
Discontinuity and Non-Projectivity: Using Mildly Context -Sensitive
Formalisms for Data-Driven Parsing

Wolfgang Maier and Laura Kallmeyer
SFB 833, University of Tübingen

{wmaier,lk }@sfs.uni-tuebingen.de

Abstract

We present a parser for probabilistic Linear
Context-Free Rewriting Systems and use it for
constituency and dependency treebank pars-
ing. The choice of LCFRS, a formalism with
an extended domain of locality, enables us
to model discontinuous constituents and non-
projective dependencies in a straight-forward
way. The parsing results show that, firstly, our
parser is efficient enough to be used for data-
driven parsing and, secondly, its result quality
for constituency parsing is comparable to the
output quality of other state-of-the-art results,
all while yielding structures that display dis-
continuous dependencies.

1 Introduction

It is a well-known fact that Context-Free Grammar
(CFG) does not provide enough expressivity to de-
scribe natural languages. For data-driven probabilis-
tic CFG parsing, some of the information present
in constituency treebanks, namely the annotation
of non-local dependencies, cannot be captured by
a CFG. It is therefore removed before learning a
PCFG from the treebank and must be re-introduced
in a post-processing step (Johnson, 2002; Levy and
Manning, 2004). Non-projective dependencies also
lie beyond the expressivity of CFG. Current depen-
dency parsers are able to parse them (McDonald et
al., 2005; Nivre et al., 2007). However, the corre-
sponding parsing algorithms are not grammar-based.

We propose to use a grammar formalism with
an extended domain of locality that is able to
capture the non-local dependencies both in con-
stituency and dependency treebanks. We chose
Linear Context-Free Rewriting Systems (LCFRS),

a mildly context-sensitive extension of CFG that
allows non-terminals to span tuples of discontin-
uous strings. The reason why we think LCFRS
particularly well-suited is that treebanks with a di-
rect annotation of discontinuous constituents (with
crossing branches as in the German Negra tree-
bank) allow a straight-forward interpretation of the
trees as LCFRS derivation structures, without the
necessity of inducing linguistic knowledge.1 This
considerably facilitates the extraction of probabilis-
tic LCFRSs (Maier and Søgaard, 2008). The
same holds for non-projective dependency struc-
tures, which can also straight-forwardly be inter-
preted as LCFRS derivation structures (Kuhlmann
and Satta, 2009). Previous approaches that have
used non-context-free formalisms for data-driven
constituency parsing (Plaehn, 2004; Chiang, 2003)
are either too restricted (Kallmeyer et al., 2009) or
do not allow for an immediate interpretation of the
treebank trees as derivation structures. Grammar-
based non-projective dependency parsing has, to our
knowledge, not been attempted at all.

First results for PLCFRS constituency parsing
with a detailed evaluation have been presented in
Maier (2010). The contribution of this article is
to present the first results for data-driven depen-
dency parsing on the dependency version of the Ger-
man NeGra treebank and on the Prague Dependency
Treebank. Furthermore, we give greater detail on the
parser and the experimental setup. We also addition-
ally investigate the effect on manually introduced
category splits for PLCFRS constituency parsing.

1Treebank trees in which non-local dependencies are anno-
tated differently, such as with trace nodes in the Penn Treebank,
could also be interpreted as LCFRS derivations given an appro-
priate transformation algorithm.

Discontinuity and Non-Projectivity: Using Mildly Context-Sensitive Formalisms for Data-Driven Parsing

119

The remainder of this paper is structured as fol-
lows. In the following section, we present the for-
malism and our parser. Sect. 3 is dedicated the ex-
perimental setup, Sect. 4 contains the experimental
results. In Sect. 5, we present a conclusion.

2 A Parser for Probabilistic Linear
Context-Free Rewriting Systems

We notate LCFRS with the syntax ofsimple Range
Concatenation Grammars(SRCG) (Boullier, 1998),
a formalism that is equivalent to LCFRS.

2.1 PLCFRS

A LCFRS (Vijay-Shanker et al., 1987) is a tuple
G = (N,T, V, P, S) where a)N is a finite set of
non-terminals with a functiondim: N → N that de-
termines thefan-out of eachA ∈ N ; b) T andV
are disjoint finite sets of terminals and variables; c)
S ∈ N is the start symbol withdim(S) = 1; d) P
is a finite set of rewriting rules

A(α1, . . . , αdim(A))→ A1(X
(1)
1 , . . . , X

(1)
dim(A1)

)

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

for m ≥ 0 whereA,A1, . . . , Am ∈ N , X(i)
j ∈ V

for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) andαi ∈ (T ∪
V)∗ for 1 ≤ i ≤ dim(A). For all r ∈ P , every
variableX occurring inr occurs exactly once in the
left-hand side (LHS) and exactly once in the right-
hand side (RHS).

For a given rule, the length of the RHS is called
therankof the rule. The maximal fan-out of all non-
terminals in an LCFRSG is called thefan-outof G,
and the maximal rank of all rules in an LCFRSG is
called therank of G.

A(ab, cd)→ ε (〈ab, cd〉 in yield ofA)
A(aXb, cY d)→ A(X,Y) (if 〈X,Y 〉 in yield ofA,

then also〈aXb, cY d〉 in yield ofA)
S(XY)→ A(X,Y) (if 〈X,Y 〉 in yield ofA,

then〈XY 〉 in yield ofS)

L = {anbncndn |n > 0}
Figure 1: Sample LCFRS

A rewriting rule describes how to compute the
yield of the LHS non-terminal from the yields of the
RHS non-terminals. The yield ofS is the language
of the grammar. See Fig. 1 for a sample LCFRS.

A probabilistic LCFRS(PLCFRS) is a tuple
〈N,T, V, P, S, p〉 such that 〈N,T, V, P, S〉 is a

LCFRS andp : P → [0..1] a function such that
for all A ∈ N : Σ

A(~x)→~Φ∈Pp(A(~x)→ ~Φ) = 1.

2.2 PLCFRS Parsing

Our parser is a probabilistic CYK parser (Seki et
al., 1991), using the technique of weighted deduc-
tive parsing (Nederhof, 2003). We assume without
loss of generality that our LCFRSs are binary (i.e.,
have rank2) (Gómez-Rodrı́guez et al., 2009) and do
not contain rules where some of the LHS compo-
nents areε (Boullier, 1998; Seki et al., 1991). Our
binarization algorithm is given in Section 3.4.

Furthermore, we make the assumption that POS
tagging is done before parsing. The POS tags are
special non-terminals of fan-out1.

Scan:
0 : [A, 〈〈i, i + 1〉〉] A POS tag ofwi+1

Unary:
in : [B, ~ρ]

in+ |log(p)| : [A, ~ρ] p : A(~α)→ B(~α) ∈ P

Binary:
inB : [B, ~ρB], inC : [C, ~ρC]
inB + inC + log(p) : [A, ~ρA]

wherep : A(~ρA)→ B(~ρB)C(~ρC) is an instantiated rule.
Goal: [S, 〈〈0, n〉〉]

Figure 2: Weighted CYK deduction system

add SCAN results toA
while A 6= ∅ do

remove best itemx : I fromA
addx : I to C
if I goal itemthen

stop and output true
else

for all y : I ′ deduced fromx : I and items inC
do

if there is noz with z : I ′ ∈ C ∪ A then
addy : I ′ toA

else
if z : I ′ ∈ A for somez then

update weight ofI ′ in A to max (y, z)
end if

end if
end for

end if
end while

Figure 3: Weighted deductive parsing

For a given inputw, our items have the form[A, ~ρ]

Wolfgang Maier, Laura Kallmeyer

120

whereA ∈ N , ~ρ ∈ (Pos(w) × Pos(w))dim(A)

the vector of ranges characterizing all components
of the span ofA. We specify the set of weighted
parse items via the deduction rules in Fig. 2. An in-
stantiated rule is a rule where variables have been
replaced with corresponding vectors of ranges. Our
parser performs weighted deductive parsing, based
on this deduction system. We use a chartC and an
agendaA, both initially empty, and we proceed as
in Fig. 3. For more details of the parser, see also
Kallmeyer and Maier (2010).

3 Experimental Setup

3.1 Data

Our data sources are the NeGra treebank (Skut et
al., 1997) and the Prague Dependency Treebank 2.0
(PDT) (Hajič et al., 2000).

We create two different data sets for constituent
parsing. For the first one, we start out with the un-
modified NeGra treebank. We preprocess the tree-
bank following common practice (Kübler and Penn,
2008), attaching all nodes which are attached to the
virtual root node to nodes within the tree such that
ideally, no new crossing edges are created. In a
second pass, we attach punctuation which comes
in pairs (parentheses, quotation marks) to the same
nodes. For the second data set we create a copy of
the preprocessed first data set, in which we apply the
usual tree transformations for NeGra PCFG parsing,
i.e., moving nodes to higher positions until all cross-
ing branches are resolved. The first 90% of both data
sets are used as the training set and the remaining
10% as test set.

For dependency parsing, we also create two data
sets. For the first one, we convert the NeGra con-
stituent annotation to labeled dependencies using
Lin’s (1995) algorithm and Hall and Nivre’s (2008)
labeling scheme. For the second dependency data
set, we use the training sections 1 to 5 of the PDT
for training and the first 1,300 sentences for testing.
Czech is a language with a rich morphology, which
is reflected by a high number of POS tags with addi-
tional morphological information in the PDT. As in
previous work, we use a simplified tag set in order to
avoid data sparseness problems (Collins et al., 1999;
McDonald et al., 2005).

We only include sentences with a maximal

length of 25 words.1 This leads to a size of
14,858, resp. 1,651 sentences for the NeGra train-
ing, resp. test sets and to 13,935, resp. 1,300 sen-
tences for the PDT training, resp. test set.

3.2 Grammar Extraction

From all of our data sets, we extract PLCFRSs.
For the constituent sets, we use the algorithm from
Maier and Søgaard (2008), for the dependencies the
algorithm from Kuhlmann and Satta (2009). For rea-
sons of space, we restrict ourselves here to the exam-
ples in Fig. 4–6.

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

Figure 4: A sample tree from NeGra

PROAV(Darüber) → ε
VVPP(nachgedacht) → ε

VMFIN(muß) → ε
VAINF(werden) → ε

S1(X1X2X3) → VP2(X1, X3) VMFIN(X2)
VP2(X1, X2X3) → VP2(X1, X2) VAINF(X3)

VP2(X1, X2) → PROAV(X1) VVPP(X2)

Figure 5: LCFRS rules for the tree in Fig. 4

3.3 Grammar Annotation

Grammar annotation (i.e., manual enhancement of
annotation information through category splitting)
has previously been successfully employed in pars-
ing German (Versley, 2005). In order to see if
such modifications can have a beneficial effect in
PLCFRS parsing, we will apply the following cat-
egory splits to the Negra constituency data sets with
unmodified labels (inspired by Petrov and Klein
(2007)): We split the category S (“sentence”) into
SRC (“relative clause”) and S (all other categories
S). Relative clauses mostly occur in a very specific

1This length restriction can be greatly alleviated by using an
estimate of outside probabilities of parse items which speeds up
parsing (Kallmeyer and Maier, 2010)

Discontinuity and Non-Projectivity: Using Mildly Context-Sensitive Formalisms for Data-Driven Parsing

121

Dependency tree:

root aux

pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Corresponding LCFRS rules:

PROAV(Darüber) → ε
VVPP(nachgedacht) → ε

VMFIN(muß) → ε
VAINF(werden) → ε

pp(X) → PROAV(X)
root(X1X2X3) → aux(X1,X3) VMFIN(X2)

aux(X1, X2) → pp(X1) VVPP(X2)
aux(X1, X2X3) → aux(X1, X2) VAINF(X3)

top(X1) → root(X1)

Figure 6: LCFRS rules extracted from a dependency tree3

context, namely as the right part of an NP or a PP.
This splitting should therefore speed up parsing and
increase precision.

The other category split we introduce concerns
the VP category and the POS tags of verbs selecting
for a VP. We distinguish between VP-PP (“VP with
participle verb form”), VP-INF (“VP with infinitive
without zu”) and VP-ZU (“VP withzu infitive”).

Apart from theSandVP splits, we also use both
splits together (S◦ VP).

3.4 Binarization

Before parsing, we binarize the LCFRS rules of the
extracted grammars. The transformation is similar
to the transformation of a CFG into Chomsky Nor-
mal Form (CNF). The result is an LCFRS of rank2.
As in the CFG case, in the transformation, we intro-
duce a non-terminal for each RHS longer than2 and
split the rule into two rules, using this new interme-
diate non-terminal. This is repeated until all RHS
are of length2.

For the presentation of the transformation algo-
rithm, we need the notion of areductionof a vec-
tor ~α ∈ [(T ∪ V)∗]i by a vector~x ∈ V j where all
variables in~x occur in~α. A reduction is, roughly,

3An extra top rule is added in order to give the PLCFRS
parser a unique start symbol in case more than one word has the
root node as head, i.e., in case more than one rule withroot as
LHS label is extracted.

for all rulesr = A(~α) → A0(~α0) . . . Am(~αm) in P
with m > 1 do

remover fromP
R := ∅
pick new non-terminalsC1, . . . , Cm−1

add the ruleA(~α)→ A0(~α0)C1(~γ1) to R where~γ1
is obtained by reducing~α with ~α0

for all i, 1 ≤ i ≤ m− 2 do
add the ruleCi(~γi) → Ai(~αi)Ci+1(~γi+1) to R
where ~γi+1 is obtained by reducing~γi with ~αi

end for
add the rule Cm−1(~γm−2) →
Am−1(~αm−1)Am(~αm) toR
for every ruler′ ∈ R do

replace RHS arguments of length> 1 with new
variables (in both sides) and add the result toP

end for
end for

Figure 7: Algorithm for binarizing a LCFRS

obtained by keeping all variables in~α that are not in
~x. This is defined as follows: Let〈N,T, V, P, S〉
be an LCFRS,~α ∈ [(T ∪ V)∗]i and ~x ∈ V j

for somei, j ∈ N . Let w = ~α1$. . . $~αi be the
string obtained form concatenating the components
of ~α, separated by a new symbol$ /∈ (V ∪ T).
Let w′ be the image ofw under a homomorphism
h defined as follows:h(a) = $ for all a ∈ T ,
h(X) = $ for all X ∈ {~x1, . . . ~xj} andh(y) = y
in all other cases. Lety1, . . . ym ∈ V + such that
w′ ∈ $∗y1$

+y2$
+ . . . $+ym$∗. Then the vector

〈y1, . . . ym〉 is thereductionof ~α by ~x.

For instance,〈aX1,X2, bX3〉 reduced with〈X2〉
yields 〈X1,X3〉 and 〈aX1X2bX3〉 reduced with
〈X2〉 yields〈X1,X3〉 as well.

The binarization algorithm is given in Fig. 7.
Fig. 8 shows an example. In this example, there is
only one rule with a RHS longer than2. In a first
step, we introduce the new non-terminals and rules
that binarize the RHS. This leads to the setR. In a
second step, before adding the rules fromR to the
grammar, whenever a right-hand side argument con-
tains several variables, they are collapsed into a sin-
gle new variable.

The equivalence of the original LCFRS and the
binarized grammar is rather straight-forward. Note
however that the fan-out of the LCFRS can increase
because of the binarization.

Wolfgang Maier, Laura Kallmeyer

122

Original LCFRS:
S(XY ZUVW)→ A(X,U)B(Y, V)C(Z,W)
A(aX, aY)→ A(X,Y) A(a, a)→ ε
B(bX, bY)→ B(X,Y) B(b, b)→ ε
C(cX, cY)→ C(X,Y) C(c, c)→ ε

Rule with right-hand side of length> 2:
S(XY ZUVW)→ A(X,U)B(Y, V)C(Z,W)
For this rule, we obtain
R = {S(XY ZUVW)→ A(X,U)C1(Y Z, V W),

C1(Y Z, V W)→ B(Y, V)C(Z,W)}

Equivalent binarized LCFRS:
S(XPUQ)→ A(X,U)C1(P,Q)
C1(Y Z, V W)→ B(Y, V)C(Z,W)
A(aX, aY)→ A(X,Y) A(a, a)→ ε
B(bX, bY)→ B(X,Y) B(b, b)→ ε
C(cX, cY)→ C(X,Y) C(c, c)→ ε

Figure 8: Sample binarization of a LCFRS

In LCFRS, in contrast to CFG, the order of the
RHS elements of a rule does not matter for the result
of a derivation. Therefore, we can reorder the RHS
of a rule before binarizing it. In practice, we per-
form a head-outward binarization where the head is
the lowest subtree. It is extended by adding first all
sisters to its left and then all sisters to its right. Con-
sequently, before binarizing we reorder the RHS of
the rules extracted from the treebank such that first,
all elements to the right of the head are listed in re-
verse order, then all elements to the left of the head
in their original order and then the head itself.4

Furthermore, we add additional unary rules
when introducing the highest new binarization non-
terminal and when deriving the head. This allows
for an additional factorization that has proved itself
useful in parsing. Fig. 9 shows a sample binarization
of a tree in the NeGra format.

For the LCFRSs extracted from dependency tree-
banks, we perform the same type of binarization.
The head daughter is always the daughter with the
POS tag non-terminal.

3.5 Markovization

Markovization (Collins, 1999) is achieved by intro-
ducing only a single new non-terminal for the new

4One could also add first the sisters to the right and then the
ones to the left which is what Klein and Manning (2003) do.
However, this has only a negligible effect on parsing results.

Tree in NeGra Format:
S

VP

PDS VMFIN NN ADV VAINF
das muß man jetzt machen
that must one now do

“One has to do that now”

Rule extracted for the S node:
S(XY ZU)→ VP(X,U) VMFIN(Y) NN(Z)

Reordering for head-outward binarization:
S(XY ZU)→ NN(Z) VP(X,U) VMFIN(Y)

New rules resulting form binarizing this rule:
S(X)→ Sbin1(X)
Sbin1(XY Z)→ Sbin2(X,Z) NN(Y)
Sbin3(X)→ VMFIN(X)
Sbin2(XY,Z)→ VP(X,Z) Sbin3(Y)

Tree after binarization:
S

Sbin1

Sbin2

VP

VPbin1

VPbin2

Sbin3 VPbin3

PDS VMFIN NN ADV VAINF

Figure 9: Sample binarization

rules introduces during binarization and adding ver-
tical and horizontal context from the original trees to
each occurrence of this new non-terminal. As verti-
cal context, we add the firstv labels on the path from
the root node of the tree that we want to binarize
to the root of the entire treebank tree. The vertical
context is actually collected during grammar extrac-
tion and then taken into account during binarization
of the rules. As horizontal context, during binariza-
tion of a ruleA(~α) → A0(~α0) . . . Am(~αm), for the
new non-terminal that comprises the RHS elements
Ai . . . Am (for some1 ≤ i ≤ m), we add the firsth
elements ofAi, Ai−1, . . . , A0.

Figure 10 shows an example of a markovization of
the tree from Fig. 9 withv = 1 andh = 2. Here, the
superscript is the vertical context and the subscript
the horizontal context of the new non-terminalX.

The probabilities are then computed based on the

Discontinuity and Non-Projectivity: Using Mildly Context-Sensitive Formalisms for Data-Driven Parsing

123

S

XS
NN

XS
VP,NN

VP

XVP
PDS

XVP
ADV ,PDS

XS
VMFIN ,VP XVP

VAINF ,ADV

PDS VMFIN NN ADV VAINF

Figure 10: Sample Markovization withv = 1, h = 2

frequencies of rules in the treebank, using a Maxi-
mum Likelihood estimator (MLE). Such an estima-
tion has been used before (Kato et al., 2006).

3.6 Properties of the Grammars

unbin. bin. bin. lab.
NeGra LCFRS 13,858 16,904 4,142

Ssp. 13,953 17,033 4,179
VPsp. 14,050 18,362 4,952

S◦ VPsp. 14,144 18,503 4,995
NeGra PCFG 12,886 15,563 3,898

NeGra Dep. 18,520 68,847 49,085
PDT 12,841 38,312 24,119

Table 1: PLCFRSs extracted from training sets

Tab. 1 contains the properties of the grammars:
The number of rules in the unbinarized grammar,
the number of rules in the binarized and markovized
grammar and the number of labels (including POS
tags) in the binarized and markovized grammar.

4 Experiments

We run the parser on all data sets described above,
providing gold POS tags in the input. In order to re-
late the costs of parsing for each of the data sets, we
include Fig. 11, which shows the numbers of pro-
duced items for each data set.

4.1 Constituency Parsing

For the evaluation of the constituent parses, we use
an EVALB-style metric. For a tree over a string
w, a single constituent is represented by a tuple
〈A, ~ρ〉 with A a node label and~ρ ∈ (Pos(w) ×

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 6 8 10 12 14 16 18 20 22 24

N
um

be
r

of
 it

em
s

(in
 1

00
0)

Sentence length

NeGra LCFRS
NeGra combined splits

NeGra PCFG
NeGra Dep

PDT

Figure 11: Number of items

Pos(w))dim(A).5 We compute precision, recall and
F1 based on these tuples from gold and parsed test
data. Despite the shortcomings of such a measure
(Rehbein and van Genabith, 2007, e.g.), it still al-
lows to some extent a comparison to previous work
in PCFG parsing. For a more detailed evaluation
of NeGra PLCFRS constituent parsing results, see
Maier (2010). We use the previously successfully
employed markovization settingsv = 2 andh = 1
for all constituent experiments.

w/ category splits
LCFRS VP S S◦ VP PCFG

LP 73.24 73.24 73.98 74.02 74.10
LR 73.56 73.91 74.17 74.45 74.83

LF1 73.40 73.57 74.07 74.24 74.46
UP 77.12 76.98 77.47 77.39 78.08
UR 77.46 77.68 77.68 77.84 78.84

UF1 77.29 77.33 77.58 77.62 78.46

Table 2: NeGra constituent parsing

K 05 here R&M 08 P&K 07
LabeledF1 69.94 74.46 77.20 80.1

Table 3: Previous NeGra PCFG parsing

Tab. 2 presents the constituent parsing results for
both data sets with (LCFRS) and without (PCFG)
crossing branches. For the sake of comparison, we

5Note that our metric is equivalent to the corresponding
PCFG metric fordim(A) = 1.

Wolfgang Maier, Laura Kallmeyer

124

report PCFG parsing results from the literature6 in
Tab. 3, namely for PCFG parsing with a plain vanilla
treebank grammar (Kübler, 2005), for PCFG pars-
ing with the Stanford parser (Rafferty and Manning,
2008) (markovization as in our parser), and for the
current state-of-the-art, namely PCFG parsing with a
latent variable model (Petrov and Klein, 2007). We
see that the LCFRS parser output (which contains
more information than the output of a PCFG parser)
is competitive. The PCFG (1-LCFRS) parsing re-
sults are even closer to the ones of current systems.
Recall that these are just first results, much optimiza-
tion potential is left.

Before we evaluate the experiments with category
splits, we replace all split labels in the parser output
with the corresponding original labels. The results
show that the category splits are indeed beneficial,
both in terms of output quality and speed (cf. the
number of produced items in Fig. 11). We will con-
tinue to explore this approach using an automated
split-and-merge approach in the style of Ule (2003).

Literature on parsing with discontinuous con-
stituents is sparse. Hall and Nivre (2008) recon-
struct the crossing branches of NeGra. They parse a
(non-projective) dependency version of the German
TIGER treebank (which follows the same annota-
tion principles as NeGra) and convert the result back
to constituents. For sentences up to length 40 and
perfect tagging, they report a labeledF1 of 70.79.
While not directly comparable to our result, we still
lie in the same range. Plaehn (2004) also reports
results for direct parsing of the discontinuous con-
stituents using Probabilistic Discontinuous Phrase
Structure Grammar (DPSG). See Maier (2010) for
details.

4.2 Dependency Parsing

In this section, we present the first grammar-based
non-projective dependency parsing results. As
Kuhlmann and Satta (2009) note, the principal ad-
vantage of grammar-based non-projective depen-
dency parsing is that edge probabilities can be fine-
tuned while staying polynomially parseable. This
is not possible in the Maximum Spanning Tree ap-
proach (McDonald and Satta, 2007). For compar-

6The results from the literature were obtained on sentences
longer than 25 words and would most likely be better for our
sentence length.

ison of our dependency parser output, we report
labeled and unlabeled attachment score and com-
pletely correct graphs (punctuation included). As
markovization setting for the PDT set, we choose
v = 2 andh =∞.

NeGra PDT
Grammar MST Grammar MST

UAS 78.98 87.96 51.44 76.01
LAS 71.84 82.62 67.09 40.54

UComp 32.65 42.16 14.92 28.92
LComp 25.03 29.56 9.46 17.23

Table 4: Dependency parsing

Tab. 4 contain the dependency parsing results for
our parser and the MSTParser (McDonald et al.,
2005) for NeGra and PDT. As an overall observa-
tion, the fact that our results are far off the MST-
Parser’s results is certainly surprising. The most
prominent difference between the NeGra and the
PDT set is the number of edge labels. It leads to
grammars with 922 non-terminals for NeGra and
only 51 non-terminals for the PDT. While the MST-
Parser is almost not affected by this difference, the
fact that our NeGra results are superior to our PDT
results allows the conclusion that for grammar-based
parsing, more informative edges labels are an advan-
tage. This is also confirmed by the higher number of
items for PDT (cf. Fig. 11). We expect therefore
that automated category splitting will lead to a large
improvement. This will be tackled in future work.

5 Conclusion

We have presented a parser for Probabilistic Linear
Context-Free Rewriting Systems and have used it to
parse NeGra, a German constituency treebank with
directly annotated crossing branches. Furthermore,
we have applied our parser to a dependency version
of NeGra, and to the Prague Dependency Treebank.
To our knowledge, grammar-based parsing of non-
projective dependencies has not been attempted be-
fore. Experiments have shown that PLCFRS parsing
is feasible and that the results for constituency pars-
ing lie in the vicinity of the state-of-the-art.

In future work, we will concentrate particularly
on the optimization potential for the parsing results.
Especially dependency parsing offers many possibil-
ities of optimization.

Discontinuity and Non-Projectivity: Using Mildly Context-Sensitive Formalisms for Data-Driven Parsing

125

References

Pierre Boullier. 1998. A Proposal for a Natural Lan-
guage Processing Syntactic Backbone. Technical Re-
port 3342, INRIA.

David Chiang. 2003. Statistical parsing with an automat-
ically extracted Tree Adjoining Grammar. InData-
Oriented Parsing. CSLI Publications.

Michael Collins, Jan Hajič, Lance Ramshaw, and
Christoph Tillmann. 1999. A statistical parser for
Czech. InProceedings of ACL 1999.

Michael Collins. 1999.Head-driven statistical models
for natural language parsing. Ph.D. thesis, University
of Pennsylvania.

Carlos Gómez-Rodrı́guez, Marco Kuhlmann, Giorgio
Satta, and David Weir. 2009. Optimal reduction of
rule length in linear context-free rewriting systems. In
Proceedings of NAACL-HLT, Boulder, Colorado.

Jan Hajič, Alena Böhmová, Eva Hajičová, and Barbora
Vidová-Hladká. 2000. The Prague Dependency
Treebank: A Three-Level Annotation Scenario. In
A. Abeillé, editor, Treebanks: Building and Using
Parsed Corpora. Amsterdam:Kluwer.

Johan Hall and Joakim Nivre. 2008. Parsing discontin-
uous phrase structure with grammatical functions. In
Proceedings of GoTAL 2008.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. InProceedings of ACL 2002.

Laura Kallmeyer and Wolfgang Maier. 2010. Data-
driven parsing with probabilistic linear context-free
rewriting systems. Unpublished manuscript.

Laura Kallmeyer, Wolfgang Maier, and Giorgio Satta.
2009. Synchronous rewriting in treebanks. InPro-
ceedings of IWPT 2009.

Yuki Kato, Hiroyuki Seki, and Tadao Kasami. 2006.
Stochastic multiple context-free grammar for rna pseu-
doknot modeling. InProceedings of TAG+8.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. InProceedings of ACL 2003.

Sandra Kübler and Gerald Penn, editors. 2008.Proceed-
ings of the Workshop on Parsing German at ACL 2008.

Sandra Kübler. 2005. How do treebank annotation
schemes influence parsing results? Or how not to com-
pare apples and oranges. InProceedings of RANLP
2005.

Marco Kuhlmann and Giorgio Satta. 2009. Treebank
grammar techniques for non-projective dependency
parsing. InProceedings of EACL.

Roger Levy and Christopher D. Manning. 2004. Deep
dependencies from context-free statistical parsers: cor-
recting the surface dependency approximation. InPro-
ceedings of ACL 2004.

Dekang Lin. 1995. A dependency-based method for
evaluating broad-coverage parsers. InProceedings of
IJCAI 1995.

Wolfgang Maier and Anders Søgaard. 2008. Treebanks
and mild context-sensitivity. InProceedings of Formal
Grammar 2008.

Wolfgang Maier. 2010. Direct parsing of discontinuous
constituents in German. InProceedings of the First
Workshop on Statistical Parsing of Morphologically
Rich Languages (SPMRL 2010) at NAACL 2010.

Ryan McDonald and Giorgio Satta. 2007. On the com-
plexity of non-projective data-driven dependency pars-
ing. In Proceedings of IWPT 2007.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. InProceedings
of HLT/EMNLP 2005.

Mark-Jan Nederhof. 2003. Weighted Deductive Parsing
and Knuth’s Algorithm. Computational Linguistics,
29(1).

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit,
S. Kübler, S. Marinov, and E. Marsi. 2007. Malt-
Parser: A language-independent system for data-
driven dependency parsing.Natural Language Engi-
neering, 13(2).

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. InProceedings of HLT-
NAACL 2007.

Oliver Plaehn. 2004. Computing the most probable parse
for a discontinuous phrase-structure grammar. InNew
developments in parsing technology. Kluwer.

Anna Rafferty and Christopher D. Manning, 2008.Pars-
ing Three German Treebanks: Lexicalized and Unlex-
icalized Baselines. In Kübler and Penn (2008).

Ines Rehbein and Josef van Genabith. 2007. Evaluating
evaluation measures. InProceedings of NODALIDA
2007.

Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars.Theoretical Computer Science, 88(2).

Wojciech Skut, Brigitte Krenn, Thorten Brants, and Hans
Uszkoreit. 1997. An Annotation Scheme for Free
Word Order Languages. InProceedings of ANLP.

Tylman Ule. 2003. Directed treebank refinement for
PCFG parsing. InProceedings of TLT 2003.

Yannick Versley. 2005. Parser evaluation across text
types. InProceedings of TLT 2005.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions produced
by various grammatical formalisms. InProceedings of
ACL 1987.

Wolfgang Maier, Laura Kallmeyer

126

