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Abstract

We have created layers of annotation on the
English Gigaword v.5 corpus to render it use-
ful as a standardized corpus for knowledge ex-
traction and distributional semantics. Most ex-
isting large-scale work is based on inconsis-
tent corpora which often have needed to be
re-annotated by research teams independently,
each time introducing biases that manifest as
results that are only comparable at a high
level. We provide to the community a public
reference set based on current state-of-the-art
syntactic analysis and coreference resolution,
along with an interface for programmatic ac-
cess. Our goal is to enable broader involve-
ment in large-scale knowledge-acquisition ef-
forts by researchers that otherwise may not
have had the ability to produce such a resource
on their own.

1 Introduction

Gigaword is currently the largest static corpus of En-
glish news documents available. The most recent
addition, Gigaword v.5 (Parker et al., 2011), con-
tains nearly 10-million documents from seven news
outlets, with a total of more than 4-billion words.
We have annotated this collection with syntactic and
discourse structure, for release to the community
through the Linguistic Data Consortium (LDC) as
a static, large-scale resource for knowledge acqui-
sition and computational semantics. This resource
will (1) provide a consistent dataset of state-of-the-
art annotations, over which researchers can compare
results, (2) prevent the reduplication of annotation
efforts by different research groups, and (3) “even

the playing field” by better enabling those lacking
the computational capacity to generate such annota-
tions at this scale.

The Brown Laboratory for Linguistic Information
Processing (BLLIP) corpus (Charniak et al., 2000)
contains approximately 30-million words of Wall
Street Journal text, annotated with automatically de-
rived Treebank-style parses and part-of-speech tags.
This was followed by the BLLIP North American
News Text corpus (McClosky et al., 2008), con-
taining approximately 350-million words of syntac-
tically parsed newswire.

Through the Web-as-Corpus kool ynitiative
(WaCky) project, two large-scale English corpora
have been created.1 The ukWaC corpus was de-
veloped by crawling the .uk domain, resulting in
nearly 2-billion words then annotated with part-of-
speech tags and lemmas (Ferraresi et al., 2008).
ukWaC was later extended to include dependency
parses extracted using the MaltParser (Nivre et al.,
2007) (PukWaC). PukWaC thus represents a large
amount of British English text, less formally edited
than newswire. The WaCkypedia EN corpus con-
tains roughly 800-million tokens from a 2009 cap-
ture of English Wikipedia, with the same annota-
tions as PukWaC.

Here we relied on the Stanford typed dependen-
cies, rather than the Malt parser, owing to their rel-
ative dominance in recent work in distributional se-
mantics and information extraction. In comparison
to previous annotated corpora, Annotated Gigaword
is a larger resource, based on formally edited ma-

1http://wacky.sslmit.unibo.it/doku.php?
id=corpora
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terial, that has additional levels of annotation, and
reflects the current state of the art in text processing.

In particular, our collection provides the follow-
ing for English Gigaword v.5 (referred to as Giga-
word below):

1. tokenized and segmented sentences,

2. Treebank-style constituent parse trees,

3. syntactic dependency trees,

4. named entities, and

5. in-document coreference chains.

The following provides motivation for such a re-
source, the tools employed, a description of the
programmatic interface provided alongside the data,
and examples of ongoing work already enabled by
this resource.

2 Motivation

Our community has long had a strong dependence
on syntactically annotated corpora, going back at
least as far as the Brown corpus (Francis and Kuc̆era,
1964 1971 1979). As manual annotation of syntactic
structure is expensive at any large scale, researchers
have regularly shifted their reliance to automatically
parsed corpora when concerned with statistics of co-
occurrence.

For example, Church and Hanks (1990) pioneered
the use of Pointwise Mutual Information (PMI) in
the field, with results provided over syntactic deriva-
tions on a 44-million-word corpus of newswire,
showing correlations such as the verb drink/V as-
sociating with direct objects martinis, cup water,
champagne, beverage, cup coffee, and so on. This
was followed by a large number of related efforts,
such as that by Lin and Pantel (2001): Discovery of
Inference Rules from Text (DIRT), aimed at building
a collection of paths sharing distributionally similar
nominal anchors, over syntactic dependency struc-
tures automatically derived from newswire text.

While these efforts are popularly known and con-
stitute established methodological baselines within
knowledge acquisition and computational seman-
tics, the underlying annotated corpora are not public
resources. As such, direct comparison to their meth-
ods are difficult or impossible.

Further examples of popularly known results that
are difficult to reproduce include the large-scale in-
formation extraction results surrounding TextRun-
ner (Yates et al., 2007), or the script induction efforts
first described by Chambers and Jurafsky (2008). In
the latter, coreference chains were required in addi-
tion to syntactic parsing: a further computationally
expensive requirement.

Often researchers will provide full resultant de-
rived resources, such as the DIRT rules or narra-
tive chains (Chambers and Jurafsky, 2010). While
this is to be encouraged (as opposed to merely al-
lowing limited web-based access), there are likely
a number of researchers that would prefer to tune,
adapt, and modify large-scale extraction algorithms,
if only they had ready access to the preprocessed
collections that led to such resources. This is espe-
cially the case now, as interest in Vector Space Mod-
els (VSMs) for semantics gain increased attention
within Cognitive (Mitchell and Lapata, 2010) and
Computer (Turney and Pantel, 2010) Science: such
models are often reliant on co-occurrence counts de-
rived over large numbers of syntactically analyzed
sentences.

3 Annotations

Gigaword was annotated in three steps: (1) prepro-
cess the data and identify which sentences were to
be annotated, (2) derive syntactic parses, and (3)
post-process the parsed output to derive syntactic de-
pendencies, named entities, and coreference chains.
The second step, parsing, took the majority of our
efforts: 10.5 days, using 16 GB of memory and 8
cores per Gigaword file. Using six machines, each
with 48 cores and 128 GB of memory, we parsed
roughly 700-thousand lines per hour.

3.1 Preprocessing

Gigaword has an SGML-style markup which does
not differentiate between different types of body
text. For example, list items are not distinguished
from complete sentences. Therefore, we coarsely
identified all non-sentential lines (list items) by lines
with more than one character preceding the first non-
space character, after inspection of several randomly
sampled documents.

The remaining lines from the <HEADLINE> and
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<TEXT> fields were segmented into sentences us-
ing the open-source tool Splitta, which reported the
lowest error rate for English sentence segmenta-
tion (Gillick, 2009). Sentences were tokenized us-
ing a Penn-Treebank tokenizer (from the Stanford
CoreNLP toolkit2). We skipped all sentences with
more than 100 tokens because we observed that
these sentences were often the result of sentence seg-
mentation failure or concatenated list items. In total,
we parsed 183,119,464 sentences from the collec-
tion. Our release includes information about which
sentences were omitted. In an initial estimate of
one file containing 548,409 sentences, we dropped
1,197 sentences due to length constraints, which is
less than one percent of the total sentences.

3.2 Parsing
We have Penn-Treebank-style parses for the 183-
million sentences described above, using the state-
of-the-art co-trained English parser described in
Huang et al. (2010). After consulting the authors,
we used the self-trained (using product model) sixth-
round grammar (ST-Prod grammar), because it had
high accuracy3 without the exceptional computa-
tional burden of a full product of grammars (which
was expected to provide only slight improvement,
but at significant computational cost).

3.3 Post-Syntactic Processing
We modified the Stanford CoreNLP pipeline to
make use of the parse trees from the previous step, in
order to then extract dependency structures, named
entities, and coreference chains.4

Three types of dependency structures were gener-
ated and stored: basic typed dependencies, collapsed
dependencies, and collapsed dependencies with con-
junction dependencies propagated. See de Marneffe
and Manning (2008) for details.

We used the best performing coreference-
resolution system (Lee et al., 2011) to extract coref-
erence chains over the approximately 180-million
sentences in the <TEXT> of each document.

2http://nlp.stanford.edu/software/
corenlp.shtml

3Avg. F score = 91.4 on WSJ sec 22
4The Stanford CoreNLP pipeline assumes all aspects of pro-

cessing are performed with its own tools; the modifications
were required to replace the parsing component with an external
tool.

3.4 Storage

The data is stored in a form similar to the original
Gigaword formatting along with XML annotations
containing our additional markup. There is one file
corresponding to each file distributed with the Gi-
gaword corpus. The total uncompressed size of the
collection is 400 GB, while the original Gigaword is
about 26 GB, uncompressed.

4 Programmatic Access

We provide tools for reading the annotated data, in-
cluding a Java API which provides convenient ob-
ject representations for the contents of the XML
files. Where appropriate, we use the original Stan-
ford toolkit objects, such as TypedDependency and
WordLemmaTag.

We also provide a suite of command-line tools,
built on the Java API, for writing out each individ-
ual type of annotation in a common text annotation
format. For example, one can print out only the part-
of-speech tags, or only the dependencies for all the
documents in an annotated file.

To parse the XML, we use the VTD-XML5 pars-
ing model (Zhang, 2008) and its open-source imple-
mentation for a 64-bit Java Virtual Machine. The
VTD-XML parser allows for random access, while
maintaining a very small memory footprint by mem-
ory mapping the XML file and maintaining an in-
memory index based on the Virtual Token Descrip-
tor (VTD), a concise binary encoding of the XML
tokens. Building on VTD-XML, we also provide a
streaming mode that processes and keeps in memory
only one news document at a time.

The efficiency and ease of extensibility of our
tool are a byproduct of it being built on the VTD-
XML library. As an example, to parse one XML
file (470 MB) consisting of 33,108 sentences into
an object-oriented representation of the dependency
parses and accumulate sufficient statistics about de-
pendency edge counts requires just over 30 seconds
using a 64 MB of heap space and a single core of an
Intel Xeon 2.66 Ghz CPU.

5http://vtd-xml.sourceforge.net
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Path Gloss Cos
NNS:nsubj:VBD← dived→VBD:dobj:NN X dived Y 1.0000
NNS:nsubj:VBD←slumped→VBD:dobj:NN X slumped Y 0.9883
NNS:nsubj:VBD←plunged→VBD:dobj:NN X plunged Y 0.9831
NNS:nsubj:VBD←gained→VBD:dobj:NN X gained Y 0.9831
NNS:nsubj:VBD←soared→VBD:dobj:NN X soared Y 0.9820
NNS:nsubj:VBD←leapt→VBD:dobj:NN X leapt Y 0.9700
NNS:nsubj:VBD←eased→VBD:dobj:NN X eased Y 0.9700
NNS:pobj:IN←of←IN:prep:NN←index←NN:nsubj:VBD←rose→VBD:dobj:NN X’s index rose Y 0.9685
NNS:nsubj:VBD←sank→VBD:dobj:NN X sank Y 0.9685
NNS:pobj:IN←of←IN:prep:NN←index←NN:nsubj:VBD←fell→VBD:dobj:NN X’s index fell Y 0.9621

Table 1: Relations most similar to “X dived Y” as found in Annotated Gigaword using approximate search.

Path Gloss Cos
NN:nsubj:VBD←gained→VBD:dobj:NNS X gained Y 1.0000
NN:nsubj:VBD←climbed→VBD:dobj:NNS X climbed Y 0.9883
NN:nsubj:VBD←won→VBD:dobj:NNS X won Y 0.9808
NN:nsubj:VBD←rose→VBD:dobj:NNS X rose Y 0.9783
NN:nsubj:VBD←dropped→VBD:dobj:NNS X dropped Y 0.9743
NN:nsubj:VBD←edged→VBD:dobj:NNS X edged Y 0.9700

Table 2: Relations most similar to “X gained Y” as found in Annotated Gigaword using approximate search.

5 Example Applications

The following gives two examples of work this re-
source and interface have already enabled.6

5.1 Shallow Semantic Parsing

Ongoing work uses this resource to automatically
extract relations, in the spirit of Lin and Pantel
(2001) (DIRT) and Poon and Domingos (2009)
(USP). First, DIRT-like dependency paths between
nominal anchors are extracted and then, using these
observed nominal arguments to construct feature
vectors, similar paths are discovered based on an ap-
proximate nearest-neighbor scheme as employed by
Ravichandran et al. (2005). For example, the most
similar phrases to “X dived/gained Y” found using
this method are shown in Tables 1 and 2 (e.g. the
Nasdaq dived 3.5 percent). Deriving examples such
as these required relatively minor amounts of effort,
but only once a large annotated resource and sup-
porting tools became available.

6Both applications additionally rely on the Jerboa toolkit
(Van Durme, 2012), in order to handle the large scale of fea-
tures and instances extractable from Annotated Gigaword.

5.2 Enabling Meaning-preserving Rewriting

In a related project, Annotated Gigaword enabled
Ganitkevitch et al. (2012) to perform large-scale ex-
traction of rich distributional signatures for English
phrases. They compiled the data into a flat corpus
containing the constituency parse, lemmatization,
and basic dependencies for each sentence. For each
phrase occurring in the sentence, contextual features
were extracted, including:

• Lexical, lemma, and part-of-speech n-gram
features, drawn from an m-word window to the
right and left of the phrase.

• Features based on dependencies for both links
into and out of the phrase, labeled with the cor-
responding lexical item, lemma, and part of
speech. If the phrase was syntactically well-
formed, lexical, lemma, and part-of-speech fea-
tures for its head were also included.

• Syntactically informed features for constituents
governing the phrase, as well as for CCG-style
slashed constituent labels for the phrase, into
individual features by governing constituent
and left- or right-missing constituent.
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These features extracted from Annotated Giga-
word were successfully used to score paraphrase
similarity in a text-to-text generation system. Due to
its much more diverse feature set, the resulting col-
lection of 12-million rich feature vectors yielded sig-
nificantly better output (as judged by humans) than
a vastly larger collection of 200-million phrases de-
rived from a web-scale n-gram corpus.

6 Conclusion

As interest in methods requiring large-scale data
continues to grow, it becomes ever more important
that standard reference collections of preprocessed
collections be made available. Annotated Gigaword
represents an order of magnitude increase over syn-
tactically parsed corpora currently available via the
LDC. Further, it includes Stanford syntactic depen-
dencies, a shallow semantic formalism gaining rapid
community acceptance, as well as named-entity tag-
ging and coreference chains. Throughout we have
relied on state-of-the-art tools, providing researchers
a level playing field to experiment with and com-
pare methods for knowledge acquisition and distri-
butional semantics.
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