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Abstract

Electroencephalography (EEG) and magne-
toencephalography (MEG) are closely related
neuroimaging technologies that both measure
summed electrical activity of synchronous
sources of neural activity. However they dif-
fer in the portions of the brain to which they
are more sensitive, in the frequency bands they
can detect, and to the amount of noise to which
they are subject. Since semantic representa-
tions are thought to be widely distributed in
the brain, this preliminary study considered
if the broader coverage offered by simulta-
neous EEG/MEG recordings would increase
sensitivity to these cognitive states. The re-
sults showed that MEG data allowed stim-
uli in two semantic categories (mammals and
tools) to be distinguished more accurately, de-
spite some experimental settings that were op-
timised for EEG. The addition of EEG data
did not prove informative, indicating that it
may be redundant relative to MEG, even when
using dimensionality reduction techniques to
combat overfitting.

1 Introduction

Electroencephalography (EEG) and magnetoen-
cephalography (MEG) are similar methods for
recording activity in the brain. Both detect signals
that are produced by the mixing of neural sources,
where each source represents macro-scale synchro-
nisation between the firing of individual neurons.
The sum of these activities induce voltages at the
scalp that are recorded with EEG, and magnetic
fields that are detected with MEG. But the signals

yielded by each technique are not identical for sev-
eral reasons. EEG signals are heavily attenuated
and filtered (both in time in space) by the passage
through skull and tissue. As a result, MEG signals
are less noisy, have finer spatial resolution, capture
a wider range of frequencies, and so have the po-
tential to be more informative. Further, the signal
footprint of MEG and EEG signals on the brain is
not the same: EEG sensors are more sensitive to
currents that are radial to the scalp and so predomi-
nantly detect activity in the at the top of gyri and the
bottom of sulci (the top and bottom of folds in the
surface of the brain); while MEG is more sensitive
to currents that are tangential to the scalp, and so
detects more activity in the side walls of sulci. The
high spatial resolution of MEG means that it cannot
see as deeply into the brain as EEG can. Finally,
MEG sensors of different types (in this case mag-
netometers and planar gradiometers) are sensitive to
magnetic fields of different orientations (see Figure
1): planar gradiometers are most sensitive to current
generators of a particular orientation directly under
the sensor position; magnetometers record genera-
tors that are tangential and peripheral to the sensor
area.

The distribution of sensor coverage may be im-
portant for the decoding of semantic categories in
particular. Neuroimaging evidence suggests that se-
mantic representations may be widely distributed in
the brain. For example there are well-established
differences in neural activity in the fusiform gyrus
that correspond to higher level categories (natural
vs non-natural kinds; people vs places - see e.g.
Chao et al., 2002); there is also evidence that the
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Figure 1: Schematic from above of selective sensitivity
of three co-located MEG sensors

Left and centre panels show perpendicular planar gradiometers;

right panel shows magnetometer. A co-located EEG electrode

would be most sensitive to currents perpendicular to the scalp.

Image courtesy of Elekta AB.

meaning of bodily actions is encoded in the motor-
cortex (Pulvermüller, 2005); and concepts associ-
ated with eating (e.g. foodstuffs) seem to be repre-
sented at least in part by activations in gustatory cor-
tex (Mitchell et al., 2008; Just et al., 2010). Hence
a wide coverage of sensors that are sensitive to dif-
ferent but overlapping portions of brain tissue may
provide a fuller description of semantic memories.

Given the fact that it has been possible to decode
conceptual categories and language semantics from
EEG signals (Murphy et al., 2008, 2009), the ques-
tion is if MEG signals can be shown to be more in-
formative. Similar studies on lower-level tasks typi-
cally used in brain-computer interfaces suggests that
it may be: Hill et al. (2006) find that there is a
modest increase in the decoding accuracy on imag-
ined motor activity with MEG, relative to EEG, and
Waldert et al. (2008) have similar findings detecting
the direction of hand movements.

A related question is whether the information sup-
plied by EEG and MEG is complementary, and if
so how best it should be combined. This depends
critically on the number of signals used: raising the
number of input signals increases the information
supplied to the machine learning methods, but in-
teracts with their tendency to overfit, if the number
of descriptive dimensions (recorded signals) is of a
similar order of magnitude to the number of training
cases (experimental trials in which a stimulus is pre-
sented). This is often the case with data from neu-
roimaging experiments, as there are practical limita-
tions on the number of data points that can be col-
lected: individual stimuli must usually be separated

by several seconds so that neural signals can return
to baseline between each, and participants can usu-
ally only be expected to perform a task at full at-
tention for 60 minutes or so, in such experimental
environments.

To investigate this question, we replicated an ex-
isting EEG experiment (Murphy et al., 2010). In that
experiment participants had been presented with im-
ages of animals and tools, while EEG activity was
recorded at 64 standard 10-10 locations, and sin-
gle trials (stimulus presentations) could be classi-
fied as representing the category of animal or tool
with an average accuracy of 72% over all seven
participants. The classification methods used were
an adaptive time/frequency window optimisation
(Dalponte et al., 2007), a supervised spatial com-
ponent signal decomposition (Common Spatial Pat-
terns, Koles et al., 1990) that yielded measures of
neural activity based on signal power, and a support-
vector machine (Boser et al., 1992).

The replication experiment reported here was car-
ried out with two participants, and used the same
task and materials, while simultaneously recording
with a 306-channel MEG system (204 gradiometers,
102 magnetometers) and a high-density 124-channel
EEG system. This data was then analysed using the
same machine learning methods as previously, but
varying the number and type of input signals, and
using dimensionality reduction to address increased
dimensionality.

2 Methods

2.1 Experiment and Materials

Two male native speakers of Italian took part in
the study, aged 30 and 47. Both were right-handed
with corrected or normal vision. Participants in this
study receive compensation of 7 euros per hour. The
experiment is conducted under the approval of the
ethics committee at the University of Trento, and
participants gave informed consent.

The participants were asked to perform a silent
naming task on grey-scale images of 30 land-
mammals and 30 work tools. Each stimulus was
presented between four and six times, in randomised
order.1 The participants sat in a relaxed upright posi-

1Participant 1 saw 264 stimulus trials (144 mammal and 120
tool trials); participant 2 saw 360 (180 in each class).
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tion 1.5m from a projector screen in moderate light-
ing conditions. Images were presented on a medium
grey background and fell within a 6 degree viewing
angle. The task duration was split into five blocks
and the participants were given the choice to pause
between each. The cumulative task time did not ex-
ceed 45 minutes.

Each trial began with the presentation of a fixa-
tion cross for 0.25s, followed by the stimulus image,
a further fixation cross for 0.75s and a blank screen
for 1s. Participants were instructed to silently name
the object represented in their native tongue (Ital-
ian), using the first appropriate label that came to
mind, and to press the keyboard space-bar with the
left-hand to indicate they had found an appropriate
word. If the participant could not think of a suitable
label, they were asked not to make a response. The
image remained on the screen until the participant
responded, or until a time-out of three seconds was
reached. The participants were asked to keep still
during the task, and to avoid eye-movements and fa-
cial muscle activity in particular, except during the
blank period.

The materials were chosen to represent well-
defined semantic categories and to minimise non-
semantic, associative confounds. The set of 30 land
mammals were chosen to be both non-domesticated
and non-threatening, to avoid emotional valence
whether positive (e.g. pets) or negative (e.g. preda-
tors). Thirty hardware and garden implements were
chosen as genuine work tools. Appropriate pho-
tographs were sourced from the internet, and nor-
malised visually: each image file measured 300 pix-
els square; the image proper was converted to grey-
scale, superimposed on a homogeneous light-grey
background and had maximal horizontal and vertical
dimensions of 250 pixels; image contrast was nor-
malised. The concepts represented are listed below.

Land Mammals ant-eater, armadillo, badger,
beaver, bison, boar, camel, chamois, chim-
panzee, deer, elephant, fox, giraffe, gorilla,
hare, hedgehog, hippopotamus, ibex, kan-
garoo, koala, llama, mole, monkey, mouse,
otter, panda, rhinoceros, skunk, squirrel, zebra
(Italian formichiere, armadillo, tasso, castoro,
bisonte, cinghiale, cammello, camoscio, scim-
panz, cervo, elefante, volpe, giraffa, gorilla,

coniglio, riccio, ippopotamo, stambecco,
canguro, koala, lama, talpa, scimmia, topo,
lontra, panda, rinoceronte, puzzola, scoiattolo,
zebra)

Work Tools Allen key, axe, chainsaw, craft-knife,
crowbar, file, garden fork, garden trowel, hack-
saw, hammer, mallet, nail, paint brush, paint
roller, penknife, pick-axe, plaster trowel, pliers,
plunger, pneumatic drill, power-drill, rake, saw,
scissors, scraper, screw, screwdriver, sickle,
spanner, tape-measure (Italian brugola, ascia,
motosega, taglierino, piede di porco, lima,
forcone, paletta, seghetto, martello, mazza,
chiodo, pennello, rullo, coltellino svizzero, pic-
cone, cazzuola, pinza, stura lavandini, martello
pneumatico, trapano, rastrello, sega, forbici,
spatola, vite, cacciavite, falce, chiave inglese,
metro)

2.2 Neural Recordings

The experiment was conducted at the LNiF imag-
ing laboratories at the University of Trento, using a
306-sensor Elekta Neuromag system (2 planar gra-
diometers and 1 magnetometer at each of 102 sensor
locations). A dense-coverage 124-electrode EEG
cap was used also, using a right mastoid reference
and forehead ground. Both sets of signals were
recorded simultaneously at 1000Hz in a magneti-
cally shielded room. At the start of the session the
relative positions of the MEG and EEG sensors were
determined using a Polyhemus 3-D digitisation sys-
tem.

Data preprocessing was conducted using the
MNE, FieldTrip and EEGLAB packages.2 The data
was band-pass filtered at 1-50Hz to remove slow
drifts in the signal and high-frequency noise, and
then down-sampled to 125Hz. Eye and muscle arte-
facts were not removed, but these lie outside the
range of frequencies that were considered in the
analysis described below.

2Martinos Centre for Biomedical Imaging
(http://www.nmr.mgh.harvard.edu/martinos/); Don-
ders Institute for Brain, Cognition and Behaviour
(http://www.ru.nl/neuroimaging/fieldtrip); and Schwartz Center
for Computational Neuroscience (http://sccn.ucsd.edu/eeglab/)
respectively.
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2.3 Analysis

The analysis method first applies a time/frequency
filter to select an information-rich band and inter-
val for the distinction of interest; a supervised de-
composition to extract components of whole-scalp
synchronous activity that are sensitive to this class
distinction (Common Spatial Patterns, or CSP – see
Parra et al., 2005; Model and Zibulevsky, 2006;
Philiastides et al., 2006 for examples of other ap-
plications to cognitive neuroscience); and a gen-
eral purpose machine learning algorithm (Support-
Vector Machine or SVM) that uses the resulting
measures of signal power to predict the semantic
class of each trial. Individual trial epochs are arbi-
trarily allocated to one of k interlaced partitions of
equal size in a k-fold training/evaluation procedure.

The time/frequency filter applied here was
adopted from the earlier experiment, as it had been
found to provide optimal separation between trials
of the two classes over the participants of that study.
Using this common window (4-18Hz, 95-360ms af-
ter image onset) allows direct comparison between
the informativity of each type of sensor, or combina-
tion of sensor types. However this may disadvantage
MEG, since it is more sensitive to higher frequency
activity (> 50Hz), which at least one study has
found to vary systematically with semantic classes
(Tanji et al., 2005).

The decomposition method used, CSP (Koles
et al., 1990), extracts spatial components of elec-
trophysiological activity (linear combinations of raw
signals) that correspond to synchronous neural sub-
assemblies. It is a supervised technique that yields
signals whose level of activity (measured as signal
power) is modulated by the binary class distinction
of interest – that is signals that show high power
when processing mammal concepts, and low power
when processing tool concepts, or vice-versa. CSP
identifies C components (where C is the number of
input channels) that are ranked by their sensitivity
to the class-separation of interest, in terms of op-
timal variance for the two populations of signals
(i.e., high variance between classes and low vari-
ance within classes). In this case we selected the
first and the last rows of this matrix (Ramoser et al.,
2000) as the components that are most representa-
tive for the classes mammals and tools, respectively.

This procedure can be interpreted as extracting the
event-related spectral activity (i.e. the relative event-
related synchronisation) of two synchronous neural
structures which have been found to have an op-
timally differential response to the semantic cate-
gories of interest.

The final categorisation step is based on a
Support-Vector Machine (SVM) classifier (Boser
et al., 1992; Vapnik, 1998). The input for each
trial consisted of two measures of neural activity
extracted from the category-sensitive signal compo-
nents: the variance of the waveform, which is pro-
portional to signal power. The features were further
normalised by taking the log, and scaling to a range
of -1 to +1 across all trials. The SVM implementa-
tion used was LIBSVM (Chang and Lin, 2001), and
default parameters were used (radial basis function
kernel, cost parameter of 1, and a gamma value of
the inverse of the number of data-points).3 Test and
training data were kept strictly separate at all stages
of analysis.

In the results that follow here, these techniques
were first applied as before to replicate the previ-
ous experiment, but then also with an additional
step of dimensionality reduction to address the over-
fitting we expected given the dramatically larger
number of input channels (up to 430 if all EEG
and MEG channels were used, compared to 64
channels in the previous experiment). The signal
recorded in any individual channel will be com-
prised of a mix of genuine neural activity (both
relevant and irrelevant to our classification task),
systematic noise sources (e.g. 50Hz electrical line
noise, eye-movement artefacts, heart-beat artefacts),
and additional random noise. And as EEG and MEG
channels record activity from partially overlapping
portions of brain tissue, there is considerable re-
dundancy between neighbouring channels. Princi-
ple Components Analysis (PCA) is a dimensionality
reduction technique that addresses both these issues,
grouping redundant activity into the first (strongest)

3No optimisation of SVM parameters was attempted, as ex-
tensive parameter testing in the earlier experiment did not yield
any improvements in classification performance. We believe
that this is because CSP is in itself a powerful data-mining tech-
nique, that here typically yields two simple clusters of data cor-
responding to each semantic category. We expect a simple lin-
ear classifier would have similar performance on this task.
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components, and relegating random noise to the last
components. Where PCA was used, it was ap-
plied directly before the CSP-based extraction of
category-specific sources.

3 Results

In the previous EEG experiment, the classification
accuracy averaged 72%, but varied substantially
from one participant to the next, ranging from 56%
to 80%. First we wanted to establish how repre-
sentative these two new simultaneous MEG/EEG
sessions had been, by replicating the EEG-based
analysis. To do this, an arbitrary subset of the 60
EEG channels were selected (taking roughly every
second channel among the total of 124), the stan-
dard time/frequency filter window was applied, and
the resulting data was classified using a 5-fold test-
training procedure.4 The first participant’s data was
typical of the previous cohort, classifying with accu-
racy of 70% (in this session, accuracy over 61% is
significant at p < 0.05, using a one-sided binomial
test, n = 264, p = 0.54), while the second partici-
pant’s data only achieved 52% accuracy (accuracy
over 56% significant at p < 0.05, n = 360, p = 0.5).

To get a first impression of the relative informa-
tivity of each signal type, the same procedure was
performed with subsets of 60 MEG channels: mag-
netometers alone yielded markedly higher results
(78% and 61% for participants 1 and 2 respectively),
while planar gradiometers alone gave marginally
lower results (67% and 48% respectively).

Next, to examine the effect of increasing the
amount of input data, we performed these analyses
using all available channels of each type. In one case
(participant 1, magnetometers) there was a drop in
5% points, and another (participant 2, magnetome-
ters) an increase of 3% points, but generally this had
little effect on results, indicating that in most cases
any increase in available information was offset by
overfitting.

These results are summarised in the first two
columns of in Tables 1 and 2. The tables also show

4In each test/training partition, the labelled training data
alone was used to derive two category specific scalp-maps.
These scalp-maps were used to extract signal components and
resulting signal power measures for all trials. The data was then
partitioned again along the same folds for SVM training and
prediction.

Table 1: Classification accuracy, participant 1
Type (available signals) 60 ch. all ch. 60 cp.

EEG (124) 70% 69% 76%
Magnetometers (102) 78% 73% 78%
Gradiometers (204) 67% 66% 71%
Mag.+Grad. (306) 72% 63% 77%
EEG+Mag. (224) 68% 67% 77%
EEG+Grad. (328) 69% 54% 73%

EEG+Mag.+Grad. (430) 72% 55% 77%
ch: raw channel input; cp: PCA component input

significance: 61% at p < 0.05; 65% at p < 0.001

Table 2: Classification accuracy, participant 2
Type (available signals) 60 ch. all ch. 60 cp.

EEG (124) 52% 50% 52%
Magnetometers (102) 61% 64% 68%
Gradiometers (204) 48% 51% 60%
Mag.+Grad. (306) 63% 50% 56%
EEG+Mag. (224) 56% 53% 58%
EEG+Grad. (328) 52% 53% 62%

EEG+Mag.+Grad. (430) 58% 51% 55%
ch: raw channel input; cp: PCA component input

significance: 56% at p < 0.05; 59% at p < 0.001

the results for all possible combinations of the three
signal types, and it is apparent that the effect of over-
fitting is more pronounced for these larger signal
sets. And though the base level of classification ac-
curacy is very different for these two participants,
both show a similar pattern with respect to signal
type and dimensionality: magnetometers are most
informative for these semantic distinctions, and all
signal types are vulnerable to overfitting effects.

To combat overfitting, we repeated these analy-
ses with dimensionality reduction. Since PCA is
an unsupervised technique, the components were
derived and extracted in one step over the whole
data set. The first (strongest) 60 components were
then taken as input to the same analysis procedure
as before (CSP-derived signal power estimates fed
to the SVM), to give a global description of whole
scalp neural activity, presumably with reduced re-
dundancy and noise. As can be seen in the final
columns of Tables 1 and 2, this resulted in optimal
classification accuracy in almost all cases, both rel-
ative to the full collections of signals, and the 60
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channel subsets.
A serious limitation of these results however is the

arbitrary selection of signal subsets. While much of
the information recorded between signals is likely
redundant, it could be that the random inclusion or
exclusion of one channel or component could dra-
matically affect accuracy, if that signal was particu-
larly informative, or particularly subject to spurious
noise. So to have a more comprehensive view, we
conducted an exhaustive parameter search through
possible subsets of each combination of signal type,
increasing set size in steps of five, and calculating
average classification accuracy with a moving win-
dow of nine points. The results are illustrated in Fig-
ures 2 (using the raw signals as input) and 3 (using
PCA components of each signal set), and show the
average prediction performance across both experi-
mental participants.

Several things stand out when considering the dif-
ference between the classification performance us-
ing raw signals directly, and dimensionality reduced
sets. In the PCA case, the classification accuracy
levels start higher, rise faster, and peak earlier in
almost all cases. In absolute terms optimum per-
formance is little changed for magnetometer and
EEG signals alone (peaking just above 70% and
60% respectively), while gradiometers seem to ben-
efit somewhat (by about 3% points). But the PCA
lines are also smoother, reflecting more stability in
classification, and so more independence from par-
ticular parameter settings.

Common to both plots is that magnetometers are
the most informative type, followed consecutively
by gradiometers and EEG channels. In terms of mu-
tual redundancy, the information encoded in EEG
channels seems to largely be a subset of that en-
coded by gradiometers (gradiometer performance is
not improved by the addition of EEG channels). The
interaction of magnetometer data and these signal
types is more complex – magnetometer performance
is reduced by the addition of either or both EEG and
gradiometer channels.

4 Conclusion

This paper reports only two sessions of simultane-
ous MEG/EEG recording, and there were some clear
differences in the results for each participant, so the

conclusions must be considered tentative. Neverthe-
less they suggest that EEG data are to a large ex-
tent redundant with respect to MEG signals. MEG
magnetometers in particular can lead to substantially
higher classification accuracy, with smaller numbers
of channels, than EEG alone. In the case of the sec-
ond participant, prediction with EEG signals did not
approach significance, while MEG signals allowed
highly significant (p� 0.001) performance. We be-
lieve that this advantage is due to the lack of attenu-
ation and higher spatial resolution inherent in MEG,
allowing it to pick out individual neural sources with
more precision.

Regardless of the signal types chosen, the high
dimensionality of the data posed challenges. Any
arbitrary subset of channels may leave informative
aspects of brain-activity undetected and this led to
fluctuating results; but including large numbers of
channels invariably leads to overfitting, and conse-
quent falls in classification accuracy. In light of
this, a reduction in dimensions that kept most of the
global signal intact (in this case a principle com-
ponents analysis) proved very effective in prevent-
ing overfitting, giving reliably superior performance
with lower numbers of channels.

While MEG signals proved more informative,
there was not always a dramatic difference in perfor-
mance (peak performance in participant 1 was sim-
ilar for MEG or EEG; for participant 2 there was
a ca. 15% point difference). However this study
used a time interval and frequency band in the sig-
nal that had been optimised for EEG, so it may be
that considering a wider range of frequencies, higher
in the spectrum, could allow MEG to achieve bet-
ter results. Also, though steps were taken to avoid
it, slight movements by the participants relative to
the MEG apparatus will have compromised the reli-
ability of its signals (EEG does not suffer from the
same problem as electrodes are placed directly on
the scalp). This could be addressed in future studies
with continuous head tracking and correction.

Finally, several variations could be tried to im-
prove the overall classification performance of the
system. The spatial decomposition used (CSP) is
particularly prone to overfitting (Parra et al., 2005),
and could be replaced with less aggressive tech-
niques like Linear Discriminant Analysis. Princi-
ple component analysis is a rather brittle technique
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Figure 2: Classification accuracy taking subsets of raw signals from sensors of different types, 9-point smoothed

Figure 3: Classification accuracy taking subsets of PCA components derived from raw signals from sensors of different
types, 9-point smoothed
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which is heavily biased towards the few strongest
sources in a system, and so independent component
analysis (ICA) may be a more effective choice for
dimensionality reduction (Makeig et al., 1996). And
data from the various sensor types could be com-
bined in other ways, using an ensemble of classi-
fiers, each based on different subsets of signals, or
by taking more than one class-sensitive component
per category.
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