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Abstract

We describe the Stanford entry to the BioNLP
2011 shared task on biomolecular event ex-
traction (Kim et al., 2011a). Our framework is
based on the observation that event structures
bear a close relation to dependency graphs.
We show that if biomolecular events are cast
as these pseudosyntactic structures, standard
parsing tools (maximum-spanning tree parsers
and parse rerankers) can be applied to per-
form event extraction with minimum domain-
specific tuning. The vast majority of our
domain-specific knowledge comes from the
conversion to and from dependency graphs.
Our system performed competitively, obtain-
ing 3rd place in the Infectious Diseases track
(50.6% f-score), 5th place in Epigenetics and
Post-translational Modifications (31.2%), and
7th place in Genia (50.0%). Additionally, this
system was part of the combined system in
Riedel et al. (2011) to produce the highest
scoring system in three out of the four event
extraction tasks.

1 Introduction

The distinguishing aspect of our approach is that by
casting event extraction as a dependency parsing, we
take advantage of standard parsing tools and tech-
niques rather than creating special purpose frame-
works. In this paper, we show that with minimal
domain-specific tuning, we are able to achieve com-
petitive performance across the three event extrac-
tion domains in the BioNLP 2011 shared task.

At the heart of our system1 is an off-the-shelf
1nlp.stanford.edu/software/eventparser.shtml

dependency parser, MSTParser2 (McDonald et al.,
2005; McDonald and Pereira, 2006), extended with
event extraction-specific features and bookended by
conversions to and from dependency trees. While
features in MSTParser must be edge-factored and
thus fairly local (e.g., only able to examine a portion
of each event at once), decoding is performed glob-
ally allowing the parser to consider trade-offs. Fur-
thermore, as MSTParser can use n-best decoders,
we are able to leverage a reranker to capture global
features to improve accuracy.

In §2, we provide a brief overview of our frame-
work. We describe specific improvements for the
BioNLP 2011 shared task in §3. In §4, we present
detailed results of our system. Finally, in §5 we give
some directions for future work.

2 Event Parsing
Our system includes three components: (1) anchor
detection to identify and label event anchors, (2)
event parsing to form candidate event structures by
linking entities and event anchors, and (3) event
reranking to select the best candidate event structure.
As the full details on our approach are described in
McClosky et al. (2011), we will only provide an out-
line of our methods here along with additional im-
plementation notes.

Before running our system, we perform basic
preprocessing on the corpora. Sentences need
to be segmented, tokenized, and parsed syntacti-
cally. We use custom versions of these (except
for Infectious Diseases where we use those from
Stenetorp et al. (2011)). To ease event parsing, our

2http://sourceforge.net/projects/mstparser/
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tokenizations are designed to split off suffixes which
are often event anchors. For example, we split the
token RelA-induced into the two tokens RelA and in-
duced3 since RelA is a protein and induced an event
anchor. If this was a single token, our event parser
would be unable to link them since it cannot pre-
dict self-loops in the dependency graph. For syntac-
tic parsing, we use the self-trained biomedical pars-
ing model from McClosky (2010) with the Charniak
and Johnson (2005) reranking parser. We use its ac-
tual constituency tree, the dependency graph created
by applying head percolation rules, and the Stanford
Dependencies (de Marneffe and Manning, 2008) ex-
tracted from the tree (collapsed and uncollapsed).

Anchor detection uses techniques inspired from
named entity recognition to label each token with
an event type or none. The features for this stage
are primarily drawn from Björne et al. (2009). We
reduce multiword event anchors to their syntactic
head.4 We classify each token independently using a
logistic regression classifier with L2 regularization.
By adjusting a threshold parameter, we can adjust
the balance between precision and recall. We choose
to heavily favor recall (i.e., overgenerate event an-
chors) as the event parser can drop extraneous an-
chors by not attaching any arguments to them.

The event anchors from anchor detection and
the included entities (.t1 files) form a “reduced”
sentence, which becomes the input to event pars-
ing. Thus, the only words in the reduced sentence
are tokens believed to directly take part in events.
Note, though, that we use the original “full” sen-
tence (including the various representations of its
syntactic parse) for feature generation. For full de-
tails on this process, see McClosky et al. (2011).
As stated before, this stage consists of MSTParser
with additional event parsing features. There are
four decoding options for MSTParser, depending
on (a) whether features are first- or second-order
and (b) whether graphs produced are projective or
non-projective. The projective decoders have com-
plete n-best implementations whereas their non-
projective counterparts are approximate. Neverthe-

3The dash is removed since a lone dash would further con-
fuse the syntactic parser.

4This does not affect performance if the approximate scorer
is used, but it does impact scores if exact matching of anchor
boundaries is imposed.

less, these four decoders constitute slightly different
views of the same data and can be combined inside
the reranking framework. After decoding, we con-
vert parses back to event structures. Details on this
critical step are given in McClosky et al. (2011).

Event reranking, the final stage of our system, re-
ceives an n-best list of event structures from each
decoder in the event parsing step. The reranker
can use any global features of an event structure to
rescore it and outputs the highest scoring structure.
This is based on parse reranking (Ratnaparkhi, 1999;
Collins, 2000) but uses features on event structures
instead of syntactic constituency structures. We
used Mark Johnson’s cvlm estimator5 (Charniak
and Johnson, 2005) when learning weights for the
reranking model. Since the reranker can incorporate
the outputs from multiple decoders, we use it as an
ensemble technique as in Johnson and Ural (2010).

3 Extensions for BioNLP 2011

This section outlines the changes between our
BioNLP 2011 shared task submission and the sys-
tem described in McClosky et al. (2011). The main
differences are that all dataset-specific portions of
the model have been factored out to handle the ex-
panded Genia (GE) dataset (Kim et al., 2011b) and
the new Epigenetics and Post-translational Modifi-
cations (EPI) and Infectious Diseases (ID) datasets
(Ohta et al., 2011; Pyysalo et al., 2011, respec-
tively). Other changes are relatively minor but doc-
umented here as implementation notes.

Several improvements were made to anchor de-
tection, improving its accuracy on all three do-
mains. The first is the use of distributional sim-
ilarity features. Using a large corpus of abstracts
from PubMed (30,963,886 word tokens of 335,811
word types), we cluster words by their syntactic con-
texts and morphological contents (Clark, 2003). We
used the Ney-Essen clustering model with morphol-
ogy to produce 45 clusters. Using these clusters, we
extended the feature set for anchor detection from
McClosky et al. (2011) as follows: for each lexical-
ized feature we create an equivalent feature where
the corresponding word is replaced by its cluster ID.
This yielded consistent improvements of at least 1
percentage point in both anchor detection and event

5http://github.com/BLLIP/bllip-parser
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extraction in the development partition of the GE

dataset.
Additionally, we improved the head percolation

rules for selecting the head of each multiword event
anchor. The new rules prohibit determiners and
prepositions from being heads, instead preferring
verbs, then nouns, then adjectives. There is also
a small stop list to prohibit the selection of certain
verbs (“has”, “have”, “is”, “be”, and “was”).

In event parsing, we used the morpha lemma-
tizer (Minnen et al., 2001) to stem words instead
of simply lowercasing them. This generally led to
a small but significant improvement in event extrac-
tion across the three domains. Additionally, we do
not use the feature selection mechanism described
in McClosky et al. (2011) due to time restrictions.
It requires running all parsers twice which is espe-
cially cumbersome when operating in a round-robin
frame (as is required to train the reranker).

Also, note that our systems were only trained to
do Task 1 (or “core”) roles for each dataset. This was
due to time restrictions and not system limitations.

3.1 Adapting to the Epigenetics track
For the EPI dataset, we adjusted our postprocessing
rules to handle the CATALYSIS event type. Similar
to REGULATION events in GE, CATALYSIS events do
not accept multiple CAUSE arguments. We handle
this by replicating such CATALYSIS events and as-
signing each new event a different CAUSE argument.
To adapt the ontology features in the parser (Mc-
Closky et al., 2011, §3.3), we created a supertype for
all non-CATALYSIS events since they behave simi-
larly in many respects.

There are several possible areas for improvement
in handling this dataset. First, our internal imple-
mentation of the evaluation criteria differed from
the online scorer, sometimes by up to 6% f-score.
As a result, the reranker optimized a noisy version
of the evaluation criteria and potentially could have
performed better. It is unclear why our evaluator
scored EPI structures differently (it replicated the
scores for GE) but it is worthy of investigation. Sec-
ond, due to time constraints, we did not transfer the
parser or reranker consistency features (e.g., non-
REGULATION events should not take events as argu-
ments) or the type ontology in the reranker to the EPI

dataset. As a result, our results describe our system

with incomplete domain-specific knowledge.

3.2 Adapting to the Infectious Diseases track

Looking only at event types and their arguments, ID

is similar to GE. As a result, much of our domain-
specific processing code for this dataset is based on
code for GE. The key difference is that the GE post-
processing code removes event anchors with zero ar-
guments. Since ID allows PROCESS events to have
zero or one anchors, we added this as an exception.
Additionally, the ID dataset includes many nested
entities, e.g., two-component system entities contain
two other entities within their span. In almost all of
these cases, only the outermost entity takes part in
an event. To simplify processing, we removed all
nested entities. Any events attaching to a nested en-
tity were reattached to its outermost entity.

Given the similarities with GE, we explored sim-
ple domain adaptation by including the gold data
from GE along with our ID training data. To en-
sure that the GE data did not overwhelm the ID data,
we tried adding multiple copies of the ID data (see
Table 1 and the next section).

As in EPI, we adjusted the type ontology in the
parser for this dataset. This included “core enti-
ties” (as defined by the task) and a “PROTEIN-or-
REGULON-OPERON” type (the type of arguments for
GENE EXPRESSION and TRANSCRIPTION events).
Also as in EPI, the reranker did not use the updated
type ontology.

4 Results
For ID, we present experiments on merging GE with
ID data (Table 1). Since GE is much larger than
ID, we experimented with replicating the ID training
partition. Our best performance came from train-
ing on three copies of the ID data and the training
and development sections of GE. However, as the ta-
ble shows, performance is stable for more than two
copies of the ID data. Note that for this shared task
we simply merged the two domains. We did not
implement any domain adaptation techniques (e.g.,
labeling features based on the domain they come
from (Daumé III, 2007)).

Table 2 shows the performance of the various
parser decoders and their corresponding rerankers.
The last line in each domain block lists the score of
the reranker that uses candidates produced by all de-
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coders. This reranking model always outperforms
the best individual parser. Furthermore, the rerank-
ing models on top of individual decoders help in all
but one situation (ID – 2N decoder). To our knowl-
edge, our approach is the first to show that reranking
with features generated from global event structure
helps event extraction. Note that due to approximate
2N decoding in MSTParser, this decoder does not
produce true n-best candidates and generally out-
puts only a handful of unique parses. Because of
this, the corresponding rerankers suffer from insuf-
ficient training data and hurt performance in ID.

Finally, in Table 3, we give our results and rank-
ing on the official test sets. Our results are 6 f
points lower than the best submission in GE and EPI

and 5 points lower in ID. Considering that the we
used generic parsing tools with minimal customiza-
tion (e.g., our parsing models cannot extract directed
acyclic graph structures, which are common in this
data), we believe these results are respectable.

5 Conclusion
Our participation in the BioNLP shared task proves
that standard parsing tools (i.e., maximum-spanning
tree parsers, parse rerankers) can be successfully
used for event extraction. We achieved this by con-
verting the original event structures to a pseudo-
syntactic representation, where event arguments ap-
pear as modifiers to event anchors. Our analysis in-
dicates that reranking always helps, which proves
that there is merit in modeling non-local information
in biomolecular events. To our knowledge, our ap-
proach is the first to use parsing models for biomed-
ical event extraction.

During the shared task, we adapted our system
previously developed for the 2009 version of the
Genia dataset. This process required minimal ef-
fort: we did not add any new features to the pars-
ing model; we added only two domain-specific post-
processing steps (i.e., we allowed events without ar-
guments in ID and we replicated CATALYSIS events
with multiple CAUSE arguments in EPI). Our sys-
tem’s robust performance in all domains proves that
our approach is portable.

A desired side effect of our effort is that we
can easily incorporate any improvements to parsing
models (e.g., parsing of directed acyclic graphs, dual
decomposition, etc.) in our event extractor.

Model Prec Rec f-score
ID 59.3 38.0 46.3
(ID×1) + GE 52.0 40.2 45.3
(ID×2) + GE 52.4 41.7 46.4
(ID×3) + GE 54.8 45.0 49.4
(ID×4) + GE 55.2 43.8 48.9
(ID×5) + GE 55.1 44.7 49.4

Table 1: Impact of merging several copies of ID

training with GE training and development. Scores
on ID development data (2N parser only).

Decoder(s) Parser Reranker
1P 49.0 49.4
2P 49.5 50.5
1N 49.9 50.2
2N 46.5 47.9
All — 50.7 ∗

(a) Genia results (task 1)

Decoder(s) Parser Reranker
1P 62.3 63.3
2P 62.2 63.3
1N 62.9 64.6 ∗
2N 60.8 63.8
All — 64.1

(b) Epigenetics results (core task)

Decoder(s) Parser Reranker
1P 46.0 48.5
2P 47.8 49.8
1N 48.5 49.4
2N 49.4 48.8
All — 50.2 ∗

(c) Infectious Diseases results (core task)

Table 2: Results on development sections in
BioNLP f-scores. “∗” indicates the submission
model for each domain.

Domain (task) Prec Rec f-score Ranking
GE (task 1) 61.1 42.4 50.0 7th
EPI (core) 70.2 56.9 62.8 5th
ID (core) 55.9 46.3 50.6 3rd

Table 3: BioNLP f-scores on the final test set.
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