
Proceedings of the NAACL HLT 2010 Workshop on Computational Linguistics and Writing, pages 1–6,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Computational Linguistics in the Translator’s Workflow—Combining
Authoring Tools and Translation Memory Systems

Christoph Rösener
Institute of Applied Information Sciences (IAI)

Martin-Luther-Straße 14
D-66111 Saarbrücken, Germany

chrisr@iai-sb.de

Abstract

In Technical Documentation, Authoring Tools
are used to maintain a consistent text qual-
ity—especially with regard to the often fol-
lowed translation of the original documents
into several languages using a Translation
Memory System. Hitherto these tools have
often been used separately one after the other.
Additionally Authoring tools often have no
linguistic intelligence and thus the quality
level of the automated checks is very poor. In
this paper I will describe the integration of a
linguistically intelligent Authoring Tool into a
Translation Memory System, thereby combin-
ing linguistic intelligence with the advantages
of both systems in a single environment. The
system allows you not only the use of com-
mon authoring aids (spell, grammar and style
checker) in source and target language—by
using a single environment the terminology
database of the Translation Memory System
can be used by the authoring aid to control
terminology both in the source and target
document. Moreover, the linguistically intel-
ligent Authoring Tool enables automatic ex-
traction of term candidates from existing
documents directly to the terminology data-
base of the Translation Memory System.

1 Introduction

The benefit of Authoring Tools, especially in the
area of Technical Documentation, is beyond debate
(cf. Brockmann, 1997, Huijsen, 1998, Nyberg et
al., 2003, Spyridakis et al., 1997). Combined with

linguistic intelligence besides spell and grammar
checking Authoring Tools are used to check termi-
nology, style, and abbreviations in texts (cf. Bre-
denkamp et al., 2000, Carl et al., 2002b, Haller
2000, Reuther and Wigger, 2000). In most cases
this is done in relation to special style guides and
terminology, both given by the respective company
(cf. O'Brien, 2003, Reuther, 2003, Shubert et al.,
1995). Due to the fact that Authoring Aids are
mostly used as a single application, style rules and
terminology are kept and maintained in a special
database together with the application. Moreover
linguistically intelligent Authoring Aids also help
the author to extract terminology candidates. Sub-
sequently, where required, these candidates can be
directly imported into the stored terminology. To
enable this function it is also necessary to have the
terminology database integrated in the application.

When translating technical documents it has for
many years been common practice to use Transla-
tion Memory Systems to improve the consistency
of translations. Translation Memory Systems store
whole sentences or clauses (segments) and their
translations in a multi-language translation mem-
ory. When the translator is translating a new
document the segments are matched against those
already present in the translation memory. This is
done with the help of a fuzzy match algorithm,
which calculates the degree of similarity between
the current source segment and matching source
segments from the translation memory. The de-
gree of similarity is expressed as a percentage
value (100% match means identical match). The
matches are afterwards presented in descending
order and the translator can paste them into the
new translation.

1

Besides the translation memory most of the
Translation Memory Systems also have an inte-
grated terminology database. On the basis of this
database the system is able to suggest translations
of single terms even when there is no match on
sentence or clause level. The matching of terms is
also done with fuzzy matching algorithms. There-
fore related as well as identical terms are found in
the database. With this function the Translation
Memory System offers to some extent a feature
similar to the Authoring Tools mentioned above.
Yet the quality of the feature implemented in
Translation Memory Systems is not the same due
to the fact that in most cases this feature in Trans-
lation Memory Systems works without linguistic
intelligence.

When using both tools, the Authoring Tool as
well as the Translation Memory System as a single
application, the main problem becomes immedi-
ately apparent: the double terminology database.
Two terminology databases—Authoring Tool and
Translation Memory System—, which have to be
maintained in different applications, mean a lot of
redundant work.

The other possibility—regular synchronizing of
the databases—is very difficult, because it is not
clear, which of the databases is the core database.
Generally speaking, the author manually enters
new terms in the context of translations into the
terminology database of the Translation Memory
System, whereas the results of automatic term ex-
tractions are stored in the terminology database of
the Authoring Tool.

In the following I will present a system where
the Authoring Tool is directly integrated in the
Translation Memory workflow, thus allowing the
handling of terminology in only one core database.
It is the integration of CLAT (Controlled Language
Authoring Tool) into the Across Translation Mem-
ory System—the crossAuthor Linguistic.

2 Description

For the understanding of the system and how the
particular components work together it is necessary
to begin with a description of the underlying mod-
ules. The system consists mainly of three mod-
ules: the CLAT/UMMT software package, the
Across Language Server and the crossAuthor /
crossAuthor Linguistic add-on.

2.1 CLAT/UMMT

CLAT/UMMT is a software package from the IAI
(Institut der Gesellschaft zur Förderung der Ange-
wandten Informationsforschung an der Universität
des Saarlandes—Institute of the Society for the
Promotion of Applied Information Sciences at
Saarland University). CLAT is a tool designed to
support technical authors in producing high-quality
documentation (e.g., according to specific stan-
dards (cf. DIN ISO 12620, 1999, Herzog and
Mühlbauer, 2007)). This is reached through lin-
guistic correctness and compliance with company-
specific requirements. CLAT offers

• spell and grammar checking to verify lin-
guistic correctness

• style and terminology checking to verify
compliance with company-specific writing
guidelines

The CLAT spelling checker elicits incorrectly spelt
or unknown words (e.g., proplusion). Besides that
the CLAT spelling checker can also be used to
check British versus American English (e.g., or-
ganise vs. organize). The CLAT grammar checker
elicits grammatically incorrect sentences or parts
of sentences (e.g., He come). In addition, typogra-
phy errors that involve more than one word or
character are also detected.

Stylistic weaknesses in terms of clarity, under-
standability, and stylistic appropriateness of sen-
tences or parts of sentences are corrected by the
CLAT style checker. Especially complexity issues
(e.g., too many uses of and and or), ambiguity is-
sues (e.g., indefinite or anaphoric expressions, such
as it, they, these, those), as well as stylistic prob-
lems (e.g., contracted forms such as they've) are
detected. Typically this is done on the basis of
company-specific writing rules. Finally, the CLAT
terminology checker elicits variants of preferred
terms, as well as deprecated terms and admitted
terms. When the terminology checker finds a dep-
recated term in the text, a message is displayed
with the corresponding preferred term (e.g., elec-
tric engine—deprecated term, electric motor—
preferred term) for correction.

In addition to the four standard checking func-
tions CLAT also offers a function for eliciting term
candidates. This function is not a checking func-
tion in the sense that it finds linguistic errors or
weaknesses. Rather, it supports the terminology

2

workflow of a company. Nouns that have the
properties typical of terms and have not been found
during the check in the database, either as correctly
used terms or variants or deprecated terms, are
listed in a separate display window together with
the context they occurred in. The author then has
the possibility to decide whether any of the term
candidates should be included in the terminology
of the respective company.
CLAT checks documents with regard to the control
functions mentioned above, reports every rule vio-
lation and gives technical authors the opportunity
to revise their text and immediately re-check the
corrections made. CLAT offers an additional func-
tion for working in editors that support tags (e.g.,
FrameMaker). This function, a context-sensitive
search, enables the individual processing of indi-
vidual tags. With the help of a DTD that must be
created especially for CLAT, the CLAT server can
process tags differently and ignore their contents
entirely or only for individual style rules.

Figure 1. CLAT-Java Client (IAI, 2009a:10).

All CLAT checks are based on a linguistic analysis
of the text document. The linguistic analysis con-
sists of several steps that are described in the fol-
lowing:

• separating linguistic from non-linguistic data

• recognizing word boundaries

• analysing word forms: morphological analy-
sis

• determining part of speech: grammatical
analysis

The CLAT system consists of a CLAT server and
CLAT Clients. CLAT Clients are user interfaces
that are either stand-alone (Java CLAT Client) or
they are CLAT-Ins that are plugged into an exist-
ing word processing program. The CLAT server
handles the communication between the CLAT
Clients and the Linguistic Engine. The Linguistic
Engine is the core part of the CLAT system. It
performs the linguistic analysis and the CLAT
checks.
The main component of the Linguistic Engine is
the program MPRO for the morphological and syn-
tactic analysis of the given text. For further details
on MPRO see Maas et al. (2009).

Figure 2. Architecture of the CLAT System (IAI,

2009b:4)

Due to the Linguistic Engine the quality level of
the CLAT checks is very high, e.g. the morpho-
logical analysis enables CLAT to elicit morpho-
logical word form variants such as electrical
battery as a variant of electric battery. Moreover
due to the linguistic intelligence CLAT is able to
detect even word order variants such as source of
propulsion power as a variant of propulsion power
source. These variants are found using complex
methods of linguistic abstraction and do not need
to be explicitly named in the terminological data-
base (cf. Carl et al., 2002a, Hong et al., 2001,
Thurmair, 2003).

Another system component of CLAT is UMMT
(Utility for Mandate Management Tasks). It is the
central configuration tool for the CLAT-Server.
With UMMT, language resources used in CLAT
are created, updated, and administered according to
the requirements of the respective company.

3

Figure 3. UMMT configuration tool for the CLAT-

Server (IAI, 2010:19).

Some of the possible settings for CLAT projects in
UMMT are:

• import/maintenance of terminology

• definition of stylistic and grammatical rules

• definition of special spellings and synonyms

All these settings are saved as a project and can be
accessed by CLAT at run time. The central project
and user management of UMMT allows creation
and administration of CLAT projects as well as
CLAT users or user groups. CLAT projects can be
assigned to one or several CLAT users or user
groups. For more detailed information about the
CLAT/UMMT Software package see the IAI User
Manuals (IAI, 2009a/b).

2.2 Across Language Server

The Across Language Server is the central soft-
ware platform of the Across language system. The
software includes a translation memory, a termi-
nology system, and project management and trans-
lation workflow control tools. In this paper I will
describe only a few components of the software—
the translation memory, the terminology database
and the user interface. For further information on
the Across Language Server see the Across User
Manuals (Across, 2009b/c).

The translation memory within the Across lan-
guage server—called crossTank—contains sen-
tence pairs from earlier translations. If it finds an
identical or similar sentence in a new source text, it
offers the stored translation as the basis for an op-
tional automatic pre-translation or as a suggestion,

as soon as the translator has arrived at the relevant
sentence of the source text in the editor. New
translations can either be saved automatically in
crossTank or the translator can also choose to save
them manually.

The terminology database within the Across
Language Server—called crossTerm—enables the
translator to create and update multilingual sets of
terminology, in particular company-specific termi-
nology and glossaries of technical terms. cros-
sTerm stores concepts and their verbal
designations (e. g., translation, synonym, antonym,
etc.) for all languages at a single level. It is possi-
ble to store many different types of additional in-
formation, as well as user-defined information.
Both modules—the translation memory and the
database—are integrated in a central user inter-
face—called crossDesk. It provides the translator
with a text editor for the source and the target text
as well as the functions mentioned above. Matches
in crossTank and crossTerm are marked in the
source text automatically and can be easily incor-
porated into the target text.

Figure 4. Central user interface crossDesk (Across,

2009d:24).

2.3 crossAuthor / crossAuthor Linguistic

crossAuthor and crossAuthor Linguistic are add-
ons for separate source-text editors (e.g., MS
Word, Adobe FrameMaker) and provide an inter-
face to the Across Language Server. With cross-
Author, the sentence the user is currently working
on in the source-text editor is sent to the Across
Language Server. This sentence will then be
searched for in crossTank. Relevant search hits are
sent back to the user and are displayed in the corre-
sponding crossTank window. At the same time

4

crossTerm is searched for any corresponding
words in the current sentence. The relevant search
hits are also transmitted to the crossAuthor add-on
via the interface and displayed in the crossTerm
window.

Figure 5. Across/CLAT Integration (Across, 2009a:40).

Finally, crossAuthor Linguistic is an expanded
solution of crossAuthor featuring seamless integra-
tion of CLAT in Across. With crossAuthor Lin-
guistic users have access to the crossTank and
crossTerm matches as well as to the CLAT results.

Figure 6. crossAuthor Linguistic correction window in

MS Word 2003 (Across, 2009a:48).

Moreover, the CLAT connection enables the direct
integration of the editor in the terminology creation
process. With the CLAT term-candidate extrac-
tion, the editor can directly save auto-detected and
extracted terminology as entries in the crossTerm
database. As a result, crossTerm works as a core
terminology database for both systems. To make
the CLAT server work with the respective termi-
nology it is only necessary to import the terminol-
ogy into UMMT before starting CLAT. This can
be done either manually via CSV or automatically
by a special interface.

Figure 7. Term-candidate extraction in crossAuthor

(Across, 2009a:50).

3 Conclusion

The integration of Authoring tools into Translation
Memory Systems is an important step towards a
single working environment for the translator's
workflow. The system described enables the trans-
lator to maintain the terminology for both sys-
tems—the Authoring Tool as well as the
Translation Memory System—in a single core da-
tabase. Moreover, the integration of CLAT in
Across allows the translator to save auto-detected
and extracted term-candidates directly into this
database.

Due to the linguistically intelligent analysis in
CLAT it is necessary to have specific information
about the terms (part of speech, gender, etc.). This
information is automatically generated within the
CLAT System. This is the reason why the de-
scribed system actually still has two separate ter-
minology databases. But this is not an important
disadvantage of the overall system as long as one
of the databases is the core database. The fact, that
only one core database has to be maintained means
a significant reduction of the workload of transla-
tors resp. terminologists.

The system presented is only a first step to-
wards a fully integrated solution for the translators
working environment. The focus for future re-
search could be for example the development of an
integrated linguistic intelligent Authoring Tool to
proof whole translation memories.

5

References
Across Systems GmbH. 2009a. User Manual. Transla-

tion-Oriented Authoring with crossAuthor / cros-
sAuthor Linguistic v. 5.0.

Across Systems GmbH. 2009b. Across Step by Step.
Unser Manual v. 5.0.

Across Systems GmbH. 2009c. Across at a glance. User
Manual v. 5.0.

Across Systems GmbH. 2009d. Quickstart Across Lan-
guage Server v. 5.0.

Andrew Bredenkamp, Berthold Crysman, and Mirela
Petrea. 2000. Building Multilingual Controlled Lan-
guage Performance Checkers. In Adriaens et al.
(Eds), Proceedings of the Third International Work-
shop on Controlled Language Applications (CLAW
2000), Seattle, Washington, pp. 83–89.

Daniel Brockmann. 1997. Controlled Language &
Translation Memory Technology: a Perfect Match to
Save Translation Cost. TC Forum 4/97, pp. 10–11.

Michael Carl, Johann Haller, Christoph Horschmann,
and Axel Theofilidis. 2002a. A Hybrid Example-
Based Approach for Detecting Terminological Vari-
ants in Documents and Lists of Terms. 6. Konferenz
zur Verarbeitung natürlicher Sprache, KONVENS,
Saarbrücken. http://www.iai-sb.de/docs/konvens.pdf.

Michael Carl, Johann Haller, Christoph Horschmann,
Dieter Maas, and Jörg Schütz. 2002b. The TETRIS
Terminology Tool. In TAL, Vol. 43:1. http://www.iai-
sb.de/docs/ tal.pdf.

DIN ISO 12620. 1999. Computer Applications in Ter-
minology – Data Categories.

Gottfried Herzog and Holger Mühlbauer. 2007. Normen
für Übersetzer und technische Autoren. Beuth Verlag
GmbH, Berlin.

Johann Haller. 2000. MULTIDOC – Authoring Aids for
Multilingual Technical Documentation. First Con-
gress of Specialized Translation, Barcelona, March
2000. http://www.iai-sb.de/docs/bcn.pdf.

Willem-Olaf Huijsen. 1998. Controlled Language – An
Introduction. In Mitamura et al. (Eds), Proceedings
of the Second International Workshop on Controlled
Language Applications – CLAW 98, Language Tech-
nologies Institute, Carnegie Mellon University, Pitts-
burgh, Pennsylvania, pp. 1–15.

Munpyo Hong , Sisay Fissaha, and Johann Haller. 2001.
Hybrid filtering for extraction of term candidates
from German technical texts. TIA-2001, Nancy.
http://www.iai-sb.de/docs/term_extract.pdf.

IAI (Institut der Gesellschaft zur Förderung der Ang-
wandten Informationsforschung). 2009a. CLAT-
Client Manual 4.1

IAI (Institut der Gesellschaft zur Förderung der Ang-
wandten Informationsforschung). 2009b. CLAT-
Introduction Version 4.1

IAI (Institut der Gesellschaft zur Förderung der Ang-
wandten Informationsforschung). 2010. UMMT
Manual Version 4.1

Heinz-Dieter Maas, Christoph Rösener, and Axel The-
ofilidis. 2009. Morphosyntactic and Semantic Analy-
sis of Text: The MPRO Tagging Procedure. In:
Cerstin Mahlow and Michael Piotrowski (Eds.): State
of the art in computational morphology. Workshop
on systems and frameworks for computational mor-
phology, SFCM 2009, Zurich, Switzerland, Septem-
ber 4, 2009. Proceedings. New York: Springer
(Communications in Computer and Information Sci-
ence, 41), pp. 76–87.

Eric Nyberg, Teruko Mitamura, and Willem-Olaf Hui-
jsen. 2003. Controlled Language for Authoring and
Translation. In H. Somers. (ed), Computers ad Trans-
lation: A Translator's Guide, Amsterdam, John Ben-
jamins, pp. 245–282.

Sharon O'Brien. 2003. Controlling Controlled English –
An Analysis of Several Controlled Language Rule
Sets. Proceedings of the Joint Conference combining
the 8th International Workshop of the European As-
sociation for Machine Translation and the 4th Con-
trolled Language Applications Workshop (CLAW
2003), 15th–17th May, Dublin City University, Dub-
lin, Ireland, pp. 105–114.

Ursula Reuther. 2003. Two in One – Can it Work?
Readability and Translatability by means of Con-
trolled Language. Proceedings of the Joint Confer-
ence combining the 8th International Workshop of the
European Association for Machine Translation and
the 4th Controlled Language Applications Workshop
(CLAW 2003), 15th–17th May, Dublin City Univer-
sity, Dublin, Ireland, pp. 124–132.

Ursula Reuther and Antje Schmidt-Wigger. 2000. De-
signing a Multi-Purpose CL Application. In Adriaens
et al. (eds), Proceedings of the Third International
Workshop on Controlled Language Applications
(CLAW 2000), Seattle, Washington, pp. 72–82.

Serena Shubert, Jan Spyridakis, and Heather Holmback.
1995. The Comprehensibility of Simplified English
in Procedures. Journal of Technical Writing and
Communication, 25(4):347–369.

Jan Spyridakis, Serena Shubert, and Heather Holmback.
1997. Measuring the Translatability of Simplified
English in Procedural Documents. IEEE Transac-
tions on Professional Communication. 40(1):217–
246.

Gregor Thurmair. 2003. Making Term Extraction Tools
Usable. Proceedings of the Joint Conference combin-
ing the 8th International Workshop of the European
Association for Machine Translation and the 4th Con-
trolled Language Applications Workshop (CLAW
2003), 15th–17th May, Dublin City University, Dub-
lin, Ireland, pp. 170–179.

6

