
CFG Based Grammar Checker for Latvian

Daiga Deksne

Tilde

Vienības gatve 75a, Riga, Latvia

LV1004

daiga.deksne@tilde.lv

Raivis Skadiņš

Tilde

Vienības gatve 75a, Riga, Latvia

LV1004

raivis.skadins@tilde.lv

Abstract

This paper reports on the implementation of

the Latvian grammar checker. It gives a brief

introduction of the project scope – Latvian

language, the previous implementation of the

grammar checker and its limitations. Then, it

describes the proposed approach. This paper

also describes the Latvian parser used for this

project and the quality measurement methods

used for the quality assessment of the gram-

mar checking system. Finally, the current

state of the grammar checker work is present-

ed.

1 Introduction

The grammar checker described in this paper is

not the first implementation of a Latvian gram-

mar checker. The first Latvian and Lithuanian

grammar checkers were implemented in 2004

(Mackevičiūte, 2004). Grammar checkers where

implemented using an advanced pattern match-

ing. There were almost 200 rules such as:

 If there is any verb in the imperative mood

followed by an adverb ‗lūdzu‘ (please),

then suggest inserting comma between

these words.

 If there is a noun in the nominative fol-

lowed by a (i) comma, (ii) preposition

―uz‖ and (iii) pronoun ―kurš‖ in the singu-

lar genitive or plural dative AND genders

of noun and pronoun are different; then

suggest changing the gender of the pro-

noun to be equal with the gender of the

noun.

These rules highlighted many grammar errors,

but the grammar checker had many deficiencies;

the most significant were:

 This format did not describe long distance

errors and errors that describe complex

syntactic structures. Only patterns match-

ing near words were allowed.

 Many rules had to be disabled because

they matched false errors caused by high

morphological ambiguity.

 The pattern matching algorithm was quite

slow and each new grammar rule made the

grammar checker slower and slower.

All the obstacles mentioned above led to the

work presented in this paper. A new Latvian

grammar checker has been built based on more

powerful techniques.

2 Chosen approach

2.1 Main principles

As Latvian is highly inflected language with a

high morphological ambiguity there are many

long distance agreements between words and

phrases in a sentence for which we need a deep

syntactic analysis of phrases and sentence to find

possible errors. The new implementation of the

Latvian grammar checker is based on a parser.

The parser works with two sets of rules:

 Rules describing Latvian grammar, e.g.

correct syntactic structures (G rules);

 Rules describing grammar errors (E rules).

If parser would work only with G rules it

would fully parse grammatically correct sentenc-

es and partly parse ungrammatical sentences and

also sentences whose syntactic structure is too

complex. For example, if we parse the Latvian

text ―Manam piemēram ir jābūt skaidram.

Piemēram es saprotu to.‖ (My example must be

clear. For example I understand it) we get a parse

as in Figure 1. The first sentence is fully parsed

therefore we can consider it to be grammatical,

the second sentence is only partially parsed

therefore it is either ungrammatical or it is too

Bolette Sandford Pedersen, Gunta Nešpore and Inguna Skadiņa (Eds.)
NODALIDA 2011 Conference Proceedings, pp. 275–278

complex to be fully parsed with a current set of

G rules.

piemēram

ir jābūt skaidram

es saprotu to

piemēram

N AUX V A

VP

NP

AP

S

manam

PR

N

NP

PR

NP

PR

NP

V

VP

S

Adv

Adv

NP NP

my example be must be clear

for example I understand it

 Figure 1. Result of parsing when parsing with

G rules only.

piemēram

ir jābūt skaidram

es saprotu to

piemēram

N AUX V A

VP

NP

AP

S

manam

PR

N

NP

PR

NP

PR

NP

V

VP

S

Adv

Adv

NP NP

my example be must be clear

for example I understand it

E

E

 Figure 2. Result of parsing when parsing with

both G and E rules.

If we add rules that also describe syntactic er-

rors (E rules) we get a parse as in Figure 2. We

get a similar result as before. The second sen-

tence still is not fully parsed, but the parser has

applied an error rule which finds the adverb

‗piemēram‘ followed by pronoun. The parser has

applied a similar error rule in the first sentence

too. We can ignore this error rule in the first sen-

tence because we know that that sentence is fully

parsed (grammatical). But an error rule in the

second sentence really marks a grammar error as

the sentence (or phrases containing words

marked by error rule) has not been fully parsed.

2.2 Parser

There are some requirements for the parser in

order to use it to find grammar errors in the way

described above. (i) The parser must be robust

and return partial parses if the sentence cannot be

fully parsed; (ii) The parser must be able to re-

turn all possible parses not only the one. As seen

in Figure 2 error rules are not a part of parse

trees; (iii) The parser must mark as correct only

syntactic structures which really are correct; (iv)

As we are working with Latvian, the parser rules

must be powerful enough to deal with high mor-

phological variance and ambiguity, word agree-

ment and a rather free word order.

For the purposes of grammar checking we

used the Latvian parser developed for machine

translation purposes (Skadiņš et al., 2007). The

parser is using adapted CFG grammar (Chom-

sky, 1956) and it is based on the CYK algorithm

(Younger, 1967) which allows partial parsing if

the sentence cannot be fully parsed. The CYK

algorithm is extended to support attributes for

both terminals and non-terminals.

2.3 Rule format

As Latvian is a morphologically rich language

Latvian grammar cannot be described with sim-

ple CFG rules like NP N; NP N N; SNP

V NP. The CFG used in the Latvian parser uses

attributes for terminal and non-terminal symbols.

For example, the noun phrase NP has attributes

number, gender, case, person and some more.

The error rules operate with terminals and

phrases which were created with correct gram-

mar rules. In the rule body there are usually some

agreement or disagreement statements between

attributes of several in itself correct phrases.

There also might be an attribute comparison with

an exact value. Also, lexical parts might figure in

such rules. Often there is a correct grammar rule

with the same right side constituents as in some

error rule, only the comparison operators are dif-

ferent. See sample of a correct grammar and an

error rule in Figure 3. The error rules have a sec-

tion where the correct attribute values are as-

276

Daiga Deksne and Raivis Skadiņš

276

signed and instructions for suggestion generation

are given.

NP -> attr:CAP main:NP

Agree(attr:CAP, main:NP, Case,

Number, Gender)

ERROR-1 -> attr:CAP main:NP

 Disagree(attr:CAP,main:NP,

Case, Number, Gender)

GRAMMCHECK MarkAll

attr:CAP.Gender=main:NP.Gender

 attr:CAP.Number=main:NP.Number

 SUGGEST(attr:CAP+main:NP)

Figure 3. Error and correct grammar rules.

If all comparison operators in the error rule are

true, it does not guarantee that this error will be

flagged as seen in Figure 2. For an error rule to

succeed, the phrase it covers must be larger than

the phrase for which the correct grammar rule

works.

We also have a second grammar containing

only error rules. It does not rely on correct

grammar phrases. Capitalization and incorrect

writing style errors enclose shorter phrases often

with exact lexical values. The CapPattern opera-

tor defines the correct capital/noncapital letter

usage in phrases with special meaning like or-

ganization, institution names, country names, job

titles, etc. (See Figure 4). If the capitalization

pattern is different for a phrase in the text, an

error rule is triggered.

ERROR-14 -> attr:N attr:G main:N

 attr:N.Case==genitive

 attr:N.Number==singular

 attr:G.AdjEnd==definite

 main:N.Number==plural

 Agree(attr:G, main:N, Case,

Number, Gender)

 CapPattern fff

LEX Amerika savienots valsts

Figure 4. Capitalization error rule.

3 The grammar checker architecture

The grammar checking system consists of sepa-

rate components each having its own task. Most

of them must be called in a certain order as each

component relies on data structures prepared by

the previous component.

The incoming text is split into separate token

objects and sentence boundaries are detected in a

tokenizer module. Subsequent components work

only with a sentence, not with all incoming text

at once. One of the following token types is as-

signed to every token object: word, abbreviation,

punctuation and numeric. In a simple error loca-

tion module simple formatting errors are located

using regular expressions. The analyzer module

adds morphological analysis to every token. The

parser component performs parsing using a given

rule set. The parse walker component extracts the

error trees from the parse result matrix and gen-

erates suggestions for error fixing. Results from

this component and from the simple error locator

are passed to the result preparation module

which merges results and returns to a calling ap-

plication.

Tokenizer

Result

preparation

Simple error

locator

Parse walker

Parser

Analyzer

Text for

checking

Grammar

checking

results

Figure 5. Grammar checker architecture.

4 The quality measuring methods

Test and development corpora are prepared to

measure the quality of grammar and to have an

assurance that the grammar checker works with

approximately the same quality on any text. The

test corpus is used only to measure the current

quality of the grammar checker and rule devel-

opers do not see its content; the development

corpus is also used in the process of tuning the

rules.

Both corpora contain a variety of texts. About

an equal amount of texts from every type are in-

cluded in both corpora. We assume that potential

users of the grammar checker will want to use it

for checking grammar in the following types of

texts: high school student essays, university stu-

dent papers, blogs (qualitative, but not edited),

e-mails (qualitative, but not edited), non-edited

marketing texts, non-edited written texts from

non-native Latvian speakers with good Latvian

language knowledge, news texts, draft of some

project tender (not edited), the works of new

(amateur) writers, texts from the specialists in

certain fields (teacher of physics, programmer,

doctor, lawyer, geographer, psychologist, …)

The information about errors and expected

corrections for each sentence is stored in a Gold-

277

CFG based grammar checker for Latvian

277

en Standard. The Golden Standard can be updat-

ed in two ways:

 A human annotator marked the sentences

with error types prior to the grammar

checking in the development corpus;

 After the grammar checking of both cor-

pora, results are compared with the Gold-

en Standard. Previously unseen cases are

given to the human evaluator for the eval-

uation. The evaluator checks whether the

error found by the grammar checker and

the suggested correction is correct or not.

Based on this information the Golden

Standard is updated.

Several measurement values – recall, preci-

sion, f-measure, confidence interval for the pre-

cision – are calculated for every error type. The

value of recall shows the possibility of finding all

existing errors in the text. The recall is a number

of correctly found errors (of type x) divided by

number of errors (of type x) in corpus.
R(x) = tp(x)/(tp(x)+fn(x))

The value of precision shows the possibility of

correctly finding errors in the text. The precision

is a number of correctly found errors (of type x)

divided by number of correctly and incorrectly

found errors (of type x) in corpus.
P(x) = tp(x)/(tp(x)+fp(x))

Improvement of grammar rules is done based

on the development corpus, the Golden Standard

and evaluation results; the recompiled grammar

is used for repeated evaluation and elaboration.

The test corpus contains 4814 sentences, the

development corpus - 9364 sentences. Recall is

given only for the development corpus, as the

test corpus was not previously marked.

5 Results

So far our grammar checking system works with

two grammars. The first one contains rules de-

scribing incorrect capitalization patterns in

phrases and style errors. It contains 260 rules.

The second is made of a set of 477 syntactically

correct constructions describing rules and 237

error rules. Errors are classified with 21 error

types. Precision and recall measures for eight

most common error types are seen in Table 1.

The recall and precision values might be influ-

enced by the fact that a sentence can contain sev-

eral errors. Human evaluator is marking sentence

with only a single error type. The grammar

checking system is also selecting a single error

per sentence – the one which covers the largest

phrase. The error types of the human evaluator

and the grammar checking system might not

match.

Error type Recall Precision

Dev.

corp

Dev.

corp.

Test.

corp.

Agreement between

words

0.247 0.543 0.426

Punctuation error at

the end of sentence

0.240 0.957 —

Words must be writ-

ten together

0.761 0.962 1.000

Comma error in in-

sertions

0.563 0.913 0.892

Comma error in par-

ticipial phrase

0.427 0.704 0.660

Wrong writing style 0.397 1.0 0.950

Comma error in

equal parts of sen-

tence

0.140 0.773 0.583

Comma error in sub

clause

0.329 0.773 0.758

All error types 0.290 0.833 0.710

Table 1. Grammar checker results for devel-

opment and test corpus.

The developed grammar checker is integrated

in Microsoft Word and OpenOffice Writer text

editors, it works as a background process and it

is fast enough for real everyday use. An evalua-

tion of user satisfaction showed that users find it

helpful. The evaluation also showed that users

prefer a grammar checker with a high precision

rather than a high recall.

Reference

Chomsky, N. 1956. Three models for the description

of language. Information Theory, IEEE Transac-

tions 2 (3): 113–124.

Mackevičiūtė, J. 2004. Lithuanian morphological

analysis system and grammar checker: Tilde‘s

technologies in practice. In Proc. HLT‘2004, Riga,

Latvia

Skadiņš R., Skadiņa I., Deksne D., Gornostay T.

2007. English/Russian-Latvian Machine Transla-

tion System. In Proc. HLT‘2007, Kaunas, Lithua-

nia

Younger, D. 1967. Recognition and parsing of con-

text-free languages in time n3. Information and

Control 10(2): 189–208.

278

Daiga Deksne and Raivis Skadiņš

ISSN 1736-6305 Vol. 11
http://hdl.handle.net/10062/16955

