our method in preserving 
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vital conceptual information for route following, despite speech recognition errors. In 

addition, a detailed analysis of human performances would help us (i) identify areas 

for further improvement in our method and the model, and also (ii) assess the useful-

ness of CRGs as a semantic representation for freely spoken route descriptions. 

2 Previous work 

It has been established in the literature that route descriptions contain a lot of re-

dundant information whereas only a limited set of details are actually necessary for 

route following. These include descriptions about: the landmarks on the route, the 

spatial relations, the controllers that ensure traversal along the intended route, and the 

actions for changing orientation. Both data-driven and grammar based parsing ap-

proaches for semantic interpretation of route descriptions have been presented and 

evaluated for route following through human participants and/or robots in real and/or 

virtual environments [4-8]. Most of these works have focused on interpreting manual-

ly transcribed or human written route descriptions. Understanding verbal route de-

scriptions has not received much attention. In [4] an ASR system has been used for 

recognizing verbal route descriptions, but the recognized text was translated to primi-

tive routines using a translation scheme. In the following section, we briefly describe 

our data-driven approach for semantic interpretation of spoken route descriptions into 

CRGs, which have been shown to be useful in robot navigation [5]. 

2.1 A chunking parser for semantic interpretation 

Our approach in [2] is a novel application of Abney’s chunking parser [9], in 

which we apply the Chunker and the Attacher stages to automatically extract CRGs 

from route descriptions. A CRG is similar to a route graph in that nodes represent 

places where a change in direction takes place and edges connect these places. A 

route graph (or a route) may be divided into route segments, where each segment 

consists of an edge and an ending node where an action to change direction takes 

place. Conceptually, a segment consists of (i) controllers – a set of descriptions that 

guide the traversal along the edge, e.g. “go straight down that road”, (ii) routers – a 

set of place descriptors that helps to identify the ending node, e.g. “turn left at the 

post-office”, and (iii) action – the action to take at the ending node in order to change 

direction. At least one of these three components is required in a route segment.  

Fig. 1 illustrates an example CRG in which the nodes represent the semantic 

concepts and the edges their attributes. The concepts, their attributes and argument 

types are defined in the type hierarchy of the domain model using the specification in 

the JINDIGO dialogue framework [10].  

To automatically extract CRGs, we first apply the Chunker stage of the Chunk-

ing parser for finding base concepts in a given sequence of words. Another chunk 

learner, namely the Segmenter, is then applied to automatically learn route segments 

in a sequence of base concepts. The Attacher takes a route segment as input and per-

forms two tasks for each base concept present in it: First, it may assign a more specif-



ic concept class (like POSTOFFICE). To allow it to generalize, the Attacher also as-

signs all ancestor classes, based on the domain model (i.e. BUILDING for 

POSTOFFICE). The second task for the Attacher is to assign attributes, e.g. direction, 

and assign them values, e.g. →, which means that the interpreter should look for a 

matching argument in the right context. Table 1 illustrates these three stages for pars-

ing the route description “turn left at eh the post-office and then take…”  

 
Table 1. The three stages of the Chunking parser for interpreting route descriptions. 

Chunker 
[ACTION turn] [DIRECTION left] [ROUTER at] [FP eh] [LANDMARK the post-office] 

[SCONT and then] [ACTION take] 

Segmenter 
[ SEGMENT [ACTION turn] [DIRECTION left] [ROUTER at] [FP eh] [LANDMARK the post-

office] ] [ SEGMENT [SCONT and then] [ACTION take] ] 

Attacher 
[SEGMENT [TURN (direction: →) turn] [LEFT left] [AT (landmark: →) at] [DM eh] 

[POSTOFFICE the post-office ] ] [SEGMENT [DM and then] [TAKE take] ] A 

 
Fig. 1. An example Conceptual Route Graph. 

     
Fig. 2. The IBL map.  

To measure the performance of our method we used the notion of Concept Error 

Rate (CER) – the weighted sum of the edits required in the manually transcribed CRG 

to obtain the extracted CRG. To evaluate our method we used the IBL corpora, which 

contain audio recordings and manual transcriptions of 144 spoken route instructions 

given in English [11]. Thirty five IBL transcriptions were manually annotated and 

used as the cross-validation set. Using the Linear Threshold Unit algorithms and best 

feature combinations discussed in [3], a baseline CER of 18.04 was obtained for com-

paring the Chunking parser’s performance on speech recognized results. 

Next, we trained an off-the-shelf ASR system with the remaining 108 route de-

scriptions. For the best speech recognized hypothesis (mean WER = 27.59) for the 

route descriptions in the cross-validation set we obtained a CER of 28.15, i.e., a rela-

tive increase of mere 10.11 in CER. The relative increase in CER (R-CER) remains 

rather steady (SD = 2.80) with increase in WER. This illustrates the robustness of our 

method in dealing with speech recognition errors. 

3 Method 

Material: Six IBL route descriptions from the set of 35 were used for human 

evaluation. Care was taken in selecting routes to ensure that subjects could not guess 

the destination. For each route we obtained four instruction types: (1) the IBL manual 



transcription (ManTsc), (2) the manually annotated CRG (crgMAN), (3) the CRG 

extracted from the IBL manual transcription (crgCMT), and (4) the CRG extracted 

from the speech recognized route description (crgASR). The 24 items resulting from 

this combination were rearranged into four sets, each comprising of the six routes, but 

differing in the instruction type for the routes. 

Subjects: A total of 16 humans (13 male and 3 female) participated in the evalu-

ation. Participants ranged in the age from 16 to 46 (mean = 30.87, SD = 7.74). All, but 

one were researchers or graduate students in computer science. 

Procedure: Participants were asked to sketch the route, on the IBL map (cf. Fig. 

2, the star indicates the starting place), corresponding to the provided instruction. 

Each participant was individually introduced to the basic concept types in CRGs and 

shown how a route could be planned using the various nodes and sub-graphs in a 

CRG. Participants were asked to also mark concepts that they thought were absolutely 

necessary and strike-out what was redundant for the task at hand. Each of the four sets 

was evaluated by four different participants. 

3.1 Results and analysis 

We classified the 96 human performances under three categories: (1) FOUND: the 

participant arrived at the target building following the intended path, (2) 

ALM_THERE: the participant has almost arrived at the target building following the 

intended path, but did not correctly identify it among the others, (3) NOT_FOUND: 

the participant lost her way and did not arrive at the target building. Fig. 3 provides an 

overview of these performances across the four instruction types. One-way ANOVA 

test indicates a significant difference between only the human performances across 

crgASR and ManTsc instructions (p < 0.05). This is not surprising given that the 

crgASR instructions were produced from speech recognized results with WER of 

47.64 (SD = 7.98) and have a R-CER of 27.35. However, there is no significant dif-

ference in performances across the crgMAN, crgCMT and crgASR instructions. This 

suggests that the conceptual information, required for human route following, present 

in Chunker parser produced CRGs is comparable with the information present in 

manually annotated CRGs, despite the CER of 20.29 and R-CER of 27.35 for 

crgCMT and crgASR instructions respectively.  

These results confirm the robust performance of Chunking parser in dealing with 

speech recognition errors and preserving the vital conceptual information. Moreover, 

the results also suggest that improving the model (i.e. the CRG representation) to 

reduce the gap between human performances for ManTsc and crgMAN instructions 

will further enhance the human performances for Chunking parser extracted CRGs.  

A closer analysis of the ALM_THERE (13) and NOT_FOUND (20) performances 

(a total of 33) suggest five general problem categories: (1) SpatialR: spatial relations, 

(2) Controller, (3) Action, (4) Landmark, and (5) Other: human errors. Across these 

five problem categories five sources were identified: (1) Annotation: an incorrect or 

underspecified manual annotation, (2) ASR: concepts insertion or deletion during 

speech recognition, (3) ChunkingP: Chunking parser errors, (4) Model: a limitation of 



the current model, and (5) Human: human judgments about the relevance or redun-

dancy of a concept and executing actions.  

The distribution of these error sources across the problem categories, as illustrated 

in Fig. 4, indicates that majority of the problems pertain to spatial relations (51.51%) 

and Controllers (24.24%). While some of the problems with the spatial relations are a 

result of incorrect and underspecified annotations (9.09%), which may have contrib-

uted to Chunking parser errors (9.09%) and to an extent to human judgments 

(21.21%), manual observations suggest that the overall human performance could 

have been better with the inclusion of additional spatial relation and Controller types 

in the model. We have refrained from elaborate annotations in the current model due 

to limited amount of training data. Human judgments were the source of half of the 

errors (51.51%). This indicates that it wasn’t always easy to make the right decision 

about discarding or using concepts in the CRGs for route planning. 

   Fig. 3. Human performances across the 

instructions types. 

 Fig.  4.  Distribution of error sources across 

the problem categories.  

4 Discussion and conclusion 

From this human evaluation exercise we note that: 

 Controllers with travel distance argument are vital for representing the extent of 

movement in a particular direction in route descriptions, such as “follow the road 

to its end on the right is the treasure” or “a few buildings down from Pizza-Hut”. 

 A requisite for proper grounding of the spatial relations in CRGs is resolving their 

direction or landmark arguments, or even both. The Attacher’s role in attaching the 

concept RIGHT in CRG “[BUILDING Tescos] [AT (landmark: ←) is on] [RIGHT right]”, as the 

direction argument for spatial relation AT is essential for locating the landmark.  

 The CRG representations for spoken route description contain redundant concepts 

that arise from speech phenomena, such as pronominal references, anaphoric de-

scriptions, self-repair and repetitions, about landmarks and actions. The CRG rep-

resentation for “you will take the third exit off…the third exit will be for Plymouth 

university…take this third exit”, contains two actions and four landmarks. Ground-

ing this to a simple “take the third exit” would require additional approaches. 

 ASR errors pose another challenge for an agent in route planning using the CRGs. 

Without access to the topological view of the environment a robot could not possi-

bly infer erroneous concept insertions. To deal with this, we believe clarification or 
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reprise of route segments would be a prudent strategy, provided that the clarifica-

tion sub-dialogue itself doesn’t lead to further errors. 

 

We have presented a human evaluation of the usefulness of conceptual route 

graphs – extracted from spoken route descriptions using our data-driven method – for 

route following. The comparable human performances on sketching the route using 

the manually transcribed and automatically extracted CRGs suggest no significant 

loss of conceptual information, required for route following, during the semantic in-

terpretation of verbal route descriptions. This illustrates the robustness of our method 

in preserving vital conceptual information despite ASR errors. We observe that, ex-

tracting CRGs from spoken route descriptions mandates integration of approaches to 

counter speech phenomena, such as anaphoric descriptions and self-repairs, and using 

clarification strategies to recover from erroneous concept insertions during ASR. 
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Abstract. The analysis and the description of complex visual scenes
characterized by the presence of many objects of interests involve rea-
soning on spatial relations such as “above”, “below”,“before”, “after”
and “between”. In this context, we have defined these semantic concepts
in terms of ternary spatial relations and we have formalized them using
the clock model which is based on the clock-face division and the seman-
tic notions of hours to describe relative spatial positions. The presented
approach has been efficiently applied for the automated understanding of
spatial relations between multiple objects in real-world computer vision
image datasets.

Keywords: Ternary Spatial Relations; Clock Model; Qualitative Spa-
tial Reasoning; Computer Vision; Visual Scene Understanding.

1 Introduction

Modelling spatial relations among objects of visual scenes is greatly of benefit
to visual applications [1]. Indeed, their integration into vision systems brings an
additional level in the task of automatic image understanding, leading to the
processing of semantic information besides those provided by visual features.
Furthermore, the definition of spatial relations allows the action of reasoning on
semantically meaningful concepts which is a major advantage [3] compared with
traditional vision approaches using only quantitative techniques or annotating
images with just sparse words.

In the literature, most of the spatial relations [2], [4] have been defined as
binary ones, such as the topological spatial relations like the RCC-8 model [5]
or the cardinal spatial relations and their fuzzy extension [6].

In context of visual scene description and analysis, [7] introduced a new
formalism for modeling the image space as a clock face and they proposed a series
of related spatial relations, including the directional spatial relations of the scene
objects and the far/close relations. However, to perform reasoning on spatial
relations among a greater number of objects (at least three), there is a need for
relations such as the ternary ones. In fact, little attention has been paid to study
them. Their formal geometric modeling has been mostly studied for geographic
information systems (GIS) [8]. Indeed, [9] developed the 5-intersection model,



but its formalism leads to a restricted range of applications. On the other hand,
[10] proposed for the biomedical imaging purpose a fuzzy definition of the ternary
spatial relation between. Despite its improvement by [11], it does not fit well for
computer vision applications such as crowd’s behaviour study.

In this work, we present the extension of the clock approach [7] to formalize
the fundamental ternary spatial relation, namely, between (bt), and to model the
semantic concepts above (ab), below (bl), before (bf), and after (af) as ternary
spatial relations.

We implement these relations using Description Logics (DL) [12] which have
been widely adopted for knowledge representation in visual systems [13], [14],
[15], [16].

Thus, our clock-modeled ternary spatial relations define a set of useful notions
to characterize visual scenes involving numerous objects of interest as well as to
acquire knowledge about them, and could be incorporated in a complete system
for automatic reasoning on spatial relations among objects detected in images.

The contributions of this paper are as follows:

– the modeling of ternary spatial relations using the clock-face approach;
– the architecture of the full system combining visual face recognition and

spatial reasoning.

The paper is structured as follows. In Section 2, we present our approach us-
ing the clock formalism to model ternary spatial relations such as above, below,
before, after, and between. All these relations have been integrated in a frame-
work for automatic face recognition and reasoning as described in Section 3. The
resulting system has been successfully tested on still image datasets as reported
and discussed in Section 4. Conclusions are drawn up in Section 5.

2 Clock-Modeled Ternary Spatial Relations

In Section 2.1, we first introduce the clock model which is semantically mean-
ingful and used to defined spatial relative relations, while the definitions of the
ternary spatial relations formalized with this clock model are presented in Sec-
tion 2.2.

2.1 Clock Model

The clock concept introduced by [7] consists in dividing the image plane in
twelve parts around any object of interest of the scene as illustrated in Fig. 1(a).
Hence, each portion of the space is then corresponding to an hour. This leads
to a semantically meaningful division of the space as a clock face. This concept
helps in reducing the uncertainty on the directional relative positions between
objects in crowded scenes, in which case traditional binary relations such as left
or right are not enough discriminant as demonstrated in [7]. In this work, the
clock notion is used for the formal specification of our ternary relative directional
relations above, below, before, after, and between.



(a) Clock model (b) Clock-modeled ternary spatial relations

Fig. 1. Illustration of the ternary spatial relations between visual objects using the
clock model (a) and representing the semantic concepts which are above (ab), below
(bl), before (bf), after (af), and between (bt) (b).

For this purpose, we introduce the Quadrant (Q) concept as shown in Fig.
1(a). To provide an example of how we have formalized it, we define isInQuadrantIOf
in DL as follows. Let OREF be the object of reference and the OREL the target
object. Giving that Angle is the relative angle between the line OREF − OREL

and the axis X of the analyzed image plane, then

isInQuadrantIOf v Spatial Relation u ∃hasReferentObject.OREF

u ∃hasTargetObject.OREL u (∃hasAngle.Angle12clock

t ∃hasAngle.Angle1clock t ∃hasAngle.Angle2clock)
(1)

with

Angle2clock ≡ Angle u ∃Angle.value≤ π

6
u ∃Angle.value> 0 (2)

Equation (2) denotes the set of angles which have values lower than or equal
to π/6 and higher than 0. In this example, value≤ π

6 is a predicate over the real
number domain R. Angle12clock and Angle1clock concepts are defined similarly.
We can note also that any OREL lies at least in one of the four quadrants QI,
QII, QIII or QIV .

2.2 Ternary Spatial Relations

We adopt the notation rl(A,B,C) for a ternary relation rl among three objects
A, B, and C. The first object A involved in this relation is considered to be the
target object, whereas the two other objects B and C are the reference objects.
Thus, rl(A,B,C) denotes that “A is in the relation rl with B and C”. In fact, the
order of the reference objects B and C is important as it affects the orientation
of the relation, in this case from the reference object B to the reference object C.
While in some relations the role of the three objects can be exchanged without



affecting the relation, in some relations the swapping of the arguments leads to
a change of the relation.

In the remaining of this section, we present the detailed definitions of the
relations above, below, before, and after which are formalized in this work
as ternary spatial relations in opposite to [10] or [11], as well as the relation
between, and we mention the cases when the exchange of the arguments modifies
the described relations. It is worth to note that the definitions are valid for both
convex and concave objects and that the center of each related clock is set to
the centroid of the corresponding object.

Spatial Relation Above We consider the relation above as a ternary spatial
relation where ab(OREL, OREF1, OREF2) means that the target object OREL is
above both the reference object OREF1 and the reference object OREF2. For
this relation, the order of the reference objects cannot be inverted otherwise
the type of the relation is modified. Indeed, if the target object is above only
one of the reference objects, other ternary spatial relations can be then applied.
Hence, this ternary modeling leads to a more discriminating relation than the
traditional ones in particular in the case of crowded scene analysis.

In DL, the concept isAbove is defined as follows. Let OREF1 and OREF2 be
the two objects of reference, while OREL is the object of interest. Considering
definitions such as expressed by Eqs. (1) and (2), then

isAbove v Spatial Relation u Ternary Spatial Relation

u ∃hasReferentObject.OREF1 u ∃hasReferentObject.OREF2

u ∃hasTargetObject.OREL u (∃isInQuadrantIV Of.OREF1

t ∃isInQuadrantIOf.OREF1) u (∃isInQuadrantIV Of.OREF2

t ∃isInQuadrantIOf.OREF2).

(3)

This concept is illustrated in Fig. 1(b).

Spatial Relation Below We consider the relation below as a ternary spatial
relation where bl(OREL, OREF1, OREF2) means that the target object OREL is
below both the reference object OREF1 and the reference object OREF2. For
this relation, the order of the reference objects cannot be inverted otherwise
the type of the relation is modified. Indeed, if the target object is below only
one of the reference objects, other ternary spatial relations can be then applied.
Hence, this ternary modeling leads to a more discriminating relation than the
traditional ones in particular in the case of crowded scene analysis.

In DL, the concept isBelow is defined as follows. Let OREF1 and OREF2 be
the two objects of reference, while OREL is the object of interest. Considering



definitions such as expressed by Eqs. (1) and (2), then

isBelow v Spatial Relation u Ternary Spatial Relation

u ∃hasReferentObject.OREF1 u ∃hasReferentObject.OREF2

u ∃hasTargetObject.OREL u (∃isInQuadrantIIOf.OREF1

t ∃isInQuadrantIIIOf.OREF1) u (∃isInQuadrantIIOf.OREF2

t ∃isInQuadrantIIIOf.OREF2).

(4)

A representation of this concept is depicted in Fig. 1(b).

Spatial Relation Before We consider the relation before as a ternary spatial
relation where bf(OREL, OREF1, OREF2) means that the target object OREL is
before both the reference object OREF1 and the reference object OREF2. For
this relation, the order of the reference objects cannot be inverted otherwise
the type of the relation is modified. Indeed, if the target object is before only
one of the reference objects, other ternary spatial relations can be then applied.
Hence, this ternary modeling leads to a more discriminating relation than the
traditional ones in particular in the case of crowded scene analysis.

In DL, the concept isBefore is defined as follows. Let OREF1 and OREF2 be
the two objects of reference, while OREL is the object of interest. Considering
definitions such as expressed by Eqs. (1) and (2), then

isBefore v Spatial Relation u Ternary Spatial Relation

u ∃hasReferentObject.OREF1 u ∃hasReferentObject.OREF2

u ∃hasTargetObject.OREL u (∃isInQuadrantIIIOf.OREF1

t ∃isInQuadrantIV Of.OREF1) u (∃isInQuadrantIIIOf.OREF2

t ∃isInQuadrantIV Of.OREF2).
(5)

An illustration of this concept is depicted in Fig. 1(b).

Spatial Relation After We consider the relation after as a ternary spatial
relation where af(OREL, OREF1, OREF2) means that the target object OREL

is after both the reference object OREF1 and the reference object OREF2. For
this relation, the order of the reference objects cannot be inverted otherwise
the type of the relation is modified. Indeed, if the target object is after only
one of the reference objects, other ternary spatial relations can be then applied.
Hence, this ternary modeling leads to a more discriminating relation than the
traditional ones in particular in the case of crowded scene analysis.

In DL, the concept isAfter is defined as follows. Let OREF1 and OREF2 be
the two objects of reference, while OREL is the object of interest. Considering



definitions such as expressed by Eqs. (1) and (2), then

isBefore v Spatial Relation u Ternary Spatial Relation

u ∃hasReferentObject.OREF1 u ∃hasReferentObject.OREF2

u ∃hasTargetObject.OREL u (∃isInQuadrantIOf.OREF1

t ∃isInQuadrantIIOf.OREF1) u (∃isInQuadrantIOf.OREF2

t ∃isInQuadrantIIOf.OREF2).

(6)

This concept could be visualized in Fig. 1(b).

Spatial Relation Between The relation between is intrinsically a ternary
spatial relation. Indeed, bt(OREL, OREF1, OREF2) means that the target object
OREL is between the reference object OREF1 and the reference object OREF2.
In this case, the order of the reference objects can be inverted without changing
the semantic meaning of this relation.

In DL, the concept isBetween is defined as follows. Considering definitions
such as expressed by Eqs. (3)-(6), then

isBetween v Spatial Relation u Ternary Spatial Relation

u ∃inverse.isAbove u ∃inverse.isBelow

u ∃inverse.isBefore u ∃inverse.isAfter.

(7)

This concept is illustrated in Fig. 1(b).

3 Implementation

The ternary spatial relations described in Section 2 could be embedded into
a system for the automatic analysis of people localization in imaged scenes as
presented in Fig. 2. Indeed, understanding images with groups of people is a
complex process which requires more information that just those contained in
the extracted visual features. In [17], they propose to add social relations in order
to improve the automatic analysis of this kind of images, but their estimations
are less satisfactory compared to those we obtain (see Section 4) by adding the
presented spatial relations to the vision system.

The developed system is composed of three main phases. The first two steps
constitute a vision system for face detection, which has been implemented using
the well-established method of [18]. Firstly, faces are learned by training the
system on sets of positive and negative examples, respectively. Secondly, the
resulting face detector is applied on an image and automatically computes faces’
locations which are then included in corresponding rectangles and labeled. Then,
the quantitative data which are extracted by this process are transferred in
a similar way to [19] or [14] in order to populate an ontology such as [13].
This ontology is enhanced with the proposed ternary spatial relations. Next,
qualitative reasoning is performed on these spatial relations and FaCT++ is
used as the reasoner. This last phase of the system thus consists in reasoning on
the ternary spatial relations and has been assessed in Section 4.



Fig. 2. Overview of our proposed system for reasoning on ternary spatial relations
between detected visual objects to automatically understand scenes.

4 Experiments and Discussion

The goals of the presented experiments are twofold. On one hand, we assess in
a quantitative way the performance of the all five proposed ternary relations
compared to the 5-intersection model which is the only one also defining above,
below, before, after as ternary relations, but using a different formalism from
ours. On the other hand, qualitative assessment of our relations is performed
against the ground truth.

In order to evaluate the performance of our formalism of all the ternary
proposed relations, our relations have been embedded in the overall system de-
veloped for the computer vision application consisting in the analysis of photos
with groups of people such as presented in Fig. 2.

To carry out these tests, we have firstly retrieved from Internet images of
choirs using Google Image. The aim of the search of choir images was to ensure
the finding of pictures of groups of people to analyze spatial relations among
them. Indeed, the direct keywords “groups of people” did not produce relevant
results. Then, we have constituted a dataset with these 500 retrieved choirs
images where faces have been detected and labeled as explained in Section 3. The
picture of Fig. 3(a) is an example of the images composing the dataset. Although
the study of the face detection problem is out of purpose of the present paper,
we can mention that the obtained general precision rate was 95% and that the
undetected faces were manually added for the completeness of the dataset.

The adopted criterion for the quantitative assessment of a ternary spatial
relation rl(A,B,C) is the satisfaction degree computed as follows

s(A) =
|area(A) ∩ ΓBC |

|area(A)|
, (8)

where A is the target object and ΓBC is the area between the two reference
objects B and C.



(a) (b)

Fig. 3. Results of our system tested for an image of a choir. First column: Face recog-
nition results. Second column: Schematic spatial representation of the above, below,
before, after, and between relations of the visual objects detected in the image under
study.

The qualitative evaluation of the system is carried out by asking different
questions whose answers are boolean. The two main types of possible queries
are:

– what are the relation(s) among three given objects OREL, OREF1, and
OREF2?

– which is/are the object(s) OREL that have the relation rl with the given
objects OREF1, and OREF2?

In the case of the image of the Fig. 3(a), the quantitative and qualitative
results are reported in Tables 1 and 2, respectively.

When compared with the ternary relations of [9], we assume the semantic
correspondence between their leftside concept and our above concept as well as
between their rightside concept and our below concept.

Table 1. Quantitative evaluation of the ternary relations for the objects in the choir
image in Fig. 3(a).

Approaches
from [9] ours (Sec. 2)

OREL OREF1 OREF2 ab bl bf af bt ab bl bf af bt

B A D 0.48 0.00 0.00 0.00 0.52 0.18 0.00 0.00 0.00 0.82
C A B 0.00 0.43 0.00 0.57 0.00 0.18 0.00 0.00 1.00 0.00
C A D 0.00 0.20 0.00 0.00 0.80 0.00 0.00 0.00 0.00 1.00
C D E 0.00 0.00 0.50 0.00 0.50 0.00 0.68 1.00 0.00 0.00
D A C 0.07 0.00 0.00 0.93 0.00 1.00 0.00 0.00 1.00 0.00



Table 2. Qualitative evaluation of the ternary relations for the objects in the choir
image in Fig. 3(a).

Approaches
ground truth ours (Sec. 2)

OREL OREF1 OREF2 ab bl bf af bt ab bl bf af bt

A C E no yes yes no no no yes yes no no
B A C yes no no no yes yes no no no yes
B C D no no yes no no no no yes no no
C B D no yes no no yes no yes no no yes
D A B yes no no yes no yes no no yes no
E A B no no no yes no no no no yes no

In Table 1, we can observe that in the case of the relation rl(C,A, D), we find
that the object C is between A and D when applying our formalism, whereas
[9] considers that the object C is also below the objects A and D that is not
complying with the human intuition. For the relations such as rl(B,A,D) or
rl(C,D,E), our approach provides values which indicate the dominant relation
between these objects and which is each time conformed with the human per-
ception of the scene. In opposite, the figures computed using [9] give a large
uncertainty about the type of the relations among the objects, e.g. by finding (i)
50% for C below D and E and (ii) 50% for C between D and E which does not
indicate which semantic relation is correct and makes confusion between true
(ii) and false (i) statements.

In the results of the qualitative reasoning on the proposed ternary spatial
relations as reported in Table 2, we note the excellent concordance between the
ground truth values set by human users and those computed with our developed
system. The overall precision of our system tested for the entire dataset is of
99.5± 0.5 %.

Hence, the evaluation of the results shows that our clock-based formalism
provides a more accurate and consistent definition of these concepts than the
state-of-the art ones.

5 Conclusions

In this paper, we have applied new ternary spatial relations, namely, above,
below, before, after, and between, in order to automatically understand and
interpret images with complex content such as groups of people. Formalizing the
presented relations using the clock model and defining them as ternary relations
has provided new powerful semantic concepts to describe the relative position of
an object of interest towards two other distinct visual objects. As demonstrated,
this conceptualization brings a new insight in the automated analysis of crowded
visual scenes.
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Where Things Happen:
On the Semantics of Event Localization
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Abstract. The problem of temporally situating events in language has
been approached by a number of philosophical techniques, including
Davidson’s particularist theory of event individuation [6, 5] and Kim’s
property exemplification theory [16]. Both of these theories have been
developed within linguistic semantic traditions, as well (cf. [24, 2] and
others). However, the problem of event localization (spatially situating
events) has not been discussed as extensively in the semantics literature.
In this paper, I discuss the procedures for identifying where events, as
expressed in natural language, are located in space. Aspects of the se-
mantics of event localization have been recently proposed, including the
notion of the “shape” of a movement [8, 39], as well as treating movement
verbs as “path creation” predicates [29]. In this paper, I build on these
and some additional observations to outline a more general semantics
of event localization. I then outline a procedure that extends the path
metaphor used for motion predicates, distinguishing between the event
locus and the spatial aspect of an event. In the process, I discuss how
localization is supervenient upon the participants in the events.

Keywords: Spatial Language, Event semantics, Qualitative spatial reasoning

1 Introduction

This paper discusses an issue of some importance to both qualitative spatial
reasoning (QSR) as well as natural language semantics. The aim of this brief
note is to discuss procedures for identifying where events, as expressed in nat-
ural language, are located in space. While much fundamental work has been
done on modeling the topological and orientatational relations between objects
viewed as regions ([30, 3, 7, 1]), the theoretical foundations for a similar calculus
of relations for locating eventualities is less developed. Similarly, in linguistic
semantics research, the question of where events are spatially located has also
been generally neglected, when compared to the effort devoted to the temporal
and aspectual interpretation of eventualities. Some notable exceptions to this
involve the analysis of motion events, where identification of the path is an in-
herent aspect of the semantics of the predicate and associated composition with
spatial prepositional phrases ([8, 38, 23, 39, 29]).



This paper presents some of the issues pertaining to the semantics of event
localization. For the purpose of this paper, event localization will refer to the
process of identifying the spatial extent of an event, activity, or situation, what
we refer to as its minimum embedding space. The focus here will be on the inter-
pretation of natural language descriptions of events, and not on event recognition
and classification from other modalities, such as sensor arrays or visual input.
We argue that the localization of an event appears to depend on three major
semantic factors: (i) the internal structure of the event; (ii) its semantic type;
and (iii) the specific role that the event participants play in the event. Local-
ization can be defined as the computation of the minimum embedding space,
the event locus, for the participants in an event. This is the minimum bound-
ing region within which the event transpires, including all relevant participants.
Within this space, it is often the case that a relative location is linguistically sin-
gled out, what we call the spatial aspect of the event. As we demonstrate, when
this happens, a semantic distinction is introduced between the locus (figure)
and its aspect (ground). We outline the localization procedure for both motion
and some non-motion predicates in language, somewhat informally, due to space
limitations.

2 Previous Work on Locating Events

To begin, consider the distinction typically made in linguistics in how time and
space are interpreted semantically. In earlier philosophical discussions, it was
widely assumed (e.g., Vendler [37]) that events are interpreted relative to times,
while objects are interpreted relative to locations. For example, the eventualities
in (1) can each be temporally situated, giving rise to distinct interpretations in
tense, aspect, or genericity.

(1) a. Maria left for Warsaw.
b. Piotr finished his book.
c. Fred was eating a sandwich.
d. Barbara had invited me before Eva wrote me.
e. Americans like pizza and beer.
f. Dinosaurs roamed the earth.

Vendler distinguishes such temporal localizations for events from object localiza-
tions. Consider the sentences in (2), where the objects participate in an inherent
spatial relation, which can be temporally anchored.

(2) a. My dog is in the backyard.
b. There’s milk in the glass.
c. The projector is on the table.
d. The screen is behind me.

Yet, just as it is possible to temporally anchor the spatial relations in (2), it is
clear that language allows for events to be anchored in space with regularity (cf.
(3)).



(3) a. The party was in the basement.
b. The committee held a vote in the conference room.
c. The dog walked on the carpet with his dirty paws.
d. Sophie danced in her bedroom.

Still, Vendler (1967) believed that the predicative operations involved in locating
objects in space should not be associated with events. This “to each their own”
philosophy forces the spatial properties of events (as well as the temporal aspects
of objects) to be derivative in nature. We return to this below, with Davidson’s
([6]) introduction of events as first-class objects in semantics.

Briefly, two approaches to temporal anchoring can be distinguished: (i) time
as modality; and (i) the method of temporal arguments. For the former ap-
proach, a sentence such as John was happy is treated as a proposition scoped
by an operator, P : P (happy(john)) ([25, 15, 22]). The method of temporal argu-
ments reifies the temporal index which is used to anchor the evaluation of the
proposition:

(4) ∃t[hungry(john, t) ∧ t < now]

This method was first explored in Russell [33] and Kim [17], but did not become
common until McCarthy and Hayes [21] incorporated it into the situation cal-
culus for automatic reasoning systems. By individuating the proposition as an
event, Davidson’s proposal is similar, in that it employs the “method of argu-
ments” with an additional parameter, e.

The methods available for locating events in space are similar to those em-
ployed for time: namely, using a modality or adding an argument. Treating space
as a modality has been explored since Rescher and Garson [32]. For example, to
express the location in the sentence, John met Mary, a modal operator Pα can
be employed, denoting, e.g., “some location other than here”:

(5) Pα(meet(john,mary))

The method of spatial arguments proposes a location argument to a relation, as
shown below:

(6) ∃l[meet(john,mary, l) ∧ in(l,Boston)]

This has been standard within situation calculus fragments for naive theories
of physics (e.g., Hayes [10]), and is the starting point for defining topological
relations within the qualitative spatial reasoning (QSR) community [30, 3] as
well.

It is also the approach taken by Davidson [5] in his semantics of action sen-
tences. Starting with the assumption that an event is a first-order individual, e,
participating in the argument structure of a predicate, P (x1, . . . , xn, e), David-
son identifies the location of an event as a relation between the event variable
and an introduced location argument, l, e.g., loc(e, l). For example, consider the
sentence and logical form below, ignoring for now, issues of tense.



(7) a. John sang in a field.
b. ∃e∃l[sing(j, e) ∧ in(e, l) ∧ field(l)]

Regardless of the specific spatial relation present (on, under, in back of), David-
son’s program is focused on relating the event to an object or location, rather
than actually localizing the action itself. To illustrate this, consider the sentences
in (8) and the predicated locations of the contained events.

(8) a. Mary ate her lunch under a bridge.
b. The robbery happened behind the building.

Notice that the events are positioned relative to the other objects and are not
actually located in space.

Because of their grammatical and semantic import, linguistic interest in iden-
tifying the locations of events has focused largely on motion verbs and the role
played by paths. Jackendoff [12, 14] elaborates a semantics for motion verbs in-
corporating explicit reference to the path traversed by the mover, from source to
destination (goal) locations. Talmy’s ([34, 35]) work develops a similar conceptual
template, where the path followed by the figure is integral to the conceptualiza-
tion of the motion event frame. Hence, the path can be identified as the central
element in defining the location of the event. Related to this idea, both Zwarts
[38] and Pustejovsky and Moszkowicz [29] develop mechanisms for dynamically
creating the path traversed by a mover in a manner of motion predicate, such
as run or drive. Starting with this approach, the localization of a motion event,
therefore, is at least minimally associated with the path created by virtue of the
activity.

In addition to capturing the spatial trace of the object in motion, several
researchers have pointed out that identifying the shape of the path during motion
is also critical for fully interpreting the semantics of movement. Eschenbach et
al [8] discusses the orientation associated with the trajectory, something they
refer to as oriented curves. Motivated more by linguistic considerations, Zwarts
[39] introduces the notion of an event shape, which is the trajectory associated
with an event in space represented by a path. He defines a shape function, which
is a partial function assigning unique paths to those events involving motion or
extension in physical space. This work suggests that the localization of an event
makes reference to orientational as well as configurational factors. Zwarts also
points out that the scalar semantics of degree predicates (such as widen) can be
analyzed through the use of path composition rules [39], as well.

Beyond the work mentioned above, there has been little effort to articulate a
general semantics for event localization that incorporates non-motion predicates.
In this paper, I will propose some initial thoughts on what such a model should
look like. The approach I take here is based on two distinct but interacting
observations. First, I extend the path metaphor to non-movement events. This
forces us to look at the various regions associated with the event participants, and
the interactions between the participants. Secondly, I draw a distinction between
the “relative spatial anchoring” of Davidson’s analysis, and the actual event



localization, which is the minimal location within which the action or event takes
place. I argue that this is analogous to the distinction between an event’s tense
and its aspect within the temporal domain. On this view, Davidson’s relative
locational interpretation can be viewed as the reference location of the event,
i.e., the spatial aspect. Similarly, the actual region encompassing the event is
analogous to the tense (event time), and it is this region that we refer to as the
event locus.

In the next section, we will see that the determination of the event locus
is supervenient on the participants of the event, but not as transparently or
predictably as might be expected.

3 A Procedure for Event Localization

As mentioned above, there are two observations that will be spelled out in this
section: (i) the path metaphor can be extended to account for the localization
of many non-movement activities; and (ii) event localization is formally analo-
gous to grammatical tense, while spatial adjunction is analogous to grammatical
aspect.

While Davidson’s theory of action has had enormous influence on the way
linguists and cognitive scientists approach the modification of events, including
spatial predication, alternative views were voiced as early as Kim [18]. Moti-
vated in large part by his theory of event identity, contra Davidson [6], Kim
incorporated localization as an integral component to the definition of an event.
Assume that an event is a structured object, exemplifying a property (or n-adic
relation), at a time, t, as illustrated in (9).

(9) [(x1, . . . , xn, t), P
n]

We can identify the location of an object in the event as: loc(x, t) = rx. Then,
for purposes of event identity, we can construe an event with its localization as:

(10) [(x1, . . . , xn, rx1
, . . . , rxn

, t), Pn] or = [([xi], [rxi
], t), Pn]

Accorindg to Kim [19], what we are calling the event localization, le, is superve-
nient on the object locations, rx1 , . . . , rxn , as defined above. This is a significant
step beyond Davidson’s approach since it introduces the supervenience of the
event participants directly into consideration of the event location. However,
since this problem was not as central to Kim’s general program for defining
property exemplication in the role of causation, this line of inquiry is not further
developed in his or his colleagues’ subsequent works, leaving most of our ques-
tions unanswered. First, how are the individual participant regions, xi, composed
or combined to create the proper minimum embedding space over the course of
an event? Second, which participants are relevant in the composition of the em-
bedding space for the event and which should be ignored? Finally, what happens
when the participants to events are abstract objects or complex types? This is



unfortunate, since this perspective on locating events merits further considera-
tion.

The approach adopted by Zwarts [38, 39] can be seen as developing some
of Kim’s original insights into localization, as applied to movement predicates.
Similarly, the generalization of the path metaphor, as taken up in [29, 20] can
be viewed as essentially an extension of these ideas, as well. For the present
discussion, we adopt the analysis given in [29] to introduce the localization of
a motion event. First, we assume that path verbs such as arrive and leave are
inherently different from basic manner-of-motion predicates, such as move, roll,
and walk, in that they make explicit reference to the location that is being moved
away from or toward along an explicit path, p. Manner verbs assume a change of
location while making no explicit mention of a distinguished place. Path verbs
can be identified as transitions, while manner-of-motion verbs can be seen as
processes. Adopting the analysis of manner-of-motion predicates from [29], we
say that a process “leaves a trail” as it is executed. For motion verbs such as
walk or run, this trail is the created object of the path which the mover traverses.
This argument is unexpressed in the syntax but present in the inspection of any
state or trace of the process. Following [29], we treat the path as a program
variable, p̂, to the motion verb, dynamically creating the trail as an ‘initiated”
object from the resource locations, z, as illustrated below:

(11) a. move: eN → (eA ⇀ (eN → s× s))
b. λzλ⇀p̂λx[walk(x, z, p̂)]

We can identify the event localization for a motion predicate as the minimum
embedding space, µ, for the moving object, x, traced over the course of the event.
This includes both the path, p̂, and the object localization for x, rx. We denote
this composition as p̂⊗ rx. For an event, e, with participants, xi, the minimum
embedding space can be computed, somewhat informally, as follows:

(12) a. rxi
: The Kimian spatial extent of an object, xi;

b. p̂: The path created by the motion in e;
c. Re: an embedding space (ES) for e, defined as a region containing p̂ and
rxi

in a specific configuration, p̂⊗ rxi
;

d. µ, the event locus: the minimum embedding space for e.1

Now that we have established where a motion event is localized, i.e., its lo-
cus, we consider how a reference location can be introduced relative to the locus.
As mentioned before, we refer to this region as the spatial aspect for the event,
because it appears to function in much the same way as grammatical aspect in
the temporal domain. Let us spell out this comparison. Tense is an ordered k-
partitioning of the temporal domain, DT ; further, it is a nominal ordering (past,
present, future). Now, grammatical aspect can be seen as a binary partitioning
relative to this partition. This is one way of interpreting Reichenbach’s (1947)

1 Where µ can be defined as:
∀e∀Re∀µ[[ES(Re, e) ∧Min(µ,Re)]↔ [µ ⊆ Re ∧ ∀y[y ⊆ Re → µ ⊆ y]]].



calculus, utilizing Event (E), Reference (R), and Speech (S) times for classi-
fying tense-aspect combinations in language [31]. To illustrate just part of this
system, notice how Event and Reference times align to distinguish three relative
orderings:

(13) a. Simple Past: E = R, R < S. John ateE,R dinner.
b. Past Perfect. E < R, R < S. John had eatenE dinner before noonR.
c. Past Progressive: R ⊆ E, E < S. John [was eatingE ]R dinner.

In a similar fashion, event localization as expressed in language can be seen as
involving both an initial partitioning over the spatial domain, DS , creating an
event locus (le), as well as an optional subsequent partitioning relative to this
partition, generating a spatial aspect (or reference location, lr) [4]. Movement
events provide a simple illustration of this process, since the locus is a fairly
direct composition of the path p̂ and the mover x, p̂⊗ rxi .

2 There are two basic
strategies available to motion verbs for referencing spatial regions pertaining to
an event, and in the process create a partition relative to the locus. These are
presented below in (14).

(14) a. analytic aspect: verb selects a spatial argument;
Mary left the room. John entered the hall.
b. synthetic aspect: verb is modified through PP adjunction;
Mary swam in the pool. John walked to the corner.

Path predicates that select a spatial sub-region of the locus as an argument are
examples of the strategy in (14a) above, while both manner of motion and path
predicates license PP adjunction in (14b). Some examples of how the locus is
distinguished from spatial aspect are presented below.

(15) a. Simple Locus: le = lr. John walkedle,lr .
b. Relative Aspect: le <d lr. John walkedle under the treelr .
c. Embedded Aspect: le ⊆ lr. John walkedle in the buildinglr .
d. Completive Aspect: EC(le, lr), end(lr, p̂). John arrivedle homelr .

John walkedle to the parklr .3

e. Ingressive Aspect: EC(lr, le), begin(lr, p̂). John walkedle from the parklr .

As pointed out in [29], we can characterize the locus as being telic or atelic,
depending on the nature of p̂ (which is dependent on the verb in composition
with the PP).4 In the next section we illustrate how the localization procedure
extends to non-movement events.

2 Support for this comes from a somewhat related analysis, where Reichenbach’s ref-
erence frame for the temporal domain is extended to spatial frames of reference
Tenbrink [36]. That analysis , however, does not extend to event localization.

3 Spatial distinctions associated with arrive and enter, as well as to and into are
acknowledged but not discussed in the present paper (cf. [12, 13, 23, 9, 39]).

4 Besides the atelicity associated with source PPs, is the distinction between telic and
atelic prepositions [38]: a. Mary swam to the beach; b. Mary swam towards the beach.



4 Non-Movement Event Localization

In this section, we briefly consider what is required to extend the localization
procedure to non-movement events. The discussion will be somewhat program-
matic in nature, due to space limitations. Since the path metaphor has already
been applied to the semantics of creation and destruction predicates [27, 28]
within the dynamic logic framework outlined in [29], we begin our discussion
with this semantic class. On this view, verbs of change, such as build, knit, de-
stroy, and break, can be seen as involving the creation or destruction of an object,
seen as the path resulting from the event. For a verb such as knit (John knitted
a sweater.), this path is the created object brought about by order-preserving
transformations as executed in the directed process [28].

Thus, the event localization for creation predicates can be analyzed as the
minimum embedding space for the created object traced over the course of the
event, along with the other event participants. This is the created object as
path, p̂, in composition with the object localization of the agent argument, x,
i.e., p̂ ⊗ rx. Applying this to other creation predicates, this also accounts for
the dynamically changing spatial extent of a table or a house, as it is being
constructed over a period of time (16).

(16) a. Simple Locus: le = lr. John builtle,lr a housep̂.
b. Embedded Aspect: le ⊆ lr. John builtle a tablep̂ in the basementlr .

Notice that in (16b), the locus of the building event is determined relative to
the embedding reference location, lr, making no commitment as to where the
created object, p̂, is located after the build event; e.g., the table may have gone
into the kitchen when done.5 Compare this to our interpretation of (17).

(17) John build a fence in the backyard.

The intented final placement of the created artifact is not captured by the event
localization procedure, but is rather part of the world knowledge or qualia struc-
ture associated with the object [26].

One closely related verb class that should be briefly mentioned here is the
class of placement predicates. These include verbs such as put, place, and plant.
Notice that the localization of the event in (18) is similar to a path predicate,
such as enter.

(18) Mary planted a tree in the ground.

Here, the locus is composed of the path, p̂, taken by the plant, x, while the
spatial aspect is an argument selected by the predicate, i.e., lr is the ground,
where end(lr, p̂). The semantics of the predicate ensures the entailment rx ⊆ lr;
the plant ends up “in” the ground.

One problem that arises with the procedure for event localization for causative
predicates (such as the change predicates above) concerns the nature of the agent
argument. Namely, when the causal argument is itself an event (or complex type),
the supervenience strategy fails. Consider the following pair of sentences in (19).

5 This is consistent with the syntactic attachment of the PP.



(19) a. Atelic Relative Aspect: le <d lr.
The storm approachedle the shorelr .

b. Embedded Aspect with event agent: le ⊆ lr.
The storm destroyedle the boat in the harborlr .

While the sentence in (19a) treats the storm as a region in motion and has
predictable event localization properties, the sentence in (19b) illustrates that
the locus is not supervenient on the entire object localization of the causing
argument (the storm), but of the local effects of this event: that is, the locus is
restricted to within the harbor, le ⊆ lr, where lr is the harbor. This would no
be possible if the locus were supervenient on the rx associated with the storm,
which would engulf the entire region. Notice that such a “locality” effect is also
operative in other causative examples, such as that below:

(20) The sun killed the grass on the lawn.

With such cases, it appears that the effects of distal causation are computed
locally (through a sort of transitivity operation), leaving the locus of the event
to be proximate to the resulting state.

As our final verb class, we consider briefly perception predicates, such as see
and hear. These pose a particularly interesting challenge to the procedure pre-
sented here because, following [11, 26], such verbs select for event complements.
This introduces the problem of identifying two event distinct loci in a perception
report. Consider the sentences below in (21).

(21) a. John saw an eagle in his backyard.
b. Mary heard an alarm down the street.

Following these analyses, we can distinguish the locality of the experiencing event
from the event being perceived, where each seems to have a localization inde-
pendent of the other. Hence, “the eagle in the backyard” is the event perceived
by John, in his kitchen or wherever. Similar remarks hold for (21b), where the
events have distinct loci. This is an area of considerable complexity, and merits
further research, as the discussion here does it no justice.

5 Conclusion

In this brief note, I hope to have demonstrated that determining the location of
an event is an area of research that has not been pursued as systematically as
temporal localization of events or object localization. Contrary to a Davidsonian
relativist view on localization, I introduce the distinction between an event’s
locus and its aspect, making an analogy to the distinction in the temporal domain
between tense and aspect, or event and reference time. In the process, I have
employed Kim’s original notion of object supervenience to an extended path
metaphor for the location of an event. Many issues remain to be addressed. One
of the most significant gaps in the present analysis is the role of the affordance
space associated with artifactual objects, in order to determine the appropriate
region associated with the appropriate use of objects. Further examination is also
required to clarify the role of locality in the broader class of causative predicates.
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