
Proceedings of the NAACL HLT 2010 Workshop on Semantic Search, pages 44–52,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Object Search: Supporting Structured Queries in Web Search Engines

Kim Cuong Pham†, Nicholas Rizzolo†, Kevin Small‡, Kevin Chen-Chuan Chang†, Dan Roth†

University of Illinois at Urbana-Champaign†

Department of Computer Science
{kimpham2, rizzolo, kcchang, danr}@illinois.edu

Tufts University‡

Department of Computer Science
kevin.small@tufts.edu

Abstract

As the web evolves, increasing quantities of

structured information is embedded in web

pages in disparate formats. For example, a

digital camera’s description may include its

price and megapixels whereas a professor’s

description may include her name, univer-

sity, and research interests. Both types of

pages may include additional ambiguous in-

formation. General search engines (GSEs)

do not support queries over these types of

data because they ignore the web document

semantics. Conversely, describing requi-

site semantics through structured queries into

databases populated by information extraction

(IE) techniques are expensive and not easily

adaptable to new domains. This paper de-

scribes a methodology for rapidly develop-

ing search engines capable of answering struc-

tured queries over unstructured corpora by uti-

lizing machine learning to avoid explicit IE.

We empirically show that with minimum ad-

ditional human effort, our system outperforms

a GSE with respect to structured queries with

clear object semantics.

1 Introduction

General search engines (GSEs) are sufficient for

fulfilling the information needs of most queries.

However, they are often inadequate for retrieving

web pages that concisely describe real world ob-

jects as these queries require analysis of both un-

structured text and structured data contained in web

pages. For example, digital cameras with specific

brand, megapixel, zoom, and price attributes might

be found on an online shopping website, or a pro-

fessor with her name, university, department, and

research interest attributes might be found on her

homepage. Correspondingly, as the web continues

to evolve from a general text corpus into a hetero-

geneous collection of documents, targeted retrieval

strategies must be developed for satisfying these

more precise information needs. We accomplish this

by using structured queries to capture the intended

semantics of a user query and learning domain spe-

cific ranking functions to represent the hidden se-

mantics of object classes contained in web pages.

It is not uncommon for a user to want to pose an

object query on the web. For example, an online

shopper might be looking for shopping pages that

sell canon digital cameras with 5 megapixels cost-

ing no more than $300. A graduate student might

be looking for homepages of computer science pro-

fessors who work in the information retrieval area.

Such users expect to get a list web pages containing

objects they are looking for, or object pages, which

we will define more precisely in later sections.

GSEs rarely return satisfactory results when the

user has a structured query in mind for two primary

reasons. Firstly, GSEs only handle keyword queries

whereas structured queries frequently involve data

field semantics (e.g. numerical constraints) and ex-

hibit field interdependencies. Secondly, since GSEs

are domain-agnostic, they will generally rank cam-

era pages utilizing the same functions as a profes-

sor’s homepage, ignoring much of the structured in-

formation specific to particular domains.

Conversely, vertical search engines (e.g. DBLife,

cazoodle.com, Rexa.info, etc.) approach this prob-

44

lem from the information extraction (IE) perspec-

tive. Instead of searching an inverted index directly,

they first extract data records from text (Kushmer-

ick et al., 1997; McCallum et al., 2000). IE solu-

tions, even with large scale techniques (Agichtein,

2005), do not scale to the entire web and cost signif-

icantly more than GSEs. Secondly, creating domain-

specific models or wrappers require labeling training

examples and human expertise for each individual

site. Thirdly, pre-extracting information lacks flexi-

bility; decisions made during IE are irrevocable, and

at query time, users may find additional value in par-

tial or noisy records that were discarded by the IE

system.

These issues motivate our novel approach for de-

signing a GSE capable of answering complex struc-

tured queries, which we refer to as Object Search.

At a high level, we search web pages containing

structured information directly over their feature in-

dex, similarly to GSEs, adding expressivity by re-

formulating the structured query such that it can be

executed on a traditional inverted index. Thus, we

avoid the expense incurred by IE approaches when

supporting new object domains. From a techni-

cal perspective, this work describes a principled ap-

proach to customizing GSEs to answer structured

queries from any domain by proposing a composi-

tional ranking model for ranking web pages with

regards to structured queries and presenting an in-

teractive learning approach that eases the process of

training for a new domain.

2 The Object Search Problem

The Object Search problem is to find the object

pages that answer a user’s object query. An object

query belongs to an object domain. An object do-

main defines a set of object attributes. An object

query is simply a set of constraints over these at-

tributes. Thus we define an object query as a tuple

of n constraints q ≡ c1 ∧ c2 ∧ .. ∧ cn, where ci is a

constraint on attribute ai. More specifically, a con-

straint ci is defined as a set of acceptable values θi
for attribute ai; i.e. ci = (ai ∈ θi). For example, an

equality constraint such as “the brand is Canon” can

be specified as (abrand ∈ {Canon}) and a numeric

range constraint such as “the price is at most $200”

can be specified as (aprice ∈ [0, 200]). When the

user does not care about an attribute, the constraint

is the constant true.

Given an object query, we want a set of satis-

fying object pages. Specifically, object pages are

pages that represent exactly one inherent object on

the web. Pages that list several objects such as a

department directory page or camera listing pages

are not considered object pages because even though

they mentioned the object, they do not represent any

particular object. There is often a single object page

but there are many web pages that mention the ob-

ject.

The goal of Object Search is similar to learning to

rank problems (Liu, 2009), in that its goal is to learn

a ranking function ρ : D × Q → R that ranks any

(document, query) pairs. This is accomplished by

learning an function over a set of relevant features.

Each feature can be modeled as a function that takes

the pair and outputs a real value φ : D × Q → R.

For example, a term frequency feature outputs the

number of times the query appears in the document.

We define a function Φ = (φ1, φ2, ...φn) that takes a

(document, query) pair and outputs a vector of fea-

tures. The original ranking function can be written

as ρ(d, q) = ρ′(Φ(d, q)) where ρ′ : Rn → R is the

function; i.e.:

ρ = ρ′ ◦ Φ (1)

Despite the similarities, Object Search differs

from traditional information retrieval (IR) problems

in many respects. First, IR can answer only keyword

queries whereas an object query is structured by

keyword constraints as well as numeric constraints.

Second, Object Search results are “focused”, in the

sense that they must contain an object, as opposed

to the broad notion of relevance in IR. Finally, since

object pages of different domains might have little

in common, we cannot apply the same ranking func-

tion for different object domains.

As a consequence, in a learning to rank problem,

the set of features Φ are fixed for all query. The

major concern is learning the function ρ′. In Object

Search settings, we expect different Φ for each ob-

ject domain. Thus, we have to derive both Φ and

ρ′.

There are a number of challenges in solving these

problems. First, we need a deeper understanding of

45

structured information embedded in web pages. In

many cases, an object attribute such as professor’s

university might appear only once in his homepage.

Thus, using a traditional bag-of-words model is of-

ten insufficient, because one cannot distinguish the

professor own university from other university men-

tioned in his homepage. Second, we will need train-

ing data to train a new ranking function for each

new object domain. Thus, we require an efficient

bootstrapping method to tackle this problem. Fi-

nally, any acceptable solution must scale to the size

of the web. This requirement poses challenges for

efficient query processing and efficient ranking via

the learned ranking function.

3 Object Search Framework

In this section, we illustrate the primary intuitions

behind our aproach for an Object Search solu-

tion. We describe its architecture, which serves

as a search engine framework to support structured

queries of any domain. The technical details of ma-

jor components are left for subsequent sections.

3.1 Intuition

The main idea behind our proposed approach is that

we develop different vertical search engines to sup-

port object queries in different domains. However,

we want to keep the cost of supporting each new

domain as small as possible. The key principles to

keep the cost small are to 1) share as much as pos-

sible between search engines of different domains

and 2) automate the process as much as possible

using machine learning techniques. To illustrate

our proposed approach, we suppose that an user is

searching the web for cameras. Her object query is

q = abrand ∈ {canon} ∧ aprice ∈ [0, 200].

First, we have to automatically learn a function ρ

that ranks web pages given an object query as de-

scribed in Section 2. We observe web pages rele-

vant to the query and notice several salient features

such as “the word canon appears in the title”, “the

word canon appears near manufacturer”, “interest-

ing words that appear include powershot, eos, ixus”,

and “a price value appears after ’$’ near the word

price or sale”. Intuitively, pages containing these

features have a much higher chance of containing

the Canon camera being searched. Given labeled

training data, we can learn a ranking function that

combines these features to produce the probability

of a page containing the desired camera object.

Furthermore, we need to answer user query at

query time. We need to be able to look up these

features efficiently from our index of the web. A

naı̈ve method to index the web is to store a list of

web pages that have the above features, and at query

time, union all pages that have one or more features,

aggregate the score for each web page, and return

the ranked result. There are three problems with this

method. First, these features are dependent on each

object domain; thus, the size of the index will in-

crease as the number of domains grows. Second,

each time a new domain is added, a new set of fea-

tures needs to be indexed, and we have to extract

features for every single web page again. Third, we

have to know beforehand the list of camera brands,

megapixel ranges, price ranges, etc, which is infea-

sible for most object domain.

However, we observe that the above query de-

pendent features can be computed efficiently from

a query independent index. For example, whether

“the word canon appears near manufacturer” can be

computed if we index all occurrences of the words

canon and manufacturer. Similarly, the feature “the

word canon appears in the title” can be computed if

we index all the words from web pages’ title, which

only depends on the web pages themselves. Since

the words and numbers from different parts of a web

page can be indexed independently of the object do-

main, we can share them across different domains.

Thus, we follow the first principle mentioned above.

Of course, computing query dependent features

from the domain independent index is more expen-

sive than computing it from the naı̈ve index above.

However, this cost is scalable to the web. As a mat-

ter of fact, these features are equivalent to “phrase

search” features in modern search engines.

Thus, at a high level, we solve the Object Search

problem by learning a domain dependent ranking

function for each object domain. We store basic do-

main independent features of the web in our index.

At query time, we compute domain dependent fea-

tures from this index and apply the ranking function

to return a ranked list of web pages. In this paper, we

focus on the learning problems, leaving the problem

of efficient query processing for future work.

46

Figure 1: Object Search Architecture

3.2 System Architecture

The main goal of our Object Search system is to en-

able searching the web with object queries. In order

to do this, the system must address the challenges

described in Section 2. From the end-user’s point

of view, the system must promptly and accurately

return web pages for their object query. From the

developer’s point of view, the system must facilitate

building a new search engine to support his object

domain of interest. The goal of the architecture is to

orchestrate all of these requirements.

Figure 1 depicts Object Search architecture. It

shows how different components of Object Search

interact with an end-user and a developer. The end-

user can issue any object query of known domains.

Each time the system receives an object query from

the end-user, it translates the query into a domain in-

dependent feature query. Then the Query Processor

executes the feature query on the inverted index, ag-

gregates the features using learned function ρ′, and

returns a ranked list of web pages to the user.

The developer’s job is to define his object domain

and train a ranking function for it. He does it by

incrementally training the function. He starts by an-

notating a few web pages and running a learning al-

gorithm to produce a ranking function, which is then

used to retrieve more data for the developer to anno-

tate. The process iterates until the developer is satis-

fied with his trained ranking function for the object

domain.

More specifically, the Ranking Function Learner

module learns the function ρ′ and Φ as mentioned in

Section 2. The Query Translator instantiates Φ with

user object query q, resulting in Φ(q). Recall that Φ
is a set of feature functions φi. Each φi is a function

of a (d, q) pair such as “term frequency of ak in title”

(ak is an attribute of the object). Thus we can instan-

tiate φ(q) by replacing ak with θk, which is part of

the query q. For example, if θk = {canon} in the

previous example, then φ(q) is “term frequency of

canon in title”. Thus φ(q) becomes a query indepen-

dent feature and Φ(q) becomes a feature query that

can be executed in our inverted index by the Query

Processor.

4 Learning for Structured Ranking

We now describe how we learn the domain depen-

dent ranking function ρ, which is the core learn-

ing aspect of Object Search. As mentioned in the

previous section, ρ differs from existing learning

to rank work due to the structure in object queries.

We exploit this structure to decompose the ranking

function into several components (Section 4.1) and

combine them using a probabilistic model. Exist-

ing learning to rank methods can then be leveraged

to rank the individual components. Section 4.2 de-

scribes how we fit individual ranking scores into our

probabilistic model by calibrating their probability.

4.1 Ranking model

As stated, ρ models the joint probability distribu-

tion over the space of documents and queries ρ =
P (d, q). Once estimated, this distribution can rank

documents inD according to their probability of sat-

isfying q. Since we are only interested in finding

satisfying object pages, we introduce a variable ω

which indicates if the document d is an object page.

Furthermore, we introduce n variables ζi which in-

dicate whether constraint ci in the query q is satis-

fied. The probability computed by ρ is then:

P (d, q) = P (ζ1, . . . , ζn, d)

= P (ζ1, . . . , ζn, d, ω)

+P (ζ1, . . . , ζn, d, ω)

= P (d)P (ω|d)P (ζ1, . . . , ζn|d, ω)

+P (d)P (ω|d)P (ζ1, . . . , ζn|d, ω)

= P (d)P (ω|d)P (ζ1, . . . , ζn|d, ω) (2)

47

' P (ω|d)

n∏

i=1

P (ζi|d, ω) (3)

Equation 2 holds because non-object pages do

not satisfy the query, thus, P (ζ1, . . . , ζn|d, ω) = 0.

Equation 3 holds because we assume a uniform dis-

tribution over d and conditional independence over

ζi given d and ω.

Thus, the rest of the problem is estimating P (ω|d)
and P (ζi|d, ω). The difference between these prob-

ability estimates lies in the features we use. Since ω

depends only in d but not q, we use query indepen-

dent features. Similarly, ζi only depends on d and

ci, thus we use features depending on ci and d.

4.2 Calibrating ranking probability

In theory, we can use any learning algorithm men-

tioned in (Liu, 2009)’s survey to obtain the terms in

Equation 3. In practice, however, such learning al-

gorithms often output a ranking score that does not

estimate the probability. Thus, in order to use them

in our ranking model, we must transform that rank-

ing score into a probability.

For empirical purposes, we use the averaged Per-

ceptron (Freund and Schapire, 1999) to discrimina-

tively train each component of the factored distri-

bution independently. This algorithm requires a set

of input vectors, which we obtain by applying the

relational feature functions to the paired documents

and queries. For each constraint ci, we have a fea-

ture vector xi = Φi(d, q). The algorithm produces a

weight vector of parameters wi as output. The prob-

ability of ci being satisfied by d given that d contains

an object can then be estimated with a sigmoid func-

tion as:

P (ci|d, ω) ≡ P (true|Φi(d, q)) ≡
1

1 + exp(−wT

i xi)
(4)

Similarly, to estimate P (ω|d), we use a fea-

ture vector that is dependent only on d. De-

noting the function as Φ0, we have P (ω|d) =
P (true|Φ0(d, q)), which can be obtained from (4).

While the sigmoid function has performed well

empirically, probabilities it produces are not cali-

brated. For better calibrated probabilities, one can

apply Platt scaling (Platt, 1999). This method intro-

duces two parameters A and B, which can be com-

puted using maximum likelihood estimation:

P (true|Φi(d, q)) ≡
1

1 + exp(Aw
T

i Φi(d, q) + B)
(5)

In contrast to the sigmoid function, Platt scaling can

also be applied to methods that give un-normalized

scores such as RankSVM (Cao et al., 2006).

Substituting (4) and (5) into (3), we see that our

final learned ranking function has the form

ρ(d, q) =

n∏

i=0

1

(1 + exp(Aiw
T

i Φi(d, q) + Bi))
(6)

5 Learning Based Programming

Learning plays a crucial role in developing a new ob-

ject domain. In addition to using supervised meth-

ods to learn ρ, we also exploit active learning to ac-

quire training data from unlabeled web pages. The

combination of these efforts would benefit from a

unified framework and interface to machine learn-

ing. Learning Based Programming (LBP) (Roth,

2005) is such a principled framework. In this sec-

tion, we describe how we applied and extended LBP

to provide a user friendly interface for the developer

to specify features and guide the learning process.

Section 5.1 describes how we structured our frame-

work around Learning Based Java (LBJ), an instance

of LBP. Section 5.2 extends the framework to sup-

port interactive learning.

5.1 Learning Based Java

LBP is a programming paradigm for systems whose

behaviors depend on naturally occurring data and

that require reasoning about data and concepts in

ways that are hard, if not impossible, to write explic-

itly. This is exactly our situation. Not only do we

not know how to specify a ranking function for an

object query, we might not even know exactly what

features to use. Using LBP, we can specify abstract

information sources that might contribute to deci-

sions and apply a learning operator to them, thereby

letting a learning algorithm figure out their impor-

tances in a data-driven way.

Learning Based Java (LBJ) (Rizzolo and Roth,

2007) is an implementation of LBP which we used

and extended for our purposes. The most useful

abstraction in LBJ is that of the feature generation

48

function (FGF). This allows the programmer to rea-

son in terms of feature types, rather than specifying

individual features separately, and to treat them as

native building blocks in a language for constructing

learned functions. For example, instead of specify-

ing individual features such as the phrases “profes-

sor of”,“product description”, etc., we can specify a

higher level feature type called “bigram”, and let an

algorithm select individual features for ranking pur-

poses.

From the programming point of view, LBJ pro-

vides a clean interface and abstracts away the te-

dium of feature extraction and learning implemen-

tations. This enabled us to build our system quickly

and shorten our development cycle.

5.2 Interactive Machine Learning

We advocate an interactive training process (Fails

and Olsen, 2003), in which the developer iteratively

improves the learner via two types of interaction

(Algorithm 1).

The first type of interaction is similar to active

learning where the learner presents unlabeled in-

stances to the developer for annotation which it be-

lieves will most positively impact learning. In rank-

ing problems, top ranked documents are presented

as they strongly influence the loss function. The

small difference from traditional active learning in

our setting is that the developer assists this process

by also providing more queries other than those en-

countered in the current training set.

The second type of interaction is feature selec-

tion. We observed that feature selection contributed

significantly in the performance of the learner espe-

cially when training data is scarce. This is because

with little training data and a huge feature space, the

learner tends to over-fit. Fortunately in web search,

the features used in ranking are in natural language

and thereby intuitive to the developer. For example,

one type of feature used in ranking the university

constraint of a professor object query is the words

surrounding the query field as in “university of ...”

or “... university”. If the learner only sees examples

from the University of Anystate at Anytown, then

it’s likely that Anytown will have a high weight in

addition to University and of. However, the Any-

town feature will not generalize for documents from

other universities. Having background knowledge

like this, the developer can unselect such features.

Furthermore, the fact that Anytown has a high weight

is also an indication that the developer needs to pro-

vide more examples of other universities so that the

learner can generalize (the first type of interaction).

Algorithm 1 Interactive Learning Algorithm

1: The developer uses keyword search to find and

annotate an initial training set.

2: The system presents a ranked list of features

computed from labeled data.

3: The developer adds/removes features.

4: The system learns the ranking function using se-

lected features.

5: The developer issues queries and annotates top

ranked unlabeled documents returned by the

system.

6: If performance is not satisfactory, go to step 2.

The iterative algorithm starts with zero training

data and continues until the learner’s performance

reaches a satisfactory point. At step 2, the developer

is presented with a ranked list of features. To deter-

mine which features played the biggest role in the

classifier’s decision making, we use a simple rank-

ing metric called expected entropy loss (Glover et

al., 2001). Let f represent the event that a given

feature is active. Let C be the event that the given

example is classified as true. The conditional en-

tropy of the classification distribution given that

f occurs is H(C|f) ≡ −P (C|f) log(P (C|f)) −
P (C|f) log(P (C|f) and similarly, when f does not

occur, we replace f by f . The expected entropy loss

is

L(C|f) ≡ H(C)− E[H(C|f)]

= H(C)− (P (f)H(C|f) +

P (f)H(C|f) (7)

The intuition here is that if the classification loses

a lot of entropy when conditioned on a particular

feature, that feature must be very discriminative and

correlated with the classification itself.

It is noted that feature selection plays two impor-

tant roles in our framework. First, it avoids over-

fitting when training data is scarce, thus increas-

ing the effectiveness of our active learning protocol.

Second, since search time depends on how many

49

domain # pages train test

homepage 22.1 11.1 11

laptop 21 10.6 10.4

camera 18 9 9

random 97.8 48.9 48.8

total 158.9 79.6 79.2

Table 1: Number of web pages (in thousands) collected

for experiment

features we use to query the web pages, keeping the

number of features small will ensure that searching

is fast enough to be useful.

6 Experimental Results

In this section we present an experiment that com-

pares Object Search with keyword search engines.

6.1 Experimental Setting

Since we are the first to tackle this problem of an-

swering structured query on the web, there is no

known dataset available for our experiment. We col-

lected the data ourselves using various sources from

the web. Then we labeled search results from differ-

ent object queries using the same annotation proce-

dure described in Section 5.

We collected URLs from two main sources: the

open directory (DMOZ) and existing search en-

gines (SE). For DMOZ, we included URLs from

relevant categories. For SE, we manually entered

queries with keywords related to professors’ home-

pages, laptops, and digital cameras, and included

all returned URLs. Having collected the URLs, we

crawled their content and indexed them. Table 1

summarizes web page data we have collected.

We split the data randomly into two parts, one for

training and one for testing, and created a single in-

verted index for both of them. The developer can

only see the training documents to select features

and train ranking functions. At testing time, we ran-

domly generate object queries, and evaluate on the

testing set. Since Google’s results come not from

our corpus but the whole web, it might not be fair to

compare against our small corpus. To accommodate

this, we also added Google’s results into our testing

corpus. We believe that most ‘difficult’ web pages

that hurt Google’s performance would have been in-

Field Keywords Example

Laptop domain

brand laptop,notebook lenovo laptop

processor ghz, processor 2.2 ghz

price $, price $1000..1100

Professor domain

name professor, re-

search professor,

faculty

research profes-

sor scott

university university, uni-

versity of

stanford

university

Table 2: Sample keyword reformulation for Google

cluded in the top Google result. Thus, they are also

available to test ours. In the future, we plan to im-

plement a local IR engine to compare against ours

and conduct a larger scale experiment to compare to

Google.

We evaluated the experiment with two different

domains: professor and laptop. We consider home-

pages and online shopping pages as object pages for

the professor and laptop domains respectively.

For each domain, we generated 5 random object

queries with different field configurations. Since

Google does not understand structured queries, we

reformulated each structured query into a simple

keyword query. We do so by pairing the query field

with several keywords. For example, a query field

abrand ∈ {lenovo} can be reformulated as “lenovo

laptop”. We tried different combinations of key-

words as shown in table 2. To deal with numbers,

we use Google’s advanced search feature that sup-

ports numeric range queries1. For example, a price

constraint aprice ∈ [100, 200] might be reformulated

as “price $100..200”. Since it is too expensive to

find the best keyword formulations for every query,

we picked the combination that gives the best result

for the first Google result page (Top 10 URLs).

6.2 Result

We measure the ranking performance with average

precision. Table 3 shows the results for our search

engine (OSE) and Google. Our ranking function

outperforms Google for most queries, especially in

1A numeric range written as “100..200” is treated as a key-

word that appears everywhere a number in the range appears

50

Qry
Professor Laptop

OSE Google OSE Google

1 0.92 (71) 0.90(65) 0.7 (15) 0.44 (12)

2 0.83(88) 0.91(73) 0.62 (12) 0.26 (11)

3 0.51(73) 0.66(48) 0.44 (40) 0.31 (24)

4 0.42(49) 0.3(30) 0.36 (3) 0.09 (1)

5 0.91(18) 0.2(16) 0.77 (17) 0.42 (3)

Table 3: Average precision for 5 random queries. The

number of positive documents are in brackets

the laptop domain. In the professor domain, Google

wins in two queries (“UC Berkeley professor” and

“economics professors”). This suggests that in cer-

tain cases, reformulating to keyword query is a sen-

sible approach, especially if all the fields in the ob-

ject query are keywords. Even though Google can

be used to reformulate some queries, it is not clear

how and when this will succeed. Therefore, we need

a principled solution as proposed in this paper.

7 Related Work

Many recent works propose methods for supporting

structured queries on unstructured text (Jain et al.,

2007), (Cafarella et al., 2007), (Gruhl et al., 2004).

These works follow a typical extract-then-query ap-

proach, which has several problems as we discussed

in section 1. (Agichtein, 2005) proposed using sev-

eral large scale techniques. Their idea of using spe-

cialized index and search engine is similar to our

work. However those methods assumes that struc-

tured data follows some textual patterns whereas our

system can flexibly handle structured object using

textual patterns as well as web page features.

Interestingly, the approach of translating struc-

tured queries to unstructured queries has been stud-

ied in (Liu et al., 2006). The main difference is

that SEMEX relies on carefully hand-tuned heuris-

tics on open-domain SQL queries while we use ma-

chine learning to do the translation on domain spe-

cific queries.

Machine Learning approaches to rank documents

have been studied extensively in IR (Liu, 2009).

Even though much of existing works can be used to

rank individual constraints in the structured query.

We proposed an effective way to aggregate these

ranking scores. Further more, existing learning to

rank works assumed a fixed set of features, whereas,

the feature set in object search depends on object

domain. As we have shown, the effectiveness of

the ranking function depends much on the set of

features. Thus, an semi-automatic method to learn

these was proposed in section 5.

Our interactive learning protocol inherits features

from existing works in Active Learning (see (Set-

tles, 2009) for a survey). (Fails and Olsen, 2003)

coined the term “interactive machine learning” and

showed that a learner can take advantage of user in-

teraction to quickly acquire necessary training data.

(Roth and Small, 2009) proposed another interactive

learning protocol that improves upon a relation ex-

traction task by incremetally modifying the feature

representation.

Finally, this work is related to document re-

trieval mechanisms used for question answering

tasks (Voorhees, 2001) where precise retrieval meth-

ods are necessary to find documents which con-

tain specific information for answering factoids

(Agichtein et al., 2001).

8 Conclusion

We introduces the Object Search framework that

searches the web for documents containing real-

world objects. We formalized the problem as a

learning to rank for IR problem and showed an ef-

fective method to solve it. Our approach goes be-

yond the traditional bag-of-words representation and

views each web page as a set of domain independent

features. This representation enabled us to rank web

pages with respect to object query. Our experiments

showed that, with small human effort, it is possi-

ble to create specialized search engines that out-

performs GSEs on domain specific queries. More-

over, it is possible to search the web for documents

with deeper meaning, such as those found in object

pages. Our work is a small step toward semantic

search engines by handling deeper semantic queries.

Acknowledgement

This work is supported by DARPA funding under

the Bootstrap Learning Program, MIAS, a DHS-

IDS Center for Multimodal Information Access and

Synthesis at UIUC, NSF grant NSF SoD-HCER-

0613885 and a grant from Yahoo! Inc.

51

References

Eugene Agichtein, Steve Lawrence, and Luis Gravano.

2001. Learning search engine specific query trans-

formations for question answering. In WWW ’01:

Proceedings of the 10th international conference on

World Wide Web, pages 169–178, New York, NY,

USA. ACM.

Eugene Agichtein. 2005. Scaling Information Extraction

to Large Document Collections. IEEE Data Eng. Bull,

28:3.

Michael Cafarella, Christopher Re, Dan Suciu, and Oren

Etzioni. 2007. Structured Querying of Web Text Data:

A Technical Challenge. In CIDR.

Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang,

and Hsiao-Wuen Hon. 2006. Adapting Ranking SVM

to Document Retrieval. In SIGIR ’06: Proceedings of

the 29th annual international ACM SIGIR conference

on Research and development in information retrieval,

pages 186–193, New York, NY, USA. ACM.

Jerry Alan Fails and Dan R. Olsen, Jr. 2003. Interactive

machine learning. In IUI ’03: Proceedings of the 8th

international conference on Intelligent user interfaces,

pages 39–45, New York, NY, USA. ACM.

Yoav Freund and Robert E. Schapire. 1999. Large Mar-

gin Classification Using the Perceptron Algorithm.

Machine Learning, 37(3):277–296.

Eric J. Glover, Gary W. Flake, Steve Lawrence, Andries

Kruger, David M. Pennock, William P. Birmingham,

and C. Lee Giles. 2001. Improving Category Specific

Web Search by Learning Query Modifications. Ap-

plications and the Internet, IEEE/IPSJ International

Symposium on, 0:23.

D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak,

A. Tomkins, and J. Zien. 2004. How to Build a Web-

Fountain: An Architecture for Very Large Scale Text

Analytics. IBM Systems Journal.

A. Jain, A. Doan, and L. Gravano. 2007. SQL Queries

Over Unstructured Text Databases. In Data Engineer-

ing, 2007. ICDE 2007. IEEE 23rd International Con-

ference on, pages 1255–1257.

N. Kushmerick, D. Weld, and R. Doorenbos. 1997.

Wrapper Induction for Information Extraction. In IJ-

CAI, pages 729–737.

Jing Liu, Xin Dong, and Alon Halevy. 2006. Answering

Structured Queries on Unstructured Data. In WebDB.

Tie-Yan Liu. 2009. Learning to Rank for Information

Retrieval. Found. Trends Inf. Retr., 3(3):225–331.

Andrew Kachites McCallum, Kamal Nigam, Jason Ren-

nie, and Kristie Seymore. 2000. Automating the Con-

struction of Internet Portals with Machine Learning.

Information Retrieval, 3(2):127–163.

J. Platt. 1999. Probabilistic outputs for support vec-

tor machines and comparison to regularized likelihood

methods. In In Advances in Large Margin Classifiers.

MIT Press.

N. Rizzolo and D. Roth. 2007. Modeling Discriminative

Global Inference. In Proceedings of the First Inter-

national Conference on Semantic Computing (ICSC),

pages 597–604, Irvine, California, September. IEEE.

Dan Roth and Kevin Small. 2009. Interactive feature

space construction using semantic information. In

CoNLL ’09: Proceedings of the Thirteenth Conference

on Computational Natural Language Learning, pages

66–74, Morristown, NJ, USA. Association for Com-

putational Linguistics.

Dan Roth. 2005. Learning Based Programming. Innova-

tions in Machine Learning: Theory and Applications.

Burr Settles. 2009. Active learning literature survey.

Computer Sciences Technical Report 1648, University

of Wisconsin-Madison.

Ellen M. Voorhees. 2001. The trec question answering

track. Nat. Lang. Eng., 7(4):361–378.

52

