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Abstract

Our CoNLL-2010 speculative sentence
detector disambiguates putative keywords
based on the following considerations: a
speculative keyword may be composed of
one or more word tokens; a speculative
sentence may have one or more specula-
tive keywords; and if a sentence contains
at least one real speculative keyword, it is
deemed speculative. A tree kernel classi-
fier is used to assess whether a potential
speculative keyword conveys speculation.
We exploit information implicit in tree
structures. For prediction efficiency, only
a segment of the whole tree around a spec-
ulation keyword is considered, along with
morphological features inside the segment
and information about the containing doc-
ument. A maximum entropy classifier
is used for sentences not covered by the
tree kernel classifier. Experiments on the
Wikipedia data set show that our system
achieves 0.55 F-measure (in-domain).

1 Introduction

Speculation and its impact on argumentation has
been studied by linguists and logicians since at
least as far back as Aristotle (trans 1991, 1407a,
1407b), and under the category of linguistic
“hedges” since Lakoff (1973). Practical appli-
cation of this research has emerged due to the
efforts to create a biomedical database of sen-
tences tagged with speculation information: Bio-
Scope (Szarvas et al., 2008) and because of the
association of some kinds of Wikipedia data with
the speculation phenomenon (Ganter and Strube,
2009). It is clear that specific words can be con-
sidered as clues that can qualify a sentence as
speculative. However, the presence of a specu-
lative keyword not always conveys a speculation

assertion which makes the speculation detection a
tough problem. For instance, the sentences below
contain the speculative keyword “may”, but only
the sentence (a) is speculative.

(a) These effects may be reversible.

(b) Members of an alliance may not attack each other.

The CoNLL-2010 Shared Task (Farkas et al.,
2010), “Learning to detect hedges and their scope
in natural language text” proposed two tasks re-
lated to speculation research. Task 1 aims to detect
sentences containing uncertainty and Task 2 aims
to resolve the intra-sentential scope of hedge cues.
We engaged in the first task in the biomedical and
Wikipedia domains as proposed by the organizers,
but eventually we got to submit only Wikipedia
domain results. However, in this paper we include
results in the biomedical domain as well.

The BioScope corpus is a linguistically hand an-
notated corpus of negation and speculation phe-
nomena for medical free texts, biomedical article
abstracts and full biomedical articles. The afore-
said phenomena have been annotated at sentence
level with keyword tags and linguistic scope tags.
Some previous research on speculation detection
and boundary determination over biomedical data
has been done by Medlock & Briscoe (2007) and
Özgür & Radev (2009) from a computational view
using machine learning methods.

The Wikipedia speculation dataset was gener-
ated by exploiting a weasel word marking. As
weasel words convey vagueness and ambiguity by
providing an unsupported opinion, they are dis-
couraged by Wikipedia editors. Ganter & Strube
(2009) proposed a system to detect hedges based
on frequency measures and shallow information,
achieving a F-score of 0.691.

We formulate the speculation detection prob-
lem as a word disambiguation problem and de-
veloped a system as a pipelined set of natural

1They used different Wikipedia data.
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language processing tools and procedures to pre-
process the datasets. A Combinatory Categorial
Grammar parsing (CCG) (Steedman, 2000) tool
and a Tree Kernel (TK) classifier constitute the
core of the system.

The Section 2 of this paper describes the over-
all architecture of our system. Section 3 depicts
the dataset pre-processing. Section 4 shows how
we built the speculation detection module, outlines
the procedure of examples generation and the use
of the Tree-kernel classifier. Section 5 presents
the experiments and results, we show that sentence
CCG derivation information helps to differentiate
between apparent and real speculative words for
speculation detection. Finally Section 6 gives our
conclusions.

2 Speculation detection system

Our system for speculation detection is a machine
learning (ML) based system (Figure 1). In the pre-
processing module a dataset of speculative/non-
speculative sentences goes through a process of
information extraction of three kinds: specula-
tive word or keyword extraction,2 sentence extrac-
tion and document feature extraction (i.e docu-
ment section). Later the extracted keywords are
used to tag potential speculative sentences in the
training/evaluation datasets and used as features
by the classifiers. The sentences are submitted to
the tokenization and parsing modules in order to
provide a richer set of features necessary for creat-
ing the training/evaluation datasets, including the
document features as well.

In the ML module two types of dataset are built:
one used by a TK classifier and other one by a bag-
of-features based maximum entropy classifier. As
the first one processes only those sentences that
contain speculative words, we use the second clas-
sifier, which is able to process samples of all the
sentences.

The models built by these classifiers are com-
bined in order to provide a better performance and
coverage for the speculation problem in the clas-
sification module which finally outputs sentences
labeled as speculative or non-speculative. Used
tools are the GeniaTagger (Tsuruoka et al., 2005)
for tokenization and lemmatization, and the C&C
Parser (Clark and Curran, 2004). The next sec-
tions explain in detail the main system compo-
nents.

2Extraction of keywords for the training stage.

3 Dataset pre-processing for rich feature
extraction

The pre-processing module extracts keywords,
sentences and document information.

All sentences are processed by the tok-
enizer/lemmatizer and at the same time specific in-
formation about the keywords is extracted.

Speculative keywords
Speculative sentences are evidenced by the pres-
ence of speculation keywords. We have the fol-
lowing observations:

• A hedge cue or speculative keyword 3 may be
composed of one or more word tokens.

• In terms of major linguistic categories, the
word tokens are heterogeneous: they may be
verbs, adjectives, nouns, determiners, etc. A
stop-word removing strategy was dismissed,
since no linguistic category can be elimi-
nated.

• A keyword may be covered by another longer
one. For instance, the keyword most can be
seen in keywords like most of all the heroes
or the most common.

Considering these characteristics for each sen-
tence, in the training stage, the keyword extraction
module retrieves the speculative/non-speculative
property of each sentence, the keyword occur-
rences, number of keywords in a sentence, the ini-
tial word token position and the number of word
tokens in the keyword. We build a keyword lex-
icon with all the extracted keywords and their
frequency in the training dataset, this speculative
keyword lexicon is used to tag keyword occur-
rences in non-speculative training sentences and
in all the evaluation dataset sentences.

The overlapping problem when tagging key-
words is solved by maximal matching strategy. It
is curious that speculation phrases come in de-
grees of specificity; the approach adopted here
favors “specific” multi-word phrases over single-
word expressions.

Sentence processing
Often, speculation keywords convey certain in-
formation that can not be successfully expressed
by morphology or syntactic relations provided by
phrase structure grammar parsers. On the other

3Or just “keyword” for sake of simplicity.
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Figure 1: Block diagram for the speculation detection system.

hand, CCG derivations or dependencies provide
deeper information, in form of predicate-argument
relations. Previous works on semantic role label-
ing (Gildea and Hockenmaier, 2003; Boxwell et
al., 2009) have used features derived from CCG
parsings and obtained better results.

C&C parser provides CCG predicate-argument
dependencies and Briscoe and Carroll (2006) style
grammatical relations. We parsed the tokenized
sentences to obtain CCG derivations which are
binary trees as shown in the Figure 2. The
CCG derivation trees contain function category
and part-of-speech labels; this information is con-
tained in the tree structures to be used in building
a subtree dataset for the TK classifier.

4 Speculative sentence classifier

4.1 Tree Kernel classification

The subtree dataset is processed by a Tree Kernel
classifier (Moschitti, 2006) based on Support Vec-
tor Machines. TK uses a kernel function between
two trees, allowing a comparison between their
substructures, which can be subtrees (ST) or sub-
set trees (SST). We chose the comparison between
subset trees since it expands the kernel calculation
to those substructures with constituents that are
not in the leaves. Our intuition is that real specula-
tive sentences have deep semantic structures that
are particularly different from those ones in ap-
parent speculative sentences, and consequently the
comparison between the structures of well identi-
fied and potential speculative sentences may en-
hance the identification of real speculative key-
words.

4.2 Extracting tree structures

The depth of a CCG derivation tree is propor-
tional to the number of word tokens in the sen-
tence. Therefore, the processing of a whole deriva-
tion tree by the classifier is highly demanding and
many subtrees are not relevant for the classifica-
tion of speculative/non-speculative sentences, in
particular when the scope of the speculation is a
small proportion of a sentence.

In order to tackle this problem, a fragment of
the CCG derivation tree is extracted. This frag-
ment or subtree spans the keyword together with
neighbors terms in a fixed-size window of n word
tokens, (i.e. n word tokens to the left and n word
tokens to the right of the keyword) and has as root
the lower upper bound node of the first and last
tokens of this span. After applying the subtree ex-
traction, the subtree can contain more word tokens
in addition to those contained in the n-span, which
are replaced by a common symbol.

Potential speculative sentences are turned into
training examples. However, as described in Sec-
tion 3, a speculative sentence can contain one or
more speculative keywords. This can produce an
overlapping between their respective n-spans of
individual keywords during the subtree extraction,
producing subtrees with identical roots for both
keywords. For instance, in the following sen-
tence(c), the spans for the keywords suggests and
thought will overlap if n = 3.

(c) This suggests that diverse agents thought to ac-

tivate NF-kappa B ...

The overlapping interacts with the windows size
and potential extraction of dependency relations
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It was reported to have burned for a day
PRP VBD VBN TO VB VBN IN DT NN
NP (S[dcl]\NP)/(S[pss]\NP) (S[pss]\NP)/(S[to]\NP) (S[to]\NP)/(S[b]\NP) (S[b]\NP)/(S[pt]\NP) S[pt]\NP ((S\NP)\(S\NP))/NP NP[nb]/N N

NP[nb]

(S[X]\NP)\(S[X]\NP)
S[pt]\NP

S[b]\NP
S[to]\NP

S[pss]\NP
S[dcl]\NP
S[dcl]

Figure 2: CCG derivations tree for It was reported to have burned for a day.

shared by terms belonging to the two different
spans. We deal with this issue by extracting one
training example if two spans have a common root
and two different examples otherwise.

4.3 Bag of features model

By default, our system classifies the sentences not
covered by the TK model using a baseline clas-
sifier that labels a sentence as speculative if this
has at least one keyword. Alternatively, a bag of
features classifier is used to complement the tree
kernel, aimed to provide a more precise method
that might detect even speculative sentences with
new keywords in the evaluation dataset. The set of
features used to build this model includes:

a) Word unigrams;
b) Lemma unigrams;
c) Word+POS unigrams;
d) Lemma+POS unigrams;
e) Word+Supertag unigrams;
f) Lemma+Supertag unigrams;
g) POS+Supertag unigrams;
h) Lemma bigrams;
i) POS bigrams;
j) Supertag bigrams;
k) Lemma+POS bigrams;
l) Lemma+Supertag bigrams;

m) POS+Supertag bigrams;
n) Lemma trigrams;
o) POS trigrams;
p) Supertag trigrams;
q) Lemma+POS trigrams;
r) Lemma+Supertag trigrams;
s) POS+Supertag trigrams;
t) Number of tokens;
u) Type of section in the document (Title, Text,

Section);
v) Name of section in the document;
w) Position of the sentence in a section starting

from beginning;

Dataset Dev. Train. Eval.
Biomedical 39 14541 5003
Wikipedia 124 11111 9634

Table 1: Datasets sizes.

x) Position of the sentence in a section starting
from end.

Position of the sentence information, composed by
the last four features, represents the information
about the sentence relative to a whole document.
The bag of features model is generated using a
Maximum Entropy algorithm (Zhang, 2004).

5 Experiments and results

5.1 Datasets
In the CoNLL-2010 Task 1, biomedical and
Wikipedia datasets were provided for develop-
ment, training and evaluation in the BioScope
XML format. Development and training datasets
are tagged with cue labels and a certainty feature.4

The number of sentences for each dataset 5 is de-
tailed in Table 1.

After manual revision of sentences not parsed
by C&C parser, we found that they contain equa-
tions, numbering elements (e.g. (i), (ii).. 1),
2) ), or long n-grams of named-entities, for in-
stance: ...mannose-capped lipoarabinomannan (
ManLAM ) of Mycobacterium tuberculosis ( M.
tuberculosis )... that out of a biomedical domain
appear to be ungrammatical. Similarly, in the
Wikipedia datasets, some sentences have many
named entities. This suggests the need of a spe-
cific pre-processor or a parser for this kind of sen-
tences like a named entity tagger.

In Table 2, we present the number of parsed sen-
tences, processed sentences by the TK model and
examples obtained in the tree structure extraction.

4certainty=“uncertain” and certainty=“certain”.
5The biomedical abstracts and biomedical articles training

datasets are processed as a single dataset.
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Dataset Parsed Process. Samples
Biomedical train. 14442 10852 23511
Biomedical eval. 4903 3395 7826
Wikipedia train. 10972 7793 13461
Wikipedia eval. 9559 4666 8467

Table 2: Count of processed sentences.

5.2 Experimental results

The CoNLL-2010 organizers proposed in-domain
and cross-domain evaluations. In cross-domain
experiments, test datasets of one domain can be
used with classifiers trained on the other or on the
union of both domains. We report here our results
for the Wikipedia and biomedical datasets.

So far, we mentioned two settings for our clas-
sifier: a TK classifier complemented by a baseline
classifier (BL) and TK classifier complemented
by a bag of features classifier (TK+BF). Table
3 shows the scores of our submitted system (in-
domain Task 1) on the Wikipedia dataset, whereas
Table 4 gives the scores of the baseline system.

TP FP FN Precision Recall F
Our system 1033 480 1201 0.6828 0.4624 0.5514
Max. 1154 448 1080 0.7204 0.5166 0.6017
Min. 147 9 2087 0.9423 0.0658 0.123

Table 3: Comparative scores for our system with
CoNLL official maximum and minimum scores in
Task 1, Wikipedia dataset in-domain.

TP FP FN Precision Recall F
Biomedical 786 2690 4 0.2261 0.9949 0.3685
Wikipedia 1980 2747 254 0.4189 0.8863 0.5689

Table 4: Baseline results.

Additionally, we consider a bag of features clas-
sifier (BF) and a classifier that combines the base-
line applied to the sentences that have at least one
keyword plus the BF classifier for the remaining
sentences (BL+BF). In Tables 5 to 10, results for
the four classifiers (TK, TK+BF, BF, BL+BF) with
evaluations in-domain and cross-domain are pre-
sented6.

The baseline scores confirm that relying on just
the keywords is not enough to identify speculative
sentences. In the biomedical domain, the classi-
fiers give high recall but too low precision result-
ing in low F-scores. Still, the TK, TK+BF and BF
(in-domain configurations) gives much better re-
sults than BL and BL+BF which indicates that the
information from CCG improves the performance

6It is worth to note that the keyword lexicons have been
not used in cross-domain way, so the TK and TK+BF models
have not been tested in regards to keywords.

TP FP FN Precision Recall F
BL 1980 2747 254 0.4189 0.8863 0.5689
TK 1033 480 1201 0.6828 0.4624 0.5514
TK+BF 1059 516 1175 0.6729 0.4740 0.5560
BF 772 264 1462 0.7452 0.3456 0.4722
BL+BF 2028 2810 206 0.4192 0.9078 0.5735

Table 5: Results for Wikipedia dataset in-domain.

TP FP FN Precision Recall F
BL 1980 2747 254 0.4189 0.8863 0.5689
TK 1776 2192 458 0.4476 0.7950 0.5727
TK+BF 1763 2194 471 0.4455 0.7892 0.5695
BF 403 323 1831 0.5551 0.1804 0.2723
BL+BF 1988 2772 246 0.4176 0.8899 0.5685

Table 6: Wikipedia data classified with biomedical
model scores (cross-domain).

TP FP FN Precision Recall F
BL 1980 2747 254 0.4189 0.8863 0.5689
TK 1081 624 1153 0.6340 0.4839 0.5489
TK+BF 1099 636 1135 0.6334 0.4919 0.5538
BF 770 271 1464 0.7397 0.3447 0.4702
BL+BF 2017 2786 217 0.4199 0.9029 0.5733

Table 7: Wikipedia data classified with biomedical
+ Wikipedia model scores (cross-domain).

TP FP FN Precision Recall F
BL 786 2690 4 0.2261 0.9949 0.3685
TK 759 777 31 0.4941 0.9606 0.6526
TK+BF 751 724 39 0.5092 0.9506 0.6631
BF 542 101 248 0.8429 0.6861 0.7565
BL+BF 786 2695 4 0.2258 0.9949 0.3681

Table 8: Biomedical data scores (in-domain).

TP FP FN Precision Recall F
BL 786 2690 4 0.2261 0.9949 0.3685
TK 786 2690 4 0.2261 0.9949 0.3685
TK+BF 771 2667 19 0.2243 0.9759 0.3647
BF 174 199 616 0.4665 0.2206 0.2992
BL+BF 787 2723 3 0.2242 0.9962 0.3660

Table 9: Biomedical data classified with
Wikipedia model scores (cross-domain).

TP FP FN Precision Recall F
BL 786 2690 4 0.2261 0.9949 0.3685
TK 697 357 93 0.6613 0.8823 0.7560
TK+BF 685 305 105 0.6919 0.8671 0.7697
BF 494 136 296 0.7841 0.6253 0.6958
BL+BF 786 2696 4 0.2257 0.9949 0.3679

Table 10: Biomedical data classified with biomed-
ical + Wikipedia model scores (cross-domain).

of the classifiers when compared to the baseline
classifier.

Even though in the Wikipedia domain the
TK+BF score is less than the baseline score, still
the performance of the classifiers do not fall much
in any of the in-domain and cross-domain exper-
iments. On the other hand, BF does not have a
good performance in 5 of 6 the experiments. To
make a more precise comparison between TK and
BF, the TK and BL+BF scores show that BL+BF
performs better than TK in only 2 of the 6 ex-
periments but the better performances achieved
by BL+BF are very small. This suggests that
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the complex processing made by tree kernels is
more useful when disambiguating speculative key-
words than BF. Nonetheless, the bag-of-features
approach is also of importance for the task at hand
when combined with TK. We observe that the TK
classifer and BF classifier perform well making us
believe that the CCG derivations provide relevant
information for speculation detection. The use of
tree kernels needs further investigations in order to
evaluate the suitability of this approach.

6 Concluding remarks

Speculation detection is found to be a tough task
given the high ambiguity of speculative keywords.
We think these results can be improved by study-
ing the influences of context on speculation asser-
tions.

This paper presents a new approach for disam-
biguating apparent speculative keywords by us-
ing CCG information in the form of supertags and
CCG derivations. We introduce the use of the tree
kernel approach for CCG derivations trees. The
inclusion of other features like grammatical rela-
tions provided by the parser needs to be studied
before incorporating this information into the cur-
rent classifier and possibly to resolve the boundary
speculation detection problem.
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