
Proc. of the Joint Workshop on Automatic Knowledge Base Construction & Web-scale Knowledge Extraction (AKBC-WEKEX), pages 101–105,
NAACL-HLT, Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Rel-grams: A Probabilistic Model of Relations in Text

Niranjan Balasubramanian, Stephen Soderland, Mausam, and Oren Etzioni
Turing Center, Department of Computer Science and Engineering

Box 352350
University of Washington
Seattle, WA 98195, USA

{niranjan,soderlan,mausam,etzioni}@cs.washington.edu

Abstract

We introduce the Rel-grams language model,
which is analogous to an n-grams model, but
is computed over relations rather than over
words. The model encodes the conditional
probability of observing a relational tuple R,
given that R′ was observed in a window of
prior relational tuples. We build a database
of Rel-grams co-occurence statistics from Re-
Verb extractions over 1.8M news wire docu-
ments and show that a graphical model based
on these statistics is useful for automatically
discovering event templates. We make this
database freely available and hope it will
prove a useful resource for a wide variety of
NLP tasks.

1 Introduction

The Google N-grams corpus (Brants and Franz,
2006) has enjoyed immense popularity in NLP and
has proven effective for a wide range of applications
(Koehn et al., 2007; Bergsma et al., 2009; Lin et al.,
2010). However, it is a lexical resource and provides
only local, sentence-level information. It does not
capture the flow of semantic content within a larger
document or even in neighboring sentences.

We introduce the novel Rel-grams database1 con-
taining corpus statistics on frequently occurring se-
quences of open-domain relational tuples. Rel-
grams is analogous to n-grams except that instead
of word sequences within a sentence, it tabulates re-
lation sequences within a document. Thus, we ex-
pect Rel-grams to model semantic and discourse-
level regularities in the English language.

1available at relgrams.cs.washington.edu.

(bomb; explode near; ?) (?; claim; responsibility)

(bomb; explode at; ?) (bomb; explode in; ?)

(?; kill; people) (bomb; wound; ?)

(?; detonate; bomb) (bomb; destroy; ?)

(bomb; kill; ?) 0.48

0.51

0.53

0.58 0.54

0.72

0.60

0.54 0.57

0.43

0.40

0.38 0.40

Figure 1: Part of a sub-graph that Rel-grams discovers
showing relational tuples strongly associated with (bomb;
kill; ?)

We have compiled a Rel-grams database from 1.8
million New York Times articles from the Gigaword
corpus (Gigaword, 2011). The implementation is
linear in the size of the corpus and easily scaled
to far larger corpora. Rel-grams database facilitates
several tasks including:

Relational Language Models: We define a re-
lational language model, which encodes the proba-
bility of relational tuple R, having observed R′ in
the k previous tuples. This can be used for discourse
coherence, sentence order in summarization, etc.

Event Template Construction: We cluster com-
monly co-occuring relational tuples as in Figure 1
and use them as the basis for open event templates
(see Table 2). Our work builds on and generalizes
earlier efforts by Chambers and Jurafsky (2011).

Expectation-driven Extraction: The probabili-
ties output by the relational language model may be

101

used to inform an information extractor.
As has been the case with n-gram models and re-

sources such as DIRT (Lin and Pantel, 2001), we
expect the community to suggest additional appli-
cations leveraging this large scale, public resource.
An intriguing possibility is to use Rel-grams in
document-level extraction or summarization to as-
sess the discourse coherence of alternate hypothe-
ses in a decoding step in much the same way that
n-grams have been used in speech or statistical MT.

2 Rel-grams & Relational Language
Model

We build a relational language model that specifies
the probability of observing the next relational tu-
ple in a sequence of tuples. As an approximation,
we estimate bi-gram probabilities. Formally, we use
Pk(R|R′) as the probability thatR followsR′ within
a distance of k tuples, as a delta-smoothed estimate:

Pk(R|R′) =
#(R,R′, k) + δ

#R′ + δ · |V |
(1)

where, #(R,R′, k) is the number of times R fol-
lows R′ in a document within a distance of k tuples.
k = 1 indicates consecutive tuples in the document.
#R′ is the number of times R′ was observed in the
corpus. |V | is the number of unique tuples in the
corpus. Notice that, similar to typical language mod-
els, this is a sequential model, though we can define
undirected models too.

We can use inference over the relational language
model to answer a variety of questions. As an ex-
ample, we can compute the semantic coherence of
a document D by converting it into a sequence of
relational tuples < R1, ..., Rn > and computing the
joint probability of observing the document D:

P (D) = Pseq(< R1, ..., Rn >) (2)

= P (R1)
n∏

i=2

P1(Ri|Ri−1) (3)

This can be used to score alternate sequences of
tuples in a decoding step, ranking the coherence of
alternate versions of a generated document or sum-
mary.

Another use of the relational language model is
to assess the likelihood of a tuple R given a set of
tuples within a window of k tuples. This can serve
as a verification during NLP tasks such as extraction.

Table 1: Generalized tuples with the highest conditional
probability given (treasury bond; fall; ?). Our model
matches well with human intuition about semantic relat-
edness.

Predicted tuples Argument values
1.(bond; fall; ?) point, percent
2.(yield; rise; ?) point, percent
3.(report; show; ?) economy, growth
4.(bond; yield; ?) percent, point
5.(index; rise; ?) percent, point
6.(federal reserve; raise; ?) rate, interest rate

2.1 The Rel-grams Database

As a first step towards building the relational lan-
guage model, we extract relational tuples from each
sentence in our corpus using ReVerb, a state-of-the-
art Open IE system (Fader et al., 2011). This ex-
tracts relational tuples in the format (arg1; rel; arg2)
where each tuple element is a phrase from the sen-
tence. We construct a relational database to hold co-
occurrence statistics for pairs of tuples found in each
document as shown in Figure 2. The database con-
sists of three tables: a Tuples table maps each tuple
to a unique identifier; BigramCounts stores the co-
occurrence frequency, a count for a pair of tuples and
a window k; UniCounts counts the number of times
each tuple was observed in the corpus. We refer to
this resource as the Rel-grams database.
Query Language: The relational nature of the Rel-
grams database allows for powerful querying using
SQL. For example, the database can be used to find
the most frequent Rel-grams, whose first tuple has
bomb as the head of its arg1 and has explode near as
its predicate (with no constraints on arg2). We find
that the views in which one or more of the elements
in a tuple is a wild-card, are often useful (as in this
example). We call these generalized tuples. We ma-
terialize tables for generalized tuples in advance to
improve query performance.

The Rel-grams database aggregates important in-
formation regarding the occurence of semantic rela-
tions in documents and allows general querying ca-
pability. We envision the database to be also useful
for several other tasks such as building event tem-
plates (Section 3).

We populated the Rel-grams database using Re-
Verb extractions from a subset of 1.8 million New
York Times articles from the Gigaword corpus. To
reduce sparsity, we represented the arguments and

102

Tuples
Id Arg1Head RelNorm Arg2Head
...
...
13 bomb explode near market
...
20 bomb kill people
...
...

UniCounts
Id Count
... ..
... ..
13 45
... ..
20 37
... ..
... ..

BigramCounts
T1 T2 Window Count
...
13 20 3 12
13 20 9 16
...
20 13 5 2
20 13 7 5
...

Figure 2: Rel-grams Database

relation phrases by their stemmed head words, in-
cluding prepositions for the relation phrases. The
database consisted of over 97M entries.

2.2 Evaluation

First, we evaluated the relational language model to
test if the conditional probabilities Pk(R′|R) (Equa-
tion 1) reflect semantic relatedness between tuples.
We took 20 arbitrary generalized tuples R′ and ob-
tained the top 50 tuples {R}with highest conditional
probability P5(R|R′). Annotators considered each
R to be correct if there was a close semantic rela-
tion with R′, not necessarily synonymy. We found
high precision, over 0.96, for the top 50 predicted
tuples. Table 1 shows the top few tuples associated
with the generalized tuple (treasury bond; fall; ?).
Notice that including an argument adds essential in-
formation to otherwise vague relation phrase such as
“fall”, “rise”, “show”, or “yield”.

Next, we evaluated the relational language model
on a pseudo-disambiguation task: distinguishing be-
tween randomly generated documents and original
news articles. We created a test set as follows. From
a random sample of the AFP portion of the Giga-
word corpus, we selected the first ten documents that
covered a non-redundant set of topics such as sports,
politics, etc. Then, we pooled the sentences from
these ten documents and built pseudo-documents by
randomly sampling sentences from this pool.

Given a document, D, we extract the sequence of
relational tuples< R1, ..., Rn >. Then, we compute
the likelihood of observing this sequence as shown
in Equation 2 with window size k set to 5. To ac-
count for sparsity, we employ back-off models that
switch to conditional probabilities of generalized tu-
ples. We normalize the likelihoods to account for
different length sequences.

The average likelihood of original news articles
was 2.5 times higher than that of pseudo-documents

created from a randomly sampled sentences. This
suggests that relational language model captures im-
portant semantic information.

3 Event Template Discovery

The Rel-grams database can also be used to identify
groups of tuples that frequently co-occur with each
other in a specific event or scenario. In particular, we
are motivated by the task of automatically building
event templates. We cast this a clustering problem
on a graph of relation tuples (Rel-graphs).

3.1 Rel-graphs
We define Rel-graphs as an undirected weighted
graph G = (V,E), whose vertices (V) are general-
ized relation tuples, and whose weighted edges (E)
represent the strength of co-occurrences between
each pair of tuples. We generalize each relation tu-
ple by replacing either argument with a wild-card
obtaining (arg1; rel; ?) and (?; rel; arg2). We then
create edges for all pairs of these generalized tu-
ples that co-occurred at least five times in the Rel-
gram database. To assign edge weights, we choose
normalized point-wise mutual information (PMI),
which is computed as follows:

PMI(R,R′) = log
{

#(R,R′, k) + #(R′, R, k)
#R#R′

}
where, #(R,R′, k) + #(R′, R, k) is the number of
times R and R′ co-occur within a window of k,
which we set to 10 for this experiment. We normal-
ize the PMI score by the maximum marginal proba-
bility of the tuples. The resulting graph consisted of
more than 320K vertices and more than 2M edges.

3.2 Event Templates from Clustering
Tightly connected clusters on the Rel-graphs rep-
resent frequently co-occurring tuples. These clus-
ters may be viewed as representing event templates,

103

Table 2: A sample of the 50 highest connectivity Rel-clusters. We show only the first few nodes of each cluster and
the highest frequency argument values for the open slot. About 89% of nodes in these 50 clusters are relevant.

Top Nodes Arguments Top Nodes Arguments Top Nodes Arguments
(suit; seek; ?) damages, status (disease; cause ; ?) death, virus (sale; increase; ?) percent, year
(lawsuit; file in; ?) court, state (study; show ; ?) drug, people (sale; account; ?) revenue,sale
(case; involve; ?) woman, company (people; die; ?) year, disease (profit; rise; ?) percent, pound
(suit; accuse; ?) company, Microsoft (disease; kill; ?) people, woman (share; fall; ?) percent, cent
(?; file; suit) group, lawyer (?; treat; disease) drug, cell (share; rise; ?) percent, penny
(suit; allege; ?) company, fraud (?; kill; people) bomb, attack (analyst; survey by; ?) bloomberg,zacks
Top Nodes Argument Values Top Nodes Argument Values Top Nodes Argument Values
(film; win; ?) award, prize (state; allow ; ?) doctor, company (patriot; play; ?) game, sunday
(film; receive; ?) review, rating (law; require ; ?) company, state (patriot; in; ?) game,league
(film; earn; ?) year, million (state; require; ?) company, student (patriot; win; ?) game, super bowl
(?; make; film) director, studio (state; pass; ?) law, legislation (patriot; get; ?) break, player
(film; get; ?) nomination, review (state; use; ?) money, fund (patriot; lose; ?) game, sunday
(?; see; film) people, anyone (?; require; state) bill, Congress (?; rush; yard) smith, williams

where the arguments are the entities (slots) in the
event and the relation phrase represents their roles.

We employed Markov clustering (Van Dongen,
2008) to find tightly connected clusters on the Rel-
graphs. Markov clustering finds clusters efficiently
by simulating random walks on the graph.2 The
clustering produced 37,210 clusters for our Rel-
graph, which we refer to as Rel-clusters.

We observed that our clusters often included tu-
ples that were only weakly connected to other tuples
in the cluster. To prune unrelated tuples, we devise a
two step process. First, we select the top three most
connected vertices within the cluster. Starting with
these three vertices, we compute a subgraph includ-
ing the direct neighbors and all their pairwise edges.
We then sort the vertices in this sub-graph based on
their total edge weights and select the top 50 ver-
tices. Figure 1 shows a portion of such a cluster,
with vertices strongly connected to (bomb; kill; ?)
and all edges between those vertices.

Table 2 shows the top nodes for a sample of high
connectivity Rel-clusterswith the two most frequent
argument values for their wildcard slot.

3.3 Evaluation
First we evaluated the semantic cohesiveness of a
random sample of the 50 clusters with highest con-
nectivity. We found that about 89% of the nodes in
each cluster were semantically related to the implicit
topic of the cluster.

Next, we evaluate Rel-clusters with an indepen-
dent gold standard. We compare against MUC-4

2We use an efficient sparse matrix implementation from
http://micans.org/mcl/ that scales linearly in the
number of graph vertices.

templates for terrorist events: bombing, attack, kid-
napping, and arson. MUC-4 templates have six pri-
mary extraction slots – perpetrator, victim, physical
target (omitted for kidnapping), instrument (omitted
for kidnapping and arson), date, and location.

To obtain Rel-clusters for these four terrorist
event types, we look for clusters that include the
seed extractions: (bomb; explode; ?), (attack; kill;
?), (?; kidnap; ?), (?; set fire; ?). We examine the
argument values for these nodes to see whether the
argument type corresponds to a slot in the MUC-4
event template and use it to compute recall.

Table 3 shows the performance our Rel-clusters
and compares it with the MUC-4 template slots dis-
covered by an unsupervised template extraction ap-
proach (Chambers and Jurafsky, 2011). We find that
Rel-clusters were able to find a node with arguments
for all six slots for bombing and attack event types.
It had more difficulty with kidnapping and arson,
missing the date and location for kidnapping and
missing the victim and location for arson. Cham-
bers missed one victim and did not include date or
location for any template.

We view these as promising preliminary results
but do not draw any strong conclusions on the com-
parison with Chambers and Jurafsky, as unlike our
system, theirs was designed to produce not only tem-
plates, but also extractors for the slots.

In the future, we will automatically determine se-
mantic types for the slots. We will also split slots
that have a mixture of semantic types, as in the ex-
ample of the arguments {percent, year} for the ex-
traction (sale; increase; ?) in Table 2.

104

Table 3: Both Rel-clusters and Chambers system dis-
covered clusters that covered most of the extraction slots
for MUC-4 terrorism events.

Fraction of slots
Chambers Rel-clusters

Bombing 0.50 1.00
Attack 0.67 1.00
Kidnapping 0.50 0.50
Arson 0.60 0.60
Average 0.57 0.77

4 Related Work

There has been extensive use of n-grams to model
language at the word level (Brown et al., 1992;
Bergsma et al., 2009; Momtazi and Klakow, 2009;
Yu et al., 2007; Lin et al., 2010). Rel-grams model
language at the level of relations. Unlike DIRT (Lin
and Pantel, 2001), Rel-grams counts relation co-
occurrence rather than argument co-occurence. And
unlike VerbOcean (Chklovski and Pantel, 2004),
Rel-grams handles arbitrary relations rather than a
small set of pre-determined relations between verbs.

We build on prior work that learns narrative
chains and narrative schema that link actions by the
same protagonists (Chambers and Jurafsky, 2008;
Chambers and Jurafsky, 2009), and work that ex-
tracts event templates from a narrowly focused cor-
pus (Chambers and Jurafsky, 2011). Rel-grams finds
more general associations between relations, and has
made a first step towards learning event templates at
scale.

5 Conclusions

This paper introduces the Rel-grams model, which
is analogous to n-gram language models, but is com-
puted over relations rather than over words. We con-
struct the Rel-grams probabilistic graphical model
based on statistics stored in the Rel-grams database
and demonstrate the model’s use in identifying event
templates from clusters of co-occurring relational
tuples. The Rel-grams database is available to the re-
search community and may prove useful for a wide
range of NLP applications.

6 Acknowledgements
This research was supported in part by NSF grant IIS-0803481,
ONR grant N00014-08-1-0431, and DARPA contract FA8750-
09-C-0179, and carried out at the University of Washington’s
Turing Center.

References
S. Bergsma, D. Lin, and R. Goebel. 2009. Web-scale N-

gram models for lexical disambiguation. In Proceed-
ings of IJCAI.

Thorsten Brants and Alex Franz. 2006. The Google
Web1T 5-gram Corpus Version 1.1. LDC2006T13.

P. Brown, P. deSouza, R. Mercer, V. Della Pietra, and
J. Lai. 1992. Class-based n-gram models of natural
language. Computational Linguistics.

N. Chambers and D. Jurafsky. 2008. Unsupervised
learning of narrative event chains. In Proceedings of
ACL-08: HLT.

N. Chambers and D. Jurafsky. 2009. Unsupervised
learning of narrative schemas and their participants. In
Proceedings of ACL.

N. Chambers and D. Jurafsky. 2011. Template-based
information extraction without the templates. In Pro-
ceedings of ACL.

T. Chklovski and P. Pantel. 2004. VerbOcean: Mining
the web for fine-grained semantic verb relations. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP-04), pages
33–40.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of EMNLP.

English Gigaword. 2011. http://www.ldc.upenn.edu/
Catalog/catalogEntry.jsp?catalogId=LDC2011T07.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: open source toolkit for
statistical machine translation. In Proceedings of ACL.

D. Lin and P. Pantel. 2001. DIRT – Discovery of Infer-
ence Rules from Text. In Proceedings of KDD.

D. Lin, K. Church, H. Ji, S. Sekine, D. Yarowsky,
S. Bergsma, K. Patil, E. Pitler, R. Lathbury, V. Rao,
K. Dalwani, and S. Narsale. 2010. New tools for Web-
scale N-grams. In Proceedings of LREC.

S. Momtazi and D. Klakow. 2009. A word clustering ap-
proach for language model-based sentence retrieval in
question answering systems. In Proceedings of CIKM.

S. Van Dongen. 2008. Graph clustering via a discrete
uncoupling process. SIAM Journal on Matrix Analysis
and Applications, 30(1):121–141.

L-C. Yu, C-H. Wu, A. Philpot, and E. Hovy. 2007.
OntoNotes: sense pool verification using Google N-
gram and statistical tests. In Proceedings of OntoLex
Workshop.

105

