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ABSTRACT
Simple questions require small snippets of text as the answers whereas complex questions require
inferencing and synthesizing information from multiple documents to have multiple sentences
as the answers. The traditional QA systems can handle simple questions easily but complex
questions often need more sophisticated treatment e.g. question decomposition. Therefore,
it is necessary to automatically classify an input question as simple or complex to treat them
accordingly. We apply two machine learning techniques and a Latent Semantic Analysis (LSA)
based method to automatically classify the questions as simple or complex.
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1 Introduction

Automated Question Answering (QA), the ability of a machine to answer questions asked
in natural language, is perhaps the most exciting technological development of the past few
years (Strzalkowski and Harabagiu, 2008). QA research attempts to deal with a wide range of
question types including: fact, list, definition, how, why, hypothetical, semantically-constrained,
and cross-lingual questions. This paper concerns open-domain question answering where the
QA system must handle questions of different types: simple or complex.

Simple questions are easier to answer (Moldovan et al., 2007) as they require small snippets
of texts as the answers. For example, with a simple (i.e. factoid) question like: “What is the
magnitude of the earthquake in Japan?”, it can be safely assumed that the submitter of the
question is looking for a number. Current QA systems have been significantly advanced in
demonstrating finer abilities to answer simple factoid and list questions. On the other hand,
with complex questions like: “How is Japan affected by the earthquake?”, the wider focus of
this question suggests that the submitter may not have a single or well-defined information
need. Therefore, to answer complex type of questions we often need to go through complex
procedures such as question decomposition and multi-document summarization (Chali et al.,
2012; Harabagiu et al., 2006; Chali and Hasan, 2012; Chali et al., 2009). Hence, it is necessary
to automatically classify an input question as simple or complex in order to answer them using
the appropriate technique. Once we classify the questions as simple or complex, we can pass
the simple questions to the traditional question answering systems whereas complex questions
can be tackled differently in a sophisticated manner. For example, the above complex question
can be decomposed into a series of simple questions such as “How many people had died by the
earthquake?”, “How many people became homeless?”, and “Which cities were mostly damaged?”.
These simple questions can then be passed to the state-of-the-art QA systems, and a single
answer to the complex question can be formed by combining the individual answers to the
simple questions (Harabagiu et al., 2006; Hickl et al., 2006). This motivates the significance
of classifying a question as simple or complex. We experiment with two well-known machine
learning methods and show that the task can be accomplished effectively using a simple feature
set. We also use a LSA-based technique to automatically classify the questions as simple or
complex.

2 Question Classification

Question classification is the task of assigning class labels to a given question posed in natural
language. The main objective of question classification is to deal with a group of similar
questions in a similar fashion, rather than focusing on each question individually. Researchers
have shown that the performance of a QA system could further improve if question classification
is employed (Ittycheriah et al., 2001; Hovy et al., 2001; Moldovan et al., 2003). Most approaches
to question classification are based on complex natural language processing techniques which
extract useful information from the question and utilize that to answer the question in an
effective manner. Different rule-based and learning-based techniques have been applied over
the years to tackle the question classification task (Prager et al., 1999; Silva et al., 2011; Bu
et al., 2010; Zhang and Lee, 2003; Moschitti and Basili, 2006; Li and Roth, 2002).

In order to classify the questions as simple or complex we experiment with two machine learning
techniques: 1) supervised and 2) unsupervised. Supervised classifiers are typically trained
on data pairs, defined by feature vectors and corresponding class labels. On the other hand,
unsupervised approaches rely on heuristic rules and work on unlabeled data. In this paper, we
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employ SVM for supervised learning whereas for the unsupervised learning experiment we use
k-means clustering algorithm. We also accomplish the task using a LSA-based methodology
where the main idea is to exploit a training corpus of already classified questions and then, to
compare the test set questions with the semantic space of the training corpus to identify their
class.

2.1 SVM

SVM is a powerful methodology for solving machine learning problems introduced by Vapnik
(Cortes and Vapnik, 1995) based on the Structural Risk Minimization principle. In the field of
natural language processing, SVMs are applied to text categorization and syntactic dependency
structure analysis, and are reported to have achieved higher accuracy than previous approaches
(Joachims, 1998). SVMs were also successfully applied to part–of–speech tagging (Giménez
and Màrquez, 2003), single document summarization for both Japanese (Hirao et al., 2002a)
and English documents (Hirao et al., 2002b), and multi-document summarization (Chali and
Hasan, 2012; Hirao et al., 2003; Schilder and Kondadadi, 2008). This motivates us to employ
SVM in our task. In the classification problem, the SVM classifier typically follows from the
solution to a quadratic problem. SVM finds the separating hyperplane that has maximum
margin between the two classes in case of binary classification. SVMs can also handle non-linear
decision surfaces introducing kernel functions (Joachims, 1998; Kudo and Matsumoto, 2001).
We consider our problem as binary classification having two classes: 1) simple questions and 2)
complex questions.

In SVM, the training samples each of which belongs either to positive or negative class can be
denoted by:

�
x1, y1

�
, . . . ,

�
xu, yu

�
, x j ∈ Rn, y j ∈ {+1,−1}

Here, x j is a feature vector of the j-th sample represented by an n dimensional vector; y j is its
class label. u is the number of the given training samples. SVM separates positive and negative
examples by a hyperplane defined by:

w · x + b = 0, w ∈ Rn, b ∈ R (1)

Where “·” stands for the inner product. In general, a hyperplane is not unique (Cortes and
Vapnik, 1995). The SVM determines the optimal hyperplane by maximizing the margin. The
margin is the distance between negative examples and positive examples; the distance between
w · x+ b = 1 and w · x+ b =−1. The examples on w · x+ b =±1 are called the Support Vectors
which represent both positive or negative examples. The hyperplane must satisfy the following
constraints:

yi

�
w · x j + b

�
− 1≥ 0
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Hence, the size of the margin is 2/||w||. In order to maximize the margin, we assume the
following objective function:

Minimizew,bJ (w) =
1

2
||w||2 (2)

s.t. y j

�
w · x j + b

�
− 1≥ 0

By solving a quadratic programming problem, the decision function f (x) = sgn
�

g (x)
�

is
derived, where

g (x) =
u∑

i=1

λi yi x i · x + b (3)

SVMs can handle non-linear decision surfaces with kernel function K
�

x i · x
�
. Therefore, the

decision function can be rewritten as follows:

g (x) =
u∑

i=1

λi yi K
�

x i , x
�
+ b (4)

In this research, we use the linear kernel functions, which have been found to be very effective in
the study of other tasks in natural language processing (Joachims, 1998; Kudo and Matsumoto,
2001).

2.2 k-means Clustering

In cluster analysis, the data or samples are divided into a number of useful subsets based on the
similarity of data points. Initially, the number of subsets (clusters) or how they are distinguished
from each other is not known since the training data are not labeled with the class information.
k-means is a hard clustering algorithm that defines the clusters by the center of mass of their
members (Manning and Schutze, 2000). It starts with a set of initial cluster centers and goes
through several iterations of assigning each data object (i.e. each question in our case) to the
cluster whose center is the closest. The k-means algorithm follows a simple way to cluster a
given data set through a pre-specified number of clusters k. In our task, we simply assume the
number of clusters, k = 2 since we have two clusters of questions: 1) simple and 2) complex.
After all objects have been assigned, we recompute the center of each cluster as the centroid or
mean (µµµ) of its members. We use the squared Euclidean distance as the distance function. Once
we have learned the means of the clusters using the k-means algorithm, our next task is to rank
the sentences according to a probability model. We have used Bayesian model in order to do so:

P(qk|xxx ,Θ) =
p(xxx |qk,Θ)P(qk|Θ)

p(xxx |Θ)
=

p(xxx |qk,Θ)P(qk|Θ)∑K
k=1 p(xxx |qk,Θ)p(qk|Θ)

(5)
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where qk is a cluster, xxx is a feature vector representing a sentence and Θ is the parameter set
of all class models. We set the weights of the clusters as equiprobable (i.e. P(qk|Θ) = 1/K).
We calculated p(xxx |qk,Θ) using the Gaussian probability distribution. The Gaussian probability
density function (pdf) for the d-dimensional random variable xxx is given by:

p(µµµ,ΣΣΣ)(xxx) =
e
−1
2 (xxx−µµµ)

T
ΣΣΣ−1(xxx−µµµ)

p
2π

dp
det(ΣΣΣ)

(6)

where µµµ, the mean vector and ΣΣΣ, the covariance matrix are the parameters of the Gaussian
distribution. We get the means (µµµ) from the k-means algorithm and we calculate the covariance
matrix using the unbiased covariance estimation procedure:

Σ̂ΣΣ j =
1

N − 1

N∑
i=1

(xxx i −µµµ j)(xxx i −µµµ j)
T (7)

2.3 LSA

LSA (Landauer et al., 1998) uses a sophisticated approach to decode the inherent relationships
between the contexts (typically a sentence, a paragraph or a document) and the words that they
contain. The main ability of LSA is to identify the similarity between two texts even they do
not have any words in common, thus providing at least a similarity score by taking synonymy
and polysemy into consideration. In the first phase of LSA, a word-by-context (WCM) matrix is
constructed that represents the number of times each distinct word appears in each context.
The next phase is called the dimensionality reduction step. In this phase, the dimension of
the WCM is shortened by applying Singular Value Decomposition (SVD) and then reducing
the number of singular values in SVD. This is done in order to access the ability of LSA in
determining similarity scores (other than zero) in case where two documents have nothing in
common between them. To accomplish our classification task, we prepare a training corpus of
two documents that contain already classified simple and complex questions. Then, the test
questions are compared with the semantic space of this corpus and the question that has the
highest similarity score to a document is placed under that class. For example, if a test question
shows a higher similarity score with the semantic space of the document containing simple
questions, it is labeled as a simple question.

3 Experiments

3.1 Data Preparation

The well-known data set1 available for question classification is created by Li and Roth (2002).
For our experiments, we have used a modified version of this data set. The original data
set consists of 5,452 annotated questions for training. All these questions are labeled (i.e.
annotated) as one of the six coarse-grained categories: ABBR (e.g. What does NAFTA stand

1http://cogcomp.cs.illinois.edu/Data/QA/QC/
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for?), DESC (e.g. Why did the world enter a global depression in 1929?), ENTY (e.g. What
color are tennis balls?), HUM (e.g. What is Nicholas Cage ’s occupation?), LOC (e.g. What
province is Edmonton located in?) and NUM (e.g. How many lawyers are there in the state of
New Jersey?). An extensive manual analysis of this data set reveals the fact that DESC type
questions need complex processing whereas all other types of questions are simple questions
that can be answered by the QA systems easily. From the original data, we extract the 5,452
training questions2 and then, assign new labels to them (+1 for simple questions and −1 for
complex questions). The 2005, 2006 and 2007 Document Understanding Conferences (DUC3)
focus on the task of complex question answering. They provide a list of topics along with
topic descriptions (having complex questions) and a collection of relevant documents (that
contains the required answers). We collect the complex questions from the topic descriptions of
DUC-2006 and DUC-2007 and mix them with the previously labeled data set4 (after assigning
the label −1). Thus, we produce a labeled data set of 5, 542 questions where 4144 of them are
simple questions and 1398 are complex questions.

3.2 Feature Space

For the machine learning experiments, we represent each question as a vector of feature-values.
We extract the following boolean features automatically from the questions. In presence of a
certain feature, we set the corresponding feature-value to 1 or assign 0, otherwise. In addition
to these, we also consider the length (i.e. number of words) of a question as a useful feature.
All the feature-values are normalized to [0, 1] at the end.

3.2.1 First Unigram (Which, Where, Who, What, When)

Simple questions mostly start with the unigram: which, where, who, what or when. We assign
the value 1 if any of these five question words is present as the first unigram in the question.

3.2.2 Imperative Sentences as Questions

Some complex questions in DUC-2006 and DUC-2007 were formed as imperative sentences.
These questions give instructions or express requests for some information or a particular
answer (e.g. “Describe developments in the movement for the independence of Quebec from
Canada.”). If a question is an imperative sentence, we give it the score 1. At the same time,
we also look for the question word how as the first unigram since a good number of complex
questions begin with how (e.g. How do you write a book report?).

3.2.3 First Bigram (Starting with How)

The first bigram of several simple questions can be any of the following: how many, how much,
how long, how large, how big, how fast, how small etc. We look for the presence of this type of
bigrams and set the feature-value to 1, if found.

3.2.4 First Bigram (Starting with Who, What)

The bigrams: Who is, who are, what is, what are are often found in both simple and complex
type of questions. We set the feature-value to 1 if this type of bigram is present in a question.

2Only questions are extracted (i.e. without their coarse-grained labels).
3http://duc.nist.gov/
4DUC complex questions are added into the dataset in order to include variety in the question space.
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3.3 System Settings

For the SVM experiments, we use SV M l i ght package5. To allow some flexibility in separating
the classes, SVM models have a cost parameter, C . We keep the value of C as default and use
the linear kernel to run our experiments. For the k-means experiments, we use the k-means
implementation6 of (Pelleg and Moore, 1999). We keep the initial number of centers to 1
and use the default values of other parameters. For the LSA experiment, we use a publicly
available implementation7. A stopword list is used to exclude unnecessary words from the
WCM construction. We delete question words from the stopword list since question words are
important for our task. We do not apply dimension reduction in LSA as this setting gives us the
most accurate scores8.

3.4 Evaluation and Analysis

Our data set consists of 5,542 annotated questions. We split the data set into three equal
portions to apply 3-fold cross validation for the SVM and LSA experiments. In run-1, we use the
first two portions as training data and the last portion as validation (i.e. testing) data. Similarly,
in run-2 and run-3, we use the first and the third subset of data for testing, respectively. On the
other hand, after a number of iterations (maximum 200), the k-means algorithm converges and
each question is assigned to the cluster whose center is the closest according to the Euclidean
distance function. We form three different data sets for the k-means experiments. In run-1,
we use 1,848 questions for learning while in run-2 and in run-3, we use 3,695 and 5,542
questions, respectively. We can judge the performance of a classifier by calculating its accuracy
on a particular test set. The accuracy can be defined as:

Accurac y =
no. o f Correct l y C lassi f ied Quest ions

Total no. o f Test Quest ions

In Table 1 to Table 3, we show the results for our SVM, k-means and LSA experiments. From the
results we can see that the unsupervised k-means classifier clearly outperforms the supervised
SVM classifier and the LSA-method for the considered task. This is due to the fact that for
supervised learning and LSA experiments we need a huge number of labeled data for training.
And also, the training set should be balanced having an equal distribution of the class samples.
Our data set had a comparatively less number of complex questions than the simple questions.
This might be the reason why SVM and LSA showed a lower accuracy than the k-means classifier.
However, the average accuracy of SVM is still near 80.00% showing its good generalization
ability. On the other hand, k-means classifier shows the average accuracy of 93.33% that yields
the fact that it could learn from the given data set quite remarkably. This phenomenon also
suggests that the k-means classifier could learn well from a skewed distribution of simple and
complex questions, and this high performance is not due to overfitting on the data. Besides,
the lower average accuracy of LSA suggests that the semantic understanding of the questions’
content was not 100% accurate. We conduct a similar experiment with a sample dataset of
2796 questions having uniform distribution of simple and complex questions and find that SVM,

5http://svmlight.joachims.org/
6http://www.cs.cmu.edu/ dpelleg/kmeans/
7http://code.google.com/p/lsa-lda/
8We experimented with different dimensions while creating the semantic space with LSA, but, dimension reductions

produced lesser accuracy in results.
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k-means and LSA show an average accuracy of 83.18%, 81.64%, and 70.90%, respectively.
From these results, we can see that the supervised SVM system outperforms the unsupervised
k-means system when there is a uniform distribution of the question types. We can also see that
the LSA system is showing a higher accuracy, which justifies the effectiveness of the approach.

Experiment Accuracy (in %)

Run-1 79.97%

Run-2 78.94%

Run-3 79.65%

Average 79.52%

Table 1: Accuracy of SVM

Experiment Learning Data Size Accuracy (in %)

Run-1 1848 93.45%

Run-2 3695 93.50%

Run-3 5542 93.05%

Average – 93.33%

Table 2: Accuracy of k-means

Experiment Accuracy (in %)

Run-1 60.20%

Run-2 62.28%

Run-3 61.33%

Average 61.27%

Table 3: Accuracy of LSA

Conclusion

We perform the task of automatically classifying questions (that are given as input to a standard
QA system) as simple or complex. This task is important because it can help a QA system
decide what particular actions are needed to be taken to treat the simple or complex questions
differently in an effective manner. We use two machine learning techniques: a) supervised SVM
and b) unsupervised k-means algorithm, and show that the task can be accomplished effectively
using a simple feature set. We also use a LSA-based technique to automatically classify the
questions as simple or complex. Extensive experiments show the effectiveness of our proposed
approach. In future, we plan to use more sophisticated features and then, experiment with
other machine learning techniques on a larger data set.
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