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Preface

These proceedings contain the papers presented at the 9th International Workshop on Finite State
Methods and Natural Language Processing (FSMNLP 2011), which was held in Blois (France), July
12–15, 2011, jointly with the 16th International Conference on Implementation and Application of
Automata (CIAA 2011).

The workshop covers a wide range of topics from morphology to stringology to formal language theory.
This volume contains the 14 regular and 3 short papers that were presented at the workshop. In total,
30 papers (25 regular and 5 short papers) were submitted to a doubly blind refereeing process, in which
each paper was reviewed by 3 program committee members. The overall acceptance rate was 57%.
The program committee was composed of internationally leading researchers and practitioners selected
from academia, research labs, and companies.

The organizing committee would like to thank the program committee for their hard work, the referees
for their valuable feedback, the invited speakers for their innovative contributions, and the local
organizers for their tireless efforts. We are particularly grateful for significant sponsorship from the
Campus de la CCI de Loir-et-Cher, the Université François-Rabelais Tours, the Centre National de la
Recherche Scientifique, the Région Centre, the city of Blois, the Université de Rouen, the Université
Paris-Est Marne-la-Vallée, the Communauté d’Agglomération de Blois (Agglopolys), the Ministère de
l’Enseignement Supérieur et de la Recherche, Humanis, the Université d’Orléans and MAIF.
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Cvetana Krstev, Duško Vitas, Ivan Obradović and Miloš Utvić . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A Practical Algorithm for Intersecting Weighted Context-free Grammars with Finite-State Automata
Thomas Hanneforth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Open Source WFST Tools for LVCSR Cascade Development
Josef R. Novak, Nobuaki Minematsu and Keikichi Hirose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Intersection of Multitape Transducers vs. Cascade of Binary Transducers: The Example of Egyptian
Hieroglyphs Transliteration
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Intersection for weighted formalisms

Mark-Jan Nederhof
School of Computer Science

University of St Andrews
North Haugh, St Andrews

Fife, KY16 9SX
United Kingdom

Abstract

The paradigm of parsing as intersection has
been used throughout the literature to ob-
tain elegant and general solutions to numerous
problems involving grammars and automata.
The paradigm has its origins in (Bar-Hillel
et al., 1964), where a general construction
was used to prove closure of context-free lan-
guages under intersection with regular lan-
guages. It was pointed out by (Lang, 1994)
that such a construction isolates the parsing
problem from the recognition problem. The
latter can be solved by a reduction of the out-
come of intersection.

The paradigm has been extended in vari-
ous ways, by considering more powerful for-
malisms, such as tree adjoining grammars
(Vijay-Shanker and Weir, 1993), simple RCGs
(Bertsch and Nederhof, 2001), tree gram-
mars (Nederhof, 2009), and probabilistic ex-
tensions of grammatical formalisms (Neder-
hof and Satta, 2003). Different applications
have been identified, such as computation of
distances between languages (Nederhof and
Satta, 2008), and parameter estimation of
probabilistic models (Nederhof, 2005).

The lecture will focus on another applica-
tion, namely the computation of prefix prob-
abilities (Nederhof and Satta, 2011c) and in-
fix probabilities (Nederhof and Satta, 2011a)
and will address novel generalisations to lin-
ear context-free rewriting systems (Nederhof
and Satta, 2011b).
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Modularization of Regular Growth Automata

Christian Wurm
Fakultät für Linguistik und Literaturwissenschaften, Universität Bielefeld

CITEC Bielefeld
cwurm@uni-bielefeld.de

Abstract

Regular growth automata form a class of
infinite machines, in which all local com-
putations are performed by finite state au-
tomata. We present some results which are
relevant to application in practice; apart
from runtime, the most important one is
modularization, that is, abstraction over
subroutines. We use the new techniques
to prove some results on substitution.

1 Introduction

We recently introduced the concept of regu-
lar growth automata (RGA, we refer the
reader to (2) for background, examples and dis-
cussion of related work; for some related work
see (2),(2)). Whereas previously we focused on
mathematical results and provided some formal
examples, we will here focus on adapting the
concept to make it useful for linguistic applica-
tion. This will be accomplished via modulariza-
tion of automata; we study how large automata
can be reasonably split up into smaller and sim-
pler ones.

Organization is as follows: in the next section,
we present definitions and give an overview of
the most important formal features of regular
growth automata. The third section is about
treating regular growth automata in a modular
fashion, while preserving determinism, which is
a very favorable property of RGA. In our view,
this is the key to making the concept applica-
ble on a broader scale. As we argue in the last
section, this might also provide new insights in

linguistic theory, as it gives us a new perspective
on syntactic structures.

2 Formal Concepts

2.1 Definitions

In a sense, regular growth automata are infinite
extensions of finite state automata. In FSA,
states are atomic symbols like letters;1 in reg-
ular growth automata, the state set Q ⊆ Ω∗ is
a stringset formed out of a finite alphabet. The
most important property of infinite state ma-
chines in general is the computability of state
transitions. We will require that transition rela-
tions on Q be regular.2 The subsequent defini-
tions follow (2).3

Definition 1 Put Σ⊥ := Σ ∪ {⊥}, for ⊥/∈ Σ.
The convolution of a tuple of strings 〈~x1, ~x2〉 ∈
(Σ∗)2, written as ⊗〈~x1, ~x2〉 of length max({|~xi| :
i ∈ {1, 2}}) is defined as follows: the kth com-
ponent of ⊗〈~x1, ~x2〉 is 〈σ1, σ2〉, where σi is the
k-th letter of ~xi provided that k ≤ |~xi|, and ⊥
otherwise.
The convolution of a relation R ⊆ (Σ∗)2,
written ⊗R, is the the set {⊗〈~x1, ~x2〉: 〈~x1, ~x2〉 ∈
R}.
Definition 2 A relation R ∈ (Σ∗)2 is called
(synchronous)4 regular, if there is a finite state
automaton over (Σ⊥)2 recognizing ⊗R.

1For this reason, they have also been called the inter-
nal alphabet in early work on the topic.

2For mathematical background see (2).
3We confine ourselves to binary relations, but the con-

cept generalizes without complication.
4There is some confusing usage, as some authors use
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Regular relations as defined here form a
proper subset of the relations defined by finite
state transducers in general. We use them for
three reasons: firstly, they are closed under
Boolean operations (contrary to transducer de-
fined relations), secondly, they allow at most a
constant growth of strings, a property whose im-
portance will become clear later on, and thirdly,
we have not met any case where the additional
power provided by transducer relations would
have been of any use. We call the class of trans-
ducers which computes regular relations syn-
chronous transducers. In the sequel we will
restrict ourselves to this subclass, so we will omit
the adjective, when there is no danger of confu-
sion.

Definition 3 We define a regular
growth automaton (RGA) as a tuple
〈ε,Q, F, δ,Σ, OpΣ,Ω〉, where Ω is a finite set of
symbols, the state alphabet, Q ⊆ Ω∗ is the state
set, ε ∈ Q is the initial state, F ⊆ Ω∗ is the set
of accepting states, δ ⊆ Q×Σ×Q the transition
relation, Σ a finite input alphabet; OpΣ is a set
of synchronous transducers, with one opx for
each x ∈ Σ, where Ω is the input and output
alphabet for all opx ∈ OpΣ. In the sequel, we
identify the opx ∈ OpΣ with the relations they
induce on Ω∗. In addition, the following hold:

1. F is a regular set;

2. for every transducer opσ, ((qi, σ), qj) ∈ δ
exactly if qj ∈ opσ(qi);

3. Q is recursively defined as the smallest set
such that (i) ε is in Q, (ii) if α is in Q,
then for all σ ∈ Σ, opσ(α) is also in Q.

We call the transducers in OpΣ letter opera-
tors.

A regular growth automaton is deterministic
exactly if the letter operators represent (par-
tial) functions on Ω∗, the RGA is total ex-
actly if the letter operators represent total func-
tions/relations. We can easily totalize RGAs
by totalizing the letter operators, sending all

the term regular for “finite state computable”, while oth-
ers use the term in our sense. We will usually simply say
regular, and mean it in the sense defined here.

previously undefined inputs to a new absorb-
ing state.5 We strongly conjecture that de-
terministic and non-deterministic automata are
non-equivalent, but still lack a conclusive proof
(we will see some evidence later on).6 We will
write RGA or regular growth automaton if we
make statements valid for both cases; we will
write DGA for deterministic, NGA for non-
deterministic automata. We will focus on the
deterministic case, which has many favourable
properties, as we will see.

Note that there is some redundancy in our
presentation, for the letter operators serve to
specify the transition function and state set. We
keep this redundancy for ease of presentation: if
we fix the letter operators, Q and δ are fixed,
as well as Σ and Ω. The only additional infor-
mation we need is the set of accepting states F .
When we construct automata, we will thus con-
struct letter operators and an accepting state
set, nothing more. We write δ̂ for the transi-
tion function generalized from letters to string
in the obvious fashion. In case we are handling
with several automata, we mark automata and
their components with a subscript as in δRGA
to ensure unique reference. Then we have the
following:

Definition 4 A regular growth automa-
ton RGA recognizes a language L, if
L = {~x : δ̂RGA(ε, ~x) ∈ FRGA}.

We write L(RA) for the language a given au-
tomaton recognizes. There are two ways to con-
ceive of a regular growth automaton: the first
one is to think of it as an automaton with an
infinite state set which is already specified; al-
ternatively we can think of it as a machine which
constructs its own state set only when given an
input.

Definition 5 Two strings ~x, ~y are Nerode
equivalent in a language L, in symbols ~x ∼L ~y,
if for all ~z, ~x~z ∈ L iff ~y~z ∈ L.

5We call an absorbing a state which is not accepting
and from which all transitions point at the state itself.

6The classical determinization algorithm via power-
set construction does not preserve the regularity of the
automaton.
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From a language theoretic perspective note
that, as an ordinary finite state machine, it
computes Nerode-equivalences. From a practi-
cal perspective, the most remarkable property
is that the automaton constructs its state set in
runtime; assuming that its input has some up-
per bound, it will be nothing but a finite state
machine. But it is a finite state machine which
is constructed on the fly, that is, given an in-
put, the necessary states and only the necessary
states are generated.

In this paper, we will add another property to
the one of being dynamic (in the above sense),
namely the one of being modular : we will show
that in regular growth automata, we can ab-
stract over certain subsystems of language, fac-
torizing them into modules. This remedies a
notorious weakness of classical finite state ap-
proaches: the lack of abstraction ((2)).

2.2 Recognizing Power

We call the class of languages recognized by
some DGA (NGA) LDGA (LNGA). As we have
shown previously, LDGA forms a Boolean Al-
gebra. It contains languages which are not
context-free, not mildly context sensitive and
not semilinear, however there is strong evidence
that it does not contain all context-free lan-
guages (see below, and contrary to LNGA, for
there is an algorithm which converts any CFG
into a NGA). LDGA gives thus a true cut across
the Chomsky hierarchy, which we judge to be
possibly relevant for formal linguistics.

2.3 Runtime

Definition 6 A finite state transducer T is
functional, if for any given input T computes
at most one output. It is deterministic, if
δT (Q× Ω) is a (partial) function.

As is well-known, the latter implies the for-
mer, but the former does not imply the latter;
for DGA, we do require our transducers to be
functional, but not to be deterministic.

Lemma 7 A synchronous functional trans-
ducer T computes the output for a given input
of length n in O(n) steps.

Proof. This is obvious, if the transducer is
deterministic.7 If a synchronous transducer is
non-deterministic, then there is a constant up-
per bound to non-determinism: the states qi ∈
δ̂(q0, ~w,~v) are less than k for all ~w,~v ∈ Σ∗, that
is, |δ̂(q0, ~w,~v)| ≤ k. This is obviously due to the
fact that T has finitely many states. We show
that also the set of pairs of states and output
strings 〈~v, qi〉 ∈ δ̂(q0, ~w) is constantly bounded
for any ~w, that is, for all ~w, |δ̂(q0, ~w)| ≤ k.
This is because the set of states we can go to
is bounded, and for a given input, if we go into
one state, we need to write at most one output.
For if we have two output words for a prefix
by going to a single state, then we can discard
both: if it were possible to reach an accepting
state from the current one, then the transducer
would no longer be functional, contrary to our
assumptions. Therefore, for each letter we read,
we have to compute at most k transitions and
write an output on at most k possible output
words. The output word for an input of length
n is thus computed in ≤ kn + l steps (l is the
length of the constantly bounded suffix we might
add). a
Theorem 8 For any string ~w, |~w| = n, a given
DGA accepts or rejects ~x in O(n2) steps.

Proof. As our transducers are synchronous
and functional, the length of the states8 grows
(at most) proportionally to the size of the input
string. Put l := max({n : n = |opσ(~x)| − |~x| :
σ ∈ Σ}). For lemma 7, the transducers compute
the transitions for states of length m in ≤ km
steps; as the DGA is deterministic, the letter
operators are functional. To calculate the state
~x, for ~x = δ̂DGA(ε, ~w) and |~w| = n, we thus
have to perform at most k × l + k × 2l + ... +
k × nl =

∑n
i=1 k(i× l) steps. Checking whether

the state is accepting takes at most l × n steps;
so accepting or rejecting takes O(

∑n
i=1 kil+ ln)

steps. This is proportional to n2. a
Note that this is strong evidence for the con-

jecture that LDGA does not contain the context
free languages, for it is widely believed that the
lowest possible bound for parsing CFLs is higher

7A proof of this can be found in (2).
8Recall that RGA-states are strings!
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than quadratic (see (2)).
For non-deterministic automata, things are

much worse: we have to assume that in the
worst case runtime is exponential in terms of
input strings: for in general, a word of length n
might lead us to kn different states, and so we
might have to perform exponentially many com-
putations. This is a very good reason to take
care that a DGA remains deterministic under
various transformations.

3 Automaton Construction and
Regular Growth Subroutines

3.1 Automaton Construction

For application, the most urgent question is how
to construct a regular growth automaton given
a language. We have no way of defining directly
the state set: we can only define it indirectly via
the letter operators, and so we have to be aware
of the consequences in the infinite of the interac-
tion of our finite state transducers. Construct-
ing a large set of transducers which interact in
the desired way can be a tremendous task.

In this section, we propose a procedure to fa-
cilitate the construction of regular growth au-
tomata: we will factorize languages into cer-
tain sublanguages, and adress these by interact-
ing subroutines. For example, in natural lan-
guage, this means that for a given category, say,
a NP[nom], we construct a subroutine, which
covers all its possible contents regardless of the
contexts in which it occurs; and we construct a
matrix automaton in which it is embedded and
which provides its possible contexts, as main
clause, complement clause etc. This is not a
trivial task, given that we do not have an a pri-
ori notion of constituency in our approach! We
thus have two problems: care for the distribu-
tion of an NP[nom], and care for its internal
structure. However, each of these seem to be
much more feasible problems than both at once.

We will show how to construct transducers
out of subroutines, such that the letter operators
compute the union of all subroutines they occur
in, but where it depends on the context (i.e., the
current state) which subroutine is called. We
will do this first for simple and then for recur-

sive substitution. If we want to preserve deter-
minism when merging subroutines in the general
case, there is however an important condition:
there must not be a locally unbounded ambi-
guity on which subroutine is called at a certain
point.

3.2 Regular Growth Subroutines:
Equivalence

Definition 9 A (deterministic) regular
growth subroutine is a (D)GA,

1. with a regular set of initial states I ⊆ Ω∗

instead of ε, and

2. for all opσ ∈ OpΣ, all qi ∈ I and ~w ∈ Ω∗,
opσ(qi ~w) = qi~v for some ~v ∈ Ω∗; that is,
operators only write and change suffixes to
initial states.

A (deterministic) regular growth subroutine
(RGS/DGS) is thus a generalization of a DGA;
a DGA is a DGS with the empty string as initial
state. A note on the second condition: if sub-
routines only write suffixes to their initial states,
this facilitates their global interaction when we
embed them into larger automata. We use pre-
fixes in I to encode global states, and the suffix
to encode the state of the subroutine. Impor-
tantly, we do not add any additional recognizing
power to our automata by generalizing them to
subroutines in the above way:

Theorem 10 For any language L, L =
L(DGS) for some DGS exactly if there is a
DGA such that L = L(DGA).

Note that for the nondeterministic case, this
result would be trivial, but it is not for the de-
terministic one. The idea of the proof is quite
simple: we use a partition of I to simulate it on
a finite tuple. As the proof itself is quite lengthy,
we present it in the appendix. The concept of
subroutines is very useful from the following per-
spective: if we merge several DGA into into a
single automaton, the resulting automaton will
recognize simply the union of their languages.
If we merge several DGS with a DGA, this will
not be necessarily the case: the initial state sets
provide us with a tool to control when a DGS
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is called. We can thus convert DGA into DGS,
to be able to merge them in a controlled fash-
ion; the equivalence is important for it means
we can conceive and check DGA and DGS inde-
pendently and equivalently. Recall the the defi-
nition of ∼L, the Nerode-equivalence in L:

Definition 11 We say a subroutine S is em-
bedded within a RGA, if

1. IS ∩QRGA 6= ∅ and

2. FS ∩QRGA 6= ∅

3. if δ̂RGA(q0, ~u) ∈ IS, then for all ~v, ~w ∈
L(S), ~u~v ∼L(RGA) ~u~w,

that is, S must be reachable, it must lead back
into the main automaton, and for all prefixes
which call the subroutine, the stringset the sub-
routine computes forms an equivalence class
with respect to the language of the matrix ma-
chine.

Note that with this definition, we do not say
anything on the internal structure of the au-
tomata or the operators, nor of the indepen-
dent existence of a subroutine in the above sense.
Embedded subroutines can be implicit, that is,
they are computed, but at no point written out
as such.

Definition 12 For a subroutine S embedded
within an RGA, if q ∈ IS, we say that q calls
S. If there is a q ∈ Q such that opa(q) ⊆ IS, we
say that a calls S. A characteristic prefix
~a of a subroutine S, written as ~a ∈ cp(S), is a
word for which holds: for all q ∈ Q, if δ̂(q,~a) is
defined,9 then δ̂(q,~a) calls S.

A subroutine S is called characteristic if for
all q ∈ I, we have q = δ̂(qj ,~a) for some ~a ∈
cp(S), where there is a constant k such that for
all ~a ∈ cp(S), |~a| ≤ k. A (sub)language L
is characteristic if L = {~x~y : ~x ∈ cp(S) and
~y ∈ L(S)}; S (and L) is strictly characteristic
if in addition a word in L(S) is not the prefix of
another word in L(S).

9And not an absorbing state, we should add, but we
leave the issue of total versus partial automata aside; it
does not pose any serious problems.

An embedded subroutine is thus characteristic
if we always know from a prefix when it is called;
it is strictly characteristic if in addition we know
when it ends.

Definition 13 Two subroutines S1 and S2 (two
languages L1 and L2) are called distinct, if they
are characteristic and have disjoint sets of char-
acteristic prefixes; they are strictly distinct, if
in addition they are strictly characteristic.

It is crucial to see that the distinction of sub-
routines is orthogonal to the distinction between
letter operators: if subroutines embedded in a
DGA share an alphabet, we have different sub-
routines within one letter operator. We write
opSiσ for the function of a subroutine Si com-
puted by one operator. opSiσ (~x) thus means that
opσ computes its function in Si on a substring ~x.

ǫstart
S1 S2

S3

LS1
,LS1

LS2
,LS2

LS3
,LS3

Ω,Ω Fig.1: Blueprint of a letter opera-tor omputing three subroutines; itomputes the identity, until somemarker in the input ativates asubroutine. Note that these mark-ers are not harateristi pre�xes;rather, the harateristi pre�x-es put the marker into the state-string.
3.3 Example I: Simple Substitution

As an example of how to model constituent-like
dependencies, we show how to use subroutines
for simple letter substitution. Note that insert-
ing subroutines is quite trivial; the problem is to
use subroutines and preserve determinism of the
automaton. The treatment will not be very de-
tailed; in particular, we will not look “inside”
the transducers and spell out the operations.
This is due to the fact that firstly, we do not re-
ally need to - which is one of the greatest merits
of our approach; and secondly, because trans-
ducers quickly result to be large and hard to
read. We encourage the skeptical reader to check
that all conditions we state below can indeed be
checked by synchronous finite state transducers.
In the sequel, we will make an abuse of ontology
for the sake of readibility and construct regu-
lar expressions over languages. Recall that dis-
tinct languages have decompositions into a set
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of bounded prefixes, which call a unique subrou-
tine, and the language of the subroutine itself.

Proposition 14 Let Σ be an alphabet, and let
{Lσ : σ ∈ Σ} be a set of pairwise distinct lan-
guages, such that Lσ = cp(DGSσ) · L(DGSσ)
for all σ ∈ Σ. Now let i : Σ → {Lσ : σ ∈ Σ}
be a one-to-one mapping, where i(σ) = Lσ. For
every LM ⊆ Σ∗, if there is a DGAM such that
L(DGAM ) = LM , then there is a DGAi(M) such
that L(DGAi(M)) = i[LM ].

Proof. First we change the state alphabet
ΩM of DGAM to make it disjoint from all other
Ωx, x 6= M . The new operators in Op

DGAi(M)

Σ

are constructed as follows: first we take care of
the characteristic prefixes; for simplicity we as-
sume they are single letters. If they are not, they
are constantly bounded, and so we have some fi-
nite amount of non-determinism; this can always
be determinized with a tuple construction.10 To
make the treatment more compact, we leave this
construction to the reader.

The characteristic prefixes are the letters
which compute the interaction of the routines;
we add a letter Sσ to Ωi(M) for each σ ∈ Σ,
where for all α 6= i(M), Sσ /∈ Ωα, and define the
operators as follows:

1. For all a ∈ cp(Sσ) : σ ∈ Σ, opi(M)
a is defined

on all and only on states in (ε|(Ω∗M ((Fσ) :
σ ∈ Σ)∗Sx((Fσ) : σ ∈ Σ)),

2. If a ∈ cp(Sσ), then op
i(M)
a (ε) =

(opMσ (ε))Sσ(opSσa (ε)),

3. If a ∈ cp(Sσ), then op
i(M)
a (~c~xSτ~z) =

opMσ (~c)~x~zSσopSσa (ε), provided it is defined,
and where ~c is the longest prefix of the state
in ΩM .

That is, operators for characteristic prefixes
(i) only operate on states which consist of a pre-
fix pM ∈ Ω∗M , followed by a (possibly empty)
sequence of accepting states Fσ of the subrou-
tines. (ii) They operate on pM as the letters

10Alternatively, we can conceive of characteristic pre-
fix strings as chunks: as regular relations are closed un-
der composition, we can only let the composition com-
pute the desired function; technically, this amounts to
the same, namely a tuple construction.

to for which they are substituted, (iii) they put
or change and postpone a distinguished marker
Sσ at the end of the string, which marks the
beginning of the operating scope of a substitu-
tion language, and (iv) then start computing the
subroutine.

All other letter operators simply compute
their previous function as subroutines, where
each subroutine Sσ computes Lσ, and where the
initial state set for Sσ is Ω∗Sσ. Before they read
the marker, they simply compute the identity,
so:

(1) op
i(M)
a (~xSσ~y) = ~xSσopSσa (~y),

Note that our characteristic prefixes make
sure there is only one marker Sσ in any state-
string. The set of final states Fi(L) is now sim-
ply the set of all sequences of only accepting
states for all languages/subroutines, with possi-
bly a marker Sτ :

(2) Fi(L) := FM · ((Fτ ) : τ ∈ T )∗Sx((Fτ ) :
τ ∈ T ). a

Note that in this case, we need the condition of
distinctness of sublanguages, to make sure we
know when to call a subroutine. When we treat
recursive substitution, we will see that we need
strict distinctness, to also know when we can
stop a subroutine.

3.4 Example II: Recursive Substitution

We are surely not only interested in simple sub-
stitution, but also recursive substitution, that
is, we want to be able to call new subroutines
during the execution of subroutines. As an ex-
ample, we will prove the following:

Proposition 15 Let P ⊆ Σ; let (Lρ) : ρ ∈ P
be a set of strictly distinct languages, such that
Lρ = cp(DGSρ) · L(DGSρ) and Lρ ⊆ Σ∗ for all
ρ ∈ P . Define i : P → (Lρ) : ρ ∈ P as a one-to-
one mapping, where i(ρ) = Lρ. Let LM ⊆ Σ∗ be
a language such that LM = L(DGAM ). Then
there is a DGAP which recognizes LP , which is
defined as follows:

1. If ~x ∈ LM , then ~x ∈ LP .

2. If ~xρ~y ∈ LP , then ~xi(ρ)~y ∈ LP .
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Proof. We construct DGAP . First we
change the state alphabet ΩM such that is dis-
junct from all other Ωx, x 6= M . The new opera-
tors OpDGAPΣ are constructed as follows: first we
take care of the characteristic prefixes; for sim-
plicity we assume again they are single letters,
and use letters Sρ as before.11

1. If a ∈ cp(Sρ), then opPa (~x) =
opMρ (~x)SρopSρa (ε), if ~x ∈ Ω∗M .

2. If a ∈ cp(Sρ), then opPa (~xSσ~y~z) =
~xSσ(opSσρ (~y))~zSρ(opSρa (ε)),
where ~z ∈ (ε|(Sρ : ρ ∈ P )Ω∗P ), and ~y is
the rightmost substring matching this con-
ditions which does not contain any symbol
Sρ and is not in any Fρ′ .

Though notation becomes a bit opaque at
this point, the concept is quite simple: we sim-
ply make sure that in our DGAP states every
subroutine has a clearly distinguished operating
scope, where the most deeply embedded subrou-
tine is written as the rightmost one in the state
string. We thus translate a structure of the form
[1[2[3]]] into a form [1][2][3]. This is works be-
cause sublanguages are strictly distinct, so we
know exactly when a subroutine is completed,
and we can ignore all substrings in some Fρ. The
other letters operate as follows:

1. opPτ (~xSσ~y~z) = ~xSσ(opSστ (~y))~z, where ~z ∈
(ε|(Sρ : ρ ∈ P )Ω∗P ), and ~y is the right-
most substring which satisfies this condi-
tions which does not contain a Sρ and is
not in Fρ′ ;

2. opPτ (~x~y) = (opMτ (~x))~y), where ~x ∈ Ω∗M and
~y ∈ ((SρFρ) : ρ ∈ P )∗

The set of accepting states is

(3) FP := FM · ((SρFρ) : ρ ∈ P )∗. a
Note that, while we do not require that any of
the languages involved be context-free, this sub-
stitution is in a precise sense “context-free”,12

11There is a Sρ for each ρ ∈ P and Sρ /∈ Ωα, for all
α 6= P .

12More p precisely: deterministic context-free.

as the distribution of the substituted language
equals the distribution of a single letter. How-
ever, this is of course only one particular case of
substitution; recall that the sets of initial states
and final states of a subroutine are regular sets;
so we can take any substitution point which can
be defined by a regular set of states. We see that
we can decouple the complexity of the substitu-
tion/upcalling of subroutines from the complex-
ity of the routines itself. We thus can reasonably
encode a difference between local complexity (in
the sense of subroutine) and a global complexity
(in the sense of substitution conditions), and we
can restrict them independently.

4 Outlook: Regular Growth
Automata and Linguistic Theory

In the last section we saw how the factoriza-
tion was useful to find a (quite) simple solution
to complex problems of substitution. The main
goal was to show that factorization of automata
into subautomata makes them easier to handle
in application. We want to underline that the
reason we think modular treatment is much eas-
ier for linguistic application is not only the struc-
ture of regular growth automata, but in partic-
ular the structure of natural languages. This
is partly due to the fact that we often13 find
some kind of constituent structure in natural
languages; but there is more to that: we often
find very complex local structures, whose scope
however is often quite limited. If we look for
example at systems of clitic pronouns, we find a
very unpredictable behaviour, and a large num-
ber of complex rules which possibly even have to
take into account segmental and suprasegmental
phonology. If we look at constituents which have
a (possibly) very complex internal structure, as
clausal complements, we find that their distri-
bution is highly regular and follows very simple
rules.14

This observation is by no means new: for ex-
ample, the well-known work of John Hawkins
is mostly concerned with these and similar ob-

13Some people say: always.
14This asymmetry gets even more striking if we also

consider morphology as a part of syntactic structure.
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servations. We will not go into detail here, but
we think that principles as early immediate con-
stituents, minimize domains etc. (see (2),(2))
can be roughly restated, with a slightly shifted
perspective, in the following way:

(4) The more complex a constituent is, the
more regular15 is its distribution.

We think that this important observation has
had unduly little impact on linguistic theory
proper. The main reason for this seems to us
that usually we posit fully specified constituent
structures (of some kind or other) for all utter-
ances: and once we make this step, we are un-
able to partially redeem it. One could see it as
a disadvantage to regular growth automata that
they cannot be mapped onto such a constituent
structure, contrary to, for example, pushdown
automata. However, in this context there is
an equal advantage: for a pushdown automa-
ton, the notion of a subroutine does not make
much sense, for all configurations are equally
well-suited and, in fact, can be easily treated
as subroutines. For our automata this is not the
case: because the notion of a constituent is so
problematic, the notion of an embedded subrou-
tine is truly meaningful. It allows to capture the
asymmetry of local and global structure. This is
the reason we think our approach is well suited
for natural language descriptions not only from
a practical, but also a theoretical point of view:
though we give up the notion of a fully spec-
ified constituent structure, we can much more
easily treat the rich local structure of natural
languages with compact local subroutines, and
its much more austere global structure by means
of very simple interactions of routines. This in
turn might facilitate a more realistic view on the
organization of linguistic knowledge.
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5 Appendix: Proof of Theorem 10

Proof. One direction is immediate. To see the
if-direction, we show how to convert a DGS into a
DGA. By definition, for the prefixes of states which
are in I, the output equals the input, and as we have
one output and the transducer is functional, there is
a single state we go to (this is the inverse reasoning
from lemma 7).16 Assume without loss of generality
that our letter operators are total. We write

(5) ~x ∼opσ ~y if δ̂opσ (q0, ~x) = (~x′, qi) and
δ̂opσ (q0, ~y) = (~y′, qi) for some ~x′, ~y′.

For the above reasons, ∼opσ is an equivalence re-
lation. We form partitions I with the equivalence
classes induced by ∼opσ , for each opσ ∈ OpΣ: put
Popσ := I/ ∼opσ . As our operators are finite,
|I/ ∼opσ | ≤ k for each σ ∈ Σ. Next, by intersecting
the elements across the different partitions, we con-
struct a more fine-grained partition, which forms a
partition (though not maximal) with respect to every
∼opσ : opσ ∈ OpΣ:

(6) J :=
⋂
opσ∈OpΣ Popσ .17

J is a partition of I, and for each J ∈ J and for
each opσ ∈ OpΣ there is a unique state q such that
δ̂opσ (q0,~j) = (~j′, q) for some ~j′, and all ~j ∈ J . Cru-
cially, while its elements might be of infinite cardi-
nalitiy, J itself is of finite cardinality. Put l = |J |.
The initial state of our DGA is an l-tupel, where
each πi : i ≤ l is assigned a J ∈ J via a bijection
φ(J )→M ,where M ⊂ N and for all m ∈M , m ≤ l.
We construct the new letter operators opDGAσ , which
operate on (Ωk)∗, as follows:

(7) opDGAσ (〈~x1, ~x2, ..., ~xl〉 =
〈opqiσ (~x1), opqjσ (~x2), ..., opqmσ (~xk)〉,

where opqxσ is opσ with its initial state changed to
qx; and for every πi : i ≤ l, we make sure that if
φ−1(i) = J , then for all ~j ∈ J , δ̂opσ (q0,~i) = 〈~w, qx〉
for some ~w.

We thus simulate the possibly infinite set I with a
finite set of tuples, where each projection represents a
set of strings for which all opσ go into a unique state.
The operations on projections are still synchronous
regular, and as the DGS was deterministic, the tuple
size of the DGA remains constant.

16Provided the transducer is not redundant; if it is,
then the states can be merged.

17Note that this is a somewhat sloppy notation, as we
do not intersect the partitions, but their elements.
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Now to FDGA. Regular languages are closed under
projection and cylindrification; so we take as accept-
ing states the set of all l-cylindrifications of FDGS ,
that is, the set of all l-tuples of which one projec-
tion is in FDGS . Call this set FDGS′ . Finally, we
need to take care of the case where a prefix in I
has some influence on membership in F . Here we
use the fact that regular languages are closed un-
der prefixation: for two languages, L1, L2, we put
L1\L2 := {~v : ∃~w ∈ L1 : ~w~v ∈ L2}. It is well-known
that if L1 and L2 are regular, then so is L1\L2, the
set of strings which, given a prefix from L1, result in a
word in L2. We thus have to put FDGA := I\FDGA′ .
The resulting DGA does the job as required. a
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Abstract

Finite-state methods are applied to the
Russell-Wiener-Kamp notion of time (based
on events) and developed into an account of
interval relations and semi-intervals. Strings
are formed and collected in regular languages
and regular relations that are argued to em-
body temporal relations in their various un-
derspecified guises. The regular relations in-
clude retractions that reduce computations by
projecting strings down to an appropriate level
of granularity, and notions of partiality within
and across such levels.

1 Introduction

It is a truism that to reason about change, some no-
tion of time is useful to impose order on events.
Less clear perhaps is whether or not time is shaped
completely by the events it relates. An event-based
notion of time going back to Russell and Wiener
(Kamp and Reyle, 1993; Lück, 2006) is analyzed in
the present work using finite-state methods that ex-
tend to interval relations, semi-intervals and granu-
larity; e.g. (Allen, 1983; Freksa, 1992; Mani, 2007).
Rather than take for granted some absolute (inde-
pendent) notion of time (such as the real line), the
basic approach is to form strings (from events and
generalizations of events described below) and col-
lect them in regular languages and regular relations.
The claim is that this leads to a more satisfying ac-
count of the partiality of temporal information con-
veyed (for instance) in everyday speech. In particu-
lar, there is a sense (to be explained below) in which
the strings, languages and relations of the approach

embody a wide range of temporal relations that vary
in degrees of underspecification. Those degrees de-
pend on the events under consideration: the more
events to relate, the finer grained time becomes.

Two temporal relations between events, called
overlap © and (complete) precedence ≺, are em-
ployed in the Russell-Wiener-Kamp construction of
time from events. To picture these relations between
two events e and e′, let us form the three “snapshots”

e , e′ and e, e′

and arrange them much like a cartoon/film strip
(with time progressing from left to right) to produce

e e′ as a record of e precedes e′ (i.e., e ≺ e′)
e′ e as a record of e′ precedes e (i.e., e′ ≺ e)

and finally

e, e′ as a record of e overlaps e′ (i.e., e© e′) .

Formally, these strips are strings over the alphabet
Pow({e, e′}) of subsets of {e, e′}, with the curly
braces in {e}, {e′} and {e, e′} redrawn as boxes to
reinforce the construal of the subsets as snapshots.
As explained in section 2 below, the three strings
correspond exactly to the three (Russell-Wiener-
Kamp) event structures over the events e and e′,
with a box in each string identifiable as a (Russell-
Wiener-Kamp) temporal moment.1

1Briefly, © is just ≺-incomparability, and RWK-moments
maximal antichains relative to ≺ (Lück, 2006). Details below,
where we follow Kamp and Reyle (1993) in foregrounding©.
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RWK Allen Pow({e, e′})∗
e© e′ e = e′ e, e′

e s e′ e, e′ e′

e si e′ e, e′ e

e f e′ e′ e, e′

e fi e′ e e, e′

e d e′ e′ e, e′ e′

e di e′ e e, e′ e

e o e′ e e, e′ e′

e oi e′ e′ e, e′ e

e ≺ e′ e m e′ e e′

e < e′ e e′

e′ ≺ e e mi e′ e′ e
e > e′ e′ e

Table 1: From Russell-Wiener-Kamp to Allen

But surely there are more relations than prece-
dence ≺ and overlap© to consider — not to men-
tion strings in Pow({e, e′})∗ other than e e′ ,

e′ e and e, e′ . Inasmuch as event structures de-
scribe intervals, it is natural to ask about the thir-
teen different interval relations in Allen (1983). Ev-
idently, there are nine ways for e and e′ to overlap,
and two ways (each) for e to precede e′ (and e′ to
precede e). See Table 1, where strings are associated
with Allen relations according to certain construc-
tions presented below. Briefly, under these construc-
tions, granularity can be refined by expanding the set
of events related by ≺ and©. In particular, it turns
out that all thirteen Allen relations between e and
e′ fall out of the Russell-Wiener-Kamp construction
(RWK) applied to an expansion of {e, e′} by mark-
ers pre(e), post(e), pre(e′), post(e′), of the past and
future of e and e′, respectively. That is, RWK yields
the Allen relations provided that, in McTaggart’s ter-
minology (McTaggart, 2008), we first enrich the B-
series relations ≺ and © with A-series ingredients
for tense. In the case of the Allen relation e s e′, for
instance, we get the string

pre(e), pre(e′) e, e′ post(e), e′ post(e), post(e′)

which a certain string function π{e,e′} maps to the

Table 1 Pow({e, e′})∗-entry

e, e′ e′

for e s e′. The rest of the Allen relations can be
obtained similarly. The projection π{e,e} is one in
a family of regular relations πX that (as will be
shown below) correspond to RWK under the afore-
mentioned A-series enhancement. The subscript X
indexing that family specifies the ingredients from
which strings are formed, and (as a consequence)
the granularity of temporal relations the strings em-
body. By varying that index X , we can overcome
the limitations in any choice of finitely many events
on which to construct event structures (i.e., © and
≺). What’s more, for any set E (finite or infinite),
we can represent every event structure over E in the
inverse limit of the system of maps πX , for X rang-
ing over finite subsets of E.

More precisely, we start in section 2 with a care-
ful presentation of event structures, extracting event
structures E(s) from strings s ∈ Pow(X)∗ (over
the alphabet of subsets of X) with A-series exten-
sions s± to capture the Allen relations in E(s±). A
function on strings, block compression bc, is defined
that gives canonical string representations bc(s) of
E(s±). In section 3, we transform bc into maps πX ,
for different finite sets X of events, forming regular
languages representing families of finite event struc-
tures, which are subsequently generalized and con-
strained.

Throughout what follows, strings are formed from
subsets of some finite set X . An alternative consid-
ered in Karttunen (2005) is to flatten these subsets to
strings, introducing brackets [ and ] to enclose tem-
poral propositions understood to hold at the same
period so that, for example, the string e, e′ e′ of
length 2 becomes the string [ e e′ ] [ e′ ] of length 7.
It is easy to devise a finite-state transducer translat-
ing Pow(X)∗ to (X ∪ {[, ]})∗ in this way. A greater
challenge is presented by brackets [a and ]a deco-
rated with granularities a (such as days or months or
years) used in the analysis of calendar expressions
in Niemi and Koskenniemi (2009). The approach
below of structuring the symbols of the alphabet as
sets simplifies many of the finite-state constructions
of present interest.2 An important example is su-

2As shown in section 3 below, the theme in Niemi and
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perposition & (Fernando, 2004), a binary operation
on strings over the alphabet Pow(X) that forms the
componentwise union of strings of the same length

α1 · · ·αn & α′1 · · ·α′n def= (α1 ∪ α′1) · · · (αn ∪ α′n)

(for αi, α′i ⊆ X). To illustrate,

e, e′ = e & e′

e e′ = e & e′

e′ e = e′ & e .

A natural notion of containment between strings s
and s′ can be derived from & as follows. We say s
subsumes s′ and write s � s′ if the strings have the
same length, and the first is no different from its su-
perposition with the second

s � s′ def⇐⇒ s and s′ have the same length,

and s = s & s′ .

That is, � is componentwise inclusion ⊇ between
strings of the same length,

α1 · · ·αn � α′1 · · ·α′n ⇐⇒ αi ⊇ α′i for

1 ≤ i ≤ n .
To compare strings of different lengths, we unpad,
stripping off initial and final empty boxes �

unpad(s) def=


unpad(s′) if s = �s′ or

else if s = s′�
s otherwise

so that, for example,

unpad(
n
e e, e′

m
) = e e, e′

for all integers n,m ≥ 0. Now, using the equiva-
lence ≈ between strings that unpad maps alike

s ≈ s′ def⇐⇒ unpad(s) = unpad(s′) ,

we generalize subsumption � to containment w,
taking s w s′ (read: s contains s′) to mean that s
subsumes some string unpad-equivalent to s′

s w s′ def⇐⇒ (∃s′′ ≈ s′) s � s′′ .

Koskenniemi (2009) of composing finite-state transducers can
be developed with symbols structured as sets, and regular rela-
tions as retractions.

(A1) e© e (i.e. © is reflexive)
(A2) e© e′ =⇒ e′© e
(A3) e ≺ e′ =⇒ not e© e′

(A4) e ≺ e′ and e′© e′′ and e′′ ≺ e′′′
=⇒ e ≺ e′′′

(A5) e ≺ e′ or e© e′ or e′ ≺ e

Table 2: Axioms for (RWK) event structures

Thus, if s contains s′ (e.g. if s is s′), then so do
unpad(s) and s′′s and ss′′ (for all s′′). It will be con-
venient to extend w to languages L, conceived as
disjunctions, agreeing that s contains L if s contains
some element of L

s w L def⇐⇒ (∃s′ ∈ L) s w s′

so that s w s′ iff s w {s′}. Containment w is applied
to event structures in section 2, with different sets
X of events related by projections πX in section 3.
Containment is also useful when sidestepping com-
pleteness assumptions built into event structures and
πX , as we shall see.

2 Event structures from strings

A (Russell-Wiener-Kamp) event structure (Kamp
and Reyle, 1993) is a triple 〈E,©,≺〉 consisting of
a set E of events, and two binary relations on E,
(temporal) overlap© and (complete) precedence ≺
satisfying axioms (A1) to (A5) in Table 2. To get a
sense for what these axioms mean, it is useful to in-
terpret them relative to triples 〈Es,©s,≺s〉 defined
from strings s of sets as follows. We put intoEs each
e that occurs in s

Es def= {e | s w e }
and define e to s-overlap e′ precisely if e and e′ share
a box in s

e©s e′ def⇐⇒ s w e, e′ .

As e, e = e and e, e′ = e′, e , it follows that
(A1) and (A2) are true for © = ©s. Next, we say
e s-precedes e′ if e occurs in s to the left of e′ but
never in the same box as e′ or to the right of e′

e ≺s e′ def⇐⇒ s w e
∗
e′ and

not s w e, e′ | e′ ∗
e
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(where | is non-deterministic choice, often written
+). It is easy to see that together©s and≺s validate
(A3) and (A4). This leaves (A5), a counter-example
to which is provided by the string e e′ e . With
this in mind, we define an element e ∈ Es to be an
s-interval if for s = α1 · · ·αn,

e ∈ αi ∩ αj and i ≤ k ≤ j =⇒ e ∈ αk
for all integers i, j, k from 1 to n. We call s struc-
tural if every e ∈ Es is an s-interval. If s is struc-
tural, then

e ≺s e′ ⇐⇒ s w e
∗
e′ and not s w e, e′ .

Moreover, we have

Proposition 1. If s is structural, then 〈Es,©s,≺s〉
is an event structure.

As a string s need not be structural, it is useful to
define the subset I(s) of Es consisting of s-intervals

I(s) def= {e ∈ Es | e is an s-interval} .

For example,

I( e e′ e ) = {e′} .

Next, for any set X , we define the function ρX on
strings (of sets) to componentwise intersect with X

ρX(α1 · · ·αn) def= (α1 ∩X) · · · (αn ∩X)

so that, for instance, if ŝ is e e′ e ,

ρI (̂s)(̂s) = e′ .

In general, ρI(s)(s) is structural for all strings s.
Setting i(s) to ρI(s)(s), and E(s) to the triple
〈Ei(s),©i(s),≺i(s)〉 induced by i(s), we note

Corollary 2. E(s) is an event structure for every
string s of sets.

An obvious question Corollary 2 raises is: can ev-
ery event structure over a set E be presented as E(s)
for a suitable string s ∈ Pow(E)∗? For infinite sets
E, more methods are clearly needed — and consid-
ered in the next section. As for finite E, an affir-
mative answer follows from Russell-Wiener-Kamp
(RWK, Kamp and Reyle, 1993), which we now

briefly recall. Given an event structure 〈E,©,≺〉,
we construct a linear order 〈T©,≺T 〉 as follows.
The set T© of (RWK) temporal moments consists of
subsets t of E that pairwise©-overlap

(∀e, e′ ∈ t) e© e′

and are ⊆-maximal among such subsets

(∀e ∈ E) if (∀e′ ∈ t) e© e′ then e ∈ t .
For t, t′ ∈ T©, we then put t ≺T t′ if some element
of t ≺-precedes some element of t′

t ≺T t′ def⇐⇒ (∃e ∈ t)(∃e′ ∈ t′) e ≺ e′ .
One can then show that not only does ≺T linearly
order T©, but that relative to that linear order, every
e ∈ E defines an interval

e ∈ t whenever e ∈ t1 and e ∈ t2
for some t1, t2 with t1 ≺T t ≺T t2

and the relations© and≺ can be interpreted as over-
lap

e© e′ ⇐⇒ (∃t ∈ T©) e ∈ t and e′ ∈ t
and complete precedence

e ≺ e′ ⇐⇒ (∀t ∈ T©)(∀t′ ∈ T©)
e ∈ t and e′ ∈ t′ implies t ≺T t′ .

To illustrate, the three event structures on E =
{e, e′} yield three linear orders 〈T©,≺T 〉 that can
be pictured as the three strings e, e′ , e e′ and

e′ e .
But then what about the ten other strings in Ta-

ble 1 and the various Allen relations? Each of these
strings violates the ⊆-maximality requirement on
T© above. We can neutralize that requirement by
adjoining pre- and post-events, turning, for instance,

e e, e′ e′ into e, pre(e′) e, e′ e′, post(e) .

On structural strings, pre(e) and post(e) negate
e, whilst preserving structurality. More precisely,
given a set E, let

E±
def= E ∪ {pre(e) | e ∈ E}

∪ {post(e) | e ∈ E}
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and call a string s = α1α2 · · ·αn E-delimited if for
all e ∈ E and i ∈ {1, 2, . . . , n},
pre(e) ∈ αi ⇐⇒ s w e but α1 · · ·αi 6w e

(⇐⇒ e ∈ (
n⋃

j=i+1

αj)−
i⋃

j=1

αj)

and

post(e) ∈ αi ⇐⇒ s w e but αi · · ·αn 6w e

(⇐⇒ e ∈ (
i−1⋃
j=1

αj)−
n⋃
j=i

αj) .

It is immediate that for every string s ∈ Pow(E)∗,
there is a unique E-delimited string s′ ∈ Pow(E±)∗

such that ρE(s′) = s. Let s± be that unique string.

Proposition 3. For every finite set E, there is a
finite-state transducer that computes the map s 7→ s±
from Pow(E)∗ to Pow(E±)∗.

If s is structural, then so is s± — making
〈Es± ,©s± ,≺s±〉 an event structure (for structural
s). Extending a string s ∈ Pow({e, e′})∗ to s± leads
to a refinement of © and ≺ to any of the 13 Allen
relations — e.g. whenever e and e′ are s-intervals,

e ds e′ ⇐⇒ pre(e)©s± e′ and e©s± e′

and post(e)©s± e′

e <s e′ ⇐⇒ e ≺s± e′ and

post(e)©s± pre(e′) .

Given that there is a finite-state transducer for the
map s 7→ s±, it is tempting to leave out the pre- and
post-events for simplicity.

The map s 7→ s± aside, different strings s ∈
Pow(E)∗ can give the same event structure E(s).

Take, for example, the strings in e
+
e′

+
(where

L+ def= L∗L), each of which gives the event struc-
ture pictured by e e′ . In general, let us reduce all
adjacent identical boxes ααn to one α in the block
compression bc(s) of a string s

bc(s) def=


bc(αs′) if s = ααs′

αbc(α′s′) if s = αα′s′ with α 6= α′

s otherwise

so that, for example,

bc(s) = e e′ for every s ∈ e
+
e′

+
.

The map bc is a regular relation, and implements the
slogan “no time without change” (Kamp and Reyle
1993, page 674). Clearly, bc does not alter the event
structure E(s) represented by a string s

E(bc(s)) = E(s) .

Neither does unpadding, which suggests defining a
function π that unpads after (or equivalently: before)
block compression

π(s) def= unpad(bc(s)) [= bc(unpad(s))]

so that, for example,

π(s) = e e′ for every s ∈ ∗
e

+
e′

+ ∗
.

Before using π to define the functions πX in the
next section, let us note that on delimited strings s±,
π captures what is essential for representing event
structures.

Proposition 4. For structural strings s and s′ ∈
Pow(E)∗, the following four conditions, (a) to (d),
are equivalent

(a) bc(s) = bc(s′)

(b) E(s±) = E(s′±)

(c) bc(s±) = bc(s′±)

(d) π(s±) = π(s′±).

It follows from Proposition 4 that for structural s ∈
Pow(E)∗,

E(s±) = E(bc(s±)) = E(π(s±))

as bc(bc(s±)) = bc(s±) = π(s±).

3 Varying X with retractions πX and
generalizations

Fix some large set E, and let Σ = Pow(E) be the
alphabet from which we form strings. Given a lan-
guage L ⊆ Σ∗ and a function f : Σ∗ → Σ∗ on
strings over Σ, we write f [L] for the f -image of L

f [L] def= {f(s) | s ∈ L}
and f−1L for the inverse f -image of L

f−1L
def= {s ∈ Σ∗ | f(s) ∈ L} .
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Applying these constructions in sequence, note that

f−1f [L] = {s ∈ Σ∗ | (∃s′ ∈ L) f(s) = f(s′)}

which we shall refer to as the f -closure of L , Lf

Lf
def= f−1f [L]

(as L ⊆ Lf = Lf
f and the operation preserves

⊆-inclusion: L ⊆ L′ implies Lf ⊆ L′f ). In
this section, we form f -closures for different f ’s
computed by finite-state transducers (assuming E
is finite), including the functions unpad, bc, π, and
ρX (for subsets X of E; recall ρX(α1 · · ·αn) =
(α1 ∩ X) · · · (αn ∩ X)). Putting these together, let
πX : Pow(E)∗ → Pow(X)∗ be the composition
ρX ;π of ρX followed by π

πX(s) def= π(ρX(s)) = unpad(bc(ρX(s)))

so that for every s ∈ Pow(E)∗ and e ∈ E, e is an
s-interval iff π{e}(s) = e .

To study an event alongside other events, we gen-
eralize the superposition operation & (defined in the
introduction) from strings of the same length to lan-
guages over the alphabet Σ. First, we collect super-
positions s & s′ of strings s and s′ of the same length
from languages L and L′ in the superposition

L & L′ def=
⋃
n≥0

{s & s′ | s ∈ L ∩ Σn and

s′ ∈ L′ ∩ Σn}

(Fernando, 2004). We then form the superposition
of the f -closures of L and L′, and take its f -image
for the f -superposition L &f L

′

L &f L
′ def= f [Lf & L′f ] .

For example, the π-superposition e &π e′ consists
of the 13 strings in Table 1, which can be divided up
as follows. Put the 9 ways for e and e′ to overlap
(according to Allen) in

A(e© e′) def= (ε | e | e′ ) e, e′ (ε | e | e′ )

= e, e′ | e, e′ e | e, e′ e′ | · · ·
| e′ e, e′ e′

(where ε is the empty string), and the 2 ways for e to
precede e′ in

A(e ≺ e′) def= e e′ | e e′ .

All 13 strings then end up in

e &π e′ = A(e ≺ e′) | A(e© e′) |
A(e′ ≺ e)

in accordance with axiom (A5) in Table 2. Step-
ping from two to any finite number n ≥ 1 of events
e1, . . . , en in E (where Σ = Pow(E)), let us define
languages E(e1 · · · en) by induction on n as follows

E(e1) def= e1

E(e1 · · · en+1) def= E(e1 · · · en) &π en+1

(for n ≥ 1). Recalling that I(s) denotes the set of
s-intervals, we can generalize the equation

I(s) = {e ∈ Es | π{e}(s) = e }

as follows.

Proposition 5. For every s ∈ Pow(E)∗ and every fi-
nite subset {e1, . . . , en} of E, all ei’s are s-intervals
iff π{e1,...,en} maps s to a string in E(e1 · · · en)

{e1, . . . , en} ⊆ I(s) ⇐⇒ π{e1,...,en}(s) ∈
E(e1 · · · en) .

We can bring out the f -closures behind Proposi-
tion 5 by defining a language L ⊆ Σ∗ to be f -closed
if its f -closure Lf is a subset of L. As it is always
the case that L ⊆ f−1f [L],

L is f -closed ⇐⇒ Lf = L .

According to Proposition 5, the set I(e1 · · · en) of
strings s such that each ei is an s-interval (for 1 ≤
i ≤ n) is π{e1,...,en}-closed, and what’s more, its
π{e1,...,en}-image is a subset of (in fact, identical to)
E(e1 · · · en). Observe that a language L is f -closed
iff for all s ∈ Σ∗,

s ∈ L ⇐⇒ f(s) ∈ f [L]

which constitutes a reduction in the cost of check-
ing membership in L insofar as the f -image f [L] of
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L is a reduction of L (and the computational cost
of f can be ignored). In the case of Proposition 5,
whereas I(e1 · · · en) is infinite, E(e1 · · · en) is finite.
Focusing on the case n = 2, note that the relations
of overlap© and precedence≺ between e and e′ are
π{e,e′}-closed in that

Proposition 6. For every s ∈ Pow(E)∗ such that
e, e′ ∈ E are s-intervals,

e©s e′ ⇐⇒ π{e,e′}(s) ∈ A(e© e′)
e ≺s e′ ⇐⇒ π{e,e′}(s) ∈ A(e ≺ e′) .

Under the appropriate definitions, the 13 Allen rela-
tions between e and e′ are also π{e,e′}-closed. A no-
tion for which πX -closedness is problematic, how-
ever, is the following. We say e ∈ E is left-bounded
in s if s is a non-empty string such that e 6∈ α
where α is the first symbol of s — or equivalently,
pre(e) ∈ Es± . Although the set of strings s in which
e is left-bounded is not π{e}-closed, the equivalences

e 6∈ α ⇐⇒ bc(ρ{e}(s)) ∈ ( e )+( |ε)
(where α is the first symbol of the non-empty string
s) and

pre(e) ∈ Es± ⇐⇒ π{pre(e)}(s±) = pre(e)

give two different functions f for which the set is
f -closed — viz., the composition ρ{e}; bc of ρ{e}
followed by bc, and the composition ·±;π{pre(e)}
of the map s 7→ s± followed by π{pre(e)} =
ρ{pre(e)}; bc; unpad. Note

Proposition 7. If f = g;h where g; g = g then
every f -closed language is g-closed.

The cascade of regular relations above is reminis-
cent of Niemi and Koskenniemi (2009), with each
successive function reducing the input. The case
of left-boundedness suggests caution against over-
reducing; the map unpad (separating bc from π) ab-
stracts away temporal span. To see that &bc gives us
more control than &π, let us reformulate the exam-
ple (from (Niemi and Koskenniemi, 2009)) of the 12
months of year 2008 in our framework as

y2008 &bc Jan Feb Mar · · · Dec

= y2008,Jan y2008,Feb y2008,Mar · · ·
y2008,Dec

which ρ{y2008}; bc maps back to y2008 . Given a
function f such that f ; f = f and a subset X of
E, we may call the composition fX

def= ρX ; f of
ρX with f a retraction insofar as fX preserves the
structure &f introduces

fX(s &f s′) = fX(s) &f fX(s′)

(where a string s is, as usual, conflated with the
language {s}). Let us say a language L is X-
determined if L is ρX -closed. By Proposition 7, fX -
closed languages are X-determined. Moreover, the
totality of finite subsets X of E (partially ordered
by⊆) indexes an inverse system of maps πX , the in-
verse limit of which represents every event structure
over E. This fact bolsters the claim of embodiment
made in the title of the present paper, reinforcing (as
it does) the notion that strings are full-blooded se-
mantic entities (familiar already from Linear Tem-
poral Logic, where they can be viewed as Kripke
models.; e.g. (Emerson, 1990)). Is the choice of π
in the inverse system πX sacrosanct? Should we not
perhaps stop short of πX at bcX to capture, for in-
stance, left-bounded events e? Not necessarily. De-
limiting s 7→ s± before applying π{e,pre(e)}, we have

e is left-bounded in s ⇐⇒ π{e,pre(e)}(s±) ∈
pre(e) ( e )∗ e .

But should we take it for granted that s amounts to
s±?

Not if a string s is to embody underspecification,
so that s may represent, relative to some background
set C of strings, the set C[s] of strings in C that w-
contain s

C[s] def= {s′ ∈ C | s′ w s}

(a regular language, provided C is). Recall, for in-
stance, the interest in representing cognitively nat-
ural disjunctions of Allen relations (Freksa, 1992).
Under the present framework, some such disjunc-
tions can be read off strings. For example, overlap
between e and e′ described by the (disembodied) ab-
stract expression “e© e′” is embodied by the box
e, e′ . That is, the set of strings s such that e©s e′

is C[s] for C = Σ∗ and s = e, e′ . What about
the precedence e ≺ e′? This is where pre(e′) and
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post(e) are helpful. Form C[s] where s is the (non-
delimited) string

e, pre(e′) post(e)

and C is the language {s′± | s′ ∈ Pow(E)∗}.
This language C and many more constraints can be
formulated in finite-state terms familiar from say,
Beesley and Karttunen (1983), as shown in Fer-
nando (2011). Auxiliary constructs such as pre(e)
and post(e) (that may later be dropped) have proved
enormously useful tools advancing finite-state meth-
ods. Rather than claim for these constructs the same
ontological status that events in E may enjoy, how-
ever, we might reconstrue the elements in boxes
not as concrete particulars but rather as temporal
propositions with possibly scattered occurrences (in-
stead of the restriction to intervals characteristic of
event structures). This would allow us to introduce
a negation of e without requiring that the tempo-
ral projection of e or its complement be an interval.
(Moreover, recalling the calendar example of Jan,
Feb, . . ., Dec above, we may well want to form a
string s such that none of Jan, Feb, . . ., Dec are
s-intervals.)

That said, the families E(e1 · · · en) of regular lan-
guages above extend to

S(e) def= pre(e) (ε | ) e (ε | ) post(e)

and for n ≥ 1,

S(e1 · · · en+1) def= S(e1 · · · en) &π

S(en+1)

with uncertainty injected at the semi-intervals

pre(e) e and e post(e) , so that strings in
S(e1e2) embody disjunctions of Allen relations be-
tween e1 and e2. For example, we can represent tem-
poral inclusion of e1 within e2 by the string

pre(e1), pre(e2) pre(e1) e1, e2

post(e1) post(e1), post(e2)

(of length 5) in S(e1e2), instead of the four strings
from E(e1e2) for e1 R e2, R ∈ {=,s,f,d}. Re-
sisting the step from s to s± leaves room for a form
of underspecification that is natural for strings qua
extensions (denotations), if not indices (Fernando,
2011).

4 Conclusion

The sense of embodiment claimed by the present pa-
per boils down to reducing chronological order to
succession within a string of boxes. But what boxes?
That depends on our interests. Were we interested in
months, then we might portray a year as the string

syr/mo
def= Jan Feb Mar · · · Dec

of length 12. Or were we also interested in days,
perhaps the string

syr/mo,dy
def= Jan,d1 Jan,d2 · · · Dec,d31

of length 365 (for a non-leap year). Observe that for
X = {Jan,Feb,. . .,Dec},

πX(syr/mo,dy) = syr/mo

and that we can picture the syr/mo,dy-intervalhood of
Jan by the equation

π{Jan}(syr/mo,dy) = Jan

in contrast to d1, for which

π{d1}(syr/mo,dy) = ( d1 )11 d1 .

In general, e is an s-interval precisely if π{e} maps s
to e

e ∈ I(s) ⇐⇒ π{e}(s) = e .

Hence, all of e1, e2, . . . , en are s-intervals if s ∈
E◦(e1 · · · en) where

E◦(e1 · · · en) def=
n⋂
i=1

π−1
{ei} ei .

That is, we can form the regular languages

E(e1 · · · en) = π{e1,...,en}[E◦(e1 · · · en)]

starring in Proposition 5, without ever mentioning
& or �. More importantly, the regular relations πX
apply with or without the constraint of intervalhood
imposed by RWK event structures. Furthermore, a
bounded level of granularity is supported that we can
adjust through X , as illustrated by the McTaggart
A-series enhancement X± for the Allen relations.
We can glue together any number of granularities
by forming inverse limits, but arguably it is the fi-
nite approximations that we can process (and ma-
nipulate) — not the infinite objects (such as the real
numbers) that arise at the limit.
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Abstract

Analyzing the logical structure of a sentence is
important for understanding natural language.
In this paper, we present a task of Recogni-
tion of Requisite Part and Effectuation Part in
Law Sentences, or RRE task for short, which
is studied in research on Legal Engineering.
The goal of this task is to recognize the struc-
ture of a law sentence. We empirically inves-
tigate how the RRE task is conducted with re-
spect to various supervised machine learning
models. We also compared the impact of un-
labeled data to RRE tasks. Experimental re-
sults for Japanese legal text domains showed
that sequence learning models are suitable for
RRE tasks and unlabled data also significantly
contribute to the performance of RRE tasks.

1 Introduction

Legal Engineering (Katayama 07) is a new research
field which aims to achieve a trustworthy electronic
society. There are two important goals of Legal En-
gineering. The first goal is to help experts make
complete and consistent laws, and the other is to de-
sign an information system which works based on
laws. To achieve this we need to develop a system
which can process legal texts automatically.

Legal texts have some specific characteristics that
make them different from other daily-use docu-
ments. Legal texts are usually long and complicated.
They are composed by experts who spent a lot of
time to write and check them carefully. One of the
most important characteristics of legal texts is that
law sentences have some specific structures. In most

cases, a law sentence can roughly be divided into
two parts: a requisite part and an effectuation part
(Nakamura et al., 07; Tanaka et al., 93). For ex-
ample, the Hiroshima city provision 13-2 When the
mayor designates a district for promoting beautifi-
cation, s/he must in advance listen to opinions from
the organizations and the administrative agencies
which are recognized to be concerned with the dis-
trict, includes a requisite part (before the comma)
and an effectuation part (after the comma) (Naka-
mura et al., 07).

The requisite part and the effectuation part of a
law sentence are composed from three parts: a topic
part, an antecedent part, and a consequent part.
There are four cases (illustrated in Figure 1) bas-
ing on where the topic part depends on: case 0 (no
topic part), case 1 (the topic part depends on the an-
tecedent part), case 2 (the topic part depends on the
consequent part), and case 3 (the topic part depends
on both the antecedent part and the consequent part).
In case 0, the requisite part is the antecedent part and
the effectuation part is the consequent part. In case
1, the requisite part is composed from the topic part
and the antecedent part, while the effectuation part
is the consequent part. In case 2, the requisite part
is the antecedent part, while the effectuation part is
composed from the topic part and the consequent
part. In case 3, the requisite part is composed from
the topic part and the antecedent part, while the ef-
fectuation part is composed from the topic part and
the consequent part. Figure 2 gives examples of law
sentences in four cases.

Analyzing the logical structure of law sentences is
an important task in Legal Engineering. This task is
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Figure 1: Four cases of the logical structure of a law sentence.

Figure 2: Examples of four cases of the logical structure of a law sentence. A means antecedent part, C means
consequent part, and T1, T2, T3 mean topic parts which correspond to case 1, case 2, and case 3 (the translations keep
the ordinal sentence structures).

a preliminary step to support tasks in legal text pro-
cessing, such as translating legal articles into log-
ical and formal representations and verifying legal
documents, legal article retrieval, legal text summa-
rization, question answering in legal domains, etc
(Katayama 07; Nakamura et al., 07). In a law sen-
tence, the consequent part usually describes a law
provision, and the antecedent part describes cases in
which the law provision can be applied. The topic
part describes the subjects which are related to the
law provision. Hence, the outputs of the RRE task
will be very helpful to not only lawyers but also peo-
ple who want to understand the law sentence. They
can easily understand 1) what does a law sentence

say? 2) what cases in which the law sentence can
be applied? and 3) what subjects are related to the
provision described in the law sentence?

In this paper, we present a task of Recognition
of Requisite Part and Effectuation Part in Law Sen-
tences - the RRE task. We show how to model this
task by using sequence learning models. The first
one applies Conditional Random Fields (CRFs), a
special version of conditionally-trained finite state
machines. We studies two different machine learn-
ing models for CRFs. The second one focus on
discriminative sequence learning models using on-
line learning framework (Crammer et al, 2006). We
then empirically investigate several sequence learn-
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ing models for RRE task. In addition, We depict
a simple semi-supervised learning method for the
RRE task using the Brown clustering algorithm. We
also show experimental results on an annotated cor-
pus of Japanese national pension law sentences. Our
models achieved 88.58% (using supervised learn-
ing) and 88.84% (using semi-supervised learning) in
the Fβ=1 score.

The remainder of this paper is organized as fol-
lows. First, Section 2 presents how to model the
RRE task as a sequence labeling problem, and shows
experimental results about the effect of features on
the task. Next, we describe another setting for the
task based on Bunsetsu (chunks in English) in Sec-
tion 3. Then, Section 5 describes a simple semi-
supervised learning method for the task. Finally,
some conclusions are given in Section 6.

2 RRE as a Sequence Learning Problem

2.1 Problem Setting

Let x be an input law sentence in a law sentence
spaceX , then x can be represented by a sequence of
words [w1, w2, . . . , wn]. Let P be the set of prede-
fined logical part categories. A logical part p(s, e)
is the sequence of consecutive words spanning from
word ws to word we with category p ∈ P .

We define two kinds of relationships between
two logical parts: overlapping and embedded. Let
p1(s1, e1) and p2(s2, e2) be two different logical
parts of one sentence x. We say that p1(s1, e1) and
p2(s2, e2) are overlapping if and only if s1 < s2 ≤
e1 < e2 or s2 < s1 ≤ e2 < e1. We denote the
overlapping relationship by ∼. We also say that
p1(s1, e1) is embedded in p2(s2, e2) if and only if
s2 ≤ s1 ≤ e1 ≤ e2, and denote the embedded rela-
tionship by ≺.

In the RRE task, we try to split a source sentence
into some non-overlapping and non-embedded log-
ical parts. Let S be the set of all possible logical
parts, S = {p(s, e)|1 ≤ s ≤ e ≤ n, p ∈ P}. A
solution of the RRE task is a subset y ⊆ S which
does not violate the overlapping relationship and the
embedded relationship. Formally, the solution space
can be described as follows: Y = {y ⊆ S|∀u, v ∈
y, u � v, u ⊀ v}. The learning problem in the RRE
task is to learn a function R : X → Y from a set of
m training samples {(xi, yi)|xi ∈ X, yi ∈ Y, ∀i =

1, 2, . . . ,m}.
One important characteristic of our task is that the

input sentences are usually very long and compli-
cated, so the logical parts are also long.

We model the RRE task as a sequence labeling
problem, in which each sentence is a sequence of
words. Figure 3 illustrates an example in IOB no-
tation. In this notation, the first word of a part is
tagged by B, the other words of the part are tagged
by I , and a word not included in any part is tagged
by O. This law sentence consists of an antecedent
part (tag A) and a consequent part (tag C) (we will
use this example for all the sections of this paper).

In the RRE task, we consider two types of law
sentences: implication type1 and equivalence type.
Figure 4 shows the logical structure of a law sen-
tence in the equivalence type. In this type, a sentence
consists of a left equivalent part and a right equiv-
alent part. The requisite part is the left equivalent
part, and the effectuation part is the right equivalent
part. In all, we have 7 kinds of parts, as follows:

Figure 4: The logical structure of a law sentence in the
equivalence type.

1. Implication sentences:

• Antecedent part (A)

• Consequent part (C)

• Three kinds of topic parts T1, T2, T3 (cor-
respond to case 1, case 2, and case 3)

2. Equivalence sentences:

• The left equivalent part (EL)

• The right equivalent part (ER)

1The logical structure of a law sentence in this type is shown
in Figure 1.
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Figure 3: A law sentence in the IOB notation.

In the IOB notation, we will have 15 kinds of tags:
B-A, I-A, B-C, I-C, B-T1, I-T1, B-T2, I-T2, B-T3, I-
T3, B-EL, I-EL, B-ER, I-ER, and O2. For example,
an element with tag B-A begins an antecedent part,
while an element with tag B-C begins a consequent
part.

2.2 Discriminative Sequence Learning Models
In this section, we briefly introduce three discrimi-
native sequence learning models for RRE problems.

2.2.1 Conditional Random Fields
Conditional Random Fields (CRFs) (Lafferty et

al., 01) are undirected graphical models used to cal-
culate the conditional probability of values on des-
ignated output nodes, given values assigned to other
designated input nodes for data sequences. CRFs
make a first-order Markov independence assumption
among output nodes, and thus correspond to finite
state machine (FSMs).

Let o = (o1, o2, . . . , oT ) be some observed input
data sequence, such as a sequence of words in a text
(values on T input nodes of the graphical model).
Let S be a finite set of FSM states, each is associ-
ated with a label l such as a clause start position.
Let s = (s1, s2, . . . , sT ) be some sequences of states
(values on T output nodes). CRFs define the condi-
tional probability of a state sequence given an input
sequence to be

PΛ(s|o) =
1
Zo
exp

(
T∑

t=1

F (s, o, t)

)
(1)

where Zo =
∑

s exp
(∑T

t=1 F (s, o, t)
)

is a nor-
malization factor over all state sequences. We de-
note δ to be the Kronecker-δ. Let F (s, o, t) be the
sum of CRFs features at time position t:∑

i

λifi(st−1, st, t) +
∑

j

λjgj(o, st, t) (2)

2Tag O is used for an element not included in any part.

where fi(st−1, st, t) = δ(st−1, l
′
)δ(st, l) is a tran-

sition feature function which represents sequential
dependencies by combining the label l

′
of the previ-

ous state st−1 and the label l of the current state st,
such as the previous label l

′
= B − A and the cur-

rent label l = I −A. gj(o, st, t) = δ(st, l)xk(o, t) is
a per-state feature function which combines the la-
bel l of current state st and a context predicate, i.e.,
the binary function xk(o, t) that captures a particular
property of the observation sequence o at time posi-
tion t. For instance, the current label is B − A and
the current word is “conditional“.

Training CRFs is commonly performed by max-
imizing the likelihood function with respect to the
training data using advanced convex optimization
techniques like L-BFGS. Recently, several works
apply Stochastic Gradient Descent (SGD) for train-
ing CRFs models. SGD has been historically associ-
ated with back-propagation algorithms in multilayer
neural networks.

Inference in CRFs, i.e., searching the most likely
output label sequence of an input observation se-
quence, can be done using the Viterbi algorithm.

2.2.2 Online Passive-Aggressive Learning
Online Passive-Aggressive Learning (PA) was

proposed by Crammer (Crammer et al, 2006) as an
alternative learning algorithm to the maximize mar-
gin algorithm. The PA algorithm has been shown to
be successful for many sequence classification tasks.
The details of the PA algorithm for RRE task are pre-
sented as follows.

Assume that we are given a set of sentences
xi and their labels yi where i = 1, ..., n.
Let the feature mapping between a sentence x
and a sequence of labels y be: Φ(x, y) =
Φ1(x, y),Φ2(x, y), ...,Φd(x, y) where each feature
mapping Φj maps (x, y) to a real value. We assume
that each feature Φ(x, y) is associated with a weight
value. The goal of PA learning for sequence learning
tasks is to obtain a parameter w that minimizes the
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Figure 5: New setting for RRE task.

hinge-loss function and the margin of learning data.

Input: S = (xi; yi), i = 1, 2, ..., n in which xi1

is the sentence and yi is a sequence of labels
Output: the model2

Initialize: w1 = (0, 0, ..., 0)3

for t=1, 2... do4

Receive an sentence xt5

Predict y∗t = arg maxy∈Y (wt.Φ(xt, yt))6

Suffer loss: lt =
wt.Φ(xt, y∗t )− wt.Φ(xt, yt) +

√
ρ(yt, y∗t )

Set:τt = lt
||Φ(xt,y∗t )−Φ(xt,yt)||27

Update:8

wt+1 = wt + τt(Φ(xt, yt)− Φ(xt, y∗t ))
end9

Algorithm 1: The Passive-Aggressive algo-
rithm for RRE task.

Algorithm 1 shows briefly the Online Learning
for sequence learning problem. The detail about this
algorithm can be referred to the work of (Crammer
et al, 2006). In Line 7, the argmax value is com-
puted by using the Viterbi algorithm. Algorithm 1 is
terminated after T rounds 3

2.2.3 Feature Set
In the previous setting (Ngo et al., 10), we model

the RRE task as a sequence labeling problem in
which elements of sequences are words. Because
a sentence may contain many words, the length of
a sequence becomes large. Our idea is that, instead
of considering words as elements, we consider each
Bunsetsu as an element. This can be done because
no Bunsetsu can belong to two different parts in this
task. By doing this, we can reduce the length of se-
quences significantly. The process of obtaining a
new setting from the previous one is illustrated in
Figure 5.

3T is set to 10 in our experiments.

In this example, the length of the sequence is re-
duced from 17 to 6. On average, in the Japanese Na-
tional Pension Law corpus, the length of a sequence
with the old setting (words) is 47.3, while only 17.6
with the new setting (Bunsetsus).

We use features including head words, functional
words, punctuations, and the co-occurrence of head
words and functional words in a window size 1. A
window size 1 in this model will cover three Bun-
setsu. So, it is much longer than a window size
2 (which covers five words) in a model based on
words. This is the reason why a window size 1 is suf-
ficient in this model. The results show that model-
ing based on Bunsetsu, an important unit in Japanese
sentences, is suitable for the RRE task.

There are two reasons that may explain why the
Bunsetsu-based model is better than the word-based
model. The first reason is that Bunsetsus are ba-
sic units in analyzing Japanese (in fact, dependency
parsing of Japanese based on Bunsetsus, not words).
Bunsetsus convey the meaning of a sentence bet-
ter than words. In the Bunsetsu-based model, we
only use head words and functional words to repre-
sent a Bunsetsu. Hence, the Bunsetsu-based model
also take advantages of the model using head words
and functional words. The second reason is that
the Bunsetsu-based model reduces the length of se-
quences significantly compared with the word-based
models. It helps the Bunsetsu-based model so much
in the learning process. We choose the IOE strat-
egy for our RRE task because this representation at-
tained highest results on our development set (Ngo
et al., 10).

3 A Simple Semi-Supervised Learning
Method for RRE

This section describes a brief survey of semi-
supervised learning, and presents a simple semi-
supervised method for the RRE task using Brown
word clusters (Brown et al., 92).

3.1 Brown Clustering

The Brown clustering algorithm is a word cluster-
ing algorithm based on the mutual information of
bigrams (Brown et al., 92). The input to the algo-
rithm is a set of words and a text corpus. In the initial
step, each word belongs to its own individual clus-
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ter. The algorithm then gradually groups clusters to
build a hierarchical clustering of words.

Figure 6 shows an example of Brown word-
cluster hierarchy in a binary tree style. In this tree,
each leaf node corresponds to a word, which is
uniquely identified by the path from the root node
to it. This path can be represented by a bit string,
as shown in Figure 6. From the root node, we add
bit 0 to the left branch and bit 1 to the right branch.
A word-cluster hierarchy is reduced to depth n if all
words with the same n-bit prefix are grouped in one
cluster. For example, if the word-cluster hierarchy
in Figure 6 is reduced to depth 2, we will obtain a
new hierarchy in Figure 7.

Figure 6: An example of Brown word-cluster hierarchy.

Figure 7: A Brown word-cluster hierarchy after reduction
to depth 2.

Features extracted at n-bit depth are binary strings
with length n. By reducing the word-cluster tree to
different values of depth n, we can group words at
various levels, from coarse clusters (small value of
n) to fine clusters (large value of n).

3.2 RRE with Extra Word Features
The main idea of our semi-supervised learning
method is to use unsupervised word representations
as extra word features of a supervised model. We
use Brown word clusters as the word representa-
tion method. In this framework, unlabeled data are
used to produce word clusters. From these word
clusters, we extract extra word features, and add

these features to a supervised model (labeled data
are used to train this model). Figure 8 shows our
semi-supervised learning framework. This frame-
work consists of two phase: unsupervised phase
with the Brown clustering algorithm, and supervised
phase with CRFs.

Figure 8: Semi-supervised learning framework.

To produce word representations, we
first collected plain text from the address
http://www.japaneselawtranslation.go.jp4. Our
plain text corpus includes more than 13 thousand
sentences about Japanese laws. After word seg-
menting (using Cabocha tool 5), we conducted the
Brown clustering algorithm to cluster words. In our
work, we used the implementation of Percy Liang
(Liang 05), and the number of clusters was set to
200. Experimental results showed that CRFs-LBFG
obtained highest result in both supervised and
semi-supervised experiments. In order to consider
the impact of learning size to RRE tasks, we do an
experiment with various size of training data.

Figure 9: Comparison between the supervised method
and the semi-supervised method with respect to the train-
ing sizes and F-measure scores.

The result in Fig 9 clearly showed that semi-
supervised models are useful for RRE tasks with re-
spect to various size of training data.

4This website provides many Japanese law articles in both
Japanese and English.

5http://chasen.org/ taku/software/cabocha/
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4 Experimental Results

We test our system on the corpus of Japanese Na-
tional Pension Law, using F-measure for evaluation.

4.1 Corpus and Evaluation Method

This sub-section presents our corpus for the
RRE task and evaluation method.The Japanese
National Pension Law corpus includes 764 an-
notated Japanese law sentences6. Some statistics
on this corpus are shown in Table 1. We have
some remarks to make here. First, about 98.5%
of sentences belong to the implication type, and
only 1.5% of sentences belong to the equivalence
type. Second, about 83.5% of topic parts are T2,
15.2% of topic parts are T3, and only 1.3% of topic
parts are T1. Finally, four main types of parts, C,
A, T2, and T3 make up more than 98.3% of all types.

4.2 Evaluation Method

We divided the corpus into 10 sets and performed
10-fold cross-validation tests. The results were eval-
uated using precision, recall, and Fβ=1 scores as fol-
lows:

precision =
#correct parts

#predicted parts
, recall =

#correct parts
#actual parts

(3)

Fβ=1 =
2 ∗ precision ∗ recall

precision + recall
(4)

A logical part is recognized correctly if and only
if it has correct start word, correct end word, and
correct part category (kind of logical part).

4.3 Experimental Results

Table 1 shows the comparison of three discrim-
inative learning methods for RRE tasks. Three
sequence learning methods include: CRFs using
the LBFGS method, CRFs with SGD, and Online
Learning. Experiment results show that the CRFs-
LBFGS is the best in comparison with others. How-
ever, the computational times for training is slower
than either SGD or Online Learning. The SGD is
faster than CRF-LBFS approximately 6 times.

6The corpus consists of only the first sentence of each arti-
cle.

Note that we used CRF++ 7 for Conditional Ran-
dom Fields using LBFGS, and for Stochastic Gradi-
ent Descent (SGD) we used SGD1.3 which is devel-
oped by Leon Bottou 8.

Figure 10: Comparison between the supervised method
and the semi-supervised method.

For the RRE task, we extracted features at 4-bit
depth and 6-bit depth. We integrated these fea-
tures into three sequence learning models: CRFs-
LBFG, CRF-SGD, and online learning (MIRA). The
experimental results of the semi-supervised method
with extra word features are shown in Figure 10.
In three models, the semi-supervised method out-
performs the supervised method. For CRF-LBFG
model, the Fβ=1 score was 88.80%, compared with
88.18% for the supervised method. The CRF-sgd
model got 88.58% in the Fβ=1 score, compared
with 88.03% for the supervised method. MIRA
method got 82.3% and 83.21% for supervised and
semi-supervised models. In conclusion, word clus-
ter models significantly improve the performance of
sequence learning models for RRE tasks. We be-
lieve that word cluster models are also suitable for
other sequence learning models.

5 Conclusions

In this paper, we report an investigation of develop-
ing a RRE task using discriminative learning models
and semi-supervised models. Experimental results
using 10 Folds cross-validation test have showed
that the discriminative models are well suitable for
RRE task. Conditional random fields show a bet-
ter performance in comparison with other methods.
In addition, word cluster models are suitable for im-
proving the performance of sequence learning mod-
els for RRE tasks.

7http://crfpp.sourceforge.net/
8http://leon.bottou.org/projects/sgd
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Table 1: Statistics on the Japanese National Pension Law corpus.
Sentence Type Number Part Type Number

Equivalence 11
EL 11
ER 11

Implication 753

C 745
A 429
T1 9
T2 562
T3 102

Table 2: Experimental results with sequence learning models for RRE task.
Methods Accuracy Precision Recall F-measure
CRF-LBFG 91.27 89.328% 87.039% 88.158
CRF-LBFG-B 91.45 89.708% 87.866% 88.807
CRF-SGD 91.39 90.046% 86.953% 88.023
CRF-SGD-B 92.041 90.011% 87.787% 88.584
MIRA 87.081 81.881% 82.909% 82.339
MIRA-B 87.139 80.679% 84.59% 83.213

There are still room for improving the perfor-
mance of RRE tasks. For example, more attention
on features selection is necessary. We would like to
solve this in future work.
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Abstract

This paper describes a non-conventional
method for compiling (phonological or
morpho-syntactic) context restriction (CR)
constraints into non-deterministic automata in
finite-state tools and surface parsing systems.
The method reduces any CR into a simple
one that constraints the occurrences of the
empty string and represents right contexts
with co-determististic states. In cases where
a fully deterministic representation would be
exponentially larger, this kind ofinward de-
terminism in contexts can bring benefits over
various De Morgan approaches where full
determinization is necessary. In the method,
an accepted word gets a unique path that is
a projection of a ladder-shaped structure in
the context recognizer. This projection is
computed in time that is polynomial to the
number of context states. However, it may be
difficult to take advantage of the method in a
finite-state library that coerces intermediate
results into canonical automata and whose
intersection operation assumes deterministic
automata.

1 Introduction

Context restriction (CR) constraints and the related
extended regular expression operator (⇒) are in-
cluded in some widely used finite state compilers
(such asXFST, SFST, and FOMA) and is a stan-
dard part of Two Level Morphology (Koskenniemi,
1983). In addition, context-sensitive rewriting (e.g.
XFST replace rules) have an inherent connection
to CR constraints and their implementation can be

based on them (Yli-Jyrä, 2008a). Optimized CR
compilation methods can thus bring advantage to a
wide range of applications.

The current work presents a complement-free
method that has some advantages and disadvantages
in comparison with the commonly used De Morgan
implementations of the inherent universal quantifi-
cation of CRs. It expresses the universal quantifica-
tion positively, by recognizing ladder-shaped struc-
tures between deterministic left contexts and co-
deterministic right contexts and by projecting them
to accepted words. The complexity of the method
is analyzed here, but a fuller evaluation remains for
further work.

1.1 The Use of CR Constraints

Let Σ be the (pair symbol) alphabet over which all
the words are defined. Acontext restriction (CR)
constraint checks the occurrences of a pattern in
the words. For example, a phonological constraint
(Koskenniemi, 1983) such as

p:m ⇒ Σ∗n:m Σ∗, (1)

specifies a formal languageL ⊆ Σ∗ where the
(pair) symbolp:m may occur only when immedi-
ately preceded by the symboln:m . The left hand
side (p:m ) describes the constrainedpatternwhile
the right hand side (Σ∗n:m Σ∗) specifies thecon-
textsto which the pattern occurrences are restricted.

More generally, the CR constraints have the form
α⇒λ1 ρ1, ..., λk ρk, wherek is the number of
contexts, the variableα stands for the pattern, and
the variablesλ1, ..., λk, ρ1, ..., ρk constitutek con-
texts in pairs. Each variable is a recognizable subset
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of Σ∗ and is usually given through a regular expres-
sion. We assume that every context (λ ρ) is total
i.e. it reaches the word boundaries although most
implementations (e.g.FOMA) require word bound-
ary markers (.#. λ ρ .#. ) in this case.

In the original use scenario – Two Level Mor-
phology – CRs typically restrict allophonemes or
allomorphophonemes to a relatively small number
of contexts. More recently, CR has been used to
express complete morphological lexicons in which
case the total number of contexts can be in thousands
(Yli-Jyrä, 2009).

CR constraints can also be applied to mor-
phosyntax and surface syntax where the total num-
ber of conjunctive CR constraints can be signif-
icantly higher than in phonology. In an early
manifestation of Finite State Intersection Grammar
(FSIG) (Koskenniemi et al., 1992; Yli-Jyrä, 2003),
both the patterns and the contexts were linguisti-
cally informed but quite complicated. More recent
FSIG formalisms focus on local bracketed tree con-
straints (Yli-Jyr̈a, 2005) that are motivated by the
well-known succinctness characteristics of packed
forests.

Some of the decision problems for extended regu-
lar expressions and CRs in particular (Måns Hulden,
pers.comm. 2010) are intractable and the state com-
plexity of a compiled CR can be prohibitively large
in the worst case scenarios. Therefore, the basic re-
search on CR compilation algorithms increasingly
tries to identify islands of tractabilityfor the CR
compilation problem so that larger systems could
exploit CR and context-sensitive constraints without
efficiency bottlenecks.

1.2 Prior Compilation Techniques

There are six important approaches (SF, GR, FO, IC,
PF, WL) to the compilation of the CR constraints.
Let us describe each of them in turn.

1. SF: Star-Free Regular Expressions

The closure of the empty set∅ and the single-
ton languages{w} (w ∈ Σ∗) under the op-
erations of concatenation (·), intersection (∩)
and complement () defines thestar-free i.e.
counter-freelanguages (McNaughton and Pa-
pert, 1971). Note thatα ∩ β = α ∪ β (by De

Morgan’s laws) and∅ = Σ∗. The star-free op-
erators (·, ∩, ∪, ) give a compilation formula
for CRs withk = 1 (Koskenniemi, 1983, 106):

λ1α∅∩∅αρ1 (2)

However, the length of the formula grows ex-
ponentially whenk grows, being already high
for two bilateral contexts (Yli-Jyr̈a, 2003):

λ2αρ1∩λ1αρ2∩(λ1∩λ2)α∅∩∅α(ρ1∩ρ2). (3)

2. IC: Indexed Contexts

Karttunen et al. (1987) observe that when the
pattern languageα consists of atomic symbols,
a multi context CR can be decomposed into
simple CRs. This is done by indexing every
atomic symbol inα by the context pairsλi ρi.
The idea has two implementations:

(a) In Karttunen et al. (1987) and Kaplan and
Kay (1994), the atomic symbols are sur-
rounded by indexed brackets. The method
needs an extended alphabet such asΣ ∪
{〈1, ..., 〈k} ∪ {〉1, ..., 〉k}.

(b) In Koskenniemi and Silfverberg (2010),
the atomic symbols are themselves in-
dexed. This method needs an extended
alphabet such asΣ × {1, ..., k}. Thus,
each symbol inα is divided intok differ-
ent variants,α1, ..., αk.

In order to reflect the extended alphabetΣ′, lan-
guagesλ1, ..., λk, ρ1, ..., ρk have to be replaced
with the expanded onesλ′

1, ..., λ
′
k, ρ

′
1, ..., ρ

′
k.

The indexing is later cancelled by an appropri-
ate homomorphismg : Σ′∗ → Σ∗ and the CR
semantics is finally given by the formula

g(∩k
i=1αi ⇒ λ′

i ρ′i). (4)

The recognizer for the result is nondeterminis-
tic, but it is unclear if the result is ever smaller
than a canonical automaton. Nevertheless, the
extended alphabet has an undesirable effect on
the number of transitions in various stages of
the compilation process.

The approach has been generalized beyond the
atomic symbols to a slightly larger family of
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patterns languages: a modified IC formula ap-
plies to the case where, for allw, w′ ∈ α, the
wordsw andw′ are overlap-free or equivalent
(Yli-Jyrä and Koskenniemi, 2004, formula 16
on page 18). The formula resembles an im-
plementation of replace rules Kempe and Kart-
tunen (1996) and is related to a former imple-
mentation of the CR operator in Xerox Finite
State Tool (XFST) (Yli-Jyrä, 2003; Yli-Jyr̈a and
Koskenniemi, 2004; Karttunen, 2004).

3. GR: SF with a Restricted Homomorphism

The generalized restriction (GR)operation
(Yli-Jyrä and Koskenniemi, 2004) increases the
compactness of star-free expressions by using
a marker alphabet∆, such that∆ ∩ Σ = ∅,
and an operation that removes a finite number
of markers from words.

Let Σ∆ = Σ ∪ {∆} and letf : Σ∗
∆ → Σ∗ be

a string homomorphism defined byh(a) = a,
h(⋄) = ǫ, h(ǫ) = ǫ, h(x·y) = h(x)·h(y) for all
a ∈ Σ, ⋄ ∈ ∆. Within the method, the homo-
morphismh can be replaced with its restriction
hd = h|(∅(∆∅)d) whered ∈ N. Since star-free

languages are closed under the restriction ofhd,
it extends star-free regular expressions.

For all d ∈ N, the GR operation is syntacti-

cally represented by the operator
d∆=⇒ whose

semantics is defined overd-marker languages
W, W ′ ⊆ ∅(∆∅)d by

W
d∆=⇒W ′ = hd(W −W ′). (5)

We will call the left side,W , thepattern (lan-
guage)and the opposite side,W ′, the context
(language). Let ∆ = {⋄}. The semantics of a
CR constraint is expressed by:

(∅⋄α⋄∅) 2∆=⇒ ∪k
i=1(λn⋄α⋄ρn). (6)

Note that (5) requires a deterministic or co-
deterministic recognizer forW ′.

4. FO: A Fragment of Second-Order Logic

Various logical formalisms have been used
for defining the semantics of the CR opera-
tion exactly (Koskenniemi, 1983; Yli-Jyrä and

Koskenniemi, 2004; Vaillette, 2004; Hulden,
2008). Koskenniemi (1983, 36) defines a CR
with k = 1 through a logical expression (7) but
did not explicate any model-theoretic seman-
tics of the logic itself.

{w|(w = vxy ∧ x ∈ α)
→ (v ∈ Σ∗λ1 ∧ y ∈ ρ1Σ∗)}. (7)

In finite model theory, the semantics of the
CR operation can be defined precisely through
monadic second-order logic (MSO) or, if the
operands are star-free, in its first-order (FO)
fragment. In both cases, the formula is in-
terpreted over finite words. The semantics of
MSO relies on automata over an extended al-
phabet, reflecting the power set of the vari-
ables in the formula. For example, variables
v and y would induce the extended alphabet
Σ′ = Σ× 2{v,y}.

In Yli-Jyrä and Koskenniemi (2004) and
Hulden (2008), the semantics of FO variables
has been defined with markers. The markers
are often cheaper than the set-based encoding
of FO variables as they extend the alphabet
only by one new symbol per variable.

Customized predicate logics (Vaillette, 2004;
Hulden, 2008) add syntactic sugar to the
usual MSO logic through substring variables
x, y, z, .... In addition, regular expressionsα,
λ1, ρ1 etc. can be used in the predicates. With
these extensions, the model theoretic semantics
of CR can be expressed through such elegant
formulas as

(∀x)(matches(x, α)→btw(x, λ1, ρ1)). (8)

5. PF: Prefix-Free Patterns

If we assume that that the patternα (as a set of
strings) does not contain proper prefixes (sym-
metrically: proper suffixes), one marker in the
GR pattern language becomes redundant. This
observation helps to reduce the 2-marker GR
approach to a 1-marker GR approach whenever
the assumption holds for the pattternα:

(∅⋄α∅) 1∆=⇒ ∪k
i=1(λn⋄αρn).
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CRs with prefix-free patterns occur naturally
inside theXFST-style replace rules (Yli-Jyrä,
2008b), bracketed FSIGs (Yli-Jyrä, 2008a),
and partition-based grammars (Grimley-Evans
et al., 1996). In these applications, each pattern
match can be unambiguously marked with one
marker only.

The assumption of prefix-freeness is trivially
true whenα ⊆ Σ. This assumption was used
in Yli-Jyrä (2009), where also an optimized
compilation algorithm for the 1-marker GR was
presented.

A variant of this approach is in place in Parti-
tion Based Two Level Morphology (Grimley-
Evans et al., 1996) where multi character pat-
terns form adjacent blocks into which the
whole word is implicitly partitioned. As each
of the block is bracketed, the blocks cannot be
prefixes or suffixes of one another.

6. WL: Weighted Logic

The weighted MSO logic (Droste and Gastin,
2009) can be used to define the characteristic
series1L ∈ B〈〈Σ∗〉〉 of any recognizable lan-
guageL ∈ Σ∗ and, in particular, of the lan-
guage of the constraintα⇒λ1 ρ1, ..., λk ρk.
For any wordw ∈ c1...cn ∈ Σ∗, assume
that α′(v, y), λ′

1(v), ..., λ′
k(v), ρ′1(y), ..., ρ′k(y)

are appropriate wMSO(B, Σ) formulas defin-
ing the membership tests(cv...cy ∈ α),
(c1...cv−1 ∈ λ1), ..., (c1...cv−1 ∈ λk),
(cy+1...cn ∈ λ1), ..., (cy+1...cn ∈ λk). Then
the formula

∀v.∀y.(α′(v, y)→ ∨k
i=1λ

′
i(v) ∧ ρ′i(y))

defines the characteristic series1L for the con-
straintα⇒ λ1 ρ1, ..., λk ρk.

Each universally quantified variable must be
eliminated separately because each elimination
asserts that the quantifier’s scope is express-
ing a recognizable step function(Droste and
Gastin, 2009). This is contrasted to the (un-
weighted) predicate logic of Hulden (2008)
where the quantified variables are defined over
position pairs. The elimination of the weighted
universal quantifiers has been described in the

proof of Lemma 5.4 in Droste and Gastin
(2009)

In sum, the prior CR compilation methods can be
characterized, on average, by the following proper-
ties:

1. a product alphabet (IC, (FO,) WL)

2. the pattern-context contrast (all)

3. substring quantification (all but PF, WL)

4. relies on deterministic automata (all)

5. uses De Morgan duals (nearly all)

6. unavoidable DFA result (SF, GR, FO, PF).

1.3 The Overview of the Unconventional
Approach

The method presented in the following sections is
nonconventional in many respects as it takes advan-
tage of the following observations:

1. O(1) Markers. The GR method has demon-
strated that addingO(1) markers to the alpha-
bet is enough. We will thus use markers in-
stead of a heavily extended alphabet. This also
means that we start our thinking from the GR
operation.

2. Patternless GR.One of the operands of the
GR operation can be eliminated as the pattern
W ⊆ ∅⋄∅ can be moved to the right side of
the GR without any effect on the semantics:(
W

1∆=⇒W ′
)

=
(
∅⋄∅ 1∆=⇒ (W ′ ∪W )

)
. The

resulting patternlessGR can be viewed as a
form of a universal quantifier:(

∅⋄∅ 1∆=⇒W ′′
)

= {c1...cn |
∀i∈{0, ..., n}.c1...ci⋄ci+1...cn ∈W ′′}. (9)

3. One Position. The quantified positions can be
eliminated one by one. A patternless 2-marker
GR where∆ = {⋄1, ⋄2} and W ′ ⊆ W =
∅⋄1∅⋄2∅ reduces to a pair of nested 1-marker
GRs:(

W
2∆=⇒W ′

)
=

(
∅⋄∅ 1{⋄1}=⇒

(
∅⋄∅ 1{⋄2}=⇒ W ′

))
. (10)
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The approach is comparable to weighted logic
where onecannot generallyremove two univer-
sally quantified variables at once because the
resulting weighted automaton is not necessar-
ily finite.

4. Determinism and Co-determinism. Combi-
nations of left and right sequential transduc-
ers (Johnson, 1972; Skut et al., 2004; Peikov,
2006) have been applied in the compilation
of context-dependent rewriting rules. Analo-
gously, the recognizer for the context language
W ′ can be determinized and co-determinized
“inwards”, towards the marker (Section 2.3).

5. No Complementations.The local structure of
the “inward” deterministic recognizer for the
pattern languageW ′ can be used directly as
if it were a readily compiled constraint (Sec-
tion 3). Thus, the “double complementation”
needed by many prior methods is avoided.

6. NFA Result. The compilation can result into
a nondeterministic automaton (NFA). In appli-
cations, NFAs can be used as constraints since
they are closed under the intersection opera-
tion.

The rest of the paper is committed to the realiza-
tion of the new core operation: the patternless GR

(∅⋄∅ 1{⋄2}=⇒ W ′). A patternless GR operation can
express a CR or even a combination of CRs. This
operation is described in Section 3.

Before the section, some prerequisites are given
(Section 2), and after the section, the paper is con-
cluded with complexity analysis and remarks (Sec-
tion 4).

2 The Prerequisites

2.1 Automata

For overviews and the terminology of finite au-
tomata, the reader is referred to a text book such as
Hopcroft et al. (2006).

A (nondeterministic)finite automaton(fa) is a 5-
tupleA=(Q, I, F, Σ, δ) with statesQ, initial states
I, final statesF , input alphabetΣ and the transition
relationδ ⊆ Q × Σ × Q. For every stateq ∈ Q
and lettera ∈ Σ, the set of states{r|(q, a, r) ∈ δ}

Algorithm 1 BARRIERDET(A, ∆): Determiniza-
tion until ∆-barrier
Require: A fa A = (Q, I, F, Σ∆, δ)

1: done← F ′ ← δ′ ← ∅; Q′ ← {(0, I)}
2: while Q′ 6= done do
3: Pick a state(s, P ) from Q′ − done;

Insert the state(s, P ) to done
4: for all a ∈ Σ∆ with Pa 6= ∅ do
5: if s = 0 anda ∈ Σ then
6: Insert the state(0, Pa) to Q′;

Insert the triplet((0, P ), a, (0, Pa)) to δ′

7: else
8: for all r ∈ Pa do
9: insert ((s, P ), a, (1, {r})) to δ′, and

(1, {r}) to Q′

10: end for
11: end if
12: end for
13: end while
14: return A′=(Q′, {(0, I)}, Q′∩({1}×F ), Σ∆, δ′)
Ensure: (see the referrence in the text)

reached by inputa is denoted byqa. Extend the
notation to a state setP ⊆ Q and a wordw =
a1...an ∈ Σ∗ in such a way thatPa = {q | p ∈
P, (p, a, q) ∈ δ} andPa1...a2 = (Pa1)a2...an. The
automaton recognizes the language||A|| = {w ∈
Σ∗ | Iw ∩ P 6= ∅}.

LetA = (Q, I, F, Σ, δ) be a fa. Denote its struc-
tural reversal(Q, F, I, Σ, δ′) whereδ′ = {(r, a, q) |
(q, a, r) ∈ δ} by AR. Denote byΣ∆ = Σ ∪ ∆ an
alphabet such that∆ ∩ Σ = ∅.

2.2 Barrier Deterministic Automata

Definition 2.1. LetA = (Q, I, F, Σ∆, δ). The faA
is barrier deterministic with respect to the marker set
∆ if

1. there is at most one initial state, i.e.|I| ≤ 1

2. the statesQ can be divided into the sets of left
and right statesQ1 andQ2 in such a way that
δ ⊆ (Q1×∆×Q2)∪ (Q1×Σ×Q1)∪ (Q2×
Σ×Q2)

3. the left states are deterministic i.e.|qa| ≤ 1 for
every stateq ∈ Q1 and lettera ∈ Σ.
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Let A=(Q, I, F, Σ∆, δ) be a fa. Algorithm
1 implements a function called BARRIERDET.
BARRIERDET(A, ∆) is a barrier deterministic au-
tomatonA′ = (Q1 ∪Q2, I

′, F ′, Σ∆, δ′) with

• |I| ≤ 1, Q1 ∩Q2 = ∅, δ ⊆ (Q1 ×∆ ×Q2) ∪
(Q1×Σ×Q1)∪ (Q2×Σ×Q2), and|qa| ≤ 1
for every stateq ∈ Q1 and lettera ∈ Σ.

• Q2 ⊆ {1}×Q and δ′ ∩ (Q2 × Σ × Q2) =
({1}×δ) ∩ (Q2 × Σ×Q2)

• ||A′|| = ||A|| ∩ Σ∗∆Σ∗.

2.3 Inward Deterministic Automata

Definition 2.2. LetA = (Q, I, F, Σ∆, δ). The au-
tomatonA is inward deterministic with respect to
the marker set∆ if bothA andAR are barrier de-
terministic with respect to the marker set∆.

An inward deterministic automatonA′′ =
INWARDDET(A, M) with ||A′′|| = ||A|| ∩ Σ∗∆Σ∗

is given by

INWARDDET(A, M) =

BARRIERDET(BARRIERDET(A, ∆)R, ∆)R. (11)

Note thatA′′ has at most one path for everyv⋄y ∈
Σ∗∆Σ∗ where⋄ ∈ ∆. The definition is illustrated
in Figure 1.

3 Compiling Patternless GR Constraints

Let A = (Q, I, F, Σ{⋄}, δ) be an automaton that
is inward deterministic with respect to{⋄}. This
section describes how a recognizer for the language
Σ∗ − h1(Σ∗⋄Σ∗ − ||A||) of the patternless GR con-

straint (∅⋄∅ 1{⋄}
=⇒ W ′) with W ′ = ||A|| is con-

structed.
The languageL = Σ∗ − h1(Σ∗⋄Σ∗ −W ′) is de-

scribed either through a double complement or pos-
itively:

• Any word w ∈ Σ∗ such thath−1
1 (w) 6⊆ W ′ is

“nogood” i.e.w /∈ L

• Any word w ∈ Σ∗ such thath−1
1 (w) ⊆ W ′ is

“good” i.e. w ∈ L.

The positive description forL has an interpreta-
tion in an inward deterministic recognizerA. Let
w = c1...cn ∈ Σ∗. If w ∈ L thenA has two disjoint
w-labeled (incomplete) paths:
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Figure 1: The lower two automata are inward determin-
istic (with ∆ = {⋄}), while the upper two automata are
not inward deterministic.

1. An initial left context pathπl = 〈l0, l1, ..., ln〉
that starts from the initial statel0 = i and ends
at the stateln.

2. A final right context pathπr = 〈r0, r1, ..., rn〉
that starts from the final statern = f and pro-
ceeds left-deterministically to the stater0.

These two paths in the automatonA are connected
with n+1 transitions on the⋄-marker, and they thus
form n+1 complete runs, one for eachn+1 marked
word in the languageh−1

1 (w). They constitute a
ladder-shaped substructure as illustrated in Figure 2.

Let Z ⊆ Σ∗⋄Σ∗ be a marked language. ThenZ is
closedunder variant markings, ifZ = h−1

1 (h1(Z)).
In this sense, the largest closed subset of||A||
is LADDER(||A||) = Σ∗⋄Σ∗ − h−1

1 (h1(Σ∗⋄Σ∗ −
||A||)). We now have the equivalence between the
double complement description and the positive de-
scription for the languageL:

Σ∗ − h1(Σ∗⋄Σ∗ −W ′) = h1(LADDER(||A||)).
SUPERPOSE(A, ⋄) (Algorithm 2) detects the sub-
language LADDER(||A||) from A and constructs
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l0 l1 l2 ln−2 ln−1 ln

r0 r1 r2 rn−2 rn−1 rn

⋄ ⋄ ⋄ ⋄ ⋄ ⋄

c1 c2

c3...cn−2

cn−1 cn

c1 c2

c3...cn−2

cn−1 cn

Figure 2: The ladder-shaped substructure ofA corresponding to the wordc1...cn.

a recognizerA′′ for its homomorphic image
h1(LADDER(||A||). The lines 3-6 optimize the al-
gorithm by restricting its state set to the accessible
part. In practice, this optimization can be easily in-
corporated to the main construction that is on lines 1
and 2.

Algorithm 2 SUPERPOSE(A,⋄)
Require: Inward deterministic NFA
A = (Q, {i}, {f}, δ) with L(A) ⊆ Σ∗⋄Σ∗

1: Q′ ← {(l, r) | (l, ⋄, r) ∈ δ};
I ′ ← {(l, r) ∈ Q′ | l ∈ I};
F ′ ← {(l, r) ∈ Q′ | r ∈ F}

2: δ′ ← {((l, r), a, (l′, r′)) |
(l, r), (l′, r′) ∈ Q′, l′ ∈ la, r′ ∈ ra}

3: A′ = (Q′, I ′, F ′, Σ, δ′); P ← I ′

4: while PΣ− P 6= ∅ do
5: P ← P ∪ PΣ
6: end while
7: return A′′=(P, I ′, F ′∩P, Σ, δ′(∩P×Σ×P ))

Ensure: ||A′′|| = h1(LADDER(||A||))

4 Evaluation

4.1 The Worst-Case Complexity Analysis

The complexity of INWARDDET (Algorithm 1)
alone is similar to the general determinization algo-
rithms: exponential to the size of the input. Letl
andr be the size of the left-context component and
the right-context component of the automaton that
is an input to the inward determinization algorithm.
Denote the left-context and right-context state sets
of the result of INWARDDET, respectively, byQ and
R. The respective sizes of theQ andR components
of the inward deterministic result are thenO(2l) and
O(2r).

The SUPERPOSE algorithm (Algorithm 2) as-
sumes a nondeterministic automaton that is inward

deterministic with respect to the marker⋄. Such
an automaton containsO(|Q||R|) marker transi-
tions andO((|Q| + |R|)|Σ|) normal transitions be-
cause the states have only one transition per a letter.
The size of the projection of the inward determin-
istic automaton is polynomial to the size of the in-
ward deterministic automaton. Namely, it contains
O(|Q||R|) states that corresponds to⋄-transitions
in the input. Since the result is nondeterministic,
a state(q, r) can have, for every lettera ∈ Σ,
a transition to any of the states{(q′, r′)|δ(q, a) =
{q′}, r′ ∈ δ(r, a)}. The total number of transitions
is O(|Q||R|2|Σ|). Based on this, the time complex-
ity of the SUPERPOSEis O(|Q||R|2|Σ|) if we as-
sume that each of result transitions can be created in
constant time.

The worst case nondeterministic state complex-
ity of the output of the INWARDDET and SUPER-
POSE methods isO(2l(2r)2|Σ|) i.e. O(2s) where
s = l + r. Recall that this is applicable to pattern-
less GRs only. The patternless GR is directly usable
when the pattern languageα of the CR constraint
is prefix-free or suffix-free. In all other cases, the
compilation of CRs requires more general, but less
efficient methods that involve two markers (possibly
through nested patternless GRs).

4.2 Updating the Best Practice

The comparative sizes of minimal deterministic, co-
deterministic and inward deterministic representa-
tions of the context languageW ′ may differ sig-
nificantly. For example, the deterministic or co-
deterministic automaton recognizing the language
ΣnaΣ∗⋄Σ∗aΣn (for any large enoughn ∈ N) is ex-
ponentially larger than the corresponding inward de-
terministic automaton. The comparative size differ-
ence means that using (INWARDDET+)SUPERPOSE

to compile this patternless GR would be an es-
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smallest representation recommendation
for λ for ρ for λ⋄ρ method
determ. determ. determ. GR with DFAs
determ. co-det. inw.det. SUPERPOSE

co-det. co-det. co-det. GR with r-DFAs

Table 1: The choice for the compilation method when
other known methods cause immediate blow-up in the
representation of contexts.

sential improvement over the state-of-the-art meth-
ods where determinization (GR with DFAs) or co-
determinization (GR with reverse DFAs) is the first
step of the compilation. There are also oppo-
site situations where (INWARDDET+)SUPERPOSE

is less likely the most appropriate method (Table 1).
Clearly, this kind of rules of thumb will be refined
when we can evaluate the predictions with additional
practical experiments.

The differences between the efficiency of the
methods are often less dramatic in practice. The
initial experiments with some 1100 CR constraints
from a syntactic FSIG grammar (Voutilainen, 1997)
indicate that the size of the inward deterministic
automaton is typically very close (1.0 - 4.0×) to
the corresponding minimal deterministic automaton.
More careful implementation and experiments are
needed in order to find significant differences in ef-
ficiency.

According to the author’s experiences, it is com-
plicated to add the barrier and inward determiniza-
tion algorithms to the existing finite-state libraries
and tools. Namely, many finite state tools, such as
XFST, FOMA, andSFST, typically store the interme-
diate results as canonical automata. Therefore, the
current work suggests that the tools should handle
also nondeterministic and co-deterministic automata
as full citizens of the finite-state calculus.

Perhaps the cleanest way to add the currently pre-
sented algorithms to finite state libraries is to encap-
sulate the barrier determinization, the reversal and
the SUPERPOSEalgorithm into one routine where
they can store and optimize the nondeterministic au-
tomata as needed. However, this seems to be coun-
terproductive from the perspective of reusability.

Perhaps the best practice for using the currently
presented method is to use multiple methods and

avoid expensive determinizations whenever possi-
ble.

4.3 Further Work

There are some possibilities for optimizations and
extensions in the presented algorithms: (1) The in-
ward determinization can be optimized by adding
some filtering for states that cannot be used by the
SUPERPOSEalgorithm. (2) A notion of minimal-
ity can be adapted to inward deterministic automata
and the minimized inward deterministic automata
can help reduce the size of the compiled result. (3)
The current method for CR compilation could be
embedded in methods that compile replace rules or
methods where the constraints or rules are compiled
on “the fly”. (4) a weighted variant of the cur-
rent method should be compared against Droste and
Gastin (2009).
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Abstract

We propose an approach to parsing Con-
straint Grammars using finite-state transduc-
ers and report on a compiler that converts Con-
straint Grammar rules into transducer repre-
sentations. The resulting transducers are fur-
ther optimized by conversion to left and right
sequential transducers. Using the method,
we show that we can improve on the worst-
case asymptotic bound of Constraint Gram-
mar parsing from cubic to quadratic in the
length of input sentences.

1 Introduction

The Constraint Grammar (CG) paradigm (Karlsson,
1990) is a popular formalism for performing part-
of-speech disambiguation, surface syntactic tagging,
and certain forms of dependency analysis. A CG
is a collection of hand-written disambiguation rules
for part-of-speech or syntactic functions. The popu-
larity of CGs is explained by a few factors. They
typically achieve quite high F-measures on unre-
stricted text, especially for free word-order lan-
guages (Chanod and Tapanainen, 1995; Samuelsson
and Voutilainen, 1997). Constraint Grammars can
also be developed by linguists rather quickly, even
for languages that have only meager resources avail-
able as regards tagged or parsed corpora, although
it is hard to come by exact measures of how much
effort development requires. One drawback to using
CG, however, is that applying one to disambiguate
input text tends to be very slow: for example, the
Apertium project (Forcada et al., 2009), which of-
fers the option of using both n-gram models and CG
(by way of the vislcg3 compiler (Bick, 2000)), re-
ports that using n-gram models currently results in

ten times faster operation, although at the cost of a
loss in accuracy.

In this paper, we describe a process of compil-
ing individual CG rules into finite-state transducers
(FSTs) that perform the corresponding disambigua-
tion task on an ambiguous input sentence. Using
this approach, we can improve the worst-case run-
ning time of a CG parser to quadratic in the length
of a sentence, down from the cubic time requirement
reported earlier (Tapanainen, 1999). The method
presented here implements faithfully all the oper-
ations allowed in the CG-2 system documented in
Tapanainen (1996). The same approach can be used
for various extensions and variants of the Constraint
Grammar paradigm.

The idea of representing CG rules as FSTs has
been suggested before (Karttunen, 1998), but to
our knowledge this implementation represents the
first time the idea has been tried in practice.1 We
also show that after compiling a collection of CG
rules into their equivalent FSTs, the individual trans-
ducers can further be converted into left and right
sequential transducers which greatly improves the
speed of application of a rule.

In the following, we give a brief overview of
the CG formalism, discuss previous work and CG
parsers, provide an account of our method, and fi-
nally report on some practical experiments in com-
piling large-scale grammars into FSTs with our CG-
rule-to-transducer compiler.

2 Constraint Grammar parsers

A Constraint Grammar parser occupies the central
role of a system in the CG framework. A CG system

1However, Peltonen (2011) has recently implemented a sub-
set of CG-2 as FSTs using a different method.
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is usually intended to produce part-of-speech tag-
ging and surface syntactic tagging from unrestricted
text. Generally, the text to be processed is first tok-
enized and subjected to morphological analysis, pos-
sibly by external tools, producing an output where
words are marked with ambiguous, alternative read-
ings. This output is then passed as input to a CG
parser component. Figure 1 (left) shows an exam-
ple of intended input to a CG parser where each in-
dented line following a lemma represents an alterna-
tive morphological and surface syntactic reading of
that lemma; an entire group of alternative readings,
such as the five readings for the word people in the
figure is called a cohort. Figure 1 (right) shows the
desired output of a CG disambiguator: each cohort
has been reduced to contain only one reading.

2.1 Constraint grammar rules

A CG parser operates by removing readings, or by
selecting readings (removing the others) according
to a set of CG rules. In its standard form there
exists only these two types of rules (SELECT and
REMOVE). How the rules operate is further condi-
tioned by constraints that dictate in which environ-
ment a rule is triggered. A simple CG rule such as:

REMOVE (V) IF (NOT *-1 sub-cl-mark)
(1C (VFIN)) ;

would remove all readings that contain the tag V, if
there (a) is no subordinate clause mark anywhere to
the left (indicated by the rule scope (NOT ∗−1), and
(b) the next cohort to the right contains the tag VFIN
in all its readings (signaled by 1C (VFIN)). Such a
rule would, for instance, disambiguate the word peo-
ple in the example sentence in Figure 1, removing all
other readings except the noun reading. Rules can
also refer to the word-forms or the lemmas in their
environments. Traditionally, the word-forms are
quoted while the lemmas are enclosed in brackets
and quotation marks (as in ‘‘<counselors>’’
vs. ‘‘counselor’’ in fig. 1).

In the example above, only morphological tags
are being used, but the same formalism of con-
straints is often used to disambiguate additional,
syntactically motivated tags as well, including tags
that mark phrases and dependencies (Tapanainen,
1999; Bick, 2000). Additional features in the rule
formalism include LINK contexts, Boolean opera-

tions, and BARRIER specifications. For example, a
more complete rule such as:
"<word>" REMOVE (X) IF
(*1 A BARRIER C LINK *1 B BARRIER C);

would remove the tag X for the word-form word if
the first tag A were followed by a B somewhere to
the right, and there was no C before the B, except if
the first A-tagged reading also contained C.

It is also possible to add and modify tags to co-
horts using ADD and MAP operations, which work
exactly as the SELECT and REMOVE operations as
regards the contextual target specification.

2.2 Parser operation
Given a collection of CG rules, the job of the parser
is to apply each rule to the set of input cohorts rep-
resenting an ambiguous sentence as in Figure 1, and
remove or select readings as the rule dictates. The
formalism specifies no particular rule ordering per
se, and different implementations of the CG formal-
ism apply rules in varying orders (Bick, 2000). In
this respect, it is up to the grammar writer to design
the rules so that they operate correctly no matter in
what order they are called upon. The parser iter-
ates rule application and removes readings until no
rule can perform any further disambiguation, or un-
til each cohort contains only one reading. Naturally,
since no rule order is explicit, most parser imple-
mentations (Tapanainen, 1996; Bick, 2000) tend to
use complex techniques to predict if a certain rule
can apply at all to avoid the costly process of check-
ing each reading and its respective contexts in an in-
put sentence against a rule for possible removal or
selection.

2.3 Computational complexity
Tapanainen (1999) gives the following complexity
analysis for his CG-2 parsing system. Assume that
a sentence of length n contains maximally k differ-
ent readings of a token, and is to be disambiguated
by a grammar consisting of G rules. Then, testing
whether to keep or discard a reading with respect to a
single rule can be done in O(nk), with respect to all
rules, in O(Gnk), and with respect to all rules and
all tokens in O(n2Gk). Now, in the worst case, ap-
plying all rules to all alternative readings only results
in the discarding of a single reading. Hence, the pro-
cess must in some cases be repeated n(k− 1) times,
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"<Business>" "<Business>"
"business" <*> N NOM SG "business" <*> N NOM SG

"<people>" "<people>"
"people" N NOM SG/PL "people" N NOM SG/PL
"people" V PRES -SG3 VFIN "<can>"
"people" V IMP VFIN "can" V AUXMOD Pres VFIN
"people" V SUBJUNCTIVE VFIN "<play>"
"people" V INF "play" V INF

"<can>" "<a>"
"can" V AUXMOD Pres VFIN "a" <Indef> DET CENTRAL ART SG

"<role>"
"<play>" "role" <Count> N NOM SG

"play" N NOM SG "<as>"
"play" V PRES -SG3 VFIN "as" PREP
"play" V IMP VFIN "<counselors>"
"play" V SUBJUNCTIVE VFIN "counselor" <DER:or> <Count> N NOM PL
"play" V INF "<and>"

"<a>" "and" CC
"a" <Indef> DET CENTRAL ART SG "<teachers>"

"<role>" "teacher" <DER:er> <Count> N NOM PL
"role" <Count> N NOM SG "<.>"

"<as>" "." PUNCT Pun
"as" ADV AD-A>
"as" <**CLB> CS
"as" PREP

"<counselors>"
"counselor" <DER:or> <Count> N NOM PL

"<and>"
"and" CC

"<teachers>"
"teacher" <DER:er> <Count> N NOM PL

"<.>"
"." PUNCT Pun

Figure 1: Example input (left) and output (right) from a Constraint Grammar disambiguator.

yielding a total complexity of O(n3Gk2). As men-
tioned above there are various heuristics one can use
to avoid blindly testing rules against readings where
they cannot apply, but none that guarantee a lower
complexity.

3 Related work

Many constraint-based tagging systems can be
speeded up by appropriate use of finite-state trans-
ducers. For example, Roche and Schabes (1995)
show that a Brill tagger (Brill, 1995) can be applied
in linear time by constructing a sequential (input-
deterministic) transducer that performs the same
task as applying a set of transformation-based learn-
ing (TBL) rules that change tags according to con-
textual specifications. This method does not, how-
ever, transfer to the problem of CG implementations:
for one, TBL rules are vastly simpler in their expres-
sive power, limited only to a few simple templatic
statements of tag replacement, while the CG formal-
ism allows for an unlimited number of Boolean and

linking constraints; secondly, TBL rules target tags,
not words, while CG allows for rules to target any
mix of both; thirdly, TBL rules only replace single
tags with other single tags and do not remove tags
from sets of alternative tags.2

Additionally, Koskenniemi (1990); Koskenniemi
et al. (1992) have proposed a constraint-based
method for surface-syntactic tagging that can be di-
rectly implemented—at least in theory—as the in-
tersection of constraints encoded by finite automata.
This formalism has been called alternatively by the
name finite-state intersection grammar and paral-
lel constraint grammar, and has later been pursued

2This last circumstance is actually only a theoretical in-
equivalence: a set of CG tags could conceivably be encoded
as a single symbol, and the problem of removing tags from a
set of tags could be reduced to changing set-representing tags
into other such tags, bringing TBL closer to the CG formalism.
However, then each possible word targeted (since in CG, words
are considered tags as well) would have to be a member of this
powerset of tags, causing an exponential explosion in the tag
alphabet size.
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by Tapanainen (1997) and Yli-Jyrä (2005), among
others. While a finite-state implementation of this
formalism in theory also offers linear-time perfor-
mance, it remains unclear whether the massive con-
stants stemming from an explosion in the size of
the automata that encode intermediate results can
be avoided and a practical parsing method produced
(Yli-Jyrä, 2005).

4 Overview of method

Previous CG compilers operate by choosing a rule
and a reading and scanning the context to the left
and the right to decide if the reading should be re-
moved, possibly using additional information in the
form of bookkeeping of where and which rules can
potentially apply in a given sentence. In contrast, the
approach taken here is to construct a FST from each
rule. This transducer is designed so that it acts upon
a complete input string representing a sentence and
ambiguous cohorts. In one go, it applies the rule to
all the readings of the sentence, removing the read-
ings the rule dictates and retaining all others.

For reasons of simplicity, instead of directly op-
erating on the types of inputs given in Figure 1, we
assume that the transducer will act upon a slightly
modified, more compact string representation of an
ambiguous sentence. Here, an entire sentence is rep-
resented as a single-line string, with certain delim-
iter marks for separating cohorts and lemmas. The
changes can be illustrated in the following snippet:
the cohort

"<as>"
"as" ADV
"as" PREP

is represented as a string in the format

$0$ "<as>" #BOC# |
#0# "as" ADV |
#0# "as" PREP | #EOC#

That is, we have symbols for representing begin-
nings and endings of cohorts (#BOC#, #EOC#), and
delimiters between every reading (|). Additionally,
the symbol #X# is used to mark readings that have
been removed, and the symbol #0# readings that
are still possible. The choice of symbols is arbi-
trary; their role is only to make the data represen-
tation compact and suitable for targeting by regular
language/FSTs.

The task of each constructed rule transducer, then,
is actually only to change #0#-symbols into #X#-
symbols for those readings that should be removed
by the rule, of course making sure we never remove
the last remaining reading as per CG requirements.

For example, removal of the ADV-reading for the
word as in the above cohort would result in the out-
put string:

$0$ "<as>" #BOC# |
#X# "as" ADV |
#0# "as" PREP | #EOC#

5 Left/right sequential transducers

The output of the compilation process is a transducer
that removes readings as the corresponding rule
requires—in practice only changing #0# symbols
into #X# symbols wherever warranted. However,
if the rule contexts are complicated, this transducer
may contain many alternative paths with #0#:#0#
or #0#:#X# labels going out from the same state,
only one of which contains a path to a final state with
any input string: i.e. the transducer is not sequential.
This is because more context to the right needs to be
seen by the transducer to decide whether to retain
or remove a reading. In the case of large rules, this
may involve substantial backtracking when applying
a transducer against an input string. The time taken
to apply a rule transducer is still linear in the length
of the string, but may hide a large constant, which is
in effect the size of the transducer.

However, we a priori know that each rule trans-
ducer is functional, i.e. that each input string maps
to maximally one output string (rules are never am-
biguous in their action). Such transducers T can be
broken up by a process called bimachine factoriza-
tion into two unambiguous transducers: a left se-
quential Tl and a right sequential one Tr, such that
the effect of the original transducer is produced by
first applying the input word to Tl, and then apply-
ing Tr to the reverse of Tl’s output (Schützenberger,
1961; Reutenauer and Schützenberger, 1991; Roche,
1995; Kempe, 2001). In other words, the two sepa-
rate transducers fulfill the condition that:

T = Tl ◦ Reverse(Tr) (1)

Performing this factorization of the rule transduc-
ers then allows further efficiency gains. For instance,
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as table 1 shows, some rules with long contexts pro-
duce transducers with thousands of states. Convert-
ing these rules to the equivalent left and right se-
quential ones removes a large time constant from
the cost of applying a rule. It could be noted that
the rule transducers are also directly sequentiable
into a single sequential transducer (Schützenberger,
1977), and we could apply such a sequentialization
algorithm (Mohri, 1997) on them as well. Sequen-
tializing an FST in effect postpones ambiguous out-
put along transducer paths until the ambiguity is re-
solved, emitting zeroes during that time. Perform-
ing this type of sequentialization on rule FSTs is
in practice impossible, however. As each ambigu-
ity may last several cohorts ahead, the equivalent se-
quential transducer must “remember” arbitrary non-
outputted strings for a long time, and will be expo-
nential in size to the original one. By contrast, the
resulting left and right sequential rule FSTs are ac-
tually smaller than the original rule FSTs.

6 Construction

Since each rule can operate in complex ways, we
break down the process of compiling a rule into sev-
eral smaller transducers which are joined by com-
position (◦). This is similar to techniques used for
compiling phonological rewrite rules into FSTs (Ka-
plan and Kay, 1994; Kempe and Karttunen, 1996).
The entire construction process can be encapsulated
in the composition of a few auxiliary transducers.
Compilation of a basic rule of the format

SELECT/REMOVE (X) IF
(SCOPE#1 COND#1) ... (SCOPE#n COND#n)

can be expressed with the general construction

MarkFormTarget ◦
Constrain ◦

Cond1 ◦ . . . ◦ Condn (2)

These operate as follows:

• MarkFormTarget is a transducer that
changes #0#-symbols temporarily to #1#-
symbols (signaling pending removal) for those
cohorts that contain the target reading (if the
rule is a REMOVE rule), or for retention (if it
is a SELECT rule).

• Constrain changes #1#-symbols back into
#0# symbols whenever the last reading would
be removed.

• Conditionk changes the corresponding tem-
porary symbols into #X#-symbols whenever all
the conditions are met for removal, otherwise
changing them back to #0#-symbols.

The actual conditions expressed in the Cond
transducer are fairly straightforward to express as
Boolean combinations of regular languages since we
have explicit symbols marking the beginnings and
endings of cohorts as well as readings. Each con-
dition for a rule firing—e.g. something occurring n
cohorts (or more) to the left/right—can then be ex-
pressed in terms of the auxiliary symbols that sepa-
rate cohorts and readings.

6.1 Detailed example
Figure 2 contains a working example of the rule
compilation strategy in the form of a script in the
Xerox formalism compilable with either the xfst
(Beesley and Karttunen, 2003) or foma (Hulden,
2009) FST toolkits. The majority of the example
consists of function and transducer definitions com-
mon for compiling any CG-rule, and the last few
lines exemplify the actual compilation of the rules.
Briefly, compiling a rule with the example code, en-
tails as a preliminary the composition of the follow-
ing transducers:

• InitialFilter disallows, for efficiency
reasons, all input that is not correctly format-
ted.

• MarkFormTarget(Wordform,Target)
is a function that performs the provisional
marking of all target readings and cohorts
that could be affected by the rule, given the
wordform and the target tag.

• ConstrainS for SELECT-rules (and
ConstrainR for REMOVE-rules), is a trans-
ducer that checks that we would not remove
the last reading from any cohort, should the
rule be successful and reverts auxiliaries #1#
to #0# in this case. Also, each potentially
affected cohort which is by default headed
by $0$, is mapped ambiguously to $A$ or
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$R$. These symbols serve to denote whether a
change in that cohort is to be later accepted or
rejected, based on the rule contexts.

These three transducers are again composed with
a transducer that restricts the occurrence of the $A$-
symbol to those cohorts where the rule contexts are
in place. This is followed by the composition with
a Cleanup-transducer that restores all auxiliaries,
leaving all readings to only be marked #0# (current)
or #X# (removed), and all heads marked $0$.

The actual implementation is a stand-alone com-
piler written in C using flex and the foma API for
the transducer construction functions. It handles ad-
ditional chained LINK contexts, supports set defi-
nitions as is the case in the standard CG variants.
These additions require dynamic insertions of auxil-
iary symbols based on the number of linked contexts
and defined sets and cannot be captured in static
scripts. However, the compilation method and the
use of auxiliary symbols is identical in the example
script in figure 2. The outputs of the example script
are non-sequential transducers that model CG rules
that can later be converted to left and right sequential
ones for faster application speed.

7 Analysis

Assuming a grammar with G rules and a maximum
of k possible readings per word, applying one rule
transducer to an entire sentence of n possibly k-
way ambiguous words takes time O(nk): we ap-
ply the transducer (or the left-sequential and right-
sequential transducers) to the string representing the
sentence whose string representation length is maxi-
mally nk in linear time. Now, applying an entire set
of G rules in some order can be done in O(Gnk)
time. Making no assumptions about the structure
of the input, in the worst case one such round of
disambiguation only removes a single reading from
a single cohort. Applying the entire set of disam-
biguation rules must then be done (in the worst case)
n(k − 1) times. Hence, the total time required to be
guaranteed of disambiguation of a sentence is of the
order O(Gn2k2).

The improvement over the prior parsers that oper-
ate in O(Gn3k2) as analyzed in Tapanainen (1999)
comes precisely from the ability to compile a con-
straint rule into a FST. In that earlier analysis, it was

SC n −n ∗n ∗ − n

|T | |B| |T | |B| |T | |B| |T | |B|
1 72 44 39 37 47 32 27 31
2 214 77 77 61 74 38 33 37
3 640 143 153 109 108 44 39 43
4 1918 275 305 205 148 50 45 49
5 5752 539 609 397 194 56 51 55
6 17254 1067 1217 781 246 62 57 61
7 51760 2123 2433 1549 304 68 63 67

Table 1: Example sizes (number of states) of single rules
of varying left and right scope represented as transduc-
ers, both individually and as separate left-sequential and
right-sequential transducers. The |T | represents the size
of the single transducer, and the |B|-columns the sums of
the sizes of the LR-sequential ones.

assumed that it takes O(nk) time to resolve whether
to keep or discard some chosen alternative reading
in a cohort. That is, the underlying idea was to test
each reading for possible removal separately. The
improvement—that we can apply one rule to all the
cohorts and readings in a sentence in time O(nk)—
is due to the transducer representation of the rule ac-
tion.

Additionally, the constant G can in theory be
eliminated. Given a set of rules represented as trans-
ducers, R1 . . . Rn, these rules can be combined into
a larger transducer R by composition:

R1 ◦ . . . ◦Rn (3)

Subsequently, this transducer R can be converted
into a left and a right sequential transducer as above,
yieldingO(n2k2). In practice, such a construction is
not feasible, however, because the composed trans-
ducer invariably becomes too large in any actual
grammar. The approach is still partially useful as our
practical experiments show that rules that target the
same tags can be composed without undue growth in
the composite transducer. In actual grammars, it is
often the case that a large number of different rules
operate on removal or selection of the same tag, and
in such a case, the individual rule transducers can
further be grouped and combined to a certain extent.
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###############################################################
# Auxiliary definitions # define Cleanup "#1# " -> "#0# " .o. "#2# " -> "#X# " .o.
############################################################### "$A$ "|"$R$ " -> "$0$ ";
# $0$ = heads all cohorts #
# $1$ = temporary auxiliary for marking cohort # define MarkFormTarget(WORDFORM,TARGET)
# $A$ = temporary auxiliary for marking "acceptance" of rule # "$0$ " -> "$1$ " || _ WORDFORM .o.
# $R$ = temporary auxiliary for marking "rejection" of rule # "#0# " -> "#1# " || _ TARGET ;
# #0# = marks all readings that are alive # define InvCR [[?* ["$A$ ":"$R$ "] [?|["$A$ ":"$R$ "]]*]] .o.
# #X# = marks all dead readings # "#2# "->"#1# " || "$R$ " \"#EOC# "* _ ;
# #1# = temporary auxiliary: marks readings that are about to # define CompileRule(X) X .o. ˜[X .o. InvCR].l .o. Cleanup;
# be retained # define MATCHCOHORT(X) [\"#BOC# "* "#BOC# " \"#EOC# "* DEL ALIVE
# #2# = temporary auxiliary: marks readings that are about to # \DEL* X \"#EOC# "* "#EOC# " ˜$"#BOC# "];
# be removed # define MATCHCOHORTC(X) [\"#BOC# "* "#BOC# " [[DEL DEAD \DEL*]*
# #BOC# = marks a beginning of each cohort # [DEL ALIVE \DEL* X \DEL*] [DEL DEAD \DEL*]*]+
# #EOC# = marks the end of each cohort # DEL "#EOC# " ˜$"#BOC# "];
############################################################### define ANYCOHORT [\"#BOC# "* "#BOC# "

\"#EOC# "* "#EOC# " ˜$"#BOC# "];
define DEL "| " ;
define ALIVE ["#0# "|"#1# "|"#2# "] ; #########################################################
define AUX "$0$ "|"$1$ "|"$A$ "|"$R$ "| # Actual compilation of an example rule using the above #

"#0# "|"#1# "|"#X# "|"#2# "| DEL |"#BOC# "|"#EOC# "; # auxiliary functions and definitions #
#########################################################

define InitialFilter ˜$AUX ["$0$ " ˜$AUX "#BOC# "
([DEL ["#0# "|"#X# "] ˜$AUX]+ DEL) "#EOC# "]* ; # Rule 1: SELECT (V) IF (1 (ADJ));

define Rule1Pre InitialFilter .o.
define NoMarkedReading ˜$["#1# "|"#EOC# "] "#EOC# " ; MarkFormTarget(?*, \DEL* "V " \DEL*) .o.
define NoLiveReading ˜$["#0# "|"#EOC# "] "#EOC# " ; ConstrainS .o.
define NoMarkedHead "$0$ " ˜$["#EOC# "] ; "$A$ " => _ ANYCOHORT MATCHCOHORT(\DEL* "ADJ " \DEL*);
define MarkedHead "$1$ " ˜$["#EOC# "] ; regex CompileRule(Rule1Pre);

define ConstrainS "$1$ " -> "$0$ " || _ NoMarkedReading | # Rule 2: SELECT (X) IF (*-1C (A) BARRIER (B)) (1 (C));
NoLiveReading .o. define Rule21Pre InitialFilter .o.

"#1# " -> "#0# " || NoMarkedHead _ .o. MarkFormTarget(?*,\DEL* "X " \DEL*) .o.
"#0# " -> "#1# ","#1# " -> "#0# " || MarkedHead _ .o. ConstrainS .o.
"$1$ " -> ["$A$ "|"$R$ "] .o. "$A$ " => MATCHCOHORTC(\DEL* "A " \DEL*)
"#1# " -> "#2# " || "$A$ " \"#EOC# "* _ ; [ANYCOHORT - MATCHCOHORT(\DEL* "B " \DEL*)]* _ ;

define ConstrainR "$1$ " -> "$0$ " || _ NoMarkedReading .o. define Rule22Pre InitialFilter .o.
"#1# " -> "#0# " || NoMarkedHead _ .o. MarkFormTarget(?*,\DEL* "X " \DEL*) .o.
"$1$ " -> "$0$ " || _ NoMarkedReading .o. ConstrainS .o.
"$1$ " -> "$0$ " || _ NoLiveReading .o. "$A$ " => _ ANYCOHORT MATCHCOHORT(\DEL* "C " \DEL*);
"#1# " -> "#0# " || NoMarkedHead _ .o.
"$1$ " -> ["$A$ "|"$R$ "] .o. # Rule is split into two parts that are intersected
"#1# " -> "#2# " || "$A$ " \"#EOC# "* _ ; regex CompileRule(Rule21Pre & Rule22Pre);

Figure 2: Complete foma code example that compiles two different CG rules with the method.

8 Some practical experiments

8.1 Grammar compilation

We have built a CG-to-transducer compiler that con-
verts rules in the CG-2 format (Tapanainen, 1996)
into the type of FSTs discussed above. The com-
piler itself relies on low-level finite-state machine
construction functions available in the foma FST li-
brary (Hulden, 2009). To test the compiler against
large-scale grammars, we have run it on Constraint
Grammars of Finnish (Karlsson, 1990),3 and Basque
(Aduriz et al., 1997). Both grammars are quite large:
the Finnish grammar consists of 1,019 rules, and
the Basque of 1,760 rules. Table 2 shows the re-
sults of compiling all rules into individual transduc-
ers. In the table, what is given is the sum total of
states and transitions of all transducers (Σ|T |), and
the sum total of states and transitions for the left and
right sequential transducers (Σ|B|). As can be seen,

3Converted from the original to the more modern notation
by Trond Trosterud at the University of Tromsø in 2010.

the sequentialized transducers together are substan-
tially smaller than the non-sequentialized transduc-
ers. Compilation time for the respective grammars
is currently 2 min 59 sec. (Basque) and 1 min 09
sec. (Finnish).4

8.2 Rule transducer size growth

Naturally, there is a limit to the complexity of rules
that can be compiled into FSTs. Rules that depend
on long-distance left and right contexts will grow
quickly in size when represented as FSTs. Table
1 shows the sizes of different transducers compiled
from a single rule type

SELECT (X) IF (SCOPE (Y)) (4)

where SCOPE represents various rule scopes. For
instance, the scope ∗-3 (condition holds three or
more words to the left) results in a transducer of
39 states, and a left and right sequential transducer
whose sum total of states are 43. Complex rules with

4on a 2.8GHz Intel Core 2 Duo.
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Basque Finnish

Rules 1,760 1,019
Σ|T | 469,938 states 231,786 states

11,229,332 trans. 2,741,165 trans.
Σ|B| 213,445 states 102,913 states

4,812,185 trans. 1,230,118 trans.

Table 2: Sums of sizes of resulting transducers with two
large-scale grammars.

multiple conditions may grow larger than the simple,
single-context rules in the table, but nevertheless, the
results indicate that most grammars should be repre-
sentable as FSTs in practice. In our test grammars,
the longest scope ever used for a condition was 6 co-
horts to the right (in Basque)—although e.g. Vouti-
lainen (1999) reports on sometimes needing slightly
longer contexts than this for a grammar of English
(max. 9).

Since the bimachine factorization used in con-
structing the left and right sequential transducers in-
troduces unique auxiliary symbols to signal pend-
ing ambiguity during the left-to-right pass, which is
later resolved, there is some slight growth of the al-
phabet in these transducers. However, this growth is
fairly small: the sequentialization of all the rules in
the two grammars tested could be performed with a
maximum of 8 auxiliary symbols, usually only one
or two for the majority of the rules.

8.3 Grammar analysis

The fact that we can compile each rule in a Con-
straint Grammar into a finite state transducer also
yields other benefits apart from rule application
speed. Grammars can be analyzed with respect to er-
rors in detailed fashion with methods that go beyond
existing debugging capabilities in CG parsers. For
example, the formalism allows for vacuous rules, i.e.
rules that never act on any input. Consider, for ex-
ample: SELECT (X) IF (NOT 0 (X)).

Such rules are quite a common redundancy in ac-
tual CG grammars and tend to go undetected. While
the above rule is easily seen at first glance to be vac-
uous, more complex rules are more demanding to
analyze in this respect. For example, the rule

SELECT (ADB) IF (0C ADJ-ADB)
(-1 KASEZGRAM OR ERG OR PAR);

was encountered in an actual grammar. It is in-
deed vacuous, but to detect this, we need to analyze
the sets ADJ-ADB, KASEZGRAM, ERG, and PAR, as
well as the logic of the rule.

Using finite-state techniques, we can calculate,
for a rule transducer R its intersection with the set of
all transducers that change #0# symbols into #X#-
symbols.

R ∩ (? :?∗ #0# :#X# ?:?∗) (5)

yielding a transducer whose domain contains all the
inputs that are affected by the rule R, and allowing us
to answer the question whether the rule is vacuous.
Similar techniques can be used to analyze rule re-
dundancy (are two superficially distinct rules equiv-
alent), and rule subsumption; does R1 subsume R2,
making it redundant, or do rules R1 and R2 together
act identically to R3 alone, and so forth.

9 Conclusion & future work

We have presented a method for compiling individ-
ual Constraint Grammar rules into finite-state trans-
ducers. This reduces the worst-case time require-
ments for CG parsing from cubic to quadratic. The
possibility of further conversion of rule transduc-
ers into left and right sequential ones cuts down on
the time constants involved in rule disambiguation.
Testing an implementation against wide-coverage
grammars seems to indicate that the method is
practical even for large grammars. Integrating the
approach proposed here with earlier strategies to
CG-parsing—most important being efficient track-
ing of which rules can potentially apply to an in-
put at any given stage to avoid applying transducers
unnecessarily—remains an important next practical
step.
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Abstract

In this paper we present a system for named
entity recognition and tagging in Serbian that
relies on large-scale lexical resources and
finite-state transducers. Our system recog-
nizes several types of name, temporal and nu-
merical expressions. Finite-state automata are
used to describe the context of named enti-
ties, thus improving the precision of recog-
nition. The widest context was used for per-
sonal names and it included the recognition
of nominal phrases describing a person’s po-
sition. For the evaluation of the named entity
recognition system we used a corpus of 2,300
short agency news. Through manual evalua-
tion we precisely identified all omissions and
incorrect recognitions which enabled the com-
putation of recall and precision. The overall
recallR = 0.84 for types andR = 0.93 for to-
kens, and overall precision P = 0.95 for types
and P = 0.98 for tokens show that our system
gives priority to precision.

1 Introduction

Recognition of named entities (NER) has been a hot
topic in Natural Language Processing community
for more than fifteen years. Ever since their in-
troduction in the scope of the Sixth Message Un-
derstanding Conference (Grishman and Sundheim,
1996) they have not ceased to arouse interest of de-
velopers of various NLP applications. The nature of
proper names, as a sub-class of named entities, for
Serbian was analyzed in (Vitas et al., 2007) espe-
cially in connection with its inflectional and deriva-
tional richness. However, to the best of our knowl-

edge, beside some small-scale experiments, no ef-
fective NER system was yet produced for Serbian. In
this paper we present a working system for recogni-
tion of various named entities in Serbian newspaper
texts, as well as results of the evaluation of this sys-
tem on a corpus of short agency news.

2 General Resources

The primary resources that we have used for the
NER task are Serbian morphological e-dictionaries.
The development of our e-dictionaries follows the
methodology and format known as DELA presented
for French in (Courtois and Silberztein, 1990). The
system of Serbian e-dictionaries covers both general
lexica and proper names, as simple words and com-
pounds, and their level of development is presented
in Table 1. It is obvious from the given data that
dictionaries of compounds are still of a modest size
and need to be further developed. On the other hand,
they comprise not only entries collected from tradi-
tional sources, like dictionaries, but also entries ex-
tracted from processed texts, which enhances their
usability.

Our e-dictionaries provide for a word form with
possible values of grammatical categories (case,
number, gender, etc.), as well as its lemma (or reg-
ular form) together with various additional mark-
ers that specify the derivational, syntactic, seman-
tic or usage features of the lemma. The exam-
ple Grka,Grk.N+NProp+Hum+Inh+GR:ms2v illus-
trates this approach: Grka ‘a native or inhabitant
of Greece’ is a form of a noun (N) Grk, which is
a proper name (+NProp), used for humans (+Hum)
inhabiting a certain place (+Inh) in Greece (+GR)
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Simple words Compounds
lemmas forms lemmas forms

General lexica 89,965 3,843,261 4,531 99,682
Geopolitical proper names 7,873 212,809 720 7,049
Serbian personal names 20,758 275,088
Foreign proper names 6,673 47,087

Total 125,269 4,378,245 5,251 106,731

Table 1: The system of Serbian e-dictionaries

Values of grammatical categories further state that it
is a masculine gender (m) animate noun (v) in the
singular from (s) in the genitive case (2).

The rich set of semantic markers is particularly
useful in the NER tasks. We will discuss these mark-
ers in more detail in section 3. A full list of gram-
matical categories used in Serbian e-dictionaries and
their values as well as an extensive but not exhaus-
tive list of markers is given in chapter 1 of (Krstev,
2008). For proper names, the system of markers re-
lies on (Grass et al., 2002).

Among general resources used are also dictionary
graphs in the form of FSTs that recognize and gram-
matically tag certain classes of simple words and
compounds that are generally not to be found in dic-
tionaries because it is not possible to produce a finite
list of their canonic forms. They cover simple words
such as Roman numerals, interjections with repeti-
tion of one or more graphemes (e.g. jaooo ‘ouuu-
uch’) and acronyms which are not generally known
and regularly used. Dictionary graphs are also used
to correctly tag numerals written with several dig-
its, words or their combination (e.g. 18 milijardi i
800 miliona ‘18 billions and 800 millions’), com-
pound nouns or adjectives starting with digits (e.g.
21-godišnji ‘21 years old’), and ‘inflected’ forms of
acronyms (e.g. MOK-a ‘the genitive case of MOK
— International Olympics Committee’) as well as
their ‘derivational’ forms (e.g. DSS-ovac ‘a member
of DSS (political party)’). The core set of dictio-
nary graphs for Serbian is described in chapter 7 of
(Krstev, 2008).

3 The Selection of Named Entities

The number of named entity types targeted in a NER

task can vary from just a few to quite a number of
them. For instance, in the MUC-6 task only three

tags were introduced: ENAMEX, TIMEX, NUMEX,
each with just a few attributes for further refine-
ment (Chinchor, 1995). On the other hand, Sekine
and Nobata (Sekine and Nobata, 2004) proposed
a named entity hierarchy which included as many
as 200 different categories and which refined ‘stan-
dard’ categories by introducing subcategories, as for
example MEASUREMENT for NUMEX, but also in-
troduced many new categories, such as PRODUCT,
FACILITY, EVENT, etc. A detailed multilevel tax-
onomy is incorporated in the Prolex multilingual
database (Maurel, 2008). Detailed guidelines about
how to tag named entities in texts are given in chap-
ter 13 of TEI Guidelines P5 (Burnard and Bauman,
2008). The guidelines provide tags and attributes for
names, dates, people and places that enable a very
refined description of these basic classes of named
entities; no indications are given, however, as to
how the named entity tagging is to be preformed. A
more detailed discussion on named entities is given
in (Nadeau and Sekine, 2009).

In (Savary et al., 2010) the authors describe the
tools and methods used to produce a linguistic re-
source, within the National Corpus of Polish, in
which named entities are tagged in full detail and
with high accuracy. However, our main objective
was not to build a similar resource, minutely tagged
with named entities in Serbian, that could be used as
a kind of a gold standard in the future, but rather to
develop a comprehensive, working and useful tool
for NER in Serbian newspaper texts. Thus, we chose
to tag entities that are considered as basic and hence
included in most NER systems. In selecting the set of
named entities to be recognized and tagged we also
considered the lexical coverage of our electronic dic-
tionaries, as well as the set of semantic markers
used.
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3.1 Numerical expressions

We considered two types of numerical expressions:
money expressions and measurement expressions.
By a money or measurement expressions we con-
sider an expression consisting of a numeral (written
using digits, words or their combination) followed
by a currency or a measurement unit. The major-
ity of currencies in use today are in our dictionary
(marked with +Cur), as well as major measurement
units (marked with +Mes). Besides their full names,
currencies and measurement units in numerical ex-
pressions can be expressed by acronyms (e.g. USD),
abbreviations (e.g. kg) and special symbols (e.g. e).

3.2 Temporal expressions

Two types of temporal expressions were considered:
dates and times. In both cases, we distinguished ex-
pressions that represent a moment (however vaguely
expressed) from those that represent a period (od
1968. godine do danas ‘from the year 1968 until to-
day’, od 11 do 13 sati ‘from 11 to 13’). As for dates,
we were not looking only for precisely determined
dates as in 13. decembra 2005. ‘on December 13th,
2005’ but also for less formal expressions in which
the year is omitted and the current year is presumed
(23. novembra ‘on November 23rd’), or the year can
be inferred (15. avgusta prošle godine ‘last year on
August 15th’). We were also looking for expres-
sions in which an exact day is not mentioned but the
year is explicitly given (u martu 1999. g. ‘in March
1999’), the year can be inferred (u aprilu sledeće go-
dine ‘in April next year’), or the current year is pre-
sumed (za početak novembra ‘for the beginning of
November’). Finally, we were looking also for ex-
pressions in which only the year is mentioned; how-
ever, in that case the word godina ‘year’ must also
appear in full or abbreviated form (za 2004. godinu
‘for the year 2004’). The names of days were rec-
ognized if they were related to a date (u ponedeljak
2. januara ‘on Monday, January 2nd’), but not if they
appeared on their own. Formal expressions of date
and time were also recognized, such as 17. IV 2006
or 10:01h.

3.3 Name expressions

We considered two types of name expressions:
geopolitical names and personal names. In rec-

ognizing geopolitical names we distinguished four
types: names of settlements (Njujork ‘New York’),
names of states (Nemačka ‘Germany’), hydronyms
(Dunav ‘Danube’, Atlantski okean ‘Atlantic’), and
oronyms (Alpi ‘Alpes’). In recognizing names of
states we were looking for both formal names (Nar-
odna republika Kina ‘Peoples Republic of China’)
and names in daily use (Kina ‘China’). Some fre-
quently used acronyms of states were also recog-
nized (SAD ‘USA’). Recognition of these geopolit-
ical names was based on semantic markers in our
e-dictionaries: besides the +Top marker, given to
all geopolitical names, additional markers are as-
signed to settlements +Gr, states +Dr, bodies of wa-
ter +Hyd, and elevations +Oro.

Recognition of personal names was also based
on semantic markers in our e-dictionaries: namely,
the markers +First, +Last, and +Nick are assigned
to first names, surnames, and nicknames respec-
tively. In order to avoid the ambiguity related to
personal names in Serbian we recognized only full
names, that is, names consisting of a first name and
at least one surname. We do not see that as a se-
rious drawback because in newspaper texts all per-
sons, apart from those very prominent — like Tito
and Milošević at their time — are referred to at
least once by their full name. Various titles were
also recognized when related to a person’s full name
(prof. dr Kata Lazović). Although a person’s func-
tion, profession or role in the society is usually not
considered as a named entity, we nevertheless rec-
ognized them when they directly preceded or fol-
lowed a personal name, thus forming a nominal
phrase: prof. dr Slavica Ðukić-Dejanović, direktor
Kliničko-bolničkog centra ‘Prof. Dr. Slavica Ðukić-
Dejanović, director of the Hospital Medical Center’
and Predsednik Odbora za poljoprivredu u Vladi Re-
publike Srbije Jela Veselić ‘the president of the Agri-
cultural Committee in the Government of the Re-
public of Serbia Jela Veselić’. We think that this
adds a significant value to the already recognized
personal name.

4 Development of Local Grammars

Although our NER system strongly relies on e-
dictionaries of simple words and compounds, the us-
age of dictionaries without additional resources can
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not result in a successful system due to a high level
of ambiguity of both word forms and lemmas. There
is an example that illustrates well the nature of this
problem. In Serbian, po is a very frequently used
preposition. The same string with the upper-case ini-
tial, Po, can represent four different proper names:
the Italian river Po, the French commune Pau (on
the northern edge of the Pyrenees), part of a personal
name as in Edgar Allan Poe, and finally the chemi-
cal symbol for Polonium1. This and many other sim-
ilar examples suggest that agreement and contextual
constraints have to be taken into consideration if we
want to obtain results with high recall and precision.

4.1 Personal Names
Due to the complexity and ambiguity of personal
names in Serbian a simple lexical pattern consist-
ing of a first name and surname, written in Uni-
tex formalism (Paumier, 2008) as<N+Hum+First>
<N+Hum+Last> would recognize full personal
names with a very low precision (this is explained in
full detail in chapter 6 of (Krstev, 2008)). However,
precision can be significantly improved without
any adverse effect on recall if case-number-gender
agreement conditions are taken into account. Thus,
for example, the pattern <N+Hum+First:ms2>
<N+Hum+Last:ms2> recognizes masculine names
(m) in the genitive case (2) while the pattern
<N+Hum+First:fs2> <N+Hum+Last:s1> recog-
nizes feminine names (f ) in the genitive case. Note
that the patterns for masculine and feminine names
differ since surname parts in Serbian feminine full
names do not inflect. However, Unitex FSTs that
we used for recognition of personal names are more
complex than these simple patterns since they take
into account additional features of personal names,
such as the optional use of titles, nicknames, an ad-
ditional surname for women, middle name or initial,
as well as the order in which the first name and the
surname appear, etc.

Special graphs were produced for recognizing a
person’s position in the society that precedes or fol-
lows a personal name forming thus a nominal phrase
(Figure 1). Such graphs recognize following basic
forms of phrases:

1It should be noted that all foreign names in Serbian texts
are transcribed, regardless of whether they are written in Latin
or Cyrillic alphabet.

1. generalni sekretar (udruženja pravnika Sr-
bije)gen.phrase — Secretary General of the
Lawyers Association of Serbia;

2. šef službe (za mala i srednja preduzeća)FOR-

prep-phrase — Head of service for small and
medium enterprises;

3. direktor (i većinski vlasnik)AND-conj-phrase — Di-
rector and majority shareholder;

4. ministar (omladine (i sporta)AND-conj-

phrase)gen.phrase — Minister of Youth and
Sports;

5. ministar prosvete (u vladi Republike Srbije)IN-

prep-phrase — Minister of Education in the gov-
ernment of the Republic of Serbia;

6. izvršni direktor (Beogradske banke
ADabb)gen.phrase — Executive Director of
Belgrade Bank AD.

These basic structures can be combined in various
ways to recognize more complex phrases as demon-
strated by the example Mirjana Dragaš, predsednik
Upravnog odbora Republičkog zavoda za tržište
rada i zamenik saveznog ministra za rad i socijalna
pitanja ‘Mirjana Dragaš, Chairman of the Steering
Committee of the Republic Institute for Labour Mar-
ket and Deputy Federal Minister of Labour and So-
cial Affairs’.

We already explained how we used graphs in or-
der to improve precision in recognition of personal
names. These graphs perform well on names that
are in our e-dictionaries, but fail to recognize a full
name if one or more of its constituents are unknown.
Our e-dictionaries of personal names cover Serbian
and English names and only a small number of
other foreign names transcribed into Serbian. Con-
sequently, if our graphs relied on e-dictionaries only,
they would fail to recognize most foreign names in
Serbian texts, except common English names. For
that reason we developed additional graphs that im-
prove recall of recognition of personal names. These
graphs rely on already developed graphs that rec-
ognize a person’s position in the society. Basically
they function like this: if a phrase recognized as a
(potential) person’s position is preceded or followed
by two unknown words both with upper-case initial
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Figure 1: The graph recognizing functions, professions and roles preceding or following a personal name in the
genitive case

or one personal name and one unknown word with
upper-case initial then these two words are consid-
ered to form a full personal name (Figure 2).

Two examples of the recognition of personal
names that were not in our e-dictionaries are: Mini-
star odbrane Rumunije Teodor Atanasiu ‘Romanian
Defence Minister Teodor Atanasiu’ (only surname
unknown) and Gerasimov Ivanovič, član kolegijuma
saveta med̄unarodnog saveza pravnika ‘Gerasimov
Ivanovich, a member of the Collegium of the Coun-
cil of the International Lawyers Association’ (both
first name and surname unknown). We developed
148 graphs that recognize personal names and their
positions.

4.2 Geopolitical Names

Geopolitical names are ambiguous by themselves,
namely, the same name can represent two or more
different entities: a city and a state (e.g. Luksem-
burg ‘Luxembourg’), mountain and a region (e.g.
Balkan), etc., but they can also be ambiguous with
other proper names or even common words. Thus,
as in the case of personal names, tagging of geopolit-
ical names cannot rely on e-dictionaries only. An ad-
ditional problem in Serbian arises from the fact that
the names of a number of countries coincide with the
feminine gender relational adjectives derived from
these names: e.g. Francuska ‘France’ can also mean
‘French’. Thus, various constraints have to be used
in order to keep the precision high.

Graphs for geopolitical names make intensive use
of positive and negative right and left contexts im-

plemented in Unitex (section 6.3 (Paumier, 2008)).
We will illustrate how these graphs function on the
example of the set of graphs recognizing names of
states, which consists of four sub-graphs:

1. The basic graph recognizes all compound state
names, all abbreviated states names, but only
those simple word state names that are not
ambiguous with any other proper or common
name. To that end we use negative right con-
text (Figure 3).

2. For ambiguous simple word state names that
appear in a text in the genitive case we use
a graph that recognizes such a name if some
trigger noun appears before it, e.g. predsednik
‘president’, skupština ‘parliament’, etc. To that
end we use the left context (the second part of
Figure 3).

3. For simple word state names that are ambigu-
ous with relational adjectives we use a graph
that recognizes such a name if it is not fol-
lowed by a common noun (thus preventing
false recognitions in noun phrases like Fran-
cuska banka ‘French bank’) or if it is fol-
lowed by an auxiliary verb (thus allowing cor-
rect recognitions in phrases like Francuska je
odlučila ‘France has decided’). To that end we
use both positive and negative right contexts
(third part of Figure 3).

4. Finally, we recognize as a state name every am-
biguous simple word state name that appears in
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Figure 2: The graph that recognizes and tags a partially unknown personal name in the genitive case if followed by a
person’s position also in the genitive case

some kind of a list with other state names, pro-
vided that this list contains at least one unam-
biguous state name. At the bottom of Figure 3
is represented the path in a graph that matches
a list of names in which the first state name is
unambiguous, which is established by a basic
graph described in item 1. This path will recog-
nize two state names in Srbija i Hrvatska ‘Ser-
bia and Croatia’, because the first name is un-
ambiguous.

A similar approach is implemented for other types
of geographic names. We developed 23 graphs for
recognition of geopolitical names.

4.3 Other Named Entities

Recognition of money and measurement expres-
sions also requires intensive use of graphs, partic-
ularly for the recognition of the numerical part of
the expressions. For that, however, no special graphs
were produced, since 40 dictionary graphs for recog-
nition of multi-word numerals were already avail-
able and are in regular use for text processing, as
described in section 2. Graphs for numerical ex-
pressions rely on information from e-dictionaries,
and syntactic structures they have to cover are rather
simple. We developed 12 graphs for recognition of
measurement expressions and 10 for recognition of
money expressions.

A collection of graphs was also produced for
recognition of temporal expressions. These graphs,
similar to the graphs for numerical expressions, use
available dictionary graphs for multi-word numer-
als. As opposed to graphs for all other named en-
tities, they use information from e-dictionaries to a
much lesser degree. However, the expressions they
have to recognize come in various different syntac-
tic forms, which makes these graphs rather complex.
We developed 29 graphs for recognition of date ex-
pressions and 14 for recognition of time expressions.

5 The Experiment and Evaluation

To evaluate the results produced by our graphs we
used a collection of 2,300 short agency news dated
from May 2005 to December 2006. The size of
this corpus is approximately 117,000 simple word
forms, and 4,273 sentences. Thus, an average news
item consists of a little less than 2 sentences (1.86),
and 51 simple word forms. This collection of news
pertains to Serbian politics, both internal and exter-
nal.

The graphs were applied to the corpus in the fol-
lowing order: measurement expressions, money ex-
pressions, dates, personal names and roles, time of
day, geopolitical names. This order is the sim-
ple consequence of the fact that the graphs were
applied in the order in which they were actually
produced. The tagged texts where then handed
to students who read them carefully and checked
all the inserted tags2. The students also inserted
a new attribute (PROVERA, ‘check’) into every tag
with the value ‘OK’ if the named entity was cor-
rectly recognized and tagged, or ‘NOK’ if this was
not the case or if it was only partially recognized.
If the named entity was totally missed, the stu-
dents inserted the appropriate tag with the value
‘MISS’ in the check attribute. One such exam-
ple is: . . . od <RS PROVERA=‘MISS’>generalnog
sekretara NATO <IME PROVERA=‘MISS’>Jap de
Hop Shefera </IME></RS>. . . ‘by NATO Secre-
tary General Jaap de Hoop Scheffer. . . ’.3

It was not always easy to decide which value
for the check attribute PROVERA is the most appro-
priate. We at present neglected the fuzzy nature
of some named entities and always treated as cor-
rect, for instance, geographic place tags, although

2This task was accomplished by students of Library and In-
formation Sciences at the Faculty of Philology, University Bel-
grade within the scope of the course ‘Information Retrieval’
during academic years 2009/2010 and 2010/2011.

3The tag IME (name) is embedded in the tag RS (reference
string) which is used for tagging a position in the society.
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Figure 3: Simplified sub-graphs for recognition of state names

their actual usage could belong to another category,
like organization. Also, it is clear that in razgo-
vori Beograda i Prištine ‘talks between Belgrade
and Priština’, Belgrade and Priština represent gov-
ernment institutions rather than locations. The au-
thors in (Martineau et al., 2007) describe the NER

approach for French which use the wider context to
resolve such ambiguities. Their approach relies on a
thorough description of phrasal verbs that does not
yet exist for Serbian.

The results of our experiment are summarized in
Table 2. The sample we used contained 9,677 NE

tokens and 2,844 NE types, hence 3.4 tokens per
type. At the top of the list of most frequent to-
kens are names of countries (TOP-C) followed by
personal names (NAME), 3,115 and 3,056, respec-
tively, accounting for 32.2% and 31.6% of the total
number of tokens. Names of settlement (TOP-S) fol-
low closely with 28.9%, and these three categories
account for 92.7% of the total number of NE tokens.
As for NE types, half of them represent personal
names, another 20.5% are settlements followed by
10.9% for countries, reaching all together 81.4% of
total NE types. The highest token/type ratio is 10.0
for names of countries and the lowest, one token per
type, for temporal expressions representing date pe-
riods (DATE-P), which does not come as a surprise.

If we look at NE tokens only, the precision of our
NER system is 0.98 whereas its recall is 0.93, yield-
ing an overall F-measure of 0.95. The highest preci-
sion of 1.0 was reached for date periods, followed
by names of countries, and names of settlements,
both with a precision of 0.99. On the other hand,
the lowest precision of 0.76 was achieved for names
of water bodies (TOP-W), followed by 0.83 for tem-
poral expressions representing time periods (TIME-
P). However, names of water bodies have a recall of
1.0, hence an overall F-measure of 0.87. The low-
est recall of only 0.56 for NE representing measures
can be explained by an oversight in the construction
of relevant graphs. Namely, we failed to include the
units for time in the graphs, and since these units ap-
pear quite often in newspaper texts the graphs con-
sequently failed to recognize them. This flaw will,
of course, be removed in the future. Named enti-
ties representing measures have also the lowest F-
measure of 0.71 followed by time periods with 0.77.
On the other end are names of countries, which have
an F-measure of as much as 0.99.

If we look at NE types, the results do not differ
very much. The overall precision is 0.95, the recall
0.84, and the F-measure 0.89. The highest possi-
ble precision of 1.0 goes once again to date periods,
but this time closely followed by currencies (CURR)
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OK NOK MISS Token/ Precision Recall F-measure
Token Type Token Type Token Type Type Token Type Token Type Token Type

TOP-C 3,088 292 32 13 27 18 10.0 0.99 0.96 0.99 0.94 0.99 0.95

TOP-S 2,675 497 30 18 125 87 4.8 0.99 0.97 0.96 0.85 0.97 0.90

CURR 184 138 5 4 14 11 1.3 0.97 0.97 0.93 0.93 0.95 0.95

DATE-M 348 247 31 26 20 18 1.4 0.92 0.90 0.95 0.93 0.93 0.92

NAME 2,558 1,135 85 58 498 287 2.1 0.97 0.95 0.84 0.80 0.90 0.87

TIME-M 29 27 3 3 6 3 1.2 0.91 0.90 0.83 0.90 0.87 0.90

TOP-W 13 9 4 4 0 0 1.4 0.76 0.69 1.00 1.00 0.87 0.82

TOP-H 19 10 1 1 5 3 1.8 0.95 0.91 0.79 0.77 0.86 0.83

DATE-P 12 12 0 0 6 6 1.0 1.00 1.00 0.67 0.67 0.80 0.80

TIME-P 5 4 1 1 2 2 1.2 0.83 0.80 0.71 0.67 0.77 0.73

MEASURE 24 21 1 1 19 17 1.1 0.96 0.95 0.56 0.55 0.71 0.70

TOTAL 8,955 2,392 193 129 722 452 3.4 0.98 0.95 0.93 0.84 0.95 0.89

Table 2: Results of the experiment

and settlements, both at 0.97. Water bodies are once
again at the bottom of the precision list with a score
of 0.69, but due to a recall of 1.0, their F-measure is
0.82. Named entities representing measures have the
lowest recall of 0.55 as well as the lowest F-measure
of 0.70. The top of the F-measure list is a tie be-
tween names of countries and currencies, both with
0.95.

Finally, we would like to mention also the suc-
cess rate of the recognition of a person’s position in
the society (RS). As these are not usually consid-
ered as NEs, we did not include them in the gen-
eral overview table. However, for 2,991 tokens and
1,129 types related to such expressions, the preci-
sion was 0.88 and 0.94 respectively, with a recall of
0.84 for tokens and 0.78 for types, thus making their
F-measure almost equal (0.86 vs. 0.85). Given the
complexity and variety of such expressions this can
be perceived as a very successful outcome.

The analysis of the obtained results showed that
the causes of omissions and incorrect tagging were
various and can be classified as follows:

• Typographic errors in the source text;

• Absence of a name in e-dictionaries;

• Oversights and minor deficiencies in the con-
struction of graphs;

• Failure of a graph to cover all syntactic con-
structions.

Not much can be done in case of the first cause
but our experiment proved very useful in detecting

omissions and deficiencies in our e-dictionaries and
graphs. Reducing the errors and omissions result-
ing from the fourth cause listed is most demanding
in the case of graphs that recognize a person’s posi-
tions, and it will ask for either production of addi-
tional graphs or substantial reconstruction of some
of the existing ones. We will here only mention the
most frequent cases.

• . . . predsednik makedonske Komisije za
odnose sa verskim zajednicama Cane Mo-
janovski. . . ‘. . . President of the Macedonian
Commission for Relations with Religious
Communities Cane Mojanovski. . . ’ — the
graph describing the position of a person
(Figure 1) does not allow the preposition
phrase sa ‘with’ within the preposition phrase
za ‘for’. The question is how much would be
lost in precision by enhancing this graph to
encompass such structures.

• Our graphs failed in many cases when the text
contained a list of personal names with their
positions, due to a lack of a straightforward link
between the name and the position. One ex-
ample is: Predsednici Bugarske i Srbije Georgi
Parvanov i Boris Tadić ‘Presidents of Bulgaria
and Serbia Georgi Parvanov and Boris Tadić’.

• Our graphs failed in cases of nested structures
as such cases were not envisaged, e.g. portparol
glavnog tužioca Haškog tribunala Karle del
Ponte Florans Artman ‘spokesman for Chief
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Prosecutor of Hague Tribunal Carla del Ponte,
Florence Hartmann’.

6 Future Work

Although we see the evaluation results of our NER

system as promising, there is still much to be done.
Besides improving the existing system on the ba-
sis of the evaluation results, our future work will
concentrate on enhancing NER system to recognize
more NE categories. The classical entity-type still
missing is organization, but in addition to that, exist-
ing e-dictionaries of Serbian support recognition of
many other categories, such as inhabitants, events,
urban proper names etc. We also plan to improve
the performance of the NER system by organiz-
ing graphs in cascades, as suggested for French in
(Friburger and Maurel, 2004) and by recognizing
nested NE, especially recursive embedding of nomi-
nal phrases (see (Finkel and Manning, 2009)). After
achieving these tasks we will move from NE recog-
nition to information extraction by tackling the prob-
lem of normalizing the recognized NEs.
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Abstract

It is well known that context-free parsing
can be seen as the intersection of a context-
free language with a regular language (or,
equivalently, the intersection of a context-free
grammar with a finite-state automaton). The
present article provides a practical efficient
way to compute this intersection by converting
the grammar into a special finite-state automa-
ton (the GLR(0)-automaton) which is subse-
quently intersected with the given finite-state
automaton. As a byproduct, we present a gen-
eralisation of Tomita’s algorithm to recognize
several inputs simultaneously.

1 Introduction

At the least since the paper of Billot and Lang
(1989) which defined parsing as the intersection of a
context-free language (given by a grammar) with a
regular language (the “input”, which can be seen as
a simple finite-state automaton) the importance of
the notion of intersection for parsing purposes be-
came apparent. Intersection is first of all defined on
the language level: Intersect the (possibly infinite)
set of strings which the grammar generates with the
(possibly infinite) set of strings the finite-state au-
tomaton accepts. Since this may not be done effec-
tively due to the infiniteness of the involved sets, the
operation has to be lifted to the more compact level
of the devices generating the sets.

In principle, there are at least two ways to inter-
sect a context-free grammar G with a finite-state au-
tomaton A:

1. Convert G into a suitable pushdown automaton
(PDA) M and intersect A with M to get M ′.
Then extract the result grammar G′ from M ′.

2. Intersect G and A directly.

With respect to 1., it is well known that the class
of pushdown automata is closed under intersec-
tion with finite-state automata (henceforth FSA) (cf.
Hopcroft and Ullman (1979)). The standard con-
struction assumes a deterministic FSA (see next sec-
tion) and operates both automata in parallel: When-
ever the PDA makes a move on a certain input sym-
bol a, this move is combined with a corresponding
move of the FSA on a (see Hopcroft and Ullman
(1979) for details of the construction).

Method 1 works most efficiently in case of gram-
mars in Greibach normal form (GNF). Remember
that a context-free grammar is in GNF if each of its
rules conforms to the formatA→ aB1 . . . Bk where
a is an alphabet symbol, A is a nonterminal (phrase)
symbol and B1 . . . Bk is a possibly empty sequence
of nonterminals. Given a grammar in GNF, it is
very easy to construct a pushdown automaton from
it: when the PDA has A on its stack and next reads
an a, it replaces A by B1 . . . Bk. Every context-free
grammar can be converted into a weakly equivalent
grammar in GNF (cf. Hopcroft and Ullman (1979)),
but this changes the trees generated by the grammar
and may lead to a substiantial increase in grammar
size.

Method 2 was presented in Bar-Hillel et al. (1964)
and works in the following way: Consider a gram-
mar rule X0 → X1X2 . . . Xk. Then choose an arbi-
trary state sequence p0 . . . pk from the state set Q of
the FSA and create a new grammar rule

〈p0, X0, pk〉 →
〈p0, X1, p1〉 〈p1, X2, p2〉 . . . 〈pk−1, Xk, pk〉 .

(1)
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Leaving the grammar fixed, the time complexity of
this method is in O(|Q|r+1) where r is the length
of the longest right-hand side of a grammar rule.
The drawback of the method is that it creates a great
amount of useless nonterminals and rules. Neder-
hof and Satta (2008) improved the algorithm by
adding simultaneous top-down and bottom-up filter-
ing mechanisms to prevent the creation of useless
symbols which of course does not change its worst-
case complexity. This upper bound can be reduced
to O(|Q|3) by binarising the grammar rules (which
naturally changes the generated trees). However, it
is not clear how the algorithm behaves in practice on
grammars with several thousands of rules ubiquitu-
ous in natural language processing.

In the present paper, we propose another algo-
rithm based on the creation of a GLR(0) automa-
ton which is subsumed by method 1 above. The
rest of the paper is organised as follows: Section 2
briefly defines the relevant notions. Section 3 de-
fines GLR(0) automata and presents an algorithm
how to intersect them with FSAs. In Section 4 we
report some experiments conducted with a big gram-
mar extracted from a treebank.

2 Preliminaries

An alphabet Σ is a finite set of symbols. A string
x = a1 . . . an over Σ is a finite concatenation of
symbols ai taken from Σ. The length of a string
x = a1 . . . an – symbolically |x| – is n. The empty
string is denoted by ε and has length zero. Let Σ∗

denote the set of all finite-length strings (including
ε) over Σ.
A finite-state automaton (FSA) A is a 5-tuple
〈Q,Σ, q0, δ, F 〉withQ being a finite set of states; Σ,
an alphabet, q0 ∈ Q, the start state; δ : Q×Σ 7→ 2Q,
the transition function; and F ⊆ Q, the set of final
states.
Given two states p, q ∈ Q, a path from p to q in A
– symbolically p  

A
q – is a sequence s0s1 . . . sk of

states, such that s0 = p, sk = q, and for all 1 ≤
i ≤ k: ∃a ∈ Σ : si ∈ δ(si−1, a). Given a path
π = p  

A
q, define labels(π) as the concatenation

of the symbols labeling the transitions along π. For
an empty path π = s0, labels(π) = ε. The length of
path π = s0s1 . . . sk – symbolically |π| – is k. We

use p k 
A
q to denote a path from p to q of length k

in A.
An FSA is called deterministic if for all symbol-
state pairs q, a, |δ(q, a)| ≤ 1. For a determin-
istic FSA, we may modify δ to be a partial func-
tion Q × Σ 7→ Q. When appropriate, we use δ as
a total function by adding a special element ⊥ to
Q denoting failure. For deterministic FSA, we use
sometimes the notation p a−→ q to denote transitions:
p

a−→ q if δ(p, a) = q.
Define δ∗ : Q × Σ 7→ G as the reflexive and tran-
sitive closure of δ: ∀q ∈ Q, δ∗(q, ε) = q and ∀q ∈
Q, a ∈ Σ, w ∈ Σ∗ : δ∗(q, aw) = δ∗(δ(q, a), w).
Given a (deterministic) FSA A = 〈Q,Σ, q0, δ, F 〉,
the language L(A) ofA is defined as: L(A) = {x ∈
Σ∗ | δ∗(q0, x) ∈ F}.
A semiringK is a 5-tuple (W,⊕,⊗, 0, 1) such that 1.
W is a non-empty set, the carrier set of the semiring,
2. (W,⊕, 0) is a commutative monoid, 3. (W,⊗, 1)
is a monoid, 4. ⊗ distributes over ⊕, and 5. 0 is an
annihilator for ⊗: ∀x ∈ W : x ⊗ 0 = 0 ⊗ x =
0 . In the following, we will identify a semiring K
with its carrier set W . Common semirings are the
tropical semiring T = 〈R,min,+,∞, 0〉 and the
probabilistic semiring P = 〈R,+, ·, 0, 1〉.

A weighted context-free grammar (WCFG) G
over a semiring K is a 4-tuple 〈N,Σ, S, P 〉: N
is a finite set, the non-terminals, Σ is an alphabet,
S ∈ N the start symbol, and P a finite set of pairs
〈A → β, c〉 ∈ (N × (Σ ∪ N)∗) × K, the set of
weighted rules. A WCFG without rule weights is
called a context-free grammar (CFG).

In particular, ifK is the probabilistic semiring and
if we define an additional condition on σ:

∀A ∈ N :
∑

〈A→β,c〉∈P
c = 1 , (2)

then G is called a probabilistic context-free gram-
mar (PCFG) (see also Nederhof and Satta (2008)).
Fig. 1 shows a toy PCFG.

1: S → NP VP / 1.0 2: NP → DET N / 0.6
3: NP → NE / 0.3 4: NP → NP PP / 0.1
5: PP → P NP / 1.0 6: VP → V / 0.5
7: VP → V NP / 0.4 8: VP → VP PP / 0.1

Figure 1: A toy PCFG with numbered rules. Probabilities
are stated after /.
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Let G = 〈Σ, N, S, P 〉 be a context-free grammar,
and let V beN ∪Σ. Define a relation⇒ ⊆ V ∗×V ∗
as follows: α ⇒ β if α = xAγ, β = xψγ, x ∈
Σ∗, γ ∈ V ∗ and A→ ψ ∈ P .

Let ∗⇒ be equal to
⋃
k≥0

k⇒. A leftmost derivation
of a string w ∈ Σ∗ is a sequence of elements from
⇒ such that S ⇒ X1 . . . Xk ⇒ . . . ⇒ w. We
abbreviate this to S ∗⇒ w. The language of a CFGG
– symbollically L(G) – is defined as L(G) = {w ∈
Σ∗ | S ∗⇒ w}. Finally, given a CFG G and an FSA
A, define the intersection of G and A as follows:
G∩ = G ∩A if L(G) ∩ L(A) = L(G∩).

The notion of a derivation and the language of a
CFG carry over to WCFGs, as well as the notion
of intersection. See Nederhof and Satta (2008) for
details.

3 The Intersection Algorithm

The main idea to compute the intersection of a
weighted context-free grammar G with a finite-state
automaton A is stated in Algorithm 1.

Algorithm 1: INTERSECTION OF A WCFG AND AN FSA

Input: WCFG G = 〈N,Σ, S, P 〉 over semiring K
Input: FSA A = 〈Q,Σ, q0, δ, F 〉
Output: WCFG G∩ = 〈N∩,Σ, S∩, P∩〉 over semiring K with

N∩ ⊆ N ×Q and P∩ ⊆ (N∩ × (N∩ ∪ Σ)∗)×K
1 Construct GLR(0) automaton M for G
2 Compute M∩, the intersection of M and A
3 Extract G∩ from M∩

In line 1, the WCFG is converted into a GLR(0)
automaton. Given a WCFG G = 〈N,Σ, S, P 〉
over K, a GLR(0) automaton (for Generalised LR)
M = 〈Q,∆, q0, F, δ, τ〉 over K is a finite-state au-
tomaton with Q, F and q0 defined as for FSAs; ∆
is N ∪ Σ. Since M is required to be determinis-
tic, δ : Q × ∆ 7→ Q is a partial transition function
which maps – when defined – a state q and a symbol
a ∈ ∆ to a follow state. τ : Q 7→ 2P is a mapping
from states to subsets of grammar rules (indices).1

GLR(0) automata are computed from grammars
by an algorithm adapted from a standard algorithm

1In the original definition of LR(k) automata, τ is a par-
tial function Q 7→ P . The presence of multiple reduce actions
would indicate an ambiguity (a reduce/reduce conflict) which
entails that the language of the underlying grammar G is not a
LR(k)-language. See Aho and Ullman (1972).

(cf. Aho et al. (1986, p. 216ff.)) which will be
explained in greater detail in Section 3.1.

Fig. 2 gives a example GLR(0) automaton for the
grammar from Fig. 1. A GLR(0) recognizer is con-

Figure 2: The GLR(0) automaton for the grammar in Fig.
1. “re n” means: “reduce with rule n”. A transition from
state p to state q corresponds to a (terminal or nontermi-
nal) shift operation.

trolled by a GLR(0) automaton M . Given some in-
put string w, it creates another GLR(0) automaton
M ′ as a result by repeatedly applying its two main
operations:2

• Shift: When the recognizer reads an input sym-
bol a ∈ Σ in state q, it adds a transition q a−→
δ(q, a) to M ′.

• Reduce: When while processing an input
string, the parser reaches a state q for which
τ(q) is defined, for each rule A → α ∈
τ(q), find all predecessor states p such that
labels(p  q) = α.3 Then add a transition

p
A−→ δ(p,A) to M ′ (which may be interpreted

as a nonterminal shift). δ(p,A) is also called a
GOTO state.

The GLR(0) recognizer starts in state q0 and scans
the input string from left to right. It applies the oper-
ations shift and reduce until either an accepting state

2Actually, the LR(k) method was invented for parsing deter-
ministic languages like programming languages. In these cases
it is not necessary to create an output automaton. Instead, a sim-
ple stack is used on which state symbols are pushed and from
which they a popped during a reduction.

3We momentarily disregard the rule weight here.
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f ∈ F is reached (in which case f is also marked as
final in M ′) or the GLR(0) automaton blocks which
causes an error to be signaled.

Continuing with Algorithm 1, line 2 intersects the
GLR(0) automaton M with the FSA A, resulting in
a GLR(0) automaton M∩.

Finally, in line 3, the WCFG G∩ generating
L(G) ∩ L(A) is extracted from M∩.
The following subsections explain all three steps in
greater detail.

3.1 Efficient Construction of GLR(0) Automata
The construction of a GLR(0) automatonM is based
on the computation of the collection of LR(0) item
sets. Here, the crucial notion is that one of a dot-
ted rule. A dotted rule is a WCFG rule with a
dot somewhere in its right-hand side. This dot in-
dicates which part of the rule was already success-
fully applied and which part has yet to be matched.
An example with respect to the grammar in Fig. 1
is: NP → NP • PP. A dotted rule is also called
a LR(0) item. To compute M , we start with a set
containing only the LR(0) item S′ → •S where S′

is a new super start symbol. Then the main op-
eration of the algorithm – closure – is applied to
it. Basically, given a grammar G = 〈N,Σ, S, P 〉,
closure({A → α • Bβ}) (with A,B ∈ N and
α, β ∈ (N ∪ Σ)∗) computes on the basis of G the
symbols which are expected next given that the au-
tomaton’s expectation is to read a B.4

In our example case,

q0 = closure({S′ → • S}) =


S′ → • S
S → • NP VP
NP→ • DET N
NP→ • NE


(3)

The δ-function of M is computed as follows:

δ(q,B) = closure({A→ αB • β | A→ α •Bβ ∈ q}) .
(4)

For example, δ(q0,NE) = closure({NP →
NE •}) = {NP→ NE •} .

Let the state set Q of M be the set of all LR(0)
item sets that can be reached by recursively applying
δ and closure to q0 and all item sets originating from
it.

4Due to space limitations, we cannot state the definition of
the closure algorithm. Please refer to Aho et al. (1986, p. 223)
for the details.

If a state q contains an item A → α •, the rule
A → α is added to τ(q). M reaches an accepting
state f if the item set contains the LR(0) item S′ →
S • .

For grammars not having the LR(0) property (for
example, ambiguous grammars), the construction
introduces conflicts, see Aho and Ullman (1972).
Nevertheless, the algorithm leads to deterministic
GLR(0) automata for all grammars.

The naive approach representing LR(0) states as
sets of dotted rules leads to increased computation
times for bigger grammars, for example those ex-
tracted from treebanks. For example, the gram-
mar extracted from the TiGer treebank (Brants et al.
(2002)) has over 14,300 rules.

A better approach is replacing the dotted rule by a
pair consisting of the rule index and the current po-
sition of the dot. But even then quite big item sets
may result since treebank grammars often have sev-
eral thousand rules for expanding a single nontermi-
nal symbol.5 Since the right hand sides of grammar
rules expanding a given nonterminal symbol often
share common prefixes, left-factoring the grammar
(cf. Aho et al. (1986)) is an option when the struc-
ture of the parse tree is not of concern. In general,
this is not the case in using (weighted) grammars for
parsing natural languages.

Instead of altering the grammar, we prefer a more
sophisticated representation of the dotted rules. All
right hand sides αi of a set of rules {B → αi} ex-
panding B can be combined into a disjunctive reg-
ular expression r = α1 + α2 + . . . + αk. r can be
converted into a deterministic weighted finite-state
machine by standard techniques (cf. Hopcroft and
Ullman (1979)). The result is a trie-like left-factored
automaton AB representing the right hand sides of
the rules for B. For the final states of AB , we define
a function ρ : Q → I , where I is the set of rule in-
dices of the WCFG. For a given final state q of AB
(representing a fully found right hand side α of a
rule expanding B), ρ(q) = i if ∃c ∈ K : 〈B → α, c〉
is the ith rule of the grammar.

Fig. 3 shows the rule FSA AVP for the toy gram-
mar shown in Fig. 1.
An LR(0) item is then represented as a pair 〈B, q〉

5For example, the TiGer grammar used in Section 4 contains
2,378 rules for prepositional phrases and 3,475 rules for verbal
phrases.
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Figure 3: The rule trie containing the right hand sides
of VP of the grammar in Fig. 1. Double circles indicate
final states and state the rule index after /.

where B is a nonterminal and q a state in the FSA
AB associated with B. When during the closure
operation a pair 〈B, q〉 is processed, the transitions

q
Xi−→ p leaving q in AB are enumerated and new

items 〈Xi, q0Xi
〉 (if Xi ∈ N ) are added to the clo-

sure items set.

3.2 Intersecting LR(0) Automata with
Finite-state Automata

Algorithm 2 computes the intersection of M and A.
The algorithm maintains a breadth-first queue L of
state pairs ∈ QM × QA. In line 4, a pair consisting
of the two start states is inserted intoL. In the while-
loop between lines 5 and 31, a state pair 〈qM , qA〉 is
removed from L. Then, two types of actions are ap-
plied to the current state pair 〈qM , qA〉: Reductions
and shifts. Line 9 checks whether M defines reduc-
tions for state qM . If true, the for-loop between lines
10 and 23 considers each rule B → α with weight
c. In line 11, the set of all ancestor nodes for cur-
rent state 〈qM , qA〉 is computed for which there are
paths π of length |α| to 〈qM , qA〉 (simultaneously,
we also record the labels of the paths between an an-
cestor state and 〈qM , qA〉). By definition of the con-
struction of a GLR(0) automaton, labels(π) equals
α (disregarding the indices).

Then, the for-loop between lines 12 and 23 op-
erates over each ancestor state 〈q, q′〉 of 〈qM , qA〉
and constructs new states and transitions which cor-
respond to the GOTO-actions of the GLR(0) recog-
nizer for nonterminal symbols. Before doing that, a
rule 〈BqA → α′, c〉 is added to the reduce actions of
state 〈qM , qA〉 in line 13. Note that α′ differs from
the original α in rule B → α in the indices carried
by the nonterminals.6 The subsequent steps are:

• In line 14, a new state 〈δM (q,B), qA〉 is created
6We will discuss the necessity of indexed nonterminalsBqA

below.

Algorithm 2: INTERSECTION OF A GLR(0) AU-
TOMATON AND AN FSA

Input: GLR(0) automaton
M = 〈QM ,∆M , q0M , FM , δM , τM 〉 over a semiring
K

Input: Deterministic FSA A = 〈QA,Σ, q0A , δA, FA〉
Output: GLR(0) automaton

M ′ = 〈QM′ ,∆M′ , q0M′ , FM′ , δM′ , τM′ 〉 over K
1 q0M′ ← 〈q0M , q0A 〉
2 QM′ ← {q0M′ }
3 FM′ ← ∅
4 Enqueue(q0M′ , L)

5 while L 6= ∅ do
6 〈qM , qA〉 ← Dequeue(L)
7 if qM ∈ FM ∧ qA ∈ FA then
8 FM′ ← FM′ ∪ {〈qM , qA〉}
9 if τM (qM ) 6= ⊥ then

// Perform reductions
10 for 〈B → α, c〉 ∈ τM (qM ) do
11 Vα ← {〈q, q′, labels(π)〉 | 〈q, q′〉 ∈

QM′ ∧ π = 〈q, q′〉 |α| 
M′ 〈qM , qA〉}

12 for 〈q, q′, α′〉 ∈ Vα do
13 τM′ (〈qM , qA〉)←

τM′ (〈qM , qA〉) ∪ {〈BqA → α′, c〉}
14 if 〈δM (q,B), qA〉 /∈ QM′ then
15 QM′ ← QM′ ∪ {〈δM (q,B), qA〉}
16 δM′ (〈q, q′〉, BqA )←

〈δM (q,B), qA〉
17 ∆M′ ← ∆M′ ∪ {BqA}
18 Enqueue(〈δM (q,B), qA〉, L)

19 else
20 if δM′ (〈q, q′〉, BqA ) = ⊥ then
21 δM′ (〈q, q′〉, BqA )←

〈δM (q,B), qA〉
22 if 〈δM (q,B), qA〉 /∈ L then
23 Enqueue(〈δM (q,B), qA〉, L)

// Perform shifts
24 for a ∈ Σ do
25 if δM (qM , a) 6= ⊥ ∧ δA(qA, a) 6= ⊥ then
26 ∆M′ ← ∆M′ ∪ {a}
27 p← 〈δM (qM , a), δA(qA, a)〉
28 δM′ (〈qM , qA〉, a)← p
29 if p /∈ QM′ then
30 QM′ ← QM′ ∪ {p}
31 Enqueue(p, L)

32 return M ′

and checked whether it is present in the state
set (and inserted if it is not). Here, δM (q,B)
denotes the GOTO-state M defines for nonter-
minalB. Note that the second component qA of
〈δM (q,B), qA〉 is copied from the current state
pair 〈qM , qA〉 (the input index does not “move”
on after a reduction, so to speak).
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• In line 20, it is checked whether a transition
leaving ancestor state 〈q, q′〉 with symbol BqA
already exists. Here, there are two subcases to
consider:

1. 〈δM (q,B), qA〉 is a new state
which entails that the transition
〈q, q′〉 BqA−−→ 〈δM (q,B), qA〉 also does not
exist (lines 15–18). This happens when
〈δM (q,B), qA〉 is encountered for the first
time. 〈δM (q,B), qA〉 is added to the state
set (line 15) and a new transition leading
to it is added to δM ′ (line 16). Finally,
BqA is added to the alphabet of M ′ (line
17) and the new state 〈δM (q,B), qA〉 is
inserted into the queue (line 18).

2. 〈δM (q,B), qA〉 already existed, but not

〈q, q′〉 BqA−−→ 〈δM (q,B), qA〉 (lines 21–
23). Here, we repeatedly encoun-
tered 〈δM (q,B), qA〉 during processing.
This happens in case of local ambigui-
ties where there exist multiple trees for
some subpart of A headed by the same
nonterminal. In terms of the graph
structure of M ′, we create a reentrant
node 〈δM (q,B), qA〉 with more than one
incoming transition (line 21). Since
〈δM (q,B), qA〉 may trigger further reduc-
tions (its ancestor set was changed), it is
reinserted into the queue (when not al-
ready present).

The shift operations performed in the for-loop be-
tween lines 24 and 31 are similar to the case of the
intersection of two FSAs: For every transition leav-
ing qA labeled a it is tried to find a corresponding
transition leaving qM . If this transition exists, a new
state pair 〈δM (qM , a), δA(qA, a)〉 is added to QM ′
and L, if not already present (line 30). In addition,
a transition 〈qM , qA〉 a−→ 〈δM (qA, a), δA(qA, a)〉 is
created (line 28).

Unsurprisingly, Algorithm 2 is simply a general-
isation of Tomita’s GLR algorithm (cf. Tomita and
Ng (1991)) to the recognition of the language of an
FSA instead of the recognition of a single sentence
(which can be seen as a simple, linear FSA with a
single final state). In the general case treated here,
A may have several final states and may contain an

infinite number of paths. Because of that, the non-
terminal symbols ofM ′ are indexed with the current
state qA of A. In that way, M ′ keeps track of the
different reductions made for different paths in A.

Fig. 4(b) shows the result of applying Algorithm
2 to the GLR(0) automaton of Fig. 2 and the FSA of
Fig. 4(a).

(a)

(b)

Figure 4: (a) A deterministic FSA representing three sen-
tences of the PCFG of Fig. 1. (b) The result of Algorithm
2 applied to the automata in Fig. 2 and Fig. 4(a). States
are labeled with pairs 〈qM , qA〉.

3.2.1 Complexity.
The outer while-loop of Algorithm 2 is bounded

by O(|QM × QA|). Since M and A are both de-
terministic, only a small subset of QM × QA will
be actually created in the average case. Concerning
the shift-actions (for-loop lines 24–31), each pair is
inserted exactly once into the queue. Looking at the
reduce-actions (lines 9–23), a state pair may be rein-
serted into the queue in case a new incoming transi-
tion is added for 〈δM (q,B), qA〉 (line 23). The num-
ber of reinsertions is bounded by the number of pos-
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S’→ S4 / 1 S’→ S5 / 1
S4 → NP1 VP4 / 1 S4 → NP3 VP4 / 1
S5 → NP1 VP5 / 1 NP1 → NE / 0.3
NP3 → DET N / 0.6 NP4 → NE / 0.3
VP4 → V NP4 / 0.4 VP4 → V / 0.5
VP5 → V / 0.5

Figure 5: Rule set of the grammar extracted from Fig.
4(b).

sible reductions taking place at 〈qM , qA〉 which is in
turn bounded by |N |, the number of nonterminals of
G. The most expensive step is found in line 11. Let r
be the length of the longest right-hand side of a rule
inG. The number of state pairs 〈q, q′〉 created in line
11 and subsequently considered in the for-loop lines
12–23 is bounded by O(|QM × QA|r) (the number
of ancestors increases exponentially with respect to
the distance r). By applying the memoisation tech-
niques proposed in Kipps (1991), this bound can be
strengthend to O(|QM ×QA|2). Putting everything
together, the overall complexity of Algorithm 2 is in
O(|QM ×QA|3).

3.3 Extracting Grammar Rules

The last step, the extraction of G∩ = G ∩ A is easy
and stated in Algorithm 3.

Algorithm 3: EXTRACTING G∩ .
Input: A GLR(0) automaton

M = 〈QM ,∆M , q0M , FM , δM , τM 〉 over K
Output: A WCFG G∩ = 〈N,∆M \N,S′, P 〉 over K

1 N ← {Xi ∈ ∆M | i ∈ N} ∪ {S′}
2

P ← {〈S′ → Xi, 1〉 | ∃Xi ∈ N : δM (q0M , Xi) ∈ FM} ∪⋃
q∈QM∧τM (q)6=⊥

τM (q)

Algorithm 3 simply extracts the grammar rules from
the states q for which τM (q) is defined. Addition-
ally, a new start symbol S′ is introduced and triv-
ially weighted rules S′ → Xi are added to the rule
set such thatXi is labeling a transition from q0M to a
final state. Fig. 5 shows the grammar extracted from
the automaton shown in Fig. 4(b).

Automaton A1 A2 A3

|Q| 8 56 173
|δ| 9 64 259

Table 1: Sizes of the input FSA.

Phase Operation Time
(ms)

Avg.
time
per

sent

|Q| |δ|

1 Constr. of
M

3, 520 - 17, 279 1, 226, 776

2 M ∩A1 47 47 1, 841 14, 005
2 M ∩A2 3, 198 320 18, 355 389, 140
2 M ∩A3 17, 847 178 50, 332 1, 097, 768

Table 2: Results of the experiments with the TiGer gram-
mar.

4 Experiments

We implemented the algorithm from the last section
in the C++ programming language within the fsm2
framework (see Hanneforth (2009)). The grammar
used for the experiments has been extracted from the
TiGer treebank (cf. Brants et al. (2002)). It contains
14,379 rules7, and the sizes of the alphabet and the
nonterminal sets are 51 and 25, resp. The length
of the longest right-hand side of a rule is 17. For
the FSA operand of the intersection algorithm, we
created three minimal FSA accepting 1, 10 and 100
sentences (tag sequences) randomly taken from the
TiGer corpus. The sizes of the automata are sum-
marised in Table 1.
Table 2 shows the results of the experiments which
were carried out on a 2.8 GHz CPU. The columns
|Q| and |δ| contain the sizes of the automata result-
ing from the operation mentioned before.
Since treebank grammars tend to avoid recursive
rules and therefore assign flat structures to input
strings, they create a lot of readings with spurious
ambiguities. Johnson (1998) reports that approx-
imately 9% of the rules of the Penn treebank are
never used in a maximum likelihood setting since
these rules are subsumed by combinations of other
rules with a higher combined probability. We expect
even better intersection timings in the face of more
linguistically realistic grammars.

7Disregarding discontinous constructions like verb–particle
rules which are not directly representable in the context-free
grammar format.
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5 Conclusion

Above, we presented a theoretical and practical al-
gorithm to intersect weighted grammars with FSAs
which can be used for parsing or language model
training purposes (cf. Nederhof (2005)). No gram-
mar transformation (for example, binarisation) is
necessary to achieve optimal cubic complexity. In-
stead, the binarisation is implicit by using the dotted
rule technique. However, the algorithm may suffer
from a big grammar dependent constant for artificial
grammars (see Johnson (1991) for details). This is
due to the implicit subset construction present in the
construction ofM ’s δ-function in Eq. (4). An option
to investigate for these artificial grammars would
be considering the construction of non-deterministic
GLR(0) automata.
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Abstract

This paper introduces the Transducersaurus
toolkit which provides a set of classes for gen-
erating each of the fundamental components
of a typical WFST-based ASR cascade, in-
cluding HMM, Context-dependency, Lexicon,
and Grammar transducers, as well as an op-
tional silence class WFST. The toolkit fur-
ther implements a small scripting language
in order to facilitate the construction of cas-
cades via a variety of popular combination
and optimization methods and provides inte-
grated support for the T3 and Juicer WFST
decoders, and both Sphinx and HTK format
acoustic models. New results for two standard
WSJ tasks are also provided, and the toolkit is
used to compare a variety of construction and
optimization algorithms. These results illus-
trate the flexibility of the toolkit as well as the
tradeoffs of various build algorithms.

1 Introduction

In recent years the Weighted Finite-State Transducer
(WFST) paradigm has gained considerable popular-
ity as a platform for Automatic Speech Recogni-
tion (ASR). The WFST approach provides an ele-
gant, unified mathematical framework that can be
utilized to train, generate, combine and optimize
the many heterogenous knowledge sources that typ-
ically make up a modern Large Vocabulary Continu-
ous Speech Recognition (LVCSR) system. This has
lead to the development of several excellent general
purpose software libraries devoted to the construc-
tion and manipulation of WFSTs, including the pop-
ular open source OpenFst C++ toolkit. Much re-

search has also been conducted on the theoretical
construction, integration and optimization of WFST
models for ASR (Mohri, 1997; Mohri, 1999; Mohri,
2002; Allauzen, 2004; Mohri, 2008). Nevertheless
to our knowledge at present there is no open source
toolkit devoted to the construction of ASR-specific
WFST models.

This lack of available tools represents an obstacle
to the wider dissemination and adoption of WFST-
based methods. In response to this, the current work
introduces the Transducersaurus WFST toolkit (No-
vak, 2011), which aims to provide a unified, flexi-
ble and transparent approach to the construction of
integrated WFST-based ASR cascades, while incor-
porating recent research results on this important
topic. It includes a set of classes for constructing
component models as well as a simple Domain Spe-
cific Language (DSL) suitable for specifying cas-
cade integration and optimization commands. It pro-
vides integrated support for HTK (Young, 2006) and
Sphinx (Walker, 2004) acoustic models and cascade
construction support for both the T3 (Dixon, 20007)
and Juicer (Moore, 2005) WFST decoders. Where
in past complicated development was required, with
this toolkit input knowledge sources and a single
command are sufficient to build a high-performance
system. In addition to introducing the toolkit, this
work contributes new experimental results for two
LVCSR tasks from the Wall Street Journal (Paul,
1992) (WSJ) corpus, and provides discussion of al-
ternative cascade build chains.

The remainder of the paper is structured as fol-
lows. Section 2 describes the main component mod-
els of a typical WFST-based ASR cascade. Section 3
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Figure 1: Detail of a bi-gram model for a simple two word LM.

describes the cascade integration tool and its capa-
bilities. Section 4 describes new experimental re-
sults that explore the flexibility of the Transducer-
saurus toolkit. Section 5 provides additional anal-
ysis and explores the practical implications of vari-
ous construction techniques. Finally, Section 6 con-
cludes the paper.

2 Integrated LVCSR Cascades

The construction of WFST-based cascades for
LVCSR tasks typically involves two major steps.
The first step is to construct WFST-based represen-
tations of each of the component knowledge sources,
and the second step is to integrate these components
into either a single static cascade or, in the case of
on-the-fly composition a smaller subset of integrated
models. The most common component knowledge
sources involved in the first step include a gram-
mar G, in the form of a statistical language model, a
pronunciation lexicon L, that maps monophone se-
quences to words, and a context-dependency trans-
ducer C,that maps context-dependent triphone se-
quences to corresponding monophone sequences. In
addition to these three fundamental components, an
HMM-level model H, that maps HMM state se-
quences to context-dependent triphone sequences is
frequently utilized, and class-based silence models
are also popular. The Transducersaurus toolkit pro-
vides integrated support for each of the H, C, L,
G, and T component transducers, and these compo-
nents are described in detail in the following subsec-
tions.

2.1 Grammar acceptor

The grammar component G, encodes information
about word sequences, and typically represents a
standard ARPA format statistical N -gram model.
Several different approaches to transforming an N -
gram model into an equivalent Weighted Finite-State
Acceptor (WFSA) have been proposed in the liter-
ature (Allauzen, 2003). The simplest approach uti-
lizes a single historyless back-off state, and uses nor-
mal ε-transitions to encode back-off arcs and asso-
ciated back-off weights. This is the approach uti-
lized currently in the Transducersaurus toolkit, and
a small example of such a model is depicted in Fig-
ure 1.

The use of normal ε-transitions however, can lead
to situations where back-offN -gram sequences may
be less costly than the equivalent N -gram sequence.
Strictly speaking this is incorrect, and (Allauzen,
2003) discusses two strategies for dealing with this
problem. The first involves the use of special “fail-
ure” or φ-transitions for the back-off arcs. These
φ-transitions encode the idea that the back-off arc
should only be utilized in the event that an equiv-
alent normal N -gram arc does not exist. The sec-
ond strategy involves mutating the baseline ε-back-
off configuration, adding additional back-off states
and manipulating the back-off arcs so as to elimi-
nate instances of path ambiguity. Transducersaurus
utilizes the ε-transition approach mainly for the sake
of simplicity, but support for the alternative strate-
gies is planned for future work. The toolkit provides
a python program, arpa2fst.py which may be used
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Figure 2: Example of a three-word lexicon transducer, L.

to transform a standard ARPA format LM into an
equivalent WFSA. The tool also generates symbol
tables as needed.

2.2 Lexicon transducer

The lexicon transducer L, maps monophone se-
quences or pronunciations to words. An example
of a trivial lexicon transducer is described in Fig-
ure 2. In order to ensure that the lexicon can de-
scribe not just isolated words, but also word se-
quences, it is necessary to perform the closure of
the resulting WFST prior to downstream composi-
tion. Furthermore, in order to handle the occurrence
of homophones in the lexicon, it is necessary to aug-
ment the construction with auxiliary symbols as de-
scribed in (Allauzen, 2004). If this step is not taken,
the lexicon as well as any downstream cascades
may become non-determinizable. The toolkit pro-
vides a lexicon generation tool in the form of lexi-
con2fst.py, and this tool supports closure, and auxil-
iary symbol generation natively. lexicon2fst.py pro-
vides support for generating HTK as well as Sphinx
format lexicons, the latter of which typically utilizes
positional triphones. The tool further generates nec-
essary symbol tables, a list of monophones, and a
list of any auxiliary symbols that are added during
construction.

2.3 Context-dependency transducer

The Context-dependency WFST C, maps context-
dependent triphone sequences to corresponding

Figure 3: An N -word silence class model, T.

Figure 4: Example of a deterministic three-state HMM
model for the triphone a-b+c.

context-independent monophone sequences. There
are several methods of building this component as
well, which are described and illustrated in detail
in (Allauzen, 2004). The Transducersaurus toolkit
implements a deterministic construction algorithm
which results in a C transducer where the output
symbols are delayed. There are two separate tools
for building the C transducer, cd2wfstHTK.py and
cd2wfstSphinx.py and as the names indicate, the
first tool provides native support for the HTK for-
mat acoustic models, and the second provides native
support for Sphinx format models. The C tools take
as input a list of monophones, an optional list of
auxiliary symbols, and an optional acoustic-model
specific tied-list. The output consists of the text-
format WFST and associated symbol tables. Both
tools also provide support for an additional auxil-
iary WFST which can be used to replace auxiliary
symbols or translate logical triphones to physical
triphones found in the input acoustic model. This
is important in situations where the user wishes to
perform further optimizations on a CLG or HCLG
cascade.

2.4 Silence class transducer

As with most of the cascade components, there
are several viable approaches to handling silence in
a WFST-based LVCSR cascade. The Transducer-
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saurus toolkit supports a special silence class trans-
ducer that can be utilized to transform a grammar by
augmenting it with silence or filler arcs. Other al-
ternatives include adding additional silence-trailing
entries to the lexicon or utilizing forced-alignment to
insert silences into existing speech transcripts. In the
latter case the aligned transcripts can then be used
directly to build an N -gram model with silence to-
kens. In the toolkit, the silclass2fst.py program can
be used to generate a silence class transducer from a
list of words. An example of the silence class trans-
ducer is depicted in Figure 3. Unlike the lexicon-
based approach, the T approach permits long si-
lences, and unlike the N -gram based approach, it
encodes the idea that silences may follow any word
without a context-sensitive penalty or boost. The
trade-off between the silence loop and return ε-arc
may be specified by the user but the toolkit sup-
plies default values that were estimated from several
hundred hours of spontaneous English conversation
transcripts.

2.5 HMM level

The HMM-level transducer H, maps HMM state
sequences from an acoustic model to context-
dependent triphones. The toolkit currently focuses
on a 3-state HMM configuration, although there are
plans to extend this in future to more flexible config-
urations. An example of a deterministic, three-state
H WFST for a single triphone, a-b+c is depicted in
Figure 4. In practice the full H transducer describes
the closure of the union of all triphones and mono-
phones in the acoustic model. The structure is simi-
lar to the lexicon transducer, however the phonemes
are replaced with HMM states, the words are repre-
sented by monophone and triphone labels, and the
length of each entry is fixed to the number of HMM
states used to train the models. In most acoustic
models such as those produced by HTK and Sphinx,
state-tying is used to share HMM states for under-
represented models. With the above approach this
can lead to non-determinism due to some triphones
sharing the same underlying state sequences. This
problem is handled by Transducersaurus by adding
a second level of auxiliary symbols to the H trans-
ducer in order to guarantee determinizability. At
present the H construction tool, hmm2wfst.py pro-
vides native support for Sphinx format mdef files,

as well as support for the native AT&T text format.
Native support for the HTK hmmdefs file format is
also underway. Finally, the T3 decoder provides on-
line simulation of the HMM state self-loops, which
eliminates the need to explicitly generate these dur-
ing construction. Self-loop arc generation is how-
ever supported as an option.

3 Cascade integration with
Transducersaurus

In most cases it is necessary to first combine the
individual models described in the previous sec-
tions before they can be utilized for speech recog-
nition. Much work has been done in the past in re-
gards to theoretically optimal cascade optimization
and compression methods, for example (Allauzen,
2004) describes several effective composition and
optimization schemes and the impact that these have
on WACC and decoding speed. Nevertheless the
behavior of different construction and optimization
schemes can vary considerably based on the size
and complexity of the input models. The proposed
toolkit provides a cascade integration tool, trans-
ducersaurus.py the aim of which is to facilitate
learning and speed up the potentially tedious and
time-consuming process of cascade generation. This
tool calls the individual model construction classes
described in Section 2 and automatically performs
all required generation, compilation, integration and
optimization algorithms. The tool further supports
a wide selection of common features of WFST cas-
cade generation including semiring selection, auxil-
iary symbol support, and fundamental WFST opera-
tions such as composition, determinization, and
minimization via the OpenFst library. The tool
further provides integrated support for both HTK
and Sphinx acoustic models. The flagship contri-
bution of this toolkit however, is a simple WFST-
oriented DSL which aims to streamline the specifi-
cation of build algorithms and optimization proce-
dures. This DSL is described in detail in the follow-
ing section.

3.1 Cascade construction DSL

The DSL supported by the build tool allows the user
to specify a build chain using a subset of the stan-
dard FST-based combination and optimization algo-

68



Table 1: A trivial cascade build command demonstrating several of the options available.

$ ./transducersaurus.py --tiedlist tiedlist --hmmdefs hmmdefs
--grammar my.lm --lexicon my.lex --amtype htk --convert tj
--command "min(det(H*det((C*det(L)).(G*T))))"

rithms, as well as shorthand for the component mod-
els described earlier. The user need only specify a
simple chain for example,
--command "min(det(C*det(L*(G*T))))",
--command "(C*det(L)).(G*T)"

and the build tool will automatically tokenize and
parse the command into the appropriate series of
OpenFst commands, generating intermediate results
as necessary along the way. At present the DSL is
quite limited, but supports themin, det, ◦ (specified
“∗” on the command line) and “.” operations as well
as the construction of the H, C, L, G, and T compo-
nent transducers. Here det refers to determinization,
min to minimization, “∗” to standard composition,
and “.” to Static Look-Ahead (SLA) composition,
which was released in a recent version of OpenFst,
and which implements the Look-Ahead composition
algorithm proposed in (Allauzen, 2009). Auxiliary
symbol replacement is handled automatically in a
manner dependent on the set of build commands is-
sued by the user.

The advantage of the DSL approach is that it per-
mits very simple specification of the build chain,
which in turn encourages experimentation and learn-
ing, and lends itself easily to further extension
through the future addition of other standard oper-
ations. Thus the user only needs to prepare the com-
ponent knowledge sources, and specify a build algo-
rithm. For example the command in Table 1 will au-
tomatically construct an integrated recognition net-
work utilizing a silence class model, SLA composi-
tion and an HTK-format acoustic model, and output
an optimized HCLGT cascade suitable for use in
both Juicer and T3.

4 Experiments

The proposed toolkit can be used to generate recog-
nition networks for a variety of different tasks and
inputs. In order to showcase this flexibility, several
different experiments were carried out making use
of different build chains and two test sets from the

WSJ corpus. A selection of recent results are re-
ported for HTK and Sphinx acoustic models and bot
the Juicer and T3 decoder. These results illustrate
the correctness of the toolkit in reproducing previ-
ous baselines, and also confirm separate results en-
couraging the SLA-based build chains.

4.1 Experimental setup

All experiments for this work were performed on an
8 core Intel Xeon based machine running at 3GHz
with a 6MB cache and 64GBs of main system mem-
ory running the RHEL OS. As with our previous
results from (Novak, 2010), the experiments cov-
ered two popular tasks from the WSJ corpus. The
first task, nov92-5k, focuses on the November 1992
ARPA WSJ test set which comprises 330 sentences,
and was evaluated using the WSJ 5k non-verbalized
vocabulary and the standard WSJ 5k closed bigram
language model. The second task, si dt s2-20k, fo-
cuses on a subset of the WSJ1 Hub2 test set which
comprises 207 sentences. The si dt s2-20k task,
which is somewhat more difficult, was evaluated us-
ing a 64k vocabulary an a large 3-gram LM trained
on 222M words from the CSR LM-1 corpus (Dod-
dington, 1992). In order to help ensure the repeata-
bility of our experiments, open source Sphinx and
HTK acoustic models described in (Vertanen, 2006)
were used throughout, and auxiliary parameter val-
ues for the T3 and Juicer decoders were specified as
in (Novak, 2010). Unless otherwise specified the log
semiring was used for all constructions.

4.2 Nov92-5k LVCSR Experiments

The first set of experiments focused on the stan-
dard WSJ Nov92-5k test set, the default closed bi-
gram language model and associated pronunciation
lexicon. Open source Sphinx format acoustic mod-
els were used. The toolkit was utilized to generate
six different cascades, which shared the same fun-
damental knowledge sources but differed in terms of
the optimization procedures applied, and whether an
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Table 2: WSJ-based WFST cascade characteristics for Sphinx acoustic models. Here min refers to minimization,
det refers to determinization, the “◦” operator refers to standard composition, and the “.” operator refers to static
look-ahead composition.

Cascade constructions Arcs States Size
(C ◦ det(L)).G 1,828,710 620,711 36 MB
det((C ◦ det(L)).G) 3,588,184 726,782 64 MB
min(det((C ◦ det(L)).G)) 3,260,139 654,008 58 MB
det(H ◦ ((C ◦ det(L)).G)) 4,226,328 2,729,896 96 MB
det(H ◦ det((C ◦ det(L)).G)) 6,981,130 3,528,195 147 MB
min(det(H ◦ det((C ◦ det(L)).G))) 6,318,302 3,107,984 132 MB

H-level transducer was utilized in the cascade. Re-
cent work such as (Allauzen, 2010) as well as our
own recent experiments have shown that SLA com-
position, which omits the det(LG) operation, per-
forms equally well, thus SLA composition was uti-
lized in all six cascade constructions.

The command used to generate these cascades
was specified as
$ ./transducersaurus.py --tiedlist mdef
--amtype sphinx --grammar bcb05cnp-2g.arpa
--lexicon bcb05cnp.dic --convert t
--base auto --prefix bcb05s
--command "(C*det(L)).G"

and the value of the --command parameter was
simply modified to generate each of the six differ-
ent variations. The properties of each of the re-
sulting cascades are described in detail in Table 2.
The variation in terms of the number of arcs, states
and total size clearly indicates the relative effects
of applying different optimization operations to the
construction process. The simplest construction,
(C ◦ det(L)).G results in the smallest cascade in
this case. Subsequent application of determiniza-
tion increases the initial size of the cascade, while
miniminization again reduces the overall size. This
pattern is repeated with the addition of the HMM-
level WFST. The set of Sphinx format cascades gen-
erated with the transducersaurus.py tool were sub-
sequently evaluated inside of the T3 decoder and the
results of these evaluations are described in Figure 5.

Although small in this simple task, the effect
of optimization techniques can nonetheless still be
clearly seen in the difference between the (C ◦
det(L)).G construction and the determinized and
minimized variants. In general the impact of these
optimizations is increased for larger and more com-

plicated models. Nevertheless the gains are not
achieved without a cost. In particular each addi-
tional call to the determinization and minimization
algorithms consumes significant additional comput-
ing resources and time. These requirements grow
rapidly as the size and complexity of the input mod-
els increases. Thus it is pragmatic to strike a bal-
ance between development time, resource require-
ments and achievable RTF versus WACC. In order
to help illustrate this trade-off we also looked at the
memory consumption versus time characteristics of
the det(LG) determinization operation, the standard
C ◦ (LG) composition, and the SLA composition,
CL.G. The results for the bcb05 cascade used to
evaluate the Nov92-5k test set are depicted in Fig-
ure 6, and unequivocally show that the determiniza-
tion operation is by far the most costly, but also in-
dicate the advantages of SLA composition over the
standard variant.

4.3 si dt s2-20k LVCSR Experiments

The second set of experiments involved the si dt s2
test set, and a much larger 3-gram language model
based on the CSR corpus. These experiments were
carried out to show that the toolkit is a viable choice
not just for small models, but can be used in a
straightforward manner to also build very large, ef-
ficient cascades. This experiment also illustrates
the ability of the toolkit to generate both HTK, and
Sphinx based recognition networks and to construct
working cascades for both Juicer and the T3 de-
coder. In this case experiments focused on a sin-
gle construction scheme; the simple yet effective
(C ◦ det(L)).G and the commands utilized to build
the cascades are described in Table 4 and informa-
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Figure 6: Memory consumption versus time comparison
of the det(LG) operation and SLA versus standard com-
position for the bcb05 CLG cascade.

tion regarding arc and state counts as well as overall
size is described in Table 3 while RTF versus WACC
results for the three tests are illustrated in Figure 7.

5 Discussion

The results from the two experiments provide new
empirical evidence supporting previous research re-
sults in this area. Results from Subsection 4.2 show
that the toolkit can be utilized to quickly and sim-
ply develop a variety of different LVCSR cascades
and that build results accurately and reliably re-

Table 3: CSR-based WFST cascade characteristics for
HTK and Sphinx models. Both cascades employed a
(C ◦ det(L)).(G ◦ T ) construction scheme.

Cascade Arcs States Size
CSR-64k-HTK 146.4M 92.4M 3.3GB
CSR-64k-Sphinx 143.8M 88.8M 3.2GB

flect previously reported findings. We note that the
HCLG builds converge more slowly, but achieve
the same best WACC at approximately 2x real-time.
The SLA composition algorithm is an improve-
ment over standard composition (Allauzen, 2010),
but the most substantial gains from the alternative
(C ◦ det(L)).G build chain result from the ability
to avoid the otherwise costly det(LG) determiniza-
tion operation in a simple CLG construction. In the
experiments described in Subsection 4.2, using SLA
composition provided roughly a 50% memory sav-
ings, and an average overall time savings of nearly
80%. The cross-comparison results described in
Subsection 4.3 replicate previous results from (No-
vak, 2010), this time utilizing the SLA build. No-
tably, in this case the SLA build produces signifi-
cantly smaller cascades and furthermore the relative
sizes of the Sphinx versus the HTK format models is
reversed. The latter result is likely a consequence of
the positional triphones utilized by the Sphinx mod-
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Table 4: Cascade build commands for the si dt s2-20k LVCSR experiments.
$ ./transducersaurus.py --tiedlist mdef --amtype sphinx --grammar
lm_csr_64k_nvp_3gram.arpa --base auto --lexicon lm_csr_64k_nvp.dic
--prefix bcb05s --convert t --command "(C*det(L)).G"

$ ./transducersaurus.py --tiedlist tiedlist --hmmdefs hmmdefs
--amtype htk --grammar lm_csr_64k_nvp_3gram.arpa --base auto
--lexicon lm_csr_64k_nvp_3gp-htk.dic --prefix csr64kh
--convert t --command "(C*det(L)).G"

els, which permit a smaller degree of sharing, thus
resulting in a larger increase in size following deter-
minization in the C ◦ det(L ◦ G) construction. The
small performance variation among the AM types
and T3 versus Juicer again suggest that there is not
much technical motivation to overtly favor any par-
ticular combination. Rather the availability of re-
sources and existing expertise should guide devel-
opment choices.

Finally, the T3 decoder also supports GPU-based
computation of acoustic likelihood scores, and these
results have been reported in several previous works.
We note however, that application of GPU-based
acoustic scoring, when available tends to provide
the strongest single speedup, and that use of the
more computationally intensive logsum operation
versus the standard logmax also tends to boost max-
imum accuracy. This implies that SLA composition,
combined with GPU-based acoustic scoring and a
comparatively simple (C ◦ det(L)).G build chain
provides highly competitive results. This strikes a
strong balance between RTF, WACC, memory and
storage requirements and overall build time. Further
savings in terms of memory requirements, storage
and build time can be gained from performing the
lookahead composition on-the-fly at decoding time.

6 Conclusion and Future Work

In this work we have introduced Transducersaurus,
a new open source software toolkit for building
and manipulating WFST-based ASR cascades. The
toolkit provides integrated support for the T3 and
Juicer WFST decoders and both HTK and Sphinx
acoustic models, and supports construction of the
H, C, L, G, and T component WFSTs. We showed
the effectiveness of the toolkit on a variety of differ-
ent tasks, looking at both construction variants on a
simple set of inputs, and performing a decoder and

acoustic model cross comparison on a much larger
task. Furthermore we have provided a detailed ex-
planation of the SLA build process as it is supported
by the toolkit along with its merits. The ASR ap-
plication development process is often iterative, and
these results reinforce the idea that by utilizing a
simplified build chain and the SLA composition ap-
proach, overall efficiency can be greatly improved
at little or no cost to either the RTF or WACC of a
particular recognition network.

In future we plan to further expand the range of
available operations, and expand the current lim-
ited DSL build syntax, provide integrated support
for out-of-vocabulary words, and introduce parallel
support for the AT&T fsmtools. Experiments look-
ing at a much wider variety of languages and model
inputs currently in the planning phase. Although the
toolkit is still in the early stage of development we
hope that it will facilitate learning as well as more
efficient work in this area, and promote further dis-
cussion.

At present the Transducersaurus toolkit can be
downloaded freely from the location listed in (No-
vak, 2011), and is available under the terms of the
liberal BSD license.
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Abstract

This paper uses the task of transliterating an
Egyptian Hieroglyphic text into the latin al-
phabet as a model problem to compare two
finite-state formalisms : the first one is a cas-
cade of binary transducers; the second one
is a class of multitape transducers express-
ing simultaneous constraints. The two sys-
tems are compared regarding their expressiv-
ity and readability. The first system tends to
produce smaller machines, but is more tricky,
whereas the second one leads to more abstract
and structured rules.

1 Introduction

In the eighties, two models of Finite State computa-
tions were proposed for morphological descriptions:
two-level morphology (Koskenniemi, 1983) where
simultaneous constraints are described using two-
level rules, and rewrite rule systems where rules ap-
ply sequentially (Kaplan and Kay, 1994). From a
computational point of view, both kinds of rules are
compiled into binary transducers. The transducers
are merged using intersection in the simultaneous
model whereas transducer composition is used by
the sequential model.

Two-level grammars appeared difficult to write
because of rule conflicts: the different two-level
rules are not independent. Their semantics is not
compositional: the semantics of a set of rule is not
the composition of the semantics of each rule.

In the last decade, a new kind of simultaneous
finite state model has been proposed which does
not use two-level rules and avoids rule conflicts.

The model uses multitape transducers (Barthélemy,
2007). The present paper is devoted to an applica-
tion written successively with a cascade of transduc-
ers and an intersection of multitape transducers.

The application consists in transliterating Egyp-
tian Hieroglyphs without resorting to a lexicon. The
transliteration task is a transcription from the orig-
inal writing to an extended latin alphabet used to
write consonantal skeleton of words. This task is
far from obvious, as we explain in 2.2.

The next section gives more details about hiero-
glyphs. Then, a transliteration grammar using a cas-
cade of weighted rewrite rules is presented. Sec-
tion 4 presents the multigrain multitape transduc-
ers and the Karamel language used to define them.
Then comes a description of a Karamel grammar for
hieroglyph transliteration adapted from the rewrite
rule cascade. The last section compares the two
grammars and their respective strengths and weak-
nesses.

2 Egyptian hieroglyphs

2.1 Hieroglyphic encoding and transliteration

The systems we are about to describe take as input
an ASCII description of hieroglyphic texts, based on
a system called “le manuel de codage” (Buurman et
al., 1988), and output a transliteration of the text,
that is, a transcription in latin characters of the con-
sonants (the Egyptians did not write vowels). Mean-
while, we do also determine word frontiers. An ex-
ample is given in figure 1.

The letter used in the transliteration layer are con-
ventional signs used in ASCII computer-encoding
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hierogl.
input M17 G43 D21 Z1 N35 O34 A1 Z1 N35 N42 G17 D36 I9 M23 G43
output iw rA n z nHm f sw
trans- part mouth of man save it him
lation the mouth of a man saves him

Figure 1: example of sentence transliteration

of Egyptian texts. In this encoding, uppercase and
lowercase letters note different consonants. Besides,
‘A’, ‘a’ and ‘i’ are used to represent consonantic
signs (which the Egyptological tradition renders as
vowel in scholarly pronunciation). The above sen-
tence would be pronounced “iu ra en se neh. em ef
su”.

2.2 The Egyptian hieroglyphic writing system

In this section, we explain the basics of the hiero-
glyphic system (Allen, 2010) , and we detail a num-
ber of problems met when trying to transliterate it.

Hieroglyphs can be written in lines or columns,
right-to-left or left-to-right and are typically grouped
to fill the available space, as in this text :

. In this work, we will neglect
the exact position of signs and deal with their se-
quence.

Another characteristic is that there are no real
word separators. The present work will address this
issue.

2.2.1 Kinds of signs
The hieroglyphic system used a mix of phonetic

and ideographic signs to note the language. Many
signs may have more than one possible value.

The phonograms note a number of consonants,
typically one, two or three. For instance, the owl

stands for the consonant “m”, and the chessboard

for the sequence of consonant “mn”. Vowels are
not written, so egyptologists would insert arbitrary
“e” between the consonant, and thus, is conven-
tionally pronounced “men”. Those phonograms are
classified as uniliteral, biliteral, and triliteral signs,
depending on the number of consonants they repre-
sent.

Ideograms are more or less word-sign. Usually,
they are followed by a stroke, to mark this specific
use. For instance, writes the word “kA”, bull.

Determinatives are semantic classifiers which

have no phonetic realisation, but give the general se-
mantic class of a word. As they tend to occur at word
endings, they ease the word separation problem too.
For instance, in , “mooring pole”, the
sign classifies the word as a “wooden thing”.

2.2.2 Word formation
Egyptian word spellings tend to contain a pho-

netic part followed by a determinative.
In the phonetic part, signs which represent more

than one consonant come usually with “phonetic
complements”, which are uniliteral signs, repre-
senting one, two or three consonants of the multi-
consonantic sign. For instance, in the group ,
“nDm”, the phonetic sign has the value n + D +
m. But it is nonetheless supplemented by the
“m” sign. The group is to be read “nDm” and not
“nDmm”.

To give a complete example, the word ,
“snDm” ,“to seat”, is to be understood as

s nDm+m=nDm determinative

2.2.3 A few specific problems
Word formation, as we have just described it, is

only a general principle. The presence of determi-
natives is optional, and very usual words (especially
grammatical words) have usually none. This makes
word separation a complex task.

More, single signs may have multiple values. The
frontiers between types of signs are fuzzy; the basis
of the phonetic system is the rebus, and an ideogram,
which represents a given word with a given conso-
nantic skeleton, can often be used phonetically. For
instance, the “house” sign, , can stand both for the
word “house, “pr”, or as phonogram in the verb
“to go out”, which happens to have the same translit-
eration, “pr”. The same sign can be abstracted
the other way, losing any phonetic value, and be
used as determinative for “house-like” places, like

, “kAp”, “shelter”.
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This fuzziness makes it difficult to give a clear-
cut description of signs, even in context. Some
signs, which have the behaviour of both determi-
natives (they tend to stand at word endings) and
of phonetic signs (they have still a very definite
phonetic value) have been coined as “phonetic de-
terminatives”. They pose specific problems, be-
cause the word, as in many languages, may have
grammatical inflections standing after the word root.
Those inflections are usually written before the pho-
netic determinative, and make the phonetic part non-
continuous. For instance, in the word “sr.t”,
“what has been predicted”, the root of the verb, “sr”,
is written phonetically , then we have an intru-
sive , “t” , which is a feminine/neutral inflection,
then, the phonetic-determinative “sr” , for the verb
“to predict” , and finally, the determinative for
“mouth actions”. We want to limit the number of
rules which deal with this phenomenon.

Other signs have simply a number of unrelated
phonetic values. For instance, can be either “Ab”
or “mr”. Usually, the context, and in particular, the
phonetic complements, help to choose.

Apart from the present work, a number of sys-
tems dealing with transliteration have been created:
S. Billet (?) has written an transliteration agent-
oriented system, and M.-J. Nederhof (?) has de-
scribed an algorithm for aligning hieroglyphic en-
coding and transliteration.

3 A first solution : a cascade of
transducers

In (Rosmorduc, 2008), we introduced a system
based on a cascade of weighted finite-state transduc-
ers with variables. Basically, each weighted trans-
ducer applies a set of rewriting rules of the form:

t1, ...tn → u1...um/c

where c is the cost of the rule (a real number) and ti
and uj are terms. Terms can be either a variable (of
the form $X), a constant identifier or integer, e.g. A1
or 100, or a functional term, whose argument can be
either constants or variables, e.g. P(i, $A, $B).
Variables on the right side must also appear on the
left side.

The text entry (which is variable-free) is used as
input for the first transducer in the cascade. Vari-
ables values are lazily matched with the input - as

a result, the rules representation is compact, while
the final transducer can be quite large (e.g. for a text
of 1300 words, the last resulting transducer contains
over 1 000 000 nodes).

The costs are attached to the last link of a rule rep-
resentation. When the cascade is computed, they are
combined by a simple addition. When all transduc-
ers have been used to process the input, one of the
least-cost path is selected as “the” best path, and the
transliteration can be read on the output layer. The
actual costs are quite ad-hoc, with low values indi-
cating likely rules, and high values, unlikely ones.
With equally valued rules, the system tends to prefer
the rules which encourage the grouping of signs.

The current system is compounded of five trans-
ducers. We will first explain the main purpose of
each one, and then concentrate on exceptional uses.

First transducer, normalization: this is a rather
simple technical layer, as we need to normalize the
entry, because the encoding often proposes a choice
of codes for the same sign.

Second layer, sign values: The second layer re-
places the sign codes with their values. Values are
expressed using functors. Each functor corresponds
to a particular kind of value, and the functor’s argu-
ments represent the value.

phonetic values are expressed as P(X), P(X,Y) or
P(X,Y,Z), depending on the number of conso-
nants in a given sign. For instance, the follow-
ing rules.

A17 => P(X,r,d) / 100
A17 => P(n,m,H) / 300

states that sign A17 can have the phonetic value
“Xrd” or “nmH”, “Xrd” being preferred with a
cost of 100 over nmH (cost 300).

determinatives are expressed as
DET(MEANING), where “MEANING” is
(occasionally) used to keep track of the
determinative’s value. E.g.

A17 => DET(child) / 100

states that A17 can be a determinative for
“child”.
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phonetic determinatives and ideograms are
expressed with the same system as phonetic
signs:

A17 => IP(X,r,d) / 100
D56 => ID(r,d) / 100

plural and ideogram markers which can be found
as word endings, are expressed using END(),
which takes as argument “P1” if the word is sin-
gular, or “P3” if it is plural.

Third layer, groups: this layer build “groups” ag-
gregating a complex phonetic sign with its phonetic
complements. Note that groups are not words, as a
word can contain more than one group.

P($x,$y), P($x), P($y) =>
G($x,$y), endGroup / 10

states that a biliteral sign of value P($x,$y), can
be completed with two uniliteral signs representing
both $x and $y, and that they form a group of pho-
netic value G($x,$y). The symbol endGroup,
which is inserted after the group, will be used in the
next layer when gluing the phonetic parts and the
word endings.

The layer also recognises the possible forms of
word endings, which include some inflections, de-
terminative, and possibly plural markers :

P(w), P(t), DET($x), END($y) =>
b3,L(w),L(t),DET($x),endWord/100

The ”b3” is a marker which will be combined with
”endGroup” in the following layers.

Fourth layer, words phonetics: This forth layer
deals mainly with the phonetic shape of words. Not
all consonantic sequence, nor all group sequences,
can form a word with equal probability. Egyptian
has mostly bi and tri-consonantal roots, so shorter
and longer words (ignoring the inflections) are not
that likely. Two typical rules are:

G($x,$y), endGroup, G($z) =>
L($x), L($y), L($z) / 100

G($x,$y), endGroup, G($x,$y) =>
L($x), L($y), L($x), L($y)
/ 100

The first states that building a triliteral word with
two groups, a biliteral one and a uniliteral one,

is quite possible. The other concerns quadrilit-
eral rules. Arbitrary combinations resulting in a
quadriliteral root are usually given a high cost, but
in this rule, we represent a reduplicated1 root of the
form XYXY, which is a rather usual way of building
intensive words in Egyptian.

Word endings and groups are also attached
by rules which erase at no cost the sequence
endGroup, b3, which ensures that a “phonetic
part” followed by a word ending is the favoured way
of building a word. Erasing endGroup on its own,
which amounts to allowing a word with only a pho-
netic part (which is still possible), is given a large
cost of 1000.

Fifth layer, cleanup and ending attachment
This last part does some cleanup, and removes data
which was copied from layer to layer, in order to
keep only relevant analysis. It also deals with pho-
netic determinatives, for which the previous layer is
a bit too early.

3.1 Cross layers issues and discussions

3.1.1 The so-called phonetic determinatives
The problem of phonetic determinative is that we

are going to combine them, not with a group, but
with the word’s phonetics. Let’s consider the fol-
lowing example :

glyphs
codes O34 D21 X1 E27 A2
groups s r t IP(s,r) det

phonetics word ending
Here, the root part of the word phonetics is com-

pounded of two uniliteral signs, making two groups.
The word ending contains a “t” which is the femi-
nine inflection, the phonetic determinative E27, and
the determinative of mouth actions.

The problem is that we need to combine the first
part with the ending, while keeping a low number of
rules. This is done in two steps. First, in the group
layer, we re-order the signs, in order to put the pho-
netic determinative before the inflections. We intro-
duce a token, “b4”, which will be consumed in the
last layer.

P(t), IP($x,$y), DET($a) =>

1this is the technical word used by the scholars, even though
duplicated would probably suffice.
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b4, IP($x,$y), L(t), DET($a),
e4 / 10

The word layer will simply copy the result of the
group layer. Then, in the “cleanup” layer, as we do
have a representation of the word, we can combine
it with the IP if needed :

L($X), L($Y), b4, IP($X,$Y) =>
L($X), L($Y) / 10

Note that this rule is agnostic about the way the L()
readings were produced.

3.1.2 Word separation
Word separation is a by-product of our system.

Basically, we explicitly mark certain sequences of
signs as word endings, plus, we can transform any
group ending into a word ending. The possible pho-
netic structures of a word (as a group sequence) are
also listed. The combination of those systems, along
with their associated cost, is used to produce a rea-
sonable words separation.

3.1.3 Exceptions
The idea of the system was to try to experiment on

transliteration without a lexicon, which can be use-
ful for unknown word. Basically, no extensive lexi-
con is used; however, grammatical words, and some
very frequent verbs don’t respect the usual word-
formation rules. For instance, the verb “Dd” “to say”
is written with (I10) and (D46), which are
respectively uniliteral signs we will render “D” and
“d”. The nice thing with automata here is that they
lend to a graceful representation of those exceptions.
We directly map the signs to the final output in one
of our levels, and the result will be copied by each
level until the last one :

I10, D46 => startWord, L(D),
L(d), endWord / 100

4 Intersection-oriented multitape
transducers

This section is devoted to Karamel, a language
used to define multitape finite state transducers
(Barthélemy, 2009).

The definition of multi-tape machines is done us-
ing regular expressions extended with tuples. Tu-
ples are somehow Cartesian products which glue to-
gether independent regular expressions read on dif-

ferent tapes, but unlike Cartesian product, tuples
are not distributive with respect to concatenation.
The theoretical basis of the language is the multi-
grain relations (Barthélemy, 2007). The tuples used
in regular expressions are instances of tuple types
which must be declared beforehand. The tuples are
written using curly braces and begin with the type
name, followed by the components. Components of
the tuples are both named and ordered, so two syn-
taxes are allowed to write them: with the name or
using the order. Default values are defined for each
component.

Embedded tuples are used to give tree-structure to
tuples in the relations. There is a constraint: a tape
appears in at most one of the components of the tu-
ple. Recursive structures are therefore not allowed.
The regular sets defined by regular expressions ex-
tended with tuples are closed under intersection and
difference. So these two operations are available for
writing extended regular expressions.

Here are a couple of concrete examples writ-
ten using Karamel syntax. The value of a sign
is expressed using a tuple type called val which
has 4 tapes: for hieroglyph signs, for phonetic
values written with the latin alphabet, for the se-
mantic value and one for a subtype of values
used in composition rules. The tapes are called
respectively tsig, tphon, tsem and vtype.
An instance of a purely phonetic sign value:
{val: tsig=<P17>, tphon=nmh,

tsem=<>, vtype=<phon>}
The notation <> stands for the empty string and
<P17> for the single symbol P17, whereas nmh is
a string of three symbols. The notation {val} is
used when no value is specified for the components
of a val tuple. In this case, all the components take
their respective default values.

Phonetic values are sometimes composed in
groups where some consonants are redundantly
written. Groups are implemented by 2-tuples where
the first component contains a string of phonetic val-
ues and the second one is the transliteration (on tape
trans). Here is an example:
{group: vals=

{val: tsig=<F28>, tphon=ab,
vtype=<phon>}

{val: tsig=<D58>,tphon=b,
vtype=<phon> },
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trans= ab}
The examples given above are string tu-

ples. Extended regular expression may use
regular operators to describe regular sets
of tuples, like in the following example:
{wend: ({det}|{phon}|{tend})+}
which describes the set of all tuples of type wend
where the first component is a non-empty string of
tuples of types det, phon and tend.

A Karamel grammar begins with some declara-
tions: symbols, classes of symbols, tapes and tuple
types. A class of symbol is a finite set of symbols
which has a name. A class name may be used in
regular expressions and stands for the disjunction of
the symbols in the class. Variables are available and
take values in such classes. Occurrences of a vari-
able within a given regular expression must take the
same value. Variables express long-distance depen-
dencies. Here is an example of expression using a
variable:
{group:

vals={phon: $x in (<letter>)},
trans= $x}

This may be read: the letter found in the phon tuple
on tape tphon is the same as the letter found on the
trans tape of the same group tuple.

It is possible to define abbreviations for tu-
ples where the order and the default value of
the components may be different from the ones
in the type definition. For example, an abbre-
viation called phon is defined for instances of
the type val where the component tsem is set
to the empty string and the component vtype
is set to the value <phon>. This abbreviation
is used to define purely phonetic values. For
instance {phon: tsig=<F28>, tphon=ab}
is just another notation for the tuple
{val: tsig=<F28>, tphon=ab,

vtype=<phon>, tsem=<>}.
A machine already defined may be used

in an extended regular expression, using its
name written between << and >>. E.g.
{group: <<some_vals>>*} uses the machine
some vals.

The extended regular expressions may include
weights which are arbitrary floating numbers.
Weights are written in expressions enclosed by two
exclamation marks. The operations on transducers

combine weights using the tropical semiring. Oper-
ations such as concatenation, composition and inter-
section compute sums of weights of both operands.
The n-best operation is available to select the paths
having the smallest weights in a machine.

The external composition is a binary operation
which combines a multitape machine and a reg-
ular language, considered as an input on a given
tape. The external projection projects a multitape
machine on one tape and then removes all the tuple
boundaries. These two operations are the interface
of a multitape machine with the outer world.

5 Transliteration using multitape
transducers

A Karamel Grammar has been written by translat-
ing the cascade of binary transducers presented in
section 4. The classes of symbols defined include
the hieroglyphs (class sign), the letters used in
the transliteration (class letter), a set of seman-
tics values (class sem), divided in two subclasses,
generic values (class gensem) and regular values
(class regsem). There are also several classes of
auxiliary symbols such as subtype names. The tapes
include one tape for the text written with hiero-
glyphs (tape tsig), one tape contains the transliter-
ation (tape trans), two tapes contain respectively
the phonetic and the semantic values of the signs
(tapes tphon and tsem). There are several auxil-
iary tapes for information such as subtypes and rule
identifiers.

There are a number of different tuple types with
up to four levels of embedding. A tuple type is used
to represent sign values on four tapes. One tape is
used for the hieroglyphs, possibly a sequence of sev-
eral signs, another for the phonetic value which is a
sequence of latin letters, another tape contains the
semantic value. The last tape called vtype con-
tains a value type which is important to separate sub-
classes of values which play a different role and ap-
pear in different places of the forms. There are six
subtypes: pure phonetic values, ideograms, phonetic
ideograms, determinatives and numbers. Six abbre-
viations are defined for these subtypes, which set the
vtype value and some other tapes. For instance,
for the determiners, the phonetic value (tape phon)
is set to the empty string.
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The tuple type group is used for groups of pho-
netic values where some consonants are written re-
dundantly. A sequence of such groups is used to
write the phonetic part of a form which is repre-
sented using a core tuple.

There are also tuples to write frozen forms, di-
rectly from hieroglyphs. These forms do not use
embedded val tuples. The type wend is used to
describe the word endings which usually follow the
phonetic parts. Word endings contain the inflection
written phonetically and determinatives. The types
idform, number and gram describe forms and
their main component is a sequence of values (val
tuples). They describe respectively an ideographic
notation, a number and a grammatical word such
as a pronoun or a preposition. With all these tuple
types, there are several possible structures for forms
:
{cpform: {core: {group: {val}*}*}

{wend: {val}*}+}|
{idform: {val}*}|{number:{val}*}|
{gram: {val}*}|{frozen};

An instance of the most complex structure :
{cpform:

{core:
{group: {phon: s, <S29>}, s}
{group: {phon: nDm, <M29>}

{phon: m, <G17>}, nDm}}
{wend:{det: <seat>, <A17>}}}

This corresponds to the analysis of nDm :
S29= M29+G17= A17=
s nDm+m=nDm determinative
Each tuple type is described in the grammar using

two transducers: one which describes all the pos-
sible values for one occurrence of the tuple type,
the second one describes the context in which se-
quences of the tuple types may appear to make a
form. The second transducers uses the definition of
the first one. For instance, the word endings fol-
low a number of patterns including phonetic values
and determiners. These patterns are described in
a machine called all word endings. The con-
text of the patterns is described in a machine called
actual word endings. Part of the code of the
two machines is given below. Note that the second
machine uses the first one in its definition.

let all_word_endings =

{wend: seq = {phon: y},
trans = y};!1000!

|{wend: seq = {det}{phon: y},
trans = y};!100!

|{wend: seq = {phon: y}{det},
trans = y};!100!

| ...

let actual_word_endings =
{cpform:{core:{group:{val}*}*}

<<all_word_endings>>+}|
{idform:{val}*}|{number:{val}*}|
{gram:{val}*}|{frozen};

Each pattern in a machine all XXX corresponds
to one rule of the rewrite rule system of the original
grammar. The excerpt above translates the rules :

P(y) => b3, L(y), endWord / 1000
DET($x), P(y) => b3, L(y),

DET($x), endWord / 100
P(y), DET($x) => b3, L(y),

DET($x), endWord / 100

The auxiliary symbols b3 and endWord used in
the rewrite rules correspond to the opening and clos-
ing of a wend tuple in Karamel.

The description of all written forms is poten-
tially given by the intersection of all the machines
actual XXX, one machine for each tuple type.
This intersection is statically computable, and the
result is a large transducer. It is also possible to
compute the intersection dynamically: the text rep-
resented by a sequence of hieroglyphs is first com-
bined with one of the machines using an external
composition operation, then the result is inter-
sected successively with all the other transducers.
The best transliteration is computed by an n-best
computation and the transliteration is finally ex-
tracted using an external projection.

6 Comparison of the two approaches

The two grammars represent the structure of forms
using different means: the cascade grammar uses
pairs of auxiliary symbols whereas the Karamel
grammar uses tuples. The structure described is
almost identical in both grammars. Some tuples
of the grammar are not represented in the cascade
grammar: it is the case of the smallest tuples (type
val) and some of the largest tuples (type cpform).
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Values in the cascade grammars are rewritten ei-
ther phonetically or semantically. The sign and the
corresponding value are never simultaneously repre-
sented in the intermediate strings.

The multitape grammar puts homogeneous infor-
mation on each tape: there is a tape for hieroglyphs,
two for phonetic values, one for semantics, several
for auxiliary values. The cascade concatenates dif-
ferent kind of symbols, especially at the intermedi-
ate levels. The input consists in hieroglyphs and the
output in latin letters, but the intermediate strings
have not only both kind of representations (hiero-
glyph and latin letters), but also semantic values and
auxiliary symbols.

Some of the rewrite rules change the order of
signs with respect to the text order. This is used for
two purposes: in word ending, determinatives which
sometime appear before the inflection marked using
phonetic values, are pushed to the end of the word
in such a way that all the determinatives of a word
ending are contiguous. This is important for the next
layer of the cascade which rewrites pairs of determi-
natives with various weights, depending on seman-
tics constraints. The other case of reordering deals
with the phonetic determinatives which are put at the
beginning of word endings. This is done to check
that the phonetic value of the sign is coherent with
the transliteration of the phonetic part.

The Karamel grammar does not need to change
the order of symbols. The constraints on multi-
ple determinatives and the coherence between pho-
netic ideograms and the phonetic part transliteration
are expressed as long-distance dependencies using
Karamel variables.

The formalism used in the cascade consists in
rewrite rules without context: a center is rewritten
regardless of the surrounding symbols. There is no
way to express long-distance dependencies within
the formalism. On the other hand, long-distance de-
pendencies are costly: they result in larger transduc-
ers.

There are also some cases of changes in the struc-
ture proposed for a form in the cascade grammar:
two word endings are collapsed into one by remov-
ing the symbols marking the end of the first and be-
ginning of the second. In the Karamel grammar, this
rule is not implemented as a change of the struc-
ture, but by allowing under conditions a second word

step states arcs
step binary multitape binary multitape

values 75 12 723 2 095 61 581
groups 8 675 165 286 20 234 277 812
words 10 383 104 844 23 605 7 458 881

cleanup 923 821 031 5 001 924 514

Figure 2: sizes of binary and multitape machines

ending after the first one. The structures are never
changed once built.

The multitape transducers are larger than binary
transducers for a couple of reasons. They contain
more information because they keep all the informa-
tion whereas in the cascade, some symbols are for-
gotten after they have been rewritten. Another rea-
son is that there is an overhead due to representation
of tapes and tuples, which are compiled using aux-
iliary symbols. The third reason is that some long
distance dependencies are implemented in the mul-
titape machines. These long-distance dependencies
do not appear in one binary transducer, but they ap-
pear when statically composing the transducers of
the cascade. Figure 2 gives the sizes of comparable
machines of the two grammars.

7 Conclusion

The comparison done here is not completely fair be-
cause the second grammar has been translated from
the first one, almost rule by rule. This does not give
the best possible implementation of the application
in Karamel. Some features available in Karamel are
not used.

The Karamel language provides a more abstract
description of the forms, using an explicit tree struc-
ture and separating the different pieces of informa-
tion on different tapes, according to semantic crite-
ria. On the other hand, the Karamel machine is much
larger. Karamel is a high-level declarative formalism
whereas non contextual rewrite rules are an efficient
low-level language.

Some trade-off is possible: cascade of transduc-
ers may be expressed using a richer language (e.g.
XFST (Beesley and Karttunen, 2003)) whereas the
Karamel language has some contextual rewrite rules
which have not been presented in this paper be-
cause they are not used in the Egyptian transliter-
ation grammar.
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Abstract

Brill’s part-of-speech tagger is defined
through a cascade of leftmost rewrite rules.
We revisit the compilation of such rules into
a single sequential transducer given by Roche
and Schabes (Comput. Ling. 1995) and
provide a direct construction of the minimal
sequential transducer for each individual rule.

Keywords. Brill Tagger; Sequential Trans-
ducer; POS Tagging

1 Introduction

Part-of-speech (POS) tagging consists in assigning
the appropriate POS tag to a word in the context of
its sentence. The program that performs this task,
the POS tagger, can be learned from an annotated
corpus in case of supervised learning, typically us-
ing hidden Markov model-based or rule-based tech-
niques. The most famous rule-based POS tagging
technique is due to Brill (1992). He introduced a
three-parts technique comprising:

1. a lexical tagger, which associates a unique POS
tag to each word from an annotated training
corpus. This lexical tagger simply associates
to each known word its most probable tag ac-
cording to the training corpus annotation, i.e. a
unigram maximum likelihood estimation;

2. an unknown word tagger, which attempts to tag
unknown words based on suffix or capitaliza-
tion features. It works like the contextual tag-
ger, using the presence of a capital letter and
bounded sized suffixes in its rules: for instance
in English, a -able suffix usually denotes an ad-
jective;

3. a contextual tagger, on which we focus in this
paper. It consists of a cascade of string rewrite
rules, called contextual rules, which correct tag
assignments based on some surrounding con-
texts.

In this note, we revisit the proof that contextual
rules can be translated into sequential transducers1

proposed by Roche and Schabes (1995): whereas
Roche and Schabes give a separate proof of sequen-
tiality and exercise it to show that their constructed
non-sequential transducer can be determinized (at
the expense of a worst-case exponential blow-up),
we give a direct translation of a contextual rule into
the minimal normalized sequential transducer, by
adapting Simon (1994)’s string matching automa-
ton to the transducer case. Our resulting sequential
transducers are of linear size (before their composi-
tion). A similar construction can be found in (Mi-
hov and Schultz, 2007), but no claim of minimality
is made there.

2 Contextual Rules

We start with an example by Roche and Schabes
(1995): Let us suppose the following sentences were
tagged by the lexical tagger (using the Penn Tree-
bank tagset):

∗Chapman/NNP killed/VBN John/NNP Lennon/NNP
∗John/NNP Lennon/NNP was/VBD shot/VBD by/IN

Chapman/NNP
He/PRP witnessed/VBD Lennon/NNP killed/VBN

by/IN Chapman/NNP

1Historically, what we call here “sequential” used to be
called “subsequential” (Schützenberger, 1977), but we follow
the more recent practice initiated by Sakarovitch (2009).
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There are mistakes in the first two sentences: killed
should be tagged as a past tense form “VBD”, and
shot as a past participle form “VBN”.

The contextual tagger learns contextual rules over
some tagset Σ of form uav → ubv (or a→ b /u v
using phonological rule notations (Kaplan and Kay,
1994)), meaning that the tag a rewrites to b in the
context of u v, where the context is of length
|uv| bounded by some fixed k + 1; in practice,
k = 2 or k = 3 (Brill (1992) and Roche and Sch-
abes (1995) use slightly different templates than the
one parametrized by k we present here). For in-
stance, a first contextual rule could be “nnp vbn →
nnp vbd” resulting in a new tagging

Chapman/NNP killed/VBD John/NNP Lennon/NNP
∗John/NNP Lennon/NNP was/VBD shot/VBD by/IN

Chapman/NNP
∗He/PRP witnessed/VBD Lennon/NNP killed/VBD

by/IN Chapman/NNP

A second contextual rule could be “vbd in →
vbn in” resulting in the correct tagging

Chapman/NNP killed/VBD John/NNP Lennon/NNP
John/NNP Lennon/NNP was/VBD shot/VBN by/IN

Chapman/NNP
He/PRP witnessed/VBD Lennon/NNP killed/VBN

by/IN Chapman/NNP

As stated before, our goal is to compile the entire
sequence of contextual rules learned from a corpus
into a single sequential function.

Let us first formalize the semantics we will em-
ploy in this note for Brill’s contextual rules.2 Let
C = r1r2 · · · rn be a finite sequence of string rewrite
rules in Σ∗ × Σ∗ with Σ a POS tagset of fixed size.
In practice the rules constructed in Brill’s contextual
tagger are length-preserving and 1-change-bounded,
i.e. they modify a single letter, but this is not a useful
consideration for our transducer construction. Each
rule ri = ui → vi defines a leftmost rewrite relation
ri=⇒
lm

defined by

w
ri=⇒
lm

w′ iff ∃x, y ∈ Σ∗, w = xuiy ∧ w′ = xviy

∧ ∀z, z′ ∈ Σ∗, w 6= zuiz
′ ∨ x ≤pref z

2This is not exactly the semantics assumed by either Brill
nor Roche and Schabes, who used iterated-application seman-
tics, resp. contextual and non contextual, instead of the single-
application semantics we use here. This has little practical con-
sequence.

where x ≤pref z denotes that x is a prefix of z. Note
that the domain of ri=⇒

lm
is Σ∗ · ui · Σ∗. The behavior

of a single rule is then the relation JriK included in
Σ∗ × Σ∗ defined by JriK = ri=⇒

lm
∪ IdΣ∗\(Σ∗·ui·Σ∗),

i.e. it applies ri=⇒
lm

on Σ∗ · ui · Σ∗ and the identity on

its complement Σ∗\(Σ∗ · ui · Σ∗). The behavior of
C is then the composition JCK = Jr1K # Jr2K # · · · #JrnK. Note that this behavior does not employ the
transitive closure of the rewriting rules.

A naive implementation of C would try to match
each ui at every position of the input string w in
Σ∗, resulting in an overall complexity of O(|w| ·∑

i |ui|). One often faces the problem of tag-
ging a set of sentences {w1, . . . , wm}, which yields
O((
∑

i |ui|) · (
∑

j |wj |)). As shown in Roche and
Schabes’ experiments, compiling C into a single se-
quential transducer T results in practice in huge sav-
ings, with overall complexities in O(|w|+ |T |) and
O(|T |+∑j |wj |) respectively.

Each JriK is a rational function, being the union of
two rational functions over disjoint domains. Let |ri|
be the length |uivi| ≤ k. Roche and Schabes (1995,
Sec. 8.2) provide a construction of an exponential-
sized transducer Tri for each JriK, and compute
their composition TC of size |TC | = O(

∏n
i=1 2|ri|).

As they show that each JriK is actually a sequen-
tial function, their composition JCK is also sequen-
tial, and TC can be determinized to yield a se-
quential transducer T of size doubly exponential
in
∑n

i=1 |ri| ≤ nk (see Roche and Schabes, 1995,
Sec. 9.3). By contrast, our construction directly
yields linear-sized minimal sequential transducers
for each JriK, resulting in a final sequential trans-
ducer of size O(

∏n
i=1 |ri|) = O(2n log k).

3 Sequential Transducer of a Rule

Intuitively, the sequential transducer for JriK is re-
lated to the string matching automaton (Simon,
1994; Crochemore and Hancart, 1997) for ui, i.e.
the automaton for the language Σ∗ui. This insight
yields a direct construction of the minimal sequen-
tial transducer of a contextual rule, with at most
|ui|+ 1 states. Let us recall a few definitions:
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3.1 Preliminaries
Overlaps, Borders (see e.g. Crochemore and
Hancart, 1997, Sec. 6.2). The overlap ov(u, v) of
two words u and v is the longest suffix of u which is
simultaneously a prefix of v. A word u is a border
of a word v if it is both a prefix and a suffix of v, i.e.
if there exist v1, v2 in Σ∗ such that v = uv1 = v2u.
For v 6= ε, the longest border of v different from v
itself is denoted bord(v).

Fact 1. For all u, v in Σ∗ and a in Σ, ov(ua, v) =
ov(u, v) · a if ov(u, v) · a ≤pref v and ov(ua, v) =
bord(ov(u, v) · a) otherwise.

Sequential Transducers (see e.g. Sakarovitch,
2009, Sec.V.1.2). Formally, a sequential transducer
from Σ to ∆ is a tuple T = 〈Q,Σ,∆, q0, δ, η, ι, ρ〉
where δ : Q×Σ→ Q is a partial transition function,
η : Q×Σ→ ∆∗ a partial transition output function
with the same domain as δ, i.e. dom(δ) = dom(η),
ι ∈ ∆∗ is an initial output, and ρ : Q → ∆∗

is a partial final output function. T defines a par-
tial sequential function JT K : Σ∗ → ∆∗ withJT K(w) = ι·η(q0, w)·ρ(δ(q0, w)) for allw in Σ∗ for
which δ(q0, w) and ρ(δ(q0, w)) are defined, where
η(q, ε) = ε and η(q, wa) = η(q, w) · η(δ(q, w), a)
for all w in Σ∗ and a in Σ.

Let us note T(q) for the sequential transducer with
q for initial state. We write u∧v for the longest com-
mon prefix of strings u and v; the longest common
prefix of all the outputs from state q can be writ-
ten formally as

∧
v∈Σ∗JT(q)K(v). A sequential trans-

ducer is normalized if this value is ε for all q ∈ Q
such that dom(JT(q)K) 6= ∅, i.e. if the transducer
outputs symbols as soon as possible; any sequen-
tial transducer can be normalized. The translation
of a sequential function f by a word w in Σ∗ is
the sequential function w−1f with dom(w−1f) =
w−1dom(f) and w−1f(u) = (

∧
v∈Σ∗ f(wv))−1 ·

f(wu) for all u in dom(w−1f). As in the finite
automata case where minimal automata are isomor-
phic with residual automata, the minimal sequen-
tial transducer for a sequential function f is defined
as the translation transducer 〈Q,Σ,∆, q0, δ, η, ι, ρ〉,
where Q = {w−1f | w ∈ Σ∗} (which is finite),
q0 = ε−1f , ι =

∧
v∈Σ∗ f(v) if dom(f) 6= ∅ and ι =

ε otherwise, δ(w−1f, a) = (wa)−1f , η(w−1f, a) =∧
v∈Σ∗(w

−1f)(av) if dom((wa)−1f) 6= ∅ and
η(w−1f, a) = ε otherwise, and ρ(w−1f) =

(w−1f)(ε) if ε ∈ dom(w−1f), and is otherwise un-
defined.

3.2 Main Construction

Here is the definition of our transducer for a contex-
tual rule (see Fig.1):

Definition 2 (Transducer of a Contextual Rule). The
sequential transducer Tr associated with a contex-
tual rule r = u → v with u 6= ε is defined as
Tr = 〈pref(u),Σ,Σ, ε, δ, η, ε, ρ〉with the set of pre-
fixes of u as state set, ε as initial state and initial
output, and for all a in Σ and w in pref(u),

δ(w, a)=


wa if wa ≤pref u

w if w = u

bord(wa) otherwise

ρ(w)=


ε if w ≤pref (u ∧ v)
(u ∧ v)−1w if (u ∧ v) <pref w <pref u

ε otherwise, i.e. if w = u

η(w, a)=



a if wa ≤pref (u ∧ v)
ε if (u∧v)<pref wa<pref u

(u ∧ v)−1v if wa = u

a if w = u

ρ(w)a · ρ(bord(wa))−1

otherwise.

It remains to show that this sequential transducer
is indeed the minimal normalized sequential trans-
ducer for JrK.

Proposition 3 (Correctness). Let r = u → v with
u 6= ε. Then JTrK = JrK.

Proof. Let us first consider the case of input words
in Σ∗\(Σ∗ · u · Σ∗):

Claim 3.1. For all w in Σ∗\(Σ∗ · u · Σ∗), δ(ε, w) =
ov(w, u) and η(ε, w) = w · ρ(ov(w, u))−1.

By induction on w: since u 6= ε, the base case is
w = ε with δ(ε, ε) = ε = ov(ε, u) and η(ε, ε) =
ε = ε · ε−1 = ε · ρ(ε)−1. For the induction step, we
consider wa in Σ∗\(Σ∗ · u · Σ∗) for some w in Σ∗
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b:b

a:a

a:a

b:b

b:b

a:ε

a:aa

b:ε b:bbb

a:ab

a:a, b:b

Figure 1: The sequential transducer constructed for ababb→ abbbb.

and a in Σ:

δ(ε, wa) = δ(δ(ε, w), a) i.h.= δ(ov(w, u), a)
Fact 1= ov(wa, u)

η(ε, wa) = η(ε, w) · η(δ(ε, w), a)
i.h.= w · ρ(δ(ε, w))−1 · η(δ(ε, w), a)

= w · ρ(w′)−1 · η(w′, a) ;
(by setting w′ = δ(ε, w))

we need to do a case analysis for this last equation:

Case w′a 6≤pref u Then η(w′, a) = ρ(w′) · a ·
ρ(border(w′a))−1, which yields η(ε, wa) =
w · ρ(w′)−1 · ρ(w′) · a · ρ(δ(ε, wa))−1 = wa ·
ρ(δ(ε, wa))−1.

Case w′a <pref u Then δ(ε, wa) = w′a, and
we need to further distinguish between several
cases:

w′a ≤pref (u ∧ v) then ρ(w′) = ε,
η(w′, a) = a, and ρ(w′a) = ε,
thus η(ε, wa) = wa = wa · ε−1 =
wa · ρ(w′a)−1,

w′ = (u ∧ v) then ρ(w′) = ε, η(w′, a) = ε,
and ρ(w′a) = (u ∧ v)−1 · w′a = a,
η(ε, wa) = w = wa · a−1 = wa ·
ρ(w′a)−1,

(u ∧ v) <pref w′ then ρ(w′) = (u ∧ v)−1 ·
w′, η(w′, a) = ε, and ρ(w′a) = (u ∧
v)−1 ·w′a, thus η(ε, wa) = w ·((u∧v)−1 ·
w′)−1 = wa · a−1 · ((u ∧ v)−1 · w′)−1 =
wa · ρ(w′a)−1.

The claim yields that JTrK coincides with JrK on
words in Σ∗\(Σ∗ · u · Σ∗), i.e. is the identity over
Σ∗\(Σ∗ · u · Σ∗). Then, since u 6= ε, a word in
Σ∗ ·u·Σ∗ can be written aswaw′ withw in Σ∗\(Σ∗ ·
u · Σ∗), a in Σ with wa in Σ∗ · u, and w′ in Σ∗. Let

u = u′a; the claim implies that δ(ε, w) = u′ and
η(ε, w) = w · ρ(u′)−1. Thus, by definition of Tr,
δ(ε, wa) = u′a = u and thus η(ε, wa) = η(ε, w) ·
η(u′, a) = w · ρ(u′)−1 · (u ∧ v)−1 · v;

if (u ∧ v) <pref u′ η(ε, wa) = w · ((u ∧ v)−1 ·
u′)−1 ·(u∧v)−1 ·v = w ·u′−1 ·v = wa ·u−1 ·v;

otherwise i.e. if u′ = (u∧v): η(ε, wa) = w ·u′−1 ·
v = wa · u−1 · v.

Thus in all cases JTrK(wa) = JrK(wa), and since Tr
starting in state u (i.e. Tr(u)) implements the identity
over Σ∗, we have more generally JTrK = JrK.

Lemma 4 (Normality). Let r = u → v. Then Tr is
normalized.

Proof. Let w ∈ Prefix(u) be a state of Tr; let us
show that

∧JTr(w)K(Σ∗) = ε.

If (u ∧ v) <pref w <pref u let u′ =
w−1u ∈ Σ+, and consider the two out-
puts JTr(w)K(u′) = η(w, u′)ρ(u) = (u∧ v)−1v
and JTr(w)K(ε) = ρ(w) = (u ∧ v)−1w.
Since (u ∧ v) <pref u we can write u as
(u ∧ v)au′′u′, and either v = (u ∧ v)bv′ or
v = u ∧ v, for some a 6= b in Σ and u′′, v′

in Σ∗; this yields w = (u ∧ v)au′′ and thusJTr(w)K(u′) ∧ JTr(w)K(ε) = ε.

otherwise ρ(w) = ε, which yields the lemma.

Proposition 5 (Minimality). Let r = u → v with
u 6= ε and u 6= v. Then Tr is the minimal sequential
transducer for JrK.

Proof. Let w <pref w′ be two different states in
Prefix(u); we proceed to prove that Jw−1TrK 6=Jw′−1TrK, hence that no two states of Tr can
be merged. By Thm. 4 it suffices to prove thatJTr(w)K 6= JTr(w′)K, thus to exhibit some x ∈ Σ∗
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such that JTr(w)K(x) 6= JTr(w′)K(x). We perform a
case analysis:

if w′ ≤pref (u ∧ v) then w <pref (u ∧ v) thusJTr(w)K(x) = x for all x 6∈ w−1 · Σ∗ · u · Σ∗;
consider JTr(w)K(w′−1u) = w′−1u 6= w′−1v =JTr(w′)K(w′−1u);

if w ≤pref (u ∧ v) and w′ = u thenJTr(w′)K(x) = x for all x and we con-
sider JTr(w)K(w−1u) = w−1v 6= w−1v =JTr(w′)K(w−1u);

otherwise that is ifw ≤pref (u∧v) and (u∧v) <pref

w′ <pref u, or (u ∧ v) <pref w <pref w
′ ≤pref

u, we have ρ(w) 6= ρ(w′) thus JTr(w)K(ε) 6=JTr(w′)K(ε).

4 Conclusion

The results of the previous section yield (the cases
u = ε and u = v are trivial):

Theorem 6. Given a contextual rule r = u → v,
one can construct directly the minimal normalized
sequential transducer Tr of size O(|r|) for JrK.

The remaining question is whether we can ob-
tain better upper bounds on the size of the sequen-
tial transducer TC for a cascade C = r1 · · · rn than
O(2n log k). It turns out that there are cascades of
length n for which no sequential transducer with
a subexponential (in n) number of states can exist,
thus our construction is close to optimal.
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Abstract 

In this paper we describe our work in progress 
on FTrace, a tool for finite-state morphology 
that provides a tracing facility for developers 
of applications for synchronic and diachronic 
language descriptions. We discuss not only 
the current tool for downward tracing, but also 
the challenges that we face in the further de-
velopment of FTrace, especially in upward 
tracing. Finally, we present an example, draw 
some conclusions, and outline our future 
work. Keywords: FTrace, tracing, finite-state 
morphology, xfst, foma, SWI Prolog, Prolog 
network-interpreter, diachronic language de-
scrip-tion. 

1 Introduction 

In this paper we describe FTrace, a tool for finite-
state morphology that provides a tracing facility 
for developers of applications for synchronic and 
diachronic language descriptions. It constitutes 
work in progress, and we therefore will discuss not 
only the current tool for downward tracing, but 
also the challenges that we face in the further de-
velopment of FTrace, especially in upward tracing. 

In Section 2 we explain our motivation for cre-
ating FTrace, in Section 3 we describe the overall 
architecture of the system and outline briefly the 
language-description module and the visualization 
environment. In Section 4 we describe in detail the 
module for compiling and exporting the individual 
networks for replacement rules into Prolog nota-
tion before we describe the Prolog network-
interpreter and the specific problems we face in 
downward and upward tracing in Section 5. Fi-

nally, in Section 6 we illustrate the tool with an 
example, and in Section 7 we draw some conclu-
sions and outline our future work. 

2 Motivation 

In the past decade software systems like xfst and 
foma (cf. Beesley and Karttunen, 2003; Hulden, 
2009, respectively) based on finite-state technol-
ogy have greatly facilitated the use of replacement 
rules (Karttunen, 1995) in computational descrip-
tions of natural languages. The vast majority of 
such applications have been purely synchronic and 
often employ replacement rules to capture mor-
phophonemic alternations within lexical para-
digms.  

The replacement format, however, makes the 
rules equally attractive as a framework in which 
the phonology of a language can be modelled dia-
chronically. The formal process is essentially the 
same, whether we synchronically derive surface 
forms from underlying lexical representations with 
morphophonemic rules, or diachronically derive 
later representations from corresponding earlier 
forms. In both cases we have a binary relation con-
sisting of pairs <w0, wn> of an upper-level string w0 
and a lower-level string wn defined in the descrip-
tion by a sequence of replacement rules R1, … , Rn 
and implicitly by the corresponding derivation w0, 
w1, … , wn , where each string wj for j ≥ 1 is pro-
duced from string wj-1 by the application of Rj. 

So much for the elementary formal language 
theory. The whole point of systems like xfst is that 
the entire sequence R1, … , Rn of replacement rules 
is composed and compiled into a single network 
encoding the binary relation. So we don’t see any 
of the intermediate strings wj of the derivation, and 
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that is precisely what makes finite-state technology 
so efficient. 

Once an application has been correctly devel-
oped, we normally have no need or desire to see 
derivations, but the situation is different if we have 
difficulty formulating replacement rules in a way 
that gives us the results we want. This is especially 
the case for students learning to use xfst or foma to 
encode linguistic descriptions. Then it is very help-
ful to be able to follow entire derivations in terms 
of the individual rule applications. This is just what 
a tracing facility would provide, but neither xfst 
nor foma has one. Vi-xfst (cf. Oflazer and Yilmaz, 
2004) has a very useful dependency-tracking tool 
that we can use to visualize relationships between 
rules, but it includes no tracing facility that meets 
our requirements. 

A first glance this appears to be a job that the 
developers of xfst or foma should do in order to 
produce the best tracing tool, but there is a short 
cut that requires no changes in the source code or 
involvement of the original developers. A feature 
of both systems is that they allow individual net-
works to be exported in Prolog notation. If each 
rule Rj is exported as a corresponding network Nj, 
then it is easy for a user to write his own Prolog 
program to interpret the individual networks as 
governed by a “play list” of the names of rule net-
works in their order of application. Such Prolog 
programming is described, e.g., in (Gazdar and 
Mellish, 1989, p. 37 ff.) and serves as the basis for 
our Prolog code which we specify below in 5.2 for 
the benefit of readers unfamiliar with (Gazdar and 
Mellish, 1989). 

In our own work we have adopted the latter 
strategy. 

3 Architecture of the Tool 

There are four modules in FTrace:  
 

1. the language-description module,  
2. the module for export of xfst/foma networks 

in Prolog notation, 
3. the Prolog interpreter, 
4. the visualisation environment (SWI Prolog). 

3.1 The Language-Description Module 

The language-description module can consist of a 
single xfst script that contains the (continuation) 
lexicons and the replacement rules as well as vari-

able declarations that define natural classes of 
segments and clusters of morphological tags. 
However, it can be a full-fledged lexicon that con-
tains an xfst script with the variable declarations, 
the replacement rules, etc., a lexc master lexicon, 
and several (lexicographic) text files that contain 
the stems belonging to different inflectional 
classes. 

It is very important to mention that the xfst 
script must comply with a number of special con-
ventions. 

Since we are not interested in the individual 
networks of tag clusters or natural classes of seg-
ments but want to export only the individual net-
works of the replacement rules, we need to 
introduce different naming conventions. Thus, the 
names of tag clusters or natural classes of segments 
begin with a capital letter (e.g., VowFrt, Vowfrt, 
TAGS), while the names of the rules begin with a 
lower-case letter (e.g., r2, jerFrtVoc). 

The second convention refers to the play list 
that is needed by the Prolog network-interpreter 
(cf. above, Section 2, Motivation). The play list 
can be a part of the language-description module 
and have the form of a regular expression that de-
notes a cascade of replacement rules and has xfst 
syntax. It is possible, however, for the play list to 
be omitted from the language-description module. 
In this case the developer writes the play list as an 
xfst comment. In both cases the name of the regu-
lar expression must begin with a lower-case letter 
and the line must contain an xfst comment ‘# … 
QQ’, which marks the play list for Perl (cf. Section 
4). We have chosen this particular string because it 
is highly unlikely to be a substring of any reserved 
or natural-language word. 

3.2 The XFST/Foma-Specific Module(s) 

Of the four modules only the export module is spe-
cific to either xfst or foma. This is necessary since 
there are some important differences between xfst 
and foma: 
 
− an xfst script cannot be started from outside 

the application environment but can make 
calls to the system; 

− a foma script can be started from outside the 
application environment but cannot make 
calls to the system (last tested version: 
0.9.14alpha). 
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In Section 4 we explain in detail an export mod-
ule for xfst. 

3.3 The Visualisation Environment 

Since the Prolog network-interpreter will be de-
scribed in detail in Section 5, we still need to say a 
few words about the visualisation environment. 
Our interpreter is compatible with most distribu-
tions of Prolog. However, we have chosen SWI 
Prolog for the following reasons: 
 
− SWI Prolog is widely used for research and in 

instruction, it offers a comprehensive envi-
ronment and is free; 

− It is very easy to type UTF8 characters in the 
console and to display them. This makes SWI 
Prolog an ideal environment for tracing with 
language descriptions that use various writing 
systems such as, e.g., Cyrillic and Arabic.  

 

4 The Module for Compiling and Export-
ing the Prolog Networks 

The module consists of several xfst and Perl files. 
The task is to print the Prolog networks for each 
replacement rule and to export the rules to a sepa-
rate Prolog UTF8 file that will be used by the net-
work interpreter. In addition, the play list that is 
specified in the language description has to be ex-
tracted and added to that file. All tasks in this 
module run automatically; the user just needs to 
provide the name of the language-description file.  

The main element of this module is an xfst 
script ftrace.xfst. First it starts an interactive Perl 
script GetName.perl.pl1 that asks the user to type 
in the name of the language description file and 
saves it to a text file2 LDSrc.txt. In the next steps 
the language description file is compiled, and the 
names of the defined variables are printed and 
saved to a file defined.txt.  

                                                          

The second Perl script PrintNwks.perl.pl selec-
tively extracts from defined.txt only the names of 
variables that (according to the convention) begin 
with a lower-case letter, and dynamically creates 

 
1 Since both Perl and Prolog files have extension ‘pl’, the Perl 
scripts additionally have ‘perl’ in the filename before the ‘pl’ 
extension. 
2 All files that are created by the export module are saved to a 
temp directory and are deleted with the next execution of 
ftrace.xfst 

an xfst script print-prolog-source.xfst that prints 
the corresponding Prolog networks. However, the 
names that are assigned to the networks by xfst 
have nothing to do with the names given to the 
rules by the linguist. The original names of the 
rules are restored automatically before the net-
works are saved to a Prolog file <filenameoflang-
descr>-Nwks.pl.  

The third Perl script PrintPlList.perl.pl extracts 
the play list and rewrites it in Prolog syntax. Then 
the play list is appended to the file (<file-
nameoflangdescr>-Nwks.pl) that contains the 
Prolog networks.  

Finally, the Perl script reminds the user that his 
files are saved to a temporary directory and will be 
deleted with the next execution of FTrace. The 
name and the location of the file that contains the 
Prolog networks and the play list are also dis-
played. 

5 The Prolog Network-Interpreter 

The complexity of the tracing interpreter depends 
chiefly on the sublanguage of xfst or foma we wish 
to cover for tracing. For the time being we have 
excluded special features such as flag diacritics 
and merge in xfst (cf. Beesley and Karttunen, 
2003: 339 ff., 401 ff.) and assume simply (1) vari-
able definitions to specify natural segment classes, 
(2) elementary regular expressions to define the 
distribution of segments in the upper-level lan-
guage (i.e. “(mor)-phonotactics” of the proto-
language), and (3) replacement rules. Crucially, we 
want our tracing facility to provide not only apply-
down traces of derivations from upper to lower 
forms, but also of apply-up derivations from lower 
to upper.  

5.1 Special Problems  

Special problems of programming the trace inter-
preter are posed by some reserved symbols. In par-
ticular, ‘?’ for “any symbol” and ‘0’ or ‘[]’ and 
‘[..]’ for deletion and epenthesis rules, respectively, 
require attention. ‘?’ is familiar enough and need 
not be discussed here.  

The null-symbols ‘0’ or ‘[]’ and ‘[..]’, however, 
can lead to difficulties with termination. For 
downward tracing there is no problem with dele-
tion rules using ‘0’ or ‘[]’, whether they are condi-
tioned by an environment or not, and tracing 
apply-down application of epenthesis rules with an 
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environment is likewise unproblematic. An uncon-
ditioned epenthesis rule would be disastrous for a 
description and for tracing, but we assume one 
normally would not want to write such a rule in the 
first place for a natural language. This is all fairly 
obvious.  

The situation is less transparent, however, when 
it comes to apply-up tracing. Again, there is no 
problem with deletion or epenthesis rules with en-
vironments, and – symmetrically to the apply-
down application of deletion rules – even apply-up 
application of unconditioned epenthesis rules could 
in principle be handled, but we don’t want such 
rules, anyway.  

The real problem arises with unconditioned de-
letion rules. We have just seen that apply-down 
application is unproblematic, but their apply-up 
application is equivalent to apply-down application 
of unconditioned epenthesis, which we have ex-
cluded. So we appear to be faced with a dilemma: 
For many descriptions it appears attractive to have 
unconditioned rules to delete, e.g., symbols for 
morpheme boundaries, and in any case, we would 
not want to disallow their use by linguists; on the 
other hand, apply-up tracing seems inevitably to 
lead to an infinite or at least unacceptably large 
number of possible antecedent strings from which 
a given string could arise through uncondtioned 
deletion of a segment.  

In order to deal with this we have developed a 
strategy based on the notion of distributional filter-
ing. Consider the above-mentioned example of a 
rule ‘'+' -> 0’ to delete all instances of a mor-
pheme boundary ‘+’ after it has served its function, 
e.g. in conditioning other morphophonemic rules. 
If our description consisted merely of a sequence 
of replacement rules R1, … , Rn including the de-
letion rule, then not only apply-up tracing with 
single rules, but also apply-up applications with the 
overall network in general would lead to an explo-
sion in the computation of upper forms from which 
a lower form could arise. The problem dissolves, 
however, if we compose a network N0 constraining 
the distribution of symbols in the ultimate upper 
language with the total network R arising from the 
composition of all replacement rules; if N0 cor-
rectly specifies where ‘+’ can occur in the first 
place, then it can only be deleted from these posi-
tions, and the problem is solved for apply up in a 
single, composite network.  

We now need to carry over the filtering idea to 
upward tracing. The upper language defined by the 
network of a single unconditioned deletion rule 
must be restricted in order to ensure that the set of 
possible antecedent strings is highly constrained. 
Consider the sequence of networks N0, N1, …, Nn 
where each Ni except N0 arises from Ri. For each 
Nj stemming from an unconditioned deletion rule, 
we can define Nj' as the composition N0 .o. N1 .o. 
… Nj-1. Then in upward tracing of the application 
of Nj to produce string w, not [Nj .o. w].u , but ra-
ther [Nj'.l .o. Nj .o. w].u is computed to get the set 
of possible antecedent strings. This gives us the 
desired filtering effect and solves the problem for 
tracing.  

5.2 Downward tracing  

The implementation of downward tracing is sim-
ple. Given replacement rules defined like these  
 
define r1 [ k -> c || _ i ] ;  
define r2 [ i -> 0 || _ .#. ] ;  
 
xfst or foma constructs the network encoded in 
Prolog, which is exported to a file (cf. the example 
in Section 6 below).  

Following the techniques of Gazdar and Mel-
lish mentioned above, a Prolog network-interpreter 
for downward tracing can then be implemented 
easily. Due to limitations of space we omit the list-
ings here. The interpreter has been tested exten-
sively. 

6 An Example 

The following example already given above is very 
simple and transforms a fictitious proto-language 
PL into a daughter language DL with two ordered 
sound changes: palatalization of the velar k to c 
before the front vowel i, followed by the deletion 
of i in final position. Here, again, is the code of the 
language description:  
 
# LgDL.txt  
define r1 [ k -> c || _ i ] ;  
define r2 [ i -> 0 || _ .#. ] ;  
# define lgdl [r1 .o. r2] ; QQ  
 

After the compilation of the language descrip-
tion, the Prolog networks of replacement rules r1 
and r2 and the play list are exported to LgDL-
Nwks.pl. Here is part of the content of this file:  
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:- encoding(utf8).  
network(r1).  
arc(r1, 0, 0, "?").  
arc(r1, 0, 0, "c").  
arc(r1, 0, 0, "i").  
arc(r1, 0, 1, "k").  
arc(r1, 0, 2, "k":"c").  
arc(r1, 1, 0, "?").  
arc(r1, 1, 0, "c").  
arc(r1, 1, 1, "k").  
arc(r1, 1, 2, "k":"c").  
arc(r1, 2, 0, "i").  
final(r1, 0).  
final(r1, 1).  
network(r2).  
arc(r2, 0, 0, "?").  
arc(r2, 0, 1, "i").  
arc(r2, 0, 2, "i":"0").  
arc(r2, 1, 0, "?").  
arc(r2, 1, 1, "i").  
arc(r2, 1, 2, "i":"0").  
final(r2, 0).  
final(r2, 2).  
rule_list(lgdl, [r1, r2]).  
 

The Prolog downward tracing interpreter ap-
plydn.pl is compiled in the SWI Prolog console, 
and then LgDL-Nwks.pl is consulted. Now the de-
veloper can test pairs of words from the proto-
language and the daughter language: 

 

 

7 Conclusion 

We believe that FTrace can be useful and help de-
velopers of synchronic and diachronic language 
descriptions to debug their applications. In teach-
ing historical linguistics it makes it possible to 
show the historical development of the phonologi-
cal system of a language in detail and to test the 
proposed rules for derivations of individual forms. 
The same tool can equally well be used to produce 

explicit synchronic derivations from underlying 
forms to surface forms. 
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Abstract

Millstream systems are a non-hierarchical
model of natural language. We describe an
incremental method for building Millstream
configurations while reading a sentence. This
method is based on a lexicon associating
words and graph transformation rules.

1 Introduction

Language processing is an incremental proce-
dure. This is supported by various psycholinguistic
and cognitive neuroscience-based studies (see e.g.
(Taraban and McClelland, 1988)). We do not post-
pone the analysis of an utterance or sentence until it
is complete, but rather start to process immediately
hearing the first words (or word parts). We present
ongoing work regarding the incremental syntactic
and semantic analysis of natural language sentences.
We base this work on Millstream systems (Bensch
and Drewes, 2010), (Bensch et al., 2010), a generic
mathematical framework for the description of nat-
ural language. These systems describe linguistic as-
pects such as syntax and semantics in parallel and
provide the possibility to formalise the relation be-
tween them by interfaces. Millstream systems are
motivated by contemporary linguistic theories (see
e.g. (Jackendoff, 2002)). A Millstream system con-
sists of a finite number ofmoduleseach of which de-
scribes a linguistic aspect and aninterfacewhich de-
scribes the dependencies among these aspects. The
interface establishes links between the trees given
by the modules, thus turning unrelated trees into a
meaningful whole called aconfiguration. For sim-

plicity, we just consider Millstream systems con-
taining only two modules, for syntax and seman-
tics. With this simplifying assumption, a configu-
ration of the Millstream system consists of two trees
with links between them and represents the analy-
sis of the sentence that is the yield of the syntax
tree. An obvious question is how such a config-
uration can be constructed from a given sentence.
Such a procedure would be a step towards auto-
matic language understanding based on Millstream
systems. We propose to use graph transformations
for that purpose. By expressing language process-
ing in terms of graph transformation we can employ
a wealth of theoretical results relating graph trans-
formations and monadic second-order logic. We
mimic the incremental way in which humans pro-
cess language, thus constructing a Millstream con-
figuration by a step-by-step procedure while reading
the words of a sentence from left to right. The idea
is that the overall structure of a sentence is built in-
crementally, word-by-word. With each word, one
or more lexicon entries are associated. These lexi-
con entries are graph transformation rules the pur-
pose of which is to construct an appropriate config-
uration. For a sentence likeMary likes Peter, for
example, we first apply a lexicon entry correspond-
ing to Mary, which results in a partial configuration
that represents the syntactic, semantic and interface
structure ofMary. We continue by applying the lex-
icon entry for loves, which yields a partial config-
uration representingMary loves. Finally, a lexicon
entry representingPeter is applied, resulting in the
overall Millstream configuration for the entire sen-
tence.
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2 Millstream Configurations as Graphs

A configuration in a Millstream system is a tuple of
ranked and ordered trees (in our restricted case, a
pair consisting of the syntactic and the semantic rep-
resentation of a sentence) with links between them.
The (labelled) links indicate relations between the
nodes. A typical link establishes a relation between
two nodes belonging to different trees. In this paper,
we want to represent configurations in a way which
is suitable for graph transformation. For this, we first
define the general type of graphs considered. For
modelling convenience, we work with hypergraphs
in which the hyperedges (but not the nodes) are la-
belled. For simplicity, we call hypergraphs graphs
and their hyperedges edges. Edge labels are taken
from a doubly ranked alphabetΣ, meaning thatΣ is
a finite set of symbols in which every symbola has
sourceandtarget ranksranksrc(a), ranktar (a) ∈ N
determining the number of sources and targets, re-
spectively, that an edge label’sa is required to have.

Definition 1 Let Σ be a doubly ranked alphabet.
A Σ-graph is a quadruple(V, E, src, tar , lab) con-
sisting of finite setsV and E of nodesand edges,
sourceand target functionssrc, tar : E → V ∗, and
an edge labelling functionlab : E → Σ such that
ranksrc(lab(e)) = |src(e)| and ranktar (lab(e)) =
|tar(e)| for all e ∈ E. The components of a graphG
will also be referred to asVG, EG, srcG, tarG, labG.
ByGΣ we denote the class of allΣ-graphs.

A Millstream alphabetis a doubly ranked alpha-
bet Σ in which the target rank of each symbol is
either 1 or 0. Symbols of target rank1 are tree
symbols; edges labelled with these symbols aretree
edges. Symbols of target rank0 are link symbols;
edges labelled with link symbols arelinks. A tree
or link symbola may be denoted bya(k) to indicate
thatranksrc(a) = k. In the following, the termtree
refers to an acyclic graph in which all edges are tree
edges, each node is the target of exactly one edge,
and there is exactly one node (the root) that is not
a source of any edge. AΣ-configurationis a graph
G ∈ GΣ such that the deletion of all links fromG
results in a disjoint union of trees.

Figure 1 depicts a tree, built using the tree
symbolsS(2), VP(2), NP(1), V(1),Mary(0), loves(0),
Peter (0). To save space we use the drawing style
shown in Figure 2 instead. The links pointing to tree

Figure 1: A tree in its (hyper)graph representation

symbols point to the target nodes of the tree edge
representing that symbol.

Figure 2: A more condensed representation of the
tree in Figure 1

A k-ary link establishes a relation betweenk
nodes by arranging them in a tuple. In this paper
there is only one link symbol, this link symbol is
of source rank2, and connects nodes across the two
trees every configuration consists of. These links are
drawn as unlabelled dashed lines. With these con-
ventions, a complete configuration looks as shown
in Figure 3. This configuration consists of two trees,
representing the (extremely simplified) syntactic and
semantic structures of the sentenceMary loves Pe-
ter. The symbols in the semantic tree are interpreted
as functions from a many-sorted algebra. The sorts
of the algebra are the semantic domains of interest,
and the evaluation of a (sub-) tree yields an element
of one of these sorts. In the semantic tree shown in
the figure, we assume thatMary andPeter are (in-
terpreted as) functions without arguments (i.e., con-
stants) returning elements of the sortname. The
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Figure 3: A sample configuration that relates a syn-
tactic and a semantic tree

function refers to takes a name as its argument and
returns, say, an element of the domainperson. Fi-
nally, loving is a function that takes two persons
as arguments and returns an element of the domain
state, namely the state that the first argument (com-
monly called theagent) loves the second (thepa-
tient). The links establish correspondences between
nodes in the two trees showing that, e.g., the verb
of the sentence corresponds to the functionloving,
whose two arguments correspond to the two noun
phrases of the sentence. In realistic settings, one
would of course use more elaborate trees. However,
since we primarily want to convey the idea behind
our proposed approach, we use this simple type of
configuration as our running example.

3 Incremental Construction of
Configurations

In a Millstream system, we are givenk modulesfor
each of thek trees in a configuration. These modules
are tree grammars or any other kind of device gen-
erating trees. Furthermore, we are given a logical
interfacethat describes which configurations (con-
sisting ofk trees generated by the modules and a set
of links between them) are considered to be correct.
In the current paper, we take a more pragmatic point
of view and investigate how configurations can be
built up “from scratch” along a sentence using an
approach based on implementing a lexicon by graph
transformation.

We use graph transformation in the sense of the
so-called double pushout (DPO) approach (Ehrig et
al., 2010) (with injective morphisms). A ruler is a
spanr = (L ⊇ K ⊆ R) of graphsL, K, R. The
rule applies to a graphG if

1. L is isomorphic to a subgraph ofG (for sim-
plicity, let us assume that the isomorphism is
the identity) and

2. no edge inG is attached to a node inVL \ VK .

In this case, applyingr means to remove all nodes
and edges fromG that are inL but not inK, and
to add all nodes and edges that are inR but not in
K. Thus, the so-called glueing graphK is not af-
fected by the rule, but rather used to “glue” the new
nodes and edges in the right-hand sideR to the ex-
isting graph. The second condition for applicability
ensures well-formedness, as it makes sure that the
deletion of nodes does not result in so-called dan-
gling edges, i.e., edges with an undefined attach-
ment. If the result of the application ofr to G is
G′, this may be denoted byG⇒

r
G′. Moreover, ifR

is a set of graph transformation rules, andG⇒
r

G′

for somer ∈ R, we denote this fact byG⇒
R

G′.
Compared to general DPO rules, our lexicon rules

are quite restricted as they never delete anything. In
other words, we always haveL = K, and hence the
rules only glue new subgraphs to the existing (par-
tial) configuration. We call rules of this kindincre-
mentaland denote the set of all incremental rules
over a Millstream alphabetΣ byRΣ. In addition to
the conditions 1 and 2 above, we restrict the appli-
cability of rules further, by introducing a third con-
dition:

3. tarG(e) 6= tarR(e′) for all tree edgese ∈ EG

ande′ ∈ ER \ EK .

This condition merely avoids useless non-
determinism leading into dead ends.

Derivations start with a common start graph.
Since our example is extremely simple, it suffices to
choose the graph that consists of the edge labelled
with the root symbolS(2) of the syntactic tree (to-
gether with the three attached nodes). The fact that
all our rules satisfyL = K means that we can depict
a rule as just one graph, namelyR, where the nodes
and edges inL are drawn in blue. Graph transforma-
tion rules of this type are called lexicon entries. Fig-
ures 4, 5 and 6 show sample lexicon entries for the
wordsMary, loves, andPeter, respectively. Starting
with the start graph (the blue subgraph in Figure 4)
and applying the three rules in the order in which the
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words appear in the sentence takes us to the config-
uration in Figure 3. Note that the complete lexicon
should contain another entry similar to the one in
Figure 4, but withMary andMary being replaced
by Peter andPeter, respectively. Similarly, there
should be a variant of Figure 6 for the name Mary.
This would make it possible to read the sentencePe-
ter loves Mary. The reader should also note that,
when reading the third word of the sentence,Peter,
the corresponding variant of Figure 4 cannot be ap-
plied, because the first child ofS is already present.

Figure 4: Lexicon entry forMary

Figure 5: Lexicon entry forloves

Figure 6: Lexicon entry forPeter

Definition 2 A reader is a quadruple R =
(Σ, W, Λ, S) consisting of a finite setW of words
(the input words), a Millstream alphabetΣ, a map-
pingΛ called thelexicon, and a start graphS ∈ GΣ.

The lexicon assigns to everyw ∈ W a finite set
Λ(w) ⊆ RΣ of rules, thelexicon entries.

A readingof an input sentencew1 · · ·wn by R is
a derivation

S ⇒
Λ(w1)

G1 ⇒
Λ(w1)

· · · ⇒
Λ(wn)

Gn

such thatGn is a Σ-configuration. The set of all
Σ-configurations that result from readings ofw =
w1 · · ·wn is denoted byR(w), and the language
(of Σ-configurations) generated byR is L(R) =⋃

w∈W ∗ R(w).

Future work will have to develop methods for
proving the correctness of readers with respect to a
given Millstream system. This notion of correctness
is given in the next definition.

Definition 3 LetMS be a Millstream system having
a distinguished syntactic moduleM (i.e., every con-
figuration ofMS contains a syntactic tree.) The set
of all configurations ofMS is denotedL(MS ). A
readerR = (Σ, W, Λ, S) is correct with respect to
MS if L(R) = L(MS ) and, for everyw ∈ W ∗ and
everyG ∈ R(w), the yield of the syntactic tree ofG
is equal tow.

4 Future Work

More research will be necessary to find out whether
the type of lexicon entries proposed is most appro-
priate. Bigger lexica to treat a greater variety and
complexity of sentences need to be considered, and
an implementation is required. An extension to ren-
der the readers of Section 3 more powerful might
introduce nonterminal (hyper-)edges to act as indi-
cators of “construction sites”. These nonterminals
would be consumed when a lexicon entry is applied.
An important question for future research is how
to build lexica in a systematic way, possibly distin-
guishing lexica with different strategies, to accom-
modate different behaviours of readers. Future re-
search will also have to study efficient algorithms
for constructing lexica and readings. In particular, it
should be possible to “learn”. For large lexica, ef-
ficient pattern matching algorithms are needed and
optimisation algorithms would need to be examined.
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Universidad Politécnica de Valencia
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Abstract

One of the approaches to statistical machine
translation is based on joint probability dis-
tributions over some source and target lan-
guages. In this work we propose to model
the joint probability distribution by stochas-
tic regular bi-languages. Specifically we in-
troduce the stochastic k-testable in the strict
sense bi-languages to represent the joint prob-
ability distribution of source and target lan-
guages. With this basis we present a refor-
mulation of the GIATI methodology to infer
stochastic regular bi-languages for machine
translation purposes.

1 Introduction

The goal of statistical machine translation (SMT)
is to search for the sentence t̂ that maximizes the
a-posteriori probability P (t|s) of the target sen-
tence t being the translation of a given sentence
s from the source language. The translation mod-
els in SMT are automatically learned from bilingual
samples. In the early nineties machine translation
was tackled as a pure probabilistic process by the
IBM research group (Brown et al., 1993). Within
the SMT framework, stochastic-finite-state trans-
ducers (SFSTs) have also been proposed for ma-
chine translation purposes (Bangalore and Riccardi,
2002) (Shankar et al., 2005) (Casacuberta and Vidal,
2004) (Casacuberta and Vidal, 2007) (Blackwood et
al., 2009). In such a context, SMT can be viewed
as the problem of computing the joint probability
distribution of some source and target languages.
i.e. P (t, s), inferred from a bi-lingual corpus. The

joint probability distributions of pairs of strings may
be modeled by a probability distribution on a set
of strings based on bi-lingual units as proposed
in (Bangalore and Riccardi, 2002) for SFSTs. Al-
ternatively (Casacuberta and Vidal, 2004) (Mariño
et al., 2006) proposed n-grams models of bi-lingual
units. However, only a few techniques to learn
finite-state transducers for machine translation pur-
poses can be found (Bangalore and Riccardi, 2002)
(Oncina et al., 1993) (Knight and Al-Onaizan, 1998)
(Casacuberta and Vidal, 2007). On the other hand,
a method of inference of SFST based on the infer-
ence of stochastic finite-state automata (Casacuberta
and Vidal, 2004) was proposed and then used in
machine translation applications (Casacuberta and
Vidal, 2007) (Pérez et al., 2008) (González and
Casacuberta, 2009). This method was called gram-
matical inference and alignments for transducer in-
ference (GIATI) and is based on some important
properties relating regular translations generated by
finite-state-transducers and regular languages over
some bi-lingual alphabet (Berstel, 1979).

On the other hand, different stochastic regular bi-
languages can be introduced to model P (s, t) dis-
tribution. Turning to stochastic regular languages,
let us note that the class of stochastic k-testable
in the strict sense (k-TSS) languages is a sub-
class of stochastic regular languages that can be in-
ferred from a set of positive training data (Torres
and Varona, 2001) (Vidal et al., 2005a) (Torres and
Casacuberta, 2011) by some stochastic extension of
the inference algorithm in (Garcı́a and Vidal, 1990).
Thus, they belong to the subset of regular languages
that can be used to characterize some pattern recog-
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nition tasks. In particular, stochastic k-TSS has been
used in many natural language processing tasks such
as phone recognition (Galiano and Segarra, 1993),
speech recognition (Torres and Varona, 2001), lan-
guage identification (Guijarrubia and Torres, 2010),
language modeling (Justo and Torres, 2009) or ma-
chine translation (Pérez et al., 2008).

In this work we propose to model the joint prob-
ability distribution P (t, s) by stochastic regular bi-
languages. A first contribution of our work is the
reformulation of the GIATI methodology to infer
stochastic regular bi-languages for machine transla-
tion purposes. This proposal allows the use of some
stochastic bi-automaton to get the sentence t̂ that
corresponds to the source sentence ŝ. This stochas-
tic bi-automaton need to be inferred from a sample
set of bi-strings. As a consequence, this method-
ology does not required any SFST as original GI-
ATI did. Thus, there is no need to any property re-
lating stochastic regular translations and stochastic
regular languages to support the proposed method.
On the other hand, different stochastic regular bi-
languages can be introduced to model the joint prob-
ability distribution. As a second contribution we
propose in this work the use of stochastic k-TSS bi-
languages to model Pr(s, t). For this purpose we
extend definitions and theorems of stochastic k-TSS
languages (Vidal et al., 2005a) (Torres and Casacu-
berta, 2011) to stochastic k-TSS bi-languages and
then write a corollary to the stochastic extension of
the morphism theorem.

We contribute in Section 2 with some definitions
of bi-strings, stochastic bi-languages and stochas-
tic bi-automata. In Section 3 we propose to model
the joint probability distribution through stochastic
bi-language and then use stochastic bi-automaton
for translation purposes. In Section 4 we deal with
stochastic k-TSS bi-languages and bi-automaton,
introducing some definitions and theorem applica-
tions. Then we present in Section 5 the inference of
stochastic k-TSS bi-automata for machine transla-
tion as a reformulation of the GIATI methodology.
Finally Section 6 deals with some concluding re-
marks and future work.

2 Stochastic regular bi-languages

In this Section we first provide the basic defini-
tions of bi-string, stochastic regular bi-language and
stochastic and deterministic finite state bi-automata
proposed in this work.

Let Σ and ∆ be two finite alphabets and Σ≤m and
∆≤n, the finite sets of sequences of symbols in Σ
and ∆ of length up to m and n respectively. Let
Γ ⊆ (Σ≤m × ∆≤n) be a finite alphabet (extended
alphabet) consisting of pairs of strings, that we call
extended symbols, (s1 . . . si : t1 . . . tj) ∈ Γ such
that s1 . . . si ∈ Σ≤m and t1 . . . tj ∈ ∆≤n with 0 ≤
i ≤ m and 0 ≤ j ≤ n.

Definition 2.1. A bi-language is a set of strings over
an extended alphabet Γ, i.e., a set of strings of the
form b = b1 . . . bk such that bi ∈ Γ for 0 ≤ i ≤ k.
A string over an extended alphabet Γ will be called
bi-string.

Alternatively (Kornai, 2008) defines a bi-string as
composed by two strings and an association relation.
In the same way, bi-languages are defined as sets
of well-formed bi-strings that undergo the usual set-
theoretic operations of intersection, union and com-
plementation. Concatenation of such bi-strings is
also defined in (Kornai, 2008). In this context, reg-
ular bi-languages were previously defined in (Kor-
nai, 1995). In the context of machine translation,
(Mariño et al., 2006) defines a bi-language as com-
posed of bi-lingual units which were referred to as
tuples extracted from alignments of a bilingual cor-
pus. This definition could be consistent with the one
provided in definition 2.1. Also in machine trans-
lation, (Bangalore and Riccardi, 2002) defines a bi-
language corpus as consisting of source-target sym-
bol pair sequences (s1 : t1) . . . (si : ti) . . . (sn : tn)
such that si ∈ Ls ∪ {λ} and its aligned symbol
ti ∈ Lt ∪ {λ} where Ls and Lt are a couple of re-
lated languages. This definition allows for pairs of
symbols by contrast with definition 2.1 where pairs
of finite-length strings are considered. Finally, let us
note that regular tree languages were also been re-
ferred as bilanguages (Pair and Quere, 1968) (Berger
and Pair, 1978).

We are now referring to the work by (Vidal et
al., 2005a). This work is a survey of probabilis-
tic finite-state machines and related definitions and
properties. In this survey, the authors provide a def-
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inition of probabilistic automata that corresponds to
generative models. Note that in classical (and non
probabilistic) formal theory strings are generated by
grammars. In this paper we are using the formalism
developed in (Vidal et al., 2005a).

Given a finite alphabet Σ, a stochastic language is
defined in (Vidal et al., 2005a) as a probability distri-
bution over Σ∗. Let us extend this definition to con-
sider bi-strings and then get stochastic bi-languages.

Definition 2.2. Given two finite alphabets Σ and ∆,
a stochastic bi-language B is a probability distribu-
tion over Γ∗ where Γ ⊆ (Σ≤m ×∆≤n), m,n ≥ 0.
Let z = z1 . . . z|z| be a bi-string such that zi ∈ Γ
for 1 ≤ i ≤ |z|. If PrB(z) denotes the probabil-
ity of the bi-string z under the distribution B then∑

z∈Γ∗ PrB(z) = 1.

Let now define a deterministic and probabilistic
finite-state bi-automaton (DPFBA) by extending the
standard definition of a deterministic and probabilis-
tic finite-state automaton (DPFA) as follows:

Definition 2.3. A DPFBA is a probabilistic finite-
state bi-automaton BA = (Q,Σ,
∆,Γ, δ, q0, Pf , P ) if Q is a finite set of states, Σ and
∆ are two finite alphabets, Γ is an extended alphabet
such that Γ ⊆ (Σ≤m×∆≤n),m,n ≥ 0, δ ⊆ Q×Γ×
Q is a set of transitions of the form (q, (s̃i : t̃i), q′)
where q, q′ ∈ Q and , (s̃i : t̃i) ∈ Γ, q0 ∈ Q is the
unique initial state, Pf : Q→ [0, 1] is the final-state
probabilistic distribution and P : δ → [0, 1] defines
transition probabilistic distributions (P (q, b, q′) ≡
Pr(q′, b|q) for b ∈ Γ and q, q′ ∈ Q) such that:

Pf (q) +
∑

b∈Γ,q′∈Q
P (q, b, q′) = 1 ∀q ∈ Q (1)

where a transition (q, b, q′) is completely defined by
q and b. Thus, ∀q ∈ Q, ∀b ∈ Γ |{q′ : (q, b, q′)}| ≤ 1

Finally let z ∈ Γ∗ and let θ =
(q0, z1, q1, z2, q2, ..., q|z|−1, z|z|, q|z|) be a path
for z in BA. The probability of generating θ is:

PrBA(θ) =

 |z|∏
j=1

P (qj−1, zj , qj)

 · Pf (q|z|) (2)

BA is a DPFBA and thus unambiguous. Then,
a given bi-string z can only be generated by BA

through a unique valid path θ(z). Thus, the prob-
ability of generating z with BA is PrBA(z) =
PrBA(θ(z)).

3 Statistical translation with bi-automata

Let us consider a source and a target languages from
a source vocabulary Σ and a target vocabulary ∆,
respectively. The goal of machine translation is to
map a sentence in the source language, i.e. a string
of symbols s = s1 . . . s|s|, si ∈ Σ into a sentence
in the target language t = t1 . . . t|t|, ti ∈ ∆. Sta-
tistical machine translation (SMT) is based on the
noisy channel approach (Shannon, 1948) where t is
considered to be a noisy version of s (Brown et al.,
1993). Thus, the translation of a given string s ∈ ∆∗

in the source language is a string t̂ ∈ ∆∗ in the target
language such that:

t̂ = arg max
t∈∆∗

Pr(t|s)

Alternatively, a joint probability distribution can be
used by developing Pr(t|s) in previous Equation as
follows:

t̂ = arg max
t∈∆∗

Pr(s, t)
Pr(s)

= arg max
t∈∆∗

Pr(s, t) (3)

since, Pr(s) does not depend on t. Distribution
Pr(s, t) can be modeled by a stochastic finite state
transducer (Bangalore and Riccardi, 2002) (Casacu-
berta and Vidal, 2004). Alternatively in this paper
we model this distribution by a stochastic regular bi-
language.

To this end, let z be a bi-string over the extended
alphabet Γ ⊆ Σ≤m×∆≤n such as z : z = z1 . . . z|z|,
zi = (s̃i : t̃i) where s̃i = s1 . . . s|s̃i| ∈ Σ≤m

and t̃i = t1 . . . t|t̃i| ∈ ∆≤n. Extended symbols
(s̃i : t̃i) ∈ Γ have been obtained through some
alignment between Σ≤m and ∆≤n. String s ∈ Σ∗

is a sequence of substrings s̃i such as s = s̃1 . . . s̃|z|
that has been obtained through a previously segmen-
tation procedure. In the same way string t ∈ ∆∗ is
a sequence of substrings t̃i such as t = t̃1 . . . t̃|z|.
Then Pr(s, t) can be calculated as follows:

Pr(s, t) =
∑

∀z∈Γ∗:(hΣ(z),h∆(z))=(s,t)

Pr(z) (4)
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In such a case, Pr(s, t) can be modeled by a
DPFBA BA such as the one defined in Definition
2.3. Thus, the probability Pr(s, t) according to BA
is defined as

PrBA(s, t) =
∑

∀z∈Γ∗:(hΣ(z),h∆(z))=(s,t)

PrBA(z)

=
∑

∀θ∈g(s,t)
PrBA(θ)

where g(s, t) denotes the set of all possible paths in
BA matching (s, t) and PrBA(θ) is calculated ac-
cording to Equation 2.

3.1 The search through a stochastic finite state
bi-automaton

The main goal of SMT according to Equation 3 is
to find the optimal target string t̂ given a source
string ŝ and given a stochastic model of the involved
joint probability. When Pr(s, t) is modeled by a
DPFBA BA we need to be able to get the string
t̂ = t̃1 . . . t̃|z| that corresponds to the source se-
quence s = s̃1 . . . s̃|z|, given PrBA(s, t) through
Equation 5. A bi-automaton BA is ambiguous with
respect to the input sequence s. Thus, all pairs (s, t)
matching the given input sequence s are considered,
i.e the maximization is carried out ∀t ∈ ∆∗ instead
of ∀(s, t) ∈ Γ∗. As a consequence t̂ is obtained as
follows:

t̂ = arg max
t∈∆∗

PrBA(s, t)

= arg max
t∈∆∗

∑
∀θ∈g(s,t)

PrBA(θ)

This search for the optimal t̂ through Equation 5
has proved to be a difficult computational problem
(Casacuberta and de la Higuera, 2000). In practice
Equation 5 can be computed by the so-called max-
imum approximation, which assume that the sum
close the maximum term. In such a case we first
estimate the optimal path θ̂ is obtained as:

θ̂ = arg max
∀θ∈g(s)

PrBA(θ)

where g(s) denotes the set of possible paths in BA
matching s and PrBA(θ) is calculated by Equa-
tion 2. The approximate translation t̂ is then com-
puted as the concatenation of the target substrings

associated to the estimated path θ̂ : (q0, (s̃1 :
t̃1), q1)(q1, (s̃2 : t̃2), q2).....(qm−1, (s̃m : t̃m), qm)
and t̂ = t̃1, t̃2, . . . , t̃m by the recursive algorithm
proposed in (Casacuberta and Vidal, 2004) adapted
now to a bi-automaton.

4 Stochastic k-TSS bi-languages

Different stochastic regular bi-languages can be in-
troduced to model PrBA(s, t) distribution in Equa-
tion 5. In particular we propose in this work the use
stochastic k-TSS DPFBA. In this Section we deal
with stochastic k-TSS bi-languages as a particular
case of stochastic bi-languages defined in Section 2.

To this end, let us now turn to stochastic k-TSS
languages which are a subclass stochastic regular
languages. Stochastic k-TSS languages are defined
in (Vidal et al., 2005a) and (Torres and Casacuberta,
2011) as a four-tuple Zk = (Σ, PIk , PFk

, PTk
),

where Σ is a finite alphabet; PIk : Σ<k → [0, 1]
are the initial probabilities, i.e. the probability that
a string a1 . . . aj ∈ Ik ⊆ Σ<k is a starting segment
of a string in the language; PFk

: Σ<k → [0, 1]
are the final probabilities, i.e. the probability that a
string a1 . . . aj ∈ Fk ⊆ Σ<k is a final segment of
a string in the language and PTk

: Σk → [0, 1] are
the allowed-segments probabilities, i.e. the proba-
bility that a string a1 . . . ak ∈ (Σk − Tk) accord-
ing to the corresponding normalization conditions.
Thus, strings in the stochastic k-TSS language LZk

start with segments in Ik of length up to k − 1, they
end with segments in Fk of length up to k − 1 and
do not include segments in Tk of length k. This defi-
nition can be straightforwardly extended to consider
bi-languages as follows:

Definition 4.1. A stochastic k-TSS bi-language
ZBk

= (Γ, PIBk
, PFBk

, PTBk
) is a stochastic k-

TSS language defined on a extended alphabet Γ ⊆
Σ≤m ×∆≤n.

ZBk
defines a probability distribution BZBk

on
Γ∗, simplified as Bk from now, such as for any string
of bi-strings z ∈ Γ∗ of size |z| , i.e. z = z1 . . . z|z|
the probability PrBk

(z) is calculated according to:


PIk(z1 . . . z|z|) · PFk

(z1 . . . z|z|) if |z| < k

PIk(z1 . . . zk−1) ·∏|z|i=k PTk
(zi−k+1 . . . zi−1, zi)·

PFk
(z|z|−(k−2) . . . z|z|) if |z| ≥ k
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PrBk
(z) is the probability of the string z ∈ Γ∗ under

the k-TSS distribution Bk. Thus:∑
z∈Γ∗

PrBk
(z) = 1 (5)

Let us now fall back to classical k-TSS to bear
in mind some important theorems. An interesting
subclass of k-TSS is the class of 2-TSS languages,
which are known as local languages. There is an
important generative property which relates local
languages and general regular languages given by
the morphism theorem (Garcı́a et al., 1987), which
establish that any regular language can be gener-
ated by a local language. A stochastic extension of
the morphism theorem was introduced in (Vidal et
al., 2005b). A stochastic regular bi-language is a
particular case of stochastic regular languages for
an extended alphabet Γ ⊆ (Σ≤m × ∆≤n). As a
consequence, we can apply the stochastic extension
of the morphism theorem in (Vidal et al., 2005b)
to stochastic regular bi-languages and then write a
corollary for this theorem as follows:

Corollary 4.1. Let Σ and ∆ be two finite alphabets,
Γ ⊆ (Σ≤m ×∆≤n) be an extended alphabet and B
a stochastic regular bi-language on Γ∗. There exists
then a finite alphabet Γ′, an alphabetic morphism
h : Γ′∗ → Γ∗ and a stochastic local language D2

over Γ′∗ such that B = h(D2); i.e.,

PrB(z) = PrD2(h−1(z))
=
∑

y∈h−1(z) PrD2(y) ∀z ∈ Γ∗

where h−1(z) = {y ∈ Γ′∗|z = h(y)}. Thus,
any stochastic regular bi-language defined over Γ∗

can be generated by a local language over some Γ′∗

where Γ and Γ′ are finite alphabets of extended sym-
bols such that Γ,Γ′ ⊆ Σ≤m ×∆≤n

We need now to deal with stochastic k-TSS bi-
automata as well as with the way to get them from a
training corpus. The inference of k-TSS automata
was first addressed in (Garcı́a and Vidal, 1990).
Given a set of positive sample setR+ of an unknown
language, an efficient algorithm obtains a determin-
istic finite-state automaton that recognizes the small-
est k-TSS language containing the sample setR+. A
preliminary form of a stochastic extension was pre-
sented in (Segarra, 1993) and then fully formalized

in (Torres and Casacuberta, 2011). In that work a
k-TSS DPFA is defined as a class of DPFA able to
generate stochastic k-TSS languages where the un-
ambiguity of the automaton allowed for a maximum
likelihood estimation of each transition probability.
This algorithm, can be easily adapted to infer a k-
TSS DPFBA, BAk, generating a stochastic k-TSS
bi-language by considering an extended alphabet of
bi-strings Γ ⊆ (Σ≤m ×∆≤n). Example 4.1 shows
the way to infer a k-TSS DPFBA BAk that gener-
ates a k-TSS bi-language containing a previously
defined sample R+.

Example 4.1. Let Σ = {a, b} and ∆ = {1, 0} be
two finite alphabets and let Γ ⊆ (Σ≤m × ∆≤n) be
the extended alphabet such as: Γ = {(a : 1), (aa :
11), (b : 0), (bb : 00)}. Let now R+ be a positive
sample set of a stochastic k-TSS bi-language B con-
sisting of strings in Γ∗ such that: R+ = {(a : 1), (b :
0), (aa : 11), (a : 1)(a : 1), (aa, 11)(b : 0), (a : 1)(a :
1)(b : 0), (a : 1)(b : 0)(b : 0), (a : 1)(bb : 00)}
Then for k = 3
I3 = {(a : 1), (b : 0), (aa : 11), (a : 1)(a : 1), (aa :
11)(b : 0), (a : 1)(b : 0), (a : 1)(bb : 00)}
PIk

= {0.125, 0.125, 0.125, 0.25, 0.125, 0.125, 0.125}
F3 = {(a : 1), (b : 0), (aa : 11), (a : 1)(a : 1), (aa :
11)(b : 0), (a : 1)(b : 0), (b : 0)(b : 0), (a : 1)(bb : 00)}
Pfk

= {1, 1, 1, 0.5, 1, 0.5, 1, 1}
The inferred bi-automaton BA3 is represented as:

a:1
0.2

a:1,a:1
0.5

a:1
 0.4

a:1,b:0
0.5b:0

 0.2

a:1,bb:00
1

bb:00
 0.2

b:0
1

aa:11
0.5 aa:11,b:0

1

b:0
 0.5

b:0
 0.5

b:0,b:0
1

b:0
 0.5

λ

a:1
 0.625

b:0
 0.125
aa:11
 0.25

where each state q ∈ Qk is labelled by a bi-string
(s̃1 : t̃1 . . . s̃i : t̃i) ∈ Γi i < k along with the prob-
ability Pf (q) and each edge is labelled by a pair
s̃i : t̃i ∈ Γ such that (q, s̃i : t̃i, q′) ∈ δk along with
the probability Pk(q, s̃i : t̃i, q′).
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5 Inference of k-TSS bi-automata for
machine translation

In Section 3 we have propose to compute the
joint probability distribution P (s, t) through some
stochastic bi-automaton according to definitions in
Section 2. Then in Section 4 we have shown how to
get an stochastic k-TSS bi-automaton from a posi-
tive sample set of bi-strings. Thus, we can now pro-
pose a technique for the inference of stochastic k-
TSS bi-automata for machine translation purposes
based on GIATI methodology, which takes advan-
tage of theoretical background previously (Casacu-
berta and Vidal, 2004) (Vidal et al., 2005b) (Torres
and Casacuberta, 2011).

Given a finite sample set S+ of strings pairs
(s, t) ∈ Σ∗ ×∆∗ from a bilingual (parallel) corpus
then

• Step 1: Given a pair of strings (s, t) get a bi-
string z ∈ Γ∗ according to some particular
alignment and segmentation procedures. As a
result, the sample set S+ of bilingual sentences
(s, t) ∈ Σ∗ ×∆∗ is transformed into a set R+

of bi-strings z ∈ Γ∗.

S+ ⊆ Σ∗ ×∆∗ → R+ ⊆ Γ∗

• Step 2: From the set of bi-strings R+ ⊆
Γ∗ infer the k-TSS DPFBA BAk generating
a stochastic k-TSS bi-language that includes
R+.

R+ ⊆ Γ∗ → BAk : R+ ⊆ BBAk

5.1 Step 1- Segmentation
The goal of this step is to get a corpus of bi-strings
from a bilingual corpus. Let (s, t) : s ∈ Σ∗, t ∈ ∆∗

be a pair of strings in S+ such that each string
s ∈ Σ∗ and each string t ∈ ∆∗ is a sequence of
substrings s̃i and t̃i. Then a segmentation proce-
dure is required to get a bi-string z ∈ Γ∗ : z =
(s̃1, t̃1) . . . (s̃|z|, t̃|z|) such that string s is a sequence
of substrings s̃i and string t is a sequence of sub-
strings t̃i. The segmentation is monotone if s =
s̃1 . . . s̃|z| and t = t̃1 . . . t̃|z|.

Then a relation between substrings s̃i ∈ Σ∗ and
substrings t̃i ∈ ∆∗ need also be defined. This re-
lation was called alignment in (Kornai, 2008) and

depends on the the application task. In this context
the aim of the alignment is to synchronize sequences
of features from two different finite alphabets (Ko-
rnai, 1995). Correspondences between source and
target strings could be complex, could include long-
distance and/or not consecutive associations, etc,
such that the choice of a suitable alignment is a dif-
ficult problem to be solved. One way to deal with
this problem in the machine translation framework
is the use of statistical alignments models (Brown et
al., 1993) (Och and Ney, 2003).

The choice of an adequate align-
ment/segmentation procedure is also related with
the parsing procedure based on the bi-automaton.
In the translation procedure, the target sentence t̂ is
obtained as the concatenation of target substrings
matching a given source sentence that also consists
of a sequence of source substrings. A monotonic
segmentation guaranties that the procedure to
transform pairs of strings in S+ into bi-strings in Γ∗

is reversible.

Example 5.1. Let Σ = {a, b} and ∆ = {0, 1} be
two finite alphabets. Let now S+ be a bilingual
corpus of translations consisting in pairs of strings
(s, t) such that s ∈ Σ∗ and t ∈ ∆∗ and S+ =
{(a, 1), (b, 0), (aa, 11), (aab, 110), (aab, 110)}.
From this corpus we can obtain, among others, the
following alignments:

a

1

b

0

a

1

a

1

a

1

a

1

a

1

a

1

b

0

a

1

a

1

b

0

a

1

b

0

b

0

a

1

b

0

b

0

From these alignments we get the alphabet of bi-
strings Γ = {(a : 1), (aa : 11), (b : 0), (bb : 00)}.
Thus the positive sample set R+ consisting of
bi-strings in Γ∗ is: R+ = {(a : 1), (b : 0), (aa :
11), (a : 1)(a : 1), (aa, 11)(b : 0), (a : 1)(a : 1)(b :
0), (a : 1)(b : 0)(b : 0), (a : 1)(bb : 00)}

Let us to note that symbols of the general form
(s̃i : t̃i), relate strings in Σm, m ≥ 0 with strings in
∆n, n ≥ 0. Alternatively, some machine translation
models deal with pairs (si : t̃i) where the relation
is established between symbols si ∈ Σ ∪ {λ} and
strings t̃i ∈ ∆n, n ≥ 0. In such a case, the bi-
string is defined as composed by pairs (si : t̃i) ∈
(Σ ∪ {λ} ×∆n), n ≥ 0.
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5.2 Step 2 - Inferring a k-TSS DPFBA

Next, a stochastic finite-state bi-automaton, such as
the one defined in Section 4, is inferred from the cor-
pus of bi-stings R+. In particular we propose the
inference of a k-TSS DPFBA BAk. To this end, the
inference algorithm for k-TSS DPFA summarized in
(Torres and Casacuberta, 2011) and then extended to
get k-TSS DPFBA in Section 4 need to be applied.
Example 4.1 shows the k-TSS DPFBA inferred from
the positive sample set R+ get in Example 5.1

Notice that in this case a smoothed model is re-
quired since the model has to generate any bi-string
z ∈ Γ∗ with a non-zero probability, even for bi-
strings not in the stochastic bi-language generated
by the inferred bi-automaton. Specific smoothing
schemas has been proposed for stochastic k-TSS au-
tomata for speech recognition purposes in (Torres
and Varona, 2001) and in (Llorens et al., 2002). Un-
der a back-off scheme, these techniques adjust the
maximum likelihood estimation of transition prob-
abilities to recursively obtain probabilities to be as-
signed to unseen combinations of strings from mod-
els with decreasing the value of k, i.e. less accu-
rate (Torres and Varona, 2001) (Llorens et al., 2002).
These procedures are now straightforward extended
to get smoothed k-TSS DPFBA. However let us to
note that this procedure does not assign a non-zero
probability to bi-strings in Γ∗ which does not con-
sists of sequences of extended symbols in Γ. Thus,
it does not guarantee that any target string t ∈ ∆∗

could be obtained (with either high or small proba-
bility) as a liable translation of a given source string.
To this end the smoothing should be applied to get a
non-zero probability for any pair (s, t) ∈ (Σ∗×∆∗).
This problem is similar to the one of smoothing
transducers, which is still an open problem (Llorens
et al., 2002).

The k-TSS DPFBA BAk models the joint prob-
ability distribution P (s, t) for machine translation
purposes. Thus the string t̂ = t̃1 . . . t̃|z| that corre-
sponds to the source sequence s = s̃1 . . . s̃|z|, given
PrBAk

(s, t) can be directly obtained parsing with
the bi-automaton using Equation 5 according to the
procedure described in Section 3.1. As a conse-
quence this procedure does not need any final step
aimed to transform back extended symbols into pairs
of strings in Σ∗ × ∆∗ since any SFST is inferred.

Thus, the morphism theorems which are the basis of
the classical GIATI methodology (Casacuberta and
Vidal, 2004) are not now required.

6 Conclusions and future work

Machine translation can be viewed as the problem of
computing the joint probability distribution of some
bi-language inferred from a bilingual corpus. In
such a context, we have proposed to represent trans-
lation models by stochastic regular bi-languages. To
this end we have provided some specific definitions.
Moreover, stochastic bi-automata can directly ob-
tain the target string corresponding to a given source
string.

On the other hand, we have specifically consid-
ered the stochastic k-TSS bi-languages to model
joint probability distributions. The morphism theo-
rem relating stochastic local languages and stochas-
tic regular languages can now be extended to
stochastic k-TSS bi-languages through a corollary.
Moreover, stochastic k-TSS bi-automaton can also
be inferred from a positive sample set through an
extension of the inference algorithm for classical
stochastic k-TSS languages.

With this basis we have reformulated the GIATI
methodology to infer stochastic stochastic k-TSS bi-
languages for machine translation purposes, which
takes advantage of the knowledge about stochas-
tic k-TSS languages and their application to natural
language tasks. Moreover, the finite-state formal-
ism allows easy integration of other automata rep-
resenting target language models or acoustic mod-
els in speech translation tasks. However, the mono-
tonic segmentation does not allow to deal with long-
distance alignments which is a problem when the
distance between the pair of languages is large. On
the other hand smoothing techniques dealing with
any pair of strings need also to be further explored.

Finally let us notice that relationship between
stochastic k-TSS bi-languages and a subclass of
stochastic regular translations, i.e. between stochas-
tic k-TSS bi-automata and a subclass of stochastic
finite state transducers, is going to be explored in
the future.
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Université Paris-Sud
pkaran@limsi.fr

François Yvon
LIMSI/CNRS

Université Paris-Sud
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Abstract

In this work, we define a measure aimed at
assessing how well a pronunciation model
will function when used as a component of
a speech recognition system. This measure,
pronunciation entropy, fuses information from
both the pronunciation model and the lan-
guage model. We show how to compute this
score by effectively composing the output of a
phoneme recognizer with a pronunciation dic-
tionary and a language model, and investigate
its role as predictor of pronunciation model
performance. We present results of this mea-
sure for different dictionaries with and without
pronunciation variants and counts.

1 Introduction

As explained in (Strik & Cucchiarini, 1999), pro-
nunciation variations can be incorporated at differ-
ent levels in ASR systems: the lexicon, the acous-
tic model, the language model. At the acoustic
level, context dependent phone modeling captures
the phone variations within particular contexts. At
the lexicon level, a lexicon with alternative pronun-
ciations is used. At the language model (LM) level,
the inter-word pronunciation variations are handled
with grammar network, statistical LMs or multi-
word models.

The growing interest in automatic transcription of
Conversational Speech (CTS) increases the need for
modeling pronunciation variation. Indeed, there is
a large number of possible pronunciation variants
occurring in spontaneous speech; these variants of-
ten extend beyond single speech sounds (modeled

by the acoustic model) and reach up to whole words
or word tuples. Not even context-dependent acoustic
models for sub-word units (like phonemes) are able
to cover pronunciation variants of this kind (Kipp et
al, 1997). Thus, pronunciation variation is usually
modeled by enumerating appropriate pronunciations
for each word in the vocabulary using a pronuncia-
tion lexicon.

However, when adding alternative pronunciations
to a lexicon, there is always the potential of introduc-
ing a detrimental amount of confusability. The ho-
mophone (words that sound the same but are written
differently) rate increases, which means that these
additional variants may not be helpful to the recog-
nition performance (Tsai et al, 2001). A typical ex-
ample in English is the word you: the received pro-
nunciation is /yu/ and is chosen when one single
variant is used; modeling some variation requires
to consider the pronunciations /yu/ and /yc/, which
both occur in our multiple pronunciation dictionary.
The latter pronunciation (/yc/), in the phrase you are
is easily confused with /ycr/, the pronunciation of
your. Such confusions, in particular when they in-
volve frequent words, can cause a degradation of the
ASR system as more alternatives are added.

A lot of work has been carried out on the genera-
tion of pronunciation and pronunciation variants in-
dependently of the speech (g2p conversion, p2p con-
version) or in a task specific framework using sur-
face pronunciations generated from a phoneme rec-
ognizer or including acoustic and language model
information. However, most works lack a sense
of how added alternative pronunciations will affect
the overall decoding process. For example, some
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of the confusability introduced by the pronunciation
model is compensated by the LM. Thus, a method
for quantifying the confusion inherent in a combined
acoustic-lexical system is needed. A confusabil-
ity measure traditionally used to measure the uncer-
tainty residual to a system is entropy. Specifically in
an ASR system, lexical entropy measures the con-
fusability introduced by an LM. In some previous
works, lexical entropy not only takes the LM scores
into account, but also integrate the scores of the
acoustic and pronunciation models (Printz & Olsen,
2000). In (Wolff et al, 2002), the authors consider
as a measure of the pronunciation confusability the
entropy of the variant distribution, but they do not
take into account the language model. Our aim is to
integrate pronunciation model and language model
information into a single framework for describing
the confusability. Especially incorporating language
model information would provide a more accurate
reflection of the decoding process, and hence a more
accurate picture of the possible lexical/acoustic con-
fusions (Fosler-Lussier et al, 2002). The idea is
then to introduce a measure inspired by the pro-
posed formulation in (Printz & Olsen, 2000) but in a
somewhat reverse fashion. Instead of measuring the
“true” disambiguation capacity of the LM by taking
acoustic similarities into account, we aim at measur-
ing the actual confusability introduced in the system
by the pronunciation model, taking also into account
the LM. We call this measure pronunciation entropy.

To compute this measure, we will decompose the
decoding process in two separate parts: the acous-
tic decoding on the one hand, the linguistic de-
coding on the other hand. Given an input signal,
a phoneme recognizer is first used to obtain a se-
quence of phonemes; the rest of the decoding pro-
cess is realized using a set of Finite State Machines
(FSMs) modeling the various linguistic resources in-
volved in the process. Doing so allows us to measure
the confusability incurred by the acoustic decoder
for fixed linguistic models; or, conversely, to assess
the impact of adding more pronunciations, for fixed
acoustic and language models. This latter scenario
is especially appealing, as these measurements do
not require to redecode the speech signal: it thus be-
come possible to try to iteratively optimize the pro-
nunciation lexicon at a moderate computational cost.
Experiments are carried out to measure the confus-

ability introduced by single and multiple pronuncia-
tion dictionaries in an ASR system, using the newly
introduced pronunciation entropy.

The remainder of the paper is organized as fol-
lows. Section 2 describes the necessary Finite State
Tranducers (FSTs) background. Section 3 presents
the FST decoding and details the new confusability
measure. Sections 4 and 5 present the recognition
experiments and the pronunciation entropy results.
The paper concludes with a discussion of the results
and of some future work in Section 6.

2 Background

2.1 Generalities

In the last decade, FSTs have been shown to be
useful for a number of applications in speech and
language processing (Mohri et al, 1997). FST op-
erations such as composition, determinization, and
minimization make manipulating FSTs both effec-
tive and efficient.

Weighted transducers (resp. automata) are finite-
state transducers (resp. automata) in which each
transition carries some weight in addition to the in-
put and output (resp. input) labels. The interpreta-
tion of the weights depends on the algebraic struc-
ture of the semiring in which they are defined.

A semiring is a system (K,⊕,⊗, 0̄, 1̄) containing
the weights K and the operators ⊕ and ⊗, such that:
(K,⊕, 0̄) is a commutative monoid with 0̄ as the
identity element for ⊕; (K,⊗, 1̄) is a monoid with
1̄ as the identity element for ⊗; ⊗ distributes over
⊕: for all a, b, c in K: (a⊕b)⊗c = (a⊗c)⊕(b⊗c)
and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b), and 0̄ is an an-
nihilator for ⊗ : ∀a ∈ K, a⊗ 0̄ = 0̄⊗ a = 0̄. When
manipulating weighted tranducers, the ⊗ and ⊕ op-
erators are used to combine weights in a serial and
parallel fashion, respectively. A semiring is idempo-
tent if for all a ∈ K, a ⊕ a = a. It is commutative
when ⊗ is commutative.

The real semiring (R,+,×, 0, 1) is used when
the weights represent probabilities. The semirings
used in this work are the log semiring, the entropy
semiring, as well as a new, defined for computa-
tional reasons, log-entropy semiring. The log semir-
ing is defined as (R ∪ [−∞,∞],− log(exp(−x) +
exp(−y)),+,∞, 0). It is isomorphic to the real
semiring via the negative-log mapping and is used
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in practice for numerical stability.
A weighted finite-state transducer T over a semir-

ing K is an 8-tuple T = (Σ,∆, Q, I, F,E, λ, ρ)
where: Σ is the finite input alphabet of the trans-
ducer; ∆ is the finite output alphabet; Q is a finite
set of states; I ⊆ Q the set of initial states; F ⊆ Q
the set of final states; E ⊆ Q × (Σ ∪ {ε}) × (∆ ∪
{ε}) × K ×Q a finite set of transitions; λ : I → K
the initial weight function; and ρ : F → K the final
weight function mapping F to K.

A weighted automaton A = (Σ, Q, I, F,E, λ, ρ)
is defined in a similar way simply by omitting the
output labels. The weighted transducers and au-
tomata considered in this paper are assumed to be
trimmed, i.e. all their states are both accessible and
co-accessible. Omitting the input (resp. output) la-
bels of a weighted transducer T results in a weighted
automaton which is said to be the output (resp. in-
put) projection of T .

Using the notations of (Cortes et al, 2006), if
e = (q, a, b, q′) is a transition in E, p(e) = q
(resp. n(e) = q′) denotes its origin (resp. destina-
tion) state, i(e) = a its input label, o[e] = b its
output label and w(e) = E(e) its weight. These
notations extend to paths: if π is a path in T , p(π)
(resp. n(π)) is its initial (resp. ending) state and i(π)
is the label along the path. We denote by P (q, q′) the
set of paths from q to q′ and by P (q, x, y, q′) the set
of paths for q to q′ with input label x ∈ Σ∗ and out-
put label y ∈ Σ∗. The path from an initial to a final
state is a successful path. The output weight associ-
ated by a weighted transducer T to a pair of strings
(x, y) ∈ Σ∗ × Σ∗ is denoted by T (x, y) and is ob-
tained by ⊗-summing the weights of all successful
paths with input label x and output label y:

T (x, y) =
⊕

π∈P (I,x,y,F )

λ(p[π])⊗ w[π]⊗ ρ(n[π])

(1)
T (x, y) = 0̄ when P (I, x, y, F ) = ∅.
The composition of two weighted tranducers T1

and T2 with matching input and output alphabet Σ,
is a weighted transducer denoted by (T1 ◦ T2) when
the semiring is commutative and when the sum:

(T1 ◦ T2)(x, y) =
∑
z∈Σ∗

T1(x, z)⊗ T2(z, y) (2)

is well-defined and in K for all x, y.

2.2 Entropy Semiring
The entropy H(p) of a probability mass function p
defined over a discrete set X is defined as (Cover &
Thomas, 1991):

H(p) = −
∑
x∈X

p(x)logp(x), (3)

where, by convention, 0log0 = 0. This definition
can be extended to probabilistic automata which
define distributions over sets of strings. We call an
automaton probabilistic if for any state q ∈ Q, the
sum of the weights of all cycles at q is well-defined
and in K and

∑
x∈Σ∗ A(x) = 1. A probabilistic

automaton such that at each state the weights of
the outgoing transitions and the final weight sum to
one, is a stochastic automaton. The entropy of A
can be written as:

H(A) = −
∑
x

A(x)logA(x), (4)

where A(x) is the output weight associated by an
automaton A to an input string x ∈ Σ∗.

The expectation (or entropy) semiring is defined
in (Eisner, 2001) as (K,⊕,⊗, (0, 0), (1, 0)), where
K denotes (R ∪ [−∞,∞]) × (R ∪ [−∞,∞]). For
weight pairs (a1, b1) and (a2, b2) in K, the ⊕ and ⊗
operations are defined as follows:

(a1, b1)⊕ (a2, b2) = (a1 + a2, b1 + b2) (5)

(a1, b1)⊗ (a2, b2) = (a1a2, a1b2 + a2b1) (6)

The entropy of A defined in equation (4) can be
seen as a single-source shortest distance for an au-
tomaton defined over the entropy semiring (Cortes et
al, 2006) with weights (w,−wlogw) where w ∈ R.
If the sum of the weights of all paths from any state
p ∈ Q to any state q ∈ Q is well-defined, the short-
est distance from p to q is:

d[p, q] =
⊕

π∈P (p,q)

w[π]. (7)

Thus, the shortest distance from the initial states
to the final states for the probabilistic automaton A
with weights (w,−wlogw) in K will be:

d[I, F ] = (
∑
x

A(x),−
∑
x

A(x)logA(x)) (8)

= (1, H(A)). (9)
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3 A new confusability measure

3.1 ASR decoding with FSTs
The recognition process can be modeled with
a sequence of weighted finite-state transducers
(WFSTs) (Pereira & Riley, 1996). An abstract
representation of the Viterbi decoding process of
the present work can be given as:

Ŵ = bestpath(A ◦ P ◦ L ◦G), (10)

where Ŵ is the sequence of words corresponding to
the best recognition hypothesis. A is the phoneme
hypothesis lattice generated by the phoneme recog-
nizer, P is an FST that contains a mapping from
phonemes to the phonemic lexical representation of
each word, L is the pronunciation model FST, con-
taining a mapping from each phonemic lexical rep-
resentation to the corresponding word, G is the lan-
guage model finite state automaton (FSA), which
contains n-gram statistics, and ◦ is the composition
operator. Constraining the model by the pronuncia-
tion and the language models means that only words
that are part of complete paths in the decoding will
be counted as confusions. In this work, the FSTs
and FSAs will be manipulated using the open-source
toolkit OpenFst (Allauzen et al, 2007).

3.2 Decomposing the acoustic and linguistic
modeling

In a first place, a phoneme recognizer generates the
phoneme hypothesis lattice A from the speech sig-
nal. These phonemes are the input in the following
process of consecutive compositions. The phoneme
lattices are generated by the ASR system without
taking into account the pronunciation nor the lan-
guage model during decoding. The aim is to decom-
pose the decoding parts in order to better evaluate
the influence of the pronunciation model in the de-
coding process. The acoustic scores are considered
stable and independent of the linguistic (pronuncia-
tion and language) confusability and thus are omit-
ted. No time information is kept. The pronuncia-
tion model will automatically segment the phoneme
sequences in pronunciations, and consequently in
words.

The FST P representing the set of valid pronun-
ciations in our lexicon (see Section 4) is then con-
structed; it takes as input a sequence of phonemes

0

rho:eps

1

a:eps

3

b:eps

b:ab

phi:eps 2

b:eps

c:bc

phi:eps

a:ba

a:aba

phi:eps

Figure 1: Expansion of the topology of the P FST with
phi matchers that consume the phonemes inserted be-
tween valid pronunciations

and returns the sequence of corresponding phonemic
lexical representation (pronunciation). P is com-
posed with each phoneme lattice. In order to account
for insertions of phonemes between valid pronunci-
ations, the topology of P is slightly expanded. This
expansion simulates a simple error recovery strategy
consisting in deleting superfluous phonemes in a left
to right fashion. Fig. 1 illustrates this expansion
on a simple example, with the use of failure transi-
tions implemented with the so-called phi-matchers
and rho-matchers. Each state in P corresponds to
the prefix of an actual pronunciation: whenever we
reach a state from which no continuation is possi-
ble, a phi-transition allows to reach the state corre-
sponding to a trimmed prefix, from which the first
phoneme has been deleted. This simple error re-
covery strategy is applied recursively. A rho-loop
is finally used in the initial state, which is also the
final state, in case the first or last phonemes of a se-
quence do not permit to complete a known pronun-
ciation. Assume, for instance, that we reach state 2
in P (see Fig. 1), and that the following symbol is
’c’, for which no transition exists. The phi-transition
will then allow to move to state 3, and continue the
prefix ’bc’.

Next, the FST L representing the pronunciation
dictionary with pronunciations as inputs and words
as outputs is constructed. Its weights are the condi-
tional probabilities of a pronunciation given a word.
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When no pronunciation probabilities are available,
a uniform distribution over the probabilities of pro-
nunciations of each word is applied. This FST is
composed with each phoneme-pronunciation FSTs
A ◦ P resulting from the previous composition.

A final composition is made with the FSA G
that models the backoff language model, with
word probabilities as weights. G is constructed
as described in (Riccardi et al, 1996; Allauzen et
al, 2003). This results in FSTs with phonemes as
input and words as output, which are projected to
the output and determinized. Then, the arc weights
of each FST are normalized per state, i.e. scaled
such that the probability of arcs leading out of a
state (plus the probability of state finality) sums
to 1 for each state. A general weight-pushing
algorithm in the log semiring (Mohri et al, 1997)
is applied for the normalization and the weights in
the new stochastic FSA are converted to the desired
posterior probabilities given the pronunciations.
What is calculated is the conditional probability
p(w | a) of all the word sequences that can be
transcribed as a and, thus, are competitors:

p(w | a) =
p(a | w)p(w)∑

w∈W p(a | w)p(w)
. (11)

3.3 Definition of pronunciation entropy

In order to have a measure of the confusability
of the pronunciation lexicon, the entropy of the
posterior probability p(w | a) that combines the
pronunciation model and the language model infor-
mation is computed. As described in Section 2.2,
calculating appropriately the shortest distance
on the entropy semiring can result in the desired
entropy. However, the entropy semiring must
have components in the real semiring in order to
calculate the entropy correctly, but even real num-
bers of double precision are not stable enough for
large lattices. Thus, an expectation semiring with
components on the log semiring is needed. That is
why we define a new semiring, the log-expectation
(or log-entropy) semiring, changing the ⊕ and ⊗
operators as well as the identities of the semiring.
In this new semiring (K,⊕,⊗, (∞, 0), (0, 0)), K
denotes (R ∪ [−∞,∞]) × (R ∪ [−∞,∞]) and the
operations ⊕ and ⊗ on weight pairs (a1, b1) and
(a2, b2) in K, are defined as:

(a1, b1)⊕(a2, b2) =
(−log(exp(−a1) + exp(−a2)), b1 + b2)

(12)

(a1, b1)⊗(a2, b2) =
(a1 + a2, exp(−a1)b2 + exp(−a2)b1)

(13)

When working on the log-entropy semiring, each
negative log arc weight w is replaced by the new
weight (w,w ∗ exp(−w)). Then, the shortest dis-
tance from the initial to the final state is calcu-
lated as explained in Section 2.2. Some experiments
were realised on small exemplar lattices with real
arc weights and the entropy was calculated directly
with the entropy semiring, already defined in Open-
Fst. However, for larger lattices the use of the log
and the log-entropy semirings was required in order
to keep the numerical stability.

4 Phoneme Recognition Configuration

The phoneme recognizer used in these experiments
makes use of continuous density HMMs with Gaus-
sian mixtures for acoustic modeling. The acoustic
models are gender-dependent, speaker-adapted, and
Maximum Likelihood trained on about 500 hours
of audio data. They cover about 30k phone con-
texts with 11600 tied states. Unsupervised acous-
tic model adaptation is performed for each segment
cluster using the CMLLR and MLLR techniques
prior to decoding. It suffices to say that the phone
labels that are produced at that stage are determin-
istically mapped to the corresponding phonemes,
which constitute the actual labels in the phoneme
lattice. The recognition dictionary is a simple lex-
icon made up of the same list of phonemes used
to represent pronunciations in the word lexicon. A
unigram phoneme-based language model was also
constructed to respond to the demands of the sys-
tem for language modeling, but its weight was set to
zero during the decoding phase. A phoneme lattice
is thus generated after a single decoding pass, with
no pronunciation model nor language model infor-
mation included. The lattices are pruned so as to
limit them to a reasonable size. To circumvent the
fact that a lattice does not always finish with an end-
of-phrase symbol, which can be the case because of
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segmentation based on time, an end-of-phrase sym-
bol is added before the final state of each lattice.

The FST approach described in Section 3 is ap-
plied for word decoding. A 4-gram word LM is
used, trained on a corpus of 1.2 billion words of
texts from various LDC corpora (English Gigaword,
Broadcast News (BN) transcriptions, commercial
transcripts), news articles downloaded from the web,
and assorted audio transcriptions. The recognition
word list contains 78k words, selected by interpola-
tion of unigram LMs trained on different text subsets
as to minimize the out-of-vocabulary (OOV) rate on
set of development texts. The recognition dictionary
used as a baseline is the LIMSI American English
recognition dictionary with 78k word entries with
1.2 pronunciations per word. The pronunciations are
represented using a set of 45 phonemes (Lamel &
Adda, 1996). This dictionary is constructed with ex-
tensive manual supervision to be well-suited to the
needs of an ASR system. Other dictionaries with
and without counts and variants were also tested, as
described in the next section.

A part of the Quaero (www.quaero.org) 2010 de-
velopment data was used in the recognition experi-
ments. This data set covers a range of styles, from
broadcast news (BN) to talk shows. Roughly 50%
of the data can be classed as BN and 50% broad-
cast conversation (BC). These data are considerably
more difficult than pure BN data. The part of the
Quaero data that was used resulted in 285 lattices
generated by the phoneme recognizer. This is a suf-
ficient number of lattices to have statistically sig-
nificant results that can be generalized. The FST-
based decoding is applied to these lattices. Table 1
summarizes some of the characteristics of the lat-
tices and FSTs used in the composition process: the
average number of states and arcs of the lattices A
and of the phonemes-to-pronunciations FST P , of
the pronunciations-to-words FST L and of the 4-
gram word LM FSA G. Their size indicates that we
are working in a real ASR framework with FSMs of
large size. Thus, there is an important computational
gain by the fact that the FST approach permits to
change a part of the decoding without repeating the
whole process.

Table 1: Average number of states and arcs in the lattices
Num. A P L G

States 303 180,833 2 83,367,599
Arcs 353 503,234 171,272 200,322,203

5 Pronunciation Entropy Results

The presented pronunciation entropy is an average
of the entropy calculated on the FSAs of the word
sequences generated after the application of the FST
decoding on the output lattices of the phoneme rec-
ognizer. The pronunciation entropy is calculated for
the baseline dictionary with and without frequency
of occurrence counts, as well as for the “longest”
baseline (keeping only the longest pronunciation per
word in the original recognition dictionary) and the
“most frequent” baseline (keeping only the most fre-
quent pronunciation per word in the original recog-
nition dictionary based on counts collected on the
training data). The higher order language model
(LM) used in the decoding of the word recognition
experiments is a 4-gram.

In Table 2, the pronunciation entropy is presented
when 2-, 3- and 4-gram LMs are used for the FST-
based decoding. As expected, as the order of the
LM diminishes, the entropy increases. The results
when the order of the LM diminishes warrant some
more thoughts. The difference in entropy even be-
tween the use of 4-gram and 2-gram is smaller than
expected. The decoding is actually restricted by
the given lexicon, that does not permit pronuncia-
tions, and thus words, to be correctly recognized if
there is an error in the phoneme sequence. Dele-
tions, insertions and substitutions of phonemes are
ignored, with the exception of insertions between
valid pronunciations. By manual observation of the
best word hypotheses and their comparison with the
corresponding references, it was thus noticed that
not many long sequences of words are correctly rec-
ognized and, consequently, the impact of using a
longer n-gram is relatively limited.

It is worth staying a bit longer in Table 2 to
compare the pronunciation entropy of the baselines
which contain one or more pronunciations per word
(upper part of the table) and the single-pronunciation
baselines (lower part of the table). The entropy is
lower in the single pronunciation baselines, and its
lowest score is observed when the “longest” base-
line is used. The fact that its entropy is lower even
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Table 2: Pronunciation entropy on baselines
4g LM 3g LM 2g LM

Baseline with uniform probabilities
4.003 4.025 4.025

Baseline with counts
4.065 4.083 4.108

Baseline longest with uniform probs
3.013 3.024 3.022

Baseline mostfreq with uniform probs
3.669 3.689 3.756

compared with the “most frequent” baseline, which
is also a single-pronunciation baseline, may be ex-
plained by the fact that the most frequent pronun-
ciations represent better the spoken terms that can
be often easily confused. Especially in spontaneous
speech, some function words are often pronounced
similar to other function words and may not be eas-
ily distinguished by the LM. This is particularly a
problem for frequent words that are easy to insert,
delete or substitute.

A final observation from Table 2, comparing
“Baseline with uniform probabilities” and “Baseline
with counts”, can be that pronunciations with counts
do not reduce confusability. It is normal not to see
a lot of changes because in any case the majority of
words has only one pronunciation and thus probabil-
ity 1 which do not change when counts are added. In
addition, counts are not available for all words, but
only for those observed in the training data. When
no counts are available, uniform probabilities are ap-
plied. Thus, finally there are no great differences be-
tween the dictionary with counts and the dictionary
without counts. Moreover, it could be that counts
only for a few words create an inconsistency that
explains the light deterioration of the pronunciation
entropy.

The increase in entropy is much greater when
more pronunciations are added in the dictionary as
can be seen in Tables 3 and 4. The n-best pronun-
ciations are added in the “longest” and the “most
frequent” baselines. The M1, M2 and M5 in these
tables correspond to the 1-, 2- and 5-best pronuncia-
tions generated automatically using Moses (Koehn
et al, 2007) as a g2p converter, being trained on
the baseline dictionary (with 1.2 pronunciations per

Table 3: Pronunciation entropy with the 4-gram LM af-
ter adding n-best pronunciations, produced by a Moses-
based g2p converter, to the “longest” baseline
Training condition M1 M2 M5
Multiple pronunciations 4.523 6.578 10.005
Baseline longest 3.013

Table 4: Pronunciation entropy with the 4-gram LM after
adding Moses’ n-best pronunciations to the “most fre-
quent” baseline
Training condition M1 M2 M5
Multiple pronunciations 5.185 6.914 10.077
Baseline most frequent 3.669

word). Moses has been successfully used as a g2p
converter for several languages, and for English it
gives state-of-the-art results (Karanasou & Lamel,
2011). The results in Tables 3 and 4 are calculated
with the 4-gram LM.

These results suggest that there can be a large in-
fluence of the pronunciation dictionary in the con-
fusability of an ASR system, not sufficiently com-
pensated by the language model. However, when
adding as much alternative pronunciations some
non-uniform probabilities should be used to mod-
erate confusability. If not, the uniform probability
contributed to each variant of a word with multiple
pronunciations is lower. Thus, for highly probable
words, since the system will have the tendency to
choose them, the confusability will increase. But
if the pronunciation probabilities are also taken into
account, this confusability can be moderated, be-
cause a pronunciation of a word with lower proba-
bility and lower confusability (higher pronunciation
probability) can be prefered from a pronunciation of
a word with higher probability but lower pronunci-
ation probability. We have started working on this
direction and plan to see if our measure will actually
improve when pronunciation probabilities are added
to the decoding.

More confusability is observed when adding vari-
ants to the “most frequent” than to the “longest”
baseline. This is consistent with the explanation
given above supporting that the most frequent base-
line presented more confusability than the longest
baseline because it is closer to the real spoken terms

113



that are often difficult to distinguish.

6 Conclusion and Discussion

A new measure of the confusability of the pronun-
ciation model during the decoding phase in an ASR
system, that integrates also language model infor-
mation, was presented and results were reported us-
ing baseline dictionaries with one or more pronunci-
ations per word, with and without counts, as well as
on dictionaries extended with variants generated by
a state-of-art data-driven method.

It is not straightforward to find a correlation be-
tween this work and ASR performance. The follow-
up of this work will be to examine this correlation
and propose a combined measure of confusability
and accuracy for the selection of pronunciation vari-
ants and for the training of weights for the existing
ones. What makes this procedure particularly com-
plicated is the fact that confusable words are a non-
negligible phenomenon of natural speech and ignor-
ing them severely reduces the completeness of the
dictionary, meaning that a consistent set of pronun-
ciations is not necessarily connected with a pronun-
ciation network of low perplexity.

A drawback of the work so far is that sequences
obtained from the phoneme recognizer contain many
errors. To avoid the problems caused by the
low performance of the phoneme recognizer, some
phoneme substitutions should be permitted. For this,
a confusion matrix and a consensus representation
could be useful.

Lastly, the pronunciation entropy introduced in
this work is a measure of the confusability at the
sentence level. It would be interesting to try and
measure confusability at a sub-sentence level, such
as at a word level using confusion networks, as the
error rate of an ASR system is also calculated at a
word level. At a more general sub-sentence level,
some word-context could be taken into account to
better model the cross-word confusability, because
when adding many variants to an ASR system what
is more important than the homophone rate in the
dictionary, is to measure this rate in the data. In
fact the homophone rate in the original recognition
dictionary (baseline) is 1.16, while in the baseline
“longest” is 1.10 and in the baseline “most frequent”
is 1.15. When adding up to 5 pronunciation variants

to the baseline “longest” or the baseline “most fre-
quent”, the homophone rate becomes 1.24 in both
cases. All these rates are close to one another, so
it seems that what mostly influences confusability
are some frequent homophone words or word se-
quences.
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Abstract

Implementations of models of morphologi-
cally rich languages such as Arabic typically
achieve speed and small memory footprint at
the cost of abandoning linguistically abstract
and elegant representations. We present a so-
lution to modeling rich morphologies that is
both fast and based on linguistically rich rep-
resentations. In our approach, we convert a
linguistically complex and abstract implemen-
tation of Arabic verbs in finite-state machinery
into a simple precompiled tabular representa-
tion.

1 Introduction

Arabic is a morphologically rich and complex lan-
guage, characterized by a combination of templatic
and affixational morphemes, complex morphologi-
cal, phonological and orthographic rules, and a rich
feature system. Arabic morphological analysis and
generation are important to many NLP applications
such as machine translation (Habash, 2007; Kholy
and Habash, 2010) and information retrieval (Aljlayl
and Frieder, 2002). Much work has been done on
Arabic morphological analysis and generation in a
variety of approaches and at different degrees of lin-
guistic depths.

There is a continuum of approaches which is char-
acterized by its two poles: on one end, very abstract
and linguistically rich representations and rules (of-
ten based on particular theories of morphology) are
used to derive surface forms; while on the other
end, simple and shallow techniques focus on effi-
cient search in a space of precompiled (tabulated)

solutions. The first type is typically implemented us-
ing finite-state technology and can be at many differ-
ent degrees of sophistication and detail. An exam-
ple of this type of implementation is the MAGEAD

(Morphological Analysis and GEneration for Ara-
bic and its Dialects) system (Habash et al., 2005;
Habash and Rambow, 2006). This system, which
we use as starting point in this paper, compiles ab-
stract high-level linguistic information of different
types to finite state machinery. The second type is
typically not implemented in finite-state technology.
Examples include the Buckwalter Arabic Morpho-
logical Analyzer (BAMA) (Buckwalter, 2004) and
its extension ALMORGEANA (Habash, 2007). These
systems do not represent the morphemic, phonologi-
cal and orthographic rules directly at all, and instead
compile their effect into the lexicon itself.

Numerous intermediate points exist between
these two extremes (e.g., (Smrž, 2007)). The vari-
ous approaches typically trade off different degrees
of speed and memory (model size) for more abstract
and elegant representations. Precompiled tabular
systems usually have fast response time when imple-
mented using hash tables. The cost of building the
linguistic resources manually is the main drawback
for this approach since such resources are prone
to error and hard to debug and extend. Linguisti-
cally sophisticated systems are easier to understand
and extend and they allow for modeling morphology
without lexicons (to address unknown forms); how-
ever, with the complexity of some languages’ mor-
phology, the finite-state transducers (FSTs) tend to
become extremely large, causing a significant dete-
rioration in response time.
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In this paper, we present a solution to the mod-
eling of rich morphologies that combines the best
of these two approaches. In previous work, we pre-
sented MAGEAD, a multi-tier finite-state implemen-
tation of Arabic morphology (Habash et al., 2005;
Habash and Rambow, 2006; Altantawy et al., 2010).
We improve the speed by automatically convert-
ing our FST-based MAGEAD system to a precom-
piled tabular implementation that preserves all of
the rich linguistic information used in MAGEAD’s
design. The new system, MAGEAD-EXPRESS is
not only much faster and smaller in size, but it
also still allows linguistically based abstract changes
and updates in its model. Furthermore, MAGEAD-
EXPRESS produces complete linguistic analyses that
include intermediate levels of representation, an ad-
vantage MAGEAD does not have readily in its out-
put. The only disadvantage of MAGEAD-EXPRESS

is its inability to produce analyses for unknown
words (unlike MAGEAD).

The paper is organized as follows. We give a
short introduction to Arabic morphology in section
2. The related work is discussed in section 3. We
then present MAGEAD and MAGEAD-EXPRESS in
sections 4 and 5 respectively. The extraction process
of MAGEAD’s linguistic information is discussed in
section 6. Finally, the evaluation is presented in sec-
tion 7.

2 Arabic Morphology

For an extensive discussion of Arabic morphol-
ogy from a computational perspective, see (Habash,
2010); we give a short overview here. Arabic has
a rich and complex morphology. This is due to its
numerous linguistic features, such as gender, num-
ber, mood and case, and the existence of two types
of morphemes: templatic and affixational (concate-
native). Templatic morphemes come in three types
that are equally needed to create a word stem: roots,
patterns and vocalisms. The root morpheme is a
sequence of typically three consonants (termed rad-
icals) that signifies some abstract meaning shared
by all its derivations. For example, the words �I.

��J
�
»

kataba1 ‘he wrote’ and I. �K� A
�
¿ kaAtib ‘writer’ share

1Arabic transliteration is in the HSB scheme (Habash et al.,
2007): (alphabetically) AbtθjHxdðrzsš SDTĎςγfqklmnhwy and

the root morpheme (H. �H¼) ktb ‘writing-related’.
The pattern morpheme is an abstract template in
which roots and vocalisms are inserted. The vocal-
ism morpheme specifies which short vowels to use
with a pattern. We represent the pattern as a string
made up of numbers to indicate radical position, of
the symbol V to indicate the position of the vocal-
ism, and of pattern consonants (if needed) following
(Habash et al., 2005). As an example, the word stem
I.

��J
�
» katab is constructed from the root (H. �H¼) ktb,

the pattern 1V2V3 and the vocalism aa. This is rep-
resented as 〈 1V2V3, ktb, aa 〉. Arabic affixes can
be prefixes such as (+ ��) sa+ ‘will’, suffixes such

as (Ñ �ë+) +hum ‘they [masculine]’ or circumfixes

such as (
�	à+ +

��K) ta++na ‘[imperfective subject 2nd
person feminine plural]’. We do not distinguish be-
tween clitics and inflectional affixes in this paper.
Multiple affixes can appear in a word. An Arabic
word is constructed by first creating a word stem
from templatic morphemes, then adding affixational
morphemes. The process of combining morphemes
involves a number of morphemic, phonological and
orthographic rules that modify the form of the cre-
ated word so it is not a simple interleaving or con-
catenation of its morphemic components. See exam-
ple in section 4.

As in other languages, surface word forms in
Arabic that differ only in inflectional morphology
can be grouped into a lexicographic abstraction
called a lexeme. A lexeme is usually represented
by a conventionally chosen word form called the
lemma, but it can also be represented by a stem
and an inflectional class, and in Arabic (as in other
Semitic languages), we can represent it as the set
of radicals and an inflectional class. Thus, we can
represent a morphological analysis of any Arabic
word form in terms of its lexeme (i.e., radicals and
inflectional class), and a set of feature-value pairs
which the morphology of the word form represents.
For example, the MSA verb �èñ �«Y�J
Ë� �ð waliyadςuwhu
‘and that they invite him’ corresponds to the follow-
ing lexeme-and-features representation:

(additional symbols) ’ Z, Â

@, Ǎ @, Ā

�
@, ŵ ð', ŷ Zø', ~ �è, ý ø.
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(1) [1d][2ς][3w][mbc:verb-I-au-tr]
[asp:I][vox:act][mod:s][per:3][gen:m][num:p]
[cnj:w][prt:l][pro:3MS]

This representation indicates (in order of symbols
above) that the root radicals of the word are d-ς-w;
that the verb belongs to a particular inflectional class
called I-au and that it is transitive; that aspect is in-
dicative; voice, active; mood, subjunctive; person,
third; gender, masculine; number, plural; that it has
the conjunction proclitic w ‘and’; that it has parti-
cle proclitic l ‘for/that’; and that it has a pronominal
enclitic that is 3rd person masculine singular.

3 Related Work

There has been a considerable amount of work on
Arabic morphological analysis; for an overview,
see (Al-Sughaiyer and Al-Kharashi, 2004). The
first large-scale implementation of Arabic morphol-
ogy within the constraints of finite-state methods
is that of Beesley et al. (1989) (the “Xerox sys-
tem”) with a ‘detouring’ mechanism for access to
multiple lexica, which gives rise to other works by
Beesley (1998) and Beesley and Karttunen (2000)
and, independently, by Buckwalter (2004). Unlike
the Xerox system, the Buckwalter Arabic Morpho-
logical Analyzer (BAMA) uses a hard-coded tabu-
lar approach with a focus on analysis into surface
morphemes (discussed above). Buckwalter’s work
has been since extended to handle generation as
well as the lexeme-and-features representation (AL-
MORGEANA, (Habash, 2007)) and functional mor-
phology in Arabic (ELIXIR, (Smrž, 2007)).

Finite-state handling of templatic morphology has
been demonstrated using a variety of techniques
for several Semitic languages other than Arabic in-
cluding Akkadian (Kataja and Koskenniemi, 1988),
Syriac (Kiraz, 2000), Hebrew (Yona and Wintner,
2005), Amharic (Amsalu and Gibbon, 2005), and
Tigrinya (Gasser, 2009). Kay (1987) proposes a
framework for handling templatic morphology in
which each templatic morpheme is assigned a tape
in a multi-tape finite state machine, with an addi-
tional tape for the surface form. Kiraz (2000) ex-
tends Kay’s approach and implements a multi-tape
system for Modern Standard Arabic (MSA) and Syr-
iac. The MAGEAD system (Habash et al., 2005;
Habash and Rambow, 2006) extended Kiraz’s work

through a new implementation using AT&T finite
state machine toolkit (Mohri et al., 2000) with an
eye on handling morphology for Arabic and its di-
alects. In this work, we start with MAGEAD and ad-
dress three of its weaknesses: its slowness, its size,
and the absence of rich morphological information
in its output despite of its presence in model specifi-
cations.

4 The MAGEAD System

4.1 MAGEAD’s Representation of Linguistic
Knowledge

MAGEAD relates (bidirectionally) a lexeme and a set
of feature-value pairs to a surface word form through
a sequence of transformations. In a generation per-
spective, the features are translated to abstract mor-
phemes which are then ordered and expressed as
concrete morphemes. The concrete templatic mor-
phemes are interdigitated and affixes added, and fi-
nally morphological and phonological rewrite rules
are applied.

MAGEAD defines the lexeme to be a triple consist-
ing of a root and a morphological behavior class
(MBC). The MBC is characterized by the part-of-
speech and the inflectional paradigm. For verbs, the
inflectional paradigm is closely identified with the
pattern and the transitivity. MAGEAD uses a rep-
resentation of the morphemes which is independent
of the specific variant of Arabic (Standard or di-
alect). These morphemes are referred to as abstract
morphemes (AMs). For instance, in our example,
the MBC [mbc:verb-I-au-tr] maps the two feature-
value pairs [asp:I] and [vox:act] to the two AMs:
[PAT_IV:I] and [VOC_IV:I-au-act].

The AMs are then ordered into the surface-order
of the corresponding concrete morphemes. The or-
dering of AMs is specified in a context-free gram-
mar (CFG). This particular CFG is non-recursive
and compiles to an FSA; we use a CFG and its non-
terminals only for descriptive clarity. The ordered
AMs for our example look like this:

(2) [CONJ:w][PREP:l][SUBJPRE_IV:3MP]
[d][ς][w][PAT_IV:I][VOC_IV:I-au-act]
[SUBJSUF_IV:3MP_Sub][OBJ:3MS]

The AMs are then translated to their corresponding
variant-specific concrete morphemes (CMs):
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(3) wa+ li+ y+ 〈V12V3,dςw,au〉 +ū +hu

Next, the morphemic representation is ob-
tained by interdigitating the templatic morphemes
(root/vocalism/pattern):

(4) wa+ li+ y+ adςuw +ū +hu

MAGEAD has two types of rules. Morphophone-
mic/phonological rules map from the morphemic
representation (4) to the phonological and ortho-
graphic representations. This includes default rules
which copy the root and vocalism to the phono-
logical and orthographic tiers, and specialized rules
such as the rules that handle the hollow and defec-
tive verbs (our example is a defective verb, it has
a glide /w/ in its final radical). Note that a simple
concatenation of the morphemes in (4) will result in
*/waliyadςuwūhu/ which is a wrong surface (phono-
logical) form. In our example, a morphophonemic
rule mandates assimilating the sequence /uw/ with
the suffix /+ū/. The phonological representation of
our example is:

(5) wa+ li+ y+ adς +ū +hu

Orthographic rules rewrite only the ortho-
graphic representation. These include, for exam-
ple, rules for using the Shadda (consonant doubling
diacritic). In our example, the orthographic rule
rewrites the verbal suffix long-vowel +ū as ( @ñ��+)

+uwA in a final position or as (ñ��+) +uw in medial
position (i.e., when followed by a pronominal object
as in our example). The orthographic representation
is:

(6) wa+ li+ y+ adς +uw +hu

4.2 Implementation of MAGEAD in FSTs
MAGEAD follows Kiraz (Kiraz, 2000) in using a
multi-tape analysis. The five tiers are used as fol-
lows: tier 1 (pattern and affixational morphemes),
tier 2 (root), tier 3 (vocalism), tier 4 (phonological
representation), and tier 5 (orthographic representa-
tion). In the generation direction, tiers 1 through 3
are always input tiers. Tier 4 is first an output tier,
and subsequently an input tier. Tier 5 is always an
output tier. All tiers are read or written at the same
time, so that the rules of the multi-tier transducer are
rules that scan the input tiers and, depending on the
state, write to the output tier.

MAGEAD is implemented as a multi-tape finite
state transducer layer on top of the AT&T two-tape
finite state transducers (Mohri et al., 2000). Con-
version from this higher layer (the Morphtools for-
mat) to the Lextools format (an NLP-oriented exten-
sion of the AT&T toolkit for finite-state machines
(Sproat, 1995)) is done for different types of Lex-
tools files such as rule files or context-free grammar
files. A central concept here is that of the multi-tier
tokens (MTT), which is a token which represents
five tiers but which is compatible with Lextools. An
MTT is a sequence [T,R, V, P,O] where: T is a to-
ken from the pattern “template", R is a root radical,
V is a vowel from the vocalism, P is a token from
the phonological representation, and O is a letter
from the orthographic representation. The first (or
pattern) tier (T) is always required. The additional
tiers can be left underspecified or empty (ε), which
is both represented with the symbol 0. For example,
the information in (3) is conceptually represented in
the multi-tier system as follows (only the top three
tiers are filled in since no processing has taken place
yet):

In the implementation, each column becomes one
MTT (i.e., a single symbol in the underlying FST),
and the information in (7) is actually represented as
follows:

(8) [w0000] [a0000] [+0000] [l0000] [i0000]
[+0000] [y0000] [+0000] [V0a00] [1d000]
[2ς000] [V0u00][3w000] [+0000] [ū0000]
[+0000] [h0000] [u0000]

After applying phonological rules, the fourth
(phonological) tier has been filled in in each MTT:

(9) [w00w0] [a00a0] [+0000] [l00l0] [i00i0]
[+0000] [y00y0] [+0000] [V0aa0] [1d0d0]
[2ς0ς0] [V0uu0][3w000] [+0000] [ū00ū0]
[+0000] [h00h0] [u00u0]

Note that the last radical in the stem [3w000]
did not map to the phonological layer due to the
morphophonemic rules discussed in the previous
section. In this fourth tier, this represents the
phonological form /waliyadςuūhu/. Orthographic
rules are then applied which write symbols into the
fifth tier and to modify them, ultimately yielding
waliyadςuwhu. Note that the fourth tier provides
the (phonemic) pronunciation for the orthography in
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(7)

Pattern Tier w a + l i + y + V 1 2 V 3 + ū + h u
Radicals Tier 0 0 0 0 0 0 0 0 0 d ς 0 w 0 0 0 0 0
Vocalism Tier 0 0 0 0 0 0 0 0 a 0 0 u 0 0 0 0 0 0
Phonological Tier 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Orthographic Tier 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

the fifth tier. The orthographic tier always has dia-
critics; it differs from the phonological tier in terms
of spelling conventions relating to the Ta-Marbuta,
the Alif Maqsura, and the Hamza forms. This does
not mean that as an analyzer, the system always re-
quires diacritized input: the input to the analyzer can
be fully diacritized, partially diacritized, or undia-
critized, since the operational system includes a step
of hypothesizing diacritics if they are absent.

4.3 Lexicon

One of the main design goals of MAGEAD was to
be able to operate without a lexicon or with only a
partial lexicon. The motivation is that despite the
similarities between dialects at the morphological
and lexical levels, it is hard to build a complete lex-
icon for every dialect. The lexicon in MAGEAD

operates as a filter that is not part of MAGEAD’s
FSTs. After the morphological analyzer generates
all morphologically possible analyses, the lexicon
removes those analyses that do not correspond to
lexical entries. Therefore, running MAGEAD with-
out a lexicon comes at the cost of over-generation.
We created another version of MAGEAD that has the
lexicon compiled into its FST, we call this version
MAGEAD-LEX. We will discuss MAGEAD-LEX in
more details in Section 7.

5 MAGEAD-EXPRESS

Similar to MAGEAD, MAGEAD-EXPRESS is a mor-
phological analyzer and generator for Arabic and
its dialects that also analyzes to or generates from
a lexeme and a set of linguistic feature-value
pairs. MAGEAD-EXPRESS is composed of two
parts: the linguistic resources and the the mor-
phological engine. MAGEAD-EXPRESS’s linguis-
tic database follows the general structure of BAMA
(Buckwalter, 2004) and ALMORGEANA (Habash,
2007). The main difference is that MAGEAD-
EXPRESS’s databases are extracted automatically

from MAGEAD’s FSTs. This section will give an
overview on the structure of the linguistic informa-
tion. Section 6 will go over the extraction process in
detail.

An Arabic word can be viewed as a concatenation
of three regions: a prefix, a suffix and a stem; only
the prefix and suffix regions can be null. MAGEAD-
EXPRESS’s database consists of three lexicons, one
for each word-region and three compatibility tables
(CTs): prefix-stem, stem-suffix and prefix-suffix CT.
Prefix and suffix lexicon entries cover all possible
concatenations of Arabic prefixes/proclitics and suf-
fixes/enclitics respectively. Similarly, the stem en-
tries cover all possible stems for each lexeme. Each
entry, in any of the lexicons, is minimally composed
of four fields: undiacritized surface form, morpho-
logical category, diacritized surface form and mor-
phological feature-value pairs associated with the
entry. In our example �èñ �«Y�J
Ë� �ð waliyadςuwhu ‘and
that they invite him’, the prefix, stem and suffix en-
tries are, respectively:

(10) wly pre-10 diac:waliy asp:I per:3
gen:m num:p cnj:w prt:l

(11) dς stem-60 diac:adς 1:d 2:ς 3:w
mbc:verb-I-au-tr asp:I vox:act

(12) wh suf-23 diac:uwhu asp:I mod:s
per:3 gen:m num:p pro:3MS

The CTs specify which morphological categories
are allowed to co-occur. In our example, pre-10,
stem-60, and suf-23 have to be three-way compat-
ible to generate our example verb. Because the CTs
are built automatically in MAGEAD-EXPRESS, the
name of a category is nothing but a unique iden-
tifier; unlike BAMA/ALMORGEANA’s categories
that have human-interpretable meanings.

MAGEAD-EXPRESS utilizes the morphological
analysis/generation engine of ALMORGEANA as it
complies with the two main general specifications
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of MAGEAD analysis/generation to/from a lexeme
and feature-value pairs. In analysis, the word is
segmented into all possible sets of prefix, stem and
suffix strings. In a valid segmentation, the strings
should exist in their corresponding lexicons and
their categories should be compatible. Generation
is similar to analysis but instead of matching on sur-
face forms, the matching occur on the features. For
a valid generation, the surface forms corresponding
to the compatible sets of features of each word part
are then concatenated to form the final word form.

6 Extracting MAGEAD-EXPRESS Tables
from MAGEAD FSTs

In this section, we present how we extract the
linguistic information from MAGEAD’s FSTs and
present it in a tabular format compatible with
MAGEAD-EXPRESS as descried in section 5. The
extraction process takes place in an incremental
fashion where more information is added to the ini-
tial tables in each step.

Creating the Initial AM Tables: MAGEAD’s
context-free grammar (CFG) automaton (introduced
in Section 4.1) encodes all the possible combina-
tions of abstract morphemes (AMs) that are com-
patible. We start by listing all possible AM combi-
nations. For instance, the AM combination respon-
sible for the analysis or generation of our example,�èñ �«Y�J
Ë� �ð waliyadςuwhu ‘and that they invite him’, is
as in (2). We separate the prefixes, stems and suf-
fixes into three different tables by composing the list
with appropriate FST filters that delete un-needed
AMs. We also restrict the entries in the stem-AM
table to the set of lexemes that exists in MAGEAD’s
lexicon. Each AM subsequence receives a compati-
bility category, which is computed as follows. First,
we populate three compatibility tables (CTs): prefix-
stem, stem-suffix and prefix-suffix that specify com-
patibility of the AM subsequences. We cluster the
prefixes into sets whose member are all compatible
with the exact same sets of stems and suffixes; the
set is assigned an automatically generated compat-
ibility category name. The same happens to stems
and suffixes. Finally, we augment the entries of
the prefix-AM, stem-AM and suffix-AM tables with
their compatibility categories.

For example, the AM sequence in (2) would con-

tribute the following three AM subsequences (paired
with their compatibility categories) to the prefix-
AM, stem-AM and suffix-AM tables, respectively:

(13) pre-AM-1 [CONJ:w][PREP:l]
[SUBJPRE_IV:3MP]

(14) stem-AM-1 [1d][2ς][3w][PAT_IV:I]
[VOC_IV:I-au-act]

(15) suf-AM-14 [SUBJSUF_IV:3MP_Sub]
[OBJ:3MS]

Creating the Morphemic Tables: Each AM sub-
sequence in the prefix-AM, stem-AM and suffix-
AM tables is composed with the abstract morpheme-
to-concrete morpheme transducer that is responsi-
ble for translating the AM to their equivalent CM
represented in multi-tier tokens (MTTs). Also, the
AMs are composed with the abstract morpheme-to-
feature transducer that maps the AMs to their lin-
guistic features. This results in a new set of tables
that also includes the morphemic representation and
the corresponding set of the linguistic feature-value
pairs. There is no change in categories in this phase.
Each entry in any of the morphemic tables has four
columns ordered as: CM, compatibility category,
AM, feature-value pairs. Examples of the tables are
as follows for prefix, stem and suffix, respectively:

(16) [w0000][a0000][+0000][l0000][i0000][+0000]
[y0000][+0000] pre-AM-1 [CONJ:w]
[PREP:l][SUBJPRE_IV:3MP] [asp:I]
[per:3][gen:m][num:p ][cnj:w][prt:l]

(17) [V0a00][1d000][2ς000][V0u00][3w000]
stem-AM-1 [1d][2ς][3w][PAT_IV:I]
[VOC_IV:I-au-act] [1:d][2:E][3:w]
[mbc:verb-I-au-tr][asp:I][vox:act]

(18) [+0000][ū0000][+0000][h0000][u0000]
suf-AM-14 [SUBJSUF_IV:3MP_Sub]
[OBJ:3MS] [asp:I][mod:s][per:3][gen:m]
[num:p][pro:3MS]

Creating the Surface Form Tables: The CM of
prefixes, stems and suffixes cannot be converted sep-
arately to their surface form because there are mor-
phemic, phonological and orthographic rules that
target interactions among them. At this stage we use
the AM categories to form all possible morphemic
representations in our tables. So for our example, the
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morphemic representation is (8). The morphemic
representations are then composed with MAGEAD’s
generation FST where the morphemic, phonological
and orthographic rules are applied. We also keep
track of the word parts to be able to divide the sur-
face form later to prefix, stem and suffix by using
+’s to mark the boundaries. The result of this oper-
ations is as follows:

(19) waliy+ adς +uwhu

Applying the rules creates new surface forms that
require new categories. For example, as discussed
earlier, the verbal suffix long-vowel +ū is rewritten
as ( @ñ��+) +uwA in a final position or as (ñ��+) +uw
in a medial position. These two new surface forms
need two new categories because they are no longer
compatible with everything +ū was compatible with.
The surface forms and the new categories are then
added to the entries in the morphemic tables and
a new set of surface-form tables is created (prefix,
stem, and suffix, respectively):

(20) waliy pre-10 [w0000][a0000][+0000][l0000]
[i0000][+0000][y0000][+0000] pre-AM-1
[CONJ:w][PREP:l][SUBJPRE_IV:3MP]
[asp:I][per:3][gen:m][num:p ][cnj:w][prt:l]

(21) adς stem-60 [V0a00][1d000][2ς000]
[V0u00][3w000] stem-AM-1 [1d][2ς]
[3w] [PAT_IV:I][VOC_IV:I-au-act] [1:d]
[2:E][3:w][mbc:verb-I-au-tr][asp:I][vox:act]

(22) uwhu suf-23 [+0000][ū0000][+0000]
[h0000][u0000] suf-AM-14 [SUBJ-
SUF_IV:3MP_Sub][OBJ:3MS] [asp:I]
[mod:s][per:3][gen:m][num:p][pro:3MS]

In a final step, we put these tables in the appropri-
ate format for ALMORGEANA as described in sec-
tion 5.

7 Evaluation

MAGEAD-EXPRESS uses MAGEAD’s linguistic re-
sources; therefore its lexical coverage should be
identical to that of MAGEAD. We do not evalu-
ate MAGEAD’s coverage here; for more informa-
tion about MSA and Levantine verb coverage, see
(Habash and Rambow, 2006) and for MSA nouns,
see (Altantawy et al., 2010). In this section, we
evaluate the conversion of MAGEAD’s linguistic re-

sources for MSA Verbs from their FST representa-
tion to the tabular representation used by MAGEAD-
EXPRESS. We also report on time performance
and memory usage of MAGEAD-EXPRESS versus
MAGEAD.

Both MAGEAD and MAGEAD-EXPRESS are bidi-
rectional systems. It is sufficient to evaluate them
either in analysis or generation mode. For the pur-
pose of this evaluation, we opted to do the genera-
tion mode only. The goal of this evaluation is to en-
sure that given any lexeme from MAGEAD’s lexicon
paired with a plausible set of linguistic feature-value
pairs, both MAGEAD and MAGEAD-EXPRESS will
generate the same surface forms.

MAGEAD’s verb lexicon contains 8,960 lexemes,
each of which has either 1,092 inflected surface
forms if the lexeme is for an intransitive verb or
14,196 if transitive (accepts pronominal object cli-
tics). Since it is too time-consuming to test all the
8,960 lexemes, we create a representative sample
of lexemes to serve as an evaluation dataset. We
cluster MAGEAD’s lexicon into 611 lexeme groups.
Each group represents an MBC with a particular
root type that triggers a particular set of rewrite
rules. Each lexeme group is assigned an iconic
lexeme (IL) that represents the group. The 611
ILs (240 intransitive and 371 transitive) are used as
our evaluation dataset. Each IL in the evaluation
dataset is paired with all possible combinations of
feature-value pairs and then fed to both MAGEAD

and MAGEAD-EXPRESS. The surface forms gener-
ated by both systems were identical in all cases. This
validates the correction of our conversion process.

We now evaluate the time and memory require-
ments of MAGEAD-EXPRESS against MAGEAD.
For the sake of this evaluation, we also created an-
other version of MAGEAD that has the lexicon com-
piled into its FST; we call this version MAGEAD-
LEX. Table 7 compares MAGEAD-EXPRESS to both
MAGEAD-LEX and MAGEAD. MAGEAD-LEX is
restricted by the lexicon and thus can not operate
on any lexemes that are not in the lexicon (unlike
MAGEAD but like MAGEAD-EXPRESS). MAGEAD

is the only system among these three that can run
without a lexicon. MAGEAD-EXPRESS is the only
system among the three that allows easy access to
intermediate representations such as those appearing
in (20)-(22), i.e., AMs and CMs.
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MAGEAD-EXPRESS MAGEAD-LEX MAGEAD

Embedded lexicon Yes Yes No
Can run without a lexicon No No Yes

Intermediate Yes No No
representations in output

Time to build 30mins (MAGEAD) 30mins (MAGEAD) 30mins
+ 48hrs + 30mins

Time to analyze 10K
verbs (batches of 1,000) 68 secs 100 secs 3,985 secs
Time to analyze 1 verb 3.5 secs 4.5 secs 2.1 secs
Time to analyze 1 verb
online (client-server) 0.00679 secs No No

Size of machines 7MB 388MB Not Composable
13M�14M�583K

Table 1: Comparing MAGEAD-EXPRESS, MAGEAD-LEX, and MAGEAD. All reported times are CPU seconds.

In terms of time to build, MAGEAD takes 30 mins
to compile (MAGEAD-LEX takes an hour), and then
MAGEAD-EXPRESS takes around 48 hours to ex-
tract its tables from MAGEAD’s FSTs.

As for time performance, we created a list of
10,000 verbs collected randomly from the list of
surface forms generated in the extraction evalua-
tion. We measure the time MAGEAD-EXPRESS

takes to finish analyzing the 10,000 verbs (in ten
batches of 1,000 verbs each) against the time taken
by MAGEAD and MAGEAD-LEX. As Table 7
shows, MAGEAD-EXPRESS is 1.5 times as fast as
MAGEAD-LEX and 58 times faster than MAGEAD.
We next compute the average speed of analyzing one
verb at a time offline (using all 10,000 verbs). In
this scenario, MAGEAD is the fastest due to the over-
head time (3.4 secs) that MAGEAD-EXPRESS needs
to load its tables into memory. Of course, MAGEAD-
EXPRESS is the only system among the three sys-
tems that can operate in a client-server setup where
it loads its lexicons once into memory. In such setup,
MAGEAD-EXPRESS is more than 300 times faster
than MAGEAD.

As for memory requirements, MAGEAD-
EXPRESS requires about 7MB to store its tables into
memory. When the tables get loaded in memory,
MAGEAD-EXPRESS does not require additional
resources. On the other hand, MAGEAD consists
of three FSTs that are composed with the input in
an online fashion, see Table 7 for sizes. In fact, we

could not compose any two of MAGEAD’s three
FSTs into a bigger FST on our 64GB memory
machine. However, MAGEAD-LEX is much smaller
than MAGEAD because it is only restricted to the
lexicon. MAGEAD-LEX’s FSTs are composed
into one big FST of size 388MB. The amount of
memory needed by MAGEAD depends mainly on
the size of the input. For 1 verb to be analyzed, the
input is composed with MAGEAD’s three FSTs and
the result is an FST of size 10KB, and for a batch of
10, 100, and 1,000 verbs the resulting FST is of size
113KB, 1.7MB, and 13MB, respectively.

8 Conclusion

In this paper, we introduced MAGEAD-EXPRESS, a
lexicon-based morphological analyzer and genera-
tor for Arabic and its dialects. MAGEAD-EXPRESS

extracts its linguistic knowledge automatically from
MAGEAD. As a result, MAGEAD-EXPRESS still
benefits from the level of abstraction with which
the linguistic information is encoded in MAGEAD’s
FSTs, while being much faster than MAGEAD.
Both systems are bidirectional and analyze to and
generate from a lexeme and a set of linguistic
feature-value pairs. MAGEAD’s main advantage
over MAGEAD-EXPRESS, is its ability to work with-
out a lexicon or with a partial lexicon. In ongoing
work, we are studying how we can combine the two
system to build a more extensive system. The main
idea is to port MAGEAD as a back-off mechanism to
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deal with the out-of-vocabulary words that are not in
the lexicon. Although we only demonstrate the FST-
table conversion idea on Arabic, we believe it is ap-
plicable to other languages with comparable benefits
(depending on the language’s morphological com-
plexity).
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Abstract

We develop an open-source large-scale finite-
state morphological processing toolkit (Ara-
ComLex) for Modern Standard Arabic (MSA)
distributed under the GPLv3 license.1 The
morphological transducer is based on a lexi-
cal database specifically constructed for this
purpose. In contrast to previous resources, the
database is tuned to MSA, eliminating lexi-
cal entries no longer attested in contemporary
use. The database is built using a corpus of
1,089,111,204 words, a pre-annotation tool,
machine learning techniques, and knowledge-
based pattern matching to automatically ac-
quire lexical knowledge. Our morphologi-
cal transducer is evaluated and compared to
LDC’s SAMA (Standard Arabic Morphologi-
cal Analyser).

1 Introduction

Due to its complexity, Arabic morphology has al-
ways been a challenge for computational processing
and a hard testing ground for morphological analysis
technologies. A lexicon is a core component of any
morphological analyser (Dichy and Farghaly, 2003;
Attia, 2006; Buckwalter, 2004; Beesley, 2001). The
quality and coverage of the lexical database deter-
mines the quality and coverage of the morphological
analyser, and limitations in the lexicon will cascade
through to higher levels of processing.

In this paper, we present an approach to automati-
cally construct a corpus-based lexical database for
Modern Standard Arabic (MSA), focusing on the

1http://sourceforge.net/projects/aracomlex/

problem that existing lexical resources tend to in-
clude obsolete lexical entries no longer attested in
contemporary use. The database is used as the lex-
ical component of a large-scale finite state morpho-
logical analyser. We specify the morpho-syntactic
features and inflection paradigms that need to be ex-
plicitly stated for the morphological analyser and
show how this information can be learned through
machine learning techniques. We explain how bro-
ken plural forms are extracted from the corpus using
Levenshtein Distance and pattern matching. We re-
port the results of our experiments and evaluate and
compare our system against LDC’s SAMA (Stan-
dard Arabic Morphological Analyser) (Maamouri et
al., 2010) showing a substantial reduction of the
number of analyses per input word due to avoiding
obsolete interpretations no longer present in MSA.

This paper is structured as follows. In the intro-
duction, we differentiate between MSA, the focus
of this research, and Classical Arabic (CA) which is
a historical version of the language. We also give
a brief account of the current state of Arabic mor-
phological analysis and outline the structure of the
Arabic morphological system, showing what layers
and tiers are involved in word derivation and inflec-
tion. Section 2 explains the methodology in con-
structing our morphological analyser and the lexical
database. Section 3 presents the results obtained so
far in building and extending the lexical database by
using our MSA data-driven filtering method and ma-
chine learning techniques. We outline how broken
plurals are extracted and handled in our morphol-
ogy. In Section 4, we evaluate the morphology, and
finally, Section 5 gives the conclusion.
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1.1 Modern Standard Arabic vs. Classical
Arabic

Modern Standard Arabic (MSA), the subject of our
research, is the language of modern writing, pre-
pared speeches, and the language of the news. It
is the language universally understood by Arabic
speakers around the world. MSA stands in contrast
to both Classical Arabic (CA) and vernacular Ara-
bic dialects. CA is the language which appeared
in the Arabian Peninsula centuries before the emer-
gence of Islam and continued to be the standard lan-
guage until the medieval times. CA continues to
the present day as the language of religious teach-
ing, poetry, and scholarly literature. MSA is a direct
descendent of CA and is used today throughout the
Arab World in writing and in formal speaking (Bin-
Muqbil, 2006).

MSA is different from Classical Arabic at the lex-
ical, morphological, and syntactic levels (Watson,
2002; Elgibali and Badawi, 1996; Fischer, 1997).
At the lexical level, there is a significant expan-
sion of the lexicon to cater for the needs of moder-
nity. New words are constantly coined or bor-
rowed from foreign languages while many words
from CA have become obsolete. Although MSA
conforms to the general rules of CA, MSA shows
a tendency for simplification, and modern writers
use only a subset of the full range of structures, in-
flections, and derivations available in CA. For ex-
ample, Arabic speakers no longer strictly abide by
case ending rules, which led some structures to
become obsolete, while some syntactic structures
which were marginal in CA started to have more
salience in MSA. For example, the word order of
object-verb-subject, one of the classical structures,
is rarely found in MSA, while the relatively marginal
subject-verb-object word order in CA is gaining
more weight in MSA. This is confirmed by Van Mol
(2003) who quotes Stetkevych (1970) as pointing
out the fact that MSA word order has shifted bal-
ance, as the subject now precedes the verb more fre-
quently, breaking from the classical default word or-
der of verb-subject-object. Moreover, to avoid am-
biguity and improve readability, there is a tendency
to avoid passive verb forms when the active readings
are also possible, as in the words �Ñ

��	¢�	� ‘to be organ-
ised’. Instead of the passive form, the alternative

syntactic construction ��Õç��' ‘performed/done’ + verbal
noun is used, �é �ÒJ
 	¢�

	� ��K ��Õç��' ‘lit. organising it has been
done / it was organised’.

To our knowledge, apart from Van Mol’s (2003)
study of the variations in complementary particles,
no extensive empirical studies have been conducted
to check how significant the difference between
MSA and CA is either at the morphological, lexical,
or syntactic levels.

1.2 The Current State of Arabic
Morphological Analysis

Existing Arabic lexicons are not corpus-based (as in
a COBUILD approach (Sinclair, 1987)), but rather
reflect historical and prescriptive perspectives, mak-
ing no distinction between entries for MSA and CA
(Classical Arabic). Therefore, they tend to include
obsolete words not in contemporary use.

The Buckwalter Arabic Morphological Analyzer
(BAMA) (Buckwalter, 2004) is a de facto standard
tool which is widely used in the Arabic NLP re-
search community. The latest version of BAMA
is renamed SAMA version 3.1 (Maamouri et al.,
2010), and it contains 40,648 lemmas. However,
SAMA suffers from a legacy of heavy reliance on
older Arabic dictionaries, particularly Wehr’s Dic-
tionary (Wehr and Cowan, 1976). We estimate
that about 25% of the lexical items included in
SAMA are outdated based on our data-driven filter-
ing method presented in Section 3.2.

Therefore, there is a strong need to compile a
lexicon for MSA that follows modern lexicographic
conventions (Atkins and Rundell, 2008) in order to
make the lexicon a reliable representation of the lan-
guage and to make it a useful resource for NLP ap-
plications dealing with MSA. Our work represents
a further step to address this critical gap in Arabic
lexicography and morphological analysis. We use a
large corpus of more than one billion words to auto-
matically create a lexical database for MSA.

1.3 Arabic Morphotactics
Arabic morphology is well-known for being rich
and complex. Arabic morphology has a multi-tiered
structure where words are originally derived from
roots and pass through a series of affixations and
clitic attachments until they finally appear as sur-
face forms. Morphotactics refers to the way mor-
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Figure 1: The Multi-tier Structure of the Arabic Morphol-
ogy.

phemes combine together to form words (Beesley,
1998; Beesley and Karttunen, 2003). Generally
speaking, morphotactics can be concatenative, with
morphemes either prefixed or suffixed to stems, or
non-concatenative, with stems undergoing internal
alterations to convey morpho-syntactic information
(Kiraz, 2001). Arabic is considered as a typical ex-
ample of a language that employs both concatenative
and non-concatenative morphotactics. For exam-
ple, the verb A �ëñ

�
Ê �Òª��J�@� ‘they-used-it’ and the noun

�HB
�
A �Òª��J�B@ �ð ‘and-the-uses’ both originate from the

root ÉÔ«.
Figure 1 shows the layers and tiers embedded in

the representation of the Arabic morphological sys-
tem. The derivation layer is non-concatenative and
opaque in the sense that it is a sort of abstraction that
affects the choice of a part of speech (POS), and it
does not have a direct explicit surface manifestation.
By contrast, the inflection layer is more transparent.
It applies concatenative morphotactics by using af-
fixes to express morpho-syntactic features. We note
that verbs at this level show what is called ‘separated
dependencies’ which means that some prefixes de-
termine the selection of suffixes.

2 Methodology

In this section, we explain the techniques and stan-
dards we follow in the construction of our lexical

resource.

2.1 Using Finite State Technology for Arabic
One of our objectives for constructing the lexical
resource is to build a morphological analyser and
generator using bidirectional finite state technology
(FST). FST has been used successfully in devel-
oping morphologies for many languages, including
Semitic languages (Beesley and Karttunen, 2003).
There are a number of advantages of this technol-
ogy that makes it especially attractive in dealing
with human language morphologies; among these
are the ability to handle concatenative and non-
concatenative morphotactics, and the high speed and
efficiency in handling large automata of lexicons
with their derivations and inflections that can run
into millions of paths.

The Xerox XFST System (Beesley and Karttunen,
2003) is a well-known finite state compiler, but the
disadvantage of this tool is that it is a proprietary
software, which limits its use in the larger research
community. Fortunately, there is an alternative,
namely Foma, (Hulden, 2009), which is an open-
source finite-state toolkit that implements the Xerox
lexc and xfst utilities. We have developed an open-
source morphological analyser for Arabic using the
Foma compiler allowing us to share our morphol-
ogy with third parties. The lexical database, which
is being edited and validated, is used to automati-
cally extend and update the morphological analyser,
allowing for greater coverage and better capabilities.

Arabic words are formed through the amalgama-
tion of two tiers, namely root and pattern. A root
is a sequence of three consonants and the pattern is
a template of vowels (or vowels with consonants)
with slots into which the consonants of the root are
inserted. This process of insertion is called inter-
digitation (Beesley, 2001). An example is shown in
Table 1.

Root �PX
drs

Pattern R1aR2aR3a R1aR2R2aR3a R1āR2iR3

POS V V N
Stem d a r a s a d a r r a s a d ā r i s

‘study’ ‘teach’ ‘student’

Table 1: Root and Pattern Interdigitation.

There are three main strategies for the develop-
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ment of Arabic morphological analysers depending
on the initial level of analysis: root, stem or lemma.
In a root-based morphology, such as the Xerox
Arabic Morphological Analyser (Beesley, 2001),
analysing Arabic words is based on a list of roots
and a list of patterns interacting together in a pro-
cess called interdigitation, as explained earlier. In
a stem-based morphology, such as SAMA (Buck-
walter, 2004; Maamouri et al., 2010), the stem is
considered as a base form of the word. A stem is a
form between the lemma and the surface form. One
lemma can have several variations when interacting
with prefixes and suffixes. Such a system does not
use alteration rules and relies instead on listing all
stems (or form variations) in the database. For ex-
ample, in SAMA’s database, the verb �Q

�
º ��� šakara

‘to thank’ has two entries: �Q
�
º ��� šakara for per-

fective and Q
�
º �� škur for the imperfective. In a

lemma-based morphology, words are analysed at the
lemma level. A lemma is the least marked form of a
word, that is the uninflected word without suffixes,
prefixes, proclitics, or enclitics. In Arabic, this is
usually the perfective, 3rd person, singular verb, and
in the case of nouns and adjectives, the singular in-
definite form. Other inflected forms are generated
from the lemma through alteration rules.

In our implementation of the Arabic finite state
transducer, we use the lemma as the base form. We
believe that a lemma-based morphology is more eco-
nomical than the stem-based morphology as it does
not list all form variations and relies on generalised
rules. It is also less complex than the root-based ap-
proach and less likely to overgenerate (Dichy and
Farghaly, 2003; Attia, 2006). This leads to better
maintainability and scalability of our morphology.

In an XFST finite state system, lexical entries
along with all possible affixes and clitics are en-
coded in the lexc language which is a right recursive
phrase structure grammar (Beesley, 2001; Beesley
and Karttunen, 2003). A lexc file contains a num-
ber of lexicons connected through what is known
as “continuation classes” which determine the path
of concatenation. Example (1) gives a snapshot of
some verbs in our lexc file. The tags are meant to
provide the following information:

• The multi-character symbol ˆssˆ stands for
stem start, and ˆseˆ for stem end.

• The flag diacritic @D.V.P@ means “disallow
the passive voice”, and @D.M.I@ means “dis-
allow the imperative mood”.

• Transitive and Intransitive are used
as the continuation classes for verbs.

(1) LEXICON Verbs

ˆssˆ �Q
�
º ���[‘thank’]ˆseˆ Transitive;

ˆssˆ
�hQ�

�	̄ [‘be-happy’]ˆseˆ@D.V.P@ Intransitive;

ˆssˆ �Q�Ó
�
@[‘order’]ˆseˆ@D.M.I@ Transitive;

ˆssˆ
�

ÈA��̄[‘say’]ˆseˆ Intransitive;

Similarly, nouns are added by choosing from a
set of continuation classes which determine what
path of inflection each noun is going to select, as
shown in example (2) (gloss is included in square
brackets for illustration only). These continuation
classes (13 in total) are based on the facts in Ta-
ble 2, which shows the inflection choices available
for Arabic nouns according to gender (masculine or
feminine) and number (singular, dual or plural).

(2) LEXICON Nouns

+m+humanˆssˆÕ
��
Î �ª�Ó[‘teacher’]ˆseˆ FMduFduFplMpl;

+m+humanˆssˆI. Ë�A �£[‘student’]ˆseˆ FMduFduFpl;

+m+nonhumanˆssˆH. A��J»� [‘book’]ˆseˆ Mdu;

+f+nonhumanˆssˆ
�è �Q ��®�K.[‘cow’]ˆseˆ DuFpl;

With inflections and concatenations, words usu-
ally become subject to changes or alterations in their
forms. Alterations are the discrepancies between
underlying strings and their surface realisations
(Beesley, 1998), and alteration rules are the rules
that relate the surface forms to the underlying forms.
Alteration rules are expressed in finite state systems
using XFST replace rules of the general form shown
in (3).

(3) a -> b || L _ R

The rule states that the string a is replaced with
the string b when a occurs between the left context
L and the right context R. In Arabic, long vowels,
glides and the glottal stop are the subject of a great
deal of phonological (and consequently orthographi-
cal) alterations like assimilation and deletion. Many
of the challenges an Arabic morphological analyser
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Masculine Sin-
gular

Feminine
Singular

Masculine
Dual

Feminine
Dual

Masculine
Plural

Feminine
Plural

Continuation
Class

1 Õ
��
Î �ª�Ó mu↪allim

‘teacher’

�é �Ò
��
Ê �ª�Ó

mu↪allimat

	àA �Ò
��
Ê �ª�Ó

mu↪allimān

	àA��J �Ò
��
Ê �ª�Ó

mu↪allima-
tān

	àñ �Ò
��
Ê �ª�Ó

mu↪allimuwn

�HA �Ò
��
Ê �ª�Ó

mu↪allimāt
F-Mdu-Fdu-
Mpl-Fpl

2 I. Ë�A �£ t.ālib
‘student’

�é�J. Ë� A �£ t.ālibat 	àA�J. Ë� A �£ t.ā-
libān

	àA��J�J. Ë� A �£ t.ā-
libatān

- �HA�J. Ë� A �£ t.ā-
libāt

F-Mdu-Fdu-Fpl

3 �ø
 Q��
 	�� m�
��'

tah. d. iyriyy
‘preparatory’

�é��K
Q��
 	�� m�
��'

tah. d. iyriyyat

	àA��K
Q��
 	�� m�
��'

tah. d. iyriyyān

	àA��J��K
Q��
 	�� m�
��'

tah. d. iyriyya-
tān

- - F-Mdu-Fdu

4 - �è �Q ��®�K. baqarat
‘cow’

- 	àA��K �Q ��®�K.
baqaratān

- �H@ �Q ��®�K.
baqarāt

Fdu-Fpl

5 È �	PA�	J��K tanāzul
‘concession’

- - - - �HB
� �	PA�	J��K

tanāzulāt
Fpl

6 - �é��J
m��
�	�

d. ah. iyyat
‘victim’

- 	àA��J��J
m��
�	�

d. ah. iyyatān
- - Fdu

7 	�m �× mah. d.
‘mere’

�é �	�m �× mah. d. at - - - - F

8 	àA �j�J�Ó@� imtih. ān
‘exam’

- 	àA�	K A �j�J�Ó@�
imtih. ānān

- - �HA�	K A �j�J�Ó@�
imtih. ānāt

Mdu-Fdu

9 PA��J
 �£ t.ayyār ‘pi-
lot’

- - - .tayyAruwn - Mdu-Mpl

10 H. A��J»� kitāb
‘book’

- 	àA�K. A
��J»� kitā-

bān
- - - Mdu

11 �ù
 £� @ �Q�®�Üß
X� diy-
muqrāt.iyy
‘democrat’

- - - 	àñ��J
£� @ �Q�®�Üß
X�
diymuqrā-
t.iyyuwn

- Mpl

12 h. ð �Q �	k h
˘

uruwǧ
‘exiting’

- - - - - NoNum

13 �Ik� A�J. �Ó mabā-
h. it

¯
‘investiga-

tors’

- - - - - Irreg pl

Table 2: The Arabic Inflection Grid and Continuation Classes.

faces are related to handling these issues. In our sys-
tem there are about 130 replace rules to handle alter-
ations that affect verbs, nouns, adjectives and func-
tion words when they undergo inflections, or when
they are attached to affixes and clitics.

2.2 Using Heuristics and Statistics from a
Large Corpus

For the construction of a lexicon for MSA, we
take advantage of large and rich resources that have
not been exploited in similar tasks before. We
use a corpus of 1,089,111,204 words, consisting of
925,461,707 words from the Arabic Gigaword cor-
pus fourth edition (Parker et al., 2009), in addition to
163,649,497 words from news articles we collected
from the Al-Jazeera web site.2

We pre-annotate the corpus using MADA (Roth
et al., 2008), a state-of-the-art tool for morphologi-

2http://aljazeera.net/portal. Collected in January 2010.

cal processing. MADA combines SAMA and SVM
classifiers to choose the best morphological analy-
sis for a word in context, doing tokenisation, lem-
matisation, diacritisation, POS tagging, and disam-
biguation. MADA is reported to achieve high accu-
racy (above 90%) for tokenisation and POS tagging
tested on the Arabic Penn Treebank, but no evalua-
tion of lemmatisation is reported. We use the anno-
tated data to collect statistics on lemma features and
use machine learning techniques, described in Sec-
tion 3.2.2, in order to extend a manually constructed
seed lexicon (Attia, 2006). We also use the anno-
tated data to extract a list of broken plurals, as de-
scribed in Section 3.3.

3 Results to Date

In this section, we present the results obtained so far
in building and extending the lexical database.
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3.1 Building Lexical Resources
There are three key components in the Arabic mor-
phological system: root, pattern, and lemma. In
order to accommodate these components, we cre-
ate four lexical databases: one for nominal lemmas
(including nouns and adjectives), one for verb lem-
mas, one for word patterns, and one for root-lemma
lookup. From a manually created MSA lexicon (At-
tia, 2006) we construct a seed database of 5,925
nominal lemmas and 1,529 verb lemmas. At the mo-
ment, we focus on open word classes and exclude
proper nouns, function words, and multiword ex-
pressions which are relatively stable and fixed from
an inflectional point of view.

We build a database of 490 Arabic patterns (456
for nominals and 34 for verbs) which can be used
as indicators of the morphological inflectional and
derivational behaviour of Arabic words. Patterns are
also powerful in the abstraction and coarse-grained
categorisation of word forms.

3.2 Extending the Lexical Database
In extending our lexicon, we rely on Attia’s
manually-constructed finite state morphology (At-
tia, 2006) and the lexical database in SAMA 3.1
(Maamouri et al., 2010). Creating a lexicon is usu-
ally a labour-intensive task. For instance, Attia took
three years in the development of his morphology,
while SAMA and its predecessor, Buckwalter’s mor-
phology, were developed over more than a decade,
and at least seven people were involved in updating
and maintaining the morphology.

Our objective here is to automatically extend At-
tia’s finite state morphology (Attia, 2006) using
SAMA’s database. In order to do this, we need
to solve two problems. First, SAMA suffers from
a legacy of obsolete entries and we need to filter
out these outdated words, as we want to enrich our
lexicon only with lexical items that are still in cur-
rent use. Second, our lexical database and the FST
morphology require features (such as humanness for
nouns and transitivity for verbs) that are not pro-
vided by SAMA, and we want to automatically in-
duce these features.

3.2.1 Lexical Enrichment.
To address the first problem, we use a data-

driven filtering method that combines open web

search engines and our pre-annotated corpus. Us-
ing frequency statistics3 from three web search en-
gines (Al-Jazeera,4 Arabic Wikipedia,5 and the Ara-
bic BBC website6), we find that 7,095 lemmas in
SAMA have zero hits. Frequency statistics from our
corpus show that 3,604 lemmas are not used in the
corpus at all, and 4,471 lemmas occur less than 10
times. Combining frequency statistics from the web
and the corpus, we find that there are 29,627 lem-
mas that returned at least one hit in the web queries
and occurred at least 10 times in the corpus. Using
a threshold of 10 occurrences here is discretionary,
but the aim is to separate the stable core of the lan-
guage from instances where the use of a word is per-
haps accidental or somewhat idiosyncratic. We con-
sider the refined list as representative of the lexicon
of MSA as attested by our statistics.

3.2.2 Feature Enrichment.

To address the second problem, we use a machine
learning classification algorithm, the Multilayer Per-
ceptron (Haykin, 1998). The main idea of machine
learning is to automatically learn complex patterns
from existing (training) data and make intelligent
decisions on new (test) data. In our case, we have
a seed lexicon (Attia, 2006) with lemmas manually
annotated with classes, and we want to build a model
for predicting the same classes for each new lemma
added to the lexicon. The classes (second column
in Table 3) for nominals are continuation classes (or
inflection paths), the semantico-grammatical feature
of humanness, and POS (noun or adjective). The
classes for verbs are transitivity, allowing the pas-
sive voice, and allowing the imperative mood. From
our seed lexicon we extract two datasets of 4,816
nominals and 1,448 verbs. We feed these datasets
with frequency statistics from our pre-annotated cor-
pus and build the statistics into a vector grid. The
features (third column in Table 3) for nominals are
number, gender, case and clitics; for verbs, num-
ber, gender, person, aspect, mood, voice and clitics.
For the implementation of the machine learning al-
gorithm, we use the open-source application Weka

3Statistics were collected in January 2011.
4http://aljazeera.net/portal
5http://ar.wikipedia.org
6http://www.bbc.co.uk/arabic/
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No. Classes Features P R F
Nominals

1 Continuation
Classes:
13 classes

number, gen-
der, case,
clitics

0.62 0.65 0.63

2 Human:
yes, no, unspec-
ified

0.86 0.87 0.86

3 POS: noun, ad-
jective

0.85 0.86 0.85

Verbs
4 Transitivity:

transitive,
intransitive

number, gen-
der, person,
aspect, mood,
voice, clitics

0.85 0.85 0.84

5 Allow passive:
yes, no

0.72 0.72 0.72

6 Allow impera-
tive:
yes, no

0.63 0.65 0.64

Table 3: Results of the Classification Experiments.

version 3.6.4.7 We split each dataset into 66% for
training and 34% for testing. We conduct six clas-
sification experiments to provide the classes that we
need to include in our lexical database. Table 3 gives
the results of the experiments in terms of precision,
recall, and f-measure.

The results show that the highest f-measure scores
are achieved for ‘Human’, ‘POS’, and ‘Transitivity’.
Typically one would assume that these features are
hard to predict with any reasonable accuracy without
taking the context into account. It was surprising to
obtain such good prediction results based only on
statistics on morphological features alone. We also
note that the f-measure for ‘Continuation Classes’ is
comparatively low, but considering that here we are
classifying for 13 classes, the results are in fact quite
acceptable. Using the machine learning model, we
annotate 12,974 new nominals and 5,034 verbs.

3.3 Handling Broken Plurals
In our seed morphology (Attia, 2006), we have
950 broken plurals which were collected manually
and clearly tagged. In SAMA, however, broken
plurals are rather poorly handled. SAMA does
not mark broken plurals as “plurals” either in the
source file or in the morphology output. There is
no straightforward way to automatically collect the
list of all broken plural forms from SAMA. For
example, the singular form I. 	K� A �g. ǧānib “side”

7http://www.cs.waikato.ac.nz/ml/weka/

and the broken plural I. 	K� @ �ñ �k. ǧawānib “sides” are
analysed as in (4) and (5) respectively.
(4) <lemmaID>jAnib_1</lemmaID>

<voc>jAnib</voc> <pos>jAnib/NOUN</pos>

<gloss>side/aspect</gloss>

(5) <lemmaID>jAnib_1</lemmaID>

<voc>jawAnib</voc> <pos>jawAnib/NOUN</pos>

<gloss>sides/aspects</gloss>

The only tags that distinguish the singular from
the broken plural form is the gloss (or translation)
and voc (or vocalisation). We also note that MADA
passes this problem on unsolved, and broken plurals
are all marked with num=s, which means that the
number is singular. We believe that this shortcoming
can have a detrimental effect on the performance of
any syntactic parser based on such data.

To extract broken plurals from our large MSA
corpus (which is annotated with SAMA tags), we
rely on the gloss of entries with the same LemmaID.
We use Levenshtein Distance which measures the
similarity between two strings. For example, using
Levenshtein Distance to measure the difference be-
tween “sides/aspects” and “side/aspect” will give a
distance of 2. When this number is divided by the
length of the first string, we obtain 0.15, which is
within a threshold (here set to <0.4). Thus the two
entries pass the test as possible broken plural can-
didates. Using this method, we collect 2,266 candi-
dates. We believe, however, that many broken plural
forms went undetected because the translation did
not follow the assumed format. For example, the
word H. Q �k h. arb has the translation “war/warfare”
while the plural form H. ð �Q �k h. uruwb has the trans-
lation “wars”.

To validate the list of candidates, we use Ara-
bic word pattern matching. For instance, in the
above example, the singular form (vocalisation) fol-
lows the pattern fAEil (or the regular expression
.A.il) and the plural form follows the pattern
fawAEil (or .awA.i.). In our manually devel-
oped pattern database we have fawAEil as a possi-
ble plural pattern for fAEil. Therefore, the match-
ing succeeds, and the candidate is considered as a
valid broken plural entry. We compiled a list of 135
singular patterns that choose from a set of 82 broken
plural patterns. The choice, however, is not free, but
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Morphology No. of General News Semi-Literary
Lemmas Coverage Rate per word Coverage Rate per word

AraComLex 1.0 10,799 79.68% 1.67 69.37% 1.62
AraComLex 2.0 28,807 86.89% 2.10 85.14% 2.09
AraComLex 2.1 30,587 87.13% 2.09 85.73% 2.08

SAMA 40,648 88.13% 5.32 86.95% 5.30

Table 4: Coverage and Rate Per Word Test Results.

each singular form has a limited predefined set of
broken plural patterns to select from. From the list
of 2,266 candidates produced by Levenshtein Dis-
tance, 1,965 were validated using the pattern match-
ing, that is 87% of the instances. When we remove
the entries that are intersected with our 950 manu-
ally collected broken plurals, 1,780 forms are left.
This means that in our lexicon now we have a list of
2,730 broken plural forms.

There are some insights that can be gained from
the statistics on Arabic plurals in our corpus. The
corpus contains 5,570 lemmas which have a femi-
nine plural suffix, 1,942 lemmas with a masculine
plural suffix (of these 1,273 forms intersect with
the feminine plural suffix), and about 1,965 lemmas
with a broken plural form. This means that the bro-
ken plural formation in Arabic is as productive as the
regular plural suffixation. Currently, we cannot ex-
plain why the feminine plural suffix enjoys this high
preference, but we can point to the fact that mascu-
line plural suffixes are used almost exclusively with
the natural gender, while the feminine plural suffix,
as well as broken plurals, are used liberally with the
grammatical gender in addition to the natural gen-
der.

4 Morphology Evaluation

In this section, we test the coverage and rate per
word (or the average number of analyses per word)
in our morphological analyser compared to an ear-
lier version (the baseline) and SAMA. We build a
test corpus of 800,000 words, divided into 400,000
of what we term as Semi-Literary text and 400,000
for General News texts. The Semi-Literary texts
consist of articles collected from columns, com-
mentaries, opinions and analytical essays written by
professional writers who tend to use figurative and
metaphorical language not commonly used in ordi-

nary news. This type of text exhibits the charac-
teristics of literary text, especially the high ratio of
word tokens to word types: out of the 400,000 to-
kens there are 60,564 types. The General News text
contrasts with the literary text in that the former has
a lower ratio of word tokens to word types: out of
the 400,000 tokens there are 42,887 types.

Table 4 compares the results of coverage and rate
per word for AraComLex 2.1 against the baseline
(AraComLex 1.0), that is the morphology originally
developed in (Attia, 2006); AraComLex 2.0, which
does not contain the broken plural extension; and
LDC’s SAMA version 3.1.

The results show that for the Semi-Literary text,
we achieve a considerable improvement in cover-
age for AraComLex 2.1 over the baseline, increasing
from 69.37% to 85.73%, that is 16.36% absolute im-
provement. However, for the General News text, we
achieve less improvement: from 79.68% to 79.68%
coverage, that is 7.45% absolute improvement.

Compared to SAMA, AraComLex 2.1 has 1.00%
(absolute) less coverage on General News, and
1.22% (absolute) less coverage on the Semi-Literary
text. However, the rate per word is significantly
lower in AraComLex (2.08) than in SAMA (5.30).
We assume that the lower rate of ambiguity in Ara-
ComLex is mainly due to the fact that we excluded
obsolete words and morphological analyses from
our lexical database.

5 Conclusion

We build a large-scale open-source finite state trans-
ducer for MSA (AraComLex) distributed under the
GPLv3 license. We start off with a manually con-
structed lexicon of 10,799 MSA lemmas and auto-
matically extend it to 30,587 lemmas, carefully ex-
cluding obsolete entries and analyses that are not at-
tested in contemporary data, that is a large MSA cor-
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pus containing more than one billion words. We suc-
cessfully use machine learning to predict morpho-
syntactic features for newly acquired words. We also
use Levenshtein Distance and Arabic word pattern
matching to extract broken plurals. Evaluation re-
sults show that our transducer has coverage similar
to SAMA, but at a significantly reduced average rate
of analysis per word, due to avoiding outdated en-
tries and analyses.

Acknowledgments.
This research is funded by Enterprise Ireland

(PC/09/037), the Irish Research Council for Science
Engineering and Technology (IRCSET), and the EU
projects PANACEA (7FP-ITC-248064) and META-
NET (FP7-ICT-249119).

References

Atkins, B. T. S. and Rundell, M. 2008. The Oxford Guide
to Practical Lexicography. Oxford University Press.

Attia, M. 2006. An Ambiguity-Controlled Morphologi-
cal Analyzer for Modern Standard Arabic Modelling
Finite State Networks. In: Challenges of Arabic for
NLP/MT Conference, The British Computer Society,
London, UK.

Beesley, K. R. 1998. Arabic Morphological Analysis on
the Internet. In: The 6th International Conference and
Exhibition on Multilingual Computing, Cambridge,
UK.

Beesley, K. R. 2001. Finite-State Morphological Analy-
sis and Generation of Arabic at Xerox Research: Sta-
tus and Plans in 2001. In: The ACL 2001 Workshop
on Arabic Language Processing: Status and Prospects,
Toulouse, France.

Beesley, K. R., and Karttunen, L. 2003. Finite State Mor-
phology: CSLI studies in computational linguistics.
Stanford, Calif.: Csli.

Bin-Muqbil, M. 2006. Phonetic and Phonological As-
pects of Arabic Emphatics and Gutturals. Ph.D. thesis
in the University of WisconsinMadison.

Buckwalter, T. 2004. Buckwalter Arabic Morphologi-
cal Analyzer (BAMA) Version 2.0. Linguistic Data
Consortium (LDC) catalogue number LDC2004L02,
ISBN1-58563-324-0.

Dichy, J., and Farghaly, A. 2003. Roots & Patterns vs.
Stems plus Grammar-Lexis Specifications: on what
basis should a multilingual lexical database centred on
Arabic be built? In: The MT-Summit IX workshop
on Machine Translation for Semitic Languages, New
Orleans.

Elgibali, A. and Badawi, E. M. 1996. Understanding Ara-
bic: Essays in Contemporary Arabic Linguistics in
Honor of El-Said M. Badawi. American University in
Cairo Press, Egypt.

Fischer, W. 1997. Classical Arabic. In: The Semitic Lan-
guages. London: Routledge.

Haykin, S. 1998. Neural Networks: A Comprehensive
Foundation (2 ed.). Prentice Hall.

Hulden, M. 2009. Foma: a finite-state compiler and li-
brary. In: Proceedings of the 12th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL ’09). Stroudsburg, PA, USA.

Kiraz, G. A. 2001. Computational Nonlinear Morphol-
ogy: With Emphasis on Semitic Languages. Cam-
bridge University Press.

Maamouri, M., Graff, D., Bouziri, B., Krouna, S.,
and Kulick, S. 2010. LDC Standard Arabic Morpho-
logical Analyzer (SAMA) v. 3.1. LDC Catalog No.
LDC2010L01. ISBN: 1-58563-555-3.

Parker, R., Graff, D., Chen, K., Kong, J., and Maeda, K.
2009. Arabic Gigaword Fourth Edition. LDC Catalog
No. LDC2009T30. ISBN: 1-58563-532-4.

Roth, R., Rambow, O., Habash, N., Diab, M., and Rudin,
C. 2008. Arabic Morphological Tagging, Diacritiza-
tion, and Lemmatization Using Lexeme Models and
Feature Ranking. In: Proceedings of Association for
Computational Linguistics (ACL), Columbus, Ohio.

Sinclair, J. M. (ed.). 1987. Looking Up: An Account of
the COBUILD Project in Lexical Computing. London:
Collins.

Stetkevych, J. 1970. The modern Arabic literary lan-
guage: lexical and stylistic developments. Publica-
tions of the Center for Middle Eastern Studies, No. 6.
Chicago and London: University of Chicago Press.

Van Mol, M. 2003. Variation in Modern Standard Arabic
in Radio News Broadcasts, A Synchronic Descriptive
Investigation in the use of complementary Particles.
Leuven, OLA 117.

Watson, J. 2002. The Phonology and Morphology of Ara-
bic, New York: Oxford University Press.

Wehr, H. and Cowan, J. M. 1976. Dictionary of Mod-
ern Written Arabic, pp. VII-XV. Ithaca, N.Y.: Spoken
Language Services.

133



Proceedings of the 9th International Workshop on Finite State Methods and Natural Language Processing, pages 134–142,
Blois (France), July 12-15, 2011. c©2011 Association for Computational Linguistics

Recognition and Translation of Arabic Named Entities with NooJ Using 
a New Representation Model 

 

 

Héla Fehri Kais Haddar 
Laboratory MIRACL, University of Sfax Laboratory MIRACL, University of Sfax 

Route Tunis Km 10 B.P 242, Sakiet Ezziet 
3021 Sfax 

Route Tunis Km 10 B.P 242, Sakiet Ezziet 
3021 Sfax 

hela.fehri@fss.rnu.tn kais.haddar@fss.rnu.tn 

Abdelmajid Ben Hamadou
Laboratory MIRACL, University of Sfax 

Route Tunis Km 10 B.P 242, Sakiet Ezziet 3021 Sfax
abdelmajid.benhamadou@isimsf.rnu.tn 

 
  

 
 
 

Abstract 

Recognition and translation of named 
entities (NEs) are two current research 
topics with regard to the proliferation of 
electronic documents exchanged through 
the Internet. The need to assimilate these 
documents through NLP tools has become 
necessary and interesting. Moreover, the 
formal or semi-formal modeling of these 
NEs may intervene in both processes of 
recognition and translation. Indeed, the 
modeling task makes more reliable the 
constitution of linguistic resources, limits 
the impact of linguistic specificities and 
facilitates transformations from one 
representation to another. In this context, 
we propose an approach of recognition and 
translation based on a representation model 
of Arabic NEs and a set of transducers 
resolving morphological and syntactical 
phenomena. The representation model is 
based on the feature structure independent 
of lexical categories.  

Keywords: Representation Model, NE' 
recognition, NE' translation, Transducer, 
Local grammar. 

1  Introduction 

Recognition and translation of NEs are two current 
research topics with regard to the proliferation of 
electronic documents exchanged through the 
Internet. The need to assimilate these documents 
through NLP tools has become necessary and 
interesting. 

Furthermore, the formal or semi-formal 
modeling of NEs can be involved in recognition 
and translation processes. This modeling task 
allows the constitution of more reliable linguistic 
resources. Indeed, such a modeling can represent 
all the constituents of a NE in a standard manner 
and limit the impact of linguistic specificities. In 
fact, a formal representation of Arabic NEs can 
help, firstly, in the identification of dictionaries 
and grammars required for any NLP application 
and, secondly, in the use of advanced linguistic 
methods of translation (i.e., transfer or pivot 
method). This abstraction level favors the reuse of 
certain linguistic resources. 
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The elaboration of a formal and generic 
representation of an NE is not an easy task 
because, on the one hand, we have to find a 
representation that takes into consideration the 
concept of recursion and length of NE. In fact, a 
NE can be formed by other NEs. So, its length is 
not known in advance. On the other hand, the 
representation to be proposed should also contain a 
sufficient number of features that can represent any 
NE independently of the domain and grammatical 
category. In other words, the same features must 
satisfy all types of NE. 

Transducers (eventually local grammars) can 
resolve many problems of the NEs and should 
respect hierarchy types of NEs. However the 
connection between these transducers to obtain a 
deep analysis isn't a trivial task. So, a linguistic 
platform like NooJ can help us to do this kind of 
analysis.  

It is in this context that the present work is 
situated. In fact, the main objective is to propose 
an approach of recognition and translation of 
Arabic NEs based on a representation model, a set 
of bilingual dictionaries and a set of transducers 
resolving morphological and syntactical 
phenomena related to the Arabic NEs and 
implemented with the linguistic platform NooJ. To 
reach our objective, we have to offer a 
representation model that takes into account the 
notion of recursion of NEs. We have also to 
specify features that describe any NE 
independently of the domain. Finally, the 
representation should be compatible with the 
linguistic platform NooJ (Silberztein, 2004) chosen 
for the implementation. 

In this paper, we present, firstly, a brief 
overview of the state-of the art. Then, we detail our 
proposed representation model. After that, we give 
a general idea of our resources construction and 
their implementation in the linguistic platform 
NooJ. Finally, the paper concludes with some 
perspectives. 

2  Related Work 

Research on NEs revolves around two 
complementary axes: the first involves the typing 
of NEs while the second concerns the 
identification and translation of NEs. As for the 
identification, the tagging and the translation of 
NEs, they have been implemented for multiple 

languages based on different approaches: linguistic 
(Coates-Stephens, 1993), statistic (Borthwick et 
al., 1998) and hybrid (Mikheev et al., 1998) 
approaches. In what follows, we focus on the 
linguistic approach used for NE processing.  

Regarding the recognition of NEs, we cite the 
work presented in (Friburger, 2002). This work 
allows the extraction of proper names in French. 
The proposed method is based on multiple 
syntactic transformations and some priorities that 
are implemented with transducers. We can cite also 
the work described in (Mesfar, 2007). The 
elaborated method is applied on a biomedical 
domain. Other Arabic works are dealing with the 
recognition of elliptical expressions (Hasni et al., 
2009), compound nouns (Khalfallah et al., 2009), 
broken plurals (Ellouze et al., 2009) and most 
important categories in Arabic script (Shaalan and 
Raza, 2009). All these works that use the linguistic 
platform NooJ can be integrated in the NE 
processing. 

Other works have been dedicated to the 
translation of different structure (e.g., NE) from 
one language to another. We can cite the work 
presented in (Barreiro, 2008) dealing with the 
translation of simple sentences from English to 
Portuguese. Additionally, the work of (Wu, 2008) 
provides a noun translation of French into Chinese. 
The elaborated prototype tests a limited corpus of 
600 French nouns and is experimented with NooJ.  

The literature review shows that the already 
proposed translation approaches are not well 
specified (e.g., lack of abstraction and genre). Each 
one addresses a particular phenomenon without 
taking into account other phenomena. We should 
also mention that there are few works that 
proposed a modeling of NEs for explicitly 
representing the effects of meaning within the NE 
and explaining phenomena like synecdoche and the 
metonymy (Poibeau, 2005). However, these works 
don’t treat the concept of embedded NEs which is 
very important and can help to implement the 
recognition and the translation process of NEs. 

Furthermore, all translations using NooJ 
platform adopt a semi-direct approach of 
translation, in which the recognition task is 
combined with that of translation. Thus, the reuse 
of such work has become limited, which does not 
promote multilingualism.  
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3  Proposed Model for Representing 
Arabic NEs 

The model that we propose is used to formalize 
and to identify Arabic NEs. This model is inspired 
by formalisms based on structural features like 
Head-driven Phrase Structure Grammar (Pollard 
and Sag, 1994). Its features are inspired from the 
concepts "Head and Expansion" introduced by 
(Bourigault, 2002). The essential characteristics of 
the feature structure of the proposed model are: 

• an element of the structure can be 
atomic or complex, 
• an internal structure of an element is 
defined by its attributes and values. 

In what follows, we describe the structure and 
features of our proposed model. 

3.1 Structure and Features of the Proposed 
Model 

Each NE has a type and is composed of two parts: 
one is essential and the other is extensional. The 
essential part is also a NE and has itself essential 
and extensional parts. This proves the recursion for 
an NE. The type of a NE ″Type_EN″ is usually 
indicated by a trigger word. The essential part is 
represented by the feature ″Tête_EN″ (head of NE) 
and the trigger word is represented by the feature 
″Mot_declencheur″. The extensional part 
represents the final form that composes the NE. It 
does not admit a type because it is preceded by a 
lexical item ″Element_EN″ (element of NE) (e.g., 
preposition, special character). Then, it can not be 
considered as a NE but it can contain a NE. Its 
existence or non-existence doesn’t affect the well-
formation of the NE. This part is represented by 
the feature ″Fin_EN″ (end of NE). 

The value of the feature ″Tête_EN″ can be 
atomic or structured. If it is structured, then it is 
composed by the features ″Mot_déclencheur″, 
″Tête_EN″, ″Fin_EN″ and ″Type_EN″. The 
″Mot_déclencheur″ value is simple or composed. 
Indeed, the trigger word can be formed by a word 
or a sequence of words. It can also be empty. The 
″Fin_EN″ value can be atomic or structured. If it is 
structured, then it is composed by the features 
″Element_EN″, ″Tête_EN″ and ″Fin_EN″. It can 
also be empty. The feature ″Type_EN″ value is 
always simple or composed but not empty. In fact, 
it represents one of the categories identified in the 
NE hierarchy. The ″Element_EN″ value is always 

simple. The structure can be equipped with a set of 
principles allowing the well-formed construction 
and the evaluation of NE-representation.  

3.2 Principles of the Proposed Model 

For the presented model, two principles should be 
satisfied and are useful in the recognition phase. 
These principles are used to indicate whether a NE 
is well-formed or not.  

Saturation Principle: A structure is called 
saturated if it can be considered as a well-formed 
NE. That means, it consists of a NE head 
(″Tête_EN″) whose value is not empty. Figure 1 
describes an example of a formal representation 
that satisfies a saturation principle. 
 

 
 

Figure 1: Representation of the word الرياض el 
Riadh 

 
In Figure 1, the value of the feature ″Type_EN″ is 
atomic; it is not empty. Thus, a word الرياض  Riadh 
is considered as a NE whose type is Ville. 

Non-saturation Principle: A structure is called 
unsaturated if it is not a NE and can be completed 
to become a NE. That means, it is formed only by 
a NE end (″Fin_EN″) or if the value of the feature 
″Tête_EN″ is empty. For example, in the word 
 bi Riadh, the value of the feature بالرياض
″Tête_EN″ is empty because this word doesn’t 
have a type. Thus, this word cannot be considered 
as a NE. It doesn’t satisfy the saturation principle. 
However, it should be noted that this word can 
contain a NE.  

The two mentioned principles allow us to avoid 
ambiguity between a NE-word (or set of words) 
and a non NE-word. 

3.3 Illustrative Example 

In this section, we give an example that explains 
how to construct NE representation. So, Figure 2 
gives a formal representation of the NE  ملعب الملك
 Malaab el malik Abd el Aziz عبد العزيزالدولي بالرياض
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el doali bil Riadh, King Abd el Aziz international 
stadium in Riadh. In this NE, the word بالرياض bil 
Riadh has the function of place complement. Its 
purpose is just to elaborate on the NE. 
Consequently, its elimination doesn’t affect the 
well-formation of this NE. That’s why it will be 
presented by the feature ″Fin_EN″ as follows: 
″Elément_EN″ equals ب bi and ″Tête_EN″ equals 
 Riadh has الرياض Riadh. Let’s note the word الرياض
its proper type without the particle ب bi. For this 
reason, it will be a simple value of the feature 
″Tête_EN″. However, the rest of the NE  ملعب الملك
 Malaab el malik Abd el Aziz el doali عبد العزيز الدولي
has in turn its proper type. It will hence be 
described by the feature ″Tête_EN″ which will be 
structured because this NE contains supplementary 
words. In our NE, the supplementary word is the 
adjective الدولي el doali which has the same role as 
the place complement بالرياض bil Riadh. Therefore, 
it will be put in the ″Fin_EN″. Moreover, the word 
 malaab plays the role of trigger word. What is ملعب
left is the NE الملك عبد العزيز el malik Abd el Aziz 
whose type is person name. In this NE, the word 
 .el malik also plays the role of trigger word الملك
But, the NE عبد العزيز Abd el Aziz has a type of first 
name. So, it will be represented by the feature 
″Tête_EN″ as a simple value since عبد العزيز Abd el 
Aziz doesn’t contain any supplement word. 
Therefore, the mentioned NE is represented in our 
model as follow: 

 

 
 

Figure 2: Example of a NE representation 

In Figure 2, the saturation principle is determined. 
In fact, the value of the ″Tête_EN″ feature is not 
empty. 

Let’s note that the proposed representation is 
applicable independently of the domain. In fact, 
having conducted a study of the location names, 
we noticed that all their NEs have the same 
structure whatever the domain is.  

3.4 Word-to-word Translation Representation 

Word-to-word translation consists to translate each 
feature value composing a NE structure 
representation. This translation is done with 
bilingual dictionaries without any risk of 
information loss. Figure 3 represents an example of 
this phase.  

 
 
Figure 3: Example of a word-to-word translation of 

NE structure 
 
As shown in Figure 3 ((a) and (b)), the word ملعب 
malaab stadium is translated to stade, the word 
 el doali الدولي el malik king to roi, the adjective الملك
international to international and the preposition 
 bi in to de. It is obvious that types keep the same ب
value whatever the language is. 

Let's note that the representation of a word-to-
word translation is not sufficient to generate a well 
formed NE in the target language. In fact, the 
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translation of the NE in Figure 3 (a)  ملعب الملك عبد
 Malaab el malik Abd el Aziz el العزيزالدولي بالرياض
doali bil Riadh gives in Figure 3 (b) the sequence 
of words "stade du roi Abd el Aziz international à 
Riadh" representing an ill-formed NE because it 
doesn't respect the specificities of the target 
language. Therefore, readjustment rules are 
necessary and should be associated in translation 
process. 

4  NooJ Implementation of the Set of 
Transducers 

The NooJ implementation of our system requires 
two phases process: recognition of Arabic NEs and 
translation in which a transliteration process is 
integrated. Each phase requires the construction of 
its proper transducers.  

4.1 Phase of Recognition  

The proposed representation model helps us to 
identify the necessary resources for the recognition 
and translation of NEs. In fact, each structured 
feature ″Tête_EN″ containing not empty features, 
other than the feature ″Type_EN″, is transformed 
into a local grammar (place name, person name, 
...); whereas, each elementary NE (value of 
″Tête_EN″ feature is atomic) will be transformed 
into a dictionary (city name, ...). 

 From the NE representation in the considered 
model, we have created the following transducer: 

 

 
 

Figure 4: Main transducer of NE' recognition  
 

The transducer of Figure 4 contains three sub-
graphs. Each sub-graph represents a category 
identified in the NE hierarchy, especially in the 
category of Place name. This grammar allows 
recognition of NEs. Each path of each sub-graph 
represents a rule extracted in the study corpus.  

In the recognition phase, we have solved the 
problems related to the Arabic language (e.g., 
agglutination) establishing morphological 
grammars built into the platform NooJ. This phase 
contains 19 graphs respecting the local grammars 
identified in the study corpus. 

4.2 Phase of Translation 

The implementation of the translation phase 
involves two steps as illustrated in Section 4.4: a 
step of word-to-word translation and another more 
detailed taking into account the readjustment rules 
and following the specificities of the target 
language (in our case the French language). In 
what follows, we describe resources designed to 
these two steps. 

Word-to-word Translation: To implement the 
word-to-word translation in the platform NooJ, we 
built a syntactic grammar allowing the translation 
of each word composing a NE with the exception 
of words not found in dictionaries, or can not be 
translated (number, special character, etc.). This 
grammar takes as input the NE list extracted by the 
transducer of Figure 4 allowing the recognition. It 
is described by the transducer of Figure 5. 

 

 
 

Figure 5: Transducer of word-to-word translation 
 

The transducer of Figure 5 takes into account, in a 
NE, the words that keep the same values in the 
target language. These words can correspond to a 
number <NB>, a special character <P> or a word 
not existing in designed dictionaries <!DIC>. The 
sub-graph MOTDIC treats the rest of the words 
(existing in dictionaries) which require a specific 
treatment. For example, if the word to translate is a 
first name, then it keeps the same value in the 
source language; this word will be treated in the 
transliteration process (Fehri et al., 2009).  

Translation with Readjustments: Several 
readjustment rules must be applied to improve the 
word-to-word translation step. These rules have 
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essentially a relationship with the order of the 
words composing a NE and with the agglutination. 
For instance, on the one hand, if a NE in the source 
language contains an adjective then we have to 
know whether this adjective belongs to the trigger 
word or to the noun that comes just before. For 
example, in the NE ملعب المدينة الدولي  malaab el 
madina el doali stadium of ground city, the 
adjective الدولي el doali ground is singular and 
masculine, the trigger word ملعب malaab stadium  
is also singular and masculine, but the noun المدينة 
el madina city is singular and feminine. We can 
deduce that the adjective الدولي el doali belongs to 
the trigger word ملعب malaab and not to the noun 
 el madina that comes just before. On the المدينة
other hand, if a NE in the source language contains 
a noun then some rules are applied to solve the 
problem of contracted forms in Arabic. For 
example, in the NE ملعب الملك فهد malaab el malik 
Fahd, the noun الملك el malik is singular, masculine 
and definite by the letter ال el, so when we translate 
this noun we should add the preposition ″du″ 
before it. Thus, we obtain stade du roi Fahd 
(international stadium of Fahd) and not stade roi 
Fahd (international stadium Fahd). 

 Readjustment rules are made with syntactic 
local grammars in NooJ. These grammars 
intervene after the word-to-word translation phase. 
In what follows, we give an idea about 
transliteration process integrated in translation 
phase.  

Transliteration process: The transliteration is 
done after having executed all the transducers 
allowing the NE' recognition and translation 
(word-to-word translation or with readjustments). 
In fact, it consists in transliterating all the non-
translated words which are written in the source 
language (Arabic characters) using the appropriate 
resources. In this process, we consider rules 
respecting the chosen transliteration system El 
Qalam and also the transformation rules. These 
rules are implemented with NooJ morphological 
transducers. The transliteration is preceded by a 
voweling phase to avoid some problems. So, the 
word is voweled before its transliteration. 
However, the connection between a vowel 
transducer and transliteration transducer can not be 
done in NooJ; that is why, we resort to use 
noojapply. Noojapply is a command-line program 
which can be called either directly from a "shell" 
script, or from more sophisticated programs 

written in PERL, C++, JAVA, etc. In our work, we 
use C#. The transliteration step is detailed in (Fehri 
et al., 2009). 

5  Experimentation and Evaluation 

The experimentation of our resources is done with 
NooJ. As mentioned above, this platform uses 
(syntactic and morphological) local grammars 
already built. Table 1 gives an idea about 
dictionaries which we added to the resources of 
NooJ. In addition to the dictionaries mentioned in 
Table 1, we use other dictionaries existing in NooJ 
like dictionary of adjectives, nouns and first names 
(Mesfar, 2008). 
 

Dictionaries Number 
of inputs 

Annotation 
in the 

dictionary 
Player Names 18000 N+Joueur 
Team Names 5785 N+Equipe 
Sport Names 337 N+Sport 
Capital and country 
Names 610 N+Topony

me 
Personality Names 300 N+Perso 
Trigger words  20 N+Dec 
Functions Names 100 N+Fonction 

 
Table 1: Added dictionaries  

 
To these dictionaries, we add some entries 

related to the sport domain. We also add French 
translations of all entries in all mentioned 
dictionaries. Let's note that the first name 
dictionary remains monolingual because its entries 
can be transliterated. To experiment and evaluate 
our work, we have applied our resources to two 
types of corpus: sport and education corpora. We 
started with sport domain since it is the subject of 
our study corpus.  

5.1 Experimentation of Recognition Phase 

To evaluate the recognition phase, we have applied 
our resources to a corpus formed by 4000 texts of 
sport domain (different of the study corpus). This 
corpus is collected from various newspapers (e.g., 
Assabah, al Anwar, al chourou9, al ahram) and 
Wikipedia. It contains 180000 NEs belonging to 
different categories of sport domain (e.g., player 
name, name of sport, sports term).  In these 
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NEs, there are 40000 NEs belonging to 
the category place name.  These NEs are manually 
identified using NooJ queries. The obtained result 
is given in the NooJ concordance table of Figure 6.  
 

 
 

Figure 6: Concordance table of NE' recognition in 
the sport domain 

 
Let's note that a NE is detected if it satisfies one 

of the paths described by the transducer of Figure 
4. Indeed, a transducer is characterized by an initial 
node and one or many end nodes. If multiple paths 
are verified, we maintain the longest one. The 
obtained results are interpreted by calculating the 
following metrics: Precision, Recall and F-
measure. Results are illustrated in Table 2. 

The values of measures in Table 2 show that 
there are some problems that are not yet 
resolved. Some problems are related to the lack of 
standards for writing proper names (e.g., el 
hamza). This causes a silence. Other problems are 
related to Arabic specific concepts as 
metaphor. For example, we can find a NE in a text 
composed of a trigger word specific to the sport 
domain followed by a famous person name 
followed by a city as ملعب الأسد بسوريا Malaab el 
Assad bi Souriya (stadium al Assad in Syria). The 
context where this NE appears is not in the 
objective to cite a stadium name but to show the 
skills of President al-Assad in the cited 

subject. Such problems are rare but cause the 
noise. 

 
 Precision Recall F-measure 

Newspaper 
texts 

(Sport 
domain) 

4000 texts 
(94,5 Mo) 

98% 90% 94% 

 
Table 2: Obtained results 

 
As indicated above, we have also applied our 

resources to the education domain. We have 
collected a corpus composed of 300 texts 
containing university institution names. The 
performance measure of the obtained results gives 
98% of precision, 70% of recall and 82% of F-
measure. We deduce that the silence is increased. 
This is caused by the incompleteness of specific 
dictionaries to this domain and lack of some paths 
in the developed transducers. So our resources are 
applicable regardless of the domain, provided that 
we use the same features adopted in dictionaries 
we have built. It is evident that for reasons specific 
to the domain, we should sometimes add other 
paths and other sub-graphs, but we do not have to 
redo everything. 

5.2 Experimentation of Translation Phase 

The translation phase is applied to the extracted 
Arabic NEs during the recognition phase. Note that 
erroneous results are inherited. Therefore, 
heuristics filtering are necessary before the 
translation process. The obtained results of the 
translation phase are illustrated in Figure 7. As 
shown in this figure, the proper problems of this 
phase involve multiple translations that can be 
assigned to a word. For example, the selected lines 
in Figure 7 represent the NE' translation  ملعب مدينة
 malaab madinat el bacel el الباسل الرياضية بدرعا
riadhiya bi deraa stadium of city Bacel sportive in 
Deraa. In this NE, the word مدينة madina can be 
translated to the word "cité" city or "ville" country. 
NooJ displays all possibilities. In this case, the 
adjective can resolve this ambiguity. In fact, the 
adjective الرياضية el riadhiya sportive is generally 
related to the city and not to the country. Let's note 
that the word "باسل" Bacel remains in the source 
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language because it is a first name, so it will be 
transliterated later. 

 

Figure 7: Extract of results of word-to-word 
translation 

 
To get a finer translation, we applied the 

readjustment rules that take into account the order 
of the constituents of NEs and the agreement of the 
adjective with the noun for which it is associated.  

Our method provides 97% of well translated 
NEs while ensuring the specificities of the target 
language. The obtained result is promising and 
shows that there are some problems. These 
problems are related to the multiple translations 
assigned to a toponym (e.g., تونس tounis can be 
translated in Tunis or Tunisia). 

After this evaluation, we remark that the 
proposed representation model facilitates the 
construction of the linguistic resources with the 
platform NooJ and the transformation from the 
semi-direct translation to transfer one. Indeed, we 
have separated the NE-recognition of their 
translation. In addition, it helps the promotion to 
the reuse of the needed local grammars. In fact, it 
is sufficient to change the inputs (i.e., dictionaries, 
morphological grammars) of the syntactic 
grammars for the desired results. Thus, for 
example, if we want to translate Arabic NE to 
another language other than French, the 
recognition module can be reused with some 
modifications if necessary (related to the 
specificities of the domain). Moreover, if we want 
to translate NEs from any language into French, 
also translation module can be reused. Indeed, this 

module addresses the specificities of the French 
language.  

6  Conclusion and Perspectives 

In this paper, we have proposed an approach for 
recognition and translation of Arabic NEs 
(eventually NEs from other languages) based on a 
representation model, a set of bilingual dictionaries 
and a set of transducers resolving morphological 
and syntactical phenomena related to the Arabic 
NEs. Besides, we have described the representation 
model structure, its features and principles that 
should be satisfied. We have also given an 
experimentation and evaluation on the sports and 
education domains proving that our resources can 
be reused independently of the domain. The 
experimentation and the evaluation are done in the 
linguistic platform NooJ. The obtained results are 
satisfactory. 

 As perspectives, we try to improve our 
representation model by introducing other features 
related to the semantics. Furthermore, we are 
currently identifying heuristics filtering enabling 
finer NE translation. 
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van der Merwe, Brink, 93
van Genabith, Josef, 125
Vitas, Duško, 48
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