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Abstract

In this work, we propose a semi-
supervised extension to a well-known
supervised domain adaptation approach
(EA) (Dauḿe III, 2007). Our proposed
approach (EA++) builds on the notion
of augmented space (introduced in EA)
and harnesses unlabeled data in target do-
main to ameliorate the transfer of infor-
mation fromsourceto target. This semi-
supervised approach to domain adaptation
is extremely simple to implement, and can
be applied as a pre-processing step to any
supervised learner. Experimental results
on sequential labeling tasks demonstrate
the efficacy of the proposed method.

1 Introduction

A domain adaptation approach for sequential la-
beling tasks in NLP was proposed in (Daumé
III, 2007). The proposed approach, termed
EASYADAPT (EA), augments thesource domain
feature space using features from labeled data in
target domain. EA is simple, easy to extend and
implement as a preprocessing step and most im-
portantly is agnostic of the underlying classifier.
However, EA requires labeled data in the target
and hence applies tofully supervised(labeled data
in sourceand target) domain adaptation settings
only. In this paper, we propose asemi-supervised1

(labeled data insource, and both labeled and un-
labeled data intarget) approach to leverage unla-
beled data for EASYADAPT (which we call EA++)
and empirically demonstrate its superior perfor-
mance over EA as well as few other existing ap-
proaches.

1We refer, labeled data in source andonly unlabeled data
in target, as theunsuperviseddomain adaptation setting.

There exists prior work on supervised domain
adaptation (or multi-task learning) that can be re-
lated to EASYADAPT. An algorithm for multi-
task learning using shared parameters was pro-
posed (Evgeniou and Pontil, 2004) for multi-task
regularization where each task parameter was rep-
resented as sum of a mean parameter (that stays
same for all tasks) and its deviation from this
mean. SVM was used as the base classifier
and the algorithm was formulated in the standard
SVM dual optimization setting. Subsequently,
this framework (Evgeniou and Pontil, 2004) was
extended (Dredze et al., 2010) to online multi-
domain setting. Prior work on semi-supervised
approaches to domain adaptation also exists in lit-
erature. Extraction of specific features from the
available dataset was proposed (Arnold and Co-
hen, 2008; Blitzer et al., 2006) to facilitate the
task of domain adaptation. Co-adaptation (Tur,
2009), a combination of co-training and domain
adaptation, can also be considered as a semi-
supervised approach to domain adaptation. A
semi-supervised EM algorithm for domain adap-
tation was proposed in (Dai et al., 2007). Sim-
ilar to graph based semi-supervised approaches,
a label propagation method was proposed (Xing
et al., 2007) to facilitate domain adaptation. The
recently proposed Domain Adaptation Machine
(DAM) (Duan et al., 2009) is a semi-supervised
extension of SVMs for domain adaptation and
presents extensive empirical results. However, in
almost all of the above cases, the proposed meth-
ods either use specifics of the datasets or are cus-
tomized for some particular base classifier and
hence it is not clear how the proposed methods
can be extended to other existing classifiers.

EA, on the other hand, is remarkably general in
the sense that it can be used as a pre-processing
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step in conjunction with any base classifier. How-
ever, one of the prime limitations of EA is its inca-
pability to leverage unlabeled data. Given its sim-
plicity and generality, it would be interesting to
extend EA to semi-supervised settings. In this pa-
per we propose EA++, a co-regularization based
semi-supervised extension to EA. We present our
approach and results for a single pair of source
and target domain. However, we note that EA++
can also be extended to multiple source settings.
If we havek sources and a single target domain
then we can introduce a co-regularizer for each
source-target pair. Due to space constraints, we
defer details to a full version.

2 Background

2.1 Problem Setup and Notations

Let X ⊂ R
d denote the instance space andY

= {−1, +1} denote the label space. We have a set
of source labeled examplesLs(∼ Ds(x, y)) and
a set of target labeled examplesLt(∼ Dt(x, y)),
where|Ls| = ls ≫ |Lt| = lt. We also have target
unlabeled data denoted byUt(∼ Dt(x)), where
|Ut| = ut. Our goal is to learn a hypothesish :
X 7→ Y having low expected error with respect to
the target domain. In this paper, we considerlin-
ear hypothesesonly. However, the proposed tech-
niques extend to non-linear hypotheses, as men-
tioned in (Dauḿe III, 2007). Source and target
empirical errors for hypothesish are denoted by
ǫ̂s(h, fs) and ǫ̂t(h, ft) respectively, wherefs and
ft are source and target labeling functions. Sim-
ilarly, the corresponding expected errors are de-
noted byǫs(h, fs) and ǫt(h, ft). Shorthand no-
tions of ǫ̂s, ǫ̂t, ǫs andǫt have also been used.

2.2 EasyAdapt (EA)

In this section, we give a brief overview of
EASYADAPT proposed in (Dauḿe III, 2007). Let
us denoteRd as theoriginal space. EA operates
in anaugmentedspace denoted by̆X ⊂ R

3d (for a
single pair of source and target domain). Fork do-
mains, theaugmentedspace blows up toR(k+1)d.
The augmented feature mapsΦs, Φt : X 7→ X̆ for
source and target domains are defined as,

Φs(x) = 〈x, x, 0〉

Φt(x) = 〈x, 0, x〉
(2.1)

where x and 0 are vectors inR
d, and 0 de-

notes a zero vector of dimensiond. The firstd-
dimensional segment corresponds to commonality
between source and target, secondd-dimensional
segment corresponds to the source domain while
the last segment corresponds to the target domain.
Source and target domain features are transformed
using these feature maps and the augmented fea-
ture space so constructed is passed onto the un-
derlying supervised classifier. One of the most ap-
pealing properties of EASYADAPT is that it is ag-
nostic of the underlying supervised classifier be-
ing used to learn in theaugmentedspace. Al-
most anystandard supervised learning approach
for linear classifiers(for e.g., SVMs, perceptrons)
can be used to learn alinear hypothesis̆h ∈ R

3d

in the augmented space. As mentioned earlier,
this work considers linear hypotheses only and the
the proposed techniques can be extended (Daumé
III, 2007) to non-linear hypotheses. Let us denote
h̆ = 〈hc, hs, ht〉, where each ofhc, hs, ht is of
dimensiond and represent thecommon, source-
specificand target-specificcomponents of̆h, re-
spectively. During prediction on target data, the
incoming target featurex is transformed to obtain
Φt(x) and h̆ is applied on this transformed fea-
ture. This is equivalent to applying(hc + ht) on
x.

A good intuitive insight into why this simple
algorithm works so well in practice and outper-
forms most state-of-the-art algorithms is given
in (Dauḿe III, 2007). Briefly, it can be thought to
be simultaneously training two hypotheses:ws =
(hc +hs) for source domain andwt = (hc +gt)
for target domain. The commonality between the
domains is represented byhc whereas the source
and target domain specific information is captured
by hs and ht, respectively. This technique can
be easily extended to a multi-domain scenario by
making more copies of the original feature space
((K +1) copies in case ofK domains). A kernel-
ized version of the algorithm has also been pre-
sented in (Dauḿe III, 2007).

3 Using Unlabeled data

As discussed in the previous section, the
EASYADAPT algorithm is attractive because it
performs very well empirically and can be used in
conjunction with any underlying supervised clas-
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sifier. One drawback of EASYADAPT is that it
does not make use of unlabeled target data which
is generally available in large quantity in most
practical problems. In this section, we propose a
semi-supervised extension of this algorithm while
maintaining the desirable classifier-agnostic prop-
erty.

3.1 Motivation

In multi-view approach for semi-supervised learn-
ing algorithms (Sindhwani et al., 2005), different
hypotheses are learned in differentviews. There-
after, unlabeled data is utilized to co-regularize
these learned hypotheses by making them agree
on unlabeled samples. In domain adaptation, the
source and target data come from two different
distributions. However, if the source and tar-
get domains arereasonably closeto each other,
we can employ a similar form of regularization
using unlabeled data. A similar co-regularizer
based approach for unlabeled data was previously
shown (Duan et al., 2009) to give improved empir-
ical results for domain adaptation task. However,
their technique applies for the particular base clas-
sifier they consider and hence does not extend to
EASYADAPT.

3.2 EA++: EASYADAPT with unlabeled data

In our proposed semi-supervised extension to
EASYADAPT, the source and target hypothesis are
made to agree on unlabeled data. We refer to
this algorithm as EA++. Recall that EASYADAPT

learns a linear hypothesis̆h ∈ R
3d in the aug-

mentedspace. The hypothesis̆h contains com-
mon, source and target sub-hypotheses and is ex-
pressed as̆h = 〈hc, hs, ht〉. In original space
(ref. section 2.2), this is equivalent to learning a
source specific hypothesisws = (hc + hs) and a
target specific hypothesiswt = (hc + ht).

In EA++, we want source hypothesisws and
target hypothesiswt to agree on unlabeled data.
For some unlabeled target samplexi ∈ Ut ⊂ R

d,
EA++ would implicitly want to make the predic-
tions of wt andwt on xi to agree. Formally, it

aims to achieve the following condition:

ws · xi ≈ wt · xi

⇐⇒ (hc + hs) · xi ≈ (hc + ht) · xi

⇐⇒ (hs − ht) · xi ≈ 0

⇐⇒ 〈hc, hs, ht〉 · 〈0, xi, −xi〉 ≈ 0.

(3.1)

We define another feature mapΦu : X 7→ X̃ for
unlabeled data as below:

Φu(x) = 〈0, x, −x〉. (3.2)

Every unlabeled sample is transformed using the
mapΦu(.). The augmented feature space that re-
sults from the application of three feature maps,
namely,Φs : X 7→ X̆, Φt : X 7→ X̆, Φu : X 7→
X̆, on source labeled samples, target labeled sam-
pled and target unlabeled samples is summarized
in Figure 1.

As shown in Eq. 3.1, during the training phase,
EA++ assigns a predicted value close to0 for each
unlabeled sample. However, it is worth noting
that, during the test phase, EA++ predicts labels
from two classes:+1 and −1. This warrants
further exposition of the implementation specifics
which is deferred until the next subsection.
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Figure 1: Diagrammatic representation of feature
augmentation in EA and EA++

Algorithm 1 presents the EA++ approach in de-
tail.

3.3 Implementation

In this section, we present implementation specific
details of EA++. We consider SVM as our base
supervised learner (LEARN in Algorithm 1).
However, these details hold for other supervised

55



Algorithm 1 EA++

Input: Ls; Lt; Ut; LEARN : supervised clas-
sifier
Output: h̆ : classifier learned in augmented
space
/* initialize augmented training set */
1: P := {}
/* construct augmented training set */
2: ∀(x, y) ∈ Ls, P := P ∪ {Φs(x), y}
3: ∀(x, y) ∈ Lt, P := P ∪ {Φt(x), y}
4: ∀x ∈ Ut, P := P ∪ {Φu(x), 0}
/* output learned classifier */
5: h̆ = LEARN (P )

classifiers too. In the dual form of SVM optimiza-
tion function, the labels are multiplied with the in-
ner product of features. This can make the un-
labeled samples redundant since we want their la-
bels to be0 according to Eq. 3.1. To avoid this, we
create as many copies ofΦu(x) as there are labels
and assign each label to one copy. For the case of
binary classification, we create two copies of ev-
ery augmented unlabeled sample, and assign+1
label to one copy and−1 to the other. The learner
attempts to balance the loss of the two copies, and
tries to make the prediction on unlabeled sample
equal to0. Figure 2 shows the curves of the hinge
loss for class+1, class−1 and their sum. The ef-
fective loss for each unlabeled sample is similar to
the sum of losses for+1 and−1 classes (shown in
Figure 2c).

4 Experiments

In this section, we demonstrate the empirical per-
formance of EA augmented with unlabeled data.

4.1 Setup

We follow the same experimental setup used
in (Dauḿe III, 2007) and perform two sequence
labelling tasks (a) named-entity-recognition
(NER), and (b) part-of-speech-tagging (POS )on
the following datasets:

PubMed-POS: Introduced by (Blitzer et al.,
2006), this dataset consists of two domains.
The WSJ portion of the Penn Treebank
serves as the source domain and the PubMed
abstracts serve as the target domain. The
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ss
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ss

(a)

(b)

(c)

Figure 2: Loss functions for class+1, class−1
and unlabeled samples.

task is to perform part-of-speech tagging on
unlabeled PubMed abstracts with a classifier
trained on labeled WSJ and PubMed data.

Treebank-Brown. Treebank-Chunk data consists
of the following domains: the standard WSJ
domain (the same data as for CoNLL 2000),
the ATIS switchboard domain and the Brown
corpus. The Brown corpus consists of data
combined from six subdomains. Treebank-
Chunk is a shallow parsing task based on
the data from the Penn Treebank. Treebank-
Brown is identical to the Treebank-Chunk
task, However, in Treebank-Brown we con-
sider all of the Brown corpus to be a single
domain.

Table 1 presents a summary of the datasets
used. All datasets use roughly the same feature
set which are lexical information (words, stems,
capitalization, prefixes and suffixes), membership
on gazetteers, etc. We use an averaged perceptron
classifier from the Megam framework (implemen-
tation due to (Dauḿe III, 2004)) for all the afore-
mentioned tasks. The training sample size varies
from 1k to 16k. In all cases, the amount of unla-
beled target data was equal to the total amount of
labeled source and target data.
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Task Dom #Tr #De #Te #Ft
PubMed src 950,028 - - 571k
POS tgt 11,264 1,987 14,554 39k

wsj 191,209 29,455 38,440 94k
swbd3 45,282 5,596 41,840 55k
br-cf 58,201 8,307 7,607 144k

Tree br-cg 67,429 9,444 6,897 149k
bank- br-ck 51,379 6,061 9,451 121k
Chunk br-cl 47,382 5,101 5,880 95k

br-cm 11,696 1,324 1,594 51k
br-cn 56,057 6,751 7,847 115k
br-cp 55,318 7,477 5,977 112k
br-cr 16,742 2,522 2,712 65k

Table 1: Summary of Datasets. The columns de-
note task, domain, size of training, development
and test data sets, and the number of unique fea-
tures in the training data.

4.2 Results

We compare the empirical performance of
EA++ with a few other baselines, namely, (a)
SOURCEONLY (classifier trained on source la-
beled samples), (b) TARGETONLY -FULL (classi-
fier trained on the same number of target labeled
samples as the number of source labeled samples
in SOURCEONLY ), (c) TARGETONLY (classifier
trained on small amount of target labeled sam-
ples, roughly one-tenth of the amount of source la-
beled samples in SOURCEONLY ), (d) ALL (clas-
sifier trained on combined labeled samples of
SOURCEONLY and TARGETONLY ), (e) EA (clas-
sifier trained inaugmented feature spaceon the
same input training set as ALL ), (f) EA++ (clas-
sifier trained inaugmented feature spaceon the
same input training set as EA and an equal amount
of unlabeledtarget data). All these approaches
were tested on the entire amount of availabletar-
get test data.

Figure 3 presents the learning curves for
(a) SOURCEONLY , (b) TARGETONLY -FULL , (c)
TARGETONLY , (d) ALL , (e) EA, and (f) EA++
(EA with unlabeled data). The x-axis repre-
sents the number of training samples on which
the predictor has been trained. At this point,
we note that the number of training samples
vary depending on the particular approach being
used. For SOURCEONLY , TARGETONLY -FULL

and TARGETONLY , it is just the corresponding
number of labeled source or target samples, re-
spectively. For ALL and EA, it is the summa-
tion of labeled source and target samples. For
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Figure 3: Test accuracy of (a) PubMed-POS and
(b) Treebank-Brown for, SOURCEONLY , TARGE-
TONLY -FULL , TARGETONLY , ALL , EA and
EA++.

EA++, thex-value plotted denotes the amount of
unlabeled target data used (in addition to an equal
amount of source+target labeled data, as in ALL

or EA). We plot this number for EA++, just to
compare its improvement over EA when using an
additional (and equal) amount of unlabeled target
data. This accounts for the differentx values plot-
ted for the different curves. In all cases, the y-axis
denotes the error rate.

As can be seen in Figure 3(a), EA++ performs
better than the normal EA (which uses labeled
data only). The labeled and unlabeled case start
together but with increase in number of samples
their gap increases with the unlabeled case result-
ing in much lower error as compared to the labeled
case. Similar trends were observed in other data
sets as can be seen in Figure 3(b). We also note
that EA performs poorly for some cases, as was
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shown (Dauḿe III, 2007) earlier.

5 Summary

In this paper, we have proposed a semi-supervised
extension to an existing domain adaptation tech-
nique (EA). Our approach EA++, leverages the
unlabeled data to improve the performance of EA.
Empirical results demonstrate improved accuracy
for sequential labeling tasks performed on stan-
dardized datasets. The previously proposed EA
could be applied exclusively tofully supervised
domain adaptation problems only. However, with
the current extension, EA++ applies to bothfully
supervisedand semi-superviseddomain adapta-
tion problems.

6 Future Work

In both EA and EA++, we use features from
source and target space to construct an augmented
feature space. In other words, we are sharing fea-
tures across source and targetlabeleddata. We
term such algorithms asFeature Sharing Algo-
rithms. Feature sharing algorithms are effective
for domain adaptation because they are simple,
easy to implement as a preprocessing step and out-
perform many existing state-of-the-art techniques
(shown previously for domain adaptation (Daumé
III, 2007)). However, despite their simplicity and
empirical success, it is not theoretically apparent
why these algorithms perform so well. Prior work
provides some intuitions but is mostly empirical
and a formal theoretical analysis to justify FSAs
(for domain adaptation) is clearly missing. Prior
work (Maurer, 2006) analyzes the multi-task reg-
ularization approach (Evgeniou and Pontil, 2004)
(which is related to EA) but they consider a cumu-
lative loss in multi-task (or multi-domain) setting.
This does not apply to domain adaptation setting
where we are mainly interested in loss in the target
domainonly.

Theoretically analyzing the superior perfor-
mance of EA and EA++ and providing gener-
alization guarantees is an interesting line of fu-
ture work. One approach would be to model
the feature sharing approach in terms of co-
regularization; an idea that originated in the
context of multiview learning and for which
some theoretical analysis has already been done
(Rosenberg and Bartlett, 2007; Sindhwani and

Rosenberg, 2008). Additionally, the afore-
mentioned techniques, namely, SOURCEONLY ,
TARGETONLY , ALL have been empirically com-
pared to EA and EA++. It would be interest-
ing to formally frame these approaches and see
whether their empirical performance can be justi-
fied within a theoretical framework.
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