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Abstract
This paper examines the influence of fea-
tures based on clusters of co-occurrences
for supervised Word Sense Disambigua-
tion and Lexical Substitution. Co-
occurrence cluster features are derived
from clustering the local neighborhood of
a target word in a co-occurrence graph
based on a corpus in a completely un-
supervised fashion. Clusters can be as-
signed in context and are used as features
in a supervised WSD system. Experi-
ments fitting a strong baseline system with
these additional features are conducted on
two datasets, showing improvements. Co-
occurrence features are a simple way to
mimic Topic Signatures (Martı́nez et al.,
2008) without needing to construct re-
sources manually. Further, a system is de-
scribed that produces lexical substitutions
in context with very high precision.

1 Introduction

Word Sense Disambiguation (WSD, see (Agirre
and Edmonds, 2006) for an extensive overview)
is commonly seen as an enabling technology for
applications like semantic parsing, semantic role
labeling and semantic retrieval. Throughout re-
cent years, the Senseval and Semeval competitions
have shown that a) WordNet as-is is not an ade-
quate semantic resource for reaching high preci-
sion and b) supervised WSD approaches outper-
form unsupervised (i.e. not using sense-annotated
examples) approaches. Due to the manual effort
involved in creating more adequate word sense in-
ventories and sense-annotated training data, WSD
has yet to see its prime-time in real world applica-
tions.

Since WordNet’s sense distinctions are often too
fine-grained for allowing reliable distinctions by
machines and humans, the OntoNotes project
(Hovy et al., 2006) conflated similar WordNet
senses until 90% inter-annotator agreement on
sense-labelling was reached. The SemEval 2007
lexical sample task employs this ”coarse-grained”
inventory, which allows for higher system perfor-
mance.
To alleviate the bottleneck of sense-labelled sen-
tences, (Biemann and Nygaard, 2010) present
an approach for acquiring a sense inventory
along with sense-annotated example usages using
crowdsourcing, which makes the acquisition pro-
cess cheaper and potentially quicker.
Trying to do away with manual resources entirely,
the field of Word Sense Induction aims at induc-
ing the inventory from text corpora by clustering
occurrences or senses according to distributional
similarity, e.g. (Veronis, 2004). While such unsu-
pervised and knowledge-free systems are capable
of discriminating well between different usages, it
is not trivial to link their distinctions to existing se-
mantic resources, which is often necessary in ap-
plications.
Topic Signatures (Martı́nez et al., 2008) is an at-
tempt to account for differences in relevant topics
per target word. Here, a large number of contexts
for a given sense inventory are collected automat-
ically using relations from a semantic resource,
sense by sense. The most discriminating content
words per sense are used to identify a sense in
an unseen context. This approach is amongst the
most successful methods in the field. It requires,
however, a semantic resource of sufficient detail
and size and a sense-labeled corpus to estimate
priors from the sense distribution. Here, a sim-
ilar approach is described that uses an unlabeled
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corpus alone for unsupervised topic signature ac-
quisition using graph clustering, not relying on the
existence of a WordNet. Unlike in previous eval-
uations like (Agirre et al., 2006), parameters for
word sense induction are not optimized globally,
but instead several parameter settings are offered
as features to a Machine Learning setup.
Experimental results are provided for two datasets:
the Semeval-2007 lexical sample task (Pradhan et
al., 2007) and the Turk bootstrap Word Sense In-
ventory (TWSI1, (Biemann and Nygaard, 2010) ).

2 Cluster Co-occurrence Features

2.1 Graph Preperation and Parameterization

Similar to the approach in (Widdows and Dorow,
2002), a word graph around each target word
is constructed. In this work, sentence-based
co-occurrence statistics from a large corpus are
used as a basis to to construct several word
graphs for different parameterizations. Significant
co-occurrences between all content words (nouns,
verbs, adjectives as identified by POS tagging) are
computed from a large corpus using the tinyCC2

tool. The full word graph for a target word is de-
fined as all words significantly co-occurring with
the target as nodes, with edge weights set to the
log-likelihood significance of the co-occurrence
between the words corresponding to nodes. Edges
between words that co-occur only once or with
significance smaller than 6.63 (1% confidence
level) are omitted.
Aiming at different granularities of usage clusters,
the graph is parameterized by a size parameter
t and a density parameter n: Only the most
significant t co-occurrences of the target enter the
graph as nodes, and an edge between nodes is
drawn only if one of the corresponding words is
contained in the most significant n co-occurrences
of the other.

2.2 Graph Clustering Parameterization

As described in (Biemann, 2006), the neighbor-
hood graph is clustered with Chinese Whispers.
This efficient graph clustering algorithm finds the
numbers of clusters automatically and returns a
partition of the nodes. It is initialized by assigning
different classes to all nodes in the graph. Then,

1full dataset available for download at
http://aclweb.org/aclwiki/index.php?title=Image:TWSI397.zip

2http://beam.to/biem/software/TinyCC2.html

a number of local update steps are performed, in
which a node inherits the predominant class in its
neighborhood. At this, classes of adjacent nodes
are weighted by edge weight and downweighted
by the degree (number of adjacent nodes) of the
neighboring node. This results in hard clusters of
words per target, which represent different target
usages.
Downweighting nodes by degree is done accord-
ing to the following intuition: nodes with high
degrees are probably very universally used words
and should be less influential for clustering. Three
ways of node weighting are used: (a) dividing the
influence of a node in the update step by the degree
of the node, (b) dividing by the natural logarithm
of the degree + 1 and (c) not doing node weight-
ing. The more aggressive the downweighting, the
higher granularity is expected for the clustering.
It is emphasized that no tuning techniques are ap-
plied to arrive at the ’best’ clustering. Rather, sev-
eral clusterings of different granularities as fea-
tures are made available to a supervised system.
Note that this is different from (Agirre et al.,
2006), where a single global clustering was used
directly in a greedy mapping to senses.

2.3 Feature Assignment in Context
For a given occurrence of a target word, the
overlap in words between the textual context
and all clusters from the neighborhood graph is
measured. The cluster ID of the cluster with the
highest overlap is assigned as a feature. This can
be viewed as a word sense induction system in its
own right.
At this, several clusterings from different param-
eterizations are used to form distinct features,
which enables the machine learning algorithm to
pick the most suitable cluster features per target
word when building the classification model.

2.4 Corpora for Cluster Features
When incorporating features that are induced us-
ing large unlabeled corpora, it is important to en-
sure that the corpus for feature induction and the
word sense labeled corpus are from the same do-
main, ideally from the same source.
Since TWSI has been created from Wikipedia, an
English Wikipedia dump from January 2008 is
used for feature induction, comprising a total of 60
million sentences. The source for the lexical sam-
ple task is the Wall Street Journal, and since the
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76,400 sentences from the WSJ Penn Treebank are
rather small for co-occurrence analysis, a 20 Mil-
lion sentence New York Times corpus was used
instead.
For each corpus, a total of 45 different clus-
terings were prepared for all combinations of
t={50,100,150,200,250}, n={50,100,200} and
node degree weighting options (a), (b) and (c).

3 Experimental Setup

3.1 Machine Learning Setup

The classification algorithm used throughout this
work is the AODE (Webb et al., 2005) classifier
as provided by the WEKA Machine Learning
software (Hall et al., 2009). This algorithm is
similar to a Naı̈ve Bayes classifier. As opposed
to the latter, AODE does not assume mutual
independence of features but models correlations
between them explicitly, which is highly desirable
here since both baseline and co-occurrence cluster
features are expected to be highly correlated.
Further, AODE handles nominal features, so it is
directly possible to use lexical features and cluster
IDs in the classifier. AODE showed superior
performance to other classifiers handling nominal
features in preliminary experiments.

3.2 Baseline System

The baseline system relies on 15 lexical and POS-
based nominal features: word forms left and right
from target, POS sequences left and right bigram
around target, POS tags of left and right word from
target, and POS tag of target, two left and two right
nouns from target, left and right verbs from target
and left and right adjectives from target.

3.3 Feature Selection

To determine the most useful cluster co-
occurrence features, they were added to the
baseline features one at the time, measuring the
contribution using 10-fold cross validation on
the training set. Then, the best k single cluster
features for k={2,3,5,10} were added together
to account for a range of different granularities.
The best performing system on the lexical sample
training data resulted in a 10-fold accuracy of
88.5% (baseline: 87.1%) for k=3. On the 204
ambiguous words (595 total senses with 46
sentences per sense on average) of the TWSI
only, the best system was found at k=5 with a

System F1
NUS-ML 88.7% ± 1.2
top3 cluster, optimal F1 88.0% ± 1.2
top3 cluster, max recall 87.8% ± 1.2
baseline, optimal F1 87.5% ± 1.2
baseline, max recall 87.3% ± 1.2
UBC-ALM 86.9% ± 1.2

Table 1: Cluster co-occurrence features and base-
line in comparison to the best two systems in the
SemEval 2007 Task 17 Lexical Sample evaluation
(Pradhan et al., 2007). Error margins provided by
the task organizers.

10-fold accuracy of 83.0% (baseline: 80.7%,
MFS: 71.5%). Across the board, all single
co-occurrence features improve over the baseline,
most of them significantly.

4 Results

4.1 SemEval 2007 lexical sample task

The system in the configuration determined above
was trained on the full training set and applied it
to the test data provided bt the task organizers.
Since the AODE classifier reports a confidence
score (corresponding to the class probability for
the winning class at classification time), it is possi-
ble to investigate a tradeoff between precision and
recall to optimize the F1-value3 used for scoring
in the lexical sample task.

It is surprising that the baseline system outper-
forms the second-best system in the 2007 evalua-
tion, see Table 1. This might be attributed to the
AODE classifier used, but also hints at the power
of nominal lexical features in general.
The co-occurrence cluster system outperforms the
baseline, but does not reach the performance of the
winning system. However, all reported systems
fall into each other’s error margins, unlike when
evaluating on training data splits. In conclusion,
the WSD setup is competitive to other WSD sys-
tems in the literature, while using only minimal
linguistic preprocessing and no word sense inven-
tory information beyond what is provided by train-
ing examples.

3F1 = (2 · precision · recall)/(precision + recall)
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Substitutions
Gold System Random

YES 469 (93.8%) 456 (91.2%) 12 (2.4%)

NO 14 (2.8%) 27 (5.4%) 485 (97.0%)

SOMEWHAT 17 (3.4%) 17 (3.4%) 3 (0.6%)

Table 2: Substitution acceptability as measured by
crowdsourcing for TWSI gold assignments, sys-
tem assignments and random assignments.

4.2 Substitution Acceptability

For evaluating substitution acceptability, 500
labeled sentences from the overall data (for all
397 nouns, not just the ambiguous nouns used in
the experiments above) were randomly selected.
The 10-fold test classifications as described above
were used for system word sense assignment. The
three highest ranked substitutions per sense from
the TWSI are supplied as substitutions.
In a crowdsourcing task, workers had to state
whether the substitutions provided for a target
word in context do not change the meaning of
the sentence. Each assignment was given to three
workers.
Since this measures both substitution quality of
the TWSI and the system’s capability of assigning
the right sense, workers were also asked to score
the substitutions for the gold standard assignments
of this data set. For control, random substitution
quality for all sentences is measured.
Table 2 shows the results for averaging over
the worker’s responses. For being counted as
belonging to the YES or NO class, the majority of
workers had to choose this option, otherwise the
item was counted into the SOMEWHAT class.

The substitution quality of the gold standard is
somewhat noisy, containing 2.8% errors and 3.4%
questionable cases. Despite this, the system is able
to assign acceptable substitutions in over 91% of
cases, questionable substitutions for 3.4% at an
error rate of only 5.4%. Checking the positively
judged random assignments, an acceptable substi-
tution was found in about half of the cases by the
author, which allows to estimate the worker noise
at about 1%.
When using confidence values of the AODE clas-
sifier to control recall as reported in Table 3, it is
possible to further reduce error rates, which might
e.g. improve retrieval applications.

coverage YES NO
100% 91.2% 5.4%
95% 91.8% 3.4%
90% 93.8% 2.9%
80% 94.8% 2.0%
70% 95.7% 0.9%

Table 3: Substitution acceptability in reduced cov-
erage settings. SOMEWHAT class accounts for
percentage points missing to 100%.

5 Conclusion

A way to improve WSD accuracy using a family of
co-occurrence cluster features was demonstrated
on two data sets. Instead of optimizing parameters
globally, features corresponding to different gran-
ularities of induced word usages are made avail-
able in parallel as features in a supervised Machine
Learning setting.
Whereas the contribution of co-occurrence fea-
tures is significant on the TWSI, it is not signif-
icantly improving results on the SemEval 2007
data. This might be attributed to a larger number
of average training examples in the latter, making
smoothing over clusters less necessary due to less
lexical sparsity.
We measured performance of our lexical substi-
tution system by having the acceptability of the
system-provided substitutions in context manually
judged. With error rates in the single figures and
the possibility to reduce error further by sacrific-
ing recall, we provide a firm enabling technology
for semantic search.
For future work, it would be interesting to evaluate
the full substitution system based on the TWSI in
a semantic retrieval application.
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