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 Abstract
 
We  introduce  a  new  family  of  geometric 
models  of  meaning,  inspired  by  principles 
from  semiotics  and  information  theory, 
based on what we call Expectation Vectors. 
We present theoretical arguments in support 
of  these  representations  over  traditional 
context-feature  vectors:  primarily that  they 
provide  a  more  intuitive  representation  of 
meaning,  and  detach  vector  representation 
from  the  specific  context  features  thereby 
allowing  arbitrarily  sophisticated  language 
models  to  be  leveraged.  We  present  a 
preliminary  evaluation  of  an  expectation 
vector  based  word  sense  disambiguation 
system  using  the  SemEval-2007  task  2 
dataset,  with  very  encouraging  results, 
particularly with respect to ambiguous verbs.
 

1 Introduction
 
It  is  a  cornerstone  assumption  of  distributional 
lexical semantics that the distribution of words in a 
corpus  reflects their  meaning.  Common 
interpretations  of  this  include  the  Distributional 
Hypothesis  (Harris,  1954)  and  the  Contextual 
Hypotheses (Miller & Charles, 1991), which state 
that  there  is  a  relationship  between  a  word's 
meaning, and the context(s) in which it appears. In 
recent  years  this  insight  has  been  borne  out  by 
correlations  between  human  judgements  and 
distributional  models  of  word  similarity  (Rapp, 
2002), and steady advances in tasks such as word 
sense  disambiguation  (Schütze,  1998)  and 
information  retrieval.  The  workhorse  of  these 
approaches  are  wordspace  models:  vectors  built 
from context  features  which  serve  as  geometric 
analogues  of  meaning.  Despite  many  advances, 
substantial  problems  exist  with  this  approach  to 
modelling  meaning.  Amongst  these  are  the 
problems of data sparseness and of how to model 
compositional meaning.

In this short paper, we introduce a new family 
of  wordspace models,  based on insights  gleaned 
from  semiotics  and  information  theory,  called 
Expectation Vectors.  These retain the  convenient 
vector-based  paradigm  whilst  encouraging  the 

exploitation  of  advances  in  language  modelling 
from other areas of NLP. We finish by outlining 
some  present  efforts  to  evaluate  expectation 
vectors in the area of word sense disambiguation.

2 Modelling meaning from context
 
Perhaps  one  of  the  most  prominent  application 
areas to exploit  context-based wordspace models 
is that of word sense induction and disambiguation 
(WSI/WSD).  The  prevailing  approach  to  this 
problem is based on a fairly literal interpretation of 
the Distributional Hypothesis: that is to cluster or 
classify instances of  ambiguous words according 
to  certain  features  of  the  context  in  which  they 
appear – invariably other words. It is not difficult 
to see why this approach is limiting: as Pedersen 
(2008) observes,  “the unifying thread that  binds  
together  many  short  context  applications  and 
methods is the fact that similarity decisions must  
be made between contexts that share few (if any)  
words  in  common.”  This  is  a  manifestation  of 
what  is  commonly  referred  to  at  the  data 
sparseness problem, and it pervades all of corpus-
based  NLP.  This  problem  is  exacerbated  as 
available examples of  a word sense decrease,  or 
finer sense granularities are sought. For supervised 
tasks  this  implies  that  a  large  training  set  is 
required,  which  is  often  expensive.  For 
unsupervised tasks,  such as WSI,  it  has negative 
implications for cluster quality and rule learning. 
Consequently,  Leacock  et  al (1996)  observe that 
WSD systems which operate directly upon context 
are: “plagued  with  the  same  problem,  excellent  
precision but low recall”.

“Backing off” to more general feature classes 
through  say  lemmatization  or  part-of-speech 
tagging affords one way of alleviating sparseness 
(Joshi  &  Penstein-Rosé,  2009),  assuming  these 
features are pertinent to the task. Similar strategies 
include  the  use  of  dual-context  models  where 
immediate lexical features are backed up by more 
general  topical  ones  garnered  from  the  wider 
context  of  the  ambiguous  word  (Leacock  et  al, 
1996; Yarowsky, 1993).

Others have tackled the problem of sparseness 
without  recourse  to  generalized  feature  classes, 
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through  the  exploitation  of  higher-order 
distributional  information.  Schütze  (1998) 
popularised  this  approach  within  the  WSD/WSI 
task. Rather than comparing contexts directly, it is 
the  distributional  similarity of  those features  (in 
the  corpus)  which  are  compared.  Specifically, 
Schütze  composed  context  vectors  by  summing 
the  vectors  for  every word  in  a  context,  where 
those  vectors  were  themselves  formed  from the 
total  of  word co-occurrence counts pertaining to 
every  instance  of  that  word  in  the  corpus.  The 
resultant  context  vectors  are  therefore 
comparatively  dense,  and  carry  second-order 
information  which  makes  otherwise  unlike 
contexts  more  amenable  to  comparison.  One 
contention  of  this  model  is  that  it  conflates  co-
occurrence information from all occurrences of a 
word in the corpus, regardless of their sense. The 
defence is  that  because the  actual  senses  of  the 
term instances which appear in the context of the 
ambiguous word will tend to be pertinent to that 
word’s  own  specific  sense,  it  is  that  common 
aspect of their respective conflated-sense vectors - 
when summed - which will dominant the resultant 
context  vector.  Purandare  &  Pedersen  (2001) 
performed a comparative study of disambiguation 
approaches  based  on  first-order  context,  and  on 
second order context as per Schütze (1998). They 
found  that  while  Schütze's  approach  provided 
gains  when data  was  limited,  when  the  training 
corpus was large enough that sufficient examples 
existed,  clustering  on  first  order  context  was 
actually  a  better  approach.  This  suggests  that 
while alleviating the data-sparseness problem, the 
practice of expanding context vectors in this way 
introduces a certain amount of noise, presumably 
by inappropriately over-smoothing the data.

Another  approach  to  the  sparse  data  problem 
which  was  also  part  of  Schütze's  framework  is 
dimensionality  reduction  by  Singular  Value 
Decomposition (SVD). In SVD the set of context 
features are analytically combined and reduced in 
a  manner  that  exploits  their  latent  similarities, 
whereafter  traditional  vector  measures  can  be 
used. Very similar techniques to both of those used 
by Schütze have been used for query expansion 
and  document  representation  in  information 
retrieval (Qiu & Frei, 1993; Xu et al, 2007).

Several variations upon Schütze’s approach to 
WSD have been explored. Dagan et al (1995) and 
Karov & Edelman (1996)  both apply what  they 
call  “similarity-based”  methods  which,  while 
markedly  different  on  the  surface  to  that  of 
Schütze, are similar in spirit and intent. Karov & 
Edelman,  for  example,  use  machine-readable 
dictionary glosses  as  opposed  to  corpus-derived 
co-occurrences,  and  apply  an  iterative 

bootstrapping approach to augment the available 
data, rather than strict second-order information.

Typically,  context  vectors  comprise  a 
component  (dimension)  for  each  designated 
feature  in  a word’s  context.  In a simple bag-of-
words  model  this  might  equate  to  one  vector 
component for each potential word that can appear 
in the context. For more sophisticated n-gram or 
dependency-based models, which attempt to better 
capture the structure inherent in the language, this 
number of vector components must be increased. 
The  more  sophisticated  the  language  model 
becomes therefore, the more acute the sparse data 
problem.  Techniques  like  SVD  can  reduce  this 
sparseness, but other issues remain. How does one 
weight  heterogeneous  features  when  forming  a 
vector?  How does  one interpret  vectors  reduced 
by SVD? Looking at the variety of approaches to 
tackling  the  problem,  we  might  be  forgiven  for 
questioning  whether  representing  meaning  as  a 
vector  of  context  features  is  in  fact  an  ideal 
starting point for semantic tasks such as WSD.

In the following section we describe a means of 
entirely detaching context  feature selection from 
vector  representation,  such  that  an  arbitrarily 
sophisticated  language  model  can  be  used  to 
generate  dense,  comparable vectors.  Necessarily, 
we  also  present  a  prototype  distributional 
language model that will serve as the basis of our 
investigations into this approach.

3 System & approach
 
3.1 Lexical Expectation Vectors

 
Theoretical  motivation.  The  motivation  behind 
the method presented herein comes both from the 
fields of semiotics and information theory. It is the 
notion that the “meaning” of an utterance is not in 
the utterance itself, nor in its individual or typical 
context;  it  is  in  the  disparity between  our 
expectations  based  on  that  context,  and  the 
utterance (Noth, 1990; Chandler, 2002). Meaning 
in this sense can be seen as related to information 
(Attneave,  1959;  Shannon,  1948):  an  utterance 
which is entirely expected under a regime where 
speaker  and  interpreter  have  identical  frames  of 
reference  communicates  nothing;  conversely  an 
extremely  creative  utterance  is  laden  with 
information, and may have multiple non-obvious 
interpretations  (poetry  being  a  case  in  point  - 
Riffaterre,  1978).  This  idea  is  also  lent  some 
weight  by  psycholinguistic  experiments  which 
have  revealed  correlations  between  a  word's 
disparity  from  its  preceding  context,  and 
processing  times  in  human  subjects.  Similar 
insights have been employed in some very recent 
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attempts  to  model  compositional  word  meaning 
Erk & Padó (2008) and Thater et al (2009). These 
models augment word and context representations 
with  additional  vectors  encoding  the  selectional 
preferences  (expectations)  pertaining  to  the 
specific  syntactic/semantic  roles  of  the 
participating words. So far these systems rely upon 
parsed  corpora  and  have  been  tested  only  with 
very limited contexts (e.g. pairs of words having 
specific dependency relations).

Lexical  expectation  vectors  are  based  on  a 
similar  and  very  simple  premise:  rather  than 
building a vector for  a context by conflating the 
features which comprise the various context words 
(as per Schutze, 1998), we instead conflate all the 
words which might be expected to appear  within 
the  context (i.e.  in  the  headword  position). 
Consider  the  following short  context  taken from 
the SemEval-2007 task 2 dataset:

 
Mr. Meador takes responsibility 

for <?> and property management .
 

The  strongest  twenty  elements  of  its 
expectation  vector  (as  generated  by  the  system 
described below) are shown in table 1. The figures 
represent some measure of confidence that a given 
word will be found in the headword position <?>. 

0.42 education 0.31 chancellor
0.38 forms 0.31 routine
0.36 housing 0.31 health
0.35 counselling 0.31 research
0.35 these 0.31 assessment
0.35 herself 0.3 detailed
0.34 database 0.3 management
0.33 injuries 0.3 many
0.32 advice 0.3 training
0.31 this 0.3 what

 

Table 1: An example of an expectation vector.

We  make  the  supposition  that  when  the  vectors 
implied by the respective likelihoods of  all words 
implied by two contexts are identical, the contexts 
can be considered semantically equivalent.1 Note 
that the actual headword appearing in the context 
is not taken into consideration for the purposes of 
calculating expectation. In this example it occur at 
rank 62 out of  ~650,000, implying that its use in 
this context is not atypical.

Formal approach. For the purpose of our present 
research,  we  adopt  the  following  formal 
framework  for  generating  an  expectation  vector. 

1 Equivalent with respect to the head of the context. 
This is not the same as saying the passages have the same 
meaning, which requires recourse to compositionality.

Given  a  context  c,  each  component  of  the 
expectation vector  e arising from that  context  is 
estimated thusly:
  

 

Where j is a given word type in the lexicon, Oj 

is  the  set  of  all  observed contexts  of  that  word 
type in some corpus, oj

k is the kth observed context 
of that word type, and sim(o,c) is some similarity 
measure between two contexts.

The process of generating an expectation vector 
can  be  thought  of  as  a  kind  of  transform from 
syntagmatic space, into  paradigmatic space. This 
mapping need not be trivial: items which are close 
in the syntagmatic space need not be close in the 
paradigmatic  space  and  vice-versa  (although  in 
practice we expect some considerable correlation 
by virtue  of  the  distributional  hypothesis). Note 
that although our work herein assumes a popular 
vector representation of context, the nature of the 
contexts and the similarity measure which operates 
upon them are not constrained in any way by the 
framework  given  above.  For  example  they  may 
equally well be dependency trees.

In the following section we outline a distance-
based language model comprising a context model 
and  a  similarity  metric  which  operates  upon  it. 
This  choice  of  model  allows  us  to  maintain  a 
purely  distributional  approach  without  suffering 
the  data-sparseness  associated  with  n-gram 
models.

3.2 Language model
 

Theoretical motivation. The precise relationship 
between  syntagmatic  and  paradigmatic  spaces 
implied  by  the  expectation  transform  depends 
upon  the  language  model  employed.  In  a  naive 
language  model  which  assumes  independence 
between  features,  this  mapping  can  be  fully 
represented by a square matrix over word types. 
Although such models are the mainstay of many 
systems  in  NLP,  adopting  the  toolset  of  an 
expection transform in such a case gains us little. 
Therefore  the  relevance  of  the  approach  to  the 
present  task  depends  wholly  upon  having  a 
suitably sophisticated language model.

Building on the work of Washtell  (2009) and 
Terra & Clarke (2004), a distance-based language 
model  is  used  in  the  present  work.  This  is  in 
contrast to the bag-of-words, n-gram, or syntactic 
dependency models more commonly described in 
the  NLP literature.  There  are  two  hypothesised 
advantages to this approach. Firstly, this avoids the 
issue  of  immediate  context  versus  wider  topical 
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context.  While  immediate  context  is  generally 
accepted to  play a  dominant  role  in  WSD, both 
near and far context have been shown to be useful 
- the specific balance being somewhat dependent 
on  the  ambiguous  word  in  question  (Yarowsky, 
1993; Gale et al, 1992; Leacock  et al,  1996). As 
Ide & Veronis (1998) astutely observe, “although 
a distinction is made between micro-context and  
topical  context  in  current  WSD  work,  it  is  not  
clear that this distinction is meaningful. It may be  
more  useful  to  regard  the  two as  lying  along a  
continuum,  and  to  consider  the  role  and  
importance of contextual information as a function 
of distance from the target.” This is precisely the 
assumption adopted herein.  Secondly,  the  use  of 
distance-based  information  alleviates  data 
sparseness. This is simply by virtue of the fact that 
all  words  types  in  a  document  form  part  of  a 
token's context (barring document boundaries, no 
cut-off  distance  is  imposed).  Moreover,  as  it  is 
specific  distance  information  which  is  being 
recorded,  rather  than  (usually  low)  frequency 
counts,  context  vector  components  and  the 
similarity  measurements  which  arise  from  them 
exhibit  good  precision.  Washtell  (2009)  showed 
that these properties of distance-based metrics lead 
to measurable gains in information extracted from 
a  corpus.  In  the  context  of  modelling  human 
notions  of  association  this  also  led  to  improved 
predictive power (Washtell & Markert, 2009).
 
Formal  approach. We  do  not  pre-compute  any 
statistical  representation  of  the  data  upon which 
our  language  model  draws.  With  available 
approaches  this  would  either  require  throwing 
away  a  large  number  of  potentially  relevant 
higher-order dependencies, or would otherwise be 
intractable.  Our  intuition  is  that  the  truest 
representation  of  the  language  encoded  in  the 
corpus  is  the  corpus  itself.  We  therefore  use  an 
indexed corpus directly for all queries.

We use the following as a prototype measure of 
structural  similarity  (see  section  3.1),  although 
note that others are by all means possible.
 

  

Where  o and  c are  context  vectors  whose  j 
components each specify the position in the text of 
the nearest occurrence (to the head of the context) 
of  a  given  word  type.  O and  C are  the  set  of 
indices of all non-zero (i.e. observed) components 
in o and c respectively. The head of the context is 
represented by an additional component in vectors 

o and  c, and is always treated as observed.  f is a 
further function of the positions of words p and q 
in both contexts. It returns a similarity score in the 
unit  range  designating  how similar  the  distance 
op↔oq is to that of cp↔cq.

The  more  consistent  the  relative  positions  of 
the various symbols comprising two contexts, the 
stronger their similarity. Note that the measure is 
additive:  symbols  which  occur  at  all  in  both 
contexts result in positive score contributions. We 
assume that  a context  is  usually incomplete  (i.e. 
that that which lies outside it is unknown, rather 
than non-existent).  The minimum operator in the 
denominator  (the  normalization  factor)  therefore 
ensures  that  words  present  only in  the  larger  of 
two contexts do not constitute negative evidence.

This  formulation  allows  for  considerable 
leeway in how word distances are represented and 
compared.  In  this  work  we  choose  to  treat 
distances  proportionately,  so  small  variations  in 
word  position  between  distant  (presumably 
topically related words)  are  tolerated better  than 
similar  distance variations  between neighbouring 
(more syntactico-semantically related) words.

4 Word Sense Disambiguation
 
A WSD system based on expectation vectors was 
ineligible in the SemEval-2010 WSI/WSD task by 
virtue  of  restrictions  disallowing  the  use  of  a 
corpus-based  language  model.  Instead,  this  task 
implicitly  encouraged  participants  to  focus  on 
context  feature  selection  and  clustering 
approaches.  It  seems  unlikely  to  us  that  these 
stages are where the major bottlenecks for WSD 
(or WSI) lie;  performing WSD on short contexts 
without  any  extra-contextual  information  (i.e. 
general  linguistic  or  domain  experience)  is 
arguably not a task which even humans could be 
expected to perform well. For this reason we have 
chosen  to  focus  initially  on  the  well  explored 
SemEval-2007 task 2 dataset.

4.1 Preliminary Evaluation
 
An  expectation  vector  was  produced  for  each 
training and test instance in the SemEval dataset 
by matching the headword’s context against that of 
each word position in the British National Corpus 
using  an  implementation  of  the  distance  based 
similarity  measure  outlined  in  section  3.2.  For 
matters of convenience, independent forwards and 
backwards  expectation  vectors  were  produced 
from the context preceding the headword and that 
following it,  and  their  elements  were  multiplied 
together  to  produce  the  final  vector.  No 
lemmatization  or  part-of-speech  tagging  was 
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employed.  Neither  was  any  dimensionality 
reduction, each vector therefore having  ~650,000 
elements: one for each word type in the corpus.

Each test sample's vector was compared against 
all  corresponding  training  sample  vectors  using 
both cosine similarity and Euclidean distance2. In 
the MAX setups (see Table 2), each test case was 
assigned the  sense  of  the  single  nearest  training 
example according to the metric being used. In the 
CosOR  setup,  sense  scores  were  generated  by 
applying  a  probabilistic  OR  operation  over  the 
squared Cosine similarities of all relevant training 
examples3.  The  BaseMFS  setup  is  a  popular 
baseline in which the most frequent sense in the 
training  set  for  a  given  ambiguous  word  is 
attributed to every test case.

Nouns Verbs All
CosMAX 83.6 ▲6.1 

▼22.8 70.5 ▲7.6 
▼14.4 79.5 ▲6.7 

▼19.5
EucMAX 78.9 67.0 75.1
CosOR 83.5 66.1 78.0

BaseMFS 78.8 65.5 74.5
 
Table  2:  Recall  on  SemEval  WSD  task,  including 
relative performance gain (▲)  and error reduction (▼) 
over baseline for best setup (preliminary based on first 
25% of test cases).
 

Nouns Verbs All
BEST 86.8 ▲7.3 

▼30.9 76.2 ▲0.0 
▼0.0 81.6 ▲3.7 

▼13.6
BaseMFS 80.9 76.2 78.7

 
Table 3: Recall of best official SemEval WSD systems 
(Agirre & Soroa, 2007), showing relative performance 
gain and error reduction over baseline.

Table 2 shows the results for each test case in 
terms of recall,  for  all  words and for nouns and 
verbs separately. Also shown in table 3 are the best 
and baseline  figures for  the  official  entries from 
the Semeval workshop. Note that figures are not 
directly  comparable  between  tables  because  our 
preliminary results represent only the first 25% of 
the  SemEval  dataset  (hence  the  different 
baselines).  To  aid  some  comparison,  figures  are 
included  in  both  tables  indicating  the  relative 
increases in recall over the baseline, and relative 

2 Cosine Similarity captures the similarity between the 
relative  proportions  of  features  present  in  each  of  two 
vectors.  By  contrast,  Euclidean  Distance  compares  the 
actual values of corresponding features.
 

3 Although encountered rarely in the literature, squared 
Cosine Similarity is a pertinent quantity for tasks that go 
beyond simple ranking. As with Pearson's R2, it represents 
the degree  or  proportion  of  similarity  (consider  that  the 
square of an angle's cosine and that of its sine total 1).

reduction in error.  Note that the system employed 
here is not a word sense induction system as were 
most of those participating in the official SemEval 
task.  The setup of  the  tasks  however  allows for 
systems which perform poorly under the induction 
evaluation  to  perform  competitively  as 
disambiguation systems, so we are not precluded 
from making meaningful comparisons here.

5 Discussion and Future Direction
 

We have  presented  a  new type  of  wordspace 
model  based  on  vectors  derived  from  the 
predictions  of  a  language  model  applied  to  a 
context, rather than directly from the features of a 
context  itself.  We  have  conducted  a  preliminary 
investigation of the semantic modelling power of 
such vectors in the setting of a popular WSD task. 
The results  are  very encouraging.  Although it  is 
too  early  to  draw  hard  conclusions,  preliminary 
results suggest a performance at least comparable 
the present  state of  the art  on this  task.  What  is 
particularly noteworthy is that the approach taken 
here  seems  to  perform  equally  well  at 
discriminating  verbs  and  nouns.  Verbs  have 
traditionally proven very problematic: none of the 
six SemEval systems were able to improve upon 
the  verb  baseline.  More  recent  studies  have 
focused on discriminating nouns (Brody & Lapata, 
2009; Klapaftis & Manandhar, 2007).

Further gains might be expected by employing 
a  corpus  which  is  more  closely  matched  to  the 
material  being  disambiguated,  such  as  the  Wall 
Street Journal in the present case.

It is also worth noting that the system presented 
here  was  aided  only  by  an  untagged  un-
lemmatised  corpus,  without  the  use  of  any 
structured  knowledge  sources. While  we  expect 
that judicious use of lemmatization could improve 
these results, we believe the key to the quality of 
expectation  vectors  is  in  the  specific  predictive 
language  model  employed.  We  have  scarcely 
experimented  with  this,  opting  for  a  relatively 
untested  distance-based  model  throughout,  and 
choosing  instead  to  experiment  with  the 
application of different vector similarity measures. 
While  the  nature  of  the  language  model  used 
enables  it  to  capture  complex  interdependencies, 
and long-range dependencies, it is based on direct 
querying of a corpus and therefore does not scale 
at  all  well.  This  makes  its  use  in the  context  of 
most applications or with larger corpora untenable. 
Exploring  alternative  language  models  (drawing 
upon the copious research in this field) is therefore 
a focus for future research; the ability to do this 
highlights  one  of  the  major  advantages  of  this 
approach to modelling meaning.
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