
ACL-IJCNLP 2009

NEWS 2009

2009 Named Entities Workshop:
Shared Task on Transliteration

Proceedings of the Workshop

7 August 2009
Suntec, Singapore

Production and Manufacturing by
World Scientific Publishing Co Pte Ltd
5 Toh Tuck Link
Singapore 596224

c©2009 The Association for Computational Linguistics
and The Asian Federation of Natural Language Processing

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-932432-57-2 / 1-932432-57-4

ii

Preface

Named Entities play a significant role in Natural Language Processing and Information
Retrieval. While identifying and analyzing named entities in a given natural language is a
challenging research problem by itself, the phenomenal growth in the Internet user
population, especially among the non-English speaking parts of the world, has extended this
problem to the crosslingual arena. This is the specific research focus for the Named Entities
WorkShop (NEWS), being held as a part of ACL-IJCNLP 2009 conference.

The purpose of the NEWS workshop is to bring together researchers across the world
interested in identification, analysis, extraction, mining and transformation of named entities
in monolingual or multilingual natural language text. Under such broad scope as above, many
interesting specific research areas pertaining to the named entities are identified, such as,
orthographic and phonetic characteristics, corpus analysis, unsupervised and supervised
named entities extraction in monolingual or multilingual corpus, transliteration modelling,
and evaluation methodologies, to name a few. 17 research papers were submitted, each of
which was reviewed by at least 3 reviewers from the program committee. Finally, 9 papers
were chosen for publication, covering main research areas, from named entities tagging and
extraction, to computational phonology to machine transliteration of named entities. All
accepted research papers are published in the workshop proceedings.

An important part of the NEWS workshop is the shared task on Machine Transliteration of
named entities. Machine transliteration is a vibrant research area as witnessed by increasing
number of publications over the last decade in the Computational Linguistics, Natural
Language Processing (ACL, EACL, NAACL, IJCNLP, COLING, HLT, EMNLP, etc.), and
Information Retrieval (SIGIR, ECIR, AIRS, etc.) conferences, and primarily in languages
that use non-Latin based scripts. However, in spite of its popularity, no meaningful
comparison could be possible between the research approaches, as the publications tended to
be on different language pairs and different datasets, and on a variety of different metrics. For
the first time, we organize a shared task as part of the NEWS workshop to provide a common
evaluation platform for benchmarking and calibration of transliteration technologies.

We collected significantly large, hand-crafted parallel named entities corpora in 7 different
languages from 6 language families, and made available as common dataset for the shared
task. We defined 6 metrics that are language-independent, intuitive and computationally easy
to compute. We published the details of the shared task and the training and development
data six months ahead of the conference that attracted an overwhelming response from the
research community. Totally 31 teams participated from around the world, including
industry, government laboratories and academia. The approaches ranged from traditional
unsupervised learning methods (such as, naive-Bayes, Phrasal SMT-based, Conditional
Random Fields, etc.) to somewhat unique approaches (such as, sequence prediction models,
to Minimum Description Length-based methods, etc.), combined with several model
combinations for results re-ranking. While every team submitted standard runs that use only
the data provided by the NEWS organizers, many teams also submitted non-standard runs
where they were allowed to use any additional data or language specific modules. In total,
about 190 task runs were submitted, covering most approaches comprehensively. A report of
the shared task that summarizes all submissions and the original whitepaper are also included
in the proceedings, and will be presented in the workshop. The participants in the shared task
were asked to submit short system papers (4 pages each) describing their approach, and each

iii

of such papers was reviewed by at least two members of the program committee; 27 of them
were finally are accepted to publish in the workshop proceedings.

NEWS 2009 is the first workshop that specifically addresses comprehensively all research
avenues concerned with named entities, to the best of our knowledge. Also, the transliteration
shared task is the first of its kind, to calibrate such large number of systems using common
metrics on common language-specific datasets in a comprehensive set of language pairs.

We hope that NEWS 2009 would provide an exciting and productive forum for researchers
working in this research area. The technical programme includes 9 research papers and 27
system papers to be presented in the workshop. Further, we are pleased to have invited Dr
Kevin Knight to deliver a keynote speech in the workshop. Dr Knight is a well-known
researcher in natural language processing, an Associate Professor at University of Southern
California, and the Founder and Chief Scientist of Language Weaver, a human
communication solutions company.

We wish to thank all the researchers for their research submission and the enthusiastic
participation in the transliteration shared task. We wish to express our gratitude for the data
providers (CJK Institute, Institute for Infocomm Research and Microsoft Research India) for
the shared task. Finally, we thank all the programme committee members for reviewing the
submissions in spite of the tight schedule.

Workshop Chairs

Haizhou Li, Institute for Infocomm Research, Singapore
A Kumaran, Microsoft Research, India

7 August 2009

iv

Organizers

Chairs
Haizhou Li, Institute for Infocomm Research, Singapore
A Kumaran, Microsoft Research, India

Organizing Committee
Sanjeev Khudanpur, Johns Hopkins University, USA
Raghavendra Udupa, Microsoft Research, India
Min Zhang, Institute for Infocomm Research, Singapore
Monojit Choudhury, Microsoft Research, India

Program Committee
Kalika Bali, Microsoft Research, India
Rafael Banchs, BarcelonaMedia, Spain
Sivaji Bandyopadhyay, University of Jadavpur, India
Pushpak Bhattacharyya, IIT-Bombay, India
Monojit Choudhury, Microsoft Research, India
Marta Ruiz Costa-jussà, UPC, Spain
Gregory Grefenstette, Exalead, France
Sanjeev Khudanpur, Johns Hopkins University, USA
Kevin Knight, University of Southern California/ISI, USA
Greg Kondrak, University of Alberta, Canada
A Kumaran, Microsoft Research, India
Olivia Kwong, City University, Hong Kong
Gina-Anne Levow, University of Chicago, USA
Haizhou Li, Institute for Infocomm Research, Singapore
Raghavendra Udupa, Microsoft Research, India
Arul Menezes, Microsoft Research, USA
Jong-Hoon Oh, NICT, Japan
Vladimir Pervouchine, Institute for Infocomm Research, Singapore
Yan Qu, Advertising.com, USA
Sunita Sarawagi, IIT-Bombay, India
Sudeshna Sarkar, IIT-Kharagpur, India
Richard Sproat, University of Illinois, Urbana-Champaign, USA
Keh-Yih Su, Behavior Design Corporation, Taiwan
Raghavendra Udupa, Microsoft Research, India
Vasudeva Varma, IIIT-Hyderabad, India
Min Zhang, Institute for Infocomm Research, Singapore

v

Table of Contents

Report of NEWS 2009 Machine Transliteration Shared Task
Haizhou Li, A Kumaran, Vladimir Pervouchine and Min Zhang . 1

Whitepaper of NEWS 2009 Machine Transliteration Shared Task
Haizhou Li, A Kumaran, Min Zhang and Vladimir Pervouchine . 19

Automata for Transliteration and Machine Translation
Kevin Knight . 27

DirecTL: a Language Independent Approach to Transliteration
Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou, Kenneth Dwyer and Grzegorz Kondrak . . .28

Named Entity Transcription with Pair n-Gram Models
Martin Jansche and Richard Sproat . 32

Machine Transliteration using Target-Language Grapheme and Phoneme: Multi-engine Transliteration
Approach

Jong-Hoon Oh, Kiyotaka Uchimoto and Kentaro Torisawa . 36

A Language-Independent Transliteration Schema Using Character Aligned Models at NEWS 2009
Praneeth Shishtla, Surya Ganesh V, Sethuramalingam Subramaniam and Vasudeva Varma.40

Experiences with English-Hindi, English-Tamil and English-Kannada Transliteration Tasks at NEWS
2009

Manoj Kumar Chinnakotla and Om P. Damani . 44

Testing and Performance Evaluation of Machine Transliteration System for Tamil Language
Kommaluri Vijayanand . 48

Transliteration by Bidirectional Statistical Machine Translation
Andrew Finch and Eiichiro Sumita . 52

Transliteration of Name Entity via Improved Statistical Translation on Character Sequences
Yan Song, Chunyu Kit and Xiao Chen . 57

Learning Multi Character Alignment Rules and Classification of Training Data for Transliteration
Dipankar Bose and Sudeshna Sarkar . 61

Fast Decoding and Easy Implementation: Transliteration as Sequential Labeling
Eiji Aramaki and Takeshi Abekawa . 65

NEWS 2009 Machine Transliteration Shared Task System Description: Transliteration with Letter-to-
Phoneme Technology

Colin Cherry and Hisami Suzuki . 69

Combining a Two-step Conditional Random Field Model and a Joint Source Channel Model for Machine
Transliteration

Dong Yang, Paul Dixon, Yi-Cheng Pan, Tasuku Oonishi, Masanobu Nakamura and Sadaoki Furui
72

vii

Phonological Context Approximation and Homophone Treatment for NEWS 2009 English-Chinese Translit-
eration Shared Task

Oi Yee Kwong. .76

English to Hindi Machine Transliteration System at NEWS 2009
Amitava Das, Asif Ekbal, Tapabrata Mondal and Sivaji Bandyopadhyay . 80

Improving Transliteration Accuracy Using Word-Origin Detection and Lexicon Lookup
Mitesh Khapra and Pushpak Bhattacharyya . 84

A Noisy Channel Model for Grapheme-based Machine Transliteration
Jia Yuxiang, Zhu Danqing and Yu Shiwen . 88

Substring-based Transliteration with Conditional Random Fields
Sravana Reddy and Sonjia Waxmonsky . 92

A Syllable-based Name Transliteration System
Xue Jiang, Le Sun and Dakun Zhang . 96

Transliteration System Using Pair HMM with Weighted FSTs
Peter Nabende .100

English-Hindi Transliteration Using Context-Informed PB-SMT: the DCU System for NEWS 2009
Rejwanul Haque, Sandipan Dandapat, Ankit Kumar Srivastava, Sudip Kumar Naskar and Andy

Way . 104

A Hybrid Approach to English-Korean Name Transliteration
Gumwon Hong, Min-Jeong Kim, Do-Gil Lee and Hae-Chang Rim . 108

Language Independent Transliteration System Using Phrase-based SMT Approach on Substrings
Sara Noeman. .112

Combining MDL Transliteration Training with Discriminative Modeling
Dmitry Zelenko . 116

ε-extension Hidden Markov Models and Weighted Transducers for Machine Transliteration
Balakrishnan Varadarajan and Delip Rao . 120

Modeling Machine Transliteration as a Phrase Based Statistical Machine Translation Problem
Taraka Rama and Karthik Gali . 124

Maximum n-Gram HMM-based Name Transliteration: Experiment in NEWS 2009 on English-Chinese
Corpus

Yilu Zhou . 128

Name Transliteration with Bidirectional Perceptron Edit Models
Dayne Freitag and Zhiqiang Wang . 132

Bridging Languages by SuperSense Entity Tagging
Davide Picca, Alfio Massimiliano Gliozzo and Simone Campora . 136

Chinese-English Organization Name Translation Based on Correlative Expansion
Feiliang Ren, Muhua Zhu, Huizhen Wang and Jingbo Zhu . 143

Name Matching between Roman and Chinese Scripts: Machine Complements Human
Ken Samuel, Alan Rubenstein, Sherri Condon and Alex Yeh . 152

viii

Analysis and Robust Extraction of Changing Named Entities
Masatoshi Tsuchiya, Shoko Endo and Seiichi Nakagawa. .161

Tag Confidence Measure for Semi-Automatically Updating Named Entity Recognition
Kuniko Saito and Kenji Imamura . 168

A Hybrid Model for Urdu Hindi Transliteration
Abbas Malik, Laurent Besacier, Christian Boitet and Pushpak Bhattacharyya 177

Graphemic Approximation of Phonological Context for English-Chinese Transliteration
Oi Yee Kwong . 186

Czech Named Entity Corpus and SVM-based Recognizer
Jana Kravalova and Zdenek Zabokrtsky . 194

Voted NER System using Appropriate Unlabeled Data
Asif Ekbal and Sivaji Bandyopadhyay . 202

ix

Conference Program

Friday, August 7, 2009

8:30–9:10 Opening Remarks

Overview of the Shared Tasks

Report of NEWS 2009 Machine Transliteration Shared Task
Haizhou Li, A Kumaran, Vladimir Pervouchine and Min Zhang

Keynote Speech

9:10–10:00 Automata for Transliteration and Machine Translation
Kevin Knight

10:00–10:30 Coffee Break

Session 1: Shared Task Paper Presentation

10:30–10:45 DirecTL: a Language Independent Approach to Transliteration
Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou, Kenneth Dwyer and Grzegorz
Kondrak

10:45–11:00 Named Entity Transcription with Pair n-Gram Models
Martin Jansche and Richard Sproat

11:00–11:15 Machine Transliteration using Target-Language Grapheme and Phoneme: Multi-
engine Transliteration Approach
Jong-Hoon Oh, Kiyotaka Uchimoto and Kentaro Torisawa

11:15–11:30 A Language-Independent Transliteration Schema Using Character Aligned Models
at NEWS 2009
Praneeth Shishtla, Surya Ganesh V, Sethuramalingam Subramaniam and Vasudeva
Varma

11:30–11:45 Experiences with English-Hindi, English-Tamil and English-Kannada Translitera-
tion Tasks at NEWS 2009
Manoj Kumar Chinnakotla and Om P. Damani

xi

Friday, August 7, 2009 (continued)

12:00–13:50 Lunch Break

Session 2: Posters

13:50–15:30 Poster Presentation

Testing and Performance Evaluation of Machine Transliteration System for Tamil Lan-
guage
Kommaluri Vijayanand

Transliteration by Bidirectional Statistical Machine Translation
Andrew Finch and Eiichiro Sumita

Transliteration of Name Entity via Improved Statistical Translation on Character Se-
quences
Yan Song, Chunyu Kit and Xiao Chen

Learning Multi Character Alignment Rules and Classification of Training Data for
Transliteration
Dipankar Bose and Sudeshna Sarkar

Fast Decoding and Easy Implementation: Transliteration as Sequential Labeling
Eiji Aramaki and Takeshi Abekawa

NEWS 2009 Machine Transliteration Shared Task System Description: Transliteration
with Letter-to-Phoneme Technology
Colin Cherry and Hisami Suzuki

Combining a Two-step Conditional Random Field Model and a Joint Source Channel
Model for Machine Transliteration
Dong Yang, Paul Dixon, Yi-Cheng Pan, Tasuku Oonishi, Masanobu Nakamura and
Sadaoki Furui

Phonological Context Approximation and Homophone Treatment for NEWS 2009 English-
Chinese Transliteration Shared Task
Oi Yee Kwong

English to Hindi Machine Transliteration System at NEWS 2009
Amitava Das, Asif Ekbal, Tapabrata Mondal and Sivaji Bandyopadhyay

Improving Transliteration Accuracy Using Word-Origin Detection and Lexicon Lookup
Mitesh Khapra and Pushpak Bhattacharyya

xii

Friday, August 7, 2009 (continued)

A Noisy Channel Model for Grapheme-based Machine Transliteration
Jia Yuxiang, Zhu Danqing and Yu Shiwen

Substring-based Transliteration with Conditional Random Fields
Sravana Reddy and Sonjia Waxmonsky

A Syllable-based Name Transliteration System
Xue Jiang, Le Sun and Dakun Zhang

Transliteration System Using Pair HMM with Weighted FSTs
Peter Nabende

English-Hindi Transliteration Using Context-Informed PB-SMT: the DCU System for
NEWS 2009
Rejwanul Haque, Sandipan Dandapat, Ankit Kumar Srivastava, Sudip Kumar Naskar and
Andy Way

A Hybrid Approach to English-Korean Name Transliteration
Gumwon Hong, Min-Jeong Kim, Do-Gil Lee and Hae-Chang Rim

Language Independent Transliteration System Using Phrase-based SMT Approach on
Substrings
Sara Noeman

Combining MDL Transliteration Training with Discriminative Modeling
Dmitry Zelenko

ε-extension Hidden Markov Models and Weighted Transducers for Machine Translitera-
tion
Balakrishnan Varadarajan and Delip Rao

Modeling Machine Transliteration as a Phrase Based Statistical Machine Translation
Problem
Taraka Rama and Karthik Gali

Maximum n-Gram HMM-based Name Transliteration: Experiment in NEWS 2009 on
English-Chinese Corpus
Yilu Zhou

Name Transliteration with Bidirectional Perceptron Edit Models
Dayne Freitag and Zhiqiang Wang

xiii

Friday, August 7, 2009 (continued)

Bridging Languages by SuperSense Entity Tagging
Davide Picca, Alfio Massimiliano Gliozzo and Simone Campora

Chinese-English Organization Name Translation Based on Correlative Expansion
Feiliang Ren, Muhua Zhu, Huizhen Wang and Jingbo Zhu

Name Matching between Roman and Chinese Scripts: Machine Complements Human
Ken Samuel, Alan Rubenstein, Sherri Condon and Alex Yeh

Analysis and Robust Extraction of Changing Named Entities
Masatoshi Tsuchiya, Shoko Endo and Seiichi Nakagawa

15:30–16:00 Coffee Break

Session 3: Research Paper Presentation

16:00–16:20 Tag Confidence Measure for Semi-Automatically Updating Named Entity Recognition
Kuniko Saito and Kenji Imamura

16:20–16:40 A Hybrid Model for Urdu Hindi Transliteration
Abbas Malik, Laurent Besacier, Christian Boitet and Pushpak Bhattacharyya

16:40–17:00 Graphemic Approximation of Phonological Context for English-Chinese Transliteration
Oi Yee Kwong

17:00–17:20 Czech Named Entity Corpus and SVM-based Recognizer
Jana Kravalova and Zdenek Zabokrtsky

17:20–17:40 Voted NER System using Appropriate Unlabeled Data
Asif Ekbal and Sivaji Bandyopadhyay

xiv

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 1–18,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Report of NEWS 2009 Machine Transliteration Shared Task

Haizhou Li†, A Kumaran‡, Vladimir Pervouchine† and Min Zhang†
†Institute for Infocomm Research, A*STAR, Singapore 138632
{hli,vpervouchine,mzhang}@i2r.a-star.edu.sg
‡Multilingual Systems Research, Microsoft Research India

A.Kumaran@microsoft.com

Abstract

This report documents the details of the
Machine Transliteration Shared Task con-
ducted as a part of the Named Enti-
ties Workshop (NEWS), an ACL-IJCNLP
2009 workshop. The shared task features
machine transliteration of proper names
from English to a set of languages. This
shared task has witnessed enthusiastic par-
ticipation of 31 teams from all over the
world, with diversity of participation for
a given system and wide coverage for a
given language pair (more than a dozen
participants per language pair). Diverse
transliteration methodologies are repre-
sented adequately in the shared task for a
given language pair, thus underscoring the
fact that the workshop may truly indicate
the state of the art in machine transliter-
ation in these language pairs. We mea-
sure and report 6 performance metrics on
the submitted results. We believe that the
shared task has successfully achieved the
following objectives: (i) bringing together
the community of researchers in the area
of Machine Transliteration to focus on var-
ious research avenues, (ii) Calibrating sys-
tems on common corpora, using common
metrics, thus creating a reasonable base-
line for the state-of-the-art of translitera-
tion systems, and (iii) providing a quan-
titative basis for meaningful comparison
and analysis between various algorithmic
approaches used in machine translitera-
tion. We believe that the results of this
shared task would uncover a host of inter-
esting research problems, giving impetus
to research in this significant research area.

1 Introduction

Names play a significant role in many Natural
Language Processing (NLP) and Information Re-
trieval (IR) systems. They have a critical role
in Cross Language Information Retrieval (CLIR)
and Machine Translation (MT) systems as the sys-
tems’ performances are shown to positively cor-
relate with the correct conversion of names be-
tween the languages in several studies (Demner-
Fushman and Oard, 2002; Mandl and Womser-
Hacker, 2005; Hermjakob et al., 2008; Udupa et
al., 2009). The traditional source for name equiva-
lence, the bilingual dictionaries — whether hand-
crafted or statistical — offer only limited support
as they do not have sufficient coverage of names.
New names are introduced to the vocabulary of a
language every day.

All of the above point to the critical need for ro-
bust Machine Transliteration technology and sys-
tems. This has attracted attention from the re-
search community. Over the last decade scores of
papers on Machine Transliteration have appeared
in the top Computational Linguistics, Information
Retrieval and Data Management conferences, ex-
ploring diverse algorithmic approaches in a wide
variety of different languages (Knight and Graehl,
1998; Li et al., 2004; Zelenko and Aone, 2006;
Sproat et al., 2006; Sherif and Kondrak, 2007;
Hermjakob et al., 2008; Goldwasser and Roth,
2008; Goldberg and Elhadad, 2008; Klementiev
and Roth, 2006). However, there has not been
any coordinated effort in calibrating the state-of-
the-art technical capabilities of machine translit-
eration: the studies explore different algorithmic
approaches in different language pairs and report
their performance in different metrics and tested
on different corpora.

The overarching objective of this shared task
is to drive the machine transliteration technology
forward, to measure and baseline the state-of-the-

1

art and to provide a meaningful comparison be-
tween the most promising algorithmic approaches
in order to stimulate the discussions among the re-
searchers. The NLP community in Asia is espe-
cially interested in transliteration as several major
Asian languages do not use Latin script in their na-
tive writing systems. The Named Entity Workshop
(NEWS 2009) in ACL-IJCNLP 2009 in Singapore
provides an ideal platform for the shared task to
take off. This is precisely what we address in this
shared task on machine transliteration that is con-
ducted as a part of the Named Entity Workshop
(NEWS-2009), an ACL-IJCNLP 2009 workshop.

The shared task aims at achieving the following
objectives:

• Providing a forum to bring together the com-
munity of researchers in the area of Machine
Transliteration to focus on various research
avenues in this important research area.

• Calibrating systems on common hand-crafted
corpora, using common metrics, in many dif-
ferent languages, thus creating a reasonable
baseline for the state-of-the-art of translitera-
tion systems.

• Analysing the results so that a reason-
able comparison of different algorithmic
approaches and their trade-offs (such as,
transliteration quality vs. generality of ap-
proach across languages vs. training data
size, etc.) may be explored.

We believe that a substantial part of what we have
set out to achieve has been accomplished, and we
present this report as a record of the task pro-
cess, system participation and results and our find-
ings. It is our hope that this reporting will generate
lively discussions during the NEWS workshop and
subsequent research in this important area.

This introduction outlines the purpose of the
transliteration shared task conducted as a part of
the NEWS workshop. Section 2 outlines the ma-
chine transliteration task and the corpora used and
Section 3 discusses the metrics chosen for evalua-
tion, along with the rationale for choosing them.
Section 4 sketches the participation. Section 5
presents the results of the shared task and the anal-
ysis of the results. Section 6, summarises the
queries and feedback we have received from the
participants and Section 7 concludes, presenting
some lessons learnt from the current edition of the

shared task, and some ideas we want to pursue
in the future plan for the Machine Transliteration
tasks.

2 Transliteration Shared Task

In this section, we outline the definition of the task,
the process followed and the rationale for the de-
cisions.

2.1 “Transliteration”: A definition

There exists several terms that are used inter-
changeably in the contemporary research litera-
ture for the conversion of names between two
languages, such as, transliteration, transcription,
and sometimes Romanisation, especially if Latin
scripts are used for target strings (Halpern, 2007).

Our aim is not only at capturing the name con-
version process from a source to a target language,
but also at its ultimate utility for downstream ap-
plications, such as CLIR and MT. We have nar-
rowed down to three specific requirements for the
task, as follows: “Transliteration is the conver-
sion of a given name in the source language (a
text string in the source writing system or orthog-
raphy) to a name in the target language (another
text string in the target writing system or orthog-
raphy), such that the target language name is:
(i) phonemically equivalent to the source name
(ii) conforms to the phonology of the target lan-
guage and (iii) matches the user intuition of the
equivalent of the source language name in the tar-
get language.”

Given that the phoneme set of languages may
not be exactly the same, the first requirement must
be diluted to “close to”, instead of “equivalent”.
The second requirement is needed to ensure that
the target string is a valid string as per the target
language phonology. The third requirement is in-
troduced to produce what a normal user would ex-
pect (at least for the popular names), and in or-
der to make it useful for downstream applications
like MT or CLIR systems. Though the third re-
quirement make systems produce target language
strings that marginally violate the first or second
requirements, it ensures that such transliteration
system is of value to downstream systems. All the
above requirements are implicitly enforced by the
choice of name pairs used to define the training
and test corpora in a given language pair. In cases
where multiple equivalent target language names
are possible for a source language name, we in-

2

clude all of them.
After much debate, we have also retained the

task name as “transliteration”, though our defi-
nition may be closest to the “popular transcrip-
tion” (Halpern, 2007), due to the popularity of
term “Machine Transliteration” among the lan-
guage technology researchers.

2.2 Shared Task Description

The shared task is specified as development of ma-
chine transliteration systems in one or more of the
specified language pairs. Each language pair of
the shared task consists of a source and a target
language, implicitly specifying the transliteration
direction. Training and development data in each
of the language pairs have been made available to
all registered participants for developing a translit-
eration system for that specific language pair using
any approach that they find appropriate.

At the evaluation time, a standard hand-crafted
test set consisting of between 1,000 and 3,000
source names (approximately 10% of the train-
ing data size) have been released, on which the
participants are required to produce a ranked list
of transliteration candidates in the target language
for each source name. The system output is
tested against a reference set (which may include
multiple correct transliterations for some source
names), and the performance of a system is cap-
tured in multiple metrics (defined in Section 3),
each designed to capture a specific performance
dimension.

For every language pair every participant is re-
quired to submit one run (designated as a “stan-
dard” run) that uses only the data provided by the
NEWS workshop organisers in that language pair,
and no other data or linguistic resources. This
standard run ensures parity between systems and
enables meaningful comparison of performance
of various algorithmic approaches in a given lan-
guage pair. Participants are allowed to submit
more runs (designated as “non-standard”) for ev-
ery language pair using either data beyond that
provided by the shared task organisers or linguis-
tic resources in a specific language, or both. This
essentially may enable any participant to demon-
strate the limits of performance of their system in
a given language pair.

The shared task timelines provide adequate time
for development, testing (approximately 2 months
after the release of the training data) and the final

result submission (5 days after the release of the
test data).

2.3 Shared Task Corpora

We have had two specific constraints in selecting
languages for the shared task: language diversity
and data availability. To make the shared task in-
teresting and to attract wider participation, it is
important to ensure a reasonable variety among
the languages in terms of linguistic diversity, or-
thography and geography. Clearly, the ability of
procuring and distributing a reasonably large (ap-
proximately 10K paired names for training and
testing together) hand-crafted corpora consisting
primarily of paired names is critical for this pro-
cess. At the end of the planning stage and after
discussion with the data providers, we have cho-
sen the set of 7 languages shown in Table 1 for the
task (Li et al., 2004; Kumaran and Kellner, 2007;
MSRI, 2009; CJKI, 2009).

For all of the languages chosen, we have been
able to procure paired names data between En-
glish and the respective languages and were able
to make them available to the participants. In ad-
dition, we have been able to procure a specific
corpus of about 40K Romanised Japanese names
and their Kanji counterparts, and the correspond-
ing language pair (Japanese names from their Ro-
manised form to Kanji) has been included as one
of the task language pair.

It should be noted here that each corpus has a
definite skew in its characteristics: the names in
the Chinese, Japanese and Korean (CJK) language
corpora are Western names; the Indic languages
(Hindi, Kannada and Tamil) corpora consists of a
mix of Indian and Western names. The Roman-
ised Kanji to Kanji corpus consists only of native
Japanese names. While such characteristics may
have provided us an opportunity to specifically
measure the performance for forward translitera-
tions (in CJK) and backward transliterations (in
Romanised Kanji), we do not highlight such fine
distinctions in this edition.

Finally, it should be noted here that the corpora
procured and released for NEWS 2009 represent
perhaps the most diverse and largest corpora to be
used for any common transliteration tasks today.

3 Evaluation Metrics and Rationale

The participants have been asked to submit re-
sults of one standard and up to four non-standard

3

Source language Target language Data Source Data Size (No. source names) Task IDTraining Development Testing

English Hindi Microsoft Research India 9,975 974 1,000 EnHi
English Tamil Microsoft Research India 7,974 987 1,000 EnTa
English Kannada Microsoft Research India 7,990 968 1,000 EnKa
English Russian Microsoft Research India 5,977 943 1,000 EnRu
English Chinese Institute for Infocomm Research 31,961 2,896 2,896 EnCh
English Korean Hangul CJK Institute 4,785 987 989 EnKo
English Japanese Katakana CJK Institute 23,225 1,492 1,489 EnJa
Japanese name (in English) Japanese Kanji CJK Institute 6,785 1,500 1,500 JnJk

Table 1: Source and target languages for the shared task on transliteration.

runs. Each run contains a ranked list of up to
10 candidate transliterations for each source name.
The submitted results are compared to the ground
truth (reference transliterations) using 6 evaluation
metrics capturing different aspects of translitera-
tion performance. Since a name may have mul-
tiple correct transliterations, all these alternatives
are treated equally in the evaluation, that is, any
of these alternatives is considered as a correct
transliteration, and all candidates matching any of
the reference transliterations are accepted as cor-
rect ones.

The following notation is further assumed:
N : Total number of names (source

words) in the test set
ni : Number of reference transliterations

for i-th name in the test set (ni ≥ 1)
ri,j : j-th reference transliteration for i-th

name in the test set
ci,k : k-th candidate transliteration (system

output) for i-th name in the test set
(1 ≤ k ≤ 10)

Ki : Number of candidate transliterations
produced by a transliteration system

3.1 Word Accuracy in Top-1 (ACC)

Also known as Word Error Rate, it measures cor-
rectness of the first transliteration candidate in the
candidate list produced by a transliteration system.
ACC = 1 means that all top candidates are cor-
rect transliterations i.e. they match one of the ref-
erences, and ACC = 0 means that none of the top
candidates are correct.

ACC =
1
N

N∑
i=1

{
1 if ∃ri,j : ri,j = ci,1;
0 otherwise

}
(1)

3.2 Fuzziness in Top-1 (Mean F-score)

The mean F-score measures how different, on av-
erage, the top transliteration candidate is from its
closest reference. F-score for each source word
is a function of Precision and Recall and equals 1
when the top candidate matches one of the refer-
ences, and 0 when there are no common characters
between the candidate and any of the references.

Precision and Recall are calculated based on
the length of the Longest Common Subsequence
(LCS) between a candidate and a reference:

LCS(c, r) =
1
2

(|c|+ |r| − ED(c, r)) (2)

where ED is the edit distance and |x| is the length
of x. For example, the longest common subse-
quence between “abcd” and “afcde” is “acd” and
its length is 3. The best matching reference, that
is, the reference for which the edit distance has
the minimum, is taken for calculation. If the best
matching reference is given by

ri,m = arg min
j

(ED(ci,1, ri,j)) (3)

then Recall, Precision and F-score for i-th word
are calculated as

Ri =
LCS(ci,1, ri,m)

|ri,m|
(4)

Pi =
LCS(ci,1, ri,m)

|ci,1|
(5)

Fi = 2
Ri × Pi

Ri + Pi
(6)

• The length is computed in distinct Unicode
characters.

• No distinction is made on different character
types of a language (e.g., vowel vs. conso-
nants vs. combining diereses’ etc.)

4

3.3 Mean Reciprocal Rank (MRR)

Measures traditional MRR for any right answer
produced by the system, from among the candi-
dates. 1/MRR tells approximately the average
rank of the correct transliteration. MRR closer to 1
implies that the correct answer is mostly produced
close to the top of the n-best lists.

RRi =
{

minj
1
j if ∃ri,j , ci,k : ri,j = ci,k;

0 otherwise

}
(7)

MRR =
1
N

N∑
i=1

RRi (8)

3.4 MAPref

Measures tightly the precision in the n-best can-
didates for i-th source name, for which reference
transliterations are available. If all of the refer-
ences are produced, then the MAP is 1. Let’s de-
note the number of correct candidates for the i-th
source word in k-best list as num(i, k). MAPref

is then given by

MAPref =
1
N

N∑
i

1
ni

(
ni∑

k=1

num(i, k)

)
(9)

3.5 MAP10

MAP10 measures the precision in the 10-best can-
didates for i-th source name provided by the can-
didate system. In general, the higher MAP10 is,
the better is the quality of the transliteration sys-
tem in capturing the multiple references.

MAP10 =
1
N

N∑
i=1

1
10

(
10∑

k=1

num(i, k)

)
(10)

3.6 MAPsys

MAPsys measures the precision in the top Ki-best
candidates produced by the system for i-th source
name, for which ni reference transliterations are
available. This measure allows the systems to pro-
duce variable number of transliterations, based on
their confidence in identifying and producing cor-
rect transliterations.

MAPsys =
1
N

N∑
i=1

1
Ki

(
Ki∑
k=1

num(i, k)

)
(11)

4 Participation in Shared Task

There have been 31 systems from around the
world that participated in the shared task and sub-
mitted the transliteration results for a common test
data, produced by their systems trained on the
common training corpora.

A few teams have participated in all or almost
all tasks (that is, language pairs); most others par-
ticipated in 3 tasks on average. Each language pair
has attracted on average around 13 teams. The par-
ticipation details are shown in Table 3 and the de-
mographics of the participating teams by country
is shown in Figure 1.

!" #" $" %" &" '" (")" *" +" #!"

,-."

/0123"

43530"

67203"8"9:0;"<:0;"

<:=>3"

?32@30"

A;B5C"

/=>D301"

630313"

?7>"E>C7>=D301F"

0 1 2 3 4 5 6 7 8 9 10

Figure 1: Participation by country.

Teams are required to submit at least one stan-
dard run for every task they participated in. In total
104 standard and 86 non-standard runs have been
submitted. Table 2 shows the number of standard
and non-standard runs submitted for each task. It
is clear that the most “popular” tasks are translit-
eration from English to Hindi and from English to
Chinese, attempted by 21 and 18 participants re-
spectively. Overall, as can be noted from the re-
sults, each task has received significant participa-
tion.

5 Task Results and Analysis

5.1 Standard runs
The 8 individual plots in Figure 2 summarise (for
each task) the results of standard runs via 3 mea-
sured metrics concerning output of at least one
correct candidate per source word, namely, ac-
curacy in top-1, F -score and Mean Reciprocal
Rank (MRR). The plots in Figure 3 summarise (for
each task) the results for 3 metrics on ranked or-
dered transliteration output of the systems, namely
MAPref , MAP10 and MAPsys metrics. All the
results are presented numerically in Tables 8–11,
for all evaluation metrics. These are the official

5

English
to Hindi

English
to Tamil

English
to Kan-
nada

English
to Rus-
sian

English
to Chi-
nese

English
to Ko-
rean

English
to
Japanese
Katakana

Japanese
translit-
erated to
Japanese
Kanji

Language pair code EnHi EnTa EnKa EnRu EnCh EnKo EnJa JnJk

Standard runs 21 13 14 13 18 8 10 7
Non-standard runs 18 5 5 16 20 9 5 8

Table 2: Number of runs submitted for each task. Number of participants coincides with the number of
standard runs submitted.

evaluation results published for this edition of the
transliteration shared task. Note that two teams
have updated their results (after fixing bugs in their
systems) after the deadline; their results are iden-
tified specifically.

We find that two approaches to transliteration
are most popular in the shared task submissions.
One of these approaches is Phrase-based statis-
tical machine transliteration (Finch and Sumita,
2008), an approach initially developed for ma-
chine translation (Koehn et al., 2003). Systems
that adopted this approach are (Song, 2009; Haque
et al., 2009; Noeman, 2009; Rama and Gali, 2009;
Chinnakotla and Damani, 2009).1 The other is
Conditional Random Fields(Lafferty et al., 2001)
(CRF), adopted by (Aramaki and Abekawa, 2009;
Shishtla et al., 2009). With only a few exceptions,
most implementations are based on approaches
that are language-independent. Indeed, many of
the participants fielded their systems on multiple
languages, as can be seen from Table 3.

We also note that combination of several differ-
ent models via re-ranking of their outputs (CRF,
Maximum Entropy Model, Margin Infused Re-
laxed Algorithm) proves to be very successful (Oh
et al., 2009); their system (reported as Team ID
6) produced the best or second-best transliteration
performance consistently across all metrics, in all
tasks, except Japanese back-transliteration. Exam-
ples of other model combinations are (Das et al.,
2009).

At least two teams (reported as Team IDs 14
and 27) incorporate language origin detection in
their system (Bose and Sarkar, 2009; Khapra and
Bhattacharyya, 2009). The Indian language cor-
pora contains names of both English and Indic ori-
gin. Khapra and Bhattacharyya (2009) demon-
strate how much the transliteration performance
can be improved when language of origin detec-

1To maintain anonymity, papers of the teams that submit-
ted anonymous results are not cited in this report.

tion is employed, followed by a language-specific
transliteration model for decoding.

Some systems merit specific mention as they
adopt are rather unique approaches. Jiampoja-
marn et al. (2009) propose DirectTL discrimina-
tive sequence prediction model that is language-
independent (reported as Team ID 7). Their
transliteration accuracy is among the highest in
several tasks (EnCh, EnHi and EnRu). Zelenko
(2009) present an approach to the transliteration
problem based on Minimum Description Length
(MDL) principle. Freitag and Wang (2009) ap-
proach the problem of transliteration with bidirec-
tional perceptron edit models.

Finally, in Figure 4 we present a plot where
each point represents a standard run by a system,
with different tasks marked with specific shape
and colour. This plot gives a bird-eye-view of
the system performances across two most uncorre-
lated evaluation metrics, namely accuracy in top-1
(ACC) and Mean F -score. Not surprisingly, we
notice very high performance in terms of F -score
for English to Russian transliteration task, likely
because Russian orthography follows pronuncia-
tion very closely, except for characters like soft
and hard signs that can hardly be recovered from
English words.

We also observe that Japanese back-
transliteration has proven to be much harder
than other (forward-transliteration) tasks. In
general, we note that a well-performing translit-
eration system performs well across all metrics.
We are curious about the correlation between
different metrics, and the results (specifically,
the Spearman’s rank correlation coefficient) are
presented below:

• Accuracy in top-1 vs. F -score: 0.40

• Accuracy in top-1 vs. MRR: 0.97

• Accuracy in top-1 vs. MAPref : 0.997

6

• Accuracy in top-1 vs. MAP10: 0.89

• Accuracy in top-1 vs. MAPsys: 0.80

We find that F -score is the most uncorrelated met-
ric: the Spearman’s rank correlation coefficient
between F -score and accuracy in top-1 is 0.40 and
between F -score and MRR it is 0.44. This is likely
because all metrics, except for F -score, are based
on word accuracy, while F -score is based on word
similarity allowing non-matching words to have
scores well above 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Accuracy in top-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F-
sc

or
e

English to Chinese
English to Hindi
English to Tamil
English to Kannada
English to Russian
English to Korean
English to Japanese
Japanese transliterated to Japanese Kanji

Figure 4: Accuracy in top-1 vs. F -score for dif-
ferent tasks.

5.2 Non-standard runs
For the non-standard runs there exist no restric-
tions for the teams on the use of more data or other
linguistic resources. The purpose of non-standard
runs is to see how accurate personal name translit-
eration can be, for a given language pair. The ap-
proaches used in non-standard runs are typical and
may be summarised as follows:

• Dictionary lookup.

• Pronunciation dictionaries to convert words
to their phonetic transcription.

• Additional corpora for training and dictio-
nary lookup, such as LDC English-Chinese
named entity list LDC2005T34 (Linguistic
Data Consortium, 2005).

• Web search, and in particular, Wikipedia
search. First, transliteration candidates are
generated. Then a Web search is performed
to see if any of the candidates appear in the
search results. Based on the results, the can-
didates are re-ranked.

The results are shown in Tables 16–19. For En-
glish to Chinese and English to Russian transliter-
ation tasks the accuracy in top-1 can go as high as
0.909 and 0.955 respectively when Web search is
used to aid transliteration.

5.3 Post-evaluation

Two participants have found a bug in their system
implementation and re-evaluated the results after
the deadline. Their results are marked specifically
in Tables 4–8 and 16.

6 Process Analysis and Fine-tuning

In this section we highlight some of the sugges-
tions and feedback that we have received from the
participants during the course of this shared task.
While a few of them have been implemented in the
current edition, many of these may be considered
in the future editions of the shared task.

More or different languages There is quite a
bit of interest in enhancing the list of language
pairs short-listed. While we are constrained (in
this edition) due to the availability of manually
verified data, certainly more languages will be in-
cluded in the future editions, as some specific data
have already been promised for future editions.

Bidirectional transliteration Many partic-
ipants express interest in transliterations into
English; and this reflexive task will be added in
the future editions. We believe it will encourage
more participation as it will be easy to read and
verify system output in English for those teams
not familiar with the non-English side of the
language.

Forward vs. backward transliteration There
is quite a bit of interest expressed in specifically
separating forward and backward transliteration
tasks. However, such separation requires specific
corpora with known origin for each name pair, and
clearly we are constrained by the availability of
corpora. When corpora is available, the task may
be designated explicitly in future editions.

Number of standard runs The number of stan-
dard runs that may be submitted may be increased
in the future editions, as many participants would
like to submit many standard runs, trained with
different parameters.

7

Errors in training and development corpora
While we have taken all precautions in acquiring
and creating the corpora, some errors still remain.
We thank those who have sent us the errata. How-
ever, since the affected part is less than 0.5% of
the data, we believe that the effect on final results
is minimal. The errata will be made available to
all participants.

7 Conclusions and Future Plans

We are pleased to report a comprehensive cal-
ibration and baselining of machine translitera-
tion apporaches as most state-of-the-art machine
transliteration techniques are represented in the
shared task. The most popular techniques such as
Phrase-Based Machine Transliteration (Koehn et
al., 2003), and Conditional Random Fields (Laf-
ferty et al., 2001) are inspired by recent progress in
machine translation. As the standard runs are lim-
ited by the use of corpus, most of the systems are
implemented under the direct orthographic map-
ping (DOM) framework (Li et al., 2004). While
the standard runs allow us to conduct meaning-
ful comparison across different algorithms, we
recognise that the non-standard runs open up more
opportunities for exploiting larger linguistic cor-
pora. It is also noted that several systems have re-
ported improved performance over any previously
reported results on similar corpora.

NEWS 2009 Shared Task represents a suc-
cessful debut of a community effort in driving
machine transliteration techniques forward. The
overwhelming responses in the first shared task
also warrant continuation of such an effort in fu-
ture ACL or IJCNLP events.

Acknowledgements

The organisers of the NEWS 2009 Shared Task
would like to thank the Institute for Infocomm Re-
search (Singapore), Microsoft Research India and
CJK Institute (Japan) for providing the corpora
and technical support. Without those, the Shared
Task would not be possible. We thank those par-
ticipants who identified errors in the data and sent
us the errata. We want to thank Monojit Choud-
hury for his contribution to metrics defined for the
shared task. We also want to thank the members
of programme committee for their invaluable com-
ments that improve the quality of the shared task
papers. Finally, we wish to thank all the partici-
pants for their active participation that have made

this first machine transliteration shared task a com-
prehensive one.

8

References
Eiji Aramaki and Takeshi Abekawa. 2009. Fast de-

coding and easy implementation: Transliteration as
a sequential labeling. In Proc. ACL/IJCNLP Named
Entities Workshop Shared Task.

Dipankar Bose and Sudeshna Sarkar. 2009. Learn-
ing multi character alignment rules and classifica-
tion of training data for transliteration. In Proc.
ACL/IJCNLP Named Entities Workshop Shared
Task.

Manoj Kumar Chinnakotla and Om P. Damani. 2009.
Experiences with English-Hindi, English-Tamil and
English-Kannada transliteration tasks at NEWS
2009. In Proc. ACL/IJCNLP Named Entities Work-
shop Shared Task.

CJKI. 2009. CJK Institute. http://www.cjk.org/.

Amitava Das, Asif Ekbal, Tapabrata Mondal, and
Sivaji Bandyopadhyay. 2009. English to Hindi
machine transliteration system at NEWS 2009.
In Proc. ACL/IJCNLP Named Entities Workshop
Shared Task.

D. Demner-Fushman and D. W. Oard. 2002. The ef-
fect of bilingual term list size on dictionary-based
cross-language information retrieval. In Proc. 36-th
Hawaii Int’l. Conf. System Sciences, volume 4, page
108.2.

Andrew Finch and Eiichiro Sumita. 2008. Phrase-
based machine transliteration. In Proc. 3rd Int’l.
Joint Conf NLP, volume 1, Hyderabad, India, Jan-
uary.

Dayne Freitag and Zhiqiang Wang. 2009. Name
transliteration with bidirectional perceptron edit
models. In Proc. ACL/IJCNLP Named Entities
Workshop Shared Task.

Yoav Goldberg and Michael Elhadad. 2008. Identifica-
tion of transliterated foreign words in Hebrew script.
In Proc. CICLing, volume LNCS 4919, pages 466–
477.

Dan Goldwasser and Dan Roth. 2008. Translitera-
tion as constrained optimization. In Proc. EMNLP,
pages 353–362.

Jack Halpern. 2007. The challenges and pitfalls
of Arabic romanization and arabization. In Proc.
Workshop on Comp. Approaches to Arabic Script-
based Lang.

Rejwanul Haque, Sandipan Dandapat, Ankit Kumar
Srivastava, Sudip Kumar Naskar, and Andy Way.
2009. English-Hindi transliteration using context-
informed PB-SMT. In Proc. ACL/IJCNLP Named
Entities Workshop Shared Task.

Ulf Hermjakob, Kevin Knight, and Hal Daumé. 2008.
Name translation in statistical machine translation:
Learning when to transliterate. In Proc. ACL,
Columbus, OH, USA, June.

Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou,
Kenneth Dwyer, and Grzegorz Kondrak. 2009. Di-
recTL: a language-independent approach to translit-
eration. In Proc. ACL/IJCNLP Named Entities
Workshop Shared Task.

Mitesh Khapra and Pushpak Bhattacharyya. 2009. Im-
proving transliteration accuracy using word-origin
detection and lexicon lookup. In Proc. ACL/IJCNLP
Named Entities Workshop Shared Task.

Alexandre Klementiev and Dan Roth. 2006. Weakly
supervised named entity transliteration and discov-
ery from multilingual comparable corpora. In Proc.
21st Int’l Conf Computational Linguistics and 44th
Annual Meeting of ACL, pages 817–824, Sydney,
Australia, July.

Kevin Knight and Jonathan Graehl. 1998. Machine
transliteration. Computational Linguistics, 24(4).

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical
phrase-based translation. In Proc. HLT-NAACL.

A Kumaran and T. Kellner. 2007. A generic frame-
work for machine transliteration. In Proc. SIGIR,
pages 721–722.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. Int’l.
Conf. Machine Learning, pages 282–289.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint
source-channel model for machine transliteration.
In Proc. 42nd ACL Annual Meeting, pages 159–166,
Barcelona, Spain.

Linguistic Data Consortium. 2005. LDC Chinese-
English name entity lists LDC2005T34.

T. Mandl and C. Womser-Hacker. 2005. The effect of
named entities on effectiveness in cross-language in-
formation retrieval evaluation. In Proc. ACM Symp.
Applied Comp., pages 1059–1064.

MSRI. 2009. Microsoft Research India.
http://research.microsoft.com/india.

Sara Noeman. 2009. Language independent translit-
eration system using phrase based SMT approach
on substring. In Proc. ACL/IJCNLP Named Entities
Workshop Shared Task.

Jong-Hoon Oh, Kiyotaka Uchimoto, and Kentaro Tori-
sawa. 2009. Machine transliteration with target-
language grapheme and phoneme: Multi-engine
transliteration approach. In Proc. ACL/IJCNLP
Named Entities Workshop Shared Task.

Taraka Rama and Karthik Gali. 2009. Modeling ma-
chine transliteration as a phrase based statistical ma-
chine translation problem. In Proc. ACL/IJCNLP
Named Entities Workshop Shared Task.

9

Tarek Sherif and Grzegorz Kondrak. 2007. Substring-
based transliteration. In Proc. 45th Annual Meeting
of the ACL, pages 944–951, Prague, Czech Repub-
lic, June.

Praneeth Shishtla, V Surya Ganesh, S Sethurama-
lingam, and Vasudeva Varma. 2009. A language-
independent transliteration schema using character
aligned models. In Proc. ACL/IJCNLP Named Enti-
ties Workshop Shared Task.

Yan Song. 2009. Name entities transliteration via
improved statistical translation on character-level
chunks. In Proc. ACL/IJCNLP Named Entities
Workshop Shared Task.

Richard Sproat, Tao Tao, and ChengXiang Zhai. 2006.
Named entity transliteration with comparable cor-
pora. In Proc. 21st Int’l Conf Computational Lin-
guistics and 44th Annual Meeting of ACL, pages 73–
80, Sydney, Australia.

Raghavendra Udupa, K. Saravanan, Anton Bakalov,
and Abhijit Bhole. 2009. “They are out there, if
you know where to look”: Mining transliterations
of OOV query terms for cross-language informa-
tion retrieval. In LNCS: Advances in Information
Retrieval, volume 5478, pages 437–448. Springer
Berlin / Heidelberg.

Dmitry Zelenko and Chinatsu Aone. 2006. Discrimi-
native methods for transliteration. In Proc. EMNLP,
pages 612–617, Sydney, Australia, July.

Dmitry Zelenko. 2009. Combining MDL translitera-
tion training with discriminative modeling. In Proc.
ACL/IJCNLP Named Entities Workshop Shared
Task.

10

Team ID Organisation English to
Hindi

English to
Tamil

English to
Kannada

English to
Russian

English to
Chinese

English
to Ko-
rean

English
to
Japanese
Katakana

Japanese
translit-
erated to
Japanese
Kanji

EnHi EnTa EnKa EnRu EnCh EnKo EnJa JnJk

1 IIT Bombay x x x

2 Institution of Computational
Linguistics Peking Univer-
sity

x

3 University of Tokyo x x x x x x x

4∗ University of Illinois,
Urbana-Champaign

x x

5 IIT Bombay x x

6 NICT x x x x x x x x

7 University of Alberta x x x x x x

8 x x x x x x x x

9 x x x x x x x x

10 Johns Hopkins University x x x x x

11 x x x

12 x x

13 Jadavpur University x

14 IIIT Hyderabad x

15 x x x

16∗ ARL-CACI x

17 x x x x x x x x

18 x

19∗ Chaoyang University of
Technology

x

20 Pondicherry University x x x

21 Microsoft Research x x

22 SRI International x x x x x

23 IBM Cairo TDC x x

24 SRA x x x x x x x x

25 IIT Kharagpur x x x

26 Institute of Software Chinese
Academy of Sciences

x

27 x

28 George Washington Univer-
sity

x

29∗ x

30 Dublin City University x

31 IIIT x x x x x

Table 3: Participation of teams in different tasks. ∗Participants without a system paper.

11

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

")" $&"$'" +" $" $$"%$"$"%'" (" &$"$)"&!"$!"%(" &" ," %%"%,"%!"

-.."

/012345"

677"

Site ID

(a) English to Hindi

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

)" $*" $$" $" &$" %'" +" (" %(" &" $!" ," %%" %!"

-.."

/012345"

677"

Site ID

(b) English to Kannada

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

)" $*" $$" &$" $" %(" %'" &" +" $!" ," %%" %!"

-.."

/012345"

677"

Site ID

(c) English to Tamil

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

")" $" %'" +" &$" %&" &" $!" '" ," %%" %*"

-.."

/012345"

677"

Site ID

(d) English to Russian

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

)" *" $(" +" %" $*" ," $+" %'" '" &" %)" &$" %%" %+" $!" %&" $,"

-.."

/012345"

677"

Site ID

(e) English to Chinese

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

$*")" $%" %'" *" +" ," &"

-.."

/012345"

677"

Site ID

(f) English to Korean

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

)" $(" $*" *" %$" &" +" %'" $%" ,"

-.."

/012345"

677"

Site ID

(g) English to Japanese Katakana

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$(" $*" +" *" ,")" %'"

-.."

/012345"

677"

Site ID

(h) Japanese transliterated to Japanese Kanji

Figure 2: Accuracy in top-1, F -score and MRR for standard runs.

12

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

")" $&"$'" +" $" $$"%$"$"%'" (" &$"$)"&!"$!"%(" &" ," %%"%,"%!"

-./0123"

-./0$!"

-./0454"

Site ID

(a) English to Hindi

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

)" $*" $$" $" &$" %'" +" (" %(" &" $!" ," %%" %!"

-./0123"

-./0$!"

-./0454"

Site ID

(b) English to Kannada

!"!#

!"$#

!"%#

!"&#

!"'#

!"(#

!")#

)# $*# $$# &$# $# %(# %'# &# +# $!# ,# %%# %!#

-./0123#

-./0$!#

-./0454#

Site ID

(c) English to Tamil

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

")" $" %'" +" &$" %&" &" $!" '" ," %%" %*"

-./0123"

-./0$!"

-./0454"

Site ID

(d) English to Russian

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

)" *" $(" +" %" $*" ," $+" %'" '" &" %)" &$" %%" %+" $!" %&" $,"

-./0123"

-./0$!"

-./0454"

Site ID

(e) English to Chinese

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

$*")" $%" %'" *" +" ," &"

-./0123"

-./0$!"

-./0454"

Site ID

(f) English to Korean

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

)" $(" $*" *" %$" &" +" %'" $%" ,"

-./0123"

-./0$!"

-./0454"

Site ID

(g) English to Japanese Katakana

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

$(" $*" +" *" ,")" %'"

-./0123"

-./0$!"

-./0454"

Site ID

(h) Japanese transliterated to Japanese Kanji

Figure 3: MAPref , MAP10 and MAPsys scores for standard runs.

13

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

7 0.498 0.890 0.603 0.488 0.195 0.195 University of Alberta
6 0.483 0.892 0.607 0.477 0.202 0.202 NICT
13 0.471 0.861 0.519 0.463 0.162 0.383 Jadavpur University
14 0.463 0.876 0.573 0.454 0.201 0.201 IIIT Hyderabad
8 0.462 0.876 0.576 0.454 0.189 0.189
1 0.423 0.863 0.544 0.417 0.179 0.202 IIT Bombay
11 0.418 0.879 0.546 0.412 0.183 0.240
21 0.418 0.864 0.522 0.409 0.170 0.170 Microsoft Research
17 0.415 0.858 0.505 0.406 0.164 0.168
24 0.409 0.864 0.527 0.402 0.174 0.176 SRA
5 0.409 0.881 0.546 0.400 0.184 0.184 IIT Bombay
31 0.407 0.877 0.544 0.402 0.195 0.195 IIIT
16 0.406 0.863 0.514 0.397 0.170 0.280 ARL-CACI
30 0.399 0.863 0.488 0.392 0.157 0.157 Dublin City University
10 0.398 0.855 0.515 0.389 0.170 0.170 Johns Hopkins University
25 0.366 0.854 0.493 0.360 0.164 0.164 IIT Kharagpur
3 0.363 0.864 0.503 0.360 0.170 0.170 University of Tokyo
9 0.349 0.829 0.455 0.341 0.151 0.151
22 0.212 0.788 0.317 0.207 0.106 0.106 SRI International
29 0.053 0.664 0.089 0.053 0.037 0.037
20 0.004 0.012 0.004 0.004 0.001 0.004 Pondicherry University

21 0.466 0.881 0.567 0.457 0.183 0.183 Microsoft Research (post-evaluation)
22 0.465 0.886 0.567 0.458 0.185 0.185 SRI International (post-evaluation)

Table 4: Standard runs for English to Hindi task.

TeamID ACC F -score MRR MAPref MAP10 MAPsys Organisation

6 0.474 0.910 0.608 0.465 0.204 0.204 NICT
17 0.436 0.894 0.551 0.427 0.184 0.189
11 0.435 0.902 0.572 0.430 0.195 0.265
31 0.406 0.894 0.542 0.399 0.193 0.193 IIIT
1 0.405 0.892 0.542 0.397 0.181 0.184 IIT Bombay
25 0.404 0.883 0.539 0.398 0.182 0.182 IIT Kharagpur
24 0.374 0.880 0.512 0.369 0.174 0.174 SRA
3 0.365 0.884 0.504 0.360 0.172 0.172 University of Tokyo
8 0.361 0.883 0.510 0.354 0.174 0.174
10 0.327 0.870 0.458 0.317 0.156 0.156 Johns Hopkins University
9 0.316 0.848 0.451 0.307 0.154 0.154
22 0.141 0.760 0.256 0.139 0.090 0.090 SRI International
20 0.061 0.131 0.068 0.059 0.021 0.056 Pondicherry University

22 0.475 0.909 0.581 0.466 0.193 0.193 SRI International (post-evaluation)

Table 5: Standard runs for English to Tamil task.

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

6 0.398 0.880 0.526 0.391 0.178 0.178 NICT
17 0.370 0.867 0.499 0.362 0.170 0.175
11 0.363 0.870 0.482 0.355 0.164 0.218
1 0.360 0.861 0.479 0.351 0.161 0.164 IIT Bombay
31 0.350 0.864 0.482 0.344 0.175 0.175 IIIT
24 0.345 0.854 0.462 0.336 0.157 0.157 SRA
8 0.343 0.855 0.458 0.334 0.155 0.155
5 0.335 0.859 0.453 0.327 0.154 0.154 IIT Bombay
25 0.335 0.856 0.457 0.328 0.154 0.154 IIT Kharagpur
3 0.324 0.856 0.438 0.315 0.148 0.148 University of Tokyo
10 0.235 0.817 0.353 0.229 0.121 0.121 Johns Hopkins University
9 0.177 0.799 0.307 0.178 0.109 0.109
22 0.091 0.735 0.180 0.090 0.064 0.064 SRI International
20 0.004 0.009 0.004 0.004 0.001 0.004 Pondicherry University

22 0.396 0.874 0.494 0.385 0.161 0.161 SRI International (post-evaluation)

Table 6: Standard runs for English to Kannada task.

14

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

7 0.613 0.928 0.696 0.613 0.212 0.212 University of Alberta
6 0.605 0.926 0.701 0.605 0.215 0.215 NICT
17 0.597 0.925 0.691 0.597 0.212 0.255
24 0.566 0.919 0.662 0.566 0.203 0.216 SRA
8 0.564 0.917 0.677 0.564 0.210 0.210
31 0.548 0.916 0.640 0.548 0.210 0.210 IIIT
23 0.545 0.917 0.596 0.545 0.286 0.299 IBM Cairo TDC
3 0.531 0.912 0.635 0.531 0.219 0.219 University of Tokyo
10 0.506 0.901 0.609 0.506 0.204 0.204 Johns Hopkins University
4 0.504 0.909 0.618 0.504 0.193 0.193 University of Illinois, Urbana-Champaign
9 0.500 0.906 0.613 0.500 0.192 0.192
22 0.364 0.876 0.440 0.364 0.136 0.136 SRI International
27 0.354 0.869 0.394 0.354 0.134 0.134

22 0.609 0.928 0.686 0.609 0.209 0.209 SRI International (post-evaluation)

Table 7: Standard runs for English to Russian task.

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

6 0.731 0.895 0.812 0.731 0.246 0.246 NICT
7 0.717 0.890 0.785 0.717 0.237 0.237 University of Alberta
15 0.713 0.883 0.794 0.713 0.241 0.241
8 0.666 0.864 0.765 0.666 0.234 0.234
2 0.652 0.858 0.755 0.652 0.232 0.232 Institution of Computational Linguistics Peking

University China
17 0.646 0.867 0.747 0.646 0.229 0.229
9 0.643 0.854 0.745 0.643 0.228 0.229
18 0.621 0.852 0.718 0.621 0.220 0.222
24 0.619 0.847 0.711 0.619 0.217 0.217 SRA
4 0.607 0.840 0.695 0.607 0.213 0.213 University of Illinois, Urbana-Champaign
3 0.580 0.826 0.653 0.580 0.199 0.199 University of Tokyo
26 0.498 0.786 0.603 0.498 0.187 0.189 Institute of Software Chinese Academy of Sci-

ences
31 0.493 0.804 0.600 0.493 0.192 0.192 IIIT
22 0.468 0.768 0.546 0.468 0.168 0.168 SRI International
28 0.456 0.763 0.587 0.456 0.185 0.185 George Washington University
10 0.450 0.755 0.514 0.450 0.157 0.166 Johns Hopkins University
23 0.411 0.737 0.464 0.411 0.141 0.173 IBM Cairo TDC
19 0.199 0.606 0.229 0.199 0.070 0.070 Chaoyang University of Technology

22 0.671 0.872 0.725 0.672 0.218 0.218 SRI International (post-evaluation)

Table 8: Standard runs for English to Chinese task.

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

17 0.476 0.742 0.596 0.477 0.187 0.199
6 0.473 0.740 0.584 0.473 0.182 0.182 NICT
12 0.451 0.720 0.576 0.451 0.181 0.181
24 0.413 0.702 0.524 0.412 0.165 0.165 SRA
7 0.387 0.693 0.469 0.387 0.146 0.146 University of Alberta
8 0.362 0.662 0.460 0.362 0.144 0.144
9 0.332 0.648 0.425 0.331 0.134 0.135
3 0.170 0.512 0.218 0.170 0.069 0.069 University of Tokyo

Table 9: Standard runs for English to Korean task.

15

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

6 0.537 0.858 0.657 0.529 0.223 0.223 NICT
15 0.510 0.838 0.624 0.498 0.209 0.209
17 0.503 0.843 0.627 0.491 0.212 0.212
7 0.500 0.847 0.604 0.487 0.199 0.199 University of Alberta
21 0.465 0.827 0.559 0.454 0.183 0.183 Microsoft Research
3 0.457 0.828 0.576 0.445 0.194 0.194 University of Tokyo
8 0.449 0.816 0.571 0.436 0.192 0.192
24 0.420 0.807 0.541 0.410 0.182 0.184 SRA
12 0.408 0.808 0.537 0.398 0.182 0.182
9 0.406 0.800 0.529 0.393 0.180 0.180

21 0.469 0.834 0.567 0.454 0.186 0.186 Microsoft Research (post-evaluation)

Table 10: Standard runs for English to Japanese Katakana task.

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

15 0.627 0.763 0.706 0.605 0.292 0.292
17 0.606 0.749 0.695 0.586 0.287 0.288
8 0.596 0.741 0.687 0.575 0.282 0.282
7 0.560 0.730 0.644 0.525 0.244 0.244 University of Alberta
9 0.555 0.708 0.653 0.538 0.261 0.261
6 0.532 0.716 0.583 0.485 0.214 0.218 NICT
24 0.509 0.675 0.600 0.491 0.226 0.226 SRA

Table 11: Standard runs for Japanese Transliterated to Japanese Kanji task.

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

7 0.509 0.893 0.610 0.498 0.198 0.198 University of Alberta
1 0.487 0.873 0.594 0.481 0.195 0.229 IIT Bombay
6 0.475 0.893 0.601 0.469 0.200 0.200 NICT
6 0.469 0.884 0.581 0.464 0.192 0.193 NICT
6 0.455 0.888 0.575 0.448 0.191 0.191 NICT
5 0.448 0.885 0.570 0.439 0.190 0.190 IIT Bombay
6 0.443 0.879 0.555 0.437 0.184 0.191 NICT
17 0.424 0.862 0.513 0.415 0.166 0.174
30 0.421 0.864 0.519 0.415 0.171 0.171 Dublin City University
30 0.420 0.867 0.519 0.413 0.170 0.170 Dublin City University
30 0.419 0.868 0.464 0.419 0.338 0.338 Dublin City University
16 0.407 0.862 0.528 0.399 0.175 0.289 ARL-CACI
16 0.407 0.862 0.528 0.399 0.175 0.289 ARL-CACI
30 0.407 0.856 0.507 0.399 0.168 0.168 Dublin City University
16 0.400 0.864 0.516 0.391 0.171 0.212 ARL-CACI
13 0.389 0.831 0.487 0.385 0.160 0.328 Jadavpur University
13 0.384 0.828 0.485 0.380 0.160 0.325 Jadavpur University
16 0.273 0.796 0.358 0.266 0.119 0.193 ARL-CACI

Table 12: Non-standard runs for English to Hindi task.

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

6 0.478 0.910 0.606 0.472 0.203 0.203 NICT
6 0.459 0.906 0.583 0.453 0.195 0.196 NICT
6 0.459 0.906 0.583 0.453 0.195 0.196 NICT
6 0.453 0.907 0.584 0.446 0.196 0.196 NICT
17 0.437 0.894 0.555 0.426 0.185 0.193

Table 13: Non-standard runs for English to Tamil task.

16

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

6 0.399 0.881 0.522 0.391 0.176 0.176 NICT
6 0.386 0.877 0.503 0.379 0.169 0.169 NICT
6 0.380 0.869 0.488 0.370 0.163 0.163 NICT
17 0.374 0.868 0.502 0.366 0.170 0.176
6 0.373 0.869 0.485 0.362 0.162 0.168 NICT

Table 14: Non-standard runs for English to Kannada task.

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

17 0.955 0.989 0.966 0.955 0.284 0.504
17 0.609 0.928 0.701 0.609 0.214 0.263
7 0.608 0.927 0.694 0.608 0.212 0.212 University of Alberta
7 0.607 0.927 0.690 0.607 0.211 0.211 University of Alberta
6 0.600 0.927 0.634 0.600 0.189 0.189 NICT
6 0.600 0.926 0.699 0.600 0.214 0.214 NICT
7 0.591 0.928 0.679 0.591 0.208 0.208 University of Alberta
6 0.561 0.918 0.595 0.561 0.178 0.182 NICT
6 0.557 0.920 0.596 0.557 0.179 0.233 NICT
23 0.545 0.917 0.618 0.545 0.188 0.206 IBM Cairo TDC
23 0.524 0.913 0.602 0.524 0.184 0.203 IBM Cairo TDC
23 0.524 0.913 0.579 0.524 0.277 0.291 IBM Cairo TDC
4 0.496 0.908 0.613 0.496 0.191 0.191 University of Illinois, Urbana-Champaign
27 0.338 0.872 0.408 0.338 0.128 0.128
27 0.293 0.845 0.325 0.293 0.099 0.099
27 0.162 0.849 0.298 0.162 0.188 0.188

Table 15: Non-standard runs for English to Russian task.

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

17 0.909 0.960 0.933 0.909 0.276 0.276
7 0.746 0.900 0.814 0.746 0.245 0.245 University of Alberta
7 0.734 0.895 0.807 0.734 0.244 0.244 University of Alberta
7 0.732 0.895 0.803 0.732 0.242 0.242 University of Alberta
6 0.731 0.894 0.812 0.731 0.246 0.246 NICT
6 0.715 0.890 0.741 0.715 0.220 0.231 NICT
6 0.699 0.884 0.729 0.699 0.216 0.232 NICT
6 0.684 0.873 0.711 0.684 0.211 0.211 NICT
22 0.663 0.867 0.754 0.663 0.230 0.230 SRI International
17 0.658 0.865 0.752 0.658 0.230 0.230
18 0.587 0.834 0.665 0.587 0.203 0.330
26 0.500 0.786 0.607 0.500 0.189 0.191 Institute of Software Chinese Academy of Sciences
22 0.487 0.787 0.622 0.487 0.196 0.196 SRI International
28 0.462 0.764 0.564 0.462 0.175 0.175 George Washington University
28 0.458 0.763 0.602 0.458 0.191 0.191 George Washington University
23 0.411 0.737 0.464 0.411 0.141 0.173 IBM Cairo TDC
19 0.279 0.668 0.351 0.279 0.110 0.110 Chaoyang University of Technology
28 0.058 0.353 0.269 0.058 0.101 0.101 George Washington University
28 0.050 0.359 0.260 0.050 0.098 0.098 George Washington University
4 0.001 0.249 0.001 0.001 0.000 0.000 University of Illinois, Urbana-Champaign

22 0.674 0.873 0.763 0.674 0.232 0.232 SRI International (post-evaluation)
22 0.500 0.793 0.636 0.500 0.200 0.200 SRI International (post-evaluation)

Table 16: Non-standard runs for English to Chinese task.

17

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

17 0.794 0.894 0.836 0.793 0.249 0.323
12 0.785 0.887 0.840 0.785 0.252 0.441
12 0.784 0.889 0.840 0.784 0.252 0.484
12 0.781 0.885 0.839 0.781 0.252 0.460
12 0.740 0.868 0.806 0.740 0.243 0.243
6 0.461 0.737 0.576 0.461 0.180 0.180 NICT
6 0.457 0.734 0.506 0.457 0.153 0.153 NICT
6 0.447 0.718 0.493 0.447 0.149 0.149 NICT
6 0.369 0.679 0.406 0.369 0.123 0.123 NICT

Table 17: Non-standard runs for English to Korean task.

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

6 0.535 0.858 0.656 0.526 0.222 0.222 NICT
6 0.517 0.850 0.567 0.495 0.177 0.188 NICT
6 0.513 0.854 0.567 0.495 0.178 0.178 NICT
7 0.510 0.848 0.614 0.496 0.202 0.202 University of Alberta
6 0.500 0.842 0.547 0.480 0.170 0.196 NICT

Table 18: Non-standard runs for English to Japanese Katakana task.

Team ID ACC F -score MRR MAPref MAP10 MAPsys Organisation

17 0.717 0.818 0.784 0.691 0.319 0.319
17 0.703 0.805 0.768 0.673 0.311 0.311
17 0.698 0.805 0.774 0.676 0.317 0.317
17 0.681 0.790 0.755 0.657 0.308 0.309
6 0.525 0.713 0.607 0.503 0.248 0.249 NICT
6 0.525 0.712 0.606 0.502 0.248 0.248 NICT
6 0.523 0.712 0.572 0.479 0.211 0.213 NICT
6 0.517 0.705 0.603 0.496 0.248 0.249 NICT

Table 19: Non-standard runs for Japanese Transliterated to Japanese Kanji task.

18

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 19–26,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Whitepaper of NEWS 2009 Machine Transliteration Shared Task∗

Haizhou Li†, A Kumaran‡, Min Zhang† and Vladimir Pervouchine†
†Institute for Infocomm Research, A*STAR, Singapore 138632
{hli,mzhang,vpervouchine}@i2r.a-star.edu.sg

‡Multilingual Systems Research, Microsoft Research India
A.Kumaran@microsoft.com

Abstract
Transliteration is defined as phonetic
translation of names across languages.
Transliteration of Named Entities (NEs)
is necessary in many applications, such
as machine translation, corpus alignment,
cross-language IR, information extraction
and automatic lexicon acquisition. All
such systems call for high-performance
transliteration, which is the focus of the
shared task in the NEWS 2009 workshop.
The objective of the shared task is to pro-
mote machine transliteration research by
providing a common benchmarking plat-
form for the community to evaluate the
state-of-the-art technologies.

1 Task Description

The task is to develop machine transliteration sys-
tem in one or more of the specified language pairs
being considered for the task. Each language pair
consists of a source and a target language. The
training and development data sets released for
each language pair are to be used for developing
a transliteration system in whatever way that the
participants find appropriate. At the evaluation
time, a test set of source names only would be re-
leased, on which the participants are expected to
produce a ranked list of transliteration candidates
in another language (i.e. n-best transliterations),
and this will be evaluated using common metrics.
For every language pair the participants must sub-
mit one run that uses only the data provided by the
NEWS workshop organisers in a given language
pair (designated as “standard” runs). Users may
submit more runs (“non-standard”) for each lan-
guage pair that uses other data than those provided
by the NEWS 2009 workshop; such runs would be
evaluated and reported separately.

∗http://www.acl-ijcnlp-2009.org/workshops/NEWS2009/

2 Important Dates

Research paper submission deadline 1 May 2009

Shared task
Registration opens 16 Feb 2009
Registration closes 9 Apr 2009
Release Training/Development Data 16 Feb 2009
Release Test Data 10 Apr 2009
Results Submission Due 14 Apr 2009
Results Announcement 29 Apr 2009
Task (short) Papers Due 3 May 2009

For all submissions
Acceptance Notification 1 Jun 2009
Camera-Ready Copy Deadline 7 Jun 2009
Workshop Date 7 Aug 2009

3 Participation

1. Registration (16 Feb 2009)

(a) NEWS Shared Task opens for registra-
tion.

(b) Prospective participants are to register to
the NEWS Workshop homepage.

2. Training & Development Data (16 Feb 2009)

(a) Registered participants are to obtain
training and development data from the
Shared Task organiser and/or the desig-
nated copyright owners of databases.

3. Evaluation Script (16 Mar 2009)

(a) A sample test set and expected user out-
put format are to be released.

(b) An evaluation script, which runs on the
above two, is to be released.

(c) The participants must make sure that
their output is produced in a way that
the evaluation script may run and pro-
duce the expected output.

19

(d) The same script (with held out test data
and the user outputs) would be used for
final evaluation.

4. Test data (10 April 2009)

(a) The test data would be released on 10
Apr 2009, and the participants have a
maximum of 4 days to submit their re-
sults in the expected format.

(b) Only 1 “standard” run must be submit-
ted from every group on a given lan-
guage pair; more “non-standard” runs (0
to 4) may be submitted. In total, maxi-
mum 5 runs (1 “standard” run plus up to
4 “non-standard” runs) can be submit-
ted from each group on a registered lan-
guage pair.

(c) Any runs that are “non-standard” must
be tagged as such.

(d) The test set is a list of names in source
language only. Every group will pro-
duce and submit a ranked list of translit-
eration candidates in another language
for each given name in the test set.
Please note that this shared task is a
“transliteration generation” task, i.e.,
given a name in a source language one
is supposed to generate one or more
transliterations in a target language. It
is not the task of “transliteration discov-
ery”, i.e., given a name in the source lan-
guage and a set of names in the target
language evaluate how to find the ap-
propriate names from the target set that
are transliterations of the given source
name.

5. Results (29 April 2009)

(a) On 29 April 2009, the evaluation results
would be announced and will be made
available on the Workshop website.

(b) Note that only the scores (in respective
metrics) of the participating systems on
each language pairs would be published,
and no explicit ranking of the participat-
ing systems would be published.

(c) Note that this is a shared evaluation task
and not a competition; the results are
meant to be used to evaluate systems on
common data set with common metrics,

and not to rank the participating sys-
tems. While the participants can cite the
performance of their systems (scores on
metrics) from the workshop report, they
should not use any ranking information
in their publications.

(d) Further, all participants should agree not
to reveal identities of other participants
in any of their publications unless you
get permission from the other respective
participants. If the participants want
to remain anonymous in published
results, they should inform the or-
ganisers (mzhang@i2r.a-star.edu.sg,
a.kumaran@microsoft.com), at the time
of registration. Note that the results of
their systems would still be published,
but with the participant identities
masked. As a result, in this case, your
organisation name will still appear in
the web site as one of participants, but it
is not linked explicitly with your results.

6. Short Papers on Task (3 May 2009)

(a) Each submitting site is required to sub-
mit a 4-page system paper (short paper)
for its submissions, including their ap-
proach, data used and the results on ei-
ther test set or development set or by n-
fold cross validation on training set.

(b) All system short papers will be included
in the proceedings. Selected short pa-
pers will be presented orally in the
NEWS 2009 workshop. Reviewers’
comments for all system short papers
and the acceptance notification for the
system short papers for oral presentation
would be announced on 1 June 2009 to-
gether with that of other papers.

(c) All registered participants are required
to register and attend the workshop to
introduce your work.

(d) All paper submission and review
will be managed electronically
through https://www.softconf.com/acl-
ijcnlp09/NEWS/.

4 Languages Involved

The tasks are to transliterate personal names or
place names from a source to a target language as
summarised in Table 1.

20

Source language Target language Data Owner Approx. Data Size Task ID

English Chinese Institute for Infocomm Research 30K EnCh
English Japanese Katakana CJK Institute 25K EnJa
English Korean Hangul CJK Institute 7K EnKo
Japanese name (in English) Japanese Kanji CJK Institute 20K JnJk
English Hindi Microsoft Research India 15K EnHi
English Tamil Microsoft Research India 15K EnTa
English Kannada Microsoft Research India 15K EnKa
English Russian Microsoft Research India 10K EnRu

Table 1: Source and target languages for the shared task on transliteration.

The names given in the training sets for Chi-
nese, Japanese and Korean languages are Western
names and their CJK transliterations; the Japanese
Name (in English)→ Japanese Kanji data set con-
sists only of native Japanese names. The Indic data
set (Hindi, Tamil, Kannada) consists of a mix of
Indian and Western names.

English→ Chinese
Timothy→蒂莫西

English→ Japanese Katakana
Harrington→ハリントン

English→ Korean Hangul
Bennett → 베넷

Japanese name in English→ Japanese Kanji
Akihiro→秋宏

English→ Hindi
San Francisco → सैन फ्रान्सिस्को

English→ Tamil
London → லண்டன்

English→ Kannada
Tokyo → ಟೋಕ್ಯೋ

English→ Russian
Moscow → Москва

5 Standard Databases

Training Data (Parallel)
Paired names between source and target lan-
guages; size 5K – 40K.
Training Data is used for training a basic
transliteration system.

Development Data (Parallel)
Paired names between source and target lan-
guages; size 1K – 2K.
Development Data is in addition to the Train-
ing data, which is used for system fine-tuning

of parameters in case of need. Participants
are allowed to use it as part of training data.

Testing Data
Source names only; size 1K – 3K.
This is a held-out set, which would be used
for evaluating the quality of the translitera-
tions.

1. Participants will need to obtain licenses from
the respective copyright owners and/or agree
to the terms and conditions of use that are
given on the downloading website (Li et al.,
2004; Kumaran and Kellner, 2007; MSRI,
2009; CJKI, 2009). NEWS 2009 will pro-
vide the contact details of each individual
database. The data would be provided in Uni-
code UTF-8 encoding, in XML format; the
results are expected to be submitted in XML
format. The XML formats will be announced
at the workshop website.

2. The data are provided in 3 sets as described
above.

3. Name pairs are distributed as-is, as provided
by the respective creators.

(a) While the databases are mostly man-
ually checked, there may be still in-
consistency (that is, non-standard usage,
region-specific usage, errors, etc.) or in-
completeness (that is, not all right varia-
tions may be covered).

(b) The participants may use any method to
further clean up the data provided.

i. If they are cleaned up manually, we
appeal that such data be provided
back to the organisers for redistri-
bution to all the participating groups
in that language pair; such sharing
benefits all participants, and further

21

ensures that the evaluation provides
normalisation with respect to data
quality.

ii. If automatic cleanup were used,
such cleanup would be considered a
part of the system fielded, and hence
not required to be shared with all
participants.

4. We expect that the participants to use only the
data (parallel names) provided by the Shared
Task for transliteration task for a “standard”
run to ensure a fair evaluation. One such run
(using only the data provided by the shared
task) is mandatory for all participants for a
given language pair that they participate in.

5. If more data (either parallel names data or
monolingual data) were used, then all such
runs using extra data must be marked as
“non-standard”. For such “non-standard”
runs, it is required to disclose the size and
characteristics of the data used in the system
paper.

6. A participant may submit a maximum of 5
runs for a given language pair (including the
mandatory 1 “standard” run).

6 Paper Format

Paper submissions to NEWS 2009 should follow
the ACL-IJCNLP-2009 paper submission policy,
including paper format, blind review policy and ti-
tle and author format convention. Full papers (re-
search paper) are in two-column format without
exceeding eight (8) pages of content plus one extra
page for references and short papers (task paper)
are also in two-column format without exceeding
four (4) pages, including references. Submission
must conform to the official ACL-IJCNLP-2009
style guidelines. For details, please refer to the
website2.

7 Evaluation Metrics

We plan to measure the quality of the translitera-
tion task using the following 6 metrics. We accept
up to 10 output candidates in a ranked list for each
input entry.

Since a given source name may have multiple
correct target transliterations, all these alternatives
are treated equally in the evaluation. That is, any

2http://www.acl-ijcnlp-2009.org/main/authors/stylefiles/index.html

of these alternatives are considered as a correct
transliteration, and the first correct transliteration
in the ranked list is accepted as a correct hit.

The following notation is further assumed:
N : Total number of names (source

words) in the test set
ni : Number of reference transliterations

for i-th name in the test set (ni ≥ 1)
ri,j : j-th reference transliteration for i-th

name in the test set
ci,k : k-th candidate transliteration (system

output) for i-th name in the test set
(1 ≤ k ≤ 10)

Ki : Number of candidate transliterations
produced by a transliteration system

1. Word Accuracy in Top-1 (ACC) Also
known as Word Error Rate, it measures correct-
ness of the first transliteration candidate in the can-
didate list produced by a transliteration system.
ACC = 1 means that all top candidates are cor-
rect transliterations i.e. they match one of the ref-
erences, and ACC = 0 means that none of the top
candidates are correct.

ACC =
1
N

N∑
i=1

{
1 if ∃ri,j : ri,j = ci,1;
0 otherwise

}
(1)

2. Fuzziness in Top-1 (Mean F-score) The
mean F-score measures how different, on average,
the top transliteration candidate is from its closest
reference. F-score for each source word is a func-
tion of Precision and Recall and equals 1 when the
top candidate matches one of the references, and
0 when there are no common characters between
the candidate and any of the references.

Precision and Recall are calculated based on the
length of the Longest Common Subsequence be-
tween a candidate and a reference:

LCS(c, r) =
1
2

(|c|+ |r| − ED(c, r)) (2)

where ED is the edit distance and |x| is the length
of x. For example, the longest common subse-
quence between “abcd” and “afcde” is “acd” and
its length is 3. The best matching reference, that
is, the reference for which the edit distance has
the minimum, is taken for calculation. If the best
matching reference is given by

ri,m = arg min
j

(ED(ci,1, ri,j)) (3)

22

then Recall, Precision and F-score for i-th word
are calculated as

Ri =
LCS(ci,1, ri,m)

|ri,m|
(4)

Pi =
LCS(ci,1, ri,m)

|ci,1|
(5)

Fi = 2
Ri × Pi

Ri + Pi
(6)

• The length is computed in distinct Unicode
characters.

• No distinction is made on different character
types of a language (e.g., vowel vs. conso-
nants vs. combining diereses’ etc.)

3. Mean Reciprocal Rank (MRR) Measures
traditional MRR for any right answer produced by
the system, from among the candidates. 1/MRR
tells approximately the average rank of the correct
transliteration. MRR closer to 1 implies that the
correct answer is mostly produced close to the top
of the n-best lists.

RRi =
{

minj
1
j if ∃ri,j , ci,k : ri,j = ci,k;

0 otherwise

}
(7)

MRR =
1
N

N∑
i=1

RRi (8)

4. MAPref Measures tightly the precision in the
n-best candidates for i-th source name, for which
reference transliterations are available. If all of
the references are produced, then the MAP is 1.
Let’s denote the number of correct candidates for
the i-th source word in k-best list as num(i, k).
MAPref is then given by

MAPref =
1
N

N∑
i

1
ni

(
ni∑

k=1

num(i, k)

)
(9)

5. MAP10 measures the precision in the 10-best
candidates for i-th source name provided by the
candidate system. In general, the higher MAP10

is, the better is the quality of the transliteration
system in capturing the multiple references. Note
that the number of reference transliterations may
be more or less than 10. If the number of refer-
ence transliterations is below 10, then MAP10 can
never be equal to 1. Only if the number of ref-
erence transliterations for every source word is at
least 10, then MAP10 could possibly be equal to 1.

MAP10 =
1
N

N∑
i=1

1
10

(
10∑

k=1

num(i, k)

)
(10)

Note that in general MAPm measures the “good-
ness in m-best” candidate list. We use m = 10
because we have asked the systems to produce up
to 10 candidates for every source name in the test
set.

6. MAPsys Measures the precision in the top
Ki-best candidates produced by the system for i-
th source name, for which ni reference translit-
erations are available. This measure allows the
systems to produce variable number of translitera-
tions, based on their confidence in identifying and
producing correct transliterations. If all of the ni

references are produced in the top-ni candidates
(that is, Ki = ni, and all of them are correct), then
the MAPsys is 1.

MAPsys =
1
N

N∑
i=1

1
Ki

(
Ki∑
k=1

num(i, k)

)
(11)

8 Contact Us

If you have any questions about this share task and
the database, please email to

Dr. Haizhou Li
Institute for Infocomm Research (I2R),
A*STAR
1 Fusionopolis Way
#08-05 South Tower, Connexis
Singapore 138632
hli@i2r.a-star.edu.sg

Dr. A. Kumaran
Microsoft Research India
Scientia, 196/36, Sadashivnagar 2nd Main
Road
Bangalore 560080 INDIA
a.kumaran@microsoft.com

Mr. Kurt Easterwood
The CJK Dictionary Institute (CJK Data)
Komine Building (3rd & 4th floors)
34-14, 2-chome, Tohoku, Niiza-shi
Saitama 352-0001 JAPAN
akurt@cjki.org

23

References
CJKI. 2009. CJK Institute. http://www.cjk.org/.

A Kumaran and T. Kellner. 2007. A generic frame-
work for machine transliteration. In Proc. SIGIR,
pages 721–722.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint
source-channel model for machine transliteration.
In Proc. 42nd ACL Annual Meeting, pages 159–166,
Barcelona, Spain.

MSRI. 2009. Microsoft Research India.
http://research.microsoft.com/india.

Appendix A: Training/Development Data

• File Naming Conventions:
NEWS09 train XXYY nnnn.xml
NEWS09 dev XXYY nnnn.xml
NEWS09 test XXYY nnnn.xml

– XX: Source Language
– YY: Target Language
– nnnn: size of parallel/monolingual

names (“25K”, “10000”, etc)

• File formats:
All data will be made available in XML for-
mats (Figure 1).

• Data Encoding Formats:
The data will be in Unicode UTF-8 encod-
ing files without byte-order mark, and in the
XML format specified.

Appendix B: Submission of Results
• File Naming Conventions:
NEWS09 result XXYY gggg nn descr.xml

– XX: Source Language
– YY: Target Language
– gggg: Group ID
– nn: run ID. Note that run ID “1” stands for “stan-

dard” run where only the provided data are al-
lowed to be used. Run ID “2–5” means “non-
standard” run where additional data can be used.

– descr: Description of the run.

• File formats:
All data will be made available in XML formats (Fig-
ure 2).

• Data Encoding Formats:
The results are expected to be submitted in UTF-8 en-
coded files without byte-order mark only, and in the
XML format specified.

24

<?xml version="1.0" encoding="UTF-8"?>

<TransliterationCorpus
CorpusID = "NEWS2009-Train-EnHi-25K"
SourceLang = "English"
TargetLang = "Hindi"
CorpusType = "Train|Dev"
CorpusSize = "25000"
CorpusFormat = "UTF8">

<Name ID=”1”>
<SourceName>eeeeee1</SourceName>
<TargetName ID="1">hhhhhh1_1</TargetName>

<TargetName ID="2">hhhhhh1_2</TargetName>
...
<TargetName ID="n">hhhhhh1_n</TargetName>

</Name>
<Name ID=”2”>

<SourceName>eeeeee2</SourceName>
<TargetName ID="1">hhhhhh2_1</TargetName>
<TargetName ID="2">hhhhhh2_2</TargetName>
...
<TargetName ID="m">hhhhhh2_m</TargetName>

</Name>
...
<!-- rest of the names to follow -->
...

</TransliterationCorpus>

Figure 1: File: NEWS2009 Train EnHi 25K.xml

25

<?xml version="1.0" encoding="UTF-8"?>

<TransliterationTaskResults
SourceLang = "English"
TargetLang = "Hindi"
GroupID = "Trans University"
RunID = "1"
RunType = "Standard"
Comments = "HMM Run with params: alpha=0.8 beta=1.25">

<Name ID="1">
<SourceName>eeeeee1</SourceName>
<TargetName ID="1">hhhhhh11</TargetName>
<TargetName ID="2">hhhhhh12</TargetName>
<TargetName ID="3">hhhhhh13</TargetName>
...
<TargetName ID="10">hhhhhh110</TargetName>

<!-- Participants to provide their
top 10 candidate transliterations -->

</Name>
<Name ID="2">

<SourceName>eeeeee2</SourceName>
<TargetName ID="1">hhhhhh21</TargetName>
<TargetName ID="2">hhhhhh22</TargetName>
<TargetName ID="3">hhhhhh23</TargetName>
...
<TargetName ID="10">hhhhhh110</TargetName>
<!-- Participants to provide their
top 10 candidate transliterations -->

</Name>
...
<!-- All names in test corpus to follow -->
...

</TransliterationTaskResults>

Figure 2: Example file: NEWS2009 EnHi TUniv 01 StdRunHMMBased.xml

26

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, page 27,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Automata for Transliteration and Machine Translation

Kevin Knight
Information Sciences Institute

University of Southern California
knight@isi.edu

Abstract

Automata theory, transliteration, and machine
translation (MT) have an interesting and inter-
twined history.

Finite-state string automata theory became a
powerful tool for speech and language after
the introduction of the AT&T’s FSM software.
For example, string transducers can convert be-
tween word sequences and phoneme sequences,
or between phoneme sequences and acoustic se-
quences; furthermore, these machines can be
pipelined to attack complex problems like speech
recognition. Likewise, n-gram models can be cap-
tured by finite-state acceptors, which can be re-
used across applications.

It is possible to mix, match, and compose trans-
ducers to flexibly solve all kinds of problems. One
such problem is transliteration, which can be mod-
eled as a pipeline of string transformations. MT
has also been modeled with transducers, and de-
scendants of the FSM toolkit are now used to im-
plement phrase-based machine translation. Even
speech recognizers and MT systems can them-
selves be composed to deliver speech-to-speech
MT.

The main rub with finite-state string MT is word
re-ordering. Tree transducers offer a natural mech-
anism to solve this problem, and they have re-
cently been employed with some success.

In this talk, we will survey these ideas (and their
origins), and we will finish with a discussion of
how transliteration and MT can work together.

27

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 28–31,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

DIRECTL: a Language-Independent Approach to Transliteration

Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou, Kenneth Dwyer, Grzegorz Kondrak
Department of Computing Science

University of Alberta
Edmonton, AB, T6G 2E8, Canada

{sj,abhargava,qdou,dwyer,kondrak}@cs.ualberta.ca

Abstract

We present DIRECTL: an online discrimi-
native sequence prediction model that em-
ploys a many-to-many alignment between
target and source. Our system incorpo-
rates input segmentation, target charac-
ter prediction, and sequence modeling in
a unified dynamic programming frame-
work. Experimental results suggest that
DIRECTL is able to independently dis-
cover many of the language-specific reg-
ularities in the training data.

1 Introduction

In the transliteration task, it seems intuitively im-
portant to take into consideration the specifics of
the languages in question. Of particular impor-
tance is the relative character length of the source
and target names, which vary widely depending on
whether languages employ alphabetic, syllabic, or
ideographic scripts. On the other hand, faced with
the reality of thousands of potential language pairs
that involve transliteration, the idea of a language-
independent approach is highly attractive.

In this paper, we present DIRECTL: a translit-
eration system that, in principle, can be applied to
any language pair. DIRECTL treats the transliter-
ation task as a sequence prediction problem: given
an input sequence of characters in the source lan-
guage, it produces the most likely sequence of
characters in the target language. In Section 2,
we discuss the alignment of character substrings
in the source and target languages. Our transcrip-
tion model, described in Section 3, is based on
an online discriminative training algorithm that
makes it possible to efficiently learn the weights
of a large number of features. In Section 4, we
provide details of alternative approaches that in-
corporate language-specific information. Finally,
in Section 5 and 6, we compare the experimental

results of DIRECTL with its variants that incor-
porate language-specific pre-processing, phonetic
alignment, and manual data correction.

2 Transliteration alignment

In the transliteration task, training data consist of
word pairs that map source language words to
words in the target language. The matching be-
tween character substrings in the source word and
target word is not explicitly provided. These hid-
den relationships are generally known asalign-
ments. In this section, we describe an EM-based
many-to-many alignment algorithm employed by
DIRECTL. In Section 4, we discuss an alternative
phonetic alignment method.

We apply an unsupervised many-to-many align-
ment algorithm (Jiampojamarn et al., 2007) to the
transliteration task. The algorithm follows the ex-
pectation maximization (EM) paradigm. In the
expectation step shown in Algorithm 1, partial
countsγ of the possible substring alignments are
collected from each word pair(xT , yV) in the
training data;T and V represent the lengths of
wordsx and y, respectively. The forward prob-
ability α is estimated by summing the probabili-
ties of all possible sequences of substring pairings
from left to right. The FORWARD-M2M procedure
is similar to lines 5 through 12 of Algorithm 1, ex-
cept that it uses Equation 1 on line 8, Equation 2
on line 12, and initializesα0,0 := 1. Likewise, the
backward probabilityβ is estimated by summing
the probabilities from right to left.

αt,v += δ(xtt−i+1, ǫ)αt−i,v (1)

αt,v += δ(xtt−i+1, y
v
v−j+1)αt−i,v−j (2)

The maxX and maxY variables specify the
maximum length of substrings that are permitted
when creating alignments. Also, for flexibility, we
allow a substring in the source word to be aligned
with a “null” letter (ǫ) in the target word.

28

Algorithm 1: Expectation-M2M alignment
Input: xT , yV ,maxX,maxY, γ
Output: γ

α := FORWARD-M2M (xT , yV ,maxX,maxY)1

β := BACKWARD-M2M (xT , yV ,maxX,maxY)2

if (αT,V = 0) then3
return4

for t = 0 . . . T , v = 0 . . . V do5
if (t > 0) then6

for i = 1 . . .maxX st t− i ≥ 0 do7

γ(xt
t−i+1, ǫ) +=

αt−i,vδ(xt
t−i+1,ǫ)βt,v

αT,V8

if (v > 0 ∧ t > 0) then9
for i = 1 . . .maxX st t− i ≥ 0 do10

for j = 1 . . . maxY st v − j ≥ 0 do11

γ(xt
t−i+1, y

v
v−j+1) +=

αt−i,v−jδ(xt
t−i+1,yv

v−j+1)βt,v

αT,V12

In the maximization step, we normalize the par-
tial countsγ to the alignment probabilityδ using
the conditional probability distribution. The EM
steps are repeated until the alignment probability
δ converges. Finally, the most likely alignment for
each word pair in the training data is computed
with the standard Viterbi algorithm.

3 Discriminative training

We adapt the online discriminative training frame-
work described in (Jiampojamarn et al., 2008) to
the transliteration task. Once the training data has
been aligned, we can hypothesize that theith let-
ter substringxi ∈ x in a source language word
is transliterated into theith substringyi ∈ y in
the target language word. Each word pair is rep-
resented as a feature vectorΦ(x,y). Our feature
vector consists of (1)n-gram context features, (2)
HMM-like transition features, and (3) linear-chain
features. Then-gram context features relate the
letter evidence that surrounds each letterxi to its
outputyi. We include alln-grams that fit within
a context window of sizec. Thec value is deter-
mined using a development set. The HMM-like
transition features express the cohesion of the out-
puty in the target language. We make a first order
Markov assumption, so that these features are bi-
grams of the form(yi−1, yi). The linear-chain fea-
tures are identical to the context features, except
thatyi is replaced with a bi-gram(yi−1, yi).

Algorithm 2 trains a linear model in this fea-
ture space. The procedure makesk passes over
the aligned training data. During each iteration,
the model produces thenmost likely output words
Ŷj in the target language for each input wordxj

in the source language, based on the current pa-

Algorithm 2: Online discriminative training
Input: Data{(x1,y1), (x2,y2), . . . , (xm,ym)},

number of iterationsk, size ofn-best listn
Output: Learned weightsψ

ψ := ~01

for k iterations do2
for j = 1 . . .m do3

Ŷj = {ŷj1, . . . , ŷjn} = arg maxy[ψ · Φ(xj ,y)]4

updateψ according toŶj andyj5

returnψ6

rametersψ. The values ofk and n are deter-
mined using a development set. The model param-
eters are updated according to the correct output
yj and the predictedn-best outputŝYj, to make
the model prefer the correct output over the in-
correct ones. Specifically, the feature weight vec-
tor ψ is updated by using MIRA, the Margin In-
fused Relaxed Algorithm (Crammer and Singer,
2003). MIRA modifies the current weight vector
ψo by finding the smallest changes such that the
new weight vectorψn separates the correct and in-
correct outputs by a margin of at leastℓ(y, ŷ), the
loss for a wrong prediction. We define this loss to
be 0 if ŷ = y; otherwise it is1 + d, whered is
the Levenshtein distance betweeny and ŷ. The
update operation is stated as a quadratic program-
ming problem in Equation 3. We utilize a function
from the SVMlight package (Joachims, 1999) to
solve this optimization problem.

minψn
‖ ψn − ψo ‖

subject to∀ŷ ∈ Ŷ :
ψn · (Φ(x,y) − Φ(x, ŷ)) ≥ ℓ(y, ŷ)

(3)

Thearg max operation is performed by an exact
search algorithm based on a phrasal decoder (Zens
and Ney, 2004). This decoder simultaneously
finds thel most likely substrings of lettersx that
generate the most probable outputy, given the
feature weight vectorψ and the input wordxT .
The search algorithm is based on the following dy-
namic programming recurrence:

Q(0, $) = 0

Q(t, p) = max
p′,p,

t−maxX≤t′<t

{ψ · φ(xtt′+1, p
′, p) +Q(t′, p′)}

Q(T+1, $) = max
p′

{ψ · φ($, p′, $) +Q(T, p′)}

To find the n-best predicted outputs, the table
Q records the topn scores for each output sub-
string that has the suffixp substring and is gen-
erated by the input letter substringxt1; here,p′ is

29

a sub-output generated during the previous step.
The notationφ(xtt′+1

, p′, p) is a convenient way
to describe the components of our feature vector
Φ(x,y). Then-best predicted outputŝY can be
discovered by backtracking from the end of the ta-
ble, which is denoted byQ(T + 1, $).

4 Beyond DIRECTL

4.1 Intermediate phonetic representation

We experimented with converting the original Chi-
nese characters to Pinyin as an intermediate repre-
sentation. Pinyin is the most commonly known
Romanization system for Standard Mandarin. Its
alphabet contains the same 26 letters as English.
Each Chinese character can be transcribed pho-
netically into Pinyin. Many resources for Pinyin
conversion are available online.1 A small percent-
age of Chinese characters have multiple pronunci-
ations represented by different Pinyin representa-
tions. For those characters (about 30 characters in
the transliteration data), we manually selected the
pronunciations that are normally used for names.
This preprocessing step significantly reduces the
size of target symbols from 370 distinct Chinese
characters to 26 Pinyin symbols which enables our
system to produce better alignments.

In order to verify whether the addition of
language-specific knowledge can improve the
overall accuracy, we also designed intermediate
representations for Russian and Japanese. We
focused on symbols that modify the neighbor-
ing characters without producing phonetic output
themselves: the twoyer characters in Russian,
and the long vowel andsokuon signs in Japanese.
Those were combined with the neighboring char-
acters, creating new “super-characters.”

4.2 Phonetic alignment with ALINE

ALINE (Kondrak, 2000) is an algorithm that
performs phonetically-informed alignment of two
strings of phonemes. Since our task requires
the alignment of characters representing different
writing scripts, we need to first replace every char-
acter with a phoneme that is the most likely to be
produced by that character.

We applied slightly different methods to the
test languages. In converting the Cyrillic script
into phonemes, we take advantage of the fact
that the Russian orthography is largely phonemic,
which makes it a relatively straightforward task.

1For example, http://www.chinesetopinyin.com/

In Japanese, we replace each Katakana character
with one or two phonemes using standard tran-
scription tables. For the Latin script, we simply
treat every letter as an IPA symbol (International
Phonetic Association, 1999). The IPA contains a
subset of 26 letter symbols that tend to correspond
to the usual phonetic value that the letter repre-
sents in the Latin script. The Chinese characters
are first converted to Pinyin, which is then handled
in the same way as the Latin script.

Similar solutions could be engineered for other
scripts. We observed that the transcriptions do not
need to be very precise in order for ALINE to pro-
duce high quality alignments.

4.3 System combination

The combination of predictions produced by sys-
tems based on different principles may lead to im-
proved prediction accuracy. We adopt the follow-
ing combination algorithm. First, we rank the in-
dividual systems according to their top-1 accuracy
on the development set. To obtain the top-1 pre-
diction for each input word, we use simple voting,
with ties broken according to the ranking of the
systems. We generalize this approach to handlen-
best lists by first ordering the candidate translitera-
tions according to the highest rank assigned by any
of the systems, and then similarly breaking ties by
voting and system ranking.

5 Evaluation

In the context of the NEWS 2009 Machine
Transliteration Shared Task (Li et al., 2009), we
tested our system on six data sets: from English to
Chinese (EnCh) (Li et al., 2004), Hindi (EnHi),
Russian (EnRu) (Kumaran and Kellner, 2007),
Japanese Katakana (EnJa), and Korean Hangul
(EnKo); and from Japanese Name to Japanese
Kanji (JnJk)2. We optimized the models’ param-
eters by training on the training portion of the
provided data and measuring performance on the
development portion. For the final testing, we
trained the models on all the available labeled data
(training plus development data). For each data
set, we converted any uppercase letters to lower-
case. Our system outputs the top 10 candidate an-
swers for each input word.

Table 1 reports the performance of our system
on the development and final test sets, measured
in terms of top-1 word accuracy (ACC). For cer-
tain language pairs, we tested variants of the base

2http://www.cjk.org/

30

Task Model Dev Test
EnCh DIRECTL 72.4 71.7

INT(M2M) 73.9 73.4
INT(ALINE) 73.8 73.2
COMBINED 74.8 74.6

EnHi DIRECTL 41.4 49.8
DIRECTL+MC 42.3 50.9

EnJa DIRECTL 49.9 50.0
INT(M2M)∗ 49.6 49.2
INT(ALINE) 48.3 51.0
COMBINED∗ 50.6 50.5

EnKo DIRECTL 36.7 38.7
EnRu DIRECTL 80.2 61.3

INT(M2M) 80.3 60.8
INT(ALINE) 80.0 60.7
COMBINED∗ 80.3 60.8

JnJk DIRECTL 53.5 56.0

Table 1: Top-1 word accuracy on the development
and test sets. The asterisk denotes the results ob-
tained after the test reference sets were released.

system described in Section 4. DIRECTL refers
to our language-independent model, which uses
many-to-many alignments. The INT abbreviation
denotes the models operating on the language-
specific intermediate representations described in
Section 4.1. The alignment algorithm (ALINE or
M2M) is given in brackets.

In the EnHi set, many names consisted of mul-
tiple words: we assumed a one-to-one correspon-
dence between consecutive English words and
consecutive Hindi words. In Table 1, the results in
the first row (DIRECTL) were obtained with an au-
tomatic cleanup script that replaced hyphens with
spaces, deleted the remaining punctuation and nu-
merical symbols, and removed 43 transliteration
pairs with a disagreement between the number of
source and target words. The results in the sec-
ond row (DIRECTL+MC) were obtained when the
cases with a disagreement were individually ex-
amined and corrected by a Hindi speaker.

We did not incorporate any external resources
into the models presented in Table 1. In order
to emphasize the performance of our language-
independent approach, we consistently used the
DIRECTL model for generating our “standard”
runs on all six language pairs, regardless of its rel-
ative performance on the development sets.

6 Discussion

DIRECTL, our language-independent approach to
transliteration achieves excellent results, espe-
cially on the EnCh, EnRu, and EnHi data sets,
which represent a wide range of language pairs
and writing scripts. Both the many-to-many
and phonetic alignment algorithms produce high-

quality alignments. The former can be applied di-
rectly to the training data without the need for an
intermediate representation, while the latter does
not require any training. Surprisingly, incorpo-
ration of language-specific intermediate represen-
tations does not consistently improve the perfor-
mance of our system, which indicates that DI-
RECTL may be able to discover the structures im-
plicit in the training data without additional guid-
ance. The EnHi results suggest that manual clean-
ing of noisy data can yield noticeable gains in ac-
curacy. On the other hand, a simple method of
combining predictions from different systems pro-
duced clear improvement on the EnCh set, but
mixed results on two other sets. More research on
this issue is warranted.

Acknowledgments

This research was supported by the Alberta Inge-
nuity, Informatics Circle of Research Excellence
(iCORE), and Natural Sciences of Engineering
Research Council of Canada (NSERC).

References

Koby Crammer and Yoram Singer. 2003. Ultracon-
servative online algorithms for multiclass problems.
Journal of Machine Learning Research, 3:951–991.

International Phonetic Association. 1999.Handbook
of the International Phonetic Association. Cam-
bridge University Press.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and Hidden Markov Models to letter-to-phoneme
conversion. InProc. HLT-NAACL, pages 372–379.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2008. Joint processing and discriminative
training for letter-to-phoneme conversion. InProc.
ACL, pages 905–913.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. Advances in kernel methods:
support vector learning, pages 169–184. MIT Press.

Grzegorz Kondrak. 2000. A new algorithm for the
alignment of phonetic sequences. InProc. NAACL,
pages 288–295.

A. Kumaran and Tobias Kellner. 2007. A generic
framework for machine transliteration. InProc. SI-
GIR, pages 721–722.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint
source channel model for machine transliteration. In
Proc. ACL, pages 159–166.

Haizhou Li, A Kumaran, Min Zhang, and Vladimir
Pervouchine. 2009. Whitepaper of NEWS 2009
machine transliteration shared task. InProc. ACL-
IJCNLP Named Entities Workshop.

Richard Zens and Hermann Ney. 2004. Improvements
in phrase-based statistical machine translation. In
Proc. HLT-NAACL, pages 257–264.

31

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 32–35,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Named Entity Transcription with Pair n-Gram Models

Martin Jansche
Google Inc.

mjansche@google.com

Richard Sproat
Google Inc. and OHSU
rws@google.com

Abstract

We submitted results for each of the eight
shared tasks. Except for Japanese name
kanji restoration, which uses a noisy channel
model, our Standard Run submissions were
produced by generative long-range pair n-
gram models, which we mostly augmented
with publicly available data (either from
LDC datasets or mined from Wikipedia) for
the Non-Standard Runs.

1 Introduction

This paper describes the work that we did at Google,
Inc. for the NEWS 2009 Machine Transliteration
Shared Task (Li et al., 2009b; Li et al., 2009a). Except
for the Japanese kanji task (which we describe be-
low), all models were pair n-gram language models.
Briefly, we took the training data, and ran an iterative
alignment algorithm using a single-state weighted
finite-state transducer (WFST).We then trained a lan-
guage model on the input-output pairs of the align-
ment, which was then converted into a WFST encod-
ing a joint model. For the Non-Standard runs, we use
additional data fromWikipedia or from the LDC, ex-
cept where noted below. In the few instances where
we used data not available from Wikipedia or LDC,
wewill be happy to share themwith other participants
of this competition.

2 Korean

For Korean, we created a mapping between each
Hangul glyph and its phonetic transcription inWorld-
Bet (Hieronymus, 1993) based on the tables from
Unitran (Yoon et al., 2007). Vowel-initial syllables
were augmented with a “0” at the beginning of the
syllable, to avoid spurious resyllabifications: Abbott
should be 애버트, never 앱엍으. We also filtered the
set of possible Hangul syllable combinations, since
certain syllables are never used in transliterations, e.g.
any with two consonants in the coda. The mapping

between Hangul syllables and phonetic transcription
was handled with a simple FST.
The main transliteration model for the Standard

Run was a 10-gram pair language model trained on
an alignment of English letters to Korean phonemes.
All transliteration pairs observed in the training/
development data were cached, and made available
if those names should recur in the test data. We
also submitted a Non-Standard Run with English/
Korean pairs mined from Wikipedia. These were de-
rived from the titles of corresponding interlinked En-
glish and Korean articles. Obviously not all such
pairs are transliterations, so we filtered the raw list
by predicting, for each English word, and using the
trained transliteration model, what the ten most likely
transliterations were in Korean; and then accepting
any pair in Wikipedia where the string in Korean also
occurred in the set of predicted transliterations. This
resulted in 11,169 transliteration pairs. In addition a
dictionary of 9,047 English and Korean translitera-
tion pairs that we had obtained from another source
was added. These pairs were added to the cache, and
were also used to retrain the transliteration model,
along with the provided data.

3 Indian Languages

For the Indian languages Hindi, Tamil and Kannada,
the same basic approach as for Korean was used. We
created a reversible map between Devanagari, Tamil
or Kannada symbols and their phonemic values, us-
ing a modified version of Unitran. However, since
Brahmi-derived scripts distinguish between diacritic
and full vowel forms, in order to map back from
phonemic transcription into the script form, it is nec-
essary to know whether a vowel comes after a conso-
nant or not, in order to select the correct form. These
and other constraints were implementedwith a simple
hand-constructed WFST for each script.
The main transliteration model for the Standard

Run was a 6-gram pair language model trained on
an alignment of English letters to Hindi, Kannada

32

or Tamil phonemes in the training and development
sets. At test time, this WFST was composed with the
phoneme to letter WFST just described to produce a
WFST that maps directly between English letters and
Indian script forms. As with Korean, all observed
transliteration pairs from the training/development
data were cached, and made available if those names
should recur in the test data. For each Indian lan-
guage we also submitted a Non-Standard Run which
included English/Devanagari, English/Tamil and En-
glish/Kannada pairs mined from Wikipedia, and fil-
tered as described above for Korean. This resulted
in 11,674 pairs for English/Hindi, 10,957 pairs for
English/Tamil and 2,436 pairs for English/Kannada.
These pairs were then added to the cache, and were
also used to retrain the transliteration model, along
with the provided data.

4 Russian

For Russian, we computed a direct letter/letter cor-
respondences between the Latin representation of
English and the Cyrillic representation of Russian
words. This seemed to be a reasonable choice since
Russian orthography is fairly phonemic, at least at an
abstract level, and it was doubtful that any gain would
be had from trying to model the pronunciation better.
We note that many of the examples were, in fact, not
English to begin with, but a variety of languages, in-
cluding Polish and others, that happen to be written
in the Latin script.
We used a 6-gram pair language model for the

Standard Run. For the Non-Standard Runs we in-
cluded: (for NSR1) a list of 3,687 English/Russian
pairs mined from the Web; and (for NSR2), those,
plus a set of 1,826 mined fromWikipedia and filtered
as described above. In each case, the found pairs were
put in the cache, and were used to retrain the language
model.

5 Chinese

For Chinese, we built a direct stochastic model be-
tween strings of Latin characters representing the En-
glish names and strings of hanzi representing their
Chinese transcription. It is well known (Zhang et al.,
2004) that the direct approach produces significantly
better transcription quality than indirect approaches
based on intermediate pinyin or phoneme represen-
tations. This observation is consistent with our own
experience during system development.
In our version of the direct approach, we first

aligned the English letter strings with their corre-

sponding Chinese hanzi strings using the same mem-
oryless monotonic alignment model as before. We
then built standard n-gram models over the align-
ments, which were then turned, for use at runtime,
into weighted FSTs computing a mapping from En-
glish to Chinese.

The transcription model we chose for the Stan-
dard Run is a 6-gram language model over align-
ments, built with Kneser-Ney smoothing and a mini-
mal amount of Seymore-Rosenfeld shrinking.

We submitted two Non-Standard Runs with addi-
tional names taken from the LDC Chinese/English
Name Entity Lists v 1.0 (LDC2005T34). The only list
from this collection we used was Propernames Peo-
ple EC, which contains 572,213 “English” names (in
fact, names from many languages, all represented in
the Latin alphabet) with one or more Chinese tran-
scriptions for each name. Data of similar quality can
be easily extracted from theWeb as well. For the sake
of reproducible results, we deliberately chose to work
with a standard corpus. The LDC name lists have
all of the problems that are usually associated with
data extracted from the Web, including improbable
entries, genuine mistakes, character substitutions, a
variety of unspecified source languages, etc.

We removed names with symbols other than let-
ters ‘a’ through ‘z’ from the list and divided it into
a held-out portion, consisting of names that occur in
the development or test data of the Shared Task, and
a training portion, consisting of everything else, for a
total of 622,187 unique English/Chinese name pairs.
We then used the model from the Standard Run to
predict multiple pronunciations for each of the names
in the training portion of the LDC list and retained
up to 5 pronunciations for each English name where
the prediction from the Standard model agreed with
a pronunciation found in the LDC list.

For our first Non-Standard Run, we trained a 7-
gram language model based on the Shared Task train-
ing data (31,961 name pairs) plus an additional 95,576
name pairs from the intersection of the LDC list and
the Standard model predictions. Since the selection
of additional training data was, by design, very con-
servative, we got a small improvement over the Stan-
dard Run.

The reason for this cautious approach was that the
additional LDC data did not match the provided train-
ing and development data very well, partly due to
noise, partly due to different transcription conven-
tions. For example, the Pinyin syllable bó is predom-
inantly written as博 in the LDC data, but博 does not

33

occur at all in the Shared Task training data:
Character Occurrences

Train LDC
博 0 13,110
伯 1,547 3,709

We normalized the LDC data (towards the tran-
scription conventions implicit in the Shared Task
data) by replacing hanzi for frequent Pinyin syllables
with the predominant homophonous hanzi from the
Shared Task data. This resembles a related approach
to pronunciation extraction from the web (Ghoshal et
al., 2009), where extraction validation and pronunci-
ation normalization steps were found to be tremen-
dously helpful, even necessary, when using web-
derived pronunciations. One of the conclusions there
was that extracted pronunciations should be used di-
rectly when available.
This is what we did in our second Non-Standard

Run. We used the filtered and normalized LDC data
as a static dictionary in which to look up the transcrip-
tion of names in the test data. This is how the shared
task problem would be solved in practice and it re-
sulted in a huge gain in quality. Notice, however, that
doing so is non-trivial, because of the data quality and
data mismatch problems described above.

6 Japanese Katakana

The “English” to Japanese katakana task suffered
from the usual problem that the Latin alphabet side
covered many languages besides English. It thus be-
came an exercise in guessing which one of many valid
ways of pronouncing the Latin letter string would be
chosen as the basis for the Japanese transcription. We
toyed with the idea of building mixture models before
deciding that this issue is more appropriate for a pro-
nunciation modeling shared task. In the end, we built
the same kinds of straightforward pair n-grammodels
as in the tasks described earlier.
For Japanese katakana we performed a similar

kind of preprocessing as for the Indian languages:
since it is possible (under minimal assumptions)
to construct an isomorphism between katakana and
Japanese phonemes, we chose to use phonemes as
the main level of representation in our model. This
is because Latin letters encode phonemes as opposed
to syllables or morae (to a first approximation) and
one pays a penalty (a loss of about 4% in accuracy on
the development data) for constructingmodels that go
from Latin letters directly to katakana.
For the Standard Run, we built a 5-grammodel that

maps from Latin letter strings to Japanese phoneme
strings. The model used the same kind of Kneser-

Ney smoothing and Seymore-Rosenfeld shrinking as
before. In addition, we restrict the model to only pro-
duce well-formed Japanese phoneme strings, by com-
posing it with an unweighted Japanese phonotactic
model that enforces the basic syllable structure.

7 Japanese Name Kanji

It is important to note that the Japanese name kanji
task is conceptually completely different from all of
the other tasks. We argue that this conceptual dif-
ference must translate into a different modeling and
system building approach.
The conceptual difference is this: In all other tasks,

we’re given well-formed “English” names. For the
sake of argument, let’s say that they are indeed just
English names. These names have an English pro-
nunciation which is then mapped to a correspond-
ing Hindi or Korean pronunciation, and the resulting
Hindi or Korean “words” (which do not look like or-
dinary Hindi or Korean words at all, except for su-
perficially following the phonology of the target lan-
guage) can be written down in Devanagari or Hangul.
Information is lost when distinct English sounds get
mapped to the same phonemes in the target language
andwhen semantic information (such as the gender of
the bearer of a name) is simply not transmitted across
the phonetic channel that produces the approximation
in the target language (transcription into Chinese is an
exception in this regard). We call this forward tran-
scription because we’re projecting the original repre-
sentation of a name onto an impoverished approxima-
tion.
In name kanji restoration, we’re moving in the op-

posite direction. The most natural, information-rich
form of a Japanese name is its kanji representation
(ja-Hani). When this gets transcribed into rōmaji (ja-
Latn), only the sound of the name is preserved. In
this task, we’re asked to recover the richer kanji form
from the impoverished rōmaji form. This is the op-
posite of the forward transcription tasks and just begs
to be described by a noisy channel model, which is
exactly what we did.
The noisy channel model is a factored generative

model that can be thought of as operating by drawing
an item (kanji string) from a source model over the
universe of Japanese names, and then, conditional on
the kanji, generating the observation (rōmaji string)
in a noisy, nondeterministic fashion, by drawing it at
random from a channel model (in this case, basically
a model of kanji readings).
To simplify things, we make the natural assump-

34

tion that there is a latent segmentation of the rōmaji
string into segments of one or more syllables and
that each individual kanji in a name generates exactly
one segment. For illustration, consider the example
abukawa 虻川, which has three possible segmenta-
tions: a+bukawa, abu+kawa, and abuka+wa. Note
that boundaries can fall into the middle of ambisyl-
labic long consonants, as in matto松任.

Complicating this simple picture are several kinds
of noise in the training data: First, Chinese pinyin
mixed in with Japanese rōmaji, which we removed
mostly automatically from the training and develop-
ment data and for which we deliberately chose not to
produce guesses in the submitted runs on the test data.
Second, the seemingly arbitrary coalescence of cer-
tain vowel sequences. For example, ōnuma 大沼 and
onuma小沼 appear as onuma, and kouda国府田 and
kōda幸田 appear as koda in the training data. Severe
space limitations prevent us from going into further
details here: we will however discuss the issues dur-
ing our presentation at the workshop.

For the Standard Run, we built a trigram character
language model on the kanji names (16,182 from the
training data plus 3,539 from the development data,
discarding pinyin names). We assume a zero-order
channel model, where each kanji generates its portion
of the rōmaji observation independent of its kanji or
rōmaji context. We applied an EM algorithm to the
parallel rōmaji/kanji data (19,684 items) in order to
segment the rōmaji under the stated assumptions and
train the channel model. We pruned the model by re-
placing the last EM step with a Viterbi step, result-
ing in faster runtime with no loss in quality. NSR 1
uses more than 100k additional names (kanji only,
no additional parallel data) extracted from biograph-
ical articles in Wikipedia, as well as a list, found on
the Web, of the 10,000 most common Japanese sur-
names. A total of 117,782 names were used to train a
trigram source model. Everything else is identical to
the Standard Run. NSR 2 is like NSR 1 but adds dic-
tionary lookup. If we find the rōmaji name in a dictio-
nary of 27,358 names extracted from Wikipedia and
if a corresponding kanji name from the dictionary is
among the top 10 hypotheses produced by the model,
that hypothesis is promoted to the top (again, this per-
forms better than using the extracted names blindly).
NSR 3 is like NSR 1 but the channel model is trained
on a total of 108,172 rōmaji/kanji pairs consisting of
the training and development data plus data extracted
from biographies in Wikipedia. Finally NSR 4 is like
NSR 3 but adds the same kind of dictionary lookup as

in NSR 2. Note that the biggest gains are due first to
the richer source model in NSR 1 and second to the
richer channel model in NSR 3. The improvements
due to dictionary lookups in NSR 2 and 4 are small
by comparison.

8 Results

Results for the runs are summarized below. “Rank”
is rank in SR/NSR as appropriate:

Run ACC F Rank
en/ta SR 0.436 0.894 2

NSR1 0.437 0.894 5
ja-Latn/ SR 0.606 0.749 2
ja-Hani NSR1 0.681 0.790 4

NSR2 0.703 0.805 3
NSR3 0.698 0.805 2
NSR4 0.717 0.818 1

en/ru SR 0.597 0.925 3
NSR1 0.609 0.928 2
NSR2 0.955 0.989 1

en/zh SR 0.646 0.867 6
NSR1 0.658 0.865 10
NSR2 0.909 0.960 1

en/hi SR 0.415 0.858 9
NSR1 0.424 0.862 8

en/ko SR 0.476 0.742 1
NSR1 0.794 0.894 1

en/kn SR 0.370 0.867 2
NSR1 0.374 0.868 4

en/ja-Kana SR 0.503 0.843 3
NSR1 0.564 0.862 n/a

Acknowledgments
The authors acknowledge the use of the English-Chinese
(EnCh) (Li et al., 2004), English-Japanese Katakana (EnJa),
English-Korean Hangul (EnKo), Japanese Name (in English)-
Japanese Kanji (JnJk) (http://www.cjk.org), and English-
Hindi (EnHi), English-Tamil (EnTa), English-Kannada (EnKa),
English-Russian (EnRu) (Kumaran and Kellner, 2007) corpora.

References
Arnab Ghoshal, Martin Jansche, Sanjeev Khudanpur, Michael

Riley, and Morgan E. Ulinksi. 2009. Web-derived pronunci-
ations. In ICASSP.

James L. Hieronymus. 1993. ASCII phonetic symbols for the
world’s languages: Worldbet. AT&T Bell Laboratories, tech-
nical memorandum.

A. Kumaran and Tobias Kellner. 2007. A generic framework for
machine transliteration. In SIGIR--30.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint source chan-
nel model for machine transliteration. In ACL-42.

Haizhou Li, A. Kumaran, Vladimir Pervouchine, andMin Zhang.
2009a. Report on NEWS 2009 machine transliteration shared
task. In ACL-IJCNLP 2009 Named Entities Workshop, Singa-
pore.

Haizhou Li, A. Kumaran, Min Zhang, andVladimir Pervouchine.
2009b. Whitepaper of NEWS 2009 machine transliteration
shared task. In ACL-IJCNLP 2009 Named Entities Workshop,
Singapore.

Su-Youn Yoon, Kyoung-Young Kim, and Richard Sproat. 2007.
Multilingual transliteration using feature based phonetic
method. In ACL.

Min Zhang, Haizhou Li, and Jian Su. 2004. Direct orthographi-
cal mapping for machine transliteration. In COLING.

35

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 36–39,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Machine Transliteration using Target-Language Grapheme and
Phoneme: Multi-engine Transliteration Approach

Jong-Hoon Oh, Kiyotaka Uchimoto, and Kentaro Torisawa
Language Infrastructure Group, MASTAR Project,

National Institute of Information and Communications Technology (NICT)
3-5 Hikaridai Seika-cho, Soraku-gun, Kyoto 619-0289 Japan
{rovellia,uchimoto,torisawa}@nict.go.jp

Abstract

This paper describes our approach to
“NEWS 2009 Machine Transliteration
Shared Task.” We built multiple translit-
eration engines based on different combi-
nations of two transliteration models and
three machine learning algorithms. Then,
the outputs from these transliteration en-
gines were combined using re-ranking
functions. Our method was applied to all
language pairs in “NEWS 2009 Machine
Transliteration Shared Task.” The official
results of our standard runs were ranked
the best for four language pairs and the
second best for three language pairs.

1 Outline

This paper describes our approach to “NEWS
2009 Machine Transliteration Shared Task.”
Our approach was based on two transliteration
models – TM-G (Transliteration model based
on target-language Graphemes) and TM-GP
(Transliteration model based on target-language
Graphemes and Phonemes). The difference
between the two models lies in whether or
not a machine transliteration process depends
on target-language phonemes. TM-G directly
converts source-language graphemes into target-
language graphemes, while TM-GP first trans-
forms source language graphemes into target-
language phonemes and then target-language
phonemes coupled with their corresponding
source-language graphemes are converted into
target-language graphemes. We used three dif-
ferent machine learning algorithms (conditional
random fields (CRFs), margin infused relaxed al-
gorithm (MIRA), and maximum entropy model
(MEM)) (Berger et al., 1996; Crammer and
Singer, 2003; Lafferty et al., 2001) for build-
ing multiple machine transliteration engines. We

attempted to improve the transliteration quality
by combining the outputs of different machine
transliteration engines operating on the same in-
put. Our approach was applied to all language
pairs in “NEWS 2009 Machine Transliteration
Shared Task.” The official results of our approach
were ranked as the best for four language pairs and
the second best for three language pairs (Li et al.,
2009a).

2 Transliteration Model

Let S be a source-language word and T be a target-
language transliteration of S. T is represented in
two ways – TG, a sequence of target-language
graphemes, and TP , a sequence of target-language
phonemes. Here, a target-language grapheme is
defined as a target-language character. We regard
consonant and vowel parts in the romanized form
of a target language grapheme as a target-language
phoneme. Then TM-G and TM-GP are formu-
lated as Eq (1) and (2), respectively.

PTM−G(T |S) = P (TG|S) (1)

PTM−GP (T |S) (2)

=
∑

∀TP

P (TP |S)× P (TG|TP , S)

Ja

Ch

En

顿:I顿:I顿:B林:I林:I林:B克:B TG

NUDNILKETP

ン:B ト:Iト:B ン:B リ:Iリ:B ク:B TG

NOTNIRKUTP

notnilCS

Clinton

KELINDUN KURINTON

克林顿 クリントン

ClintonClinton

克林顿 クリントン

Clinton

TM-G TM-GP

Figure 1: Illustration of the two transliteration
models

36

Figure 1 illustrates the two transliteration mod-
els with examples, Clinton and its Chinese
and Japanese transliterations. Target language
graphemes are represented in terms of the BIO no-
tation. This makes it easier to represent many-
to-one correspondence between target language
phoneme and grapheme.

3 Machine Learning Algorithms

A machine transliteration problem can be con-
verted into a sequential labeling problem, where
each source-language grapheme is tagged with its
corresponding target-language grapheme. This
section briefly describes the machine learning al-
gorithms used for building multiple transliteration
engines.

3.1 Maximum Entropy Model

Machine transliteration based on the maximum
entropy model was described in detail in Oh et al.
(2006) along with comprehensive evaluation of its
performance. We used the same way as that pro-
posed by Oh et al. (2006), thus its full description
is not presented here.

3.2 Conditional Random Fields (CRFs)

CRFs, a statistical sequence modeling framework,
was first introduced by Lafferty et al. (2001).
CRFs has been used for sequential labeling prob-
lems such as text chunking and named entity
recognition (McCallum and Li, 2003). CRF++1

was used in our experiment.

3.3 Margin Infused Relaxed Algorithm

The Margin Infused Relaxed Algorithm (MIRA)
has been introduced by Crammer and Singer
(2003) for large-margin multi-class classification.
Kruengkrai et al. (2008) proposed a discriminative
model for joint Chinese segmentation and POS
tagging, where MIRA was used as their machine
learning algorithm. We used the same model for
our machine transliteration, exactly joint syllabi-
cation2 and transliteration.

3.4 Features

We used the following features within the ±3 con-
text window3 for the above mentioned three ma-

1Available at http://crfpp.sourceforge.net/
2A syllable in English is defined as a sequence of English

grapheme corresponding to one target-language grapheme.
3The unit of context window is source-language

grapheme or syllable.

chine learning algorithms.

• Left-three and right-three source-language
graphemes (or syllables)

• Left-three and right-three target-language
phonemes

• Target-language graphemes assigned to the
previous three source-language graphemes
(or syllables)

4 Multi-engine Transliteration

4.1 Individual Transliteration Engine

The main aim of the multi-engine transliteration
approach is to combine the outputs of multiple en-
gines so that the final output is better in quality
than the output of each individual engine. We
designed four transliteration engines using dif-
ferent combinations of source-language translit-
eration units, transliteration models, and machine
learning algorithms as listed in Table 1. We named
four transliteration engines as CRF-G, MEM-G,
MEM-GP, and MIRA-G. Here, the prefixes rep-
resent applied machine learning algorithms (max-
imum entropy model (MEM), CRFs, and MIRA),
while G and GP in the suffix represent the translit-
eration models, TM-G and TM-GP, respectively.
Each individual engine produces 30-best translit-
erations for a given source-language word.

Source-language transliteration unit
Grapheme Syllable

TM-G ME-G, CRF-G MIRA-G
TM-GP ME-GP N/A

Table 1: Design strategy for multiple translitera-
tion engines

4.2 Combining Methodology

We combined the outputs of multiple translitera-
tion engines by means of a re-ranking function,
g(x). Let X be a set of transliterations gener-
ated by multiple transliteration engines for source-
language word s and ref be a reference translit-
eration of s. A re-ranking function is defined as
Eq. (3), where it ranks ref in X higher and the
others lower (Oh and Isahara, 2007).

g(x) : X → {r : r is ordering of x ∈ X} (3)

We designed two types of re-ranking functions by
using the rank of each individual engine and ma-
chine learning algorithm.

37

4.2.1 Re-ranking Based on the Rank of
Individual Engines

Two re-ranking functions based on the rank of
each individual engine, grank and gFscore(x),
are used for combining the outputs of multiple
transliteration engines. Let X be a set of outputs
of N transliteration engines for the same input.
grank(x) re-ranks x ∈ X in the manner shown
in Eq. (4), where Ranki(x) is the position of x in
the n-best list generated by the ith transliteration
engine. grank(x) can be interpreted as the average
rank of x over outputs of each individual engine.
If x is not in the n-best list of the ith transliteration
engine, 1

Ranki(x) = 0.

grank(x) =
1
N

N∑

i=1

1
Ranki(x)

(4)

gFscore(x) is based on grank(x) and the F-
score measure, which is one of the evaluation met-
rics in the “NEWS 2009 Machine Transliteration
Shared Task” (Li et al., 2009b). We considered
the top three outputs of each individual engine
as reference transliterations and defined them as
virtual reference transliterations. We calculated
the F-score measure between the virtual reference
transliteration and each output of multiple translit-
eration engines. gFscore(x) is defined by Eq. (5),
where VRef is a set of virtual reference transliter-
ations, and Fscore(vr, x) is a function that restores
the F-score measure between vr and x.

gFscore(x) = grank(x)×MF (x) (5)

MF (x) =
1

|V Ref |
∑

vr∈V Ref

Fscore(vr, x)

Since the F-score measure is calculated in terms of
string similarity, x gets a high score from gMF (x)
when it is orthographically similar to virtual refer-
ence transliterations.

4.2.2 Re-ranking based on Machine Learning
Algorithm

We used the maximum entropy model for learn-
ing re-ranking function gME(x). Let ref be a ref-
erence transliteration of source-language word s,
feature(x) be a feature vector of x ∈ X , and
y ∈ {ref, wrong} be the training label for x.
gME(x) assigns a probability to x ∈ X as shown
in Eq. (6).

gME(x) = P (ref |feature(x)) (6)

A feature vector of x is composed of

• 〈grank(x), gFscore(x), 1
Ranki(x) , P (T |S)〉

where 1
Ranki(x) and P (T |S) of each individual en-

gine are used as a feature.
We estimated P (ref |feature(x)) by using the

development data.

5 Our Results

5.1 Individual Engine

CRF-G MEM-G MEM-GP MIRA-G

EnCh 0.628 0.686 0.715 0.684
EnHi 0.455 0.469 0.469 0.412
EnJa 0.514 0.517 0.519 0.490
EnKa 0.386 0.380 0.380 0.338
EnKo 0.460 0.438 0.447 0.367
EnRu 0.600 0.561 0.566 0.568
EnTa 0.453 0.459 0.459 0.412
JnJk N/A 0.532 N/A 0.571

Table 2: ACC of individual engines on the test data

Table 2 presents ACC4 of individual translit-
eration engines, which was applied to all lan-
guage pairs in “NEWS 2009 Machine Translit-
eration Shared Task” (Li et al., 2004; Kumaran
and Kellner, 2007; The CJK Dictionary Institute,
2009). CRF-G was the best transliteration engine
in EnKa, EnKo, and EnRu. Owing to the high
training costs of CRFs, we trained CRF-G in EnCh
with a very small number of iterations5. Hence,
the performance of CRF-G was poorer than that
of the other engines in EnCh. MEM-GP was the
best transliteration engine in EnCh, EnHi, EnJa,
and EnTa. These results indicate that joint use
of source language graphemes and target language
phonemes were very useful for improving perfor-
mance. MIRA-G was sensitive to the training data
size, because it was based on joint syllabication
and transliteration. Therefore, the performance of
MIRA-G was relatively better in EnCh and EnJa,
whose training data size is bigger than other lan-
guage pairs. CRF-G could not be applied to JnJk,
mainly due to too long training time. Further,
MEM-GP could not be applied to JnJk, because
transliteration in JnJk can be regarded as conver-
sion of target language phonemes to target lan-
guage graphemes. MEM-G and MIRA-G were

4Word accuracy in Top-1 (Li et al., 2009b)
5We applied over 100 iterations to other language pairs

but only 30 iterations to EnCh.

38

applied to JnJk and MIRA-G showed the best per-
formance in JnJK.6

5.2 Combining Multiple Engines

grank gFscore gME I-BEST

EnCh 0.730 0.731 0.731 0.715
EnHi 0.481 0.475 0.483 0.469
EnJa 0.535 0.535 0.537 0.519
EnKa 0.393 0.399 0.398 0.386
EnKo 0.461 0.444 0.473 0.460
EnRu 0.602 0.605 0.600 0.600
EnTa 0.470 0.478 0.474 0.459
JnJk 0.597 0.593 0.590 0.571

Table 3: Multi-engine transliteration results on the
test data: the underlined figures are our official re-
sult

Table 3 presents the ACC of our multi-engine
transliteration approach and that of the best in-
dividual engine (I-BEST) in each language pair.
gME gave the best performance in EnCh, EnHi,
EnJa, and EnKo, while gFscore did in EnCh, EnKa,
EnRu, and EnTa. Comparison between the best
individual transliteration engine and our multi-
engine transliteration showed that grank and gME

consistently showed better performance except in
EnRu, while gFscore showed the poorer perfor-
mance in EnKo. The results to be submitted as
“the standard run” were selected among the re-
sults listed in Table 3 by using cross-validation on
the development data. We submitted the results of
gME as the standard run to “NEWS 2009 Machine
Transliteration Shared Task” for the six language
pairs in Table 3, while the result of gFscore is sub-
mitted as the standard run for EnRu. The official
results of our standard runs were ranked the best
for EnCh, EnJa, EnKa, and EnTa, and the second
best for EnHi, EnKo, and EnRu (Li et al., 2009a).

6 Conclusion

In conclusion, we have applied multi-engine
transliteration approach to “NEWS 2009 Machine
Transliteration Shared Task.” We built multiple
transliteration engines based on different com-
binations of transliteration models and machine
learning algorithms. We showed that the translit-
eration model, which is based on target language

6We submitted the results of MEM-G as a standard run for
JnJk because we had only one transliteration engine for JnJK
before the submission deadline of the NEWS 2009 machine
transliteration shared task.

graphemes and phonemes, and our multi-engine
transliteration approach are effective, regardless of
the nature of the language pairs.

References

A. L. Berger, S. D. Pietra, and V. J. D. Pietra. 1996. A
maximum entropy approach to natural language pro-
cessing. Computational Linguistics, 22(1):39–71.

Koby Crammer and Yoram Singer. 2003. Ultracon-
servative online algorithms for multiclass problems.
Journal of Machine Learning Research, 3:951–991.

Canasai Kruengkrai, Jun’ichi Kazama, Kiyotaka Uchi-
moto, Kentaro Torisawa, and Hitoshi Isahara. 2008.
A discriminative hybrid model for joint Chinese
word segmentation and pos tagging. In Proc. of The
11th Oriental COCOSDA Workshop.

A. Kumaran and Tobias Kellner. 2007. A generic
framework for machine transliteration. In Proc. of
SIGIR ’07, pages 721–722.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proc. of ICML01, pages 282–289.

Haizhou Li, Min Zhang, and Su Jian. 2004. A joint
source-channel model for machine transliteration.
In Proc. of ACL ’04, pages 160–167.

Haizhou Li, A Kumaran, Vladimir Pervouchine, and
Min Zhang. 2009a. Report on NEWS 2009 machine
transliteration shared task. In Proc. of ACL-IJCNLP
2009 Named Entities Workshop.

Haizhou Li, A Kumaran, Min Zhang, and Vladimir
Pervouchine. 2009b. Whitepaper of NEWS 2009
machine transliteration shared task. In Proc. of
ACL-IJCNLP 2009 Named Entities Workshop.

Andrew McCallum and Wei Li. 2003. Early results for
named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proc. of CoNLL ’03, pages 188–191.

Jong-Hoon Oh and Hitoshi Isahara. 2007. Machine
transliteration using multiple transliteration engines
and hypothesis re-ranking. In Proc. of the 11th Ma-
chine Translation Summit, pages 353–360.

Jong-Hoon Oh, Key-Sun Choi, and Hitoshi Isahara.
2006. A comparison of different machine transliter-
ation models. Journal of Artificial Intelligence Re-
search (JAIR), 27:119–151.

The CJK Dictionary Institute. 2009. http://www.
cjk.org.

39

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 40–43,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

A Language-Independent Transliteration Schema Using Character
Aligned Models At NEWS 2009

Praneeth Shishtla, Surya Ganesh V, Sethuramalingam Subramaniam, Vasudeva Varma
Language Technologies Research Centre,

IIIT-Hyderabad, India
praneethms@students.iiit.ac.in

{suryag,sethu}@research.iiit.ac.in, vv@iiit.ac.in

Abstract

In this paper we present a statistical
transliteration technique that is language
independent. This technique uses statis-
tical alignment models and Conditional
Random Fields (CRF). Statistical align-
ment models maximizes the probability of
the observed (source, target) word pairs
using the expectation maximization algo-
rithm and then the character level align-
ments are set to maximum posterior pre-
dictions of the model. CRF has efficient
training and decoding processes which is
conditioned on both source and target lan-
guages and produces globally optimal so-
lution.

1 Introduction

A significant portion of out-of-vocabulary (OOV)
words in machine translation systems, information
extraction and cross language retrieval models are
named entities (NEs). If the languages are written
in different scripts, these named entities must be
transliterated. Transliteration is defined as the pro-
cess of obtaining the phonetic translation of names
across languages. A source language word can
have more than one valid transliteration in the tar-
get language. In areas like Cross Language Infor-
mation Retrieval (CLIR), it is important to gener-
ate all possible transliterations of a Named Entity.

Most current transliteration systems use a gen-
erative model for transliteration such as freely
available GIZA++1 (Och and Ney , 2000), an
implementation of the IBM alignment mod-
els (Brown et al., 1993) and HMM alignment
model. These systems use GIZA++ to get charac-
ter level alignments from word aligned data. The

1http://www.fjoch.com/GIZA++.html

transliteration system (Nasreen and Larkey , 2003)
is built by counting up the alignments and convert-
ing the counts to conditional probabilities.

In this paper, we describe our participation
in NEWS 2009 Machine Transliteration Shared
Task (Li et al., 2009). We present a simple statis-
tical, language independent technique which uses
statistical alignment models and Conditional Ran-
dom Fields (CRFs) (Hanna , 2004). Using this
technique a desired number of transliterations are
generated for a given word.

2 Previous work

One of the works on Transliteration is done by
Arababi et al. (Arababi et. al., 1994). They
model forward transliteration through a combina-
tion of neural net and expert systems. Work in
the field of Indian Language CLIR was done by
Jaleel and Larkey (Larkey et al., 2003). They
did this based on their work in English-Arabic
transliteration for CLIR (Nasreen and Larkey ,
2003). Their approach was based on HMM us-
ing GIZA++ (Och and Ney , 2000). Prior work in
Arabic-English transliteration for machine trans-
lation purpose was done by Arababi (Arbabi et al.,
1994). They developed a hybrid neural network
and knowledge-based system to generate multi-
ple English spellings for Arabic person names.
Knight and Graehl (Knight and Graehl , 1997) de-
veloped a five stage statistical model to do back
transliteration, that is, recover the original En-
glish name from its transliteration into Japanese
Katakana. Stalls and Knight (Stalls and Knight ,
1998) adapted this approach for back translitera-
tion from Arabic to English of English names. Al-
Onaizan and Knight (Onaizan and Knight , 2002)
have produced a simpler Arabic/English translit-
erator and evaluates how well their system can
match a source spelling. Their work includes an

40

evaluation of the transliterations in terms of their
reasonableness according to human judges. None
of these studies measures their performance on a
retrieval task or on other NLP tasks. Fujii and
Ishikawa (Fujii and Ishikawa , 2001) describe a
transliteration system for English-Japanese CLIR
that requires some linguistic knowledge. They
evaluate the effectiveness of their system on an
English-Japanese CLIR task.

3 Problem Description

The problem can be stated formally as a se-
quence labeling problem from one language al-
phabet to other. Consider a source language word
x1x2..xi..xN where each xi is treated as a word
in the observation sequence. Let the equivalent
target language orthography of the same word be
y1y2..yi..yN where each yi is treated as a label in
the label sequence. The task here is to generate a
valid target language word (label sequence) for the
source language word (observation sequence).

x1 —————– y1

x2 —————– y2

. ——————- .

. ——————- .

. ——————- .
xN —————— yN

Here the valid target language alphabet (yi) for a
source language alphabet (xi) in the input source
language word may depend on various factors like

1. The source language alphabet in the input
word.

2. The context (alphabets) surrounding source
language alphabet (xi) in the input word.

3. The context (alphabets) surrounding target
language alphabet (yi) in the desired output
word.

4 Transliteration using alignment models
and CRF

Our approach for transliteration is divided
into two phases. The first phase induces
character alignments over a word-aligned
bilingual corpus, and the second phase uses
some statistics over the alignments to translit-
erate the source language word and generate
the desired number of target language words.
The selected statistical model for transliteration

is based on a combination of statistical alignment
models and CRF. The alignment models maximize
the probability of the observed (source, target)
word pairs using the expectation maximization
algorithm. After the maximization process is
complete, the character level alignments are
set to maximum posterior predictions of the
model. This alignment is used to get character
level alignment of source and target language
words. From the character level alignment
obtained we compare each source language
character to a word and its corresponding tar-
get language character to a label. Conditional
random fields (CRFs) are a probabilistic frame-
work for labeling and segmenting sequential
data. We use CRF to generate target language
word (similar to label sequence) from source
language word (similar to observation sequence).
CRFs are undirected graphical models which
define a conditional distribution over a label se-
quence given an observation sequence. We define
CRFs as conditional probability distributions
P (Y |X) of target language words given source
language words. The probability of a particular
target language word Y given source language
word X is the normalized product of potential
functions each of the form

e
(
∑

j
λjtj(Yi−1,Yi,X,i))+(

∑
k

µksk(Yi,X,i))

where tj(Yi−1, Yi, X, i) is a transition feature
function of the entire source language word and
the target language characters at positions i and
i− 1 in the target language word; sk(Yi, X, i) is a
state feature function of the target language word
at position i and the source language word; and λj

and µk are parameters to be estimated from train-
ing data.

Fj(Y, X) =
n∑

i=1

fj(Yi−1, Yi, X, i)

where each fj(Yi−1, Yi, X, i) is either a state
function s(Yi−1, Yi, X, i) or a transition function
t(Yi−1, Yi, X, i). This allows the probability of a
target language word Y given a source language
word X to be written as

P (Y |X, λ) = (
1

Z(X)
)e(

∑
λjFj(Y,X))

Z(X) is a normalization factor.

41

5 Our Transliteration system

The whole model has three important phases. Two
of them are off-line processes and the other is a on-
line process. The two off-line phases are prepro-
cessing the parallel corpora and training the model
using CRF++2 (Lafferty et al., 2001). CRF++ is a
simple, customizable, and open source implemen-
tation of Conditional Random Fields (CRFs) for
segmenting/labeling sequential data. The on-line
phase involves generating desired number of target
language transliterations (UTF-8 encoded) for the
given English input word. In our case, the source
is always an English word. The same system is
used for every language pair which makes it a lan-
guage independent. The target languages consist
of Chinese, Hindi, Kannada Tamil and Russian
words.

5.1 Preprocessing
The training file is converted into a format re-
quired by CRF++. The sequence of steps in pre-
processing are

1. Both source and target language words were
prefixed with a begin symbol B and suffixed
with an end symbol E which correspond to
start and end states. English words were con-
verted to lower case.

2. The training words were segmented in to
unigrams and the source-target word pairs
were aligned using GIZA++ (IBM model1,
HMM alignment model, IBM model3 and
IBM model4).

3. The alignment consist of NULLs on source
language i.e., a target language unigram is
aligned to NULL on the source language.
These NULLs are problematic during on-
line phase (as positions of NULLs are un-
known). So, these NULLs are removed by
appending the target language unigram to the
unigram of its previous alignment. For exam-
ple, the following alignment,

k − K

NULL − A

transforms to -

k − KA

2http://crfpp.sourceforge.net/

So, in the final alignment, the source side al-
ways contains unigrams and the target side
might contain ngrams which depends on al-
phabet size of the languages. These three
steps are performed to get the character level
alignment for each source and target lan-
guage training words.

4. This final alignment is transformed to train-
ing format as required by CRF++ to work.
In the training format, a source language un-
igram aligned to a target language ngram is
called a token. Each token must be repre-
sented in one line, with the columns sepa-
rated by white space (spaces or tabular char-
acters). Each token should have equal num-
ber of columns.

5.2 Training Phase
The preprocessing phase converts the corpus into
CRF++ input file format. This file is used to
train the CRF model. The training requires a tem-
plate file which specifies the features to be selected
by the model. The training is done using Lim-
ited memory Broyden-Fletcher-Goldfarb-Shannon
method (L-BFGS) (Liu and Nocedal, 1989) which
uses quasi-newton algorithm for large scale nu-
merical optimization problem. We used English
characters as features for our model and a window
size of 5.

5.3 Transliteration
For a language pair, the list of English words that
need to be transliterated is taken. These words are
converted into CRF++ test file format and translit-
erated using the trained model which gives the top
n probable English words. CRF++ uses forward
Viterbi and backward A* search whose combina-
tion produces the exact n-best results. This process
is repeated for all the five language pairs.

6 Results

In this section, we present the results of our par-
ticipation in the NEWS-2009 shared task. We
conducted our experiments on five language pairs
namely English-Chinese (Li et al., 2004), English-
{Hindi, Kannada, Tamil, Russian} (Kumaran and
Kellner , 2007). As specified in NEWS 2009 Ma-
chine Transliteration Shared Task (Li et al., 2009),
we submitted our standard runs on all the five lan-
guage pairs. Table 1 shows the results of our sys-
tem.

42

Language Pair Accuracy in top-1 Mean F-score MRR MAPref MAP10 MAPsys

English-Tamil 0.406 0.894 0.542 0.399 0.193 0.193
English-Hindi 0.407 0.877 0.544 0.402 0.195 0.195

English-Russian 0.548 0.916 0.640 0.548 0.210 0.210
English-Chinese 0.493 0.804 0.600 0.493 0.192 0.192
English-Kannada 0.350 0.864 0.482 0.344 0.175 0.175

Table 1: Transliteration results for the language pairs

7 Conclusion

In this paper, we have described our translitera-
tion system build on a discriminative model using
CRF and statistical alignment models. As men-
tioned earlier, our system is language independent
and works on any language pair provided parallel
word lists are available for training in the particu-
lar language pair. The main advantage of our sys-
tem is that we use no language-specific heuristics
in any of our modules and hence it is extensible to
any language-pair with least effort.

References
A. Kumaran, Tobias Kellner. 2007. A generic frame-

work for machine transliteration, Proc. of the 30th
SIGIR.

A. L. Berger. 1997. The improved iterative scaling
algorithm: A gentle introduction.

Arbabi, M. and Fischthal, S. M. and Cheng, V. C. and
Bart, E. 1994. Algorithms for Arabic name translit-
eration, IBM Journal of Research And Development.

Al-Onaizan Y, Knight K. 2002. Machine translation of
names in Arabic text. Proceedings of the ACL con-
ference workshop on computational approaches to
Semitic languages.

Arababi Mansur, Scott M. Fischthal, Vincent C. Cheng,
and Elizabeth Bar. 1994. Algorithms for Arabic
name transliteration. IBM Journal of research and
Development.

D. C. Liu and J. Nocedal. 1989. On the limited memory
BFGS method for large-scale optimization, Math.
Programming 45 (1989), pp. 503–528.

Fujii Atsushi and Tetsuya Ishikawa. 2001.
Japanese/English Cross-Language Information
Retrieval: Exploration of Query Translation and
Transliteration. Computers and the Humanities,
Vol.35, No.4, pp.389-420.

H. M. Wallach. 2002. Efficient training of conditional
random fields. Masters thesis, University of Edin-
burgh.

Hanna M. Wallach. 2004. Conditional Random Fields:
An Introduction.

Haizhou Li, A Kumaran, Min Zhang, Vladimir Pervou-
chine. 2009. Whitepaper of NEWS 2009 Machine
Transliteration Shared Task. Proceedings of ACL-
IJCNLP 2009 Named Entities Workshop (NEWS
2009), Singapore.

Haizhou Li, A Kumaran, Vladimir Pervouchine, Min
Zhang. 2009. Report on NEWS 2009 Machine
Transliteration Shared Task. Proceedings of ACL-
IJCNLP 2009 Named Entities Workshop (NEWS
2009), Singapore.

Haizhou Li, Min Zhang, Jian Su. 2004. A joint source
channel model for machine transliteration. Proc. of
the 42nd ACL.

J. Darroch and D. Ratcliff. 1972. Generalized iterative
scaling for log-linear models. The Annals of Mathe-
matical Statistics, 43:14701480.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Condi-
tional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. of
ICML, pp.282-289.

Knight Kevin and Graehl Jonathan. 1997. Machine
transliteration. In Proceedings of the 35th Annual
Meeting of the Association for Computational Lin-
guistics, pp. 128-135. Morgan Kaufmann.

Larkey, Connell,AbdulJaleel. 2003. Hindi CLIR in
Thirty Days.

Nasreen Abdul Jaleel and Leah S. Larkey. 2003.
Statistical Transliteration for English-Arabic Cross
Language Information Retrieval.

Och Franz Josef and Hermann Ney. 2000. Improved
Statistical Alignment Models. Proc. of the 38th An-
nual Meeting of the Association for Computational
Linguistics, pp. 440-447, Hong Kong, China.

P. F. Brown, S. A. Della Pietra, and R. L. Mercer.
1993. The mathematics of statistical machine trans-
lation: Parameter estimation. Computational Lin-
guistics, 19(2):263-311.

Phil Blunsom and Trevor Cohn. 2006. Discriminative
Word Alignment with Conditional Random Fields.

Stalls Bonnie Glover and Kevin Knight. 1998. Trans-
lating names and technical terms in Arabic text.

43

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 44–47,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Experiences with English-Hindi, English-Tamil and English-Kannada
Transliteration Tasks at NEWS 2009

Manoj Kumar Chinnakotla and Om P. Damani
Department of Computer Science and Engineering,

IIT Bombay,
Mumbai, India

{manoj,damani}@cse.iitb.ac.in

Abstract

We use a Phrase-Based Statistical Ma-
chine Translation approach to Translitera-
tion where the words are replaced by char-
acters and sentences by words. We employ
the standard SMT tools like GIZA++ for
learning alignments and Moses for learn-
ing the phrase tables and decoding. Be-
sides tuning the standard SMT parame-
ters, we focus on tuning the Character Se-
quence Model (CSM) related parameters
like order of the CSM, weight assigned to
CSM during decoding and corpus used for
CSM estimation. Our results show that
paying sufficient attention to CSM pays
off in terms of increased transliteration ac-
curacies.

1 Introduction

Transliteration of Named-Entities (NEs) is an im-
portant problem that affects the accuracy of many
NLP applications like Cross Lingual Search and
Machine Translation. Transliteration is defined
as the process of automatically mapping a given
grapheme sequence in the source language to a
grapheme sequence in the target language such
that it preserves the pronunciation of the origi-
nal source word. A Grapheme refers to the unit
of written language which expresses a phoneme
in the language. Multiple alphabets could be
used to express a grapheme. For example, sh
is considered a single grapheme expressing the
phoneme /SH/. For phonetic orthography like De-
vanagari, each grapheme corresponds to a unique
phoneme. However, for English, a grapheme like
c may map to multiple phonemes /S/,/K/. An ex-
ample of transliteration is mapping the Devana-

gari grapheme sequence Eþ�s h{rF to its phoneti-
cally equivalent grapheme sequence Prince Harry
in English.

This paper discusses our transliteration ap-
proach taken for the NEWS 2009 Machine
Transliteration Shared Task [[Li et al.2009b, Li et
al.2009a]]. We model the transliteration problem
as a Phrased-Based Machine Translation prob-
lem. Later, using the development set, we tune
the various parameters of the system like order of
the Character Sequence Model (CSM), typically
called language model, weight assigned to CSM
during decoding and corpus used to estimate the
CSM. Our results show that paying sufficient at-
tention to the CSM pays off in terms of improved
accuracies.

2 Phrase-Based SMT Approach to
Transliteration

In the Phrase-Based SMT Approach to Transliter-
ation [[Sherif and Kondrak2007, Huang2005]], the
words are replaced by characters and sentences are
replaced by words. The corresponding noisy chan-
nel model formulation where a given english word
e is to be transliterated into a foreign word h, is
given as:

h∗ = argmax
h

Pr(h|e)

= argmax
h

Pr(e|h) · Pr(h) (1)

In Equation 1, Pr(e|h) is known as the translation
model which gives the probability that the char-
acter sequence h could be transliterated to e and
Pr(h) is known as the character sequence model
typically called language model which gives the
probability that the character sequence h forms a
valid word in the target language.

44

Task Run
Optimal
Parameter Set

Accuracy
in top-1

Mean F-
score MRR MAPref MAP10 MAPsys

English-Hindi Standard

LM Order: 5,
LM Weight:

0.6 0.47 0.86 0.58 0.47 0.18 0.20

English-Hindi
Non-
standard

LM Order: 5,
LM Weight:

0.6 0.52 0.87 0.62 0.52 0.19 0.21

English-Tamil Standard

LM Order: 5,
LM Weight:

0.3 0.45 0.88 0.56 0.45 0.18 0.18

English-
Kannada Standard

LM Order: 5,
LM Weight:

0.3 0.44 0.87 0.55 0.44 0.17 0.18

Figure 1: NEWS 2009 Development Set Results

Task Run
Accuracy in
top-1

Mean F-
score MRR MAPref MAP10 MAPsys

English-Hindi Standard 0.42 0.86 0.54 0.42 0.18 0.20

English-Hindi Non-standard 0.49 0.87 0.59 0.48 0.20 0.23

English-Tamil Standard 0.41 0.89 0.54 0.40 0.18 0.18

English-Kannada Standard 0.36 0.86 0.48 0.35 0.16 0.16

Figure 2: NEWS 2009 Test Set Results

Given the parallel training data pairs, we pre-
processed the source (English) and target (Hindi,
Tamil and Kannada) strings into character se-
quences. We then ran the GIZA++ [[Och and
Ney2003]] aligner with default options to obtain
the character-level alignments. For alignment, ex-
cept for Hindi, we used single character-level units
without any segmentation. In case of Hindi, we
did a simple segmentation where we added the
halant character (U094D) to the previous Hindi
character. Moses Toolkit [[Hoang et al.2007]] was
then used to learn the phrase-tables for English-
Hindi, English-Tamil and English-Kannada. We
also learnt the character sequence models on the
target language training words using the SRILM
toolkit [[Stolcke2002]]. Given a new English word,
we split the word into sequence of characters and
run the Moses decoder with the phrase-table of tar-
get language obtained above to get the transliter-
ated word. We ran Moses with the DISTINCT op-
tion to obtain the top k distinct transliterated op-
tions.

2.1 Moses Parameter Tuning

The Moses decoder computes the cost of each
translation as a product of probability costs of four
models: a) translation model b) language model
c) distortion model and d) word penalty as shown
in Equation 2. The distortion model controls the

Task Run

Baseline
Model (LM
Order N=3) Best Run

%
Improvement

English-Hindi Standard 0.4 0.42 5.00

English-Hindi Non-standard 0.37 0.49 32.43

English-Tamil Standard 0.39 0.45 15.38

English-
Kannada Standard 0.36 0.36 0.00

Figure 3: Improvements Obtained over Baseline
on Test Set due to Language Model Tuning

cost of re-ordering phrases (transliteration units)
in a given sentence (word) and the word penalty
model controls the length of the final translation.
The parameters λT , λCSM , λD and λW control
the relative importance given to each of the above
models.

Pr(h|e) = PrT (e|h)λT · PrCSM (h)λCSM ·
PrD(h, e)λD · ωlength(h)·λW (2)

Since no re-ordering of phrases is required during
translation task, we assign a zero weight to λD.
Similarly, we varied the word penalty factor λW
between {−1, 0,+1} and found that it achieves
maximum accuracy at 0. All the above tuning was
done with a trigram CSM and default weight (0.5)
in Moses for λT .

45

2.2 Improving CSM Performance

In addition to the above mentioned parameters,
we varied the order of the CSM and the mono-
lingual corpus used to estimate the CSM. For each
task, we started with a trigram CSM as mentioned
above and tuned both the order of the CSM and
λCSM on the development set. The optimal set
of parameters and the development set results are
shown in Figure 1. In addition, we use a mono-
lingual Hindi corpus of around 0.4 million doc-
uments called Guruji corpus. We extracted the
2.6 million unique words from the above corpus
and trained a CSM on that. This CSM which was
learnt on the monolingual Hindi corpus was used
for the non-standard Hindi run. We repeat the
above procedure of tuning the order of CSM and
λCSM and find the optimal set of parameters for
the non-standard run on the development set.

3 Results and Discussion

The details of the NEWS 2009 dataset for Hindi,
Kannada and Tamil are given in [[Li et al.2009a,
Kumaran and Kellner2007]]. The final results of
our system on the test set are shown in Figure 2.
Figure 3 shows the improvements obtained on test
set by tuning the CSM parameters. The trigram
CSM model used along with the optimal Moses
parameter set tuned on development set was taken
as baseline for the above experiments. The results
show that a major improvement (32.43%) was ob-
tained in the non-standard run where the monolin-
gual Hindi corpus was used to learn the CSM. Be-
cause of the use of monolingual Hindi corpus in
the non-standard run, the transliteration accuracy
improved by 22.5% when compared to the stan-
dard run. The improvements (15.38%) obtained in
Tamil are also significant. However, the improve-
ment in Hindi standard run was not significant. In
Kannada, there was no improvement due to tuning
of LM parameters. This needs further investiga-
tion.

The above results clearly highlight the impor-
tance of improving CSM accuracy since it helps
in improving the transliteration accuracy. More-
over, improving the CSM accuracy only requires
monolingual language resources which are easy
to obtain when compared to parallel transliteration
training data.

4 Conclusion

We presented the transliteration system which we
used for our participation in the NEWS 2009 Ma-
chine Transliteration Shared Task on Translitera-
tion. We took a Phrase-Based SMT approach to
transliteration where words are replaced by char-
acters and sentences by words. In addition to the
standard SMT parameters, we tuned the CSM re-
lated parameters like order of the CSM, weight as-
signed to CSM and corpus used to estimate the
CSM. Our results show that improving the ac-
curacy of CSM pays off in terms of improved
transliteration accuracies.

Acknowledgements

We would like to thank the Indian search-engine
company Guruji (http://www.guruji.com)
for providing us the Hindi web content which was
used to train the language model for our non-
standard Hindi runs.

References
Hieu Hoang, Alexandra Birch, Chris Callison-burch,

Richard Zens, Rwth Aachen, Alexandra Constantin,
Marcello Federico, Nicola Bertoldi, Chris Dyer,
Brooke Cowan, Wade Shen, Christine Moran, and
Ondej Bojar. 2007. Moses: Open Source Toolkit
for Statistical Machine Translation. In In Proceed-
ings of ACL, Demonstration Session, pages 177–
180.

Fei Huang. 2005. Cluster-specific Named Entity
Transliteration. In HLT ’05: Proceedings of the con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Processing,
pages 435–442, Morristown, NJ, USA. Association
for Computational Linguistics.

A. Kumaran and Tobias Kellner. 2007. A Generic
Framework for Machine Transliteration. In SIGIR
’07: Proceedings of the 30th annual international
ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 721–722, New
York, NY, USA. ACM.

Haizhou Li, A Kumaran, Vladimir Pervouchine, and
Min Zhang. 2009a. Report on NEWS 2009 Ma-
chine Transliteration Shared Task. In Proceed-
ings of ACL-IJCNLP 2009 Named Entities Work-
shop (NEWS 2009).

Haizhou Li, A Kumaran, Min Zhang, and Vladimir
Pervouchine. 2009b. Whitepaper of NEWS 2009
Machine Transliteration Shared Task. In Proceed-
ings of ACL-IJCNLP 2009 Named Entities Work-
shop (NEWS 2009).

46

Franz Josef Och and Hermann Ney. 2003. A System-
atic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29(1):19–51.

Tarek Sherif and Grzegorz Kondrak. 2007. Substring-
Based Transliteration. In In Proceedings of ACL
2007. The Association for Computer Linguistics.

Andreas Stolcke. 2002. SRILM - An Extensible Lan-
guage Modeling Toolkit. In In Proceedings of Intl.
Conf. on Spoken Language Processing.

47

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 48–51,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Testing and Performance Evaluation of Machine Transliteration System
for Tamil Language

Kommaluri Vijayanand1, 2∗, Inampudi Ramesh Babu1, 3, Poonguzhali Sandiran1, 2

(1) Department of Computer Science and Engineering,
(2) Pondicherry University, Puducherry - 605 014, India.

(3) Acharya Nagarjuna University, Nagarjuna Nagar - 522 510, India.
kvixs@yahoo.co.in, rinampudi@yahoo.com, poon 8724@yahoo.com

Abstract

Machine Translation (MT) is a science fic-
tion that was converted into reality with
the enormous contributions from the MT
research community. We cannot expect
any text without Named Entities (NE).
Such NEs are crucial in deciding the qua-
lity of MT. NEs are to be recognized from
the text and transliterated accordingly into
the target language in order to ensure the
quality of MT. In the present paper we
present various technical issues encounte-
red during handling the shared task of NE
transliteration for Tamil.

1 Introduction

Out of several underlying issues relating to Ma-
chine Translation (MT) against the dependence
on the human editors, Named Entity Recognition
(NER) play a pivotal role. When a MT system is
developed and executed, majority of the initial test
cases are bound to fail, when the system attempt
to translate the names, acronyms etc. Special at-
tention is required to handle such cases where in
NER and transliteration task play a pivot role (Vi-
jayanand and Subramanian, 2006).

We had participated in the shared task towards
the languages English to Tamil, English to Hindi
and English to Kannada after receiving the refe-
rence corpora which consists of 1000 names for
each language pair (Li et al., 2009b). Though we
committed responsibility for the three language
pairs viz., English to Tamil, English to Kannada
and English to Hindi, we mainly concentrated on
the English to Tamil language pair. The Tamil Ma-
chine Transliteration System shall be available for
demonstration during the workshop.

∗†Research Scholar at Acharya Nagarjuna University, In-
dia and Visiting Scholar of Université Joseph Fourier (Gre-
noble 1), Grenoble, France.

The present transliteration system is implemen-
ted using JDK 1.6.0 for transliterating the Named
Entities in Tamil language from the source names
in English. The character combination in English
such as A, Aa, I, ee, u, oo, ai, o, ou, forms vo-
wels in Tamil. Similarly the characters k, ng, ch, t,
etc., form consonants and the characters ka, nga,
cha etc., form compound characters. One single
character in English produce different pronuncia-
tions and for each pronunciation, there exists a se-
parate character. For example in the words Ma-
dura and Ramya the sound of a is different when
a is suffixed with r and y. Similarly, the cha-
racter n has different pronunciations depending
upon the suffix. For example in the words San-
chit, Pannu, Nandini, Jahangir the character n has
different pronunciations depending upon the suf-
fix. We need to identify and consider these crite-
ria when we transliterate the words from the lan-
guages English to Tamil. Thus the present system
takes into account all such cases and generate the
possible transliterations for the data given by the
shared task (Li et al., 2009a).

The paper is organized in such a way that, we
enumerate various rules that are formulated and
deployed in favor of segmentation are explained
with suitable examples in section 2. The technical
details regarding the system design is presented in
the section 3. The results generated by the system
and the evaluation of the transliterations that are
carried out using different kinds of data are explai-
ned in the section 4, followed by the section 5 that
concludes the papers with the overall remarks and
future work.

2 Segmentation Rules

Every word is a combination of characters and
transforms its sound based on the characters that
surrounds it as described in the previous section.
During transliteration it is quite important to iden-
tify the break points with in the word to pronounce

48

the given word correctly. Towards enforcing such
constraint we had devised and employed various
rules towards segmentation based on the phonetic
conversions. They are enumerated as follows :

1. If the second index to the current index of the
word is a, e, I or u, then it is considered to be
one individual segment.

2. If the second index to the current index of the
word is h and the third index to the current
index of the word is a, e, I, o or u, then it is
considered as one segment.

3. If the second and third index to the current
index of the word is a, e, I, o or u and if it is
same character i.e., aa,ee, oo, then it is consi-
dered as one segment.

4. If the second index to the current index of the
word is a, o and the third index to the current
index of the word is e or u, then it is conside-
red as one segment.

5. If the second and third index to the current
index of the word does not satisfy any of the
above four conditions then the current index
of the word is considered to be as one seg-
ment.

Based on these rules the partition algorithm was
sketched and implemented in favor of partitioning
the word. The partitioning algorithm is applied
only for the named entities and explained with the
following example.

Let us consider a word Chandrachur, the
present system navigate through five steps for seg-
menting this word as listed below :

1. The word is fragmented as Cha | ndrachur
Initially the system parse from the initial cha-
racter c and checks the second index. It re-
cognizes that the second index is h. Then it
reads the third index according to the rule
number 2. It then recognizes that the third in-
dex is a. So the system partitions up to that
third index and consider it as one segment.

2. Further segmentation : Cha | n | drachur
Now the system starts from the fourth index
and consider that index as the current index.
It continues checking the fifth index. As it
does not satisfy any of the rules, it partitions
the fourth index from the source word and
consider it as one segment.

3. Cha | n | d | rachur

In the third step checking starts from the fifth
index and now it is considered to be the cur-
rent index. Then it checks the sixth index.
Since, it does not satisfy any of the rules,
the system partitions the fifth index from the
source name and it is considered as one seg-
ment.

4. Cha | n | d | ra | chur
Now the system starts from the sixth index
and consider this to be the current index. It
checks the seventh index, after recognizing
the presence of a, then it checks whether the
eighth index is a, e or u, as per the rule 3 and
rule 4. As it does not satisfy with those rules,
the system partitions from sixth index to se-
venth index as one segment.

5. Cha | n | d | ra | chu | r
Finally checking starts from the eighth index
which is treated as the current index and the
system checks the ninth index. The ninth in-
dex consists of h. Thus, checks the tenth in-
dex for the presence of a, e, I, o or u accor-
ding to the rule 2 and satisfies with that rule.
Thus, the system partitions from eighth index
to tenth index as one segment and the ele-
venth index become one segment.

Similarly, for the word Manikkam the system
applies the partitioning algorithm and segment the
word as shown below :

1. Ma | nikkam

2. Ma | ni | kkam

3. Ma | ni | k | kam

4. Ma | ni | k | ka | m

3 The System Design

The system was designed in such a way that
it produces four to six transliterations for a given
word in English. We stored all the possible com-
binations of characters in English and its corres-
ponding Tamil characters in a database and crea-
ted an interface to read the test file. The system
is facilitated to browse the test file using the file
handling technique which was designed applying
the logical concepts. Consonants in English when
combined with vowels in English to form com-
pound words in Tamil. Compound words have
many forms for a single combination.

The present system extract the source names
and store them in an array list. These source names

49

are retrieved from an array list sequentially and
stored in a string variable for further processing.
The value of the string is parsed character wise
and check for the existence of a vowel or h, in the
next two positions to its index i.e., for each cha-
racter the next two characters are checked, if there
exists vowels or h, then these characters are extrac-
ted up to that index and stored in another string
variable. Other wise only that variable is stored
and compared with the database that contain Ta-
mil characters, for each combination of characters
that are present in English. Thereafter each index
in an array list of each transliteration will be com-
bined with each index in another array list of trans-
literated letter combination, stored in another va-
riable. This process will continue until the system
encounter the end of each array list. After getting
all the combinations, these combinations are sto-
red in an array list and it is written to the file.

It is to be noted that only one source name is
assigned to the string variable at a time. After get-
ting the target name of that source name, the next
source name is retrieved from an array list. Af-
ter retrieving the source name it is passed to the
next module for segmentation. The segments for-
med are stored in an array list. Then these target
characters for each segment is retrieved from the
database and stored in a separate list. There after
the values in an array list are merged appropriately
and stored in an array list.

4 Results and Evaluation

This section describes briefly about the results
and evaluation conducted and present the results.
We had employed various techniques and algo-
rithms as explained in previous sections, to select
the appropriate transliterated word that matches
the source name from the n-best candidate list
using six metrics.

4.1 Results

The result file consists of source name with its
ID and the ranked list of target names. The target
names are generated along with the source names,
after being processed by the system. The source
names are the names given in the test file. The
target names are the names that are generated by
the system. The target names are ranked accor-
ding to their ID’s. The target names are Unicode
characters in Tamil. After applying various tech-
niques we produce the result file. It is worth stat-

ting that the result file is generated in the XML
format using UTF-8 encoding schema.

The present system transliterates for 1000
source names and generates up to six best candi-
date lists (Target names). We conducted testing for
the given data towards transliterations. The first
transliteration present in the four best candidate
lists are considered to be the correct hit. The eva-
luation is carried out using Python. These six me-
trics are implemented in python. The metrics are
as follows :

1. Word Accuracy in Top-1 (ACC)

2. Mean F-Score

3. Mean Reciprocal Rank (MRR)

4. MAP ref

5. MAP 10

6. MAP sys

MAP refers to the Mean Average Precision. Py-
thon is preferred because it is an excellent pro-
gramming language, easy to understand, dynamic
and truly object oriented.

4.2 Evaluation

The Result file and the Test file in XML format
and the python script developed with six metrics
reads the above mentioned files. Execution of the
script requires Python interpreter. The Result file
is the one generated by the Transliteration System
and the test file is created manually with a single
transliteration for each source name and testing is
conducted. As part of the shared task (Kumaran
and Kellner, 2007) evaluation was done by run-
ning the system and thus 6 metrics are displayed
as output, with each metric given the value 0 or 1.
These metrics declare the performance of the sys-
tem. The max-candidates argument in the script is
assigned 10 (max-candidates=10). It is also chan-
ged according to target names provided. The out-
put of the evaluation of our Transliteration System
are as follows :

1. Word Accuracy in Top-1 (ACC) : The ACC
of our system is 0.403974,

2. Mean F-Score : The Mean F-Score of our
system is 0.865840.

3. MRR = The Mean Reciprocal rank of our
system is 0.449227.

4. MAP ref : The MAP ref of the system is
0.390545.

50

5. MAP 10 : The MAP 10 value of the system
is 0.240066.

6. MAP sys : The MAP sys of the system is
0.369840.

The output that was generated by our system is
presented in appendix.

5 Conclusions

After working with the experiment that was car-
ried out for evaluating the metrics, we conclude
that the accuracy in top-1 score of our system is
0.061. The reason could be that the accurate trans-
literation is not generated in the top scored transli-
teration. We could improve the performance of the
present system by involving all the possible trans-
literations. With the initial test results are very low
when compared to Urdu to Hindi transliteration
system (M. G. et al., 2008), yields 97.12% and
Hindi to Urdu delivers 97.88% of accuracy and
NER system favor of the Bengali language which
had demonstrated the evaluation results with a
precision of 80.12% (Ekbal and Bandyopadhyay,
2008).

After participating in the shared task we had
tested the transliteration system thoroughly by
applying various techniques as explained in the
present paper. So far we had carried out the transli-
teration for six named entity candidates. In future
we would like to extend the task for translitera-
tion candidates unto twenty. Thus the named entity
transliteration task that is being carried out would
be a solution for the long standing research pro-
blem in handling the named entities that is quite
common in speech and text machine translation.

Acknowledgments

I am thankful to the anonymous referees for
their valuable advices towards improving this pa-
per. I am thankful to my students Kanickairaj Ca-
roline, Dhivya Moorthy and Kothandapani Selvi
for rendering their service and cooperation in ful-
filling this task. I extend my gratitude to all the
elders for their support and encouragement.

References
Asif Ekbal and Sivaji Bandyopadhyay. 2008. Named

entity recognition using support vector machine : A
language independent approach. International Jour-
nal of Computer Systems Science and Engineering,
4(2) :155–170.

FIG. 1 – Screenshot of Evaluation Result.

A. Kumaran and Tobias Kellner. 2007. A generic fra-
mework for machine transliteration. In 30th Annual
ACM SIGIR Conference, Amsterdam.

Hauzhou Li, A Kumaran, Vladimir Pervouchine, and
Min Zhang. 2009a. Report on news 2009 ma-
chine transliteration shared task. In Proceedings
of the ACL-IJCNLP 2009 Named Entities Workshop
(NEWS 2009), Singapore.

Hauzhou Li, A Kumaran, Min Zhang, and Vladimir
Pervouchine. 2009b. White paper of news 2009
machine transliteration shared task. In Proceedings
of the ACL-IJCNLP 2009 Named Entities Workshop
(NEWS 2009), Singapore.

Abbas Malik M. G., Christian Boitet, and Pushpak
Bhattacharyya. 2008. Hindi urdu machine translite-
ration using finite state transducers. In Proceedings
of the 22nd International Conference on Computa-
tional Linguistics (COLING 2008), Manchester.

Kommaluri Vijayanand and Ramalingam Subrama-
nian. 2006. Anuvadini : An automatic example-
based machine translation system for bengali into
assamese and oriya. In Proceedings of the First Na-
tional Symposium on Modeling and Shallow Parsing
of Indian Languages (MSPIL-06), IIT Bombay, In-
dia.

51

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 52–56,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Abstract

The system presented in this paper uses
phrase-based statistical machine translation
(SMT) techniques to directly transliterate be-
tween all language pairs in this shared task.
The technique makes no language specific as-
sumptions, uses no dictionaries or explicit
phonetic information. The translation process
transforms sequences of tokens in the source
language directly into to sequences of tokens
in the target. All language pairs were transli-
terated by applying this technique in a single
unified manner. The machine translation sys-
tem used was a system comprised of two
phrase-based SMT decoders. The first gener-
ated from the first token of the target to the
last. The second system generated the target
from last to first. Our results show that if only
one of these decoding strategies is to be cho-
sen, the optimal choice depends on the lan-
guages involved, and that in general a combi-
nation of the two approaches is able to outper-
form either approach.

1 Introduction

It is possible to couch the task of machine trans-
literation as a task of machine translation. Both
processes involve the transformation of se-
quences of tokens in one language into se-
quences of tokens in another language. The
principle differences between the machine trans-
lation and language translation are:

• Transliteration does not normally re-
quire the re-ordering of tokens that are
generated in the target

• The number of types (the vocabulary
size) in both source and target languages
is considerably less for the translitera-
tion task

We take a statistical machine translation pa-
radigm (Brown at al., 1991) as the basis for our
systems. The work in this paper is related to the
work of (Finch and Sumita, 2008) who also use
SMT directly to transliterate.

We view the task of machine transliteration
as a process of machine translation at the cha-
racter level (Donoual and LePage, 2006). We
use state of the art phrase-based statistical ma-
chine translation systems (Koehn et al., 2003) to
perform the transliteration. By adopting this ap-
proach we were able to build systems for all of
the language pairs in the shared task using pre-
cisely the same procedures. No modeling of the
phonetics of either source or target language
(Knight and Graehl, 1997) was necessary, since
the approach is simply a direct transformation of
sequences of tokens in the source language into
sequences of tokens in the target.

2 Overview

Our approach differs from the approach of
(Finch and Sumita, 2008) in that we decode bi-
directional. In a typical statistical machine trans-
lation system the sequence of target tokens is
generated in a left-to-right manner, by left-to-
right here we mean the target sequence is gener-
ated from the first token to its last. During the
generation process the models (in particular the
target language model) are able to refer to only
the target tokens that have already been generat-
ed. In our approach, by using decoders that de-
code in both directions we are able to exploit
context to the left and to the right of target to-
kens being generated. Furthermore, we expect
our system to gain because it is a combination of
two different MT systems that are performing
the same task.

3 Experimental Conditions

In our experiments we used an in-house phrase-
based statistical machine translation decoder
called CleopATRa. This decoder operates on
exactly the same principles as the publicly
available MOSES decoder (Koehn et al., 2003).
Like MOSES we utilize a future cost in our cal-
culations. Our decoder was modified to be able
to run two instances of the decoder at the same

Transliteration by Bidirectional Statistical Machine Translation

Andrew Finch
NICT

2-2-2 Hikaridai
Keihanna Science City

619-0288 JAPAN
andrew.finch@nict.go.jp

Eiichiro Sumita
NICT

2-2-2 Hikaridai
Keihanna Science City

619-0288 JAPAN
eiichiro.sumita@nict.go.jp

52

time. One instance decoding from left-to-right
the other decoding from right-to-left. The hypo-
theses being combined by linearly interpolating
the scores from both decoders at the end of the
decoding process. In addition, the decoders were
constrained decode in a monotone manner. That
is, they were not allowed to re-order the phrases
during decoding. The decoders were also confi-
gured to produce a list of unique sequences of
tokens in their n-best lists. During SMT decod-
ing it is possible to derive the same sequence of
tokens in multiple ways. Multiply occurring se-
quences of this form were combined into a sin-
gle hypothesis in the n-best list by summing
their scores.

3.1 Pre-processing

In order to reduce data sparseness issues we
took the decision to work with data in only its
lowercase form. The only target language with
case information was Russian. During the para-
meter tuning phase (where output translations
are compared against a set of references) we
restored the case for Russian by simply capita-
lizing the first character of each word.

We chose not to perform any tokenization for
any of the language pairs in the shared task. We
chose this approach for several reasons:

• It allowed us to have a single unified
approach for all language pairs

• It was in the spirit of the evaluation, as
it did not require specialist knowledge
outside of the supplied corpora

• It enabled us to handle the Chinese
 names that occurred in the Japanese
 Romaji-Japanese Kanji task

However we believe that a more effective
approach for Japanese-Kanji task may have been
to re-tokenize the alphabetic characters into ka-
na (for example transforming “k a” into the kana
consonant vowel pair “ka”) since these are the
basic building blocks of the Japanese language.

3.2 Training

For the final submission, all systems were
trained on the union of the training data and de-
velopment data. It was felt that the training set
was sufficiently small that the inclusion of the
development data into the training set would
yield a reasonable boost in performance by in-
creasing the coverage of the language model and
phrase table. The language models and transla-
tion models were therefore built from all the
data, and the log-linear weights used to combine
the models of the systems were tuned using sys-
tems trained only on the training data. The de-
velopment data in this case being held-out. It
was assumed that these parameters would per-
form well in the systems trained on the com-
bined development/training corpora.

3.3 Parameter Tuning

The SMT systems were tuned using the mini-
mum error rate training procedure introduced in
(Och, 2003). For convenience, we used BLEU
as a proxy for the various metrics used in the
shared task evaluation. The BLEU score is

Figure 1: The decoding process for multi-word sequences

Word 1 Word 2 Word m

Segment into individual words and decode each word independently

D
ecode

D
ecode

D
ecode

n-best

hypothesis 1

hypothesis 2

...

hypothesis n

n-best

hypothesis 1

hypothesis 2

...

hypothesis n

n-best

hypothesis 1

hypothesis 2

...

hypothesis n

Search for the best path

53

commonly used to evaluate the performance of
machine translation systems and is a function of
the geometric mean of n-gram precision. Table 1
shows the effect of tuning for BLEU on the
ACC (1-best accuracy) scores for several lan-
guages. Improvements in the BLEU score also
gave improvements in ACC. Tuning to maxim-
ize the BLEU score gave improvements for all
language pairs and in all of the evaluation me-
trics used in this shared task. Nonetheless, it is
reasonable to assume that one would be able to
improve the performance in a particular evalua-
tion metric by doing minimum error rate train-
ing specifically for that metric.

3.3.1 Multi-word sequences

The data for some languages (for example Hin-
di) contained some multi-word sequences. These
posed a challenge for our approach, and gave us
the following alternatives:

• Introduce a <space> token into the se-
quence, and treat it as one long charac-
ter sequence to transliterate; or

• Segment the word sequences into indi-
vidual words and transliterate these in-
dependently, combining the n-best hy-
pothesis lists for all the individual words
in the sequence into a single output se-
quence.

 We adopted both approaches for the training
of our systems. For those multi-word sequences
where the number of words in the source and
target matched, the latter approach was taken.
For those where the numbers of source and tar-
get words differed, the former approach was
taken. The decoding process for multi-word se-
quences is shown in Figure 1. This approach
was only used during the parameter tuning on
the development set, and in experiments to eva-
luate the system performance on development
data since no multi-word sequences occurred in
the test data.

During recombination, the score for the target
word sequence was calculated as the product of
the scores of each hypothesis for each word.
Therefore a search over all combinations of hy-
potheses was required. In almost all cases we

were able to perform a full search. For the rare
long word sequences in the data, a beam search
strategy was adopted.

3.3.2 Bidirectional Decoding

In SMT it is usual to decode generating the tar-
get sequence in order from the first token to the
last token (we refer to this as left-to-right decod-
ing, as this is the usual term for this, even
though it may be confusing as some languages
are naturally written from right-to-left). Since
the decoding process is symmetrical, it is also
possible to reverse the decoding process, gene-
rating from the end of the target sequence to the
start (we will refer to this as right-to-left decod-
ing). This reverse decoding is counter-intuitive
since language is generated in a left-to-right
manner by humans (by definition), however, in
pilot experiments on language translation, we
found that the best decoding strategy varies de-
pending on the languages involved. The analo-
gue of this observation was observed in our
transliteration results (Table 1). For some lan-
guage pairs, a left-to-right decoding strategy
performed better, and for other language pairs
the right-to-left strategy was preferable.

Our pilot experiments also showed that com-
bining the hypotheses from both decoding
processes almost always gave better results that
the best of either left-to-right or right-to-left de-
coding. We observe a similar effect in the expe-
riments presented here, although our results here
are less consistent. This is possibly due to the
differences in the size of the data sets used for
the experiments. The data used in the experi-
ments here being an order of magnitude smaller.

4 Results

The results of our experiments are shown in Ta-
ble 1. These results are from a closed evaluation
on development data. Only the training data
were used to build the system’s models, the de-
velopment data being used to tune the log-linear
weights for the translation engines’ models and
for evaluation. We show results for the case of
equal interpolation weights of the left-to-right
and right-to-left decoders. For the final submis-

 En-Ch En-Ja En-Ko En-Ru Jn-Jk

After tuning 0.908 0.772 0.622 0.914 0.769

Before tuning 0.871 0.635 0.543 0.832 0.737

Table 1: The effect on 1-best accuracy by tuning with respect to BLEU score

54

sion these weights were tuned on the develop-
ment data. The bidirectional performance was
the best strategy for all but En-Ja and En-Ka in
terms of ACC. This varies for other metrics but
in general the bidirectional system most often
gave the highest performance.

5 Conclusion

Our results show the performance of state of the
art phrase-based machine translation techniques
on the task of transliteration. We show that it is
reasonable to use the BLEU score to tune the
system, and that bidirectional decoding can im-
prove performance. In future work we would
like to consider more tightly coupling the de-
coders, introducing monotonicity into the
alignment process, and adding contextual fea-
tures into the translation models.

Acknowledgements

The results presented in this paper draw on the
following data sets. For Chinese-English, Li et
al., 2004. For Japanese-English, Korean-
English, and Japanese(romaji)-Japanese(kanji),
the reader is referred to the CJK website:
http://www.cjk.org. For Hindi-English, Tamil-
English, Kannada-English and Russian-English
the data sets originated from the work of Kura-
man and Kellner, 2007.

References

Peter Brown, S. Della Pietra, V. Della Pietra, and R.
Mercer (1991). The mathematics of statistical ma-
chine translation: parameter estimation. Computa-
tional Linguistics, 19(2), 263-311.

Etienne Denoual and Yves Lepage. 2006. The cha-
racter as an appropriate unit of processing for non-

Language Decoding
Strategy ACC Mean

F-score MRR MAP_ref MAP_10 MAP_sys

En-Ch
 0.908 0.972 0.908 0.266 0.266 0.908
 0.914 0.974 0.914 0.268 0.268 0.914
 0.915 0.974 0.915 0.268 0.268 0.915

En-Hi
 0.788 0.969 0.788 0.231 0.231 0.788
 0.785 0.968 0.785 0.230 0.230 0.785
 0.790 0.970 0.790 0.231 0.231 0.790

En-Ja
 0.773 0.950 0.793 0.251 0.251 0.776
 0.767 0.948 0.785 0.249 0.249 0.768
 0.769 0.949 0.789 0.250 0.250 0.771

En-Ka
 0.682 0.954 0.684 0.202 0.202 0.683
 0.660 0.953 0.661 0.195 0.195 0.660
 0.674 0.955 0.675 0.199 0.199 0.674

En-Ko
 0.622 0.850 0.623 0.183 0.183 0.622
 0.620 0.851 0.621 0.182 0.182 0.619
 0.627 0.853 0.628 0.184 0.184 0.626

En-Ru
 0.915 0.982 0.915 0.268 0.268 0.915
 0.921 0.983 0.921 0.270 0.270 0.921
 0.922 0.983 0.922 0.270 0.270 0.922

En-Ta
 0.731 0.963 0.732 0.216 0.216 0.731
 0.734 0.962 0.735 0.217 0.217 0.735
 0.748 0.965 0.749 0.221 0.221 0.749

Jn-Jk
 0.769 0.869 0.797 0.301 0.301 0.766
 0.766 0.862 0.792 0.299 0.299 0.761
 0.772 0.867 0.799 0.300 0.300 0.767

Table 2: Results showing the peformance of three decoding strategies with respect to the evaluation
metrics used for the shared task. Here denotes left-to-right decoding, denotes right-to-left de-
coding and denotes bidirectional decoding.

Key to Language Acronyms: En = English, Ch = Chinese, Hi = Hindi, Ja = Japanese Katakana, Ka =
Kannada, Ko = Korean, Ru = Russian, Ta = Tamil, Jn = Japanese Romaji, Jk = Japanese Kanji.

55

segmenting languages, Proceedings of the 12th
Annual Meeting of The Association of NLP, pp.
731-734.

Kevin Knight and Jonathan Graehl. 1997. Machine
Transliteration. Proceedings of the Thirty-Fifth
Annual Meeting of the Association for Computa-
tional Linguistics and Eighth Conference of the
European Chapter of the Association for Compu-
tational Linguistics, pp. 128-135, Somerset, New
Jersey.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical Phrase-Based Translation. In
Proceedings of the Human Language Technology
Conference 2003 (HLT-NAACL 2003), Edmonton,
Canada.

Franz Josef Och, “Minimum error rate training for
statistical machine translation,” Proceedings of the
ACL, 2003.

Kumaran A., Kellner T., "A generic framework for
machine transliteration", Proc. of the 30th SIGIR,
2007

Haizhou Li, Min Zhang, Jian Su, English-Chinese
(EnCh): "A joint source channel model for ma-
chine transliteration", Proc. of the 42nd ACL,
2004.

56

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 57–60,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Transliteration of Name Entity via Improved Statistical Translation on
Character Sequences

Yan Song Chunyu Kit Xiao Chen
Department of Chinese, Translation and Linguistics

City University of Hong Kong
83 Tat Chee Ave., Kowloon, Hong Kong

Email: {yansong, ctckit}@cityu.edu.hk, cxiao2@student.cityu.edu.hk

Abstract
Transliteration of given parallel name en-
tities can be formulated as a phrase-based
statistical machine translation (SMT) pro-
cess, via its routine procedure compris-
ing training, optimization and decoding.
In this paper, we present our approach to
transliterating name entities using the log-
linear phrase-based SMT on character se-
quences. Our proposed work improves the
translation by using bidirectional models,
plus some heuristic guidance integrated in
the decoding process. Our evaluated re-
sults indicate that this approach performs
well in all standard runs in the NEWS2009
Machine Transliteration Shared Task.

1 Introduction

To transliterate a foreign name into a target lan-
guage, a direct instrument is to make use of ex-
isting rules for converting text to syllabus, or
at least a phoneme base to support such trans-
formation. Following this path, the well devel-
oped noisy channel model used for transliteration
usually set an intermediate layer to represent the
source and target names by phonemes or phonetic
tags (Knight and Graehl, 1998; Virga and Khu-
danpur, 2003; Gao et al., 2004). Having been
studied extensively though, the phonemes-based
approaches cannot break its performance ceiling
for two reasons (Li et al., 2004): (1) Language-
dependent phoneme representation is not easy to
obtain; (2) The phonemic representation to source
and target names usually causes error spread.

Several approaches have been proposed for di-
rect use of parallel texts for performance enhance-
ment (Li et al., 2004; Li et al., 2007; Gold-
wasser and Roth, 2008). There is no straight-
forward mean for grouping characters or letters in
the source or target language into better transliter-
ation units for a better correspondence. There is

no consistent deterministic mapping between two
languages either, especially when they belong to
different language families, such as English and
Chinese. Usually, a single character in a source
name is not enough to form a phonetic pattern
in a target name. Thus a better way to model
transliteration is to map character sequences be-
tween source and target name entities. The map-
ping is actually an alignment process. If a cer-
tain quantity of bilingual transliterated entities are
available for training, it is a straight-forward idea
to tackle this transliteration problem with a ma-
ture framework such as phrase-based SMT. It can
be considered a general statistical translation task
if the character sequences involved are treated like
phrases.

In so doing, however, a few points need to be
highlighted. Firstly, only parallel data are required
for generating transliteration outputs via SMT, and
this SMT translation process can be easily in-
tegrated as a component into a general-purpose
SMT system. Secondly, on character sequences,
the mapping between source and target name en-
tities can be performed on even larger units. Con-
sequently, contextual information can be exploited
to facilitate the alignment, for a string can be used
as a context for every one of its own characters.
It is reasonable to expect such relevant informa-
tion to produce more precisely statistical results
for finding corresponding transliterations. Thirdly,
transliteration as a monotonic word ordering trans-
formation problem allows the alignment to be per-
formed monotonously from the beginning to the
end of a text. Thus its decoding is easy to perform
as its search space shrinks this way, for re-ordering
is considered not to be involved, in contrast to the
general SMT process.

This paper is intended to present our work
on applying phrased-based SMT technologies to
tackle transliteration. The following sections will
report how we have carried out our experiments

57

for the NEWS2009 task (Li et al., 2009) and
present the experimented results.

2 Transliteration as SMT

In order to transliterate effectively via a phrase
based SMT process for our transliteration task, we
opt for the log-linear framework (Och and Ney,
2002), a straight-forward architecture to have sev-
eral feature models integrated together as

P (t|s) =
exp[

∑n
i=1 λihi(s, t)]∑

t exp[
∑n

i=1 λihi(s, t)]
(1)

Then the transliteration task is to find the proper
source and corresponding target chunks to maxi-
mize P (t|s) as

t = argmax
t

P (t|s) (2)

In (1), hi(s, t) is a feature model formulated as a
probability functions on a pair of source and target
texts in logarithmic form, and λi is a parameter to
optimize its contribution. The two most important
models in this framework are the translation model
(i.e., the transliteration model in our case), and the
target language model. The former is defined as

hi(s, t) = log p(s, t) (3)

where p(s, t) is p(s|t) or p(t|s) according to the
direction of training corresponding phrases. (Och
and Ney, 2002) show that p(t|s) gives a result
comparable to p(s|t), as in the source-channel
framework. (Gao et al., 2004) also confirm on
transliteration that the direct model with p(t|s)
performs well while working on the phonemic
level. For our task, we have tested these choices
for p(s, t) on all our development data, arriving
at a similar result. However, we opt to use both
p(s|t) and p(t|s) if they give similar transliter-
ation quality in some language pairs. Thus we
take p(t|s) for our primary transliteration model
for searching candidate corresponding character
sequences, and p(s|t) as a supplement.

In addition to the translation model feature, an-
other feature for the language model can be de-
scribed as

hi(s, t) = log p(t) (4)

Usually the n-gram language model is used for its
effectiveness and simplicity.

2.1 Training

For the purpose of modeling the training data, the
characters from both the source and target name
entities for training are split up for alignment, and
then phrase extraction is conducted to find the
mapping pairs of character sequence.

The alignment is performed by expectation-
maximization (EM) iterations in the IBM model-4
SMT training using the GIZA++ toolkit1. In some
runs, however, e.g., English to Chinese and En-
glish to Korean transliteration, the character num-
ber of the source text is always more than that
of the target text, the training conducted only on
characters may lead to many abnormal fertilities
and then affect the character sequence alignment
later. To alleviate this, a pre-processing step before
GIZA++ training applies unsupervised learning to
identify many frequently co-occurring characters
as fixed patterns in the source texts, including all
available training, development and testing data.
All possible tokens of the source names are con-
sidered.

Afterwards, the extraction and probability esti-
mation of corresponding sequences of characters
or pre-processed small tokens aligned in the prior
step is performed by ‘diag-growth-final’ (Koehn
et al., 2003), with maximum length 10, which is
tuned on development data, for both the source-
to-target and the target-to-source character align-
ment. Then two transliteration models, namely
p(t|s) and p(s|t), are generated by such extraction
for each transliteration run.

Another component involved in the training is
an n-gram language model. We set n = 3 and
have it trained with the available data of the target
language in question.

2.2 Optimization

Using the development sets for the NEWS2009
task, a minimum error rate training (MERT) (Och,
2003) is applied to tune the parameters for the cor-
responding feature models in (1). The training is
performed with regard to the mean F-score, which
is also called fuzziness in top-1, measuring on av-
erage how different the top transliteration candi-
date is from its closest reference. It is worth noting
that a high mean F-score indicates a high accuracy
of top candidates, thus a high mean reciprocal rank
(MRR), which is used to quantify the overall per-
formance of transliteration.

1http://code.google.com/p/giza-pp/

58

Table 1: Comparison: baseline v.s. optimized
performance on EnCh and EnRu development
sets.

λ1
a λ2 λ3 Mean F MRR

EnChb Bc 1 1 1 0.803 0.654
O 2.38 0.33 0.29 0.837 0.709

EnRu B 1 1 1 0.845 0.485
O 2.52 0.27 0.21 0.927 0.687

a The subscripts 1, 2 and 3 refer to the two transliter-
ation models p(t|s) and p(s|t) and another language
model respectively, and normalized as

P3
i=1 λi = 3.

b EnCh stands for English to Chinese run and EnRu for
English to Russian run.

c B stands for baseline configuration and O for opti-
mized case.

As shown in Table 1, the optimization of the
three major models leads to a significant per-
formance improvement, especially when training
data is limited, such as the EnRu run, only 5977
entries of name entities are provided for train-
ing. And, it is also found that the optimized fea-
ture weights for other language pairs are similar to
these for the two runs as shown in the table above2.

Note for the optimization of the parameters, that
only the training data is used for construction of
models. For the test, both the training and the de-
velopment sets are used for training.

2.3 Decoding

The trained source-to-target and target-to-source
transliteration models are integrated with the lan-
guage model as given in (1) for our decoding.
We implement a beam-search decoder to deal
with these multiple transliteration models, which
takes both the forward- and backward-directional
aligned character sequences as factors to con-
tribute to the transliteration probability. Consid-
ering the monotonic transformation order, the de-
coding is performed sequentially from the begin-
ning to the end of a source text. No re-ordering
is needed for such transliteration. As the search
space is restricted in this way, the accuracy of
matching possible transliteration pairs is not af-
fected when the decoding is maintained at a faster
speed than that for ordinary translation. In ad-
dition, another heuristic condition is also used to
guide this monotonic decoding. For those tar-
get character sequences found in the training data,
their positions in a name entity can help the decod-

2Interestingly, the first model contributes much more than
others. It can achieve a comparable result even without model
2 and 3, according to our experiments.

Table 3: Numbers of name entities in NEWS2009
training data6.

EnCh 34857 EnHi 10990
EnJa 29811 EnTa 9031
EnKo 5838 EnKa 9040
JnJk 19891 EnRu 6920

ing to find better corresponding transliterations,
for some texts appear more frequently at the be-
ginning of a name entity and others at the end. We
use the probabilities for all aligned target charac-
ter sequences in different positions, and exploit the
data as an auxiliary feature model for the gener-
ation. Finally, all possible target candidates are
generated by (2) for source names.

3 Evaluation Results

For NEWS2009, we participated in all 8 standard
runs of transliteration task, namely, EnCh (Li et
al., 2004), EnJa, EnKo, JnJk3, EnHi, EnTa, EnKa
and EnRu (Kumaran and Kellner, 2007). Ten best
candidates generated for each source name are
submitted for each run. The transliteration per-
formance is evaluated by the official script4, using
six metrics5. The official evaluation results for our
system are presented in Table 2.

The effectiveness of our approach is revealed by
the fact that many of our Mean F-scores are above
0.8 for various tasks. These high scores suggest
that our top candidates are close to the given ref-
erences. Besides, it is also interesting to look into
how well the desired targets are generated under
a certain recall rate, by examining if the best an-
swers are among the ten candidates produced for
each source name. If the recall rate goes far be-
yond MRR, it can be a reliable indication that the
desired targets are found for most source names,
but just not put at the top of the ten-best. From the
last column in Table 2, we can see a great chance
to improve our performance, especially for EnCh,
JnJk and EnRu runs.

3http://www.cjk.org
4https://translit.i2r.a-star.edu.sg/news2009/evaluation/
5The six metrics are Word Accuracy in Top-1 (ACC),

Fuzziness in Top-1 (Mean F-score), Mean Reciprocal Rank
(MRR), Precision in the n-best candidates (Map ref), Prece-
sion in the 10-best candidates (Map 10) and Precision in the
system produced candidates (Map sys).

6Note that in some of the runs, when a source name has
multiple corresponding target names, the numbers are calcu-
lated according to the total target names in both the training
and development data.

59

Table 2: Evaluation result of NEWS2009 task.
Task Source Target ACC Mean F MRR Map ref Map 10 Map sys Recall
EnCh English Chinese 0.643 0.854 0.745 0.643 0.228 0.229 0.917
EnJa English Katakana 0.406 0.800 0.529 0.393 0.180 0.180 0.786
EnKo English Hangul 0.332 0.648 0.425 0.331 0.134 0.135 0.609
JnJk Japanese Kanji 0.555 0.708 0.653 0.538 0.261 0.261 0.852
EnHi English Hindi 0.349 0.829 0.455 0.341 0.151 0.151 0.681
EnTa English Tamil 0.316 0.848 0.451 0.307 0.154 0.154 0.724
EnKa English Kannada 0.177 0.799 0.307 0.178 0.109 0.109 0.576
EnRu English Russian 0.500 0.906 0.613 0.500 0.192 0.192 0.828

But still, since SMT is a data-driven approach,
the amount of training data could affect the
transliteration results significantly. Table 3 shows
the training data size in our task. It gives a hint
on the connections between the performance, es-
pecially Mean F-score, and the data size. In spite
of the low ACC, EnKa test has a Mean F-score
close to other two runs, namely EnHi and EnTa,
of similar data size. For EnRu test, although the
training data is limited, the highest Mean F-score
is achieved thanks to the nice correspondence be-
tween English and Russian characters.

4 Conclusion

In this paper we have presented our recent work to
apply the phrase-based SMT technology to name
entity transliteration on character sequences. For
training, the alignment is carried out on characters
and on those frequently co-occurring character se-
quences identified by unsupervised learning. The
extraction of bi-directional corresponding source
and target sequence pairs is then performed for
the construction of our transliteration models. In
decoding, a beam search decoder is applied to
generate transliteration candidates using both the
source-to-target and target-to-source translitera-
tion models, the target language model and some
heuristic guidance integrated. The MERT is ap-
plied to tune the optimum feature weights for these
models. Finally, ten best candidates are submitted
for each source name. The experimental results
confirm that our approach is effective and robust
in the eight runs of the NEWS2009 transliteration
task.

Acknowledgments

The research described in this paper was sup-
ported by City University of Hong Kong through
the Strategic Research Grants (SRG) 7002267 and
7002388.

References
W. Gao, K. F. Wong, and W. Lam. 2004. Improving

transliteration with precise alignment of phoneme
chunks and using context features. In Proceedings
of AIRS-2004.

Dan Goldwasser and Dan Roth. 2008. Translitera-
tion as constrained optimization. In Proceedings of
EMNLP-2008, pages 353–362, Honolulu, USA, Oc-
tober.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational Linguistics,
24(4):599–612.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Pharaoh: A beam search decoder for phrase-
base statistical machine translation models. In Pro-
ceedings of the 6th AMTA, Edomonton, Canada.

A Kumaran and Tobias Kellner. 2007. A generic
framework for machine transliteration. In Proceed-
ings of the 30th SIGIR.

Haizhou Li, Min Zhang, and Jian Su. 2004. A
joint source-channel model for machine transliter-
ation. In Proceedings of ACL-04, pages 159–166,
Barcelona, Spain, July.

Haizhou Li, Khe Chai Sim, Jin-Shea Kuo, and Minghui
Dong. 2007. Semantic transliteration of personal
names. In Proceedings of ACL-07, pages 120–127,
Prague, Czech Republic, June.

Haizhou Li, A Kumaran, Vladimir Pervouchine, and
Min Zhang. 2009. Report on news 2009 machine
transliteration shared task. In Proceedings of ACL-
IJCNLP 2009 Named Entities Workshop, Singapore.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for sta-
tistical machine translation. In Proceedings of ACL-
02, pages 295–302, Philadelphia, USA, July.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
ACL-03, pages 160–167, Sapporo, Japan, July.

Paola Virga and Sanjeev Khudanpur. 2003. Translit-
eration of proper names in cross-lingual information
retrieval. In Proceedings of the ACL 2003 Workshop
on Multilingual and Mixed-language Named Entity
Recognition, pages 57–64, Sapporo, Japan, July.

60

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 61–64,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Learning Multi Character Alignment Rules and Classification of training
data for Transliteration

Dipankar Bose
Dept. of Computer Science and Engg.

Indian Institute of Technology
Kharagpur, West Bengal

India - 721302
dipankarcsiit@gmail.com

Sudeshna Sarkar
Dept. of Computer Science and Engg.

Indian Institute of Technology
Kharagpur, West Bengal

India - 721302
shudeshna@gmail.com

Abstract

We address the issues of transliteration be-
tween Indian languages and English, es-
pecially for named entities. We use an
EM algorithm to learn the alignment be-
tween the languages. We find that there
are lot of ambiguities in the rules map-
ping the characters in the source language
to the corresponding characters in the tar-
get language. Some of these ambiguities
can be handled by capturing context by
learning multi-character based alignments
and use of character n-gram models. We
observed that a word in the source script
may have actually originated from differ-
ent languages. Instead of learning one
model for the language pair, we propose
that one may use multiple models and a
classifier to decide which model to use. A
contribution of this work is that the models
and classifiers are learned in a completely
unsupervised manner. Using our system
we were able to get quite accurate translit-
eration models.

1 Introduction

Transliteration is the practice of transcribing a
word or text written in one writing system into an-
other writing system which may have a different
script (wikipedia1). The rules are often quite am-
biguous, and they are often related with the pro-
nunciation of the word.

Many applications like Machine Transla-
tion (MT), Cross Language Information Re-
trieval (CLIR), Question Answering (QA) require

1http://www.wikipedia.org

transliteration of named entities, which are the ma-
jor component of out-of-vocabulary (OOV) words,
and they are most often transliterated and not
translated, in any cross language system. For ex-
ample ,‘Europe’ is transliterated as ‘iuropa’ and
‘Michael’ transliterates to ‘maaikela’ in Bengali.2

In this paper we develop a scheme of translit-
eration, which captures context by creating a dic-
tionary of multi-character transliteration rules. We
have tested our system for English and several In-
dian languages. For Indian Languages, we have an
additional preprocessor which enhances the per-
formance.

2 Related Work

Brown et al. (1993) have come up with their revo-
lutionary IBM alignment models, and the Giza++
(Och and Ney, 2000) is a well appreciated imple-
mentation which work with parallel data in two
languages. Though originally designed for ma-
chine translation, the package can as well be used
for transliteration, where the alignment is between
the characters in the languages. Moses further en-
hances the accuracy by using phrase based decod-
ing, which can capture context. We have Moses3

as our baseline system.
Li et al. (2004) have pointed out the prob-

lems of using language information. Apart from
the difficulty of collecting the language informa-
tion, they pointed out that, although written in
the same script, the origin of the source names
may vary widely. For example French and Eng-
lish names may vary a lot. But it is difficult
to collect information for each and every lan-
guage. They came up with a joint source chan-

2above Bengali words are scripted using ITrans, instead
of traditional Bengali script.

3http://www.statmt.org/moses/

61

nel model, to transliterate foreign names to Chi-
nese, Korean, and Japanese, which uses, direct or-
thographic mapping (DOM), between two differ-
ent languages, to find out how the source and tar-
get words can be generated simultaneously. Ekbal
et al. (2006) also used this model for English-
Bengali Transliteration. Ganesh et al. (2008)
used Hidden Markov Model (HMM) alignment
and Conditional Random Field (CRF), a discrim-
inative model together. Surana et al. (2008) used
fuzzy string matching algorithms to identify the
origin of the source word, and then apply rules of
transliteration accordingly. However the classifier
makes use of labeled training data, which is often
not available.

3 Issues

Transliteration is ambiguous. Firstly, the translit-
eration rules depend on the context. For exam-
ple, ‘a’ in English may transliterate to ‘a’ or ‘A’
in Hindi, but ‘aa’ almost definitely maps to ‘A’.
Secondly, there can be multiple transliterations
of the same source word. For example ‘abhi-
jIta’ may transliterate to ‘abhijit’ and ‘abhijeet’ as
well. Thirdly, the transliteration rules also vary,
depending on the origin of the word. For exam-
ple, when considering Hindi to English translitera-
tion the English characters used vary depending on
whether the word originated from Arabic or from
Sanskrit. We elaborate more on this in the section
on classification of corpus.

4 Approach

Our method is primarily based on IBM models
used in machine translation based on the EM al-
gorithm. But before we move on to the IBM mod-
els, we first preprocess the training data. Other
than marking the ‘Start’ and ‘End’, for each of the
parallel words, we can do further preprocessing if
any of the scripts is Indian. All Indian language
scripts consist of a set of consonants and vowels.
Independent vowels and their corresponding dia-
critic markers (Matra) are considered as the same
character in the standard analysis of words into
their constituent characters (varna vishleshhana).
Unlike ITrans, Unicode assigns different codes to
them. We found in our experiment that treating
them as one, improves the accuracy of the system.
Our preprocessor thus transforms Unicode data to
ITrans format. We have seen that preprocessor im-
proves the accuracy by around 10-15%.

After preprocessing, we align the letters us-
ing the expectation maximization (EM) algorithm
of IBM model 1, using the parallel corpus of
named entities as input. We use only the IBM
model 1; the subsequent models are omitted since
in transliteration we need not consider the re-
ordering of letters. Both Unicode and transliter-
ated text are in phonetic order, and re-ordering of
letters are rarely observed. As an output of the EM
learner we get a table of translation probabilities
TP , of source letters to target letters. If,si and
tj are source and target letters,∀si, tj , TP si,tj ∈
[0, 1], denotes the corresponding translation prob-
ability. For example after EM learning, the values
of TPbha,v andTPbha,b will be much more than
TPbha,k, since ‘bha’ rarely transliterates to ‘k’.

4.1 Learning Phrase Mappings

We now move on to capture context. For each
word in the parallel data, we compute an align-
ment array,Ae, wheree ∈ [0, E], andI andE
are the corresponding lengths of the words in In-
dian and English script respectively. So, we have,
∀e ∈ [0, E], Ae ∈ [0, I]. Following is an example:
Let, source word be: Starts1 s2 s3 End, target
word be: Startt1 t2 t3 t4 End, and Alignment ar-
ray be: 0 1 1 2 3 4. This means thats1 maps to
t1 and t2; s2 maps tot3 and so on. We further
enforceAe1 ≤ Ae2 iff e1 ≤ e2, since we neglect
re-ordering of letters. The aim is to figure out null
mappings, filter out noises in the TP-table, and fi-
nally create a phrase to phrase mapped dictionary.
Using the TP-table values, we propose an iterative
algorithm to find the alignment array A.WL[i] de-
notes theith letter of a word in language ‘L’. Ini-
tially Ai = 0 if i = 0, Ai = I−1 if i < E, otherwise
Ai = I. The first and last characters are always the
‘Start’ and ‘End’ tags, in all the words.

Initially letters are allowed a larger window to
fit to. After each iteration, the window size de-
creases and thus the margins are made more strin-
gent. Using iterations we are being less greedy in
deciding the alignment, so that noises in the TP-
table are filtered out. Finally after 5 iterations,
we freeze the alignment array. It may happen that
∃i ∈ [0, I], such that∀j ∈ [0, E], Aj 6= i. It
means that the letter,WInd[i] maps to ‘null’ in this
case, and thus it is a ‘Schwa’ character.

4.2 Scoring the alignment

In spite of all our attempts, it may happen that the
words are not well aligned; the reason may be a

62

Algorithm 1 Method to compute Alignment
for window = 5 to 1do

for e = 1 toE − 1 do
left = Max(1, Ae−1 − window + 1)
right = Min(I, Ae+1 + window)
Ae = s : s ∈ [left, right] such that
TPWInd[s],WEng[e] × (1− |s/I − e/E|)
is maximum

end for
for e = 1 toE − 1 do

if ¬(Ae−1 ≤ Ae ≤ Ae+1) then
{try to smooth out anomalies}
Ae = (Ae−1 + Ae+1)/2

end if
end for

end for

deficiency in the Algorithm 1, or a badly transliter-
ated parallel word as input. For example the train-
ing data may contain ‘mississippi river’ translit-
erated to Bengali as ‘misisipi nadI’. In this case
we see that the second word is translated and not
transliterated. Retaining this in the training set
will introduce noise in the model. There may also
be typographical errors also. We have developed
a filtering mechanism, so that we can eliminate
these words, otherwise we will end up learning
spurious mappings. We find the score of an align-
ment,
SA =

∑N−1
e=1 (TPWInd[Ae],WEng [e] × (1− |Ae/I −

e/E|).
We were trying to maximizeSA under certain
constraints in algorithm 1. The value ofSA is
an estimate of how good our alignment is. Next
we set thresholds to distinguish between different
“Classes” of alignments.

4.3 Classifying the training corpus

The training corpus may consist of words from
varied origins. Though they are written in
the same script, pronunciation varies widely.
For example Urdu origin names like Farooque
(pharUka), Razzaq (rajjAka) tend to replace ‘q’ in
place of ‘ka’, but Hindi names like Latika (latika),
Nakul (nakula), tend to replace ‘k’ for ‘ka’. Unlike
Surana et al. (2008) who extracted 5-gram models
from labeled data in different languages, we pro-
pose Algorithm 2, to classify the parallel corpus
into groups, which does not need any labeled data.
We define, ClassesC1, C2, ...,CN , whereCi con-
sists of a set of parallel words< Ij , Ej >, (Ij ,

Ej being thejth word in Indian and English lan-
guage, in the training corpus), such that the align-
ment score of the word pairs, lie between the pre-
defined thresholds,thi+1 andthi. Let us assume
thatC1 is initialized with the parallel training cor-
pus from input.

Algorithm 2 Classify the Corpus
for i = 1 to Ndo

Set threshold,thi for ClassCi: thi ≤ thi−1

while size of ClassCi does not decreasedo
Compute TP-table using IBM model 1. on
Ci

for each parallel word pair< Ij , Ej > in
Ci do

Compute Alignment using Algorithm 1.
Compute Score of Alignment, SA.
if Score < thi then
{Move the word pair to the next
class}
Ci+1 = Ci+1∪ < Ij , Ej >
Ci = Ci\ < Ij , Ej >

end if
end for

end while{move on to nextClass}
end for

We continuously discard word pairs from a
class until there is no word pair to be discarded.
We use IBM Model 1 to re-learn the TP-table, on
the latest content of the class. Since the poor word
pairs have been removed, learning the TP-table
afresh, helps in improving theTPsi,tj values. It
helps in removing the bad word pairs yet left, in
the subsequent iterations. It is to be noted thatCN

consists of word pairs, which are of no use, and we
discard them completely. We had 5 useful classes,
and the thresholds ofC1 to C5 were 0.4, 0.35, 0.3,
0.25, 0.2 respectively. In each class, for each word
pair, we extract all possible ngrams on Indian lan-
guage side and collect their corresponding English
characters, using the alignment array. We keep fre-
quency counts of these ngram mappings, and use
this score in decoding. We use a language model,
which uses Good Turing smoothing technique. We
have used greedy beam search based decoder.

All that remains is to guess the class of an un-
known word. Given a test word, in source script
we calculate probabilityPi of it being in class,
Ci, based on ngram similarities. The decoders of
each of the classes returns a list of feasible translit-
eration candidates along with their ‘local scores’

63

Language Accuracy in Top1 Mean F-Score MRR MAPref MAP10 MAPsys

En2Ta 0.404 0.883 0.539 0.398 0.182 0.182
En2Hi 0.366 0.854 0.493 0.360 0.164 0.164
En2Ka 0.335 0.856 0.457 0.328 0.154 0.154

Table 1: Transliteration Accuracies. En2Ta: English to Tamil, En2Hi: English to Hindi, En2Ka: English
to Kannada

(score according to that class), We denote the lo-
cal score of a candidate from ClassCi asLS[Ci].
We calculate the global score,GS for each candi-
date, usingGS=

∑N−1
i=1 (LS[Ci]×Pi). The candi-

dates are sorted in decreasing order of their global
scores and top ‘K’ of them produced as output.

5 Results

We have evaluated our system, against datasets
with Hindi, Tamil, Kannada and English parallel
named entities (Kumaran and Kellner, 2007). The
results are in Table 1. The data consists of named
entities from varied origins: almost all Indian lan-
guages and English. We combined the training and
development sets to create the new training set.
There are about 9000 parallel words in the train-
ing sets and 1000 words for testing.

Algorithm 2 classifies the training corpus, into
5 sets of corpus. Following are some details af-
ter classifying the Tamil-English dataset. Corpus
1, consists of Sanskrit derived words mostly; they
get perfectly aligned and Schwa deletions rarely
occur; Ex: Keena, Asiya, Nehra, Hemaraaj, Vi-
jendra. This corpus contains 2167 words. Cor-
pus 2 also is mostly comprised of Sanskrit de-
rived words and also English words which eas-
ily align; like Wilton, Natesh, Raghu, Gerry,
Achintya, Amaanat. Schwa deletions does occur,
and hence the alignment scores are a little low.
Size of this corpus is 2168.

Corpus 3 consists more of Urdu origin and
English words, which are not fit for the normal
transliteration rules. The corpus consists of words
like Tarzan, Anoife, Sevier, Zahid Fazal, Floriane,
where letters like ‘q’, ’zz’, ‘y’ are more likely than
‘k’, ‘j’, ‘i’ respectively. The size of Corpus 3 is
1835. Corpus 4 & 5 consists largely of English
origin words, like Lucky number, Ian Healy, Clea-
vant, Fort Vancouver, Virginia Reel, Bundesver-
dienstkreuz. These words need completely differ-
ent set of rules, and moreover if these words were
in any other class, it would corrupt their learning
rules. Size of these corpora are 1234 and 1455 re-
spectively.

6 Conclusion

Our system is robust in the sense that it can filter
out noise in the training corpus, can handle words
of different origins by classifying them into dif-
ferent classes. Our classifying algorithm improves
the accuracy, but we believe that there is scope of
further improvement and we are working on it.

References

Asif Ekbal, Sudip Kumar Naskar, Sivaji Bandyopad-
hyay. 2006. A modified joint source-channel
model for transliteration. Proceedings of the
COLING/ACL on Main conference poster ses-
sions.Sydney, Australia.

Harshit Surana and A. K. Singh 2008.A More Dis-
cerning and Adaptable Multilingual Transliteration
Mechanism for Indian Languages.The Third In-
ternational Joint Conference on Natural Language
Processing (IJCNLP). Hyderabad, India.

Kumaran A. and Kellner Tobias. 2007. A generic
framework for machine transliterationSIGIR ’07:
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 721–722.

Li Haizhou, Zhang Min, Su Jian. 2004.A joint
source-channel model for machine transliteration.
Proceedings of the 42nd Annual Meeting on As-
sociation for Computational Linguistics. Barcelona,
Spain.

Och Franz Josef and Hermann Ney. 2000.Improved
Statistical Alignment Models.Proc. of the 38th An-
nual Meeting of the Association for Computational
Linguistics, pp. 440-447, Hong Kong, China.

Peter F. Brown, Vincent J. Delta Pietra, Stephen A.
Delta Pietra and Robert L. Mercer. 1993.The math-
ematics of statistical machine translation: parame-
ter estimation.MIT Press Cambridge, MA, USA.

Surya Ganesh, Sree Harsha, Prasad Pingali, Vasudeva
Verma. 2008.Statistical Transliteration for Cross
Language Information Retrieval using HMM align-
ment model and CRF.CLIA-2008, 2nd International
workshop on Cross Language Information Access,
3rd International Joint Conference on Natural Lan-
guage Processing (IJCNLP 2008), January 7-12,
2008, Hyderabad, India.

64

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 65–68,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Fast decoding and Easy Implementation:
Transliteration as Sequential Labeling

Eiji ARAMAKI

The University of Tokyo

eiji.aramaki@gmail.com

Takeshi ABEKAWWA

National Institute of Informatics

abekawa@nii.ac.jp

Abstract

Although most of previous translitera-

tion methods are based on a generative

model, this paper presents a discrimi-

native transliteration model using condi-

tional random fields. We regard charac-

ter(s) as a kind of label, which enables

us to consider a transliteration process as

a sequential labeling process. This ap-

proach has two advantages: (1) fast decod-

ing and (2) easy implementation. Experi-

mental results yielded competitive perfor-

mance, demonstrating the feasibility of the

proposed approach.

1 Introduction

To date, most transliteration methods have relied

on a generative model which resembles a statisti-

cal machine translation (SMT) model. Although

the generative approach has appealing feasibility,

it usually suffers from parameter settings, length

biases and decoding time.

We assume a transliteration process as a kind

of sequential labeling that is widely employed for

various tasks, such as Named Entity Recognition

(NER), part-of-speech (POS) labeling, and so on.

Figure 1 shows a lattice of both the transliteration

and POS labeling. As shown in that figure, both

tasks share a similar work frame: (1) an input se-

quence is decomposed into several segments; then

(2) each segments produces a label. Although the

label represents a POS in POS labeling, it repre-

sents a character (or a character sequence) in the

transliteration task.

The proposed approach entails three risks.

1. Numerous Label Variation: Although POS

requires only 10–20 labels at most, a translit-

eration process requires numerous labels. In

fact, Japanese katakana requires more than

260 labels in the following experiment (we

Figure 1: (i) Part-of-Speech Lattice and (ii)

Transliteration Lattice.

consider combinations of characters as a la-

bel). Such a huge label set might require ex-

tremely heavy calculation.

2. No Gold Standard Data: We build the gold

standard label from character alignment us-

ing GIZA++ 1. Of course, such gold standard

data contain alignment errors, which might

decrease labeling performance.

3. No Language Model: The proposed ap-

proach cannot incorporate the target language

model.

In spite of the disadvantages listed above, the

proposed method offers two strong advantages.

1. Fast Decoding: Decoding (more pre-

cisely labeling) is extremely fast (0.12–0.58

s/input). Such rapid decoding is useful for

various applications, for example, a query ex-

pansion for a search engine and so on 2.

1http://www.fjoch.com/GIZA++.html
2A fast transliteration demonstration is available at the

web site; http://akebia.hcc.h.u-tokyo.ac.jp/NEWS/

65

Figure 2: Conversion from Training set to Gold

Standard Labels

2. Easy Implementation: Because sequential

labeling is a traditional research topic, vari-

ous algorithms and tools are available. Using

them, we can easily realize various transliter-

ation systems in any language pairs.

The experimental results empirically demon-

strate that the proposed method is competitive

in several language directions (e.g. English–

Chinese).

2 Method

We developed a two-stage labeling system. First,

an input term is decomposed into several segments

(STEP1). Next, each segmentation produces sym-

bol(s) (STEP2).

2.1 STEP1: Chunking

For a given noun phrase, consisting n characters,
the system gave a label (L1...Ln) that represents

segmentations.

The segmentation is expressed as two types of

labels (label B and I), where B signifies a begin-

ning of the segmentation, and I signifies the end
of segmentation. This representation is similar to

the IOB representation, which is used in Named

Entity Recognition (NER) or chunking.

For label prediction, we used Conditional Ran-

dom Fields (CRFs), which is a state-of-the-art la-

beling algorithm. We regard a source character it-

self as a CRF feature. The window size is three

(the current character and previous/next charac-

ter).

2.2 STEP2: Symbol production

Next, the system estimates labels (T1...Tm) for

each segmentation, wherem is the number of seg-

Table 1: Corpora and Sizes

Notation Language Train Test

EN-CH English–Chinese 31,961 2,896
EN-JA English–Japanese 27,993 1,489
EN-KO English–Korean 4,840 989
EN-HI English–Hindi 10,014 1,000
EN-TA English–Tamil 8,037 1,000
EN-KA English–Kannada 8,065 1,000
EN-RU English–Russian 5,977 1,000

* EN-CH is provided by (Li et al., 2004); EN-

TA, EN-KA, EN-HI and EN-RU are from (Kumaran

and Kellner, 2007); EN-JA and EN-KO are from

http://www.cjk.org/.

mentations (the number of B labels in STEP1).

The label of this step directly represents a target

language character(s). The method of building a

gold standard label is described in the next sub-

section.

Like STEP1, we use CRFs, and regard source

characters as a feature (window size=3).

2.3 Conversion from Alignment to Labels

First, character alignment is estimated using

GIZA++ as shown at the top of Fig. 2. The align-

ment direction is a target- language-to-English, as-

suming that n English characters correspond to a
target language character.

The STEP1 label is generated for each English

character. If the alignment is 1:1, we give the char-

acter aB label. If the alignment is n : 1, we assign
the first character a B label, and give the others I .
Note that we regard null alignment as a continu-

ance of the last segmentation (I).
The STEP2 label is generated for each English

segmentation (B or BI∗). If a segmentation cor-
responds to two or more characters in the target

side, we regard the entire sequence as a label (see

T5 in Fig. 2).

3 Experiments

3.1 Corpus, Evaluation, and Setting

To evaluate the performance of our system,

we used a training-set and test-set provided by

NEWS3(Table 1).

We used the following six metrics (Table 2) us-

ing 10 output candidates. A white paper4 presents

the detailed definitions. For learning, we used

CRF++5 with standard parameters (f=20, c=.5).

3http://www.acl-ijcnlp-2009.org/workshops/NEWS2009/
4https://translit.i2r.a-star.edu.sg/news2009/whitepaper/
5http://crfpp.sourceforge.net/

66

Table 3: Results in Test-set

ACC MeanF MRR MAPref MAP10 MAPsys

EN–CH 0.580 0.826 0.653 0.580 0.199 0.199
EN–RU 0.531 0.912 0.635 0.531 0.219 0.219
EN–JA 0.457 0.828 0.576 0.445 0.194 0.194
EN–TA 0.365 0.884 0.504 0.360 0.172 0.172
EN–HI 0.363 0.864 0.503 0.360 0.170 0.170
EN–KA 0.324 0.856 0.438 0.315 0.148 0.148
EN–KO 0.170 0.512 0.218 0.170 0.069 0.069

Table 2: Evaluation Metrics

ACC Word Accuracy in Top 1.

MeanF

The meanF measures the fuzzy accu-
racy that is defined by the edit dis-
tance and Longest Common Subse-
quence (LCS).

MRR
Mean Reciprocal Rank. 1/MRR tells
approximately the average rank of the
correct transliteration.

MAPref
Measures the precision in the n−best
candidates tightly for each reference.

MAP10
Measures the precision in the 10-best
candidates.

MAPsys

Measures the precision in the top Ki-
best candidates produced by the system.

3.2 Results and Discussion

Table 3 presents the performance. As shown in the

table, a significant difference was found between

languages (from low (0.17) to high (0.58)).

The high accuracy results(EN-CH or EN-RU)

are competitive with other systems (the middle

rank among the NEWS participating systems).

However, several language results (such as EN-

KO) were found to have poor performance.

We investigated the difference between high-

performance languages and the others. Table 4

shows the training/test times and the number of

labels. As shown in the table, wide divergence is

apparent in the number of labels. For example,

although EN–KO requires numerous labels (536

labels), EN–RU needs only 131 labels. This diver-

gence roughly corresponds to both training-time

and accuracy as follows: (1) EN–KO requires long

training time (11 minutes) which gave poor per-

formance (0.17 ACC), and (2) EN–RU requires

short training (only 26.3 seconds) which gave high

performance (0.53 ACC). This suggests that if the

number of labels is small, we successfully convert

transliteration into a sequential labeling task.

The test time seemed to have no relation to

Table 4: Average Test time, Training Time, and

the number of labels (label variation).

Language Test Train # of labels

EN–KO 0.436s 11m09.5s 536
EN–CH 0.201s 6m18.9s 283
EN–JA 0.247s 4m44.3s 269
EN–KA 0.190s 2m26.6s 231
EN–HI 0.302s 1m55.6s 268
EN–TA 0.124s 1m32.9s 207
EN–RU 0.580s 0m26.3s 131

* Test time is the average labeling time for an input. Training

time is the average training time for 1000 labels.

both training time and performance. To investi-

gate what gave effects on test time is a subject for

our future work.

4 Related Works

Most previous transliteration studies have re-

lied on a generative model resembling the IBM

model(Brown et al., 1993). This approach is ap-

plicable to various languages: for Japanese (Goto

et al., 2004; Knight and Graehl, 1998), Korean(Oh

and Choi, 2002; Oh and Choi, 2005; Oh and

Isahara, 2007), Arabic(Stalls and Knight, 1998;

Sherif and Kondrak, 2007), Chinese(Li et al.,

2007), and Persian(Karimi et al., 2007). As de-

scribed previously, the proposed discriminative

approach differs from them.

Another perspective is that of how to repre-

sent transliteration phenomena. Methods can be

classified into three main types: (1) grapheme-

based (Li et al., 2004), (2) phoneme-based (Knight

and Graehl, 1998), and (3) combinations of these

methods (hybrid-model(Bilac and Tanaka, 2004),

and a correspondence-based model(Oh and Choi,

2002; Oh and Choi, 2005) re-ranking model (Oh

and Isahara, 2007)). Our proposed method em-

ploys a grapheme-based approach. Employing

phonemes is a challenge reserved for future stud-

ies.

Aramaki et al. (2008) proposed a discrimina-

67

tive transliteration approach using Support Vector

Machines (SVMs). However, their goal, which is

to judge whether two terms come from the same

English words or not, differs from this paper goal.

5 Conclusions

This paper presents a discriminative translitera-

tion model using a sequential labeling technique.

Experimental results yielded competitive perfor-

mance, demonstrating the feasibility of the pro-

posed approach. In the future, how to incorporate

more rich information, such as language model

and phoneme, is remaining problem. We believe

this task conversion, from generation to sequential

labeling, can be useful for several practical appli-

cations.

ACKNOWLEDGMENT

Part of this research is supported by Japanese

Grant-in-Aid for Scientific Research (A) Num-

ber:20680006.

References

Eiji Aramaki, Takeshi Imai, Kengo Miyo, and
Kazuhiko Ohe. 2008. Orthographic disambiguation
incorporating transliterated probability. In Proceed-
ings of International Joint Conference on Natural
Language Processing (IJCNLP2008), pages 48–55.

Slaven Bilac and Hozumi Tanaka. 2004. A hybrid
back-transliteration system for Japanese. In Pro-
ceedings of The 20th International Conference on
Computational Linguistics (COLING2004), pages
597–603.

Peter F. Brown, Stephen A. Della Pietra, Vi cent
J. Della Pietra, and Robert L. Mercer. 1993.
The mathematics of statistical machine translation:
Parameter estimation. Computational Linguistics,
19(2).

Isao Goto, Naoto Kato, Terumasa Ehara, and Hideki
Tanaka. 2004. Back transliteration from Japanese
to English using target English context. In Proceed-
ings of The 20th International Conference on Com-
putational Linguistics (COLING2004), pages 827–
833.

Sarvnaz Karimi, Falk Scholer, and Andrew Turpin.
2007. Collapsed consonant and vowel models: New
approaches for English-Persian transliteration and
back-transliteration. In Proceedings of the Annual
Meeting of the Association of Computational Lin-
guistics (ACL2007), pages 648–655.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational Linguistics,
24(4):599–612.

A. Kumaran and Tobias Kellner. 2007. A generic
framework for machine transliteration. In SIGIR
’07: Proceedings of the 30th annual international
ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 721–722.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint
source-channel model for machine transliteration.
In Proceedings of the Meeting of the Association for
Computational Linguistics (ACL2004), pages 159–
166.

Haizhou Li, Khe Chai Sim, Jin-Shea Kuo, andMinghui
Dong. 2007. Semantic transliteration of per-
sonal names. In Proceedings of the Annual Meet-
ing of the Association of Computational Linguistics
(ACL2007), pages 120–127.

Jong-Hoon Oh and Key-Sun Choi. 2002. An English-
Korean transliteration model using pronunciation
and contextual rules. In Proceedings of The 19th In-
ternational Conference on Computational Linguis-
tics (COLING2002), pages 758–764.

Jong-HoonOh and Key-Sun Choi. 2005. An ensemble
of grapheme and phoneme for machine translitera-
tion. In Proceedings of Second International Joint
Conference on Natural Language Processing (IJC-
NLP2005), pages 450–461.

Jong-Hoon Oh and Hitoshi Isahara. 2007. Machine
transliteration using multiple transliteration engines
and hypothesis re-ranking. In Proceedings of MT
Summit XI, pages 353–360.

Tarek Sherif and Grzegorz Kondrak. 2007. Substring-
based transliteration. In Proceedings of the 45th An-
nual Meeting of the Association of Computational
Linguistics (ACL2007), pages 944–951.

Bonnie Glover Stalls and Kevin Knight. 1998. Trans-
lating names and technical terms in arabic text.
In Proceedings of The International Conference
on Computational Linguistics and the 36th Annual
Meeting of the Association of Computational Lin-
guistics (COLING-ACL1998) Workshop on Compu-
tational Approaches to Semitic Languages.

68

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 69–71,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

NEWS 2009 Machine Transliteration Shared Task System Description:
Transliteration with Letter-to-Phoneme Technology

Colin Cherry and Hisami Suzuki
Microsoft Research
One Microsoft Way

Redmond, WA, 98052
{colinc,hisamis}@microsoft.com

Abstract
We interpret the problem of transliterat-
ing English named entities into Hindi or
Japanese Katakana as a variant of the
letter-to-phoneme (L2P) subtask of text-
to-speech processing. Therefore, we apply
a re-implementation of a state-of-the-art,
discriminative L2P system (Jiampojamarn
et al., 2008) to the problem, without fur-
ther modification. In doing so, we hope
to provide a baseline for the NEWS 2009
Machine Transliteration Shared Task (Li
et al., 2009), indicating how much can be
achieved without transliteration-specific
technology. This paper briefly sum-
marizes the original work and our re-
implementation. We also describe a bug
in our submitted implementation, and pro-
vide updated results on the development
and test sets.

1 Introduction

Transliteration occurs when a word is borrowed
into a language with a different character set from
its language of origin. The word is transcribed into
the new character set in a manner that maintains
phonetic correspondence.

When attempting to automate machine translit-
eration, modeling the channel that transforms
source language characters into transliterated tar-
get language characters is a key component to
good performance. Since the primary signal fol-
lowed by human transliterators is phonetic corre-
spondence, it makes sense that a letter-to-phoneme
(L2P) transcription engine would perform well at
this task. Of course, transliteration is often framed
within the larger problems of translation and bilin-
gual named entity co-reference, making available
a number of other interesting features, such as tar-
get lexicons (Knight and Graehl, 1998), distribu-
tional similarity (Bilac and Tanaka, 2005), or the

dates of an entity’s mentions in the news (Kle-
mentiev and Roth, 2006). However, this task’s fo-
cus on generation has isolated the character-level
component, which makes L2P technology a near-
ideal match. For our submission, we re-implement
the L2P approach described by Jiampojamarn et
al. (2008) as faithfully as possible, and apply it
unmodified to the transliteration shared task for
the English-to-Hindi (Kumaran and Kellner, 2007)
and English-to-Japanese Katakana1 tests.

2 Approach

2.1 Summary of L2P approach

The core of the L2P transduction engine is the
dynamic programming algorithm for monotone
phrasal decoding (Zens and Ney, 2004). The main
feature of this algorithm is its capability to trans-
duce many consecutive characters with a single
operation. This algorithm is used to conduct a
search for a max-weight derivation according to
a linear model with indicator features. A sample
derivation is shown in Figure 1.

There are two main categories of features: con-
text and transition features, which follow the first
two feature templates described by Jiampojamarn
et al. (2008). Context features are centered around
a transduction operation. These features include
an indicator for the operation itself, which is then
conjoined with indicators for all n-grams of source
context within a fixed window of the operation.
Transition features are Markov or n-gram features.
They ensure that the produced target string makes
sense as a character sequence, and are represented
as indicators on the presence of target n-grams.
The feature templates have two main parameters,
the size S of the character window from which
source context features are drawn, and the max-
imum length T of target n-gram indicators. We
fit these parameters using grid search over 1-best

1Provided by http://www.cjk.org

69

ame →�A , ri →J , can →�S

Figure 1: Example derivation transforming
“American” into “�AJ�S”.

accuracy on the provided development sets.

The engine’s features are trained using the
structured perceptron (Collins, 2002). Jiampo-
jamarn et al. (2008) show strong improvements
in the L2P domain using MIRA in place of the
perceptron update; unfortunately, we did not im-
plement a k-best MIRA update due to time con-
straints. In our implementation, no special con-
sideration was given to the availability of multi-
ple correct answers in the training data; we always
pick the first reference transliteration and treat it
as the only correct answer. Investigating the use
of all correct answers would be an obvious next
step to improve the system.

2.2 Major differences in implementation

Our system made two alternate design decisions
(we do not claim improvements) over those made
by (Jiampojamarn et al., 2008), mostly based on
the availability of software. First, we employed a
beam of 40 candidates in our decoder, to enable ef-
ficient use of large language model contexts. This
is put to good use in the Hindi task, where we
found n-gram indicators of length up to n = 6
provided optimal development performance.

Second, we employed an alternate character
aligner to create our training derivations. This
aligner is similar to recent non-compositional
phrasal word-alignment models (Zhang et al.,
2008), limited so it can only produce monotone
character alignments. The aligner creates sub-
string alignments, without insertion or deletion
operators. As such, an aligned transliteration pair
also serves as a transliteration derivation. We em-
ployed a maximum substring length of 3.

The training data was heuristically cleaned af-
ter alignment. Any derivation found by the aligner
that uses an operation occurring fewer than 3 times
throughout the entire training set was eliminated.
This reduced training set sizes to 8,511 pairs
for English-Hindi and 20,306 pairs for English-
Katakana.

Table 1: Development and test 1-best accuracies,
as reported by the official evaluation tool

System / Test set With Bug Fixed
Hindi Dev 36.7 39.6
Hindi Test 41.8 46.6
Katakana Dev 46.0 47.1
Katakana Test 46.6 46.9

3 The Bug

The submitted version of our system had a bug
in its transition features: instead of generating an
indicator for every possible n-gram in the gener-
ated target sequence, it generated n-grams over
target substrings, defined by the operations used
during transduction. Consider, for example, the
derivation shown in Figure 1, which generates
“�AJ�S”. With buggy trigram transition
features, the final operation would produce the
single indicator [AJ|�S], instead of the two
character-level trigrams [AJ|�] and [J�|S].
This leads to problems with data sparsity, which
we had not noticed on unrelated experiments with
larger training data. We report results both with
the bug and with fixed transition features. We do
so to emphasize the importance of a fine-grained
language discriminative language model, as op-
posed to one which operates on a substring level.

4 Development

Development consisted of performing a parameter
grid search over S and T for each language pair’s
development set. All combinations of S = 0 . . . 4
and T = 0 . . . 7 were tested for each language
pair. Based on these experiments, we selected (for
the fixed version), values of S = 2, T = 6 for
English-Hindi, and S = 4, T = 3 for English-
Katakana.

5 Results

The results of our internal experiments with the
official evaluation tool are shown in Table 1. We
report 1-best accuracy on both development and
test sets, with both the buggy and fixed versions of
our system. As one can see, the bug makes less of
an impact in the English-Katakana setting, where
more training data is available.

70

6 Conclusion

We have demonstrated that an automatic letter-
to-phoneme transducer performs fairly well on
this transliteration shared task, with no language-
specific or transliteration-specific modifications.
Instead, we simply considered Hindi or Katakana
to be an alternate encoding for English phonemes.
In the future, we would like to investigate proper
use of multiple reference answers during percep-
tron training.

Acknowledgments

We would like to thank the NEWS 2009 Machine
Transliteration Shared Task organizers for creating
this venue for comparing transliteration methods.
We would also like to thank Chris Quirk for pro-
viding us with his alignment software.

References
Slaven Bilac and Hozumi Tanaka. 2005. Extracting

transliteration pairs from comparable corpora. In
Proceedings of the Annual Meeting of the Natural
Language Processing Society, Japan.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In EMNLP.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2008. Joint processing and discriminative
training for letter-to-phoneme conversion. In ACL,
pages 905–913, Columbus, Ohio, June.

Alexandre Klementiev and Dan Roth. 2006. Named
entity transliteration and discovery from multilin-
gual comparable corpora. In HLT-NAACL, pages
82–88, New York City, USA, June.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational Linguistics,
24(4):599–612.

A. Kumaran and Tobias Kellner. 2007. A generic
framework for machine transliteration. In Proc. of
the 30th SIGIR.

Haizhou Li, A. Kumaran, Vladimir Pervouchine, and
Min Zhang. 2009. Report on NEWS 2009 machine
transliteration shared task. In Proceedings of ACL-
IJCNLP 2009 Named Entities Workshop (NEWS
2009), Singapore.

Richard Zens and Hermann Ney. 2004. Improvements
in phrase-based statistical machine translation. In
HLT-NAACL, pages 257–264, Boston, USA, May.

Hao Zhang, Chris Quirk, Robert C. Moore, and
Daniel Gildea. 2008. Bayesian learning of non-
compositional phrases with synchronous parsing. In
ACL, pages 97–105, Columbus, Ohio, June.

71

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 72–75,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Combining a Two-step Conditional Random Field Model and a Joint
Source Channel Model for Machine Transliteration

Dong Yang, Paul Dixon, Yi-Cheng Pan, Tasuku Oonishi
Masanobu Nakamura and Sadaoki Furui

Department of Computer Science
Tokyo Institute of Techonology

{raymond,dixonp,thomas,oonishi,masa,furui}@furui.cs.titech.ac.jp

Abstract

This paper describes our system for
“NEWS 2009 Machine Transliteration
Shared Task” (NEWS 2009). We only par-
ticipated in the standard run, which is a
direct orthographical mapping (DOP) be-
tween two languages without using any
intermediate phonemic mapping. We
propose a new two-step conditional ran-
dom field (CRF) model for DOP machine
transliteration, in which the first CRF seg-
ments a source word into chunks and the
second CRF maps the chunks to a word
in the target language. The two-step CRF
model obtains a slightly lower top-1 ac-
curacy when compared to a state-of-the-
art n-gram joint source-channel model.
The combination of the CRF model with
the joint source-channel leads to improve-
ments in all the tasks. The official re-
sult of our system in the NEWS 2009
shared task confirms the effectiveness of
our system; where we achieved 0.627 top-
1 accuracy for Japanese transliterated to
Japanese Kanji(JJ), 0.713 for English-to-
Chinese(E2C) and 0.510 for English-to-
Japanese Katakana(E2J) .

1 Introduction

With the increasing demand for machine transla-
tion, the out-of-vocabulary (OOV) problem caused
by named entities is becoming more serious.

The translation of named entities from an alpha-
betic language (like English, French and Spanish)
to a non-alphabetic language (like Chinese and
Japanese) is usually performed through transliter-
ation, which tries to preserve the pronunciation in
the source language.

For example, in Japanese, foreign words im-
ported from other languages are usually written

H a r r i n g t o n English-to-Japanese

T i m o t h y English-to-Chinese

Source Name Target Name Note

ti mo xi Chinese Romanized writing

ha ri n to n Japanese Romanized writing

Figure 1: Transliteration examples

in a special syllabary calledKatakana; in Chi-
nese, foreign words accepted to Chinese are al-
ways written by Chinese characters; examples are
given in Figure 1.

An intuitive transliteration method is to first
convert a source word into phonemes, then find the
corresponding phonemes in the target language,
and finally convert to the target language’s writ-
ing system (Knight and Graehl, 1998; Oh et al.,
2006). One major limitation of this method is that
the named entities are usually OOVs with diverse
origins and this makes the grapheme-to-phoneme
conversion very difficult.

DOP is gaining more attention in the transliter-
ation research community which is also the stan-
dard evaluation of NEWS 2009.

The source channel and joint source-channel
models (Li et al., 2004) have been proposed for
DOP, which try to modelP (T |S) andP (T, S) re-
spectively, whereT and S denotes the words in
the target and source languages. (Ekbal et al.,
2006) modified the joint source-channel model to
incorporate different context information into the
model for the Indian languages. Here we propose
a two-step CRF model for transliteration, and the
idea is to make use of the discriminative ability of
CRF. For example, in E2C transliteration, the first
step is to segment an English name into alphabet
chunks and after this step the number of Chinese
characters is decided. The second step is to per-
form a context-dependent mapping from each En-
glish chunk into one Chinese character. Figure 1
shows that this method is applicable to many other

72

transliteration tasks including E2C and E2J.
Our CRF method and the n-gram joint source-

channel model use different information in pre-
dicting the corresponding Chinese characters and
therefore in combination better results are ex-
pected. We interpolate the two models linearly
and use this as our final system for NEWS 2009.
The rest of the paper is organized as follows: Sec-
tion 2 introduces our system in detail including the
alignment and decoding modules, Section 3 ex-
plains our experiments and finally Section 4 de-
scribes conclusions and future work.

2 System Description

Our system starts from a joint source channel
alignment to train the CRF segmenter. The CRF
is used to re-segment and align the training data,
and from this alignment we create a Weighted Fi-
nite State Transducer (WFST) based n-gram joint
source-channel decoder and a CRF E2C converter.
The following subsections explain the structure of
our system shown in Figure 2.

N-gram joint source-channel Alignment

CRF segmenter

N-gram WFST decoder CRF E2C converter

Each pair in the training corpus

New Alignment

N-gram WFST decoder

CRF E2C converter

Linear combination

Each source name in the test corpus

CRF segmenter

T
ra

in
in

g
T

e
s
ti
n

g

Output

Figure 2: System structure

2.1 Theoretical background

2.1.1 Joint source channel model

The source channel model represents the condi-
tional probability of target names given a source
nameP (T |S). The joint source channel model
calculates how the source words and target names
are generated simultaneously (Li et al., 2004):

P (S, T) = P (s1, s2, ..., sk, t1, t2, ..., tk)

= P (< s, t >1, < s, t >2, ..., < s, t >k)

=
K∏

k=1

P (< s, t >k | < s, t >k−1

1
) (1)

where, S = (s1, s2, ..., sk) and T =
(t1, t2, ..., tk).

2.1.2 CRF

A CRF (Lafferty et al., 2001) is an undirected
graphical model which assigns a probability to a
label sequenceL = l1l2 . . . lT , given an input se-
quenceC = c1c2 . . . cT ,

P (L|C) =
1

Z(C)
exp(

T∑

t=1

∑

k

λkfk(lt, lt−1, C, t))

(2)
For thekth feature,fk denotes the feature function
andλk is the parameter which controls the weight-
ing. Z(C) is a normalization term that ensure the
distribution sums to one. CRF training is usually
performed through the L-BFGS algorithm (Wal-
lach, 2002) and decoding is performed by Viterbi
algorithm (Viterbi, 1967). In this paper, we use an
open source toolkit “crf++”1.

2.2 N-gram joint source-channel alignment

To calculate the probability in Equation 1, the
training corpus needs to be aligned first. We use
the Expectation-Maximization(EM) algorithm to
optimize the alignmentA between the sourceS
and targetT pairs, that is:

Ã = arg max
A

P (S, T,A) (3)

The procedure is summarized as follows:

1. Initialize a random alignment

2. E-step: update n-gram probability

3. M-step: apply the n-gram model to realign
each entry in corpus

4. Go to step 2 until the alignment converges

2.3 CRF alignment & segmentation

The performance of EM algorithm is often af-
fected by the initialization. Fortunately, we can
correct mis-alignments by using the discriminative
ability of the CRF. The alignment problem is con-
verted into a tagging problem that doesn’t require
the use of the target words at all. Figure 3 is an
example of a segmentation and alignment, where
the labels B and N indicate whether the character
is in the starting position of the chunk or not.

In the CRF method the feature function de-
scribes a co-occurrence relation, and it is formally

1crfpp.sourceforge.net

73

T i m o t h y

T/B i/N m/B o/N t/B h/N y/N

Ti/ mo/ thy/

Figure 3: An example of the CRF segmenter for-
mat and E2C converter

defined asfk(lt, lt−1, C, t) (Eq. 2).fk is usually a
binary function, and takes the value 1 when both
observationct and transitionlt−1 → lt are ob-
served. In our segmentation tool, we use the fol-
lowing features

• 1. Unigram features:C
−2, C−1, C0, C1, C2

• 2. Bigram features:C
−1C0, C0C1

Here,C0 is the current character,C
−1 andC1 de-

note the previous and next characters andC
−2 and

C2 are the characters two positions to the left and
right of C0.

In the alignment process, we use the CRF seg-
menter to split each English word into chunks.
Sometimes a problem occurs in which the num-
ber of chunks in the segmented output will not be
equal to the number of Chinese characters. In such
cases our solution is to choose from the n-best list
the top scoring segmentation which contains the
correct number of chunks.

In the testing process, we use the segmenter in
the similar way, but only take top-1 output seg-
mented English chunks for use in the following
CRF E2C conversion.

2.4 CRF E2C converter

Similar to the CRF segmenter, the CRF E2C con-
verter has the format shown in Figure 3. For this
CRF, we use the following features:

• 1. Unigram features:C
−1, C0, C1

• 2. Bigram features:C
−1C0, C0C1

whereC represents the English chunks and the
subscript notation is the same as the CRF seg-
menter.

2.5 N-gram WFST decoder for joint source
channel model

Our decoding approach makes use of WFSTs to
represent the models and simplify the develop-
ment by utilizing standard operations such as com-
position and shortest path algorithms.

After the alignments are generated, the first
step is to build acorpus to train the translit-
eration WFST. Each aligned word is converted
to a sequence of transliteration alignment pairs
〈s, t〉

1
, 〈s, t〉

2
, ... 〈s, t〉k, where eachs can be a

chunk of one or more characters andt is assumed
to be a single character. Each of the pairs is
treated as a word and the entire set of alignments is
used to train an n-gram language model. In these
evaluations we used the MITLM toolkit (Hsu and
Glass, 2008) to build a trigram model with modi-
fied Kneser-Ney smoothing.

We then use the procedure described in (Caseiro
et al., 2002) and convert the n-gram to a weighted
acceptor representation where each input label be-
longs to the set of transliteration alignment pairs.
Next the pairs labels are broken down into the in-
put and output parts and the acceptor is converted
to a transducerM . To allow transliteration from a
sequence of individual characters, a second WFST
T is constructed.T has a single state and for each
s a path is added to allow a mapping from the
string of individual characters.

To perform the actual transliteration, the input
word is converted to an acceptorI which has one
arc for each of the characters in the word.I is
then combined withT andM according toO =
I ◦T ◦M where◦ denotes the composition opera-
tor. The n–best paths are extracted fromO by pro-
jecting the output, removing the epsilon labels and
applying the n-shortest paths algorithm with de-
terminization from the OpenFst Toolkit(Allauzen
et al., 2007).

2.6 Linear combination

We notice that there is a significant difference be-
tween the correct answers of the n-gram WFST
and CRF decoders. The reason may be due to
the different information utilized in the two de-
coding methods. Since their performance levels
are similar, the overall performance is expected
to be improved by the combination. From the
CRF we compute the probabilityPCRF (T |S) and
from the list of scores output from the n-gram de-
coder we calculate the conditional probability of
Pn−gram(T |S). These are used in our combina-
tion method according to:

P (T |S) = λPCRF (T |S)+(1−λ)Pn−gram(T |S)
(4)

whereλ denotes the interpolation weight (0.3 in
this paper).

74

3 Experiments

We use the training and development sets of
NEWS 2009 data in our experiments as detailed
in Table 12. There are several measure metrics in
the shared task and due to limited space in this pa-
per we provide the results for top-1 accuracy.

Task Training data size Test data size
E2C 31961 2896
E2J 23808 1509

Table 1: Corpus introduction

n-gram+CRF
Task Alignment interpolation

WFST CRF
E2C 70.3 67.3 71.5
E2J 44.9 44.8 46.7

Table 2: Top-1 accuracies(%)

The results are listed in Table 2. For E2C
task the top-1 accuracy of the joint source-channel
model is 70.3% and 67.3% for the two-step CRF
model. After combining the two results together
the top-1 accuracy increases to 71.5% correspond-
ing to a 1.2% absolute improvement over the state-
of-the-art joint source-channel model. Similarly,
we get 1.8% absolute improvement for E2J task.

4 Conclusions and future work

In this paper we have presented our new hybrid
method for machine transliteration which com-
bines a new two-step CRF model with a state-of-
the-art joint source-channel model. In compari-
son to the joint source-channel model the combi-
nation approach achieved 1.2% and 1.8% absolute
improvements for E2C and E2J task respectively.

In the first step of the CRF method we only
use the top-1 segmentation, which may propagate
transliteration errors to the following step. In fu-
ture work we would like to optimize the 2-step
CRF jointly. Currently, we are also investigating
minimum classification error (MCE) discriminant
training as a method to further improve the joint
source channel model.

2For the JJ task the submitted results
are only based on the joint source
channel model. Unfortunately, we were
unable to submit a combination result
because the training time for the CRF
was too long.

Acknowledgments

The corpora used in this paper are from ”NEWS
2009 Machine Transliteration Shared Task” (Li et
al., 2004; CJK, website)

References

Kevin Knight and Jonathan Graehl. 1998.Machine
Transliteration, 1998 Association for Computa-
tional Linguistics.

Li Haizhou, Zhang Min and Su Jian. 2004.A joint
source-channel model for machine transliteration,
2004 Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics.

Asif Ekbal, Sudip Kumar Naskar and Sivaji Bandy-
opadhyay. 2006.A modified joint source-channel
model for transliteration, Proceedings of the COL-
ING/ACL, pages 191-198.

Jong-Hoon Oh, Key-Sun Choi and Hitoshi Isahara.
2006.A comparison of different machine transliter-
ation models, Journal of Artificial Intelligence Re-
search, 27, pages 119-151.

John Lafferty, Andrew McCallum, and Fernando
Pereira 2001.Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data., Proceedings of International Confer-
ence on Machine Learning, 2001, pages 282-289.

Hanna Wallach 2002.Efficient Training of Condi-
tional Random Fields. M. Thesis, University of Ed-
inburgh, 2002.

Andrew J. Viterbi 1967.Error Bounds for Convolu-
tional Codes and an Asymptotically Optimum De-
coding Algorithm. IEEE Transactions on Informa-
tion Theory, Volume IT-13, 1967,pages 260-269.

Bo-June Hsu and James Glass 2008.Iterative Lan-
guage Model Estimation: Efficient Data Structure
& Algorithms. Proceedings Interspeech, pages 841-
844.

Diamantino Caseiro, Isabel Trancosoo, Luis Oliveira
and Ceu Viana 2002.Grapheme-to-phone using
finite state transducers. Proceedings 2002 IEEE
Workshop on Speech Synthesis.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut and Mehryar Mohri 2002.OpenFst: A
General and Efficient Weighted Finite-State Trans-
ducer Library. Proceedings of the Ninth Interna-
tional Conference on Implementation and Applica-
tion of Automata, (CIAA 2007), pages 11-23.

http://www.cjk.org

75

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 76–79,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Phonological Context Approximation and Homophone Treatment

for NEWS 2009 English-Chinese Transliteration Shared Task

Oi Yee Kwong

Department of Chinese, Translation and Linguistics

City University of Hong Kong

Tat Chee Avenue, Kowloon, Hong Kong

Olivia.Kwong@cityu.edu.hk

Abstract

This paper describes our systems participating

in the NEWS 2009 Machine Transliteration

Shared Task. Two runs were submitted for the

English-Chinese track. The system for the

standard run is based on graphemic approxi-

mation of local phonological context. The one

for the non-standard run is based on parallel

modelling of sound and tone patterns for treat-

ing homophones in Chinese. Official results

show that both systems stand in the mid range

amongst all participating systems.

1 Introduction

This paper describes our systems participating in

the English-Chinese track of the NEWS 2009

Machine Transliteration Shared Task.

The apparently free combination of Chinese

characters in names is not entirely ungoverned.

There are no more than a few hundred Chinese

characters which are used in names. Moreover,

beyond linguistic and phonetic properties, many

social and cognitive factors are simultaneously

influencing the naming process and superimpos-

ing on the surface graphemic correspondence.

Our systems in the standard and non-standard

runs aim at addressing two issues in English-

Chinese forward transliteration (referred to as

E2C hereafter), namely graphemic ambiguity and

homophones in Chinese respectively.

By graphemic ambiguity, we refer to the mul-

tiple mappings between English segments and

Chinese segments. For example, the English

segment “ty” could be rendered as 蒂 di4 as in

Christy 克里斯蒂 ke4-li3-si1-di4, or 太 tai4 as

in Style 斯太尔 si1-tai4-er3
1
. Although direct

1
 The transcriptions in this paper are in Hanyu Pinyin.

orthographic mapping (e.g. Li et al., 2004) has

been shown to work even more effectively than

phoneme-based methods (e.g. Virga and Khu-

danpur, 2003), it is observed that phonological

context plays an important role in resolving gra-

phemic ambiguity. In the absence of an explicit

phonemic representation of the source names,

our GAP system, to be described in Section 4.1,

attempts to approximate the local phonological

context for a given segment by means of surface

graphemic properties.

An English name could be acceptably translit-

erated in various ways, e.g. 希拉里 xi1-la1-li3,

希拉利 xi1-la1-li4, 希拉莉 xi1-la1-li4, as well as

希拉蕊 xi1-la1-rui3 are all possible translitera-

tions for Hilary. Homophones are abundant in

Chinese, as evident from the first three alterna-

tives above. However, conventional translitera-

tion models often rely heavily on the distribution

of the training data, which might preclude infre-

quent but similarly acceptable transliteration

candidates. Also, Chinese is a typical tonal lan-

guage. The sound-tone combination is important

in names. Names which sound “nice” are often

preferred to those which sound “monotonous”.

Our SoToP system to be described in Section 4.2

thus attempts to model sound and tone patterns in

parallel, to deal with homophones more reasona-

bly despite possible skewed prior distributions.

Related work will be briefly reviewed in Sec-

tion 2, and the datasets will be described in Sec-

tion 3. The systems for both runs and their per-

formance will be reported in Section 4, followed

by future work and conclusion in Section 5.

2 Related Work

There are basically two categories of work on

machine transliteration. First, various alignment

models are used for acquiring transliteration

76

lexicons from parallel corpora and other re-

sources (e.g. Kuo and Li, 2008). Second, statis-

tical models are built for transliteration. These

models could be phoneme-based (e.g. Knight and

Graehl, 1998), grapheme-based (e.g. Li et al.,

2004), hybrid (Oh and Choi, 2005), or based on

phonetic (e.g. Tao et al., 2006) and semantic (e.g.

Li et al., 2007) features.

The core of our systems is based on Li et al.’s

(2004) Joint Source-Channel Model under the

direct orthographic mapping framework, which

skips the middle phonemic representation in

conventional phoneme-based methods and mod-

els the segmentation and alignment preferences

by means of contextual n-grams of the translit-

eration segment pairs (or token pairs in their ter-

minology). A bigram model under their frame-

work is thus as follows:

∏
=

−− ><><≈

><><><=

=

K

k

kkkk

kk

kk

ceceP

cececeP

ccceeePCEP

1

11

2211

2121

),|,(

),,...,,,,(

),...,,,,...,,(),(

where E refers to the English source name and C

refers to the transliterated Chinese name. With K

segments aligned between E and C, ek and ck re-

fer to the kth English segment and its corre-

sponding Chinese segment respectively.

3 Datasets

The current study used the English-Chinese

(EnCh) data provided by the shared task organis-

ers. There are 31,961 English-Chinese name

pairs in the training set, 2,896 English-Chinese

name pairs in the development set, and another

2,896 English names in the test set. The Chinese

transliterations basically correspond to Mandarin

Chinese pronunciations of the English names, as

used by media in Mainland China (Xinhua News

Agency, 1992).

The training and development data were

manually cleaned up and aligned with respect to

the correspondence between English segments

and Chinese segments, e.g. Aa/l/to 阿/尔/托, and
the pronunciations for the Chinese characters

were automatically looked up.

Based on all the unique English segments re-

sulting from manual alignment, all possible seg-

mentations of a test name were first obtained,

and they were then ranked using a probabilistic

score computed by:

∏
=

+−≈
K

k

kkkk sfcsPslcsPSScore
1

11))(|())(|()(

where S is a segmentation sequence with K seg-

ments, sk is the kth segment in S, lc(sk-1) is the

last character of segment sk-1 and fc(sk+1) is the

first character of segment sk+1.

4 System Description

4.1 Standard Run – GAP

Our system for the standard run is called GAP,

which stands for Graphemic Approximation of

Phonological context.

Although direct orthographic mapping has

been shown to be an effective method, it is nev-

ertheless observed that phonological context sig-

nificantly contributes to the resolution of some

graphemic ambiguity. For example, the English

segment “le” was found to correspond to as

many as 15 Chinese segments in the data, includ-

ing 利 li4, 勒 le4, 历 li4, 尔 er3, 莱 lai2, 里 li3,
etc. When “le” appears at the end of a name, all

but a few cases are rendered as 尔 er3, e.g. Dale

戴尔 dai4-er3 and Dipasquale 迪帕斯奎尔 di2-

pa4-si1-kui2-er3. This is especially true when

the previous character is “a”. On the contrary,

when “le” appears at the end of a name following

an “r”, it is more often rendered as 利 li4 instead,

e.g. Berle 伯利 bo2-li4. On the other hand, “le”

at the beginning of name is often rendered as 勒

le4 or 莱 lai2, e.g. Lepke 莱普克 lai2-pu3-ke4,

except when it is followed by the vowel “o”,

where it is then often transliterated as 利 li4, e.g.

Leonor 利奥诺 li4-ao4-nuo4. Such observation

thus indicates two important points for E2C.

First, the phonological context is useful as Eng-

lish graphemic segments could be ambiguous in

terms of pronunciation, and the actual pronuncia-

tion often determines which Chinese segment is

to be used. Second, local contexts on both sides

are important as they indicate the environment in

which the segment is embedded, which might

affect the way it is pronounced.

GAP thus attempts to approximate local pho-

nological context by means of surface graphemic

properties, making use of bigrams in both direc-

tions. Since the phonological environment might

be sufficiently represented by a neighbouring

phoneme instead of a whole syllable, we ap-

proximate the phonological context with one

character on both sides of a given English seg-

ment, irrespective of their corresponding Chinese

77

segments. Using single characters on both sides

could also ensure that a small and consistent pa-

rameter space is maintained. Hence, weighting

the context on both sides equally, GAP assigns a

score Score(E,C) to a transliteration candidate

with K segment pairs as follows:

∏
=

+− ><><
K

k

kkkkkk efccePelcceP
1

11))(|,())(|,(

where <ek,ck> is the kth English-Chinese segment

pair, lc(ek-1) is the last character of segment ek-1

and fc(ek+1) is the first character of segment ek+1.

Taking the top 3 segmentation candidates, the

transliteration candidates were generated by

looking up the grapheme pairs obtained from

manual alignment with frequency f ≥ 3. If there

is no grapheme pair above the threshold, all pairs

below the threshold would be considered. All

combinations obtained were then subject to rank-

ing with Score(E,C) above.

4.2 Non-standard Run – SoToP

The homophone problem is notorious in Chinese.

As far as personal name transliteration is con-

cerned, unless there are standardised principles

prescribed, the “correctness” of transliterated

names is not clear-cut at all. As a tonal language,

how a combination of characters sounds is also

important in naming. As in the example given in

Section 1, one cannot really say any of the trans-

literations for Hilary is “right” or “wrong”, but

perhaps only “better” or “worse”. Hence naming

is more of an art than a science, and automatic

transliteration should avoid over-reliance on the

training data and thus missing unlikely but good

alternative candidates.

Our system for the non-standard run, SoToP,

thus aims at addressing this cognitive or percep-

tual aspect of transliteration beyond its linguistic

and phonetic properties. Instead of direct ortho-

graphic mapping, we use a Sound model (SoM)

and a Tone model (ToM) in Parallel. The SoToP

architecture is shown in Figure 1.

SoM basically assembles the homophones and

captures the sound patterns in terms of a graph-

eme-phoneme mapping. The operation of SoM

is like GAP above, except that the <ek,ck> pairs

are replaced by <ek,sok> pairs, where sok refers to

the phonetic transcription in Hanyu Pinyin

(without tone) for the kth Chinese segment in a

candidate.

ToM, on the other hand, captures the tone pat-

terns of transliteration, irrespective of the sound

and the character choice. Although English does

not have tones, the intonation and stress of a syl-

lable may prompt for the usage of a Chinese

character of a certain tone. Chinese, on the other

hand, is a tonal language. The tone patterns are

more cognitive in nature, as some combinations

may just sound awkward for no apparent reason.

Moreover, some sound-tone combinations might

result in undesirable homophones, which are also

avoided in names in general. The operation of

ToM is also like GAP, except that the <ek,ck>

pairs are replaced by <ek,tok> pairs, where tok

refers to the tone for the kth Chinese segment in

a candidate.

The Candidate Generator combines the top M

candidates from ToM and top N candidates from

SoM to generate character combinations by look-

ing up a pronunciation table. The lookup table

lists the homophones for each sound-tone com-

bination found in the data. In the current study,

both M and N were set to 3. The generated can-

didates were then ranked by a simple bigram

model based on the bigram probabilities of the

Chinese segments.

4.3 System Testing

The two systems were tested on the NEWS de-

velopment data, containing 2,896 English names.

System performance was measured by the fol-

lowing evaluation metrics: Word Accuracy in

Top-1 (ACC), Fuzziness in Top-1 (Mean F-

score), Mean Reciprocal Rank (MRR), MAPref,

MAP10, and MAPsys. Detailed description of

these metrics can be found in the NEWS shared

task whitepaper (Li et al., 2009).

Table 1 shows the system testing results on the

development data. The standard run, GAP, in

general gives better results than the non-standard

run, SoToP. One possible reason is apart from

the source name segmentation step, SoToP has

more steps allowing error propagation as the

mapping was done separately with sound and

tone, whereas GAP directly maps English seg-

ments to Chinese segments at the graphemic

level.

Metric GAP SoToP

ACC 0.645 0.597

Mean F-score 0.860 0.836

MRR 0.732 0.674

MAPref 0.645 0.597

MAP10 0.223 0.206

MAPsys 0.225 0.335

Table 1. System Testing Results

78

4.4 Official Results

The two systems were trained on both the train-

ing data and development data together, and run

on the test data. The official results are shown in

Table 2. The performance of the two systems is

in the mid range amongst all participating sys-

tems, including standard and non-standard runs.

Despite the shortcoming and lower performance

of SoToP, modelling the sound and tone patterns

has its merits for handling homophones. For ex-

ample, the expected transliteration for Mcgiveran,

麦吉弗伦 mai4-ji2-fu2-lun2, was ranked 6th by

GAP but 1st by SoToP. The segment “ve” is

much more likely rendered as 夫 fu1 than as 弗
fu2, but ToM in SoToP was able to capture the

preferred tone pattern 4-2-2-2 in this case.

Metric GAP SoToP

ACC 0.621 0.587

Mean F-score 0.852 0.834

MRR 0.718 0.665

MAPref 0.621 0.587

MAP10 0.220 0.203

MAPsys 0.222 0.330

Table 2. Official Results on Test Data

5 Future Work and Conclusion

Thus we have reported on the two systems par-

ticipating in the NEWS shared task. The stan-

dard run, GAP, relies on direct orthographic

mapping and approximates local phonological

context with neighbouring graphemes to help

resolve graphemic ambiguity. The non-standard

run, SoToP, attempts to address the homophone

issues in Chinese, by modelling the sound and

tone patterns in parallel, and subsequently com-

bining them to generate transliteration candidates.

In general GAP gives better results than SoToP,

while both are in the mid range amongst all par-

ticipating systems. Future work includes more

error analysis and improving the accuracy of in-

dividual steps to minimise error propagation.

The possible combination of the two methods is

also worth further investigation.

Acknowledgements

The work described in this paper was substan-

tially supported by a grant from City University

of Hong Kong (Project No. 7002203).

References

Knight, K. and Graehl, J. (1998) Machine Translit-

eration. Computational Linguistics, 24(4):599-612.

Kuo, J-S. and Li, H. (2008) Mining Transliterations

from Web Query Results: An Incremental Ap-

proach. In Proceedings of SIGHAN-6, Hyderabad,

India, pp.16-23.

Li, H., Zhang, M. and Su, J. (2004) A Joint Source-

Channel Model for Machine Transliteration. In

Proceedings of the 42nd Annual Meeting of ACL,

Barcelona, Spain, pp.159-166.

Li, H., Sim, K.C., Kuo, J-S. and Dong, M. (2007)

Semantic Transliteration of Personal Names. In

Proceedings of 45th Annual Meeting of ACL, Pra-

gue, Czech Republic, pp.120-127.

Li, H., Kumaran, A., Zhang, M. and Pervouchine, V.

(2009) Whitepaper of NEWS 2009 Machine

Transliteration Shared Task. In Proceedings of

ACL-IJCNLP 2009 Named Entities Workshop

(NEWS 2009), Singapore.

Oh, J-H. and Choi, K-S. (2005) An Ensemble of

Grapheme and Phoneme for Machine Translitera-

tion. In R. Dale et al. (Eds.), Natural Language

Processing – IJCNLP 2005. Springer, LNAI Vol.

3651, pp.451-461.

Tao, T., Yoon, S-Y., Fister, A., Sproat, R. and Zhai, C.

(2006) Unsupervised Named Entity Transliteration

Using Temporal and Phonetic Correlation. In Pro-

ceedings of EMNLP 2006, Sydney, Australia,

pp.250-257.

Virga, P. and Khudanpur, S. (2003) Transliteration of

Proper Names in Cross-lingual Information Re-

trieval. In Proceedings of the ACL2003 Workshop

on Multilingual and Mixed-language Named Entity

Recognition.

Xinhua News Agency. (1992) Chinese Translitera-

tion of Foreign Personal Names. The Commercial

Press.

Sound Model (SoM)

Tone Model (ToM)

Candidate Generator English name
Chinese

candidates +

Figure 1. The SoToP Architecture for E2C Transliteration

79

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 80–83,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

English to Hindi Machine Transliteration System at NEWS 2009

Amitava Das, Asif Ekbal, Tapabrata Mandal and Sivaji Bandyopadhyay

Computer Science and Engineering Department

Jadavpur University, Kolkata-700032, India

amitava.research@gmail.com, asif.ekbal@gmail.com, ta-

pabratamondal@gmail.com, sivaji_cse_ju@yahoo.com

Abstract

This paper reports about our work in the

NEWS 2009 Machine Transliteration Shared

Task held as part of ACL-IJCNLP 2009. We

submitted one standard run and two non-

standard runs for English to Hindi translitera-

tion. The modified joint source-channel model

has been used along with a number of alterna-

tives. The system has been trained on the

NEWS 2009 Machine Transliteration Shared

Task datasets. For standard run, the system

demonstrated an accuracy of 0.471 and the

mean F-Score of 0.861. The non-standard runs

yielded the accuracy and mean F-scores of

0.389 and 0.831 respectively in the first one

and 0.384 and 0.828 respectively in the second

one. The non-standard runs resulted in sub-

stantially worse performance than the standard

run. The reasons for this are the ranking algo-

rithm used for the output and the types of to-

kens present in the test set.

1 Introduction

Technical terms and named entities (NEs) consti-

tute the bulk of the Out Of Vocabulary (OOV)

words. Named entities are usually not found in

bilingual dictionaries and are very generative in

nature. Proper identification, classification and

translation of Named entities (NEs) are very im-

portant in many Natural Language Processing

(NLP) applications. Translation of NEs involves

both translation and transliteration. Translitera-

tion is the method of translating into another lan-

guage by expressing the original foreign word

using characters of the target language preserv-

ing the pronunciation in their source language.

Thus, the central problem in transliteration is

predicting the pronunciation of the original word.

Transliteration between two languages that use

the same set of alphabets is trivial: the word is

left as it is. However, for languages those use

different alphabet sets the names must be transli-

terated or rendered in the target language alpha-

bets. Transliteration of NEs is necessary in many

applications, such as machine translation, corpus

alignment, cross-language Information Retrieval,

information extraction and automatic lexicon

acquisition. In the literature, a number of transli-

teration algorithms are available involving Eng-

lish (Li et al., 2004; Vigra and Khudanpur, 2003;

Goto et al., 2003), European languages (Marino

et al., 2005) and some of the Asian languages,

namely Chinese (Li et al., 2004; Vigra and Khu-

danpur, 2003), Japanese (Goto et al., 2003;

Knight and Graehl, 1998), Korean (Jung et al.,

2000) and Arabic (Al-Onaizan and Knight,

2002a; Al-Onaizan and Knight, 2002c). Recent-

ly, some works have been initiated involving

Indian languages (Ekbal et al., 2006; Ekbal et al.,

2007; Surana and Singh, 2008).

2 Machine Transliteration Systems

Three transliteration models have been used that

can generate the Hindi transliteration from an

English named entity (NE). An English NE is

divided into Transliteration Units (TUs) with

patterns C*V*, where C represents a consonant

and V represents a vowel. The Hindi NE is di-

vided into TUs with patterns C+M?, where C

represents a consonant or a vowel or a conjunct

and M represents the vowel modifier or matra.

The TUs are the lexical units for machine transli-

teration. The system considers the English and

Hindi contextual information in the form of col-

located TUs simultaneously to calculate the plau-

sibility of transliteration from each English TU

to various Hindi candidate TUs and chooses the

one with maximum probability. This is equiva-

lent to choosing the most appropriate sense of a

word in the source language to identify its repre-

sentation in the target language. The system

learns the mappings automatically from the bi-

lingual NEWS training set being guided by lin-

80

guistic features/knowledge. The system consid-

ers the linguistic knowledge in the form of con-

juncts and/or diphthongs in English and their

possible transliteration in Hindi. The output of

the mapping process is a decision-list classifier

with collocated TUs in the source language and

their equivalent TUs in collocation in the target

language along with the probability of each deci-

sion obtained from the training set. Linguistic

knowledge is used in order to make the number

of TUs in both the source and target sides equal.

A Direct example base has been maintained that

contains the bilingual training examples that do

not result in the equal number of TUs in both the

source and target sides during alignment. The

Direct example base is checked first during ma-

chine transliteration of the input English word. If

no match is obtained, the system uses direct or-

thographic mapping by identifying the equivalent

Hindi TU for each English TU in the input and

then placing the Hindi TUs in order. The transli-

teration models are described below in which S

and T denotes the source and the target words

respectively:

● Model A

This is essentially the joint source-channel model

(Hazhiou et al., 2004) where the previous TUs

with reference to the current TUs in both the

source (s) and the target sides (t) are considered

as the context.

1

1

(|) (, | ,)
k k

k

K

P S T P s t s t
−

=

= < > < >∏

() arg max { () (|)}S T S P T P S T
T

→ = ×

● Model B

This is basically the trigram model where the

previous and the next source TUs are considered

as the context.

 1, 1

1

(|) (, |)
k k k

k

K

P S T P s t s s
− +

=

= < >∏

 () arg max { () (|)}S T S P T P S T
T

→ = ×

● Model C

In this model, the previous and the next TUs in

the source and the previous target TU are

considered as the context. This is the improved

modified joint source-channel model.

1, 1

1

(|) (, | ,)
k k k

k

K

P S T P s t s t s
− +

=

= < > < >∏

 () arg max { () (|)}S T S P T P S T
T

→ = ×

For NE transliteration, P(T), i.e., the

probability of transliteration in the target

language, is calculated from a English-Hindi

bilingual database of approximately 961,890

English person names, collected from the web
1
.

If, T is not found in the dictionary, then a very

small value is assigned to P(T). These models

have been desribed in details in Ekbal et al.

(2007).

● Post-Processing

Depending upon the nature of errors involved in

the results, we have devised a set of translitera-

tion rules. A few rules have been devised to pro-

duce more spelling variations. Some examples

are given below.

Spelling variation rules

Badlapur बदलापुर | वदलापुर

Shree | Shri �ी

3 Experimental Results

We have trained our transliteration models using

the English-Hindi datasets obtained from the

NEWS 2009 Machine Transliteration Shared

Task (Li et al., 2009). A brief statistics of the

datasets are presented in Table 1. Out of 9975

English-Hindi parallel examples in the training

set, 4009 are multi-words. During training, we

have split these multi-words into collections of

single word transliterations. It was observed that

the number of tokens in the source and target

sides mismatched in 22 multi-words and these

cases were not considered further. Following are

some examples:

Paris Charles de Gaulle पे�रस

रॉसे चा�स� ड े�यलेू
South Arlington Church of

Christ साउथ अ�ल��टन
In the training set, some multi-words were partly

translated and not transliterated. Such examples

were dropped from the training set. Finally, the

training set consists of 15905 single word Eng-

lish-Hindi parallel examples.

1
http://www.eci.gov.in/DevForum/Fullname.asp

81

Set Number of examples

Training 9975

Development 974

Test 1000

Table 1. Statistics of Dataset

The output of the modified joint source-

channel model is given more priority during out-

put ranking followed by the trigram and the joint

source-channel model. During testing, the Direct

example base is searched first to find the transli-

teration. Experimental results on the develop-

ment set yielded the accuracy of 0.442 and mean

F-score of 0.829. Depending upon the nature of

errors involved in the results, we have devised a

set of transliteration rules. The use of these trans-

literation rules increased the accuracy and mean

F-score values up to 0.489 and 0.881 respective-

ly.

The system has been evaluated for the test set

and the detailed reports are available in Li et al.

(2009). There are 88.88% unknown examples in

the test set. We submitted one standard run in

which the outputs are provided for the modified

joint source-channel model (Model C), trigram

model (Model B) and joint source-channel model

(Model A). The same ranking procedure (i.e.,

Model C, Model B and Model A) has been fol-

lowed as that of the development set. The output

of each transliteration model has been post-

processed with the set of transliteration rules. For

each word, three different outputs are provided in

a ranked order. If the outputs of any two models

are same for any word then only two outputs are

provided for that particular word. Post-

processing rules generate more number of possi-

ble transliteration output. Evaluation results of

the standard run are shown in Table 2.

Parameters Accuracy

Accuracy in top-1 0.471

Mean F-score 0.861

Mean Reciprocal Rank

(MRR)

0.519

Mean Average Preci-

sion (MAP)ref

0.463

MAP10 0.162

MAPsys 0.383

Table 2. Results of the standard run

The results of the two non-standard runs are

presented in Table 3 and Table 4 respectively.

Parameters Accuracy

Accuracy in top-1 0.389

Mean F-score 0.831

Mean Reciprocal Rank

(MRR)

0.487

Mean Average Preci-

sion (MAP)ref

0.385

MAP10 0.16

MAPsys 0.328

Table 3. Results of the non-standard run 1

Parameters Accuracy

Accuracy in top-1 0.384

Mean F-score 0.823

Mean Reciprocal Rank

(MRR)

0.485

Mean Average Precision

(MAP)ref

0.380

MAP10 0.16

MAPsys 0.325

Table 4. Results of the non-standard run2

In both the non-standard runs, we have used

an English-Hindi bilingual database of approx-

imately 961, 890 examples that have been col-

lected from the web
2
. This database contains the

(frequency) of the corresponding English-Hindi

name pair. Along with the outputs of three mod-

els, the output obtained from this bilingual data-

base has been also provided for each English

word. In the first non-standard run, only the most

frequent transliteration has been considered. But,

in the second non-standard run all the possible

transliteration have been considered. It is to be

noted that in these two non-standard runs, the

transliterations obtained from the bilingual data-

base have been kept first in the ranking. Results

of the tables show quite similar performance in

both the runs. But the non-standard runs resulted

in substantially worse performance than the stan-

dard run. The reasons for this are the ranking

algorithm used for the output and the types of

tokens present in the test set. The additional da-

2
http://www.eci.gov.in/DevForum/Fullname.asp

82

taset used for the non-standard runs is mainly

census data consisting of only Indian person

names. The NEWS 2009 Machine Transliteration

Shared Task training set is well distributed with

foreign names (Ex. Sweden, Warren), common

nouns (Mahfuz, Darshanaa) and a few non

named entities. Hence the training set for the

non-standard runs was biased towards the Indian

person name transliteration pattern. Additional

training set was quite larger (961, 890) than the

shared task training set (9,975). Actually outputs

of non-standard runs have more alternative trans-

literation outputs than the standard set. That

means non-standard sets are superset of standard

set. Our observation is that the ranking algorithm

used for the output and biased training are the

main reasons for the worse performance of the

non-standard runs.

4 Conclusion

This paper reports about our works as part of the

NEWS 2009 Machine Transliteration Shared

Task. We have used the modified joint source-

channel model along with two other alternatives

to generate the Hindi transliteration from an Eng-

lish word (to generate more spelling variations of

Hindi names). We have also devised some post-

processing rules to remove the errors. During

standard run, we have obtained the word accura-

cy of 0.471 and mean F-score of 0.831. In non-

standard rune, we have used a bilingual database

obtained from the web. The non-standard runs

yielded the word accuracy and mean F-score

values of 0.389 and 0.831 respectively in the first

run and 0.384 and 0.823 respectively in the

second run.

References

Al-Onaizan, Y. and Knight, K. 2002a. Named

Entity Translation: Extended Abstract. In

Proceedings of the Human Language Tech-

nology Conference, 122– 124.

Al-Onaizan, Y. and Knight, K. 2002b. Translat-

ing Named Entities using Monolingual and

Bilingual Resources. In Proceedings of the

40th Annual Meeting of the ACL, 400–408,

USA.

Ekbal, A. Naskar, S. and Bandyopadhyay, S.

2007. Named Entity Transliteration. Interna-

tional Journal of Computer Processing of

Oriental Languages (IJCPOL), Volume

(20:4), 289-310, World Scientific Publishing

Company, Singapore.

Ekbal, A., Naskar, S. and Bandyopadhyay, S.

2006. A Modified Joint Source Channel

Model for Transliteration. In Proceedings of

the COLING-ACL 2006, 191-198, Australia.

Goto, I., Kato, N., Uratani, N. and Ehara, T.

2003. Transliteration Considering Context

Information based on the Maximum Entropy

Method. In Proceeding of the MT-Summit

IX, 125–132, New Orleans, USA.

Jung, Sung Young , Sung Lim Hong and Eunok

Paek. 2000. An English to Korean Translite-

ration Model of Extended Markov Window.

In Proceedings of International Conference

on Computational Linguistics (COLING

2000), 383-389.

Knight, K. and Graehl, J. 1998. Machine Transli-

teration, Computational Linguistics, Volume

(24:4), 599–612.

Kumaran, A. and Tobias Kellner. 2007. A gener-

ic framework for machine transliteration. In

Proc. of the 30th SIGIR.

Li, Haizhou, A Kumaran, Min Zhang and Vla-

dimir Pervouchine. 2009. Whitepaper of

NEWS 2009 Machine Transliteration Shared

Task. In Proceedings of ACL-IJCNLP 2009

Named Entities Workshop (NEWS 2009), Sin-

gapore.

Li, Haizhou, A Kumaran, Vladimir Pervouchine

and Min Zhang. 2009. Report on NEWS 2009

Machine Transliteration Shared Task. In Pro-

ceedings of ACL-IJCNLP 2009 amed Entities

Workshop (NEWS 2009), Singapore.

Li, Haizhou, Min Zhang and Su Jian. 2004. A

Joint Source-Channel Model for Machine

Transliteration. In Proceedings of the 42
nd

Annual Meeting of the ACL, 159-166. Spain.

Marino, J. B., R. Banchs, J. M. Crego, A. de

Gispert, P. Lambert, J. A. Fonollosa and M.

Ruiz. 2005. Bilingual n-gram Statistical

Machine Translation. In Proceedings of the

MT-Summit X, 275–282.

Surana, Harshit, and Singh, Anil Kumar. 2008. A

More Discerning and Adaptable Multilingual

Transliteration Mechanism for Indian Lan-

guages. In Proceedings of the 3
rd

 Interna-

tional Joint Conference on Natural Lan-

guage Processing (IJCNLP-08), 64-71, In-

dia.

Vigra, Paola and Khudanpur, S. 2003. Translite-

ration of Proper Names in Cross-Lingual In-

formation Retrieval. In Proceedings of the

ACL 2003 Workshop on Multilingual and

Mixed-Language Named Entity Recognition,

57–60.

83

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 84–87,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Improving transliteration accuracy using word-origin detection and
lexicon lookup

Mitesh M. Khapra
IIT Bombay

miteshk@cse.iitb.ac.in

Pushpak Bhattacharyya
IIT Bombay

pb@cse.iitb.ac.in

Abstract

We propose a framework for translit-
eration which uses (i) a word-origin
detection engine (pre-processing) (ii) a
CRF based transliteration engine and (iii)
a re-ranking model based on lexicon-
lookup (post-processing). The results
obtained forEnglish-Hindi and English-
Kannada transliteration show that the pre-
processing and post-processing modules
improve the top-1 accuracy by 7.1%.

1 Introduction

Machine transliteration is the method of automati-
cally converting Out-Of-Vocabulary (OOV) words
in one language to their phonetic equivalents in
another language. An attempt is made to retain
the original pronunciation of the source word to
as great an extent as allowed by the orthographic
and phonological rules of the target language. This
is not a great challenge for language pairs like
Hindi-Marathi which have very similar alphabetic
and phonetic sets. However, the problem becomes
non-trivial for language pairs like English-Hindi
and English-Kannada which have reasonably dif-
ferent alphabet sets and sound systems.

Machine transliteration find its application in
Cross-Lingual Information Retrieval (CLIR) and
Machine Translation (MT). In CLIR, machine
transliteration can help in translating the OOV
terms like proper names and technical terms which
frequently appear in the source language queries
(e.g. Jaipur in “Jaipur palace”). Similarly it can
help improve the performance of MT by translat-
ing proper names and technical terms which are
not present in the translation dictionary.

Current models for transliteration can be clas-
sified asgrapheme-based models, phoneme-based
models andhybrid models. Grapheme-based mod-
els like source channel model (Lee and Choi,

1998), Maximum Entropy Model (Goto et al.,
2003), Conditional Random Fields (Veeravalli et
al., 2008) and Decision Trees (Kang and Choi,
2000) treat transliteration as an orthographic pro-
cess and try to map the source graphemes di-
rectly to the target graphemes. Phoneme based
models like the ones based on Weighted Finite
State Transducers (WFST) (Knight and Graehl,
1997) and extended Markov window (Jung et al.,
2000) treat transliteration as a phonetic process
rather than an orthographic process. Under this
framework, transliteration is treated as a conver-
sion from source grapheme to source phoneme
followed by a conversion from source phoneme
to target grapheme. Hybrid models either use a
combination of a grapheme based model and a
phoneme based model (Stalls and Knight, 1998)
or capture the correspondence between source
graphemes and source phonemes to produce target
language graphemes (Oh and Choi, 2002).

Combining any of the above transliteration en-
gines with pre-processing modules like word-
origin detection (Oh and Choi, 2002) and/or
post-processing modules like re-ranking using
clues from monolingual resources (Al-Onaizan
and Knight, 2002) can enhance the performance of
the system. We propose such a framework which
uses (i) language model based word-origin detec-
tion (ii) CRF based transliteration engine and (iii)
a re-ranking model based on lexicon lookup on the
target language (Hindi and Kannada in our case).

The roadmap of the paper is as follows. In
section 2 we describe the 3 components of the
proposed framework. In section 3 we present
the results for English-Hindi and English-Kannada
transliteration on the datasets (Kumaran and
Kellner, 2007) released for NEWS 2009 Ma-
chine Transliteration Shared Task1(Haizhou et al.,
2009). Section 4 concludes the paper.

1https://translit.i2r.a-star.edu.sg/news2009/

84

2 Proposed framework for
Transliteration

Figure 1: Proposed framework for transliteration.

2.1 Word Origin Detection

To emphasize the importance of Word Origin De-
tection we consider the example of letter‘d’.
When‘d’ appears in a name of Western origin (e.g.
Daniel, Durban) and is not followed by the letter
‘h’, it invariably gets transliterated as Hindi letter
X, whereas, if it appears in a name of Indic origin
(e.g. Indore, Jharkhand) then it is equally likely to
be transliterated asd orX. This shows that the de-
cision is influenced by the origin of the word. The
Indic dataset (Hindi, Kannada, and Tamil) for the
Shared Task consisted of a mix of Indic and West-
ern names. We therefore felt the need of train-
ing separate models for words of Indic origin and
words of Western origin.

For this we needed to separate the words in
the training data based on their origin. We first
manually classified 3000 words from the training
set into words of Indic origin and Western origin.
These words were used as seed input for the boot-
strapping algorithm described below:

1. Build two n-gram language models: one for
the already classified names of Indic origin
and another for the names of Western origin.
Here, by n-gram we mean n-character ob-
tained by splitting the words into a sequence
of characters.

2. Split each of the remaining words into a se-
quence of characters and find the probability
of this sequence using the two language mod-
els constructed in step 1.

3. If the probability of a word (i.e. a sequence
of characters) is higher in the Indic language
model than in the Western language model
then classify it as Indic word else classify it
as Western word.

4. Repeat steps 1-3 till all words have been clas-
sified.

Thus, we classified the entire training set into
words of Indic origin and words of Western origin.
The two language models (one for words of Indic
origin and another for words of Western origin)
thus obtained were then used to classify the test
data using steps 2 and 3 of the above algorithm.
Manual verification showed that this method was
able to determine the origin of the words in the test
data with an accuracy of 97%.

2.2 CRF based transliteration engine

Conditional Random Fields (Lafferty et al., 2001)
are undirected graphical models used for labeling
sequential data. Under this model, the conditional
probability distribution of the target word given
the source word is given by,

P (Y |X;λ) =
1

Z(X)
· e

PT
t=1

PK
k=1

λkfk(Yt−1,Yt,X,t)

(1)

where,

X = source word (English)

Y = target word (Hindi,Kannada)

T = length of source word (English)

K = number of features

λk = feature weight

Z(X) = normalization constant

CRF++2 which is an open source implemen-
tation of CRF was used for training and decod-
ing. GIZA++ (Och and Ney, 2000), which is a
freely available implementation of the IBM align-
ment models (Brown et al., 1993) was used to get
character level alignments for English-Hindi word
pairs in the training data. Under this alignment,
each character in the English word is aligned to
zero or more characters in the corresponding Hindi
word. The following features are then generated
using this character-aligned data (hereei and hi

are the characters at positioni of the source word
and target word respectively):

• hi andej such thati − 2 ≤ j ≤ i + 2

• hi and source character bigrams ({ei−1, ei}
or {ei, ei+1})

• hi and source character trigrams ({ei−2,
ei−1, ei} or {ei−1, ei, ei+1} or {ei, ei+1,
ei+2})

2http://crfpp.sourceforge.net/

85

• hi, hi−1 andej such thati − 2 ≤ j ≤ i + 2

• hi, hi−1 and source character bigrams

• hi, hi−1 and source character trigrams

Two separate models were trained: one for the
words of Indic origin and another for the words
of Western origin. At the time of testing, the
words were first classified as Indic origin words
and Western origin words using the classifier de-
scribed in section 2.1. The top-10 transliterations
for each word were then generated using the cor-
rect CRF model depending on the origin of the
word.

2.3 Re-ranking using lexicon lookup

Since the dataset for the Shared Task contains
words of Indic origin there is a possibility that the
correct transliteration of some of these words may
be found in a Hindi lexicon. Such a lexicon con-
taining 90677 unique words was constructed by
extracting words from the Hindi Wordnet3. If a
candidate transliteration generated by the CRF en-
gine is found in this lexicon then its rank is in-
creased and it is moved towards the top of the list.
If multiple outputs are found in the lexicon then all
such outputs are moved towards the top of the list
and the relative ranking of these outputs remains
the same as that assigned by the CRF engine. For
example, if the 4th and 6th candidate generated by
the CRF engine are found in the lexicon then these
two candidates will be moved to positions 1 and 2
respectively. We admit that this way of moving
candidates to the top of the list is adhoc. Ideally, if
the lexicon also stored the frequency of each word
then the candidates could be re-ranked using these
frequencies. But unfortunately the lexicon does
not store such frequency counts.

3 Results

The system was tested for English-Hindi and
English-Kannada transliteration using the dataset
(Kumaran and Kellner, 2007) released for NEWS
2009 Machine Transliteration Shared Task. We
submitted one standard run and one non-standard
run for the English-Hindi task and one standard
run for the English-Kannada task. The re-ranking
module was used only for the non-standard run as
it uses resources (lexicon) other than those pro-
vided for the task. We did not have a lexicon

3http://www.cfilt.iitb.ac.in/wordnet/webhwn

for Kannada so were not able to apply the re-
ranking module for English-Kannada task. The
performance of the system was evaluated us-
ing 6 measures,viz., Word Accuracy in Top-
1 (ACC), Fuzziness in Top-1 (Mean F-score),
Mean Reciprocal Rank (MRR), MAPref , MAP10

and MAPsys. Please refer to the white paper of
NEWS 2009 Machine Transliteration Shared Task
(Haizhou et al., 2009) for more details of these
measures.

Table 1 and Table 2 report the results4 for
English-Hindi and English-Kannada translitera-
tion respectively. For English-Hindi we report
3 results: (i) without any pre-processing (word-
origin detection) or post-processing (re-ranking)
(ii) with pre-processing but no post-processing and
(iii) with both pre-processing and post-processing.
The results clearly show that the addition of these
modules boosts the performance. The use of
word-origin detection boosts the top-1 accuracy by
around 0.9% and the use of lexicon lookup based
re-ranking boosts the accuracy by another 6.2%.
Thus, together these two modules give an incre-
ment of 7.1% in the accuracy. Corresponding im-
provements are also seen in the other 5 metrics.

4 Conclusion

We presented a framework for transliteration
which uses (i) a word-origin detection engine
(pre-processing) (ii) a CRF based transliteration
engine and (iii) a re-ranking model based on
lexicon-lookup (post-processing). The results
show that this kind of pre-processing and post-
processing helps to boost the performance of
the transliteration engine. The re-ranking using
lexicon lookup is slightly adhoc as ideally the
re-ranking should take into account the frequency
of the words in the lexicon. Since such frequency
counts are not available it would be useful to find
the web counts for each transliteration candidate
using a search engine and use these web counts to
re-rank the candidates.

4Please note that the results reported in this paper are bet-
ter than the results we submitted to the shared task. This im-
provement was due to the correction of an error in the tem-
plate file given as input to CRF++.

86

Method ACC Mean
F-score

MRR MAPref MAP10 MAPsys

CRF Engine
(no word origin detection, no re-
ranking)

0.408 0.878 0.534 0.403 0.188 0.188

CRF Engine +
Word-Origin detection
(no re-ranking)
Standard run

0.417 0.877 0.546 0.409 0.192 0.192

CRF Engine +
Word-Origin detection +
Re-ranking
Non-Standard run

0.479 0.884 0.588 0.475 0.208 0.208

Table 1: Results for English-Kannada transliteration.
Method Accuracy

(top1)
Mean
F-score

MRR MAPref MAP10 MAPsys

CRF Engine +
Word-Origin detection
(no re-ranking)
Standard run

0.335 0.859 0.453 0.327 0.154 0.154

Table 2: Results for English-Kannada transliteration.

References

B. J. Kang and K. S. Choi 2000.Automatic translitera-
tion and back-transliteration by decision tree learn-
ing. Proceedings of the 2nd International Confer-
ence on Language Resources and Evaluation, 1135-
1411.

Bonnie Glover Stalls and Kevin Knight 1998.Trans-
lating Names and Technical Terms in Arabic Text.
Proceedings of COLING/ACL Workshop on Com-
putational Approaches to Semitic Languages, 34-41.

Haizhou Li, A Kumaran, Min Zhang, Vladimir Pervou-
chine 2009. Whitepaper of NEWS 2009 Machine
Transliteration Shared Task. Proceedings of ACL-
IJCNLP 2009 Named Entities Workshop (NEWS
2009).

I. Goto and N. Kato and N. Uratani and T. Ehara
2003. Transliteration considering context informa-
tion based on the maximum entropy method. Pro-
ceedings of MT-Summit IX, 125132.

J. S. Lee and K. S. Choi. 1998.English to Korean
statistical transliteration for information retrieval.
Computer Processing of Oriental Languages, 17-37.

John Lafferty, Andrew McCallum, Fernando Pereira
2001. Conditional Random Fields: Probabilis-
tic Models for Segmenting and Labeling Sequence
Data. In Proceedings of the Eighteenth International
Conference on Machine Learning.

Jong-hoon Oh and Key-sun Choi 2002.An English-
Korean Transliteration Model Using Pronunciation
and Contextual Rules. Proceedings of the 19th Inter-
national Conference on Computational Linguistics
(COLING), 758-764.

Kevin Knight and Jonathan Graehl 1997.Machine
transliteration. Computational Linguistics, 128-
135.

Kumaran, A. and Kellner, Tobias 2007.A generic
framework for machine transliteration. SIGIR ’07:
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, 721-722.

Och Franz Josef and Hermann Ney 2000.Improved
Statistical Alignment Models. Proc. of the 38th An-
nual Meeting of the Association for Computational
Linguistics, pp. 440-447

P. F. Brown, S. A. Della Pietra, and R. L. Mercer 1993.
The mathematics of statistical machine translation:
Parameter estimation. Computational Linguistics,
19(2):263-311.

Sung Young Jung and SungLim Hong and Eunok Paek
2000.An English to Korean transliteration model of
extended Markov window. Proceedings of the 18th
conference on Computational linguistics, 383-389.

Suryaganesh Veeravalli and Sreeharsha Yella and
Prasad Pingali and Vasudeva Varma 2008.Statisti-
cal Transliteration for Cross Language Information
Retrieval using HMM alignment model and CRF.
Proceedings of the 2nd workshop on Cross Lingual
Information Access (CLIA) Addressing the Infor-
mation Need of Multilingual Societies.

Yaser Al-Onaizan and Kevin Knight 2001.Translating
named entities using monolingual and bilingual re-
sources. ACL ’02: Proceedings of the 40th Annual
Meeting on Association for Computational Linguis-
tics, 400-408.

87

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 88–91,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

A Noisy Channel Model for Grapheme-based Machine Transliteration

Yuxiang Jia, Danqing Zhu, Shiwen Yu
Institute of Computational Linguistics, Peking University, Beijing, China

Key Laboratory of Computational Linguistics, Ministry of Education, China
{yxjia,zhudanqing,yusw}@pku.edu.cn

Abstract

Machine transliteration is an important Natu-
ral Language Processing task. This paper
proposes a Noisy Channel Model for Graph-
eme-based machine transliteration. Moses, a
phrase-based Statistical Machine Translation
tool, is employed for the implementation of
the system. Experiments are carried out on
the NEWS 2009 Machine Transliteration
Shared Task English-Chinese track. English-
Chinese back transliteration is studied as well.

1 Introduction

Transliteration is defined as phonetic translation
of names across languages. Transliteration of
Named Entities is necessary in many applications,
such as machine translation, corpus alignment,
cross-language information retrieval, information
extraction and automatic lexicon acquisition.

The transliteration modeling approaches can
be classified into phoneme-based, grapheme-
based and hybrid approach of phoneme and
grapheme.

Many previous studies are devoted to the pho-
neme-based approach (Knight and Graehl, 1998;
Virga and Khudanpur, 2003). Suppose that E is
an English name and C is its Chinese translitera-
tion. The phoneme-based approach first converts
E into an intermediate phonemic representation p,
and then converts p into its Chinese counterpart
C. The idea is to transform both source and target
names into comparable phonemes so that the
phonetic similarity between two names can be
measured easily.

The grapheme-based approach has also at-
tracted much attention (Li et al., 2004). It treats
the transliteration as a statistical machine transla-
tion problem under monotonic constraint. The
idea is to obtain the bilingual orthographical cor-

respondence directly to reduce the possible errors
introduced in multiple conversions.

The hybrid approach attempts to utilize both
phoneme and grapheme information for translit-
eration. (Oh and Choi, 2006) proposed a way to
fuse both phoneme and grapheme features into a
single learning process.

The rest of this paper is organized as follows.
Section 2 briefly describes the noisy channel
model for machine transliteration. Section 3 in-
troduces the model’s implementation details. Ex-
periments and analysis are given in section 4.
Conclusions and future work are discussed in
section 5.

2 Noisy Channel Model

Machine transliteration can be regarded as a
noisy channel problem. Take the English-
Chinese transliteration as an example. An Eng-
lish name E is considered as the output of the
noisy channel with its Chinese transliteration C
as the input. The transliteration process is as fol-
lows. The language model generates a Chinese
name C, and the transliteration model converts C
into its back-transliteration E. The channel de-
coder is used to find Ĉ that is the most likely to
the word C that gives rise to E. Ĉ is the result
transliteration of E.

The process can be formulated with equation 1.

)(
)|()(maxarg)|(maxarg

EP
CEPCPECPC

CC
==

)
(1)

Since P(E) is constant for the given E, we can
rewrite equation 1 as follows:

)|()(maxarg CEPCPC
C

=
)

 (2)

The language model P(C) is simplified as n-
gram model of Chinese characters and is trained
with a Chinese name corpus. The transliteration
model P(E|C) is estimated from a parallel corpus
of English names and their Chinese translitera-
tions. The channel decoder combines the lan-

88

guage model and transliteration model to gener-
ate Chinese transliterations for given English
names.

3 Implementation

Moses (Koehn et al., 2007), a phrase-based sta-
tistical machine translation tool, is leveraged to
implement the noisy channel model for graph-
eme-based machine transliteration without reor-
dering process (Matthews, 2007). Figure 1 is an
illustration of the phrase alignment result in ma-
chine transliteration of the name pairs “Clinton”
and “克林顿”, where characters are as words and
combinations of characters are as phrases.

Figure 1. Example phrase alignment

A collection of tools are used by Moses.

SRILM is used to build statistical language mod-
els. GIZA++ is used to perform word alignments
over parallel corpora. Mert is used for weight
optimization. It includes several improvements to
the basic training method including randomized
initial conditions and permuted model order and
dynamic parameter range expansion or restric-
tion. Bleu, an automatic machine translation
evaluation metric, is used during Mert optimiza-
tion. Moses’ beam-search decoding algorithm is
an efficient search algorithm that quickly finds
the highest probability translation among the ex-
ponential number of choices.

Moses automatically trains translation models
for any language pairs with only a collection of
parallel corpora. The parallel transliteration cor-
pora need to be preprocessed at first. English
names need to be lowercased. Both English
names and Chinese transliterations are space de-
limited. Samples of preprocessed input are
shown in figure 2.

a a b y e 奥 比
a a g a a r d 埃 格 德
a a l l i b o n e 阿 利 本
a a l t o 阿 尔 托
a a m o d t 阿 莫 特

Figure 2. Sample preprocessed name pairs

4 Experiments

This section describes the data sets, experimental
setup, experiment results and analysis.

4.1 Data Sets

The training set contains 31961 paired names
between English and Chinese. The development
set has 2896 pairs. 2896 English names are given
to test the English-Chinese transliteration per-
formance.

Some statistics on the training data are shown
in table 1. All the English-Chinese transliteration
pairs are distinct. English names are unique
while some English names may share the same
Chinese transliteration. So the total number of
unique Chinese names is less than that of English
names. The Chinese characters composing the
Chinese transliterations are limited, where there
are only 370 unique characters in the 25033 Chi-
nese names. Supposing that the name length is
computed as the number of characters it contains,
the average length of English names is about
twice that of Chinese names. Name length is use-
ful when considering the order of the character n-
gram language model.

#unique transliteration pairs 31961
#unique English names 31961
#unique Chinese names 25033
#unique Chinese characters 370
Average number of English characters
per name

6.8231

Average number of Chinese characters
per name

3.1665

Maximum number of English charac-
ters per name

15

Maximum number of Chinese charac-
ters per name

7

Table 1. Training data statistics

4.2 Experimental setup

Both English-Chinese forward transliteration and
back transliteration are studied. The process can
be divided into four steps: language model build-
ing, transliteration model training, weight tuning,
and decoding. When building language model,
data smoothing techniques Kneser-Ney and in-
terpolate are employed. In transliteration model
training step, the alignment heuristic is grow-
diag-final, while other parameters are default
settings. Tuning parameters are all defaults.
When decoding, the parameter distortion-limit is
set to 0, meaning that no reordering operation is

c lin ton

克 林 顿

89

needed. The system outputs the 10-best distinct
transliterations.

The whole training set is used for language
model building and transliteration model training.
The development set is used for weight tuning
and system testing.

4.3 Evaluation Metrics

The following 6 metrics are used to measure the
quality of the transliteration results (Li et al.,
2009a): Word Accuracy in Top-1 (ACC), Fuzzi-
ness in Top-1 (Mean F-score), Mean Reciprocal
Rank (MRR), MAPref, MAP10, and MAPsys.

In the data of English-Chinese transliteration
track, each source name only has one reference
transliteration. Systems are required to output the
10-best unique transliterations for every source
name. Thus, MAPref equals ACC, and MAPsys is
the same or very close to MAP10. So we only
choose ACC, Mean F-score, MRR, and MAP10
to show the system performance.

4.4 Results

The language model n-gram order is an impor-
tant factor impacting transliteration performance,
so we experiment on both forward and back
transliteration tasks with increasing n-gram order,
trying to find the order giving the best perform-
ance. Here the development set is used for test-
ing.

Figure 3 and 4 show the results of forward and
back transliteration respectively, where the per-
formances become steady when the order reaches
6 and 11. The orders with the best performance
in all metrics for forward and back transliteration
are 2 and 5, which may relate to the average
length of Chinese and English names.

Language Model N-Gram (Order)

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6

ACC Mean F-score
MRR MAP10

Figure 3. E2C language model n-gram (forward)

Language Model N-Gram (Order)

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10 11

ACC Mean F-score
MRR MAP10

Figure 4. E2C language model n-gram (back)

Weights generated in the training step can be

optimized through the tuning process. The de-
velopment set, 2896 name pairs, is divided into 4
equal parts, 1 for testing and other 3 for tuning.
We take the best settings as the baseline, and in-
crease tuning size by 1 part at one time. Table 2
and 3 show the tuning results of forward and
back transliteration, where the best results are
boldfaced. Tuning set size of 0 refers to the best
settings before tuning. Performances get im-
proved after tuning, among which the ACC of
forward transliteration gets improved by over
11%. The forward transliteration performance
gets improved steadily with the increase of tun-
ing set size, while the back transliteration per-
formance peaks at tuning set size of 2.

Tuning
size

ACC Mean F-score MRR MAP10

0 0.543 0.797 0.669 0.209
1 0.645 0.851 0.752 0.231
2 0.645 0.850 0.749 0.230
3 0.655 0.854 0.758 0.233
Table 2. E2C tuning performance (forward)

Tuning
size

ACC Mean F-score MRR MAP10

0 0.166 0.790 0.278 0.092
1 0.181 0.801 0.306 0.102
2 0.190 0.806 0.314 0.104
3 0.187 0.801 0.312 0.104

Table 3. E2C tuning performance (back)

Table 2 shows that forward transliteration per-
formance gets improved with the increase of tun-
ing set size, so we use the whole development set
as the tuning set to tune the final system and the
final official results from the shared task report
(Li et al., 2009b) are shown in table 4.

90

ACC Mean

F-score
MRR MAPref MAP10 MAPsys

0.652 0.858 0.755 0.652 0.232 0.232
Table 4. The final official results of E2C forward

Experiments show that forward transliteration

has better performance than back transliteration.
One reason may be that on average English name
is longer than Chinese name, thus need more
data to train a good character level language
model. Another reason is that some information
is lost during transliteration which can not be
recovered in back transliteration. One more very
important reason is as follows. Typically in back
transliteration, you have only one correct refer-
ence transliteration, and therefore, a wide cover-
age word level language model is very useful.
Without it, back transliteration may have a poor
performance.

5 Conclusions and future work

This paper proposes a Noisy Channel Model for
grapheme-based machine transliteration. The
phrase-based statistical machine translation tool,
Moses, is leveraged for system implementation.
We participate in the NEWS 2009 Machine
Transliteration Shared Task English-Chinese
track. English-Chinese back transliteration is also
studied. This model is language independent and
can be applied to transliteration of any language
pairs.

To improve system performance, extensive er-
ror analyses will be made in the future and meth-
ods will be proposed according to different error
types. We will pay much attention to back trans-
literation for its seemingly greater difficulty and
explore relations between forward and back
transliteration to seek a strategy solving the two
simultaneously.

Acknowledgements

The authors are grateful to the organizers of the
NEWS 2009 Machine Transliteration Shared
Task for their hard work to provide such a good
research platform. The work in this paper is sup-
ported by a grant from the National Basic Re-
search Program of China (No.2004CB318102)
and a grant from the National Natural Science
Foundation of China (No.60773173).

References

K. Knight and J. Graehl. 1998. Machine Translitera-
tion. Computational Linguistics, Vol. 24, No. 4, pp.
599-612.

P. Virga and S. Khudanpur. 2003. Transliteration of
Proper Names in Cross-lingual Information Re-
trieval. In Proceedings of the ACL Workshop on
Multi-lingual Named Entity Recognition 2003.

H.Z. Li, M. Zhang and J. Su. 2004. A Joint Source
Channel Model for Machine Transliteration. In
Proceedings of the 42nd ACL, pp. 159-166.

J.H. Oh and K.S. Choi. 2006. An Ensemble of Trans-
literation Models for Information Retrieval. In In-
formation Processing and Management, Vol. 42,
pp. 980-1002.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M.
Federico, N. Bertoldi, B. Cowan, W. Shen, C.
Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin
and E. Herbst. 2007. Moses: Open Source Toolkit
for Statistical Machine Translation. In Proceedings
of the 45th ACL Companion Volume of the Demo
and Poster Sessions, pp. 177-180.

D. Matthews. 2007. Machine Transliteration of Proper
Names. Master thesis. University of Edinburgh.

H.Z. Li, A. Kumaran, M. Zhang and V. Pervouchine.
2009a. Whitepaper of NEWS 2009 Machine Trans-
literation Shared Task. In Proceedings of ACL-
IJCNLP 2009 Named Entities Workshop (NEWS
2009), Singapore.

H.Z. Li, A. Kumaran, V. Pervouchine and M. Zhang.
2009b. Report on NEWS 2009 Machine Translit-
eration Shared Task. In Proceedings of ACL-
IJCNLP 2009 Named Entities Workshop (NEWS
2009), Singapore.

91

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 92–95,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Substring-based Transliteration with Conditional Random Fields

Sravana Reddy and Sonjia Waxmonsky
Department of Computer Science

The University of Chicago
Chicago, IL 60637

{sravana, wax}@cs.uchicago.edu

Abstract

Motivated by phrase-based translation research,
we present a transliteration system where char-
acters are grouped into substrings to be mapped
atomically into the target language. We show how
this substring representation can be incorporated
into a Conditional Random Field model that uses
local context and phonemic information.

1 Introduction

We present a transliteration system that is moti-
vated by research in phrase-based machine trans-
lation. In particular, we borrow the concept of
phrases, which are groups of words that are trans-
lated as a unit. These phrases correspond to multi-
charactersubstrings in our transliteration task.
That is, source and target language strings are
treated not as sequences of characters but as se-
quences of non-overlapping substrings.

We model transliteration as asequential label-
ing task where substring tokens in the source lan-
guage are labeled with tokens in the target lan-
guage. This is done using Conditional Random
Fields (CRFs), which are undirected graphical
models that maximize the posterior probabilities
of the label sequence given the input sequence. We
use as features bothlocal contexts andphonemic
information acquired from an English pronuncia-
tion dictionary.

2 The Transliteration Process

Our transliteration system has the following steps:

1. Pre-processing of the target language.

2. Substring alphabet generation for both the
source and target. This step also generates
training data for the CRFs in Step 3 and 4.

3. CRF training on aligned data from Step 2.

4. Substring segmentation and translitera-
tion of source language input.

Our training and test data consists of three sets –
English to Hindi, English to Kannada, and English
to Tamil (Kumaran and Kellner, 2007) – from the
NEWS 2009 Machine Transliteration Shared Task
(Li et al., 2009).

2.1 Step 1: Pre-Processing

The written words of Hindi, Tamil, and Kannada
correspond almost perfectly to their phonological
forms, with each character mapping to a phoneme.
The only exception to this arises from the implicit
vowel (which may be a schwa/@/ or a central
vowel /5/) that is inserted after consonants that
are not followed by thehalanta or ‘killer stroke’.
Hence, any mappings of an English vowel to a
target language schwa will not be reflected in the
alignment of the named entity pair.

To minimize misalignments of target language
strings with the English strings during training,
we convert the Indic abugida strings to an in-
ternal phonemic representation. The conversion
maps each unicode character to its correspond-
ing phonemic character and inserts a single sym-
bol (representing the schwa/central vowel) after all
consonants that are not followed by thehalanta.

These phoneme sequences are used as the in-
ternal representation of Indic character strings for
all later steps in our system. Once transliteration
is complete, the phonemic symbols are converted
back to unicode by reversing the above process.

2.2 Step 2: Substring alphabet generation

Our decision to use substrings in the transliteration
task is motivated by the differences in orthography
and phonology between the target and source lan-
guages, which prevent trivial one-to-one character
level alignment. We first discuss the cause of the
poor character alignment between English and the

92

Indic languages, and then describe how we trans-
form the input into substring representation.

English uses several digraphs for phonemes
that are represented by single characters in Indic
scripts, which are either part of standard ortho-
graphic convention (oo, ch, etc.), or necessitated
by the lack of a single phoneme that approximates
an Indic one (as in the case of aspirated conso-
nants). Conversely, English sometimes uses a sin-
gle character for a biphone (such asx for /ks/, or
u for /ju/ as inmuseum), which is represented by
two characters in the target languages. In certain
cases, a digraph in English is transliterated to a di-
graph in the target, as a result of metathesis (le →
/@l/, in words liketemple). Further, all three tar-
get languages often insert vowels between English
consonant clusters; for instance, Hindi inserts a
schwa betweens and p in ‘transport’, transliter-
ated asúrAns@porú (V~ A\spoV).

To handle these cases, we borrow the concept of
phrases from machine translation (Och and Ney,
2004), where groups of words are translated as a
unit. In the case of transliteration, the ‘phrases’
are commonly occurringsubstrings – sequences
of characters – in one language that map to a
character or a substring in the other. We use the
term ‘substrings’ after a previous work (Sherif and
Kondrak, 2007) that employs it in a noisy channel
transliteration system. Zhao et al. (2007) also use
substrings (which they call ‘blocks’) in a bi-stream
HMM.

We bootstrap the induction of substrings by
aligning all named entity pairs in the training data,
using the GIZA++ toolkit (Och and Ney, 2003).
The toolkit performsunidirectional one-to-many
alignments, meaning that a single symbol in its
source string can be aligned toat most one sym-
bol in its target. In order to induce many-to-many
alignments, GIZA++ is run on the data in both di-
rections (source language to target language and
target language to source), and the bidirectional
alignment of a named entity pair is taken to be the
union of the alignments in each direction. Any
inserted characters (maps within the alignment
where the source or target character isnull) are
combined with the preceding character within the
string. For example, the initial bidirectional align-
ment of shivlal → Siv@lAl (EшvlAl) contains
the maps [sh → S, i → i, v → v, null → @, l → l,
a → A, andl → l]. Thenull → @ map is combined
with the preceding map to givev → v@, and hence

a one-to-one alignment.
Multicharacter units formed by bidirectional

alignments are added to source and target alpha-
bets. The above example would add the substrings
‘sh’ to the source alphabet, andv@ to the target.
Very low frequency substrings in both languages
are removed, giving the final substring alphabets
of single and multicharacter tokens. These alpha-
bets (summarized in Table 1) are used as the token
set for the CRF in Step 3.

We now transform our training data into a
substring-based representation. The original
named entity pairs are replaced by their bidirec-
tional one-to-one alignments described earlier. For
example, the〈s h i v l a l〉 → 〈S i v @ l
A l〉 training pair is replaced by〈sh i v l a l〉 →
〈S i v@ l A l〉. A few (less than3%) of the
pairs arenot aligned one-to-one, since their bidi-
rectional alignments contain low-frequency sub-
strings that have not been included in the alpha-
bet.1 These pairs are removed from the training
data, since only one-to-one alignments can be han-
dled by the CRF.

2.3 Step 3: CRF transliteration

With the transformed training data in hand, we can
now train a CRF sequential model that uses sub-
strings rather than characters as the basic token
unit. The CRF algorithm is chosen for its ability
to handle non-independent features of the source
language input sequence. We use the open-source
CRF++ software package (Kudo, 2005).

Ganesh et al. (2008) also apply a CRF to the
transliteration task (Hindi to English) but with
different alignment methods than those presented
here. In particular, multicharacter substrings are
only used as tokens on the target (English) side,
and a null token is used to account for deletion.

We train our CRF using unigram, bigram, and
trigram features over the source substrings, as well
as pronunciation information described in§2.3.1.
Table 2 describes these feature sets.

2.3.1 Phonetic information

Since the CRF model allows us to incorporate non-
independent features, we add pronunciation data
as a token-level feature. Doing so allows the CRF
to use phonetic information for local decision-
making. Word pronunciations were obtained from

1Note that if we did not filter out any of the substrings,
every pair would be aligned one-to-one.

93

Target Language Source Target
of Tokens Longest Token # of Tokens Longest Token

Hindi 196 augh, ough 141 Aj@ (aAy), ks@ (?s)
Kannada 197 aine 137 Aj@, mjA

Tamil 179 cque 117 mij, Aj@

Table 1: Overview of the substring alphabets generated in Step 2.

Feature Set Description
U Unigram:s

−1, s0, ands1

B Bigram:s
−1+s0

T Trigram: s
−2+s

−1+s0,
s
−1+s0+s1 ands0+s1+s2

P Phoneme assigned tos0

from dictionary lookup

Table 2: Feature sets used for CRF in Step 3.si is
the substring relative to the current substrings0.

the CMU Pronouncing Dictionary2. Just over a
third of the English named entities have pronun-
ciation information available for some or all the
constituent words.

The CMU dictionary provides a sequence of
phoneme symbols for an English word. We in-
clude these phonemes as CRF features if and
only if a one-to-one correspondence exists be-
tween phonemes and substring tokens. For exam-
ple, the English wordsimon has the segmentation
〈s i m o n〉 and pronunciation〈S AY M AH N〉,
both of length five. Additionally, a check is done
to ensure that vowel phonemes do not align with
consonant characters and vice-versa.

2.4 Step 4: Substring segmentation

In order to apply our trained model to unseen
data, we must segment named entities into non-
overlapping substrings that correspond to tokens
in the source alphabet generated in Step 2. For in-
stance, we need to convert the four characterdesh
to the three token sequence〈d e sh〉.

This is a non-trivial task. We must allow for
the fact that substrings are not insertedevery time
the component character sequence appears. For
instance, in our English/Hindi training set, the bi-
gramti always reduces to a single substring token
when it occurs in the-tion suffix, but does not re-
duce in any other contexts (likemartini). There
are also cases where more than one non-trivial seg-
mentation is possible. For example, two possible

2The CMU Pronouncing Dictionary (v0.7a). Available at
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

segmentations ofdesh are 〈d es h〉 and 〈d e sh〉,
with the latter being the one that best corresponds
to the three-character Hindid”eS (d�ш).

One solution is to greedily choose the most
likely multi-character substring – in the example
cited, we can choose〈d e sh〉 becausesh reduces
more frequently thanes. However, this creates the
problem in cases where no reduction should occur,
as with theti in martini. Since contextual informa-
tion is necessary to determine the correct substring
segmentation, we model segmentation with a CRF,
using a combination of character unigram, bigram,
and trigram features.

We use an approach motivated by the In-
side/Outside representation of NP-chunking
which treats segmentation as a tagging process
over words (Ramshaw and Marcus, 1995). As
in NP-chunking, our goal is to identify non-
overlapping, non-recursive segments in our input
sequence. Our tagset is{I, O, B} where I
indicates that a character is inside a substring,O
indicates a character is outside a substring, andB
marks a right boundary.

After the test data has been segmented into its
substring representation, it can be passed as input
to the CRF model trained in Step 3 to produce our
final transliteration output.

3 Results

We first report our results on the development data
provided by the NEWS task, for different feature
sets and segmentation methods. We then present
the performance of our system on the test data.3

3.1 Development Data

Table 3 shows the results across feature sets.
Noting that the trigram featureT provides a
sizable improvement, we compare results from
U+B+T+P and U+B+P feature sets. Of the im-
proved cases,75-84% are a single vowel-to-vowel

3For the development runs, we use thetraining set for
training, and thedevelopment for testing. For the final test
runs, we use both thetraining anddevelopment sets for train-
ing, and thetest set for evaluation.

94

Language Feature Set ACC F-Score
U+P 24.6 86.2

Hindi U+B+P 26.2 86.5
U+B+T+P 34.5 88.6

U+B+T 34.2 88.3
U+P 26.7 87.8

Tamil U+B+P 27.6 88.0
U+B+T+P 34.9 89.8

U+B+T 33.1 89.7
U+P 22.5 86.0

Kannada U+B+P 22.6 86.2
U+B+T+P 28.7 88.0

U+B+T 27.5 87.9

Table 3: Accuracy (ACC) and F-score results (in
%) for CRF model on thedevelopment data.

Language Feature Set ACC F-Score
Hindi U+B+T+P 34.4 90.2

U+B+T 33.6 89.5
Tamil U+B+T+P 29.1 91.1

U+B+T 25.5 90.6
Kannada U+B+T+P 27.2 89.8

U+B+T 23.4 89.2

Table 4: Results on development data, restricted to
NEs whereP is included as a feature.

change, with the majority of the changes involving
a schwa/central vowel.

We see small gains from using the phonetic fea-
ture in both accuracy and F-Score. We further ex-
amine only those named entities where dictionary
information is applied, and as expected, this subset
shows greater improvement (Table 4).

Table 5 compares our the Inside/Outside tag-
ging approach with a greedy approach described
earlier. The greedy approach only inserts a multi-
character substring when that substring reduces
more than50% of the time in the overall train-
ing corpus. Since the Greedy method uses no
local contextual information, results are signifi-
cantly lower given the same feature set.

Language Segmentation ACC F-Score
Hindi I-O-B 34.5 88.6

Greedy 30.3 86.7
Tamil I-O-B 34.9 89.8

Greedy 28.2 87.5
Kannada I-O-B 28.7 88.0

Greedy 25.0 86.7

Table 5: Comparison of segmentation methods
on development data, using theU+B+T+P feature
set.

3.2 Test Data

Our model produces10 candidates for each named
entity in the test data, ranked by the probability
that the model assigns the candidate. We filter out
candidates below the rank of5 whose scores are
less than0.5 lower than that of the highest rank-
ing candidate. Table 6 shows our results on the
test data, using a CRF trained on the training and
development data, with the feature setU+B+T+P.

Hindi Kannada Tamil

Accuracy 41.8 36.3 43.5
F-Score 87.9 87.0 90.2
MRR 54.6 48.2 57.2

MAPref 41.2 35.5 43.0
MAP10 18.3 16.4 19.5
MAPsys 24.0 21.8 26.5

Table 6: Final results on thetest data (in %).

References

Surya Ganesh, Sree Harsh, Prasad Pingali, and Va-
sudeva Varma. 2008. Statistical transliteration for
cross language information retrieval using HMM
alignment model and CRF. InProceedings of the
2nd Workshop on Cross Lingual Information Access.

Taku Kudo. 2005. CRF++: Yet another CRF toolkit.
Available at http://chasen.org/ taku/software/crf++/.

A. Kumaran and Tobias Kellner. 2007. A generic
framework for machine transliteration. InProceed-
ings of SIGIR-07.

Haizhou Li, A Kumaran, Min Zhang, and Vladimir
Pervouchine. 2009. Whitepaper of NEWS 2009
machine transliteration shared task. InProceed-
ings of ACL-IJCNLP 2009 Named Entities Work-
shop (NEWS 2009).

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models.Computational Linguistics, 29(1):19–51.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine trans-
lation. Computational Linguistics, 30(4):417–449.

Lance Ramshaw and Mitch Marcus. 1995. Text
chunking using transformation-based learning. In
Proceedings of WVLC-3.

Tarek Sherif and Grzegorz Kondrak. 2007. Substring-
based transliteration. InProceedings of ACL-07.

Bing Zhao, Nguyen Bach, Ian Lane, and Stephan Vo-
gel. 2007. A log-linear block transliteration model
based on bi-stream HMMs. InProceedings of
NAACL HLT 2007.

95

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 96–99,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

 A Syllable-based Name Transliteration System

Xue Jiang
1, 2

1
Institute of Software, Chinese

Academy of Science.

Beijing China, 100190

jiangxue1024@yahoo.com.cn

Le Sun
1
, Dakun Zhang

 1

2
School of Software Engineering,

Huazhong University of Science and

Technology. Wuhan China, 430074

sunle@iscas.ac.cn

dakun04@iscas.ac.cn

Abstract

This paper describes the name entity transli-

teration system which we conducted for the

“NEWS2009 Machine Transliteration Shared

Task” (Li et al 2009). We get the translitera-

tion in Chinese from an English name with

three steps. We syllabify the English name

into a sequence of syllables by some rules,

and generate the most probable Pinyin se-

quence with the mapping model of English

syllables to Pinyin (EP model), then we con-

vert the Pinyin sequence into a Chinese cha-

racter sequence with the mapping model of

Pinyin to characters (PC model). And we get

the final Chinese character sequence. Our

system achieves an ACC of 0.498 and a

Mean F-score of 0.786 in the official evalua-

tion result.

1 Introduction

The main subject of shared task is to translate

English names (source language) to Chinese

names (target language). Firstly, we fix some

rules and syllabify the English names into a se-

quence of syllables by these rules, in the mean-

while, we convert the Chinese names into Pinyin

sequence. Secondly, we construct an EP model

referring to the method of phrase-based machine

translation. In the next, we construct a 2-gram

language model on characters and a chart reflect-

ing the using frequency of each character with

the same pronunciation, both of which constitute

the PC model converting Pinyin sequence into

character sequence. When a Pinyin is mapped to

several different characters, we can use them to

make a choice. In our experiment, we adopt the

corpus provided by NEWS2009 (Li et al 2004)

and the LDC Name Entity Lists
1
 respectively to

conduct two EP models, while the NEWS2009

corpus for the PC model. The experiment indi-

cates that the larger a training corpus is, the more

precise the transliteration is.

2 Transliteration System Description

Knowing from the definition of transliteration,

we must make the translating result maintain the

original pronunciation in source language. We

found that most English letters and letter compo-

sitions‟ pronunciation are relatively fixed, so we

can take a syllabification on an English name,

therefore the syllable sequence can represent its

pronunciation. In Chinese, Pinyin is used to

represent a character‟s pronunciation. Based on

these analyses, we transliterate the English sylla-

ble sequence into a Pinyin sequence, and then

translate the Pinyin sequence into characters.

We suppose that the probability of a translitera-

tion from an English name to a Chinese name is

denoted by P(Ch|En), the probability of a transla-

tion from an English syllable sequence to a Pi-

nyin sequence is denoted by P(Py|En), and the

probability of a translation from a Pinyin se-

quence to a characters is denoted by P(Ch|Py),

then we can get the formula:

P(Ch|En) = P(Ch|Py) * P(Py|En) (1)

The character sequence in candidates having

the max value of P(Ch|En) is the best translitera-

tion(Wan and Verspoor, 1998).

2.1 Syllabification of English Names

English letters can be divided into vowel letters

(VL) and consonant letters (CL). Usually, in a

1
: Chinese <-> English Name Entity Lists v 1.0, LDC Cata-

log No.: LDC2005T34

96

word, a phonetic syllable can be constructed in a

structure of CL+VL, CL+VL+CL, CL+VL+NL.

To adapt for Chinese phonetic rule, we divide the

continuous CLs into independent CLs(IC) and

divide structure of CL+VL+CL into CL+VL and

an IC. Take “Ronald” as an example, it can be

syllabified into “Ro/na/l/d”, “Ro” is CL+VL,

“nal” is CL+VL+CL, and is divided into CL+VL

and IC. „d‟ is an independent CL(KUO et al.

2007). Of course there are some English names

more complex to be syllabified, so we define

seven rules for syllabification (JIANG et al.

2006):

(1) Define English letter set as O, vowel set as

V={a, e, i, o, u}, consonant set as C=O-V.

(2) Replace all “x” in a name with “ks” before

syllabification because it‟s always pro-

nounced as “ks”.

(3) The continuous VLs should be regarded as

one VL.

(4) There are some special cases in rule (3),

the continuous VLs like “oi”, “io”, “eo”

are pronounced as two syllables, so they

should be cut into two parts, so “Wilhoit”

will be syllabifyd into “wi/l/ho/i/t”.

(5) The continuous CLs should be cut into

several independent CLs. If the last one is

followed by some VLs, they will make up

a syllable.

(6) Some continuous CLs are pronounced as a

syllable, such as “ck”, “th”, these CLs will

not be syllabifyd and be regarded as a sin-

gle CL, “Jack” is syllabifyd into “Ja/ck”.

(7) There are some other composition with the

structure of VL+CL, such as “ing”, “er”,

“an” and so on. If it‟s a consonant behind

these compositions in the name, we can

syllabify it at the end of the composition,

while if it‟s a vowel behind them, we

should double write the last letter and syl-

labify the word between the two same let-

ters.

After syllabicating English names, we convert

corresponding Chinese names into Pinyin. There

are a few characters with multiple pronunciations

in the training data, we find them out and ensure

its pronunciation in a name manually.

We record all of these syllables got from the

training data set, if we meet a syllable out of vo-

cabulary when transliterating an English name,

we will find a similar one with the shortest edit-

distance in the vocabulary to replace that.

2.2 Mapping Model of English Syllables to

Pinyins

The EP model consists of a phrase-based ma-

chine translation model with a trigram language

model.

Given an English name f, we want to find its

Chinese translation e, which maximize the condi-

tional probability)|Pr(fe , as shown below.

)|Pr(maxarg* fee
e

 (2)

Using Bayes rule, (1) can be decomposed into

a Translation Model)|Pr(ef and a Language

Model)Pr(e (Brown et al. 1993), which can

both be trained separately. These models are

usually regarded as features and combined with

scaling factors to form a log-linear model (Och

and Ney 2002). It can then be written as:

'

1

1

)],'(exp[

)],(exp[

)|()|Pr(
1

e

mm

M

m

mm

M

m

feh

feh

fepfe M

 (3)

In our model, we use the following features:

 phrase translation probability)|(fep

 lexical weighting)|(felex

 inverse phrase translation probability

)|(efp

 inverse lexical weighting)|(eflex

 phrase penalty (always exp(1) = 2.718)

 word penalty (target name length)

 target language model, trigram

The first five features can be seen as a whole

phrase translation cost and used as one during

decoding.

In general, the translation process can be de-

scribed as follows:

(1). Segmenting input English syllable se-

quence f into J syllables
J

f
1

(2). Translating each English syllable jf

into several Pinyins jke

(3). Selecting the N-best words nee ...1 ,

combined with reordering and Language

Model and other features

97

(4). Rescoring the translation word set with

additional features to find the best one.

We use SRI toolkit to train our trigram lan-

guage model with modified Kneser-Ney smooth-

ing (Chen and Goodman 1998). In the standard

experiment, we use training data set provided by

NEWS2009 (Li et al 2004) to train this language

model, in the nonstandard one, we use that and

the LDC Name Entity Lists to train this language

model.

2.3 Mapping Model of Pinyins to Chinese

Characters

Since the Chinese characters used in people

names are limited, most of the conversions from

Pinyin to character are fixed. But some Pinyins

still have several corresponding characters, and

we should make a choice among these characters.

To solve this problem, we conduct a PC model

consisting a frequency chart which reflects the

using frequency of each character at different

positions in the names and a 2-gram language

model with absolute discounting smoothing.

A Chinese name is represented as C1C2…

Cn，Ci (1≤i≤n) is a Chinese character. C1 is at

the first position, we call it FW; C2 …Cn-1 are in

the middle, we call them MW; Cn is at the last

position, we call it LW. Usually, each character

has different frequencies at these three positions.

In the training data set of NEWS2009, Pinyin

“luo” can be mapped to three characters: “罗”,

“洛”, and “萝”, each of them has different fre-

quencies at different positions.

 FW MW LW

罗 0.677 0.647 0.501

洛 0.323 0.352 0.499

萝 0 0.001 0

Table 1. Different frequencies at different positions

From this table, we can see that at FW and

MW position, “罗” is more probable to be cho-

sen than the others, but sometimes “洛” or “萝”

is the correct one. In order to ensure characters

with lower frequency like “洛” and “萝” can be

chosen firstly in a certain context, we conduct a

2-gram language model.

If a Pinyin can be mapped to several charac-

ters, the condition probability (P(Chi|py)) indicat-

ing that how possible a character should be cho-

sen is determined by the weighted average of its

position frequency (P(Chi|pos)) and its probabili-

ty in the 2-gram language model (P(Chi|Chi-1)).

P(Chi|py) = a*P(Chi|pos)+(1-a)*P(Chi|Chi-1) (4)

0 < a < 1. In our experiments, we set a = 0.1.

2.4 Experiments and Results

We carried out two experiments. The difference

between them is the training data for EP model.

The standard experiment adopts corpus provided

by NEWS2009, while the nonstandard one

adopts LDC Name Entity Lists.

Corpora Name Num
LDC2005T34 572213

NEWS09_train_ench_31961 31961

Table 2. Corpora used for training the EP model

Considering that an English name may be

translated to different Chinese names in different

corpora, so we established a unique PC model

with the training data set provided by

NEWS2009 to avoid the model‟s deviation

caused by different corpora.

The experimenting data is the development

data set provided by NEWS2009 (Li et al 2004),

testing script is also provided by NEWS2009.

First, we take a syllabification on testing

names. Then we use the EP model to generate 5-

best Pinyin sequences and their probabilities.

For each Pinyin sequence, the PC model gives 3-

best character sequences and their probabilities.

In the end, we sort the results by probabilities of

character sequences and corresponding Pinyin

sequences.

The evaluation results are shown below.

Metrics Standard Nonstandard

ACC 0.490677 0.502417

Mean F-score 0.782039 0.784203

MRR 0.606424 0.611214

MAP_ref 0.490677 0.502417

MAP_10 0.189290 0.189782

MAP_sys 0.191476 0.192129

Table 3. Evaluation results of standard and

nonstandard experiments

It‟s easy to see that nonstandard test is better

than standard one on each metric. A larger cor-

pus does make a contribution to a more accurate

model.

98

For the official evaluation, we make two tests

on the testing data set provided by NEWS2009

(Li et al 2004). The table 4 shows respectively

the evaluation results of standard and nonstan-

dard tests given by NEWS2009.

Metrics Standard Nonstandard

ACC 0.498 0.500

Mean F-score 0.786 0.786

MRR 0.603 0.607

MAP_ref 0.498 0.500

MAP_10 0.187 0.189

MAP_sys 0.189 0.191

Table 4. Official evaluation results of standard and

nonstandard tests

3 Conclusion

We construct a name entity transliteration system

based on syllable. This system syllabifies Eng-

lish names by rules, then translates the syllables

to Pinyin and Chinese characters by statistics

model. We found that a larger corpus may im-

prove the transliteration. Besides, we can do

something else to improve that. We need to fix

more complex rules for syllabification. If we can

get the name user‟s gender from some features of

the name itself, then translate the male and fe-

male names on different Chinese character sets,

the results may be more precise.

Acknowledgments

This work was supported by the National

Science Foundation of China (60736044,

60773027), as well as 863 Hi-Tech Research and

Development Program of China (2006AA010108

-5, 2008AA01Z145).

We also thank Haizhou Li, Min Zhang and

Jian Su for providing the English-Chinese data.

Reference

Franz Josef Och and Hermann Ney. 2002. “Discri-

minative Training and Maximum Entropy Models

for Statistical Machine Translation”. In Proceed-

ings of the 40th Annual Meeting of the Association

for Computational Linguistics (ACL).

Haizhou Li, A Kumaran, Min Zhang, Vladimir Per-

vouchine, "Whitepaper of NEWS 2009 Machine

Transliteration Shared Task". In Proceedings of

ACL-IJCNLP 2009 Named Entities Workshop

(NEWS 2009), Singapore, 2009

Haizhou Li, Min Zhang, Jian Su. 2004. “A joint

source channel model for machine transliteration”,

In Proceedings of the 42nd ACL, 2004

Jiang Long, Zhou Ming, and Chien Lee-feng. 2006.

“Named Entity Translation with Web Mining and

Transliteration”. Journal of Chinese Information

Processing, 21(1):1629--1634.

Jin-Shea Kuo, Haizhou Li, and Ying-Kuei Yang.

2007. “A Phonetic Similarity Model for Automatic

Extraction of Transliteration Pairs”. ACM Trans.

Asian Language Information Processing, 6(2), Sep-

tember 2007.

Peter F. Brown, Stephen A. Della Pietra, et al. 1993.

“The Mathematics of Statistical Machine Transla-

tion: Parameter Estimation”. Computational Lin-

guistics 19(2): 263-311.

Stanley F. Chen and Joshua Goodman. 1998. “An

empirical study of smoothing techniques for lan-

guage modeling”. Technical Report TR-10-98, Har-

vard University.

Stephen Wan and Cornelia Maria Verspoor. 1998.

“Automatic English-Chinese name transliteration

for development of multilingual resources”. In Pro-

ceedings of the 17th international conference on

Computational linguistics, 2: 1352 – 1356.

99

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 100–103,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Transliteration System using pair HMM with weighted FSTs

Peter Nabende

Alfa Informatica, CLCG,

University of Groningen, Netherlands

p.nabende@rug.nl

Abstract

This paper presents a transliteration system

based on pair Hidden Markov Model (pair

HMM) training and Weighted Finite State

Transducer (WFST) techniques. Parameters

used by WFSTs for transliteration generation

are learned from a pair HMM. Parameters

from pair-HMM training on English-Russian

data sets are found to give better transliteration

quality than parameters trained for WFSTs for

corresponding structures. Training a pair

HMM on English vowel bigrams and standard

bigrams for Cyrillic Romanization, and using

a few transformation rules on generated Rus-

sian transliterations to test for context im-

proves the system’s transliteration quality.

1 Introduction

Machine transliteration is the automatic trans-

formation of a word in a source language to a

phonetically equivalent word in a target language

that uses a different writing system. Translitera-

tion is important for various Natural Language

Processing (NLP) applications including: Cross

Lingual Information Retrieval (CLIR), and Ma-

chine Translation (MT). This paper introduces a

system that utilizes parameters learned for a pair

Hidden Markov Model (pair HMM) in a shared

transliteration generation task
1
. The pair HMM

has been used before (Mackay and Kondrak,

2005; Wieling et al., 2007) for string similarity

estimation, and is based on the notion of string

Edit Distance (ED). String ED is defined here as

the total edit cost incurred in transforming a

source language string (S) to a target language

string (T) through a sequence of edit operations.

The edit operations include: (M)atching an ele-

ment in S with an element in T; (I)nserting an

element into T, and (D)eleting an element in S.

1 The generation task is part of the NEWS 2009 machine

transliteration shared task (Li et al., 2009)

Based on all representative symbols used for

each of the two languages, emission costs for

each of the edit operations and transition parame-

ters can be estimated and used in measuring the

similarity between two strings. To generate

transliterations using pair HMM parameters,

WFST (Graehl, 1997) techniques are adopted.

Transliteration training is based mainly on the

initial orthographic representation and no explicit

phonetic scheme is used. Instead, transliteration

quality is tested for different bigram combina-

tions including all English vowel bigram combi-

nations and n-gram combinations specified for

Cyrillic Romanization by the US Board on Geo-

graphic Names and British Permanent Commit-

tee on Geographic Names (BGN/PCGN). How-

ever, transliteration parameters can still be esti-

mated for a pair HMM when a particular phonet-

ic representation scheme is used.

The quality of transliterations generated using

pair HMM parameters is evaluated against trans-

literations generated from training WFSTs and

transliterations generated using a Phrase-based

Statistical Machine Translation (PBSMT) sys-

tem. Section 2 describes the components of the

transliteration system that uses pair HMM para-

meters; section 3 gives the experimental set up

and results associated with the transliterations

generated; and section 4 concludes the paper.

2 Machine Transliteration System

The transliteration system comprises of a training

and generation components (Figure 1). In the

training component, the Baum-Welch Expecta-

tion Maximization (EM) algorithm (Baum et al.,

1970) is used to learn the parameters of a pair

HMM. In the generation component, WFST

techniques (Graehl, 1997) model the learned pair

HMM parameters for generating transliterations.

2.1 Parameter Estimation for a pair-HMM

A pair HMM has two output observations (Fig-

ure 2) that are aligned through the hidden states,

100

Figure 1: Machine Transliteration system

Figure 2: pair-HMM alignment for converting an

English string “Peter” to a Russian string “Пётр”

unlike the classic HMMs that have only one ob-

servation sequence. The pair HMM structure dif-

fers from that of WFSTs in that in WFSTs the

input and output symbols and associated weights

occur on a transition arc while for the pair HMM,

the input and output symbols and associated edit

costs are encoded in a node. Two main sets of

parameters are learned for the pair HMM: transi-

tion parameters (δ, ε, λ, τM, τDI) as shown in Fig-

ure 3 for different state transitions; and emission

parameters in the (M)atch state and the other two

gap states (D and I). si in Figure 3 is the i
th
 sym-

bol in the source language string S while tj is the

j
th
 symbol in T.

Figure 3: Pair Hidden Markov Model [Adapted from

Mackay and Kondrak, 2005]

Pair HMM Emission parameters are stored in

matrix form in three tables associated with the

edit operations; transition parameters are also

stored in matrix form in a table. The emission

parameters are ()n m n m× + + in total; n and m

are the numbers of symbols in the pair HMM

source language alphabet (VS) and target lan-

guage alphabet (VT) respectively. The parameters

of starting in a given edit operation state are de-

rived from the parameters of transiting from the

match state (M) to either D or I or back to M.

Although pair HMM training is evaluated

against WFST training, there is no major differ-

ence in the training approach used in both cases;

a forward-backward EM algorithm is used in

each case. The main difference is in the struc-

ture; for the pair-HMM, the state transition pa-

rameter is also incorporated into the weight that

measures the level of relationship between the

input and output symbol when transformed to a

WFST arc.

2.2 Generating Transliterations in WFSTs

A Weighted Finite State Transducer is a finite

automaton whose state transitions are labeled

with input and output elements and weights that

express the level of relationship between the in-

put and output elements. Although the frame-

work of WFSTs has mostly been applied in

representing various models for speech recogni-

tion (Mohri et al., 2008) including HMMs,

WFSTs have as well been used for transliteration

(Knight and Graehl, 1998), and are the most suit-

able for modeling pair HMM constraints for ge-

nerating transliterations. In the WFST frame-

work, it is possible to specify various configura-

tions associated with constraints inherent in a

particular model. Figure 4 shows a WFST that

precisely corresponds to the structure of the pair

Figure 4: Finite State Transducer corresponding to the

pair HMM.

M start end

D

I

si:e

e:tj

e:tj

e:tj

si:e

si:e

e:e
e:e

e:e
e:e

e:e

e:e

si:tj

si:tj si:tj

P : П

M

e : ё

M

t : т

M

e : _

D

r : р

M End

si

tj

si

tj

λ

M end

D

I

τDI

τDI

λ

τM

δ

δ

ε

ε
1- ε- λ- τDI

1- ε- λ- τDI

1-2δ- τM

Pairs of correct

transliterations

Transliteration parame-

ter estimation for pair

HMM

Estimated

parameters

Transliteration gen-

eration using

Weighted Finite State

Transducers

Source

name

Target

name

101

HMM considering the constraints specified for

the pair HMM. In Figure 4, e is an empty symbol

while si and sj are as defined for the pair HMM in

Figure 3. Note that, in Figure 4, a start state is

needed to model pair HMM parameter con-

straints for starting in any of the three edit states.

However, it is possible to specify a WFST cor-

responding to the pair HMM with no start state.

Various WFST configurations that do not con-

form to the bias corresponding to the pair HMM

constraints had low transliteration quality and for

space limitations, are not reported in this paper.

2.3 Transformation Rules

A look into the transliterations generated using

pair HMM parameters on English-Russian de-

velopment data showed consistent mistranslitera-

tions mainly due to lack of contextual modeling

in the generated transliterations. For example in

all cases where the Russian character л ‘l’ pre-

cedes the Russian soft sign ь ‘ ' ’, the Russian

soft sign was missing, resulting into a loss of

transliteration accuracy. Two examples of mi-

stransliterations that do not include the Russian

soft sign ь are: крефелд instead of крефельд

‘krefeld’, and билбао instead of бильбао

‘bilbao’. For such cases, simple transformation

rules, such as “л→ль” were defined on the out-

put transliterations in a post processing step. 25

transformation rules were specified for some of

the mistransliterations to test the effect of model-

ing context.

2.4 Transliteration using PSMT system

Transliterations generated using pair HMM pa-

rameters and WFSTs are evaluated against those

generated from a state of the art Phrase-based

Statistical Machine Translation system called

Moses. Moses has been used before for machine

transliteration (Matthews, 2007) and performed

way better than a baseline system that was asso-

ciated with finding the most frequent mappings

between source and target transliteration units in

the training data. In the PBSMT system, bilin-

gual phrase-tables are used and several compo-

nents are combined in a log-linear model (trans-

lation models, reverse translation model, word

and phrase penalties, language models, distortion

parameters, etc.) with weights optimized using

minimum error rate training. For machine transli-

teration: characters are aligned instead of words,

phrases refer to character n-grams instead of

word n-grams, and language models are defined

over character sequences instead of word se-

quences. A major advantage of the PBSMT sys-

tem over the pair HMM and a WFST models is

that the phrase tables (character n-grams) cover a

lot of contextual dependencies found in the data.

3 Experiments

3.1 Data Setup

The data used is divided according to the expe-

rimental runs that were specified for the NEWS

2009 shared transliteration task (Li et al., 2009):

a standard run and non-standard runs. The stan-

dard run involved using the transliteration system

described above that uses pair HMM parameters

combined with transformation rules. The Eng-

lish-Russian datasets used here were provided for

the NEWS 2009 shared transliteration task (Ku-

maran and Kellner, 2009): 5977 pairs of names

for training, 943 pairs for development, and 1000

for testing. For the non-standard runs, an addi-

tional English-Russian dataset extracted from the

Geonames data dump was merged with the

shared transliteration task data above to form

10481 pairs for training and development. For a

second set of experiments (Table 2), a different

set of test data (1000 pairs) extracted from the

Geonames data dump was used. For the system

used in the standard run, the training data was

preprocessed to include representation of bi-

grams associated with Cyrillic Romanization and

all English vowel bigram combinations.

3.2 Results

Six measures were used for evaluating system

transliteration quality. These include (Li et al.,

2009): Accuracy (ACC), Fuzziness in Top-1

(Mean F Score), Mean Reciprocal Rank (MRR),

Mean Average Precision for reference translite-

rations (MAP_R), Mean Average Precision in 10

best candidate transliterations (MAP_10), Mean

Average Precision for the system (MAP_sys).

Table 1 shows the results obtained using only the

data sets provided for the shared transliteration

task. The system used for the standard run is

“phmm_rules” described in section 2 to sub sec-

tion 2.3. “phmm_basic” is the system in which

pair HMM parameters are used for transliteration

generation but there is no representation for bi-

grams as described for the system used in the

standard run. Table 2 shows the results obtained

when additional data from Geonames data dump

was used for training and development. In Table

2, “WFST_basic” and “WFST_rules” are sys-

tems associated with training WFSTs for the

“phmm_basic” and “phmm_rules” systems

102

 metrics

models
ACC Mean F

Score

MRR

phmm_basic 0.293 0.845 0.325

Moses_PSMT 0.509 0.908 0.619

phmm_rules 0.354 0.869 0.394

 metrics

models

MAP_R MAP_10 MAP_sys

phmm_basic 0.293 0.099 0.099

Moses_PSMT 0.509 0.282 0.282

phmm_rules 0.354 0.134 0.134

Table 1 Results from data sets for shared transli-

teration task.

 metrics

models
ACC Mean F

Score

MRR

phmm_basic 0.341 0.776 0.368

phmm_rules 0.515 0.821 0.571

WFST_basic 0.321 0.768 0.403

WFST_rules 0.466 0.808 0.525

Moses_PSMT 0.612 0.845 0.660

 metrics

models

MAP_R MAP_10 MAP_sys

phmm_basic 0.341 0.111 0.111

phmm_rules 0.515 0.174 0.174

WFST_basic 0.321 0.128 0.128

WFST_rules 0.466 0.175 0.175

Moses_PSMT 0.612 0.364 0.364

Table 2 Results from additional Geonames data

sets.

respectively. Moses_PSMT is the phrase-based

statistical machine translation system. The results

in both tables show that the systems using pair

HMM parameters perform relatively better than

the systems trained on WFSTs but not better than

Moses. The low transliteration quality in the pair

HMM and WFST systems as compared to Moses

can be attributed to lack of modeling contextual

dependencies unlike the case in PBSMT.

4 Conclusion

A Transliteration system using pair HMM para-

meters has been presented. Although its perfor-

mance is better than that of systems based on

only WFSTs, its transliteration quality is lower

than the PBSMT system. On seeing that the pair

HMM generated consistent mistransliterations,

manual specification of a few contextual rules

resulted in improved performance. As part of

future work, we expect a technique that automat-

ically identifies the mistransliterations would

lead to improved transliteration quality. A more

general framework, in which we intend to inves-

tigate contextual issues in addition to other fac-

tors such as position in source and target strings

and edit operation memory in transliteration, is

that of Dynamic Bayesian Networks (DBNs).

Acknowledgments

Funds associated with this work are from a second

NPT Uganda project. I also thank Jörg Tiedemann for

helping with experimental runs for the Moses PBSMT

system.

References

A. Kumaran and Tobias Kellner. 2007. A Generic

Framework for Machine Transliteration. Pro-

ceedings of the 30
th

 SIGIR.

David Matthews. 2007. Machine Transliteration of

Proper Names. Master’s Thesis. School of Infor-

matics. University of Edinburgh.

Jonathan Graehl. 1997. Carmel Finite-state Toolkit.

http://www.isi.edu/licensed-sw/carmel/.

Haizhou Li, A. Kumaran, Min Zhang, Vladimir Per-

vouchine. 2009. Whitepaper of NEWS 2009 Ma-

chine Transliteration Shared Task. Proceedings of

ACL-IJCNLP 2009 Named Entities Workshop

(NEWS 2009), Singapore.

Kevin Knight and Jonathan Graehl. 1998. Machine

Transliteration. Computational Linguistics, 24 (4):

599-612, MIT Press Cambridge, MA, USA.

Leonard E. Baum, Ted Petrie, George Soules, and

Norman Weiss. 1970. A Maximization Technique

Occurring in the Statistical Analysis of Probabilis-

tic Functions of Markov Chains. The Annals of

Mathematical Statistics, 41(1):164-171.

Martijn Wieling, Therese Leinonen and John Ner-

bonne. 2007. Inducing Sound Segment Differences

using Pair Hidden Markov Models. In John Ner-

bonne, Mark Ellison and Grzegorz Kondrak (eds.)

Computing Historical Phonology: 9
th

 Meeting of

the ACL Special Interest Group for Computational

Morphology and Phonology Workshop, pp. 48-56,

Prague.

Mehryar Mohri, Fernando C.N. Pereira, and Michael

Riley. 2008. Speech Recognition with Weighte Fi-

nite State Transducers. In Larry Rabiner and Fred

Juang, editors, Handbook on Speech Processing

and Speech Communication, Part E: Speech Rec-

ognition. Springer-Verlag, Heidelberg, Germany.

Wesley Mackay and Grzegorz Kondrak. 2005. Com-

puting Word Similarity and Identifying Cognates

with Pair Hidden Markov Models. Proceedings of

the Ninth Conference on Computational Natural

Language Learning (CoNLL 2005), pp. 40-47,

Ann-Arbor, Michigan.

103

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 104–107,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

English—Hindi Transliteration Using Context-Informed PB-SMT:
the DCU System for NEWS 2009

Rejwanul Haque, Sandipan Dandapat, Ankit Kumar Srivastava,
Sudip Kumar Naskar and Andy Way

CNGL, School of Computing
Dublin City University, Dublin 9, Ireland

{rhaque,sdandapat,snaskar,asrivastava,away}@computing.dcu.ie

Abstract

This paper presents English—Hindi translit-
eration in the NEWS 2009 Machine Translit-
eration Shared Task adding source context
modeling into state-of-the-art log-linear
phrase-based statistical machine translation
(PB-SMT). Source context features enable us
to exploit source similarity in addition to tar-
get similarity, as modelled by the language
model. We use a memory-based classification
framework that enables efficient estimation of
these features while avoiding data sparseness
problems.We carried out experiments both at
character and transliteration unit (TU) level.
Position-dependent source context features
produce significant improvements in terms of
all evaluation metrics.

1 Introduction

Machine Transliteration is of key importance in
many cross-lingual natural language processing
applications, such as information retrieval, ques-
tion answering and machine translation (MT).
There are numerous ways of performing auto-
matic transliteration, such as noisy channel mod-
els (Knight and Graehl, 1998), joint source chan-
nel models (Li et al., 2004), decision-tree models
(Kang and Choi, 2000) and statistical MT models
(Matthews, 2007).

For the shared task, we built our machine
transliteration system based on phrase-based sta-
tistical MT (PB-SMT) (Koehn et al., 2003) using
Moses (Koehn et al., 2007). We adapt PB-SMT
models for transliteration by translating charac-
ters rather than words as in character-level trans-
lation systems (Lepage & Denoual, 2006). How-
ever, we go a step further from the basic PB-
SMT model by using source-language context
features (Stroppa et al., 2007). We also create
translation models by constraining the character-
level segmentations, i.e. treating a consonant-
vowel cluster as one transliteration unit.

The remainder of the paper is organized as fol-
lows. In section 2 we give a brief overview of
PB-SMT. Section 3 describes how context-
informed features are incorporated into state-of-
art log-linear PB-SMT. Section 4 includes the
results obtained, together with some analysis.
Section 5 concludes the paper.

2 Log-Linear PB-SMT

Translation is modelled in PB-SMT as a decision
process, in which the translation Ie1 = e1 . . . eI of
a source sentence Jf1 = f1 . . . fJ is chosen to
maximize (1):

)1()().|(maxarg)|(maxarg 111
,

11
, 11

IIJ

eI

JI

eI
ePefPfeP

II

where)|(11
IJ efP and)(1

IeP denote respec-
tively the translation model and the target lan-
guage model (Brown et al., 1993). In log-linear
phrase-based SMT, the posterior probability

)|(11
JI feP is directly modelled as a (log-linear)

combination of features (Och and Ney, 2002),
that usually comprise M translational features,
and the language model, as in (2):

m

m

KIJ
mm

JI sefhfeP
1

11111),,()|(log

)(log 1
I

LM eP (2)

where k
K sss ...11 denotes a segmentation of the

source and target sentences respectively into the
sequences of phrases)ˆ,...,ˆ(1 kee and)ˆ,...,ˆ(1 kff
such that (we set i0 = 0) (3):

,1 Kk sk = (ik ; bk, jk),

kk iik eee ...ˆ 11
 ,

kk jbk fff ...ˆ (3)

The translational features involved depend
only on a pair of source/target phrases and do not
take into account any context of these phrases.
This means that each feature mh in (2) can be
rewritten as in (4):

104

K

k
kkkm

KIJ
m sefhsefh

1
111),ˆ,ˆ(ˆ),,((4)

where mĥ is a feature that applies to a single
phrase-pair. Thus (2) can be rewritten as:

K

k

K

k
kkkkkkm

m

m
m sefhsefh

1 11
),ˆ,ˆ(ˆ),ˆ,ˆ(ˆ (5)

where, m

m

m
mhh ˆˆ

1

 . In this context, the transla-

tion process amounts to: (i) choosing a segmen-
tation of the source sentence, (ii) translating each
source phrase.

3 Source Context Features in Log-
Linear PB-SMT

The context of a source phrase kf̂ is defined as

the sequence before and after a focus phrase kf̂

=
kk ji ff Source context features (Stroppa et

al., 2007) include the direct left and right context
words (in our case, character/TU instead of word)
of length l (resp. lii kk

ff ...1 and ljj kk
ff ...1) of

a given focus phrase kf̂ =
kk ji ff A window of

size 2l+1 features including the focus phrase is
formed. Thus lexical contextual information (CI)
can be described as in (6):

CI = }...,...{ 11 ljjili kkkk
ffff (6)

As in (Haque et al., 2009), we considered a
context window of ±1 and ±2 (i.e. l=1, 2) for our
experiments.

One natural way of expressing a context-
informed feature is as the conditional probability
of the target phrase given the source phrase and
its context information, as in (7):

mĥ (kf̂ ,CI(kf̂), kê , sk) = log P(kê | kf̂ , CI(kf̂)) (7)

3.1 Memory-Based Classification
As (Stroppa et al., 2007) point out, directly esti-
mating P(kê | kf̂ , CI(kf̂)) using relative fre-
quencies is problematic. Indeed, Zens and Ney
(2004) showed that the estimation of P(kê | kf̂)
using relative frequencies results in the overesti-
mation of the probabilities of long phrases, so
smoothing factors in the form of lexical-based
features are often used to counteract this bias
(Foster et al., 2006). In the case of context-
informed features, since the context is also taken

into account, this estimation problem can only
become worse. To avoid such problems, in this
work we use three memory-based classifiers:
IGTree, IB1 and TRIBL 1 (Daelemans et al.,
2005). When predicting a target phrase given a
source phrase and its context, the source phrase
is intuitively the feature with the highest predic-
tion power; in all our experiments, it is the fea-
ture with the highest gain ratio (GR).

In order to build the set of examples required
to train the classifier, we modify the standard
phrase-extraction method of (Koehn et al., 2003)
to extract the context of the source phrases at the
same time as the phrases themselves. Importantly,
therefore, the context extraction comes at no ex-
tra cost.

We refer interested readers to (Stroppa et al.,
2007) and (Haque et al., 2009) as well as the ref-
erences therein for more details of how Memory-
Based Learning (MBL) is used for classification
of source examples for use in the log-linear MT
framework.

3.2 Implementation Issues
We split named entities (NE) into characters. We
break NEs into transliteration units (TU), which
bear close resemblance to syllables. We split
English NEs into TUs having C*V* pattern and
Hindi NEs are divided into TUs having Ch+M
pattern (M: Hindi Matra / vowel modifier, Ch:
Characters other than Matras). We carry out ex-
periments on both character-level (C-L) and TU-
level (TU-L) data. We use a 5-gram language
model for all our experiments. The Moses PB-
SMT system serves as our baseline system.

The distribution of target phrases given a
source phrase and its contextual information is
normalised to estimate P(kê | kf̂ ,CI(kf̂)). There-
fore our expected feature is derived as in (8):

mblĥ = log P(kê | kf̂ ,CI(kf̂)) (8)

As for the standard phrase-based approach,
their weights are optimized using Minimum Er-
ror Rate Training (MERT) of (Och, 2003) for
each of the experiments.

As (Stroppa et al., 2007) point out, PB-SMT
decoders such as Pharaoh (Koehn, 2004) or
Moses (Koehn, 2007) rely on a static phrase-
table represented as a list of aligned phrases ac-
companied with several features. Since these fea-

1 An implementation of IGTree, IB1 and TRIBL is available
in the TiMBL software package (http://ilk.uvt.nl/timbl).

105

tures do not express the context in which those
phrases occur, no context information is kept in
the phrase-table, and there is no way to recover
this information from the phrase-table.

In order to take into account the context-
informed features for use with such decoders, the
devset and testset that need to be translated are
pre-processed. Each token appearing in the test-
set and devset is assigned a unique id. First we
prepare the phrase table using the training data.
Then we generate all possible phrases from the
devset and testset. These devset and testset
phrases are then searched for in the phrase table,
and if found, then the phrase along with its con-
textual information is given to MBL for classifi-
cation. MBL produces class distributions accord-
ing to the maximum-match of the features con-
tained in the source phrase. We derive new
scores from this class distribution and merge
them with the initial information contained in the
phrase table to take into account our feature
functions (mblĥ) in the log-linear model (2).

In this way we create a dynamic phrase table
containing both the standard and the context-
informed features. The new phrase table contains
the source phrase (represented by the sequence
of ids of the words composing the phrase), target
phrase and the new score.

Similarly, replacing all the words by their ids
in the development set, we perform MERT using
our new phrase table to optimize the feature
weights. We translate the test set (words repre-
sented by ids) using our new phrase table.

4 Results and Analysis

We used 10,000 NEs from the NEWS 2009 Eng-
lish—Hindi training data (Kumaran and Kellner,
2007) for the standard submission, and the addi-
tional English—Hindi parallel person names data
(105,905 distinct name pairs) of the Election
Commission of India2 for the non-standard sub-
missions. In addition to the baseline Moses sys-
tem, we carried out three different set of experi-
ments on IGTree, IB1 and TRIBL. Each of these
experiments was carried out on both the standard
data and the combined larger data, both at char-
acter level and the TU level, and considering
±1/±2 tokens as context. For each experiment,
we produce the 10-best distinct hypotheses. The
results are shown in Table 1.

We observed that many of the (unseen) TUs in
the testset remain untranslated in TU-L systems

2 http://www.eci.gov.in/DevForum/Fullname.asp

due to the problems of data sparseness. When-
ever a TU-L system fails to translate a TU, we
fallback on the corresponding C-L system to
translate the TU as a post-processing step.

The accuracy of the TU-L baseline system
(0.391) is much higher compared to the C-L
baseline system (0.290) on standard dataset. Fur-
thermore, contextual modelling of the source
language gives an accuracy of 0.416 and 0.399
for TU-L system and C-L system respectively.
Similar trends are observed in case of larger
dataset. However, the highest accuracy (0.445)
has been achieved with the TU-L system using
the larger dataset.

5 Conclusion

In this work, we employed source context model-
ing into the state-of-the-art log-linear PB-SMT
for the English—Hindi transliteration task. We
have shown that taking source context into ac-
count substantially improve the system perform-
ance (an improvement of 43.44% and 26.42%
respectively for standard and larger datasets).
IGTree performs best for TU-L systems while
TRIBL seems to perform better for C-L systems
on both standard and non-standard datasets.

Acknowledgements
We would like to thank Antal van den Bosch for
his input on the use of memory based classifiers.
We are grateful to SFI (http://www.sfi.ie) for
generously sponsoring this research under grant
07/CE/I1142.

References
Adimugan Kumaran and Tobias Kellner. A generic

framework for machine transliteration. Proc. of the
30th SIGIR, 2007.

Byung-Ju Kang and Key-Sun Choi. Automatic trans-
literation and back-transliteration by decision tree
learning. 2000. Proc. of LREC-2000, Athens,
Greece, pp. 1135-1141.

David Matthews. 2007. Machine Transliteration of
Proper Names. Master's Thesis, University of Ed-
inburgh, Edinburgh, United Kingdom.

Franz Och and Hermann Ney. 2002. Discriminative
training and maximum entropy models for statisti-
cal machine translation. Proc. of ACL 2002, Phila-
delphia, PA, pp. 295–302.

George Foster, Roland Kuhn, and Howard Johnson.
2006. Phrasetable smoothing for statistical machine
translation. Proc. of EMNLP-2006, Sydney, Aus-
tralia, pp. 53-61.

106

Table1: Experimental Results (S/B Standard / Big data, S* TM on Standard data, but LM on Big data,
C/TU Character / TU level, SD Standard submission, NSD Non-standard submission). Better results with

bold faces have not been submitted in the NEWS 2009 Machine Transliteration Shared Task.

Haizhou Li, Zhang Min and Su Jian. 2004. A joint
source-channel model for machine translitera-
tion. Proc. of ACL 2004, Barcelona, Spain,
pp.159-166.

Kevin Knight and Jonathan Graehl. 1998. Machine
Transliteration. Computational Linguistics,
24(4):559-612.

Nicolas Stroppa, Antal van den Bosch and Andy
Way. 2007. Exploiting Source Similarity for
SMT using Context-Informed Features. Proc. of
TMI-2007, Skövde, Sweden, pp. 231-240.

Peter F. Brown, S. A. D. Pietra, V. J. D. Pietra and
R. L. Mercer. 1993. The mathematics of statisti-
cal machine translation: parameter estimation.
Computational Linguistics 19 (2), pp. 263-311.

Philipp Koehn, F. J. Och, and D. Marcu. 2003. Sta-
tistical phrase-based translation. Proc. of HLT-
NAACL 2003, Edmonton, Canada, pp. 48-54.

Philipp Koehn. 2004. Pharaoh: a beam search de-
coder for phrase-based statistical machine trans-
lation models. Machine translation: from real
users to research: Proc. of AMTA 2004, Berlin:
Springer Verlag, 2004, pp. 115-124.

Philipp Koehn, H. Hoang, A. Birch, C. Callison-
Burch, M. Federico, N. Bertoldi, B. Cowan, W.
Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A.
Constantin and E. Herbst. 2007. Moses: open
source toolkit for statistical machine translation.
Proc. of ACL, Prague, Czech Republic, pp. 177-
180.

Rejwanul Haque, Sudip Kumar Naskar, Yanjun Ma
and Andy Way. 2009. Using Supertags as Source
Language Context in SMT. Proc. of EAMT-09,
Barcelona, Spain, pp. 234-241.

Richard Zens and Hermann Ney. 2004. Improve-
ments in phrase-based statistical machine trans-
lation. Proc. of HLT/NAACL 2004, Boston, MA,
pp. 257–264.

Walter Daelemans & Antal van den Bosch. 2005.
Memory-based language processing. Cambridge,
UK, Cambridge University Press.

Yves Lepage and Etienne Denoual. 2006. Objective
evaluation of the analogy-based machine transla-
tion system ALEPH. Proc. of the 12th Annual
Meeting of the Association of NLP, pp. 873-876.

 S/B C/TU Context ACC M-F-Sc MRR MAP_ref MAP_10 MAP_sys
C 0 .290 .814 .393 .286 .131 .131

S TU 0 .391 .850 .483 .384 .160 .160
C 0 .352 .830 .463 .346 .156 .156

Baseline
Moses

B TU 0 .407 .853 .500 .402 .165 .165
±1 .391 .858 .501 .384 .166 .166

C ±2 .386 .860 .479 .379 .155 .155
±1 .406 .858 .466 .398 .178 .178

S

TU ±2 .359 .838 .402 .349 .165 .165

±1 .431 .865 .534 .423 .177 .177
C ±2 (NSD1) .420 .867 .519 .413 .170 .170

±1 .437 .863 .507 .429 .191 .191

IB1
B

TU ±2 .427 .862 .487 .418 .194 .194

±1 .372 .849 .482 .366 .160 .160
C ±2 .371 .847 .476 .364 .156 .156

±1 .412 .859 .486 .404 .164 .164

S

TU ±2 .416 .860 .493 .409 .166 .166

±1 .413 .855 .518 .406 .173 .173
C ±2 (NSD2) .407 .856 .507 .399 .168 .168

±1 .445 .864 .527 .440 .176 .176

IGTree
B

TU ±2 .427 .861 .516 .422 .173 .173

±1 .382 .854 .493 .375 .164 .164
C ±2 (SD) .399 .863 .488 .392 .157 .157

±1 .408 .858 .474 .400 .181 .181

S

TU ±2 .395 .857 .453 .385 .182 .182

±1 .439 .866 .543 .430 .179 .179
C ±2 (NSD3) .421 .864 .519 .415 .171 .171

±1 .444 .863 .512 .436 .193 .193

TRIBL
B

TU ±2 .439 .865 .497 .430 .197 .197

 S* C ±2 (NSD4) .419 .868 .464 .419 .338 .338

107

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 108–111,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

A Hybrid Approach to English-Korean Name Transliteration

Gumwon Hong∗, Min-Jeong Kim∗, Do-Gil Lee+ and Hae-Chang Rim∗
∗Department of Computer Science & Engineering, Korea University, Seoul 136-713, Korea

{gwhong,mjkim,rim }@nlp.korea.ac.kr
+Institute of Korean Culture, Korea University, Seoul 136-701, Korea

motdg@korea.ac.kr

Abstract

This paper presents a hybrid approach to
English-Korean name transliteration. The
base system is built on MOSES with en-
abled factored translation features. We
expand the base system by combining
with various transliteration methods in-
cluding a Web-basedn-best re-ranking, a
dictionary-based method, and a rule-based
method. Our standard run and best non-
standard run achieve 45.1 and 78.5, re-
spectively, in top-1 accuracy. Experimen-
tal results show that expanding training
data size significantly contributes to the
performance. Also we discover that the
Web-based re-ranking method can be suc-
cessfully applied to the English-Korean
transliteration.

1 Introduction

Often, named entities such as person names or
place names from foreign origin do not appear in
the dictionary, and such out of vocabulary words
are a common source of errors in processing nat-
ural languages. For example, in statistical ma-
chine translation (SMT), if a new word occurs
in the input source sentence, the decoder will at
best drop the unknown word or directly copy the
source word to the target sentence. Transliteration,
a method of mapping phonemes or graphemes of
source language into those of target language, can
be used in this case in order to identify a possible
translation of the word.

The approaches to automatic transliteration be-
tween English and Korean can be performed
through the following ways: First, in learning how
to write the names of foreign origin, we can re-
fer to a transliteration standard which is estab-
lished by the government or some official linguis-
tic organizations. No matter where the standard

comes from, the basic principle of the standard
is based on the correct pronunciation of foreign
words. Second, since constructing such rules are
very costly in terms of time and money, we can
rely on a statistical method such as SMT. We be-
lieve that the rule-based method can guarantee to
increase accuracy for known cases, and the statis-
tical method can be robust to handle various ex-
ceptions.

In this paper, we present a variety of tech-
niques for English-Korean name transliteration.
First, we use a phrase-base SMT model with some
factored translation features for the transliteration
task. Second, we expand the base system by ap-
plying Web-basedn-best re-ranking of the results.
Third, we apply a pronouncing dictionary-based
method to the base system which utilizes the pro-
nunciation symbols which is motivated by linguis-
tic knowledge. Finally, we introduce a phonics-
based method which is originally designed for
teaching speakers of English to read and write that
language.

2 Proposed Approach

In order to build our base system, we use MOSES
(Koehn et al., 2007), a well-known phrase-based
system designed for SMT. MOSES offers a con-
venient framework which can be directly applied
to machine transliteration experiments. In this
framework, the transliteration can be performed
in a very similar process of SMT task except the
following changes. First, the unit of translation
is changed fromwords to characters. Second, a
phrasein transliteration refers to any contiguous
block of character sequence which can be directly
matched from a source word to a target word.
Also, we do not have to worry about any distortion
parameters because decoding can be performed in
a totally monotonic way.

The process of the general transliteration ap-
proach begins by matching the unit of a source

108

Letter
Alignment

Bilingual Corpus

Factored Phrase-
based Training

Trained Model

Eumjeol
Decomposition

MOSES
Decoder

Input Word

Eumjeol
Re-composition

Target Word

Eumjeol
Decomposition

N-best
Re-ranking

WebDictionaryPhonics
Figure 1: System Architecture

word to the unit of a target word. The unit can be
based on graphemes or phonemes, depending on
language pairs or approaches. In English-Korean
transliteration, both grapheme-to-grapheme and
grapheme-to-phoneme approaches are possible. In
our method, we select grapheme-to-grapheme ap-
proach as a base system, and we apply grapheme-
to-phoneme functions in pronouncing dictionary-
based approach.

The transliteration between Korean and other
languages requires some special preprocessing
techniques. First of all, Korean alphabet is or-
ganized into syllabic blocks calledEumjeol. Ko-
rean transliteration standard allows eachEumjeol
to consist of either two or three of the 24 Korean
letters, with (1) leading 14 consonants, (2) inter-
mediate 10 vowels, and (3) optionally, trailing 7
consonants (out of the possible 14). Therefore,
KoreanEumjeolshould be decomposed into letters
before performing training or decoding any input.
Consequently, after the letter-unit transliteration is
finished, all the letters should be re-composed to
form a correct sequence ofEumjeols.

Figure 1 shows the overall architecture of our
system. The alignment between English letter and
Korean letter is performed using GIZA++ (Och
and Ney, 2003). We use MOSES decoder in or-
der to search the best sequence of transliteration.

In this paper we focus on describing factored
phrase-based training andn-best re-ranking tech-
niques including a Web-based method, a pro-
nouncing dictionary-based method, and a phonics-
based method.

Figure 2: Alignment example between ‘Knight’
and ‘��s�àÔ [naiteu]’

2.1 Factored Phrase-based Training

Koehn and Hoang (2007) introduces an integration
of different information for phrase-based SMT
model. We report on experiments with three fac-
tors: surface form, positional information, and
the type of a letter. Surface form indicates a
letter itself. For positional information, we add
a BIO label to each input character in both the
source words and the target words. The intuition is
that certain character is differently pronounced de-
pending on its position in a word. For example, ‘k’
in ‘Knight’ or ‘h’ in ‘Sarah’ are not pronounced.
The type of a letter is used to classify whether a
given letter is a vowel or a consonant. We assume
that a consonant in source word would more likely
be linked to a consonant in a target word. Figure 2
shows an example of alignment with factored fea-
tures.

2.2 Web-based Re-ranking

We re-ranked the topn results of the decoder by
referring to how many times both source word and
target word co-occur on the Web. In news articles
on the Web, a translation of a foreign name is of-
ten provided near the foreign name to describe its
pronunciation or description. To reflect this obser-
vation, we use Google’s proximity search by re-
stricting two terms should occur within four-word
distance. The frequency is adjusted as relative fre-
quency form by dividing each frequency by total
frequency of alln-best results.

Also, we linearly interpolate then-best score
with the relative frequency of candidate output. To
make fair interpolation, we adjust both scores to be
between 0 and 1. Also, in this method, we decide
to remove all the candidates whose frequencies are
zero.

2.3 Pronouncing Dictionary-based Method

According to “Oeraeeo pyogibeop1” (Korean or-
thography and writing method of borrowed for-

1http://www.korean.go.kr/08new/data/rule03.jsp

109

Methods Acc.1 Mean F1 Mean Fdec MRR MAP ref MAP10 MAP sys

BS 0.451 0.720 0.852 0.576 0.451 0.181 0.181
ER 0.740 0.868 0.930 0.806 0.740 0.243 0.243
WR 0.784 0.889 0.944 0.840 0.784 0.252 0.484
PD 0.781 0.885 0.941 0.839 0.781 0.252 0.460
PB 0.785 0.887 0.943 0.840 0.785 0.252 0.441

Table 1: Experimental Results (EnKo)

eign words), the primary principle of English-to-
Korean transliteration is to spell according to the
mapping table between the international phonetic
alphabets and the Korean alphabets. Therefore,
we can say that a pronouncing dictionary-based
method is very suitable for this principle.

We use the following two resources for build-
ing a pronouncing dictionary: one is an English-
Korean dictionary that contains 130,000 words.
The other is the CMU pronouncing dictionary2

created by Carnegie Mellon University that con-
tains over 125,000 words and their transcriptions.

Phonetic symbols for English words in the
dictionaries are transformed to their pronuncia-
tion information by using an internal code table.
The internal code table represents mappings from
each phonetic symbol to a single character within
ASCII code table. Our pronouncing dictionary in-
cludes a list of words and their pronunciation in-
formation.

For a given English word, if the word exists
in the pronouncing dictionary, then its pronunci-
ations are translated to Korean graphemes by a
mapping table and transformation rules, which are
defined by “Oeraeeo pyogibeop”.

2.4 Phonics-based Method

Phonics is a pronunciation-based linguistic teach-
ing method, especially for children (Strickland,
1998). Originally, it was designed to connect the
sounds of spoken English with group of English
letters. In this research, we modify the phonics
in order to connect English sounds to Korean let-
ter because in Korean there is nearly a one-to-one
correspondence between sounds and the letter pat-
terns that represent them. For example, alpha-
bet ‘b’ can be pronounced to ‘�’(bieup) in Ko-
rean. Consequently, we construct about 150 rules
which map English alphabet into one or more sev-
eral Korean graphemes, by referring to the phon-
ics. Though phonics cannot reveal all of the pro-

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict

nunciation of English words, the conversion from
English alphabet into Korean letter is performed
simply and efficiently. We apply the phonics in
serial order from left to right of each input word.
If multiple rules are applicable, the most specific
rules are fist applied.

3 Experiments

3.1 Experimental Setup

We participate in both standard and non-standard
tracks for English-Korean name transliteration in
NEWS 2009 Machine Transliteration Shared Task
(Li et al., 2009). Experimenting on the develop-
ment data, we determine the best performing pa-
rameters for MOSES as follows.
• Maximum Phrase Length: 3
• Language Model N-gram Order: 3
• Language Model Smoothing: Kneser-Ney
• Phrase Alignment Heuristic: grow-diag-final
• Reordering: Monotone
• Maximum Distortion Length: 0

With above parameter setup, the results are pro-
duced from the following five different systems.
• Baseline System (BS): For the standard task,
we use only given official training data3 to con-
struct translation model and language model for
our base system.
• Expanded Resource (ER): For all four non-
standard tasks, we use the examples of writing for-
eign names as additional training data. The ex-
amples are provided from the National Institute of
the Korean Language4. The data originally con-
sists of around 27,000 person names and around
7,000 place names including non-Ascii characters
for English side words as well as duplicate entries.
We preprocess the data in order to use 13,194 dis-

3Refer to Website http://www.cjk.org for more informa-
tion

4The resource is open to public. See
http://www.korean.go.kr/eng for more information.

110

tinct pairs of English names and Korean transliter-
ation.
• Web-based Re-ranking (WR): We re-rank the
result ofERby applying the method described in
section 2.2.
• Pronouncing Dictionary-based Method (PD):
The re-ranking ofWR by combining with the
method described in section 2.3.
• Phonics-based Method (PB): The re-ranking
of WRby combining with the method described in
section 2.4.

The last two methods re-rank theWR method
by applying pronouncing dictionary-based method
and Phonics-based method. We restrict that
the pronouncing dictionary-based method and
Phonics-based method can produce only one out-
put, and use the outputs of the two methods to re-
rank (again) the result of Web-based re-ranking.
When re-ranking the results, we heuristically com-
bined the outputs ofPD or PB with then-best re-
sult ofWR. If the outputs of the two methods exist
in the result ofWR, we add some positive scores to
the original scores ofWR. Otherwise, we inserted
the result into fixed position of the rank. The fixed
position of rank is empirically decided using de-
velopment set. We inserted the output ofPD and
PBat second rank and at sixth rank, respectively.

3.2 Experimental Results

Table 1 shows our experimental results of the five
systems on the test data. We found that the use
of additional training data (ER) and web-based re-
ranking (WR) have a strong effect on translitera-
tion performance. However, the integration of the
PD or PBwith WBproves not to significantly con-
tribute the performance. To find more elaborate
integration of those results will be one of our fu-
ture work.

The MAPsys value of the three re-ranking
methodsWR, PD, and PB are relatively higher
than other methods because we filter out some
candidates inn-best by their Web frequencies. In
addition to the standard evaluation measures, we
include the Mean Fdec to measure the Levenshtein
distance between reference and the output of the
decoder (decomposed result).

4 Conclusions

In this paper, we proposed a hybrid approach to
English-Korean name transliteration. The system
is built on MOSES with factored translation fea-

tures. When evaluating the proposed methods,
we found that the use of additional training data
can significantly outperforms the baseline system.
Also, the experimental result of using threen-best
re-ranking techniques shows that the Web-based
re-ranking is proved to be a useful method. How-
ever, our two integration methods with dictionary-
based or rule-based method does not show the sig-
nificant gain over the Web-based re-ranking.

For future work, we plan to devise more elab-
orate way to integrate statistical method and dic-
tionary or rule-based method to further improve
the transliteration performance. Also, we will ap-
ply the proposed techniques to possible applica-
tions such as SMT or Cross Lingual Information
Retrieval.

References

Philipp Koehn and Hieu Hoang. 2007. Factored trans-
lation models. InProceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 868–876,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In ACL 2007, Demo and Poster Sessions, June.

Haizhou Li, A Kumaran, Min Zhang, and Vladimir
Pervouchine. 2009. Whitepaper of news 2009
machine transliteration shared task. InProceed-
ings of ACL-IJCNLP 2009 Named Entities Work-
shop (NEWS 2009), Singapore.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models.Computational Linguistics, 29.

D.S. Strickland. 1998. Teaching phonics today: A
primer for educators. International Reading Asso-
ciation.

111

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 112–115,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Language Independent Transliteration system using phrase based
SMT approach on substrings

Sara Noeman
IBM Cairo Technology & Development

Center
Giza, Egypt

noemans@eg.ibm.com

Abstract
Everyday the newswire introduce events from all over
the world, highlighting new names of persons, loca-
tions and organizations with different origins. These
names appear as Out of Vocabulary (OOV) words for
Machine translation, cross lingual information retriev-
al, and many other NLP applications. One way to deal
with OOV words is to transliterate the unknown
words, that is, to render them in the orthography of
the second language.
We introduce a statistical approach for transliteration
only using the bilingual resources released in the
shared task and without any previous knowledge of
the target languages. Mapping the Transliteration
problem to the Machine Translation problem, we
make use of the phrase based SMT approach and ap-
ply it on substrings of names. In the English to Russi-
an task, we report ACC (Accuracy in top-1) of 0.545,
Mean F-score of 0.917, and MRR (Mean Reciprocal
Rank) of 0.596.
Due to time constraints, we made a single experiment
in the English to Chinese task, reporting ACC, Mean
F-score, and MRR of 0.411, 0.737, and 0.464 respect-
ively.
Finally, it is worth mentioning that the system is
language independent since the author is not aware of
either languages used in the experiments.

1. Introduction
Named entities translation is strongly required in the
field of Information retrieval (IR) as well as its usage
in Machine translation. A significant proportion of
OOV words are named entities and typical analyses
find around 50% of OOV words to be named entities,
yet these can be the most important words in the quer-
ies. Larkey et al (2003) showed that average precision
of cross language retrieval reduced more than 50%
when named entities in the queries were not trans-
lated.
Transliteration may be considered as a phonetic trans-
lation or mapping of a sequence of characters in the
source language in the alphabet of the target language,
thus we can use the analogy with the Machine transla-
tion problem, which translates a sequence of words in

the source language into a semantically equivalent se-
quence of words in the target language.
In a statistical approach to machine translation, given
a foreign word F, we try to find the English word Ê
that maximizes P(E\F). Using Bayes' rule, we can for-
mulate the task as follows:

This is known as the noisy channel model, which
splits the problem into two sub-tasks. The translation
model provides an estimate for the P(F\E) for the for-
eign word F being a translation for the English word
E, while the language model provides an estimate of
the probability P(E) is an English word.

In this paper we use the phrase based statistical Ma-
chine Translation (PBSMT) approach introduced by
(Koehn et al.) to build English to Russian, and Eng-
lish to Chinese transliteration systems capable of
learning the substring to substring mapping between
source and target languages.

Section 2 includes a detailed description of our
approach, section 3 describes our experimental set up
and the results. The conclusions and future work are
explained in section 4.

2. System architecture
Our approach is a formulation of the Transliteration
problem using the PBSMT technique that proved im-
provement in Machine translation domain, making
use of the analogy between the two problems.
The phrase-based approach developed for statistical
machine translation (Koehn et al., 2003) is designed
to overcome the restrictions of many-to-many map-
pings in word-based translation models. We applied
the phrase based statistical approach used in Machine
translation on our problem, mapping the "word", and

 P(F\E)*P(E)
Ê = argmax

 E P(F)

= argmax P(F\E)*P(E)
 E

112

"phrase" in PBSMT terminology into "character", and
"substring" in our system, where the substring in our
notation represents a sequence of adjacent characters.

Figure (1) shows an overview of the whole system ar-
chitecture.

We used an HMM aligner similar to Giza++ (Och. et
al., 1999) over the parallel character sequences using
forward-backward alignment intersection. Heuristics
were used to extend substring to substring mappings
based on character-to-character alignment, with the
constraint that no characters within the substring pair
are linked to characters outside the substring pair.
Thus we generated a substring to substring translation
model with relative frequencies. We deploy heuristics
to extract character sequence mapping similar to the
heuristics used in PBSMT (Koehn et al., 2003). Fig-
ure (2) shows the heuristics used for block extraction
over substrings in the English to Russian task using
character to character alignments.

Figure (2)

Unlike the Machine Translation task, in transliteration
we do not need any reordering during decoding which
makes the decoding phase easier. We used monotone
beam search decoder generating the best k
transliteration candidates, where the translation model
and the language model are used by the decoder to get
best Viterbi paths of character sequences as a phonetic
translation for the input English character sequence.
(Tillmann, et al., 2003).

Finally, all transliteration candidates are weighted us-
ing their translation and language model probabilities
as follows:
P(wr \ we) = P(we \ wr) ∗ P(wr ∈ R)

Here, we explain our system for the English to Russi-
an task, while the English to Chinese system will fol-

low the same criteria and their results are mentioned
later.

a. Data and Resources
Standard Runs:
In the English to Russian task, we used the parallel
corpus (EnRu) released by NEWS 2009 Shared Task
on Transliteration to build the translation model. For
the English to Chinese standard run, we used the
parallel English-Chinese (EnCh) corpus released by
NEW2009 availed by (Li et al., 2004). The target
language side (Russian, Chinese) of the parallel data
was used to build the language model. NEWS2009
released 5977 of EnRu names pairs as a training set,
and 943 pairs as a development set. The EnCh corpus
had 31,961 pairs as a training set, and 2896 pairs as a
development set.

Non-Standard Runs:
For the English to Russian task we used the Russian
data in UMC 0.1 Czech-English-Russian, from the In-
stitute of Formal and Applied Linguistics (ÚFAL), to
build a larger Russian LM, in addition to the data re-
sources used in the standard run. No Named Entity
tagging has been applied on this data because we lack
the tools. However, we are just validating the charac-
ter n-gram sequences in the target language with lar-
ger corpus of character sequences.
We didn't use any additional resources for the Chinese
task.

b. Training
The training is held in two phases; first learning the
list of Russian characters aligned to multiple English
characters, and thus we obtain a table of English char-
acter n-grams to be added to unigram inventory of the
source language. The second stage learns the translit-
eration model over this new inventory. (Larkey et al.,
2003).

Table 1 shows the list of English n-gram characters
added to unigram inventory.

Table (1)
s h c h shch
s z c z szcz
s c h sch
z h zh
c k ck
p h ph
k h kh
c h ch
s h sh
s z sz
c z cz
š č šč

A substring (phrase) table of Russian substrings
mapped to English substrings is considered as the

Parallel
Corpus

HMM
aligner

Block
extract ion Decoder

Language
Model

Figure (1)

P u n t l a n d

П у н т л е н д

113

translation model P(E\R). A language model P(R) is
built using a monolingual Russian corpus.
Figure (3) shows a sample of the substring feature
table generated during training using the block extrac-
tion heuristics over HMM alignments.

c. Decoding
The source English word is fragmented into all its
possible substring sequences, and the decoder applies
a monotone beam search, without reordering, to gen-
erate the best k phonetic translation character se-
quences in the target language alphabet.
Experiments 1, 2, and 3 use a substring based translit-
eration system The experiments set up will be as fol-
lows:

i. The effect of true casing versus lowercasing
Russian characters is explained through the
first experiment (Exp-1).

ii. The released English data contains some un-
usual English characters not belonging to the
English alphabet, some of which are vowels
like "ế, ê, ē, é, ä, ã, ą, ö, ó, ō, ú, û, ŭ", and
others are consonants as "ľ, ł, ť, ż, ž, ń, ñ, ň,
ř". The effect of normalizing these unusual
English characters is explained in the second
experiment (Exp-2).

iii. In the third experiment (Exp-3) we used the
unigram inventory described in Table (1).

N.B.: Chinese language has a very large number of
characters representing syllables rather than charac-
ters (a syllables = a consonant + vowel, or a conson-
ant + vowel + final), thus the unigram inventory used
in the English to Chinese task wasn't generated using
the statistical trend used with English-Russian task.
General linguistic heuristics were used to re-merge
character n-grams like "sh, th, gh, ph, etc…" as well
as character repetitions like "ll, mm, nn … ss, tt,
etc..."

3. Results
Evaluation Metrics:
The quality of the transliteration task was measured
using the 6 metrics defined in the shared task white
paper. The first metric is the Word Accuracy in Top-1
(ACC) which is the precision of the exact match with

the Top-1 reference. The second one is the Fuzziness
in Top-1 (Mean F-score) which reflects an average F-
score of the normalized lowest common subsequence
between the system output and the Top-1 reference.
The (MRR) represents the Mean Reciprocal Rank of
the Top-1 reference in the k candidates generated by
the system. The last three metrics MAPref, MAP10,
MAPsys measure how the k candidates generated by
the transliteration system are mapped to the n refer-
ences available for each input in the testset.

English to Russian task
The results of experiments 1, 2, and 3 on the Develop-
ment set, using the 6 evaluation metrics explained be-
fore, are written in Table (2). Exp-2 reflects the effect
of normalizing all the unusual English characters that
existed in the training data. Referring to the results of
Exp-1, we conclude that this normalization decreases
the ACC of the system around 2.5%. In the next ex-
periments we only use the set up of Exp-3, which uses
the statistical unigram inventory without true casing
Russian characters or normalizing unusual English
characters.

Exp-1 Exp-2 Exp-3
ACC 0.705 0 0

Mean F-
score

0.945 0.939 0

MRR 0.741 0.721 0

MAPref 0.705 0 0

MAP10 0.220 0.215 0

MAPsys 0.525 0 0

Table (2) explains Eng-Russian task results on the De-
velopment Set for experiments 1, 2, and 3.

 Standard Run:
Our Standard Run submission used the same setup
used in Experiment-3, no lowercasing, no normaliza-
tion, and using the list of English n-grams that were
added to the unigram inventory after the first training
phase. Table (3) contains the results of our Standard
Submissions.

Standard submission
ACC 0.545
Mean F-
score

0.917

MRR 0.596
MAPref 0.545
MAP10 0.286
MAPsys 0.299

Table (3) explains Eng-Russian task results on the
blind Test Set. This was the Standard submission.
N.B.: We submitted the previous output in true-cased
Russian characters as our standard submission, and
then we submitted the same system output after lower
casing as a Non-Standard run because we were not
sure that the evaluation tool used by the Shared Task

а к о н || e a c o n 0 1
а ф || e a f 0 1
а ф э || e a f ă 0 1
е н е р и ф || e n e r i f 0 1
е н е р и ф е || e n e r i f e 0 1
н е р с || e n e r s 0 1
н е р с р || e n e r s r 0 1
н е р с р ю || e n e r s r ü 0 1
Figure (3) a sample of the substring table

114

will be able to map true case and lower case vari-
ations.
The same will be done in the next run, where 2 sub-
missions are submitted for the same output, one of
which was true-cased and the other was lower cased.

 Non-Standard Run:
Using (UMC 0.1) additional LM on the blind Test set.
The results are in table(5)

Non-Standard submission
ACC 0.524
Mean F-score 0.913
MRR 0.579
MAPref 0.524
MAP10 0.277
MAPsys 0.291

Table (5) explains Eng-Russian task results on the
blind Test Set. This was the Non-Standard submis-
sion.

English to Chinese task

Finally the previous setup with slight modifications
was applied to the Eng-Chinese transliteration task.
Tables (6), and (7) represent the results on the
Chinese Development set and Test set respectively.

Exp-3
ACC 0.447
Mean F-score 0.748
MRR 0.489
MAPref 0.447
MAP10 0.147
MAPsys 0.191

Table (6) explains Eng-Chinese task results on the
Development Set.

 Standard Run:
Standard submission

ACC 0.411
Mean F-
score

0.737

MRR 0.464
MAPref 0.411
MAP10 0.141
MAPsys 0.173

Table (7) explains Eng-Chinese task results on the
blind Test Set. This was the Standard submission

4. Conclusion and Future Work
In this paper we presented a substring based transliter-
ation system, making use of the analogy between the
Machine translation task and Transliteration. By ap-
plying the phrase based SMT approach in the translit-
eration domain, and without any previous knowledge
of the target languages, we built an English to Russian
system with ACC of 54.5% and an English to Chinese
system with ACC of 41.2%.

In the future we are planning to hold some experi-
ments to filter out the generated phrase table (sub-
string table) and try other decoding techniques.

5. Acknowledgement

I would like to thank Dr. Hany Hassan in IBM
Cairo TDC for his helpful comments and tech-
nical support.

6. References
N. AbdulJaleel and L. S. Larkey. 2003. Statistical

transliteration for English-Arabic cross language
information retrieval. In CIKM, pages 139–146.

Y. Al-Onaizan and K. Knight. 2002. Machine Trans-
literation of Names in Arabic Text. In Proceed-ings
of the ACL Workshop on Computational Ap-
proaches to Semitic Languages.

P. F. Brown, V. J. Della Pietra, S. A. Della Pietra, and
R. L. Mercer. 1993. The Mathematics of Statistical
Machine Translation: Parameter Estimation. Com-
putational Linguistics, 19(2):263–311.

P. Koehn, F.J. Och, and D. Marcu. 2003. Statistical
Phrase-Based Translation. Proc. Of the Human
Language Technology Conference, HLT-
NAACL’2003, May.

H. Li, M. Zhang, J. Su: A Joint Source-Channel Mod-
el for Machine Transliteration. ACL 2004: 159-166

F. J. Och, C. Tillmann, and H. Ney. 1999. Improved
Alignment Models for Statistical Machine Transla-
tion. In June 1999, EMNLP.

T. Sherif and G. Kondrak. 2007. Substring-Based
Transliteration. In Proceedings of the ACL
Workshop on Computational Approaches to
Semitic Languages.

C. Tillmann and H. Ney. 2003.Word Re-ordering and
DP-based Search in Statistical Machine
Translation. In COLING, pages 850-856.

J. Zobel and P. Dart. 1996. Phonetic String Matching.
Lessons from Information Retrieval. SIGIR Forum,
special issue:166—172.

115

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 116–119,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Combining MDL Transliteration Training with Discriminative Modeling

Dmitry Zelenko
4300 Fair Lakes Ct.

Fairfax, VA 22033, USA
dmitry zelenko@sra.com

Abstract

We present a transliteration system that
introduces minimum description length
training for transliteration and combines
it with discriminative modeling. We ap-
ply the proposed approach to translitera-
tion from English to 8 non-Latin scripts,
with promising results.

1 Introduction

Recent research in transliteration and translation
showed utility of increasing the n-gram size in
transliteration models and phrase tables (Koehn
et al., 2003). Yet most learning algorithms for
training n-gram transliteration models place re-
strictions on the size of n-gram due to tractability
and overfitting issues, and, in the case of machine
translation, construct the phrase table after train-
ing the model, in an ad-hoc manner. In this paper,
we present a minimum description length (MDL)
approach (Grunwald, 2007) for learning transliter-
ation models comprising n-grams of unrestricted
size. Given a bilingual dictionary of transliterated
data we seek to derive a transliteration model so
that the combined size of the data and the model is
minimized.

Use of discriminative modeling for transliter-
ation and translation is another promising direc-
tion allowing incorporation of arbitrary features
in the transliteration process (Zelenko and Aone,
2006; Goldwasser and Roth, 2008). Here we pro-
pose to use the transliteration model derived via
MDL training as a starting point and learn the
model weights in the discriminative manner. The
discriminative approach also provides a natural
way to integrate the language modeling compo-
nent into the transliteration decoding process.

We experimentally evaluate the proposed ap-
proach on the standard datasets for the task of
transliterating from English to 8 non-Latin scripts

2 MDL Training for Transliteration

In our transliteration setting, we are given a string
e written in an alphabetV1 (e.g., Latin), which is
to be transliterated into a stringf written in an al-
phabetV2 (e.g., Chinese). We consider a transliter-
ation process that is conducted by a transliteration
modelT , which represents a function mapping a
pair of strings(ei, fi) into a scoreT (ei, fi) ∈ R.
For an alignment1 A = {(ei, fi)} of e andf , we
define the alignment scoreT (A) =

∑
i T (ei, fi).

For a stringe and a modelT , the decoding process
seeks the optimal transliterationT (e) with respect
to the modelT :

T (e) = arg max
f

{ T (A) | ∃A = {(ei, fi)} }

Different assumptions for transliteration mod-
els lead to different estimation algorithms. A
popular approach is to assume ajoint gener-
ative model for pairs(e, f), so that given an
alignmentA = {(ei, fi)}, a probabilityP (e, f)
is defined to be

∏
i p(ei, fi). The probabili-

ties p(ei, fi) are estimated using the EM algo-
rithm, and the corresponding transliteration model
is T (ei, fi) = log(p(ei, fi)). We can alterna-
tively model theconditional probability directly:
P (f |e) =

∏
i p(fi|ei), where we again estimate

the conditional probabilitiesp(fi|ei) via the EM
algorithm, and define the transliteration model ac-
cordingly: T (ei, fi) = log(p(fi|ei)). We can also
combine joint estimation with conditional decod-
ing, observing thatp(fi|ei) = p(ei,fi)∑

f
p(ei,fi)

and us-

ing the conditional transliteration model after esti-
mating a joint generative model.

Increasing the maximum n-gram size in prob-
abilistic modeling approaches, at some point, de-
grades model accuracy due to overfitting. There-
fore, probabilistic approaches typically use a small
n-gram size, and perform additional modelingpost

1Here we consider only monotone alignments.

116

factum: examples include joint n-gram modeling
and phrase table construction in machine transla-
tion.

We propose to apply the MDL principle to
transliteration modeling by seeking the model that
compresses the transliteration data so that the
combined size of the compressed data and the
model is minimized. IfT corresponds to a joint
probabilistic modelP = {p(ei, fi)}, then we can
use the model to encode the dataD = {(e, f)} in

CD(P) = −
∑

(e,f)

log P (e, f)

= −
∑

(e,f)

maxA

∑

i

log p(ei, fi)

bits, whereA = {(ei, fi)} is an alignment ofe and
f .

We can encode each symbol of an alphabetV
usinglog |V | bits so encoding a strings of length
|s| from alphabetV takesCV (s) = log |V |(|s| +
1) bits (we add an extra string termination sym-
bol for separability). Therefore, we encode each
transliteration model in

CT (P) =
∑

(ei,fi)

CT (ei, fi)

bits, whereCT (ei, fi) = CV1
(ei) + CV2

(fi) −
log p(ei, fi) is the number of bits used to encode
both the pair(ei, fi) and its code according toP .
Thus, we seek a probability distributionP that
minimizesC(P) = CD(P) + CT (P).

Let P be an initial joint probability distribution
for a transliteration modelT such that a string pair
(ei, fi) appearedn(ei, fi) times, andp(ei, fi) =
n(ei, fi)/N , where N =

∑
(ei,fi) n(ei, fi).

Then, encoding a pair(ei, fi) takes on aver-
age C(ei, fi) = CT (ei,fi)

n(ei,fi)
− log p(ei, fi) bits -

here we distribute the model size component to
all occurrences of(ei, fi) in the data. Notice
that the combined data and model sizeC(P) =∑

(ei,fi) n(ei, fi)C(ei, fi). It is this quantity
C(ei, fi) that we propose to use when conducting
the MDL training algorithm below.

1. Pick an initial P . ComputeC(ei, fi) =
CT (ei,fi)
n(ei,fi)

− log p(ei, fi). Set combined size
C(P) =

∑
(ei,fi) n(ei, fi)C(ei, fi).

2. Iterate: during each iteration, for each
(e, f) ∈ D, find the minimum codesize
alignment A = arg minA

∑
i C(ei, fi) of

(e, f). Use the alignments to re-estimateP
and re-computeC. Exit when there is no im-
provement in the combined model and data
size.

Experimentally, we observed fast convergence of
the above algorithm just after a few iterations,
though we cannot present a convergence proof as
yet. We picked the initial model by computing
co-occurrence counts of n-gram pairs inD, that
is, n(ei, fi) =

∑
(e,f) min(ne(ei), nf (fi)), where

ne(ei) (nf (fi)) is the number of times the n-gram
ei (fi) appeared in the stringe (f).

Note that a Bayesian interpretation of the pro-
posed approach is not straightforward due to
the use of empirical component− log p(ei, fi) in
model encoding. Changing the model encoding to
use, for example, a code forn(ei, fi) would allow
for a direct Bayesian interpretation of the proposed
code, and we plan to pursue this direction in the
future.

The output of the MDL training algorithm is
the joint probability modelP that we use to de-
fine the transliteration model weights as the loga-
rithm of corresponding conditional probabilities:
T (ei, fi) = log p(ei,fi)∑

f
p(ei,f)

. During the decod-

ing process of inferringf from e via an align-
mentA, we integrate the language model proba-
bility p(f) via a linear combination:TGEN (e) =
arg maxf{T (A) + µ log p(f)/|f |}, where µ is
a combination parameter estimated via cross-
validation.

3 Discriminative Training

We use the MDL-trained transliteration model
T as a starting point for discriminative train-
ing: we consider all n-gram pairs(ei, fi) with
nonzero probabilitiesp(ei, fi) as features of a lin-
ear discriminative modelTDISCR. We also in-
tegrate the normalized language modeling prob-

ability p0(f) = p(f)
1

|f | in the discriminative
model as one of the features:TDISCR(e) =
arg maxf{T (A) + T0p0(f)}. We learn the
weights T (ei, fi) and T0 of the discriminative
model using the average perceptron algorithm of
(Collins, 2002). Since both the transliteration
model and the language model are required to be
learned from the same data, and the language mod-
eling probability is integrated into our decoding
process, we remove the stringe from the language
model before processing the example(f, e) during

117

training; we re-incorporate the stringe in the lan-
guage model after the example(f, e) is processed
by the averaged perceptron algorithm. We use the
discriminatively trained model as the ”standard”
system in our experiments.

4 Experiments

We use the standard data for transliterating
from English into 8 non-Latin scripts: Chinese
(Haizhou et al., 2004); Korean, Japanese (Kanji),
and Japanese (Katakana) (CJK Institute, 2009);
Hindi, Tamil, Kannada, and Russian (Kumaran
and Kellner, 2007). The data is provided as part
of the Named Entities Workshop 2009 Machine
Transliteration Shared Task (Li et al., 2009).

For all 8 datasets, we report scores on the stan-
dard tests sets provided as part of the evaluation.
Details of the evaluation methodology are pre-
sented in (Li et al., 2009).

4.1 Preprocessing

We perform the same uniform processing of data:
names are considered sequences of Unicode char-
acters in their standard decomposed form (NFD).
In particular, Korean Hangul characters are de-
composed into Jamo syllabary. Since the evalu-
ation data are provided in the re-composed form,
we re-compose output of the transliteration sys-
tem.

We split multi-word names (in Hindi, Tamil,
and Kannada datasets) in single words and con-
ducted training and evaluation on the single word
level. We assume no word order change for multi-
word names and ignore name pairs with different
numbers of words.

4.2 System Parameters and Tuning

We apply pre-set system parameters with very lit-
tle tuning. In particular, we utilize a 5-gram lan-
guage model with Good-Turing discounting. The
MDL training algorithm requires only the cardi-
nalities of the corresponding alphabets as parame-
ters, and we use the following approximate vocab-
ulary sizes typically rounded to the closest power
of 2 (except for Chinese and Japanese): for En-
glish, Russian, Tamil, and Kannada, we set|V | =
32; for Katakana and Hindi,|V | = 64; for Korean
Jamo,|V | = 128; for Chinese and Japanese Kanji,
|V | = 1024.

We perform 10 iterations of the average per-
ceptron algorithm for discriminative training. For

Init Comp Ratio Dict
Chinese 333 Kb 158 Kb 0.48 5780
Hindi 159 Kb 72 Kb 0.45 1956
Japanese

170 Kb 82 Kb 0.48 4394
(Kanji)
Kannada 131 Kb 62 Kb 0.48 2010
Japanese

289 Kb 136 Kb 0.47 3383
(Katakana)
Korean 69 Kb 31 Kb 0.45 1181
Russian 78 Kb 37 Kb 0.48 865
Tamil 134 Kb 62 Kb 0.46 1827

Table 1: MDL Data and Model Compression
showing initial data size, final combined data and
model size, the compression ratio, and the number
of n-gram pairs in the final model.

T1(Acc) T2(Acc) T2(F) T2(MRR)

Chinese 0.522 0.619 0.847 0.711
Hindi 0.312 0.409 0.864 0.527
Japanese

0.484 0.509 0.675 0.6
(Kanji)
Kannada 0.227 0.345 0.854 0.462
Japanese

0.318 0.420 0.807 0.541
(Katakana)
Korean 0.339 0.413 0.702 0.524
Russian 0.488 0.566 0.919 0.662
Tamil 0.267 0.374 0.880 0.512

Table 2: Experimental results for transliteration
from English to 8 non-Latin scripts comparing
performance of generative (T1) and corresponding
discriminative (T2) models.

both alignment and decoding, we use a beam
search decoder, with the beam size set to 100.

4.3 Results

Our first set of experiments illustrates compres-
sion achieved by MDL training. Table 1 shows for
each for the training datasets, the original size of
the data, compressed size of the data including the
model size, the compression ratio, and the number
of n-gram pairs in the final model.

We see very similar compression for all lan-
guages. The number of n-gram pairs for the final
model is also relatively small. In general, MDL
training with discriminative modeling allows us to
discover a flexible small set of features (n-gram
pairs) without placing any restriction on n-gram
size. We can interpret MDL training as search-

118

ing implicitly for the best bound on the n-gram
size together with searching for appropriate fea-
tures. Our preliminary experiments also indicate
that performance of models produced by the MDL
approach roughly corresponds to performance of
models trained with the optimal bound on the size
of n-gram features.

Table 2 demonstrates that discriminative model-
ing significantly improves performance of the cor-
responding generative models. In this setting, the
MDL training step is effectively used for feature
construction: its goal is to automatically hone in
on a small set of features whose weights are later
learned by discriminative methods.

From a broader perspective, it is an open
question whether seeking a compact representa-
tion of sequential data leads to robust and best-
performing models, especially in noisy environ-
ments. For example, state-of-the-art phrase trans-
lation models eschew succinct representations,
and instead employ broad redundant sets of fea-
tures (Koehn et al., 2003). On the other hand,
recent research show that small translation mod-
els lead to superior alignment (Bodrumlu et al.,
2009). Therefore, investigation of the trade-off
between robust redundant and succinct representa-
tion present an interesting area for future research.

5 Related Work

There is plethora of work on transliteration cov-
ering both generative and discriminative models:
(Knight and Graehl, 1997; Al-onaizan and Knight,
2002; Huang et al., 2004; Haizhou et al., 2004; Ze-
lenko and Aone, 2006; Sherif and Kondrak, 2007;
Goldwasser and Roth, 2008). Application of the
minimum description length principle (Grunwald,
2007) in natural language processing has been
heretofore mostly limited to morphological analy-
sis (Goldsmith, 2001; Argamon et al., 2004). (Bo-
drumlu et al., 2009) present a related approach on
optimizing the alignment dictionary size in ma-
chine translation.

6 Conclusions

We introduced a minimum description length ap-
proach for training transliteration models that al-
lows to avoid overfitting without putting apriori
constraints of the size of n-grams in transliteration
models. We plan to apply the same paradigm to
other sequence modeling tasks such as sequence

classification and segmentation, in both super-
vised and unsupervised settings.

References
Y. Al-onaizan and K. Knight. 2002. Machine translit-

eration of names in arabic text. InACL Workshop
on Comp. Approaches to Semitic Languages, pages
34–46.

S. Argamon, N. Akiva, A. Amir, and O. Kapah. 2004.
Efficient unsupervised recursive word segmentation
using minimum description length. InProceedings
of COLING.

T. Bodrumlu, K. Knight, and S. Ravi. 2009. A new ob-
jective function for word alignment. InProceedings
NAACL Workshop on Integer Linear Programming
for NLP.

CJK Institute. 2009. http://www.cjk.org.

M. Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. InProceedings
of EMNLP.

J. Goldsmith. 2001. Unsupervised learning of the mor-
phology of a natural language.Computational Lin-
guistics, pages 153–198.

D. Goldwasser and D. Roth. 2008. Translitera-
tion as constrained optimization. InProceedings of
EMNLP.

P. Grunwald. 2007.The Minimum Description Length
principle. MIT Press.

L. Haizhou, Z. Min, and S. Jian. 2004. A joint source-
channel model for machine transliteration. InPro-
ceedings of ACL.

F. Huang, S. Vogel, , and A. Waibel. 2004. Improving
named entity translation combining phonetic and se-
mantic similarities. InProceedings of HLT/NAACL.

K. Knight and J. Graehl. 1997. Machine translitera-
tion. Computational Linguistics, pages 128–135.

P. Koehn, F. Och, and D. Marcu. 2003. Statis-
tical phrase-based translation. InProceedings of
NLT/NAACL.

A. Kumaran and T. Kellner. 2007. A generic frame-
work for machine transliteration. InProceedings of
SIGIR.

Haizhou Li, A. Kumaran, Min Zhang, and V. Pervou-
chine. 2009. Whitepaper of news 2009 machine
transliteration shared task. InProceedings of ACL-
IJCNLP 2009 Named Entities Workshop (NEWS
2009).

T. Sherif and G. Kondrak. 2007. Substring-based
transliteration. InProceedings of ACL.

D. Zelenko and C. Aone. 2006. Discriminative meth-
ods for transliteration. InProceedings of EMNLP.

119

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 120–123,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

ǫ-extension Hidden Markov Models and Weighted Transducers for
Machine Transliteration

Balakrishnan Vardarajan
Dept. of Electrical and Computer Engineering

Johns Hopkins University
bvarada2@jhu.edu

Delip Rao
Dept. of Computer Science
Johns Hopkins University
delip@cs.jhu.edu

Abstract

We describe in detail a method for translit-
erating an English string to a foreign
language string evaluated on five differ-
ent languages, including Tamil, Hindi,
Russian, Chinese, and Kannada. Our
method involves deriving substring align-
ments from the training data and learning a
weighted finite state transducer from these
alignments. We define anǫ-extension Hid-
den Markov Model to derive alignments
between training pairs and a heuristic to
extract the substring alignments. Our
method involves only two tunable parame-
ters that can be optimized on held-out data.

1 Introduction

Transliteration is a letter by letter mapping of one
writing system to another. Apart from the obvi-
ous use in writing systems, transliteration is also
useful in conjunction with translation. For exam-
ple, machine translation BLEU scores are known
to improve when named entities are transliterated.
This engendered several investigations into auto-
matic transliteration of strings, named entities in
particular, from one language to another. See
Knight and Graehl(1997) and later papers on this
topic for an overview.

Hidden Markov Model (HMM) (Rabiner,
1989) is a standard sequence modeling tool used
in various problems in natural language process-
ing like machine translation, speech recognition,
part of speech tagging and information extraction.
There have been earlier attempts in using HMMs
for automatic transliteration. See (Abdul Jaleel
and Larkey, 2003; Zhou et al., 2008) for exam-
ple. In this paper, we define anǫ-extension Hid-
den Markov Model that allows us to align source
and target language strings such that the charac-
ters in the source string may be optionally aligned

to theǫ symbol. We also introduce a heuristic that
allows us to extract high quality sub-alignments
from theǫ-aligned word pairs. This allows us to
define a weighted finite state transducer that pro-
duces transliterations for an English string by min-
imal segmentation.

The overview of this paper is as follows: Sec-
tion 2 introducesǫ-extension Hidden Markov
Model and describes our alignment procedure.
Section 3 describes the substring alignment
heuristic and our weighted finite state transducer
to derive the finaln-best transliterations. We con-
clude with a result section describing results from
the NEWS 2009 shared task on five different lan-
guages.

2 Learning Alignments

The training dataD is given as pairs of strings
(e, f) wheree is the English string with the cor-
responding foreign transliterationf . The English
string e consists of a sequence of English letters
(e1, e2, . . . , eN) while f = (f1, f2, . . . , fM) .

We representE as the set of all English symbols
andF as the set of all foreign symbols.1 We also
assume both languages have a special null symbol
ǫ, that isǫ ∈ E andǫ ∈ F .

Our alignment model is a Hidden Markov
ModelH(X,Y,S, T, Ps), where

• X is the start state andY is the end state.

• S is the set of emitting states withS = |S|.
The emitting states are indexed from 1 toS.
The start stateX is indexed as state 0 and the
end stateY is indexed as stateS + 1.

• T is an(S + 1) × (S + 1) stochastic matrix
with T = [tij] for i ∈ {0, 1, . . . , S} andj ∈
{1, 2, . . . , S + 1}.

1Alphabets and diacritics are treated as separate symbols.

120

• Ps = [pef] is an |E| × |F| matrix of joint
emission probabilities withpef = P (e, f |s)
∀s ∈ S.

We definẽs to be anǫ-extension of a string of
characterss = (c1, c2, . . . , ck) as the string ob-
tained by pumping an arbitrary number ofǫ sym-
bols between any two adjacent characterscl and
cl+1. That is, s̃ = (di1 , . . . , di2 , . . . , dik) where
dij = cj anddl = ǫ for im < l < im+1 where
1 ≤ l < k. Observe that there are countably infi-
nite ǫ-extensions for a given strings since an arbi-
trary number ofǫ symbols can be inserted between
characterscm andcm+1. Let T (s) denote the set
of all possibleǫ-extensions for a given strings.

For a given pair of strings(u, v), we define a
joint ǫ-extension of(u, v) as the pair(ũ, ṽ) s.t. ũ ∈
T (u) and ṽ ∈ T (v) with |ũ| = |ṽ| and ∄i s.t.
ũi = ṽi = ǫ. Due to this restriction, there are finite
ǫ-extensions for a pair(u, v) with the length of̃u
and ṽ bounded above by|u| + |v|. 2 Let J(u, v)
denote the set of all jointǫ-extensions of(u, v).

Given a pair of strings(e, f) with e =
(e1, e2, . . . , eN) and f = (f1, f2, . . . , fM), we
compute the probabilityα(e, f, s′) that they are
transliteration pairs ending in states′ as

α(e, f, s′) =

∑

(ẽ,̃f)∈J(e,f)

∑

0=s0,...,s|ẽ|=s′

t0,s1

|ẽ|
∏

i=1

tsi,si+1
P (ẽi, f̃i|si)

In order to compute the probabilityQ(e, f) of a
given transliteration pair, the final state has to be
the end stateS + 1. Hence

Q(e, f) =

S
∑

s=1

α(e, f, s)ts,S+1 (1)

We also write the probabilityβ(e, f, s′) that they
are transliteration pairs starting in states′ as

β(e, f, s′) =

∑

(ẽ,̃f)∈J(e,f)

∑

s′=s0,...,s|ẽ|+1=S+1

ts0,s1

|ẽ|
∏

i=1

tsi,si+1
P (ẽi, f̃i|si)

Again noting that the start state of the HMM

H is 0, we haveQ(e, f) =

S
∑

s=1

β(e, f, s)t0,s. We

2|ũ| = |ṽ| > |u| + |v| would imply ∃i s.t. ũi = ṽi = ǫ
which contradicts the definition of jointǫ-extension.

denote a subsequence of a stringu as um
n =

(un, un+1, . . . , um) . Using these definitions, we
can defineα(ei

1, f
j
1 , s) as

1 i = j = 0, s = 0

0 i = j = 0, s 6= 0

t0,sP (e1, f1|s) i = j = 1
PS

s′=1
ts′,sα(ei

1, f
j−1

1 , s′)P (ǫ, fj |s) i = 1, j > 1
PS

s′=1
ts′,sα(ei−1

1 , f
j
1 , s′)P (ei, ǫ|s) i > 1, j = 1

Finally for i > 1 andj > 1,

α(ei
1, f

j
1 , s) =

∑

s′∈S

ts′,s[α(ei
1, f

j−1
1 , s′)P (ǫ, fj |s)+

α(ei−1
1 , f

j
1 , s′)P (ei, ǫ|s)+

α(ei−1
1 , f

j−1
1 , s′)P (ei, fj|s)]

Similarly the recurrence forβ(eN
i , fM

j , s)

ts,S+1 i = N + 1,

j = M + 1
PS

s′=1
ts,s′β(eN

i , fM
j+1, s

′)P (ǫ, fj |s
′) i = N, j < M

PS

s′=1
ts,s′β(eN

i+1, f
M
j , s′)P (ei, ǫ|s

′) i < N, j = M

For i < N andj < M , β(eN
i , fM

j , s) =

∑

s′∈S

ts,s′[β(eN
i , fM

j+1, s
′)P (ǫ, fj |s

′)+

β(eN
i+1, f

M
j , s′)P (ei, ǫ|s

′)+

β(eN
i+1, f

M
j+1, s

′)P (ei, fj|s
′)]

In order to proceed with the E.M. estimation
of the parametersT and Ps , we collect the
soft countsc(e, f |s) for emission probabilities by
looping over the training dataD as shown in Fig-
ure 1.

Similarly the soft countsct(s
′, s) for the tran-

sition probabilities are estimated as shown in Fig-
ure 2.

Finally the probabilitiesP (e, f |s) andtij are re-
estimated as

P̂ (e, f |s) =
c(e, f |s)

∑

e∈E,f∈F c(e, f |s)
(2)

t̂s′,s =
ct(s

′, s)
∑

s ct(s′, s)
(3)

We can also compute the most probable align-
ment(ẽ, f̃) between the two stringse andf as

121

c(e, f |s) =
∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

∑

s′

α(ei−1
1 , f

j−1
1 , s′)ts′,sP (ei, fj |s)β(eN

i , fM
j , s)1(ei = e, fj = f)

+
∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

∑

s′

α(ei−1
1 , f

j
1 , s′)ts′,sP (ei, ǫ|s)β(eN

i , fM
j , s)1(ei = e, fj = f)

+
∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

∑

s′

α(ei
1, f

j−1
1 , s′)ts′,sP (ǫ, fj |s)β(eN

i , fM
j , s)1(ei = e, fj = f)

Figure 1: EM soft countc(e, f |s) estimation.

ct(s
′, s) =

∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

α(ei−1
1 , f

j−1
1 , s′)ts′,sP (ei, fj|s)β(eN

i , fM
j , s)

+
∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

α(ei−1
1 , f

j
1 , s′)ts′,sP (ei, ǫ|s)β(eN

i , fM
j , s)

+
∑

(e,f)∈D

1

Q(e, f)

N
∑

i=1

M
∑

j=1

α(ei
1, f

j−1
1 , s′)ts′,sP (ǫ, fj|s)β(eN

i , fM
j , s)

+
∑

(e,f)∈D

1

Q(e, f)
α(eN

1 , fM
1 , s′)ts′,S+11(s = S + 1)

Figure 2: EM soft countct(s
′, s) estimation.

122

arg max
(ẽ,̃f)∈J(e,f)

∑

0=s0,...,s|ẽ|+1=S+1

t0,s1

|ẽ|
∏

i=1

tsi,si+1
P (ẽi, f̃i|si)

The pair(ẽ, f̃) is considered as an alignment be-
tween the training pair(e, f).

3 Transduction of the Transliterated
Output

Given an alignment(ẽ, f̃), we consider all possi-
ble sub-alignments (ẽj

i , f̃
j
i) as pairs of substrings

obtained from(ẽ, f̃) such thatẽi 6= ǫ, f̃i 6= ǫ,
ẽj+1 6= ǫ and f̃j+1 6= ǫ . We extract all pos-
sible sub-alignments of all the alignments from
the training data. LetA be the bag of all sub-
alignments obtained from the training data. We
build a weighted finite state transducer that trans-
duces any string inE+ to F+ using these sub-
alignments.

Let (u,v) be an element ofA. From the train-
ing dataD, observe thatA can have multiple re-
alizations of(u,v). Let N(u,v) be the number
of times (u,v) is observed inA. The empirical
probability of transducing stringu to v is simply

P (v|u) =
N(u,v)

∑

v:(u,v′)∈A N(u,v′)

For every pair(u,v) ∈ A , we also compute the
probability of transliteration from the HMMH as
Q(u,v) from Equation 1.

We construct a finite state transducerFu,v that
acceptsonly u and emitsv with a weightwu,v

defined as

wu,v = − log(P (v|u))−λ log(Q(u,v))+δ (4)

Finally we construct a global weighted finite
state transducerF by taking the union of all the
Fu,v and taking its closure.

F =

⋃

(u,v)∈A

Fu,v

+

(5)

The weightδ is typically sufficiently high so
that a new english string is favored to be broken
into fewest possible sub-strings whose translitera-
tions are available in the training data.

We tune the weightsλ andδ by evaluating the
accuracy on the held-out data. Then-best paths
in the weighted finite state transducerF represent
ourn-best transliterations.

4 Results

We evaluated our system on the standard track data
provided by the NEWS 2009 shared task orga-
nizers on five different languages – Tamil, Hindi,
Russian, and Kannada was derived from (Ku-
maran and Kellner, 2007) and Chinese from (Li et
al., 2004). The results of this evaluation on the test
data is shown in Table 1. For a detailed description

Language Top-1 mean MRR
Accuracy F1 score

Tamil 0.327 0.870 0.458
Hindi 0.398 0.855 0.515
Russian 0.506 0.901 0.609
Chinese 0.450 0.755 0.514
Kannada 0.235 0.817 0.353

Table 1: Results on NEWS 2009 test data.

of the evaluation measures used we refer the read-
ers to NEWS 2009 shared task whitepaper (Li et
al., 2009).

5 Conclusion

We described a system for automatic translitera-
tion of pairs of strings from one language to an-
other usingǫ-extension hidden markov models and
weighted finite state transducers. We evaluated
our system on all the languages for the NEWS
2009 standard track. The system presented is lan-
guage agnostic and can be trained for any language
pair within a few minutes on a single core desktop
computer.

References
Nasreen Abdul Jaleel and Leah Larkey. 2003. Statistical transliteration for english-arabic

cross language information retrieval. InProceedings of the twelfth international con-
ference on Information and knowledge management, pages 139–146.

Kevin Knight and Jonathan Graehl. 1997. Machine transliteration. InComputational Lin-
guistics, pages 128–135.

A. Kumaran and Tobias Kellner. 2007. A generic framework formachine transliteration.
In SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 721–722, New York, NY,
USA. ACM.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint source-channel model for machine
transliteration. InACL ’04: Proceedings of the 42nd Annual Meeting on Association
for Computational Linguistics, page 159, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Haizhou Li, A Kumaran, Min Zhang, and Vladimir Pervouchine.2009. Whitepaper of
news 2009 machine transliteration shared task. InProceedings of ACL-IJCNLP 2009
Named Entities Workshop (NEWS 2009).

Lawrence Rabiner. 1989. A tutorial on hidden markov models and selected applications in
speech recognition. InProceedings of the IEEE, pages 257–286.

Yilu Zhou, Feng Huang, and Hsinchun Chen. 2008. Combining probability models and web
mining models: a framework for jproper name transliteration. Information Technology
and Management, 9(2):91–103.

123

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 124–127,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Modeling Machine Transliteration as a Phrase Based Statistical Machine
Translation Problem

Taraka Rama, Karthik Gali
Language Technologies Research Centre,

IIIT, Hyderabad, India.
{taraka,karthikg}@students.iiit.ac.in

Abstract

In this paper we use the popular phrase-
based SMT techniques for the task of
machine transliteration, for English-Hindi
language pair. Minimum error rate train-
ing has been used to learn the model
weights. We have achieved an accuracy of
46.3% on the test set. Our results show
these techniques can be successfully used
for the task of machine transliteration.

1 Introduction

Transliteration can be defined as the task of tran-
scribing the words from a source script to a tar-
get script (Surana and Singh, 2008). Translitera-
tion systems find wide applications in Cross Lin-
gual Information Retrieval Systems (CLIR) and
Machine Translation (MT) systems. The systems
also find use in sentence aligners and word align-
ers (Aswani and Gaizauskas, 2005). Transcribing
the words from one language to another language
without the use of a bilingual lexicon is a chal-
lenging task as the output word produced in tar-
get language should be such that it is acceptable
to the readers of the target language. The dif-
ficulty arises due to the huge number of Out Of
Vocabulary (OOV) words which are continuously
added into the language. These OOV words in-
clude named entities, technical words, borrowed
words and loan words.

In this paper we present a technique for translit-
erating named entities from English to Hindi us-
ing a small set of training and development data.
The paper is organised as follows. A survey of the
previous work is presented in the next subsection.
Section 2 describes the problem modeling which
we have adopted from (Rama et al., 2009) which
they use for L2P task. Section 3 describes how
the parameters are tuned for optimal performance.
A brief description of the data sets is provided in

Section 4. Section 5 has the results which we have
obtained for the test data. Finally we conclude
with a summary of the methods and a analysis of
the errors.

1.1 Previous Work

Surana and Singh (2008) propose a transliteration
system in which they use two different ways of
transliterating the named entities based on their
origin. A word is classified into two classes either
Indian or foreign using character based n-grams.
They report their results on Telugu and Hindi
data sets. Sherif and Kondrak (2007) propose a
hybrid approach in which they use the Viterbi-
based monotone search algorithm for searching
the possible candidate transliterations. Using the
approach given in (Ristad et al., 1998) the sub-
string translations are learnt. They integrate the
word-based unigram model based on (Knight and
Graehl, 1998; Al-Onaizan and Knight, 2002) with
the above model for improving the quality of
transliterations.

Malik (2006) tries to solve a special case of
transliteration for Punjabi in which they con-
vert from Shahmukhi (Arabic script) to Guru-
mukhi using a set of transliteration rules. Abdul
Jaleel (2003) show that, in the domain of informa-
tion retrieval, the cross language retrieval perfor-
mance was reduced by 50% when the name enti-
ties were not transliterated.

2 Problem Modeling

Assume that given a word, represented as a se-
quence of letters of the source languages = sJ

1 =
s1...sj ...sJ , needs to be transcribed as a sequence
of letters in the target language, represented ast
= tI1 = t1...ti...tI . The problem of finding the best
target language letter sequence among the translit-
erated candidates can be represented as:

124

tbest = arg max
t

{Pr (t | s)} (1)

We model the transliteration problem based on
the noisy channel model. Reformulating the above
equation using Bayes Rule:

tbest = arg max
t

p (s | t) p (s) (2)

This formulation allows for a target language
letters’ n-gram modelp (t) and a transcription
modelp (s | t). Given a sequence of letterss, the
argmax function is a search function to output the
best target letter sequence.

From the above equation, the best target se-
quence is obtained based on the product of the
probabilities of transcription model and the prob-
abilities of a language model and their respective
weights. The method for obtaining the transcrip-
tion probabilities is described briefly in the next
section. Determining the best weights is necessary
for obtaining the right target language sequence.
The estimation of the models’ weights can be done
in the following manner.

The posterior probabilityPr (t | s) can also be
directly modeled using a log-linear model. In
this model, we have a set ofM feature func-
tions hm(t, s), m = 1...M . For each feature
function there exists a weight or model parameter
λm, m = 1...M . Thus the posterior probability
becomes:

Pr (t | s) = pλM
1

(t | s) (3)

=
exp

[

ΣM
m=1λmhm(t, s)

]

∑

t́I
1

exp
[

ΣM
m=1

λmhm(t́I
1
, s)

] (4)

with the denominator, a normalization factor that
can be ignored in the maximization process.

The above modeling entails finding the suit-
able model parameters or weights which reflect the
properties of our task. We adopt the criterion fol-
lowed in (Och, 2003) for optimising the parame-
ters of the model. The details of the solution and
proof for the convergence are given in Och (2003).
The models’ weights, used for the transliteration
task, are obtained from this training.

All the above tools are available as a part of pub-
licly available MOSES (Koehn et al., 2007) tool
kit. Hence we used the tool kit for our experi-
ments.

3 Tuning the parameters

The source language to target language letters
are aligned using GIZA++ (Och and Ney, 2003).
Every letter is treated as a single word for the
GIZA++ input. The alignments are then used to
learn the phrase transliteration probabilities which
are estimated using the scoring function given
in (Koehn et al., 2003).

The parameters which have a major influence
on the performance of a phrase-based SMT model
are the alignment heuristics, the maximum phrase
length (MPR) and the order of the language
model (Koehn et al., 2003). In the context of
transliteration,phrasemeans a sequence of let-
ters(of source and target language) mapped to each
other with some probability (i.e., thehypothesis)
and stored in a phrase table. Themaximum phrase
lengthcorresponds to the maximum number of let-
ters that a hypothesis can contain. Higher phrase
length corresponds a larger phrase table during de-
coding.

We have conducted experiments to see which
combination gives the best output. We initially
trained the model with various parameters on the
training data and tested for various values of the
above parameters. We varied the maximum phrase
length from 2 to 7. The language model was
trained using SRILM toolkit (Stolcke, 2002). We
varied the order of language model from 2 to 8.
We also traversed the alignment heuristics spec-
trum, from the parsimoniousintersectat one end
of the spectrum throughgrow, grow-diag, grow-
diag-final, grow-diag-final-andandsrctotrg to the
most lenientunionat the other end.

We observed that the best results were obtained
when the language model was trained on 7-gram
and the alignment heuristic wasgrow-diag-final.
No significant improvement was observed in the
results when the value of MPR was greater than 7.
We have done post-processing and taken care such
that the alignments are always monotonic and no
letter was left unlinked.

4 Data Sets

We have used the data sets provided by organis-
ers of the NEWS 2009 Machine Transliteration
Shared Task (Kumaran and Kellner, 2007). Prior
to the release of the test data only the training data
and development data was available. The training
data and development data consisted of a parallel
corpus having entries in both English and Hindi.

125

The training data and development data had 9975
entries and 974 entries respectively. We used the
training data given as a part of the shared task
for generating the phrase table and the language
model. For tuning the parameters mentioned in the
previous section, we used the development data.

From the training and development data we
have observed that the words can be roughly di-
vided into following categories, Persian, European
(primarily English), Indian, Arabic words, based
on their origin. The test data consisted of 1000 en-
tries. We proceeded to experiment with the test set
once the set was released.

5 Experiments and Results

The parameters described in Section 3 were the
initial settings of the system. The system was
tuned on the development set, as described in
Section 2, for obtaining the appropriate model
weights. The system tuned on the development
data was used to test it against the test data set.
We have obtained the following model weights.
The other features available in the translation sys-
tem such asword penalty, phrase penaltydonot
account in the transliteration task and hence were
not included.

language model = 0.099
translation model = 0.122

Prior to the release of the test data, we tested the
system without tuning on development data. The
default model weights were used to test our sys-
tem on the development data. In the next step the
model weights were obtained by tuning the sys-
tem. Although the system allows for a distortion
model, allowing for phrase movements, we did not
use the distortion model as distortion is meaning-
less in the domain of transliteration. The following
measures such as Word Accuracy (ACC), Mean F-
Score, Mean Reciprocal Rank (MRR),MAPref ,
MAP10, MAPsys were used to evaluate our sys-
tem performance. A detailed description of each
measure is available in (Li et al., 2009).

Measure Result
ACC 0.463
Mean F-Score 0.876
MRR 0.573
MAPref 0.454
MAP10 0.201
MAPsys 0.201

Table 1: Evaluation of Various Measures on Test
Data

6 Conclusion

In this paper we show that we can use the pop-
ular phrase based SMT systems successfully for
the task of transliteration. The publicly available
tool GIZA++ was used to align the letters. Then
the phrases were extracted and counted and stored
in phrase tables. The weights were estimated us-
ing minimum error rate training as described ear-
lier using development data. Then beam-search
based decoder was used to transliterate the English
words into Hindi. After the release of the refer-
ence corpora we examined the error results and
observed that majority of the errors resulted in the
case of the foreign origin words. We provide some
examples of the foreign origin words which were
transliterated erroneously.

Figure 1: Error Transliterations of Some Foreign
Origin Words

References

N. AbdulJaleel and L.S. Larkey. 2003. Statistical
transliteration for english-arabic cross language in-
formation retrieval.

Y. Al-Onaizan and K. Knight. 2002. Machine translit-
eration of names in Arabic text. InProceedings of
the ACL-02 workshop on Computational approaches
to semitic languages, pages 1–13. Association for
Computational Linguistics Morristown, NJ, USA.

N. Aswani and R. Gaizauskas. 2005. A hybrid ap-
proach to align sentences and words in English-
Hindi parallel corpora.Building and Using Paral-
lel Texts: Data-Driven Machine Translation and Be-
yond, page 57.

K. Knight and J. Graehl. 1998. Machine translitera-
tion. Computational Linguistics, 24(4):599–612.

P. Koehn, F.J. Och, and D. Marcu. 2003. Statistical
phrase-based translation. InProceedings of the 2003
Conference of the NAACL:HLT-Volume 1, pages 48–
54. ACL Morristown, NJ, USA.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, et al. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In ACL, volume 45, page 2.

126

A. Kumaran and T. Kellner. 2007. A generic frame-
work for machine transliteration. InProceedings
of the 30th annual international ACM SIGIR con-
ference on Research and development in informa-
tion retrieval, pages 721–722. ACM New York, NY,
USA.

H. Li, A. Kumaran, M. Zhang, and V. Pervouch-
ine. 2009. Whitepaper of NEWS 2009 Machine
Transliteration Shared Task. InProceedings of ACL-
IJCNLP 2009 Named Entities Workshop (NEWS
2009). ACL, Singapore, 2009.

M.G.A. Malik. 2006. Punjabi machine transliteration.
In Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual
meeting of the Association for Computational Lin-
guistics, pages 1137–1144. Association for Compu-
tational Linguistics Morristown, NJ, USA.

F.J. Och and H. Ney. 2003. A Systematic Comparison
of Various Statistical Alignment Models.Computa-
tional Linguistics, 29(1):19–51.

F.J. Och. 2003. Minimum error rate training in statis-
tical machine translation. InProceedings of the 41st
Annual Meeting on ACL-Volume 1, pages 160–167.
ACL, Morristown, NJ, USA.

T. Rama, A.K. Singh, and S. Kolachina. 2009. Model-
ing letter to phoneme conversion as a phrase based
statistical machine translation problem with mini-
mum error rate training. InThe NAACL Student Re-
search Workshop, Boulder, Colorado.

ES Ristad, PN Yianilos, M.T. Inc, and NJ Princeton.
1998. Learning string-edit distance.IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
20(5):522–532.

T. Sherif and G. Kondrak. 2007. Substring-
based transliteration. InANNUAL MEETING-
ASSOCIATION FOR COMPUTATIONAL LIN-
GUISTICS, volume 45, page 944.

A. Stolcke. 2002. Srilm – an extensible language mod-
eling toolkit.

H. Surana and A.K. Singh. 2008. A more discern-
ing and adaptable multilingual transliteration mech-
anism for indian languages. InProceedings of
the Third International Joint Conference on Natural
Language Processing.

127

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 128–131,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Maximum N-gram HMM-based Name Transliteration: Experiment in
NEWS 2009 on English-Chinese Corpus

Yilu Zhou
George Washington University

yzhou@gwu.edu

Abstract

We propose an English-Chinese name transli-
teration system using a maximum N-gram
Hidden Markov Model. To handle special
challenges with alphabet-based and character-
based language pair, we apply a two-phase
transliteration model by building two HMM
models, one between English and Chinese Pi-
nyin and another between Chinese Pinyin and
Chinese characters. Our model improves tradi-
tional HMM by assigning the longest prior
translation sequence of syllables the largest
weight. In our non-standard runs, we use a
Web-mining module to boost the performance
by adding online popularity information of
candidate translations. The entire model does
not rely on any dictionaries and the probability
tables are derived merely from training corpus.
In participation of NEWS 2009 experiment,
our model achieved 0.462 Top-1 accuracy and
0.764 Mean F-score.

1 Introduction

It is in general difficult for human to translate
unfamiliar personal names, place names and
names of organizations (Lee et al., 2006). One
reason is the variability in name translation. In
many situations, there is more than one correct
translation for the same name. In some languag-
es, such as Arabic, it can go up to as many as
forty (Arbabi et al., 1994). Even professional
translators find it difficult to identify all varia-
tions. For example, when translating “Phelps”
into Chinese, there are at least 5 different ways to
translate this name: “费尔普斯,” “菲尔普斯,”
“弗尔普斯,” “菲尔普思,” and “菲尔普丝,” with
some more popular than others.

The variability in translation implies the
complexity in name translation that can hardly be
addressed in typical machine translation systems.
Machine translation systems are often black box-
es where only one translation is provided, which
do not offer a solution to variability issue. The
accuracy of a machine translation system,
whether statistical or example-based, largely de-
pends on sentence context information. This con-

text information is often not available with name
translation. Furthermore, emerging names are
difficult to capture in regular machine translation
systems if they have not been included in train-
ing corpus or translation dictionary. Thus, being
able to translate proper names not only has its
own application area, it will also enhance the
performance of current machine translation sys-
tems.

In our previous English-Arabic name trans-
literation work (Zhou et al., 2008), we proposed
a framework for name transliteration using a 2-
gram and a 3-gram Hidden Markov Model
(HMM). In this research, we extend our 2-gram
and 3-gram HMM to an N-gram HMM where N
is the maximum number of prior translation
mapping sequence that can be identified in the
training corpus. In our non-standard runs, we
also integrated a Web mining module. The rest
of the paper is structured as follows. Section 2
reviews related work; Section 3 describes our
algorithm; Section 4 discusses implementation
and evaluation results are provided in Section 5.
Section 6 concludes our work.

2 Related Work

Research in translating proper names has focused
on two strategies: One is to mine translation pairs
from bilingual online resources or corpora (Lee
et. al, 2006). The second approach is a direct
translation approach (Chen and Zong, 2008).

The first approach is based on the assumption
that the two name equivalents should share simi-
lar relevant context words in their languages.
Correct transliteration is then extracted from the
closest matching proper nouns. The second ap-
proach, direct translation, is often done by trans-
literation. Transliteration is the representation of
a word or phrase in the closest corresponding
letters or characters of a language with different
alphabet so that the pronunciation is as close as
possible to the original word or phrase (AbdulJa-
leel and Larkey, 2003). Unlike mining-based ap-
proach, transliteration can deal with low-
frequency proper names, but may generate ill-
formed translations.

128

Transliteration models can be categorized into
rule-based approach and statistical approach. A
rule-based approach maps each letter or a set of
letters in the source language to the closest
sounding letter or letters in the target language
according to pre-defined rules or mapping tables.
It relies on manual identification of all translite-
ration rules and heuristics, which can be very
complex and time consuming to build (Darwish
et al., 2001). A statistical approach obtains trans-
lation probabilities from a training corpus: pairs
of transliterated words. When new words come,
the statistical approach picks the transliteration
candidate with the highest transliteration proba-
bilities generated as the correct transliteration.
Most statistical-based research used phoneme-
based transliteration, relying on a pronunciation
dictionary. Al-Onaizan and Knight showed that a
grapheme-based approach out-performed a pho-
neme-based approach in Arabic-English transli-
teration (Al-Onaizan and Knight, 2002).

3 Challenges with Chinese Language

There are several challenges in transliterating
English names into Chinese. First, written Chi-
nese is a logogram language. Thus, a phonetic
representation of Chinese characters, Pinyin, is
used as an intermediate Romanization. Our
process of translating an English name into Chi-
nese consists of two steps: translating English
word into Pinyin and then mapping Pinyin into
Chinese characters.
 Second, Chinese is not only monosyllabic, but
the pronunciation of each Chinese character is
always composed of one (or none) Consonant
unit and one Vowel unit with the Consonant al-
ways appears at the beginning. For example,
/EKS/ is one syllable in English but is three syl-
lables in Chinese (/E/ + /KE/ + /SI/). English syl-
lables need to be processed in a way that can be
mapped to Chinese Pinyin.

4 Proposed Maximum N-gram HMM

 Figure 1 illustrates our name translation
framework. The framework consists of three ma-
jor components: 1) Training, 2) Hidden Markov
Model-based Transliteration, and 3) Web Min-
ing-enhanced ranking.

4.1 Training

The training process (Figure 1 Module 1) gene-
rates two transliteration probability tables based
on a training corpus of English-Pinyin pair and

Pinyin-Chinese name pairs. Pinyin is not pro-
vided in the training corpus, but is easy to obtain
from a Chinese Pinyin table.

In order to perform mapping from English
names to Chinese Pinyin, an English name is
divided into sub-syllables and this process is
called Syllabification. Although many English
syllabification algorithms have been proposed,
they need to be adjusted. During syllabification,
light vowels are inserted between two continuous
consonants and silent letters are deleted. We use
a finite state machine to implement the syllabifi-
cation process. For example, “Phelps” becomes
{/ph/ /e/ /l/ /@/ /p/ /@/ /s/ /@/} with “@” being
inserted light vowels.

Alignment process maps each sub-syllable in
an English name to target Pinyin. The accuracy
of Alignment process largely depends on the
accuracy of Syllabification. Pinyin to Chinese
character alignment is more straightforward
where each Pinyin syllable (consonant + vowel)
is mapped to the corresponding Chinese charac-
ter. Once the alignment is done, occurrence of
each translation pair can be calculated. Using this
occurrence information, we can derive probabili-
ties under various situations to support probabili-
ty models.
 We use the Hidden Markov Model which is
one of the most popular probability models and
has been used in speech recognition, the human
genome project, consumer decision modeling,
etc. (Rabiner, 1989). In transliteration, traditional
HMM can be viewed as a 2-gram model where
the current mapping selection depends on the
previous mapping pair. We expand it to an N-
gram model and use the combination of 1-gram,
2-gram, ... , (N-1)-gram and N-gram HMM
where N is the maximum number of mapping
sequence that can be found in training corpus.

The goal of our model is to find the candi-
date transliteration with the highest translitera-
tion probabilities:

(1)

Where s is the source name to be transliterated,
which contains letter string s1s2… si; t is the tar-
get name, which contains letter string t1t2… ti.

In a simple statistical model, or a 1-gram
model, transliteration probability is estimated as:
(2)

Where

)|()......|()|(
),......,,,|,......,,,(

2211

321321

nn

nn

stPstPstP
ssssttttP

=

corpusinappearsstimesof
corpusinttotranslatesstimesofstP

i

ii
ii #

#)|(=

)...|..(maxarg)|(maxarg 2121 nn ssstttPstP =

129

The bigram HMM improves the simple sta-
tistical model in that it incorporates context in-
formation into a probability calculation. The
transliteration of the current letter is dependent
on the transliteration of ONE previous letter (one
previous state in HMM). Transliteration proba-
bility is estimated as:
 (3)

Where

and

The trigram HMM intends to capture even
more context information by translating the cur-
rent letter dependent on the TWO previous let-
ters. Transliteration probability is estimated as:
(4)

Where

and

This process is continued until the maximum

mapping sequence is found in the transliteration

corpus. The final probability estimation is a
weighted combination of all N-grams:

In our submitted results, we applied α1=1, α2=2,
…., αn=N such that longer matched sequence has
a larger contribution in the final probability. The
rationale is that the longer the prior sequence
identified in training data, the higher probability
that the translation sequence is the correct tone.
These α parameters can be tuned in the future.
We call this approach Maximum N-gram
HMM. The same process is conducted for Pinyin
to Chinese character translation as shown in the
lower part of Figure 1 Module 1.

4.2 Translation and Ranking

Once the two Maximum N-gram HMM Model
are obtained, new incoming names are translated
by obtaining a letter sequence that maximizes the
overall probability through the HMM (Figure 1
Module 2). This step uses a modified Viterbi’s
search algorithm (Viterbi 1967). The original
Viterbi’s algorithm only keeps the most optimal
path. To cope with name translation variations,
we keep the top-20 optimal paths for further
analysis.

4.3 Web Mining Component

To boost the transliteration performance we pro-
pose to use the Web mining approach, which
analyzes candidates’ occurrence on the Web

),|()......,|)(,|()|(
),......,,,|,......,,,(

123312211

321321

−= nnn

nn

tstptsttstPstP
ssssttttP

occursstimesof
ttotranslatesstimesof

stP
i

ii
ii #

#
)|(=

11

11
1 #

#
),|(

−−

−−
−

>−
=

ii

iiii
iii ttotranslatesstimesof

tsgiventtotranslatesstimesof
tstP

),,|()......,,|(),|()|(
),......,,,|,......,,,(

21123312211

321321

−−= nnnn

nn

ttstpttstPtstpstP
ssssttttP

occursstimesof
ttotranslatesstimesofstP

i

ii
ii #

#)|(=

2211

22113

21

#
#

),,|(

−−−−

−−−−

−−

>−>−
=

iiii

iiiii

iiii

ttotranslatessandttotranslatesstimesof
tsandtsgiventtotranslatesstimesof

ttstP

11

11
1 #

#
),|(

−−

−−
−

>−
=

ii

iiii
iii ttotranslatesstimesof

tsgiventtotranslatesstimesof
tstP

)(......)2()1(21 HMMgramNHMMgramHMMgram
ScoreationTransliterFinal

n −++−+−
=

ααα

130

(Figure 1 Module 3). Each one of the top-20
transliterations obtained from the previous step is
sent to a Web search engine using a meta-search
program which records the number of documents
retrieved, referred to as Web frequency. By ex-
amining the popularity of all possible translitera-
tions on the Internet, bad transliterations can be
filtered and their online popularity can serve as
an indicator of transliteration correctness. The
popularity is estimated by acquiring the number
of documents returned from a search engine us-
ing the translation candidate as query. The final
rank of transliterations is derived from a
weighted score of the normalized Web frequency
and the probability score.

5 Evaluation

Named Entity Workshop (NEWS) 2009 Machine
Transliteration Shared Task provided a training
corpus with 31,961 pairs of English and Chinese
name translations and 2,896 testing cases. We
submitted one standard run with Maximum N-
gram HMM (N-HMM) setting, and two non-
standard runs with 3-gram HMM (3-HMM), and
Maximum N-gram HMM + Web mining (N-
HMM+W). There are two other runs that we
submitted which contains error in the results and
they are not discussed here. We present our eval-
uation results in Table 1.

 Top-1
Acc

 F-
score

MRR MAP
(Ref)

MAP
(10)

N-HMM 0.456 0.763 0.587 0.456 0.185
N-
HMM+W

0.462 0.764 0.564 0.462 0.175

3-HMM 0.458 0.763 0.602 0.458 0.191

Table 1: Evaluation Results with Top-10 Candidates
It is confirmed that Web-mining module

boosted the performance of N-gram HMM in all
measure except for MAP(10). However, the boost-
ing effect is small (1.3%). To our surprise, 3-
gram HMM outperformed Maximum N-gram
HMM slightly (3% in MAP(10)). Our best Top-1
accuracy is 0.462, and best Mean F-score is
0.764 both achieved by N-gram HMM with Web
mining module. We believe this slightly lower
performance of Maximum N-gram HMM can be
improved with some tuning of weight parame-
ters.
6 Conclusions
We propose an English-Chinese name translite-
ration system using a maximum N-gram Hidden
Markov Model. To handle special challenges
with alphabet-based and character-based lan-
guage pair, we apply a two-phase transliteration

model by building two HMM models, one be-
tween English and Chinese Pinyin and another
between Chinese Pinyin and Chinese characters.
In participation of NEWS 2009 experiment, our
model achieved 0.462 Top-1 accuracy and 0.764
Mean F-score. We plan to conduct further study
the impact of Web mining component and find
optimal set of parameters. Our model does not
rely on any existing dictionary and the transla-
tion results are entirely based on learning the
corpus data. In the future, this framework can be
extended to other language pairs.

Acknowledgment
We thank the data source provider of this shared
task from
English-Chinese (EnCh): Haizhou Li, Min Zhang,
Jian Su, "A joint source channel model for machine
transliteration", Proc. of the 42nd ACL, 2004

References
AbdulJaleel, N., and Larkey, L. S., Statistical transli-

teration for English-Arabic Cross Language In-
formation Retrieval, in Proceedings of (CIKM)
New Orleans, LA, pp. 139 (2003).

Al-Onaizan, Y., and Knight, K., Machine Translitera-
tion of Names in Arabic Text, in Proceedings
of the ACL-02 Workshop on Computational
Approaches to Semitic Languages Philadel-
phia, Pennsylvania pp. 1 (2002).

Arbabi, M., Fischthal, S. M., Cheng, V. C., and Bart,
E., Algorithms for Arabic Name Translitera-
tion, IBM Journal of Research and Develop-
ment, 38, 183 (1994).

Chen, Y., and Zong, C., A Structure-based Model for
Chinese Organization Name Translation, ACM
Transactions on ACL, 7, 1 (2008).

Darwish, K., Doermann, D., Jones, R., Oard, D., and
Rautiainen, M., TREC-10 Experiments at Uni-
versity of Maryland CLIR and Video in TREC,
Gaithersburg, Maryland (2001).

Lee, C.J., Chang, J. S., Jang, J.S.R, Extraction of
transliteration pairs from parallel corpora using
a statistical transliteration model, Information
Sciences, 176(1), 67-90 (2006).

Rabiner, L. R., A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recogni-
tion, Proceedings of the IEEE, 77, 257–286
(1989).

Viterbi, A. J., Error Bounds for Convolutional Codes
and an Asymptotically Optimum Decoding Al-
gorithm, IEEE Transactions on Information
Theory, 13, 260 (1967).

Zhou, Y., Huang, F., and Chen, H., Combining prob-
ability Models and Web Mining Models: A
Framework for Proper Name transliteration, In-
formation Technology and Management, 9, 91
(2008).

131

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 132–135,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Name Transliteration with Bidirectional Perceptron Edit Models

Dayne Freitag
SRI International

freitag@ai.sri.com

Zhiqiang (John) Wang
SRI International

johnwang@ai.sri.com

Abstract

We report on our efforts as part of the
shared task on the NEWS 2009 Machine
Transliteration Shared Task. We applied
an orthographic perceptron character edit
model that we have used previously for
name transliteration, enhancing it in two
ways: by ranking possible transliterations
according to the sum of their scores ac-
cording to two models, one trained to gen-
erate left-to-right, and one right-to-left;
and by constraining generated strings to
be consistent with character bigrams ob-
served in the respective language’s train-
ing data. Our poor showing in the of-
ficial evaluation was due to a bug in
the script used to produce competition-
compliant output. Subsequent evaluation
shows that our approach yielded compara-
tively strong performance on all alphabetic
language pairs we attempted.

1 Introduction

While transliteration is a much simpler prob-
lem than another linguistic transduction prob-
lem, language translation, it is rarely trivial. At
least three phenomena complicate the automatic
transliteration between two languages using dif-
ferent scripts—differing phoneme sets, lossy or-
thography, and non-alphabetic orthographies (e.g.,
syllabaries).

For most language pairs, these difficulties stand
in the way of a rule-based treatment of the prob-
lem. For this reason, many machine learning ap-
proaches to the problem have been proposed. We
can draw a rough distinction between learning ap-
proaches that attempt to model the phonetics of
a transliteration problem explicitly, and those that
treat the problem as simply one of orthographic
transduction, leaving it to the learning algorithm

to acquire phonetic distinctions directly from or-
thographic features of the training data. For exam-
ple, Knight and Graehl (1998) address the prob-
lem through cascaded finite state transducers, with
explicit representations of the phonetics. Sub-
sequently, Al-Onaizan and Knight (2002) realize
improvements by adding a “spelling” (i.e., ortho-
graphic) model. There has been an increasing em-
phasis on purely orthographic models, probably
because they require less detailed domain knowl-
edge (e.g., (Lee and Chang, 2003)).

2 Approach

The approach we explored as part of the NEWS
2009 Machine Transliteration Shared Task (Li et
al., 2009) is strictly orthographic. We view the
conversion of a name in one language to its rep-
resentation in another as the product of a series
of single-character edits, and seek to learn a char-
acter edit model that maximizes the score of cor-
rect name pairs. Our approach follows that de-
scribed in Freitag and Khadivi (2007), a “struc-
tured perceptron” with cheaply computed charac-
ter n-grams as features. Here, we give a brief
description, and present the successful enhance-
ments we tried specifically for the shared task.

2.1 Perceptron Edit Model

Suppose we are given two sequences,s
m
1 ∈ Σ∗

s

andt
n
1 ∈ Σ∗

t . We desire a functionA(s, t) 7→ N
which assigns high scores to correct pairss, t. If
we stipulate that this score is the sum of the indi-
vidual scores of a series of edits, we can find the
highest-scoring such series through a generaliza-
tion of the standard edit distance:

A(si
1, t

j
1) =

max

aǫ,tj(s, i, t, j) + A(si
1, t

j−1

1)

asi,ǫ(s, i, t, j) + A(si−1
1 , t

j
1)

asi,tj(s, i, t, j) + A(si−1
1 , t

j−1

1)

(1)

132

with A(∅, ∅) = 0. The functionasi,tj (s, i, t, j)
represents the score of substitutingtj for si; aǫ,tj

andasi,ǫ represent insertion and deletion, respec-
tively.

In the experiments reported in this paper, we as-
sume that each local functiona is defined in terms
of p + q features,{f1, · · · , fp, fp+1, · · · , fp+q},
defined over the source and target alphabets, re-
spectively, and that these features have the func-
tional formΣ∗ ×N 7→ R.

In this paper we exclusively use character n-
gram indicator features. The “order” of a model
is the size of the largest n-grams; for a model of
order 2, features would be the bigrams and uni-
grams immediately adjacent to a given string posi-
tion. Since the shared task is togenerate target
strings, only features for preceding n-grams are
used in the target language.

The score of a particular edit is a linear combi-
nation of the corresponding feature values:

a(s, i, t, j) =
p

∑

k=1

αk ·fk(s, i)+
p+q
∑

k=p+1

αk ·fk(t, j)

(2)
The weightsαk are what we seek to optimize in
order to tune the model for our particular applica-
tion.

We optimize these weights through an exten-
sion of perceptron training for sequence labeling,
due to Collins (2002). Takeα to be a model pa-
rameterization, and letAα(s, t) return an optimal
edit sequencee, with its scorev, given input se-
quencess andt underα. Elements of sequence
e are character pairs〈cs, ct〉, with cs ∈ Σs ∪ {ǫ}
andct ∈ Σt ∪ {ǫ}, whereǫ represents the empty
string. Let Φ(s, t,e) be a feature vector for a
source string, target string, and corresponding edit
sequence.

Table 1 shows the training algorithm. Starting
with a zero parameter vector, we iterate through
the collection of source sequences. For each se-
quence, we pick two target sequences, one the
“true” transliterationt of the source strings, and
one chosen by searching for a stringt′ that yields a
maximal score according to the current modelAα

(Line 6). If the model fails to assignt a higher
score thant′ (Line 9), we apply the perceptron
training update (Line 10).

Note that because generationconstructs the tar-
get sequence, the search in Line 6 for a target
string t′ that yields maximalAα(s, t′) is not triv-
ial, and does not correspond to a simple recurrence

1: Given training setS = {〈s, t〉}
2: V ← [], an empty list
3: α← 0, a weight vector
4: for some number of iterationsdo
5: for 〈s, t〉 in S do
6: t′ ← maxargt′Aα(s, t′)
7: 〈e, v〉 ← Aα(s, t)
8: 〈e′, v′〉 ← Aα(s, t′)
9: if v′ ≥ v then

10: α← α + Φ(s, t,e)−Φ(s, t′,e′)
11: end if
12: Appendα to V

13: end for
14: end for
15: Return the meanα from V

Table 1: The training algorithm.Aα is the affinity
function under model parametersα, returning edit
sequencee and scorev.

relation like Equation 1. Both in training and test-
ing, we use a beam search for target string gener-
ation. In training, this may mean that we find at′

with lower score than the correct targett. In such
cases (Line 9 returns false), the model has cor-
rectly ordered the two alternative transliterations,
and does not require updating.

2.2 Shared Task Extensions

This approach has been used effectively for prac-
tical transliteration of names from English to Ara-
bic and Mandarin (and vice versa). As part of
the NEWS shared task, we experimented with two
simple extensions, both of which yielded improve-
ments over the baseline described above. These
extensions were used in our official submission for
alphabetic language pairs. We treated English-to-
Chinese somewhat differently, as described below.

Simple character n-gram constraints. The
described approach sometimes violates target
language spelling conventions by interpolating
clearly inappropriate characters into a string that
is otherwise a reasonable transliteration. We take
this behavior as symptomatic of a kind of under-
training in some portion of the problem space,
a possible byproduct of 1-best perceptron train-
ing. One principled solution may be to optimize
against n-best lists (Bellare et al., 2009).

Instead, we address this shortcoming in a
straightforward way—by prohibiting the creation
of n-grams, for some smalln, that do not occur

133

in the training data. Under a bigram restriction, if
‘ab’ is not seen in training, then an operation that
inserts ‘b’ after ‘a’ is disallowed. In essence, we
impose a very simple character language model of
the target domain.

Our non-standard English-to-Chinese contribu-
tions, which involved transliterating from English
to pinyin, employed a similar idea. In these exper-
iments, rather than character bigrams, the model
was constrained to produce only legal pinyin se-
quences.

Bidirectional generation. Character n-gram
restrictions yielded modest but universal improve-
ments on development data. Larger improvements
were obtained through an equally simple idea: In-
stead of a single left-to-right model, we trained
two models, one generating left-to-right, the other
right-to-left, each model constrained by n-gram ta-
bles, as described above. At evaluation time, each
of the constituent models was used to generate a
large number of candidate strings (100, typically).
All strings in the union of these two sets were then
assigned a score, which was the unweighted sum
of scores according to the constituent models, and
reranked according to this score. The 10 highest-
scoring were retained for evaluation.

A buggy implementation of this two-model idea
accounts for our poor showing in the official eval-
uation. Because of a trivial error in the script we
used to produce output, right-to-left models were
treated as if they were left-to-right. The resulting
strings and scores were consequently erroneous.

3 Evaluation

We experimented with models of order 2 and
3 (2-gram and 3-gram features) on shared task
data for English to Hindi, Kannada, Russian, and
Tamil (Kumaran and Kellner, 2007). Based on
development accuracy scores, we found models
of order 3 to be consistently better than order 2,
and our submitted results use only order-3 models,
with one exception. English-to-native-Chinese (Li
et al., 2004) was treated as a special case. Using
trigram features in the target language results in
an explosion in the feature space, and a model that
is slow to train and performs poorly. Thus, only
for this language pair, we devised a mixed-order
model, one using trigram features over English
strings, and unigram features over Chinese. Be-
cause of the large target-language branching fac-
tor, the mixed-order native Chinese model remain-

Languages Accuracy Delta

EnHi 0.465 -0.033
EnHi baseline 0.421 -0.077

EnKa 0.396 -0.002
EnKa baseline 0.370 -0.028

EnRu 0.609 -0.004
EnRu baseline 0.588 -0.025

EnTa 0.475 +0.001
EnTa baseline 0.422 -0.052

EnCh standard 0.672 -0.059
EnCh non-standard 1 0.673 -0.236
EnCh non-standard 2 0.5 -0.409

Table 2: Post-contest accuracy on evaluation set,
including delta from highest-scoring contest par-
ticipant.

ing one of the slowest to train.
We trained all models for 20 epochs, evaluating

the 1-best accuracy of intervening models on the
development data. In all cases, we observed that
accuracy increased steadily for some number of it-
erations, after which it plateaued. Consequently,
for all language pairs, we submitted the predic-
tions of the latest model.

Table 2 lists accuracy reported by the official
evaluation script on the contest evaluation data.
All non-Chinese runs in the table are “standard,”
and are trained exclusively on shared task train-
ing data. Those labeled “baseline” are left-to-
right models with no character n-gram constraints.
These results were obtained after release of the
evaluation data, but differ from our official sub-
mission in only two ways: First, and most im-
portantly, the bug described previously was cor-
rected. Second, in some cases training runs that
had not completed at evaluation time were allowed
to run to the full 20 epochs, and the resulting mod-
els were used. The exceptions are Hindi and na-
tive Chinese, each of which reflect performance
at approximately 10 epochs. Without exception, a
beam of size 100 was used to generate these re-
sults.

With the exception of “EnCh standard,” all
results in the table employed the bidirectional
scheme described above. The Chinese non-
standard runs differ from standard only in that
models were trained to perform English-to-pinyin
transliteration, followed by a conversion from
pinyin to native Chinese using tables provided by

134

the Unicode consortium. Non-standard Run 1 re-
tains pinyin tonal diacritics, while Run 2 omits
them. The mapping from pinyin to native Chi-
nese characters introduces indeterminacy, which
we accounted for in a simple fashion: First, in con-
structing a pinyin-to-Chinese conversion table, we
discarded any Chinese characters that were used
in the training data fewer than some small frac-
tion of cases. Then, given a ranked list of pinyin
transliterations, we generated all possible native
Chinese sequences, ranked by the product of ob-
served pinyin-to-Chinese probabilities, according
to training frequencies.

It will be observed that our non-standard
English-to-Chinese results lag considerably be-
hind the best results. We suspect this is due in
part to the fact that no additional training data was
used in these experiments–only a change in repre-
sentation.

4 Discussion and Conclusion

Treating the transliteration problem as one of or-
thographic transduction appears viable, particu-
larly for conversion between alphabetic languages.
An empirical character edit model based on a
structured perceptron and character n-gram fea-
tures, and using a simple training procedure that
discovers appropriate weights for latent character
alignment operations, yields performance that is
generally as good as alternative approaches ex-
plored in the shared task. The key is model com-
bination, particularly the combination of left-to-
right and right-to-left models, respectively.

In contrast to the alphabetic language pairs,
our performance on Chinese falls somewhat short.
Nevertheless, it is possible that simple modifica-
tions of the basic procedure would render it com-
petitive on English-Chinese, as well. In convert-
ing from English to native Chinese, we relied on
a mixed-order model, with order-3 English fea-
tures. It is possible that trigrams are too small
in some cases to identify the appropriate Chinese
character, and that 4-grams, if we can afford them,
will make the difference. There is virtue in the
idea of transliterating to pinyin as an intermediate
step; converting to tonal pinyin yields accuracy at
the same level as English-to-native-Chinese, even
with the indeterminacy it introduces. Future work
includes more principled approaches to resolving
this indeterminacy, and combined pinyin/native
models.

Acknowledgments

This material is based upon work supported by
the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR0011-06-C-
0023 (approved for public release, distribution un-
limited). Any opinions, findings and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the view of DARPA.

References

Y. Al-Onaizan and K. Knight. 2002. Machine translit-
eration of names in Arabic text. InProceedings of
the ACL-02 workshop on computational approaches
to semitic languages.

K. Bellare, K. Crammer, and D. Freitag. 2009. Loss-
sensitive discriminative training of machine translit-
eration models. InProceedings of the Student
Research Workshop and Doctoral Consortium at
NLT/NAACL 2009.

M. Collins. 2002. Discriminative training meth-
ods for hidden Markov models: theory and experi-
ments with perceptron algorithms. InProceedings
of EMNLP-2002.

D. Freitag and S. Khadivi. 2007. A sequence align-
ment model based on the averaged perceptron. In
Proceedings of EMNLP-CoNLL 2007.

K. Knight and J. Graehl. 1998. Machine translitera-
tion. Computational Linguistics, 24(4).

A. Kumaran and T. Kellner. 2007. A generic frame-
work for machine transliteration. InProceedings of
the 30th SIGIR.

C.-J. Lee and J.S. Chang. 2003. Acquisition
of English-Chinese transliterated word pairs from
parallel-aligned texts using a statistical machine
transliteration model. InProceedings of the HLT-
NAACL 2003 Workshop on Building and Using Par-
allel Texts.

H. Li, M. Zhang, and J. Su. 2004. A joint source chan-
nel model for machine transliteration. InProceed-
ings of the 42nd ACL.

H. Li, A. Kumaran, M. Zhang, and V. Pervouch-
ine. 2009. Whitepaper of NEWS 2009 Machine
Transliteration Shared Task. InProceedings of ACL-
IJCNLP 2009 Named Entities Workshop (NEWS
2009).

135

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 136–142,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Bridging Languages
by SuperSense Entity Tagging

Davide Picca and Alfio Massimiliano Gliozzo* and Simone Campora**
University of Lausanne, CH 1015-Lausanne-Switzerland

*Semantic Technology Lab (STLab - ISTC - CNR), Via Nomentana 56-0016, Rome, Italy
**Ecole Polytechnique Federale de Lausanne (EPFL)

davide.picca@unil.ch, alfio.gliozzo@istc.cnr.it, simone.campora@gmail.com

Abstract

This paper explores a very basic linguis-
tic phenomenon in multilingualism: the
lexicalizations of entities are very often
identical within different languages while
concepts are usually lexicalized differ-
ently. Since entities are commonly re-
ferred to by proper names in natural lan-
guage, we measured their distribution in
the lexical overlap of the terminologies ex-
tracted from comparable corpora. Results
show that the lexical overlap is mostly
composed by unambiguous words, which
can be regarded as anchors to bridge lan-
guages: most of terms having the same
spelling refer exactly to the same entities.
Thanks to this important feature of Named
Entities, we developed a multilingual su-
per sense tagging system capable to distin-
guish between concepts and individuals.
Individuals adopted for training have been
extracted both by YAGO and by a heuristic
procedure. The general F1 of the English
tagger is over 76%, which is in line with
the state of the art on super sense tagging
while augmenting the number of classes.
Performances for Italian are slightly lower,
while ensuring a reasonable accuracy level
which is capable to show effective results
for knowledge acquisition.

1 Introduction

The Semantic Web paradigm is often required
to provide a structured view of the unstructured
information expressed in texts (Buitelaar et al.,
2005; Cimiano, 2006). Semantic technology re-
quires abundance of such kind of knowledge in
order to cover the web scale in almost any lan-
guage. Natural Language Processing (NLP) has
been adopted with the purpose of knowledge ac-

quisition, and in particular for ontology learn-
ing and information extraction. Structured infor-
mation in ontologies is often expressed by tax-
onomies of concepts, and then populated by in-
stances.

Nonetheless, automatically distinguish con-
cepts from entities in taxonomies is not an easy
task, especially as far as the problem of acquiring
such knowledge from texts is concerned (Zirn et
al., 2008; Picca and Popescu, 2007; Miller and
Hristea, 2006). First of all because such a dis-
tinction is quite vague. From a description log-
ics perspective, that is incidently widely adopted
in ontology engineering, instances are the leaves
of any taxonomy as they cannot be further sub-
categorized and populated by other instances. For
example,“Bill Clinton” is clearly an individual,
since it is instance of many concepts, such as per-
son or president, but at the same time it is a non
sense describing individuals belonging to the class
Bill Clinton.

In order to tackle this issue, we aim to provide
empirical evidence to a very basic linguistic phe-
nomenon in multilingualism, which allows the ex-
ploitation of comparable corpora for bilingual lex-
ical acquisition. It consists on the fact that the lexi-
calizations of entities is very often identical within
different languages while concepts are usually lex-
icalized differently (de Pablo et al., 2006). The
existence of this phenomenon is quite intuitive and
can be easily justified by considering entities as of-
ten referred to by means of ostensive acts (i.e. the
act of nominating objects by indicating them), per-
formed in presentia during every day life. Since
entities are usually referred to using proper names
in natural language, we measured their distribu-
tion in the lexical overlap of the terminologies ex-
tracted from comparable corpora in two different
sample languages (i.e. Italian and English).

Named Entities are instances of particular con-
cepts (such as person or location) and are referred

136

to by proper names. Named Entity Recognition
(NER) is a basic task in NLP that has the in-
tent of automatically recognizing Named Entities.
Incidentally, NER systems can be a useful step
for broad-coverage ontology engineering but they
have two main limitations:

• Traditional categories (e.g., person, location,
and organization) are too few and generic. It
is quite evident that taxonomies require more
categories than the three mentioned above.

• Even though NER systems are supposed to
recognize individuals, very often they also re-
turns common names and no clear distinction
with concepts is made.

A Super Sense Tagger (SST) (Ciaramita and
Johnson, 2003) is an extended NER system that
uses the wider set of categories composed by the
41 most general concepts defined by WordNet.
WordNet has been organized according to psy-
cholinguistic theories on the principles governing
lexical memory (Beckwith et al., 1991). Thus the
broadest WordNet’s categories can serve as basis
for a set of categories which exhaustively covers,
at least as a first approximation, all possible con-
cepts occurring in a sentence.

The aim of this paper is to develop and explore
the property of instances being lexicalized identi-
cally in different languages in order to produce a
SST having the following two features:

• Make explicit distinction between instances
and concepts.

• Analyze the terminology of different lan-
guages adopting a common category set.

Nevertheless, the first point demands to face
with the vague distinction between concepts and
individuals belonging to those concepts. So one
of the main issues explored in this paper is the au-
tomatic tagging of which categories clearly have
this distinction.

The paper is organized as follows. In Section
2 we describe the multilingual SST, an Italian ex-
tension of the English SST that we exploited in
Section 3 to show that the lexical overlap between
languages is mostly composed by unambiguous
words, which can be also regarded as anchors to
bridge the two languages. Most of terms having

the same spelling in the two languages exactly re-
fer to the same entities. We measured those oc-
currencies with respect to all different ontologi-
cal types identified by our tagging device, observ-
ing that most of the overlapped terms are proper
names of persons, organization, locations and ar-
tifact, while the remaining ontological types are
mostly lexicalized by common nouns and have a
quite empty overlap. This confirms our claim that
entities of tangible types are always lexicalized by
the same terms.

In Section 4 we extended the SuperSense Tag-
ger in order to distinguish instances from individ-
uals, while Section 5 is about evaluation. Finally
Section 6 concludes the paper proposing new di-
rections for future investigation.

2 Multilingual Supersense Tagging

SuperSense Tagging is the problem to identify
terms in texts, assigning a “supersense” category
(e.g. person, act) to their senses within their
context and apply it to recognize concepts and in-
stances in large scale textual collections of texts.
An example of tagging is provided here:

GunsB−noun.group andI−noun.group

RosesI−noun.group playsB−verb.communication

atO theO stadiumB−noun.location

These categories are extracted from WordNet.
WordNet (Fellbaum, 1998) defines 45 lexicogra-
pher’s categories, also called supersenses (Cia-
ramita and Johnson, 2003). They are used by lex-
icographers to provide an initial broad classifica-
tion for the lexicon entries 1.

Although simplistic in many ways, the super-
sense ontology has several attractive features for
NLP purposes. First of all, concepts are easily rec-
ognizable, however very general. Secondly, the
small number of classes makes the implementa-
tion of state of the art methods possible (e.g. se-
quence taggers) to annotate text with supersenses.
Finally, similar word senses tend to be merged to-
gether reducing ambiguity. This technology has
been also adopted for Ontology Learning (Picca et
al., 2007), as the top level WordNet supersenses
cover almost any high level ontological type of
interest in ontology design. Compared to other
semantic tagsets, supersenses have the advantage
of being designed to cover all possible open class
words. Thus, in principle there is a supersense cat-

1We have used the WordNet version 2.0 for all the exper-
iments in the paper.

137

egory for each word, known or novel. Addition-
ally, no distinction is made between proper and
common nouns, whereas standard NER systems
tends to be biased towards the former.

Following the procedure described in (Picca et
al., 2008), we developed a multilingual SST work-
ing on both Italian and English languages by train-
ing the same system on MultiSemcor (Bentivogli
et al., 2004), a parallel English/Italian corpus com-
posed of 116 texts which are the translation of
their corresponding English texts in SemCor. This
resource has been developed by manually trans-
lating the English texts to Italian. Then, the so
generated parallel corpus has been automatically
aligned at the Word Level. Finally, sense labels
have been automatically transferred from the En-
glish words to their Italian translations.

The sense labels adopted in the Italian part of
MultiSemCor (Bentivogli et al., 2004) have been
extracted by Multi WordNet 2. It is a multilingual
computational lexicon, conceived to be strictly
aligned with the Princeton WordNet. The avail-
able languages are Italian, Spanish, Hebrew and
Romanian. In our experiment we used the En-
glish and the Italian components. The last version
of the Italian WordNet contains around 58,000
Italian word senses and 41,500 lemmas organized
into 32,700 synsets aligned with WordNet English
synsets. The Italian synsets are created in cor-
respondence with the Princeton WordNet synsets
whenever possible, and the semantic relations are
ported from the corresponding English synsets.
This implies that the synset index structure is the
same for the two languages.

The full alignment between the English and the
Italian WordNet is guaranteed by the fact that both
resources adopts the same synset IDs to refer to
concepts. This nice feature has allowed us to in-
fer the correct super-sense for each Italian sense
by simply looking at the English structure. In this
way, we assign exactly the same ontological types
to both Italian and English terms, thus obtaining an
Italian corpus tagged by its supersenses as shown
below:

IO GunsB−noun.group andI−noun.group

RosesI−noun.group suonanoB−verb.communication

alloO stadioB−noun.location

2Available at http://multi WordNet.itc.it.

3 Lexical Overlap in Comparable
Corpora

Comparable corpora are collections of texts in dif-
ferent languages that regard similar topics (e.g.
a collection of news published by press agencies
in the same period). More restrictive require-
ments are expected for parallel corpora (i.e. cor-
pora composed of texts which are mutual transla-
tions), while the class of the multilingual corpora
(i.e. collection of texts expressed in different lan-
guages without any additional requirement) is the
more general. Obviously parallel corpora are also
comparable, while comparable corpora are also
multilingual.

In comparable corpora, most of the individu-
als preserve the same spelling across different lan-
guages, while most concepts are translated differ-
ently. The analysis of the acquired terms for differ-
ent ontological types shows a huge percentage of
overlapped Named Entities. For our experiments,
we assumed that the distinction between common
names and proper names reflect as well the dif-
ference between concepts and entities in a formal
ontology. Since proper names are recognized by
the PoS tagger with relatively high precision, we
interpreted occurrences of proper names in the ac-
quired terminology as an evidence for detecting
entities.

The Leipzig Corpora Collection (Quasthoff,
2006) presents corpora in different languages us-
ing the same format and comparable sources. The
corpora are identical in format and similar in size
and content. They contain randomly selected sen-
tences in the language of the corpus. For the ex-
periments reported in this paper, we used the Ital-
ian and the English part composed by 300,000
sentences. As shown in Figure 1 and in Figure
2, Named Entities are mostly concentrated into
tangible types: Groups (organizations), Locations,
Persons and Artifacts.

The results analysis is more impressive. Figure
3 shows that the lexical overlap (i.e. the subset
of terms in common between English and Italian)
is composed almost exclusively by entities (i.e.
proper nouns). Instead if we take a look at Figure
4, we can observe that concepts are generally not
shared, having an average percentage lower than
0.1%, independently of the ontological type. We
can also observe the predictable result that onto-
logical categories denoting material objects (i.e.
persons, locations and groups, artifacts) still have

138

Figure 1: Distribution of discovered entity types
in English

Figure 2: Distribution of discovered entity types
in Italian

greater percentage of shared entities.
This is in line with the common practice of

training NER on these categories. Examples of
shared terms (entities) in concrete categories are:

• noun.group: e.g. NATO, Boeing, NASA;

• noun.location: e.g. Canada, Austria, Hous-
ton;

• noun.person: e.g. Romano Prodi, Blair,
Kofi Annan.

Incidentally, exceptions can be found to our
hypothesis (i.e. some concept is also shared).

Figure 3: Shared Named Entities in both lan-
guages

Figure 4: Shared Concepts in both languages

Examples are terms belonging to the supersense
noun.object such as Radio and Computer.
Anyhow, being them ported from one language
to another, they generally do not cause problems,
since they tend to share the same meaning. In our
experiments (i.e. in the sample we manually ana-
lyzed), we did not find any false friend, suggesting
that the impact of those words is relatively small,
in spite of the fact that it is very often overempha-
sized.

Inversely, many abstract types (e.g.
noun.possession and noun.feeling) do not
share terminology at all.

4 Distinguishing entities from concepts

Successively, we subdivided each category into
two sub-categories for both languages, Instance
and Concept so that now the term “president” is
tagged as noun.person Concept and the term “Bill
Clinton” as noun.person Instance. In order to au-
tomate this task and create a reliable training set,
we adopted the following strategy.

We used the concept/instances distinction pro-
vided by YAGO (Suchanek et al., 2007b). YAGO
is a huge semantic knowledge base developed by
the Max-Plack-Institute of Saarbrcken. YAGO
knows over 1.7 million entities (like persons,
organizations, cities, etc.). YAGO, exploits
Wikipedia’s info-boxes and category pages. Info-
boxes are standardized tables that contain basic in-
formation about the entity described in the article
(Suchanek et al., 2007a). For our purposes it is
fundamental that YAGO’s components are repre-
sented as entities. In our experiment we exploit
entities as proper names and we use only YAGO
entity database containing named entities.

For each term belonging to one of the concrete
categories, we check if it appears in YAGO en-
tity dataset, otherwise, if the term is not found in

139

YAGO, it has to satisfy all the following condi-
tions to be tagged as Instance:

• The part of speech of the term belongs to
one of the noun categories as “NN”, “NNS”,
“NNP” or “NNPS”.

• The first letter of the term is a capital letter.

• The term does not come after a full stop.

Upon a total of 12817 instances, almost 1
4 have

been found in YAGO, 3413 have been found using
the heuristic strategy and the rest have been classi-
fied as concepts. If we take the previous example,
the new output has now this form:

• GunsB−noun.group−Instance

andI−noun.group−Instance

RosesI−noun.group−Instance

playsB−verb.communication atO theO

stadiumB−noun.location−Concept

or

• GunsB−noun.group−Instance

andI−noun.group−Instance

RosesI−noun.group−Instance

suonanoB−verb.communication alloO

stadioB−noun.location−Concept

Afterwards, we trained the SST engine. It im-
plements a Hidden Markov Model, trained with
the perceptron algorithm introduced in (Collins,
2002) and it achieves a recall of 77.71% and
a precision of 76.65% . Perception sequence
learning provides an excellent trade-off accu-
racy/performance, sometimes outperforming more
complex models such as Conditional Random
Fields (Nguyen and Guo, 2007). We optimized the
required parameters by adopting a cross validation
technique. As for the settings developed by (Cia-
ramita and Johnson, 2003), the best results have
been obtained by setting 50 trials and 10 epochs to
train the perceptron algorithm. The basic feature
set used for the training process, includes:

• word = lower-cased form of each token for
the current position i and in addition for i-1
and i+1

• sh = shape of the token as a simple regular
expression-like representation

• pos = POS of i, i-1 and i+1

Category Recall Prec. F1
noun.artifact Concept 0.72 0.73 0.73
noun.artifact Instance 0.59 0.64 0.62
noun.group Concept 0.72 0.73 0.73
noun.group Instance 0.68 0.70 0.69

noun.location Concept 0.68 0.65 0.66
noun.location Instance 0.75 0.80 0.77

noun.person Concept 0.83 0.80 0.82
noun.person Instance 0.92 0.88 0.90

Table 1: Recall, precision and F1 for each category
for English

• sb= bi- and tri-grams of characters of the suf-
fix of word i

• pr= bi- and tri-grams of characters of the pre-
fix of word i

• rp = coarse relative position of word i,
rp=begin if i = 0, rp=end if i = —sentence—-
1, sb=mid otherwise

• kf = constant features on each token for reg-
ularization purposes

Finally, we trained the SST engine in the Italian
corpus generated so far, and we evaluated the su-
per sense tagging accuracy by adopting the same
evaluation method as described in (Ciaramita and
Johnson, 2003), obtaining F1 close to 0.70. How-
ever quite lower than the English F1, this result is
in line with the claim, since the Italian corpus is
smaller and lower in quality.

5 SST Performance and Evaluation

We evaluated the performances of the SST gen-
erated so far by adopting a n-fold cross valida-
tion strategy on the Semcor adopted for training.
Results for the chosen categories are illustrated
in Table 1 and Table 2, reporting precision, re-
call and F1 for any Supersense. If we cast a
deeper glance at the tables, we can clearly no-
tice that for some category the F1 is exception-
ally high. Some of those best categorized cat-
egories are really essential for ontology learn-
ing. For example, important labels as noun.person
or noun.group achieve results among the 70%.
For some categories we have found a F1 over
0.80% as noun.person Instance (F1 0.90%) or
noun.person Concept (F1 0.85%)

On the other hand, the Italian tagger achieved
lower performances if compared with the English.

140

Category Recall Prec. F1
noun.artifact Concept 0.64 0.63 0.63
noun.artifact Instance 0.66 0.67 0.66
noun.group Concept 0.61 0.65 0.63
noun.group Instance 0.66 0.66 0.66

noun.location Concept 0.55 0.53 0.54
noun.location Instance 0.56 0.76 0.64

noun.person Concept 0.81 0.76 0.78
noun.person Instance 0.88 0.81 0.85

Table 2: Recall, precision and F1 for each category
for Italian

It can be explained by (i) the lower quality of the
training resource, (ii) the lower quantity of training
data and (iii) the unavailability of the first sense
info.

Regarding the first point, it is worthwhile to re-
mark that even if the quality of transfer developed
by (Bentivogli et al., 2004) is high, many incor-
rect sense transfers (around 14%) can be found.
Because of that our work suffers of the same in-
herited faults by the automatic alignment. For in-
stance, we report here the most relevant errors we
faced with during the preprocessing step. One of
the main errors that has badly influenced the train-
ing set especially for multiword recognition is the
case in which the translation equivalent is indeed a
cross-language synonym of the source expression
but not a lexical unit. It occurs when a language
expresses a concept with a lexical unit whereas the
other language expresses the same concept with a
free combination of words (for instance occhiali
da sole annotated with the sense of sunglasses).

Regarding the second problem, we noticed
that the quantity of sense labeled words adopted
for English is higher than 200,000, whereas the
amount of Italian tokens adopted is around 92,000.
Therefore, the amount of Italian training data
is sensibly lower, explaining the lower perfor-
mances.

Moreover, the italian SST lacks in one of the
most important feature used for the English SST,
first sense heuristics. In fact, for the Italian lan-
guage, the first sense baseline cannot be estimated
by simply looking at the first sense in WordNet,
since the order of the Italian WordNet does not re-
flect the frequency of senses. Therefore, we did
not estimate this baseline for the Italian SST, in
contrast to what has been done for the English
SST.

6 Conclusion and Future Work

In this work, we presented an empirical investiga-
tion about the role of Named Entities in compara-
ble corpora, showing that they largely contribute
in finding bridges between languages since they
tend to refer to the same entities. This feature
allows us to discover bridges among languages
by simply looking for common Named Entities in
corpora that are generally not parallels since such
terms are usually associated to the same objects
in the external world. We demonstrated that most
terms in the lexical overlap between languages are
entities, and we showed that they belong to few
fundamentals categories (including persons, loca-
tions and groups).

A predominant amount of entities in the lexi-
cal overlap could be conceived as a support to our
claim that Named Entities can be used to bridge
the languages, since they preserve meaning and
provide a set of highly accurate anchors to bridge
languages in multilingual knowledge bases. Those
anchors can be used as a set of seeds to boost fur-
ther statistical or logical lexical acquisition pro-
cesses. In addition, the impact of false friends re-
vealed to be less problematic than expected.

We trained a multilingual super sense tagger
on the Italian and English language and we in-
troduced the distinction between concept and in-
stance in a subset of its target classes, where our
investigation suggested to look for concrete types.
The resulting tagger largely extend the capabilities
of the state of art supersense technology, by pro-
viding a multilingual tool which can be effectively
used for multilingual knowledge induction.

For the future, we are going to further explore
the direction of multilingual knowledge induction,
exploiting the tagger developed so far for ontology
engineering and knowledge retrieval. In addition,
we plan to leverage more on the lexical overlap
property analyzed in this paper, for example to de-
velop unsupervised super sense taggers for all lan-
guages where annotated corpora are not available.

Acknowledgments

Alfio Massimiliano Gliozzo has been supported by
the BONy project, financed by the Education and
culture DG of the EU, grant agreement N 135263-
2007-IT-KA3-KA3MP, under the Lifelong Learn-
ing Programme 2007 managed by EACEA.

141

References

R. Beckwith, C. Fellbaum, D. Gross, and G. Miller.
1991. 9. wordnet: A lexical database organized on
psycholinguistic principles. Lexicons: Using On-
Line Resources to Build a Lexicon, pages 211–232,
Jan.

L. Bentivogli, P. Forner, and E. Pianta. 2004. Evalu-
ating cross-language annotation transfer in the mul-
tisemcor corpus. In COLING ’04: Proceedings of
the 20th international conference on Computational
Linguistics, page 364, Morristown, NJ, USA. Asso-
ciation for Computational Linguistics.

P. Buitelaar, P. Cimiano, and B. Magnini. 2005. On-
tology learning from texts: methods, evaluation and
applications. IOS Press.

M. Ciaramita and M. Johnson. 2003. Supersense tag-
ging of unknown nouns in wordnet. In Proceedings
of EMNLP-03, pages 168–175, Sapporo, Japan.

P. Cimiano. 2006. Ontology Learning and Popula-
tion from Text: Algorithms, Evaluation and Appli-
cations. Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

M. Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of EMNLP-02.

C. de Pablo, J.L. Martı́nez, and P. Martı́nez. 2006.
Named entity processing for cross-lingual and mul-
tilingual ir applications. In proceedings of the SI-
GIR2006 workshop on New Directions In Multilin-
gual Information Access.

C. Fellbaum. 1998. WordNet. An Electronic Lexical
Database. MIT Press.

G. A. Miller and F. Hristea. 2006. Wordnet nouns:
Classes and instances. Computational Linguistics,
32(1):1–3.

N. Nguyen and Y. Guo. 2007. Comparison of se-
quence labeling algorithms and extensions. In Pro-
ceedings of ICML 2007, pages 681–688.

D. Picca and A. Popescu. 2007. Using wikipedia and
supersense tagging for semi-automatic complex tax-
onomy construction. In proceedings RANLP.

D. Picca, A. Gliozzo, and M. Ciaramita. 2007. Se-
mantic domains and supersens tagging for domain-
specific ontology learning. In proceedings RIAO
2007.

D. Picca, A. M. Gliozzo, and M. Ciaramita. 2008.
Supersense tagger for italian. In proceedings of
the sixth international conference on Language Re-
sources and Evaluation (LREC 2008).

C. B. Quasthoff, U. M. Richter. 2006. Corpus portal
for search in monolingual corpora,. In Proceedings
of the fifth international conference on Language
Resources and Evaluation, LREC, pages pp. 1799–
1802.

F. Suchanek, G. Kasneci, and G. Weikum. 2007a.
Yago: A large ontology from wikipedia and word-
net. Technical Report.

F. M. Suchanek, G. Kasneci, and G. Weikum. 2007b.
Yago: a core of semantic knowledge. In WWW ’07:
Proceedings of the 16th international conference on
World Wide Web, pages 697–706, New York, NY,
USA. ACM Press.

C. Zirn, V. Nastase, and M. Strube. 2008. Distinguish-
ing between instances and classes in the wikipedia
taxonomy. Lecture notes in computer science, Jan.

142

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 143–151,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Chinese-English Organization Name Translation Based on Correla-
tive Expansion

Feiliang Ren, Muhua Zhu, Huizhen Wang, Jingbo Zhu
Natural Language Processing Lab, Northeastern University, Shenyang, China

{renfeiliang,zhumuhua}@gmail.com

{wanghuizhen,zhujingbo}@mail.neu.edu.cn

Abstract

This paper presents an approach to trans-
lating Chinese organization names into
English based on correlative expansion.
Firstly, some candidate translations are
generated by using statistical translation
method. And several correlative named
entities for the input are retrieved from a
correlative named entity list. Secondly,
three kinds of expansion methods are
used to generate some expanded queries.
Finally, these queries are submitted to a
search engine, and the refined translation
results are mined and re-ranked by using
the returned web pages. Experimental re-
sults show that this approach outperforms
the compared system in overall transla-
tion accuracy.

1 Introduction

There are three main types of named entity: loca-
tion name, person name, and organization name.
Organization name translation is a subtask of
named entity translation. It is crucial for many
NLP tasks, such as cross-language information
retrieval, machine translation, question and an-
swering system. For organization name transla-
tion, there are two problems among it which are
very difficult to handle.

Problem I: There is no uniform rule that can
be abided by to select proper translation methods
for the inside words of an organization name. For
example, a Chinese word “东北”, when it is used
as a modifier for a university, it is translated to
Northeastern for “东北大学/Northeastern Uni-
versity”, and is translated to Northeast for “东北
林业大学/Northeast Forestry University”, and is
mapped to Chinese Pinyin Dongbei for “东北财

经大学/Dongbei University of Finance and Eco-
nomics”. It is difficult to decide which transla-
tion method should be chosen when we translate
the inside words of an organization name.

Problem II: There is no uniform rule that can
be abided by to select proper translation order
and proper treatment of particles Here particles
refer to prepositions and articles) for an input
organization name. For example, the organiza-
tion name “中国建设银行/China Construction
Bank” and the organization name “中国农业银

行/Agricultural Bank of China”, they are very
similar both in surface forms and in syntax struc-
tures, but their translation orders are different,
and their treatments of particles are also different.

Generally, there are two strategies usually
used for named entity translation in previous re-
search. One is alignment based approach, and the
other is generation based approach. Alignment
based approach (Chen et al. 2003; Huang et al.
2003; Hassan and Sorensen, 2005; and so on)
extracts named entities translation pairs from
parallel or comparable corpus by some alignment
technologies, and this approach is not suitable to
solve the above two problems. Because new or-
ganization names are constantly being created,
and alignment based method usually fails to
cover these new organization names that don’t
occur in the bilingual corpus.

Traditional generation based approach (Al-
Onaizan and Knight, 2002; Jiang et al .2007;
Yang et al. 2008; and so on) usually consists of
two parts. Firstly, it will generate some candidate
translations for the input; then it will re-rank
these candidate translations to assign the correct
translations high ranks. Cheng and Zong [2008]
proposed another generation based approach for
organization name translation, which directly
translates organization names according to their
inherent structures. But their approach still can’t
solve the above two problems. This is because
the amount of organization names is so huge and
many of them have their own special translation
rules to handle the above two problems. And the
inherent structures don’t reveal these translation
rules. Traditional generation based approach is
suitable for organization name translation. But in
previous research, the final translation perform-
ance depends on the candidate translation gen-

143

eration process greatly. If this generation process
failed, it is impossible to obtain correct result
from the re-ranking process. In response to this,
Huang et al. [2005] proposed a novel method that
mined key phrase translation form web by using
topic-relevant hint words. But in their approach,
they removed the candidate translation genera-
tion process, which will improve extra difficult
during mining phrase. Besides, in their approach,
the features considered to obtain topic-relevant
words are not so comprehensive, which will af-
fect the quality of returned web pages where the
correct translations are expected to be included.
There is still much room for the improvement
process of the topic-relevant words extraction.

Inspired by the traditional generation based
named entity translation strategy and the ap-
proach proposed by Huang et al., we propose an
organization name translation approach that min-
ing the correct translations of input organization
name from the web. Our aim is to solve the
above two problems indirectly by retrieving the
web pages that contain the correct translation of
the input and mining the correct translation from
them. Given an input organization name, firstly,
some candidate translations are generated by us-
ing statistical translation method. And several
correlative named entities for the input are re-
trieved from a correlative named entity list. Sec-
ondly, expanded queries are generated by using
three kinds of query expansion methods. Thirdly,
these queries are submitted to a search engine,
and the final translation results are mined and re-
ranked by using the returned web pages.

The rest of this paper is organized as follows,
section 2 presents the extraction process of cor-
relative named entities, section 3 presents a detail
description of our translation method for Chinese
organization name, and section 4 introduces our
parameter evaluation method, and section 5 is the
experiments and discussions part, finally conclu-
sions and future work are given in section 6.

2 Extraction of Correlative Named En-
tities

The key of our approach is to find some web
pages that contain the correct translation of the
input. With the help of correlative named entities
(here if two named entities are correlative, it
means that they are usually used to describe the
same topic), it is easier to find such web pages.
This is because that in the web, one web page
usually has one topic. Thus if two named entities

are correlative, they are very likely to occur in
pair in some web pages.

The correlative named entity list is constructed
in advance. During translation, the correlative
named entities for the input organization name
are retrieved from this list directly. To set up this
correlative named entity list, an about 180GB-
sized collection of web pages are used. Totally
there are about 100M web pages in this collec-
tion. Named entities are recognized from every
web page by using a NER tool. This NER tool is
trained by CRF model 1 with the corpus from
SIGHAN-20082.

2.1 Features Used

During the extraction of correlative named enti-
ties, the following features are considered.

Co-occurrence in a Document The more of-
ten two named entities co-occur in a document,
the more likely they are correlative. This feature
is denoted as 1 2(,)iCoD n n , which means the co-
occurrence of named entities 1n and 2n in a docu-
ment iD . This feature is also the main feature
used in Huang et al. [2005].

Co-occurrence in Documents The more often
two named entities co-occur in different docu-
ments, the more likely they are correlative. This
feature is denoted as 1 2(,)CoDs n n , which means
the number of documents that both 1n and 2n oc-
cur in.

Distance The closer two named entities is in a
document, the more likely they are correlative.
This feature is denoted as 1 2(,)iDistD n n , which
means the number of words between 1n and 2n
in a document iD .

Mutual Information Mutual information is a
metric to measure the correlation degree of two
words. The higher two named entities’ mutual
information, the more likely they are correlative.
And the mutual information of named entities

1n and 2n in a document iD is computed as fol-
lowing formula.

1 2
1 2 1 2

1 2

(,)(,) (,) log
() ()i
p n nMID n n p n n

p n p n
=

⋅
 (1)

Jaccard Similarity Jaccard similarity is also a
metric to measure the correlative degree of two
words. The higher two named entities’ Jaccard

1 http://www.chasen.org/~taku/software/CRF++/
2 http://www.china-language.gov.cn/bakeoff08/

144

similarity, the more likely they are correlative.
And Jaccard similarity is computed as following
formula.

1 2
1 2

1 2 1 2

(,)(,)
() () (,)

CoDs n nJaccard n n
D n D n CoDs n n

=
+ −

(2)

where ()iD n is the number of documents that

in occurs in, and (,)i jCoDs n n is the number of

documents that both in and jn occur in.
TF-IDF TF-IDF is a weight computation

method usually used in information retrieval.
Here for a named entity in , TF-IDF is used to
measure the importance of its correlative named
entities. The TF-IDF value of jn in a document

iD is computed as following formula.

() log
()i j ij

j

NTF IDF n tf
D n

− = × (3)

where ijtf is the frequency of jn in docu-

ment iD , N is the number of total documents,
and ()jD n is the number of documents that

jn occurs in.

2.2 Feature Combination

During the process of feature combination, every
feature is normalized, and the final correlative
degree of two named entities is the linear combi-
nation of these normalized features, and it is
computed as following formula.

1 2

(,) (,)
(,)

(,) (,)

k i j
i jk

i j
k i j i j

j k j

CoD n n CoDs n n
C n n

CoD n n CoDs n n
λ λ= +
∑
∑∑ ∑

3 4

1 (,)(,)
1 (,)(,)

k i j
k i jk k

k i j
k i j j kj k

MID n nDistD n n
MID n nDistD n n

λ λ+ +
∑ ∑

∑∑∑∑

5 6

()(,)
(,) ()

k j
i j k

i j k j
j k j

TF IDF nJaccard n n
Jaccard n n TF IDF n

λ λ
−

+ +
−

∑
∑ ∑∑

(4)
Finally, for every organization name in , its

top-K correlative named entities are selected to
construct the correlative named entity list.

During translation, the correlative words for
the input can be retrieved from this correlative
list directly. If the input is not included in this list,
the same method as in Huang et al. [2005] is
used to obtain the needed correlative words.

3 Organization Name Translation
Based on Correlative Expansion

3.1 Statistical Translation Module

The first step of our approach is to generate some
candidate translations for every input organiza-
tion name. As shown in table 1, these candidate
translations are used as query stems during query
expansion. We use Moses3, a state of the art pub-
lic machine translation tool, to generate such
candidate translations. Here Moses is trained
with the bilingual corpus that is from the 4th
China Workshop on Machine Translation4. Total
there are 868,947 bilingual Chinese-English sen-
tence pairs on news domain in this bilingual cor-
pus. Moses receives an organization name as in-
put, and outputs the N-best results as the candi-
date translations of the input organization name.
Total there are six features used in Moses: phrase
translation probability, inverse phrase translation
probability, lexical translation probability, in-
verse lexical translation probability, language
model, and sentence length penalty. All the
needed parameters are trained with MERT
method (Och, 2003) by using a held-out devel-
opment set.

3.2 Query Expansions

Because the amount of available web pages is so
huge, the query submitted to search engine must
be well designed. Otherwise, the search engine
will return large amount of un-related web pages.
This will enlarge the difficulty of mining phase.
Here three kinds of expansion methods are pro-
posed to generate some queries by combining the
clues given by statistical translation method and
the clues given by correlative named entities of
the input. And these correlative named entities
are retrieved from the correlative named entities
list before the query expansions process. These
three kinds of expansions are explained as fol-
lows.

3.2.1 Monolingual Expansion

Given an input organization name in , suppose

is is one of its candidate translations, and jn is

one of its correlative named entities. If jn can be

reliably translated5, we expand is with this reli-

3 http://www.statmt.org/moses/
4 http://www.nlpr.ia.ac.cn/cwmt-2008
5 A word can be reliably translated means either it has

a unique dictionary translation or it is a Chinese

145

able translation ()jt n to form a query

“ is + ()jt n ”. This kind of expansion is called as
monolingual expansion.

For two named entities, if they are correlative,
their translations are likely correlative too. So
their translations are also likely to occur in pair
in some web pages. Suppose a query generated
by this expansion is “ is + ()jt n ”, if the candidate

translation is is the correct translation of the in-
put, there must be some returned web pages that
contain is completely. Otherwise, it is still possi-
ble to obtain some returned web pages that con-
tain the correct translation. This is because that
the search engine will return both the web pages
that include the query completely and the web
pages that include the query partly. And for a
translation candidate is and the correct transla-
tion 'is , they are very likely to have some com-
mon words, so some of their returned web pages
may overlap each other. Thus it can be expected
that when we submit “ is + ()jt n ” to search en-
gine, it will return some web pages that include
“ 'is + ()jt n ” or include 'is . This is very helpful
for the mining phase.

3.2.2 Bilingual Expansion

Given an input organization name in , suppose

is is one of its candidate translations, we ex-
pand is with in to form a query “ is + in ”. This
kind of expansion is called as bilingual expan-
sion.

Bilingual expansion is very useful to verify
whether a candidate translation is the correct
translation. To give readers more information or
they are not sure about the translation of original
named entity, the Chinese authors usually in-
clude both the original form of a named entity
and its translation in the mix-language web pages
[Fei Huang et al, 2005]. So the correct translation
pair is likely to obtain more supports from the
returned web pages than those incorrect transla-
tion pairs. Thus bilingual expansion is very use-
ful for the re-ranking phase.

Besides, for an input organization name, if one
of its incorrect candidate translations is is very

person name and can be translated by Pinyin map-
ping.

similar to the correct translation 'is in surface
form, the correct translation is also likely to be
contained in the returned web pages by using this
kind of queries. The reason for this is the search
mechanism of search engine, which has been
explained above in monolingual expansion.

3.2.3 Mix-language Expansion

Given an input organization name in , suppose

is is one of its candidate translations, and jn is
one of its correlative named entities. We ex-
pand is with jn to form a query “ is + jn ”. This
kind of expansion is called as mix-language ex-
pansion.

Mix-language expansion is a necessary com-
plement to the other two expansions. Besides,
this mix-language expansion is more prone to
obtain some mix-language web pages that may
contain both the original input organization name
and its correct translation.

3.3 Mining

When the expanded queries are submitted to
search engine, the correct translation of the input
organization name may be contained in the re-
turned web pages. Because the translation of an
organization name must be also an organization
name, we mine the correct translation of the in-
put among the English organization names. Here
we use the Stanford named entity recognition
toolkits6 to recognize all the English organiza-
tion names in the returned web pages. Then align
these recognized organization names to the input
by considering the following features.

Mutual Translation Probability The transla-
tion probability measures the semantic equiva-
lence between a source organization name and its
target candidate translation. And mutual transla-
tion probability measures this semantic equiva-
lence in two directions. For simplicity, here we
use IBM model-1(Brown et al. 1993), which
computes two organization names’ translation
probability using the following formula.

11

1(|) (|)
J L

j lJ
lj

p f e p f e
L ==

= ∑∏ (6)

where (|)j lp f e is the lexical translation prob-
ability. Suppose the input organization name
is in , is is one of the recognized English organi-

6 http://nlp.stanford.edu/software/CRF-NER.shtml

146

zation names, the mutual translation probability
of in and is is computed as:

(,) (|) (1) (|)i i i i i imp n s p n s p s nλ λ= + − (7)
Golden Translation Ratio For two organiza-

tion names, their golden translation ratio is de-
fined as the percentage of words in one organiza-
tion name whose reliable transactions can be
found in another organization name. This feature
is used to measure the probability of one named
entity is the translation of the other. It is com-
puted as following formula.

(,) (,)
(,) (1)

| | | |
i j j i

i j
i j

G n s G s n
GR n s

n s
λ λ= + − (8)

where (,)i jG n s is the number of golden trans-

lated words from in to js , and (,)j iG s n is the

number of golden translated words from js to in .
Co-occurrence In Web Pages For an input

organization name in and a recognized candidate
translation js , the more often they co-occur in
different web pages, the more likely they are
translations of each other. This feature is denoted
as (,)i jCoS n s , which means the number of web

pages that both 1n and js occur in.
Input Matching Ratio This feature is defined

as the percentage of the words in the input that
can be found in a returned web page. For those
mix-language web pages, this feature is used to
measure the probability of the correct translation
occurring in a returned web page. It is computed
as the following formula.

| |(,)
| |
i k

i k
i

n sIMR n s
n
∩

= (9)

where ks is the k th− returned web page.
Correlative Named Entities Matching Ratio

This feature is defined as the percentage of the
words in a correlative named entity that can be
found in a returned web page. This feature is also
used to measure the probability of the correct
translation occurring in a returned web page. It is
computed as the following formula.

| |_ (,)
| |
i k

i k
i

c sCW MR c s
c
∩

= (10)

The final confidence score of in and jt to be a
translation pair is measured by following formula.
As in formula 4, here every factor will be is nor-
malized during computation.

1 2(,) (,) (,)i j i j i jC n t mp n t GR n tλ λ= +

4
3

(,)
(,)

(,)
i j

i k
ki j

j

CoSs n n
IMR n s

CoS n n K
λλ+ + ∑∑

5 _ (,)i k
i k

CW MR c s
K I
λ

+
× ∑∑ (11)

where K is the number of returned web pages,
I is the number of correlative named entities for
the input organization name.

For every input organization name, we remain
a fixed number of mined candidate translations
with the highest confidence scores. And add
them to the original candidate translation set to
form a revised candidate translation set.

3.4 Re-ranking

The aim of mining is to improve recall. And in
the re-ranking phase, we hope to improve preci-
sion by assigning the correct translation a higher
rank. The features considered here for the re-
ranking phase are listed as follows.

Confidence Score The confidence score of
in and jt is not only useful for the mining phase,

but also is useful for the re-ranking phase. The
higher this score, the higher rank this candidate
translation should be assigned.

Inclusion Ratio For Bilingual Query This
feature is defined as the percentage of the re-
turned web pages that the bilingual query is
completely matched. It is computed as the fol-
lowing formula.

()_ ()
()

i
i

i

h qEHR BQ q
H q

= (12)

where ()ih q is the number of web pages that
match the query iq completely, and ()iH q is the
total number of returned web pages for query iq .

Candidate Inclusion Ratio for Monolingual
Query and Mix-language Query This feature is
defined as the percentage of the returned web
pages that the candidate translation is completed
matched. This feature for monolingual query is
computed as formula 13, and this feature for
mix-language query is computed as formula 14.

()_ () ()
i

i
i

h sECHR MlQ s H q= (13)

()_ () ()
i

i
i

h sECHR MixQ s H q= (14)

where ()ih s is the number of web pages that
match the candidate translation is completely, and

147

()iH q is the total number of returned web pages
for query iq .

Finally, the above features are combined with
following formula.

2
1(,) (,) _ ()i j i j i

i

R n t C n t EHR BQ q
N
λλ= + ∑

3 _ ()i
i

ECHR MlQ s
M
λ

+ ∑
4 _ ()i

i

ECHR MixQ s
L
λ

+ ∑ (15)

where N is the number of candidate transla-
tions, M and L are the number of monolingual
queries and mix-language queries respectively.

At last the revised candidate translation set is
re-ranked according to this formula, and the top-
K results are outputted as the input’s translation
results.

4 Parameters Evaluations

In above formula (4), formula (11) and formula
(15), the parameters iλ are interpolation feature
weights, which reflect the importance of different
features. We use some held-our organization
name pairs as development set to train these pa-
rameters. For those parameters in formula (4), we
used those considered features solely one by one,
and evaluated their importance according to their
corresponding inclusion ratio of correct transla-
tions when using mix-language expansion and
the final weights are assigned according to the
following formula.

i
i

i
i

InclusionRate
InclusionRate

λ =
∑

 (16)

Where iInclusionRate is the inclusion rate
when considered feature if only. The inclusion
rate is defined as the percentage of correct trans-
lations that are contained in the returned web
pages as Huang et al.[2005] did.

To obtain the parameters in formula (11), we
used those considered features solely one by one,
and computed their corresponding precision on
development set respectively, and final weights
are assigned according to following formula.

i
i

i
i

P
Pλ = ∑

 (17)

Where iP is the precision when considered
feature if only. And for the parameters in for-
mula (15), their assignment method is the same
with the method used for formula (11).

5 Experiments and Discussions

We use a Chinese to English organization name
translation task to evaluate our approach. The
experiments consist of four parts. Firstly, we
evaluate the contribution of the correlative
named entities for obtaining the web pages that
contain the correct translation of the input. Sec-
ondly, we evaluate the contribution of different
query expansion methods. Thirdly, we investi-
gate to which extents our approach can solve the
two problems mentioned in section 1. Finally, we
evaluate how much our approach can improve
the overall recall and precision. Note that for
simplicity, we use 10-best outputs from Moses as
the original candidate translations for every input.
And the search engine used here is Live7.

5.1 Test Set

The test set consists of 247 Chinese organization
names recognized from 2,000 web pages that are
downloaded from Sina8. These test organization
names are translated by a bilingual speaker given
the text they appear in. And these translations are
verified from their official government web
pages respectively. During translation, we don’t
use any contextual information.

5.2 Contribution of Correlative Named En-
tities

The contribution of correlative named entities is
evaluated by inclusion rate, and we compare the
inclusion rate with different amount of correla-
tive named entities and different amount of re-
turned web pages. The experimental results are
shown in Table 1 (here we use all these three
kinds of expanding strategies).

of correlative named enti-
ties used

1 5 10
1 0.17 0.39 0.47
5 0.29 0.63 0.78 #of web

pages used 10 0.32 0.76 0.82
Table 1. Comparisons of inclusion rate

From these results we can find that our ap-
proach obtains an inclusion rate of 82% when we
use 10 correlative named entities and 10 returned
web pages. We notice that there are some Chi-
nese organization names whose correct English
translations have multiple standards. For exam-
ple, the organization name “国防部”is translated

7 http://www.live.com/
8 http://news.sina.com.cn/

148

into “Department of Defense” when it refers to a
department in US, but is translated into “Minis-
try of Defence” when it refers to a department in
UK or in Singapore. This problem affects the
actual inclusion rate of our approach. Another
factor that affects the inclusion rate is the search
engine used. There is a small difference in the
inclusion rate when different search engines are
used. For example, the Chinese organization
name “中信银行/China CITIC Bank”, because
the word “中信” is an out-of-vocabulary word,
the best output from Moses is “of the bank”.
With such candidate translation, none of our
three expansion methods works. But when we
used Google as search engine instead, we mined
the correct translation.

From these results we can conclude that by us-
ing correlative named entities, the returned web
pages are more likely to contain the correct trans-
lations of the input organization names.

5.3 Contribution of Three Query Expansion
Methods

In this section, we evaluate the contribution of
these three query expansion methods respectively.
To do this, we use them one by one during trans-
lation, and compare their inclusion rates respec-
tively. Experimental results are shown in Table 2.

#of web pages
used

1 5 10
1 0.002 0.0020.004
5 0.017 0.0190.019

Monolingual
Expansion

Only 10 0.021 0.0370.051
1 0.112 0.1590.174
5 0.267 0.3270.472

Bilingual
 Expansion

Only 10 0.285 0.4140.669
1 0.098 0.1380.161
5 0.231 0.3070.386

of
correlative
named enti-

ties used
Mix-language

Expansion
Only 10 0.249 0.3980.652

Table 2. Inclusion rate of different kinds of query
expansion methods

From Table 2 we can see that bilingual expan-
sion and mix-language expansion play greater
roles than monolingual expansion in obtaining
the web pages that contain the correct transla-
tions of the inputs. This is because the condition
of generating monolingual queries is too strict,
which requires a reliable translation for the cor-
relative named entity. In most cases, this condi-
tion cannot be satisfied. So for many input or-
ganization names, we cannot generate any mono-
lingual queries for them at all. This is the reason
why monolingual expansion obtains so poorer an

inclusion rate compared with the other two ex-
pansions. To evaluate the true contribution of
monolingual expansion method, we carry out
another experiment. We select 10 organization
names randomly from the test set, and translate
all of their correlative named entities into English
by a bilingual speaker. Then we evaluate the in-
clusion rate again on this new test set. The ex-
perimental results are shown in Table 3.

of correlative named enti-
ties used

1 5 10
1 0.2 0.3 0.6
5 0.4 0.7 0.9 #of web

pages used 10 0.4 0.8 0.9
Table 3. Inclusion rate for monolingual expan-

sion on new test set
From Table 3 we can conclude that, if most of

the correlative named entities can be reliably
translated, the queries generated by this mono-
lingual expansion will play greater role in obtain-
ing the web pages that contain the correct trans-
lations of the inputs.

From those results in Table 2 we can conclude
that, these three kinds of expansions complement
each other. Using them together can obtain
higher inclusion rate than using anyone of them
only.

5.4 Efficiency on Solving Problem I and
Problem II

In this section, we investigate to which extents
our approach can solve the two problems men-
tioned in section 1.We compare the wrong trans-
lation numbers caused by these two problems
(another main kind of translation error is caused
by the translation of out-of-vocabulary words)
between Moses and our approach. The experi-
mental results are shown in Table 4.

 Moses Results Our method
Problem I 44 3
Problem II 30 0

Table 4. Comparison of error numbers
From Table 4 we can see that our approach is

very effective on solving these two problems.
Almost all of the errors caused by these two
problems are corrected by our approach. Only
three wrong translations are not corrected. This is
because that there are some Chinese organization
names whose correct English translations have
multiple standards, such as the correct translation
of organization name “国防部”depends on its
nationality, which has been explained in section
5.2.

149

5.5 Our Approach vs. Other Approaches

In this section, we compare our approach with
other two methods: Moses and the approach pro-
posed by Huang et al. [2005]. We compare their
accuracy of Top-K results. For both our approach
and Huang et al.’s approach, we use 10 correla-
tive words for each input organization name and
use 10 returned web pages for mining the correct
translation result. The experimental results are
shown in Table 5.

 Moses
Results

Huang’s
Results

Our
Results

Top 1 0.09 0.44 0.53
Top 5 0.18 0.61 0.73

Top 10 0.31 0.68 0.79
Table 5. Moses results vs. our results

Moses is a state-of-the-art translation method,
but it can hardly handle the organization name
translation well. In addition to the errors caused
by the above two problems mentioned in section
1, the out-of-vocabulary problem is another ob-
stacle for Moses. For example, when translating
the organization name “国际海啸信息中心
/International Tsunami Information Centre”, be-
cause the word “海啸” is an out-of-vocabulary
word, Moses fails to give correct translation. But
for those approaches that have a web mining
process during translation, both the out-of-
vocabulary problem and the two problems men-
tioned in section 1 are less serious. This is the
reason that Moses obtains the lowest perform-
ance compared with the other two approaches.
Our approach is also superior to Huang’s method,
as shown in the above table. We think this is be-
cause of the following three reasons. The first
reason is that in our approach, we use a transla-
tion candidate generation process. Although
these candidates are usually not so good, they
can still provide some very useful clue informa-
tion for the web retrieval process. The second
reason is that the features considered for correla-
tive words extraction in our approach are more
comprehensive. Most of the time (except for the
case that the input is not included in the correla-
tive word list) our approach is more prone to ob-
tain better correlative words for the input. The
third reason is that our approach use more query
expansion strategies than Huang’s approach.
These expansion strategies may complement
each other and improve the probability of obtain-
ing the web pages that contain the correct trans-
lations For example, both Moses and Huang’s
approach failed to translate the organization
name “国际海啸信息中心”. But in our approach,

with the candidate translation “International In-
formation Centre” that is generated by Moses,
our approach still can obtain the web page that
contains the correct translation when using bilin-
gual expansion. Thus the correct translation “In-
ternational Tsunami Information Centre” is
mined out during the sequent mining process.

From table 5 we also notice that the final re-
call of our approach is a little lower than the in-
clusion rate as show in table 1. This means that
our approach doesn’t mine all the correct transla-
tions that are contained in the returned web pages.
One of the reasons is that some of the input or-
ganization names are not clearly expressed. For
example, an input organization name “伯克利分

校”, although its correct translation “University
of California, Berkeley” is contained in the re-
turned web pages, this correct translation cannot
be mined out by our approach. But if it is ex-
pressed as “加利福尼亚大学伯克利分校”, its
correct translation can be mined from the re-
turned web pages easily. Besides, the recognition
errors of NER toolkits will also reduce the final
recall of our approach.

6 Conclusions and Future Work

In this paper, we present a new organization
name translation approach. It uses some correla-
tive named entities of the input and some query
expansion strategies to help the search engine to
retrieve those web pages that contain the correct
translation of the input. Experimental results
show that for most of the inputs, their correct
translations are contained in the returned web
pages. By mining these correct translations and
re-ranking them, the two problems mentioned in
section 1 are solved effectively. And recall and
precision are also improved correspondingly.

In the future, we will try to improve the ex-
traction perform of correlative named entities.
We will also try to apply this approach to the
person name translation and location name trans-
lation.

Acknowledgments

This work was supported by the open fund of
National Laboratory of Pattern Recognition, In-
stitute of Automation Chinese Academy of Sci-
ence, P.R.C, and was also supported in part by
National Science Foundation of China
(60873091), Natural Science Foundation of
Liaoning Province (20072032) and Shenyang
Science and Technology Plan (1081235-1-00).

150

References
Chen Hsin-Hsi, Changhua Yang, and Ying Lin. 2003.

Learning formulation and transformation rules for
multilingual named entities. Proceedings of the
ACL 2003 Workshop on Multilingual and Mixed-
language Named Entity Recognition. pp1-8.

Dekang Lin, Shaojun Zhao, Durme Benjamin Van
Drume, Marius Pasca. Mining Parenthetical Trans-
lations from the Web by Word Alignment, ACL08.
pp994-1002.

Fan Yang, Jun Zhao, Bo Zou, Kang Liu, Feifan Liu.
2008. Chinese-English Backward Transliteration
Assisted with Mining Monolingual Web Pages.
ACL2008. pp541-549.

Fei Huang, Stephan Vogel and Alex Waibel. 2003.
Automatic Extraction of Named Entity Translin-
gual Equivalence Based on Multi-feature Cost
Minimization. Proceedings of the 2003 Annual
Conference of the Association for Computational
Linguistics, Workshop on Multilingual and Mixed-
language Named Entity Recognition.

Fei Huang, Stephan vogel and Alex Waibel. 2004.
Improving Named Entity Translation Combining
Phonetic and Semantic Similarities. Proceedings of
the HLT/NAACL. pp281-288.

Fei Huang, Ying Zhang, Stephan Vogel. 2005. Min-
ing Key Phrase Translations from Web Corpora.
HLT-EMNLP2005, pp483-490.

Feng, Donghui, Yajuan LV, and Ming Zhou. 2004. A
new approach for English-Chinese named entity
alignment. Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP 2004), pp372-379.

Franz Josef Och. 2003. Minimum Error Rate Training
in Statistical Machine Translation. ACL2003.
pp160-167.

Jin-Shea Kuo, Haizhou Li, Ying-Kuei Yang. Learning
Transliteration Lexicon from the Web. COL-
ING/ACL2006. pp1129-1136.

Hany Hassan and Jeffrey Sorensen. 2005. An Inte-
grated Approach for Arabic-English Named Entity
Translation. Proceedings of ACL Workshop on
Computational Approaches to Semitic Languages.
pp87-93.

Lee, Chun-Jen and Jason S.Chang and Jyh-Shing
Roger Jang. 2004a. Bilingual named-entity pairs
extraction from parallel corpora. Proceedings of
IJCNLP-04 Workshop on Named Entity Recogni-
tion for Natural Language Processing Application.
pp9-16.

Lee, Chun-Jen, Jason S.Chang and Thomas C.
Chuang. 2004b. Alignment of bilingual named en-
tities in parallel corpora using statistical model.

Lecture Notes in Artificial Intelligence. 3265:144-
153.

Lee, Chun-Jen, Jason S.Chang, and Jyh-Shing Roger
Jang. 2005. Extraction of transliteration pairs from
parallel corpora using a sta Acquisition of English-
Chinese transliterated word pairs from parallel-
aligned text using a statistical transliteration model.
Information Sciences.

Long Jiang, Ming Zhou, Lee-Feng Chien, Cheng Niu.
[2007]. Named Entity Translation with Web Min-
ing and Transliteration. IJCAI-2007.

Moore, Robert C. 2003. Learning translations of
named-entity phrases form parallel corpora. ACL-
2003. pp259-266.

Peter F. Brown, Vincent J. Della Pietra, Stephen A.
Della Pietra, and Robert L. Mercer. 1993. The
Mathematics of Statistical Machine Translation:
Parameter Estimation. Computational Linguistics,
19(2):263-311.

Y. Al-Onaizan and K. Knight. 2002. Translating
named entities using monolingual and bilingual re-
sources. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics,
pp400-408.

Ying Zhang and Phil Vines Using the Web for Auto-
mated Translation Extraction in Cross-Language
Information Retrieval. SIGIR2004,pp162-169.

Yufeng Chen, Chengqing Zong. A Structure-based
Model for Chinese Organization Name Translation.
ACM Transactions on Asian Language Information
Processing, 2008, 7(1), pp1-30.

151

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 152–160,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Name Matching Between Chinese and Roman Scripts:

Machine Complements Human

Ken Samuel, Alan Rubenstein, Sherri Condon, and Alex Yeh

The MITRE Corporation; M/S H305; 7515 Colshire Drive; McLean, Virginia 22102-7508

samuel@mitre.org, rubenstein@mitre.org, scondon@mitre.org, and asy@mitre.org

Abstract

There are generally many ways to translite-

rate a name from one language script into

another. The resulting ambiguity can make it

very difficult to “untransliterate” a name by

reverse engineering the process. In this paper,

we present a highly successful cross-script

name matching system that we developed by

combining the creativity of human intuition

with the power of machine learning. Our sys-

tem determines whether a name in Roman

script and a name in Chinese script match

each other with an F-score of 96%. In addi-

tion, for name pairs that satisfy a computa-

tional test, the F-score is 98%.

1 Introduction

There are generally many ways to transliterate a

person‟s name from one language script into

another. For example, writers have transliterated

the Arabic name, الشكري, into Roman characters

in at least 13 ways, such as Al Choukri, Ash-

shukri, and al-Schoukri. This ambiguity can

make it very difficult to “untransliterate” a name

by reverse engineering the process.

We focused on a task that is related to transli-

teration. Cross-script name matching aims to de-

termine whether a given name part in Roman

script matches a given name part in Chinese

(Mandarin) script,
1
 where a name part is a single

“word” in a person‟s name (such as a surname),

and two names match if one is a transliteration of

the other.
2
 Cross-script name matching has many

1 In this paper, we often use the word “Roman” to refer to

“Roman script”, and similarly, “Chinese” usually stands

for “Chinese script”.

2 Sometimes a third script comes between the Roman and

Chinese versions of the name. For example, a Roman

name might be transliterated into Arabic, which is then

transliterated into Chinese, or an Arabic name could be

transliterated into Roman and Chinese independently.

applications, such as identity matching, improv-

ing search engines, and aligning parallel corpora.

We combine a) the creative power of human

intuition, which can come up with clever ideas

and b) the computational power of machine

learning, which can analyze large quantities of

data. Wan and Verspoor (1998) provided the

human intuition by designing an algorithm to

divide names into pieces that are just the right

size for Roman-Chinese name matching (Section

2.2.). Armed with Wan and Verspoor‟s algo-

rithm, a machine learning approach analyzes

hundreds of thousands of matched name pairs to

build a Roman-Chinese name matching system

(Section 3).

Our experimental results are in Section 4. The

system correctly determines whether a Roman

name and a Chinese name match each other with

F = 96.5%.
3
 And F = 97.6% for name pairs that

satisfy the Perfect Alignment hypothesis condi-

tion, which is defined in Section 2.2.

2 Related Work

Wan and Verspoor‟s (1998) work had a great

impact on our research, and we explain how we

use it in Section 2.2. In Section 2.1, we identify

other related work.

2.1 Chinese-English Name Matching

Condon et al. (2006) wrote a paper about the

challenges of matching names across Roman and

Chinese scripts. In Section 6 of their paper, they

offered an overview of several papers related to

Roman-Chinese name matching. (Cohen et al.,

2003; Gao et al., 2004; Goto et al., 2003; Jung et

al., 2000; Kang and Choi, 2000; Knight and

Graehl, 1997; Kondrak, 2000; Kondrak and

Dorr, 2004; Li et al., 2004; Meng et al., 2001; Oh

3 F stands for F-score, which is a popular evaluation metric.

(Andrade et al., 2009)

152

and Choi, 2006; Virga and Khudanpur, 2003;

Wellner et al., 2005; Winkler, 2002)

The Levenshtein algorithm is a popular way to

compute string edit distance. (Levenshtein, 1966)

It can quantify the similarity between two names.

However, this algorithm does not work when the

names are written in different scripts. So Free-

man et al. (2006) developed a strategy for Ro-

man-Arabic string matching that uses equiva-

lence classes of characters to normalize the

names so that Levenshtein‟s method can be ap-

plied. Later, Mani et al. (2006) transformed that

system from Roman-Arabic to Roman-Chinese

name matching and extended the Levenshtein

approach, attaining F = 85.2%. Then when they

trained a machine learning algorithm on the out-

put, the performance improved to F = 93.1%

 Mani et al. also tried applying a phonological

alignment system (Kondrak, 2000) to the Ro-

man-Chinese name matching task, and they re-

ported an F-score of 91.2%. However, when they

trained a machine learning approach on that sys-

tem‟s output, the F-score was only 90.6%.

It is important to recognize that it would be in-

appropriate to present a side-by-side comparison

between Mani‟s work and ours (F = 96.5%), be-

cause there are many differences, such as the

data that was used for evaluation.

2.2 Subsyllable Units

Transliteration is usually based on the way

names are pronounced.
4
 However, each character

in a Roman name generally corresponds to a sin-

gle phoneme, while a Chinese character (CC)

generally corresponds to a subsyllable unit

(SSU). A phoneme is the smallest meaningful

unit of sound, and a subsyllable unit is a se-

quence of one to three phonemes that conform to

the following three constraints. (Wan and Vers-

poor, 1998)

4 Of course, there are exceptions. For example, when a

name happens to be a word, sometimes that name is trans-

lated (rather than transliterated) into the other language.

But our experimental results suggest that the exceptions

are quite rare.

(1) There is exactly one vowel phoneme.
5

(2) At most, one consonant phoneme may pre-

cede the vowel phoneme.

(3) The vowel phoneme may be followed by, at

most, one nasal phoneme.
6

Consider the example in Table 1. The name

“Albertson” consists of eight phonemes in three

syllables.7 The last syllable, SAHN, satisfies the

definition of SSU, and the other two are split into

smaller pieces, resulting in a total of five SSUs.

There are also five CCs in the Chinese version,

阿尔贝特松. We note that the fourth and sixth rows

in the table show similarities in their pronuncia-

tions. For example, the first SSU, AE, sounds

like the first CC, /a/. And, although the sounds

are not always identical, such as BER and /pei/,

Wan and Verspoor claimed that these SSU-CC

correspondences can be generalized in the fol-

lowing way:

Perfect Alignment (PA) hypothesis

If a Roman name corresponds to a sequence of n

SSUs, S1, S2, ..., Sn, and the Chinese form of that

name is a sequence of n CCs, C1, C2, ..., Cn, then

Ci matches Si for all 1 ≤ i ≤ n.

In Section 4, we show that the PA hypothesis

works very well. However, it is not uncommon

to have more SSUs than CCs in a matching name

pair, in which case, the PA hypothesis does not

apply. Often this happens because an SSU is left

out of the Chinese transliteration, perhaps be-

cause it is a sound that is not common in Chi-

nese. For example, suppose “Carlberg” (KAA,

R,L,BER,G) is transliterated as 卡尔贝里 . In

this example, the SSU, R, does not corres-

pond to any of the CCs. We generalize this

phenomenon with another hypothesis:

SSUs Deletion (SSUD) hypothesis
If a Roman name corresponds to a sequence of

n+k SSUs (k>0), S1, S2, ..., Sn+k, and the Chinese

form of that name is a sequence of n CCs, C1, C2,

..., Cn, then, for some set of k Si’s, if those SSUs

are removed from the sequence of SSUs, then the

PA hypothesis holds.

And in the case where the number of CCs is

greater than the number of SSUs, we make the

5 Wan and Verspoor treat the phoneme, /ər/, as in Albertson,

as a vowel phoneme.

6 The nasal phonemes are /n/ and /ŋ/, as in “nothing”.

7 To represent phonemes, we use two different standards in

this paper. The symbols between slashes (like /ər/) are in

the IPA format (International Phonetic Association,

1999). And the phonemes written in capital letters (like

ER) are in the ARPABET format (Klatt, 1990).

Roman Characters: Albertson

Phonemes: AE,L,B,ER,T,S,AH,N

Syllables: AEL,BERT,SAHN

Subsyllable Units: AE,L,BER,T,SAHN

Chinese: 阿尔贝特松

Chinese Phonemes: /a/,/ər/,/pei/,/t
h
ə/,/suŋ/

Table 1. Subsyllable Units

153

corresponding CCs Deletion (CCD) hypothesis.

In the next section, we show how we utilize these

hypotheses.

3 Machine Learning

We designed a machine learning algorithm to

establish a mapping between SSUs and CCs. In

Section 3.1, we show how our system can do

Roman-Chinese name matching, and then we

present the training procedure in Section 3.2.

3.1 Application Mode

Given a Roman-Chinese name pair, our system

computes a match score, which is a number be-

tween 0 and 1 that is meant to represent the like-

lihood that two names match. This is accom-

plished via the process presented in Figure 1.

Starting in the upper-left node of the diagram

with a Roman name and a Chinese name, the

system determines how the Roman name should

be pronounced by running it through the Festival

system. (Black et al., 1999) Next, two algorithms

designed by Wan and Verspoor (1998) join the

phonemes to form syllables and divide the syl-

lables into SSUs.
8
 If the number of SSUs is equal

to the number of characters in the Chinese

name,
9
 we apply the PA hypothesis to align each

SSU with a CC.

The system computes a match score using a

data structure called the SSU-CC matrix (subsyl-

lable unit – Chinese character matrix), which has

a nonnegative number for each SSU-CC pair,

and this value should represent the strength of

the correspondence between the SSU and the

CC. Table 2 shows an example of an SSU-CC

matrix. With this matrix, the name pair <Albert,

阿尔贝特> receives a relatively high match score,

because the SSUs in Albert are AE, L, BER, and

T, and the numbers in the SSU-CC matrix for

<AE,阿>, <L,尔>, <BER,贝> and <T,特> are 2, 2,

3, and 2, respectively.
10

 Alternatively, the system

assigns a very low match score to <Albert,

尔贝特阿>, because the values of <AE,尔>, <L,贝>,

<BER,格>, and <T,阿> are all 0.

3.2 Training Mode

To generate an SSU-CC matrix, we train our sys-

tem on a corpus of Roman-Chinese name pairs

8 This procedure passes through three separate modules,

each of which introduces errors, so we would expect the

system to suffer from compounding errors. However, the

excellent evaluation results in Section 4 suggest other-

wise. This may be because the system encounters the

same kinds of errors during training that it sees in the ap-

plication mode, so perhaps it can learn to compensate for

them.

9 Section 3.3 discusses the procedure used when these num-

bers are not equal.

10 The equation used to derive the match score from these

values can be found in Section 5.

Figure 2. Training Mode

Figure 1. Application Mode

A
E

B
E
R

E
H G

K
A
A L

L
A
H
N

L
I
Y

N
A
H R

S
A
H
N T

伦 0 0 0 0 0 0 1 0 0 0 0 0

利 0 0 0 0 0 0 0 1 0 0 0 0

卡 0 0 0 0 1 0 0 0 0 0 0 0

叶 0 0 1 0 0 0 0 0 0 0 0 0

埃 0 0 1 0 0 0 0 0 0 0 0 0

娜 0 0 0 0 0 0 0 0 1 0 0 0

尔 0 0 0 0 0 2 0 0 0 1 0 0

松 0 0 0 0 0 0 0 0 0 0 1 0

特 0 0 0 0 0 0 0 0 0 0 0 2

贝 0 3 0 0 0 0 0 0 0 0 0 0

连 0 0 0 0 0 0 1 0 0 0 0 0

里 0 0 0 1 0 0 0 0 0 0 0 0

阿 2 0 0 0 0 0 0 0 0 0 0 0

Table 2. SSU-CC Matrix #1

154

that match. Figure 2 shows a diagram of the

training system. The procedure for transforming

the Roman name into a sequence of SSUs is

identical to that presented in Section 3.1. Then, if

the number of SSUs is the same as the number of

CCs,
9
 we apply the PA hypothesis to pair the

SSUs with the CCs. For example, the third name

pair in Table 3 has three SSU-CC pairs: <KAA,

卡>, <R,尔>, and <LIY,利>. So the system mod-

ifies the SSU-CC matrix by adding 1 to each cell

that corresponds to one of these SSU-CC pairs.

Training on the five name pairs in Table 3 pro-

duces the SSU-CC matrix in Table 2.

3.3 Imperfect Alignment

The system makes two passes through the train-

ing data. In the first pass, whenever the PA hypo-

thesis does not apply to a name pair (because the

number of SSUs differs from the number of

CCs), that name pair is skipped.

Then, in the second pass, the system builds

another SSU-CC matrix. The procedure for

processing each name pair that satisfies the PA

hypothesis‟s condition is exactly the same as in

the first pass (Section 3.2). But the other name

pairs require the SSUD hypothesis or the CCD

hypothesis to delete SSUs or CCs. For a given

Roman-Chinese name pair:

where D is the set of all deletion sets that make

the PA hypothesis applicable. Note that the size

of D grows exponentially as the difference be-

tween the number of SSUs and CCs grows.

As an example, consider adding the name pair

<Carlberg, 卡尔贝里> to the data in Table 3. Carl-

berg has five SSUs: KAA,R,L,BER,G, but 卡尔贝-

里 has only four CCs. So the PA hypothesis is not

applicable, and the system ignores this name pair

in the first pass. Table 2 shows the values in Ma-

trix #1 when it is completed.

In the second pass, we must apply the SSUD

hypothesis to <Carlberg, 卡尔贝里> by deleting

one of the SSUs. There are five ways to do this,

as shown in the five rows of Table 4. (For in-

stance, the last row represents the case where G

is deleted ― the SSU-CC pairs are <KAA,卡>,

<R,尔>, <L,贝>, <BER,里>, and <G,Ø>.
11

)

Each of the five options are evaluated using

the values in Matrix #1 (Table 2) to produce the

scores in the second column of Table 4. Then the

11 The Ø represents a deleted SSU. We include a row and

column named Ø in Matrix #2 to record values for the

cases in which the SSUs and CCs are deleted.

For every d in D:

Temporarily make the deletions in d.

Evaluate the resulting name pair with Matrix #1.

Scale the evaluation scores of the d‟s to sum to 1.

For every d in D:

Temporarily make the deletions in d.

For every SSU-CC pair, ssu-cc, in the result:

Add d‟s scaled score to cell [ssu,cc] in Matrix #2.

Example # 1 2 3 4 5

Roman

Characters
Albert Albertson Carly Elena Ellenberg

Subsyllable

Units
AE,L,BER,T AE,L,BER,T,SAHN KAA,R,LIY EH,LAHN,NAH EH,LAHN,BER,G

Chinese

Characters
阿尔贝特 阿尔贝特松 卡尔利 叶连娜 埃伦贝里

Table 3. Training Data

CCs Score Scaled Score

Ø卡尔贝里 0.00 0.00

卡Ø尔贝里 0.90 0.54

卡尔Ø贝里 0.76 0.46

卡尔贝Ø里 0.00 0.00

卡尔贝里Ø 0.00 0.00

Table 4. Subsyllable Unit Deletion

Ø

B
E
R G

K
A
A L R ...

Ø 0.00 0.00 0.00 0.46 0.54

卡 0.00 0.00 0.00 2.00 0.00 0.00

尔 0.00 0.00 0.00 0.00 2.54 1.46

贝 0.00 4.00 0.00 0.00 0.00 0.00

里 0.00 0.00 2.00 0.00 0.00 0.00

...

Table 5. SSU-CC Matrix #2

155

system scales the scores to sum to 1, as shown in

the third column, and it uses those values as

weights to determine how much impact each of

the five options has on the second matrix. Table

5 shows part of Matrix #2.

In application mode, when the system encoun-

ters a name pair that does not satisfy the PA hy-

pothesis‟s condition it tries all possible deletion

sets and selects the one that produces the highest

match score.

3.4 Considering Context

It might be easier to estimate the likelihood that

an SSU-CC pair is a match by using information

found in surrounding SSU-CC pairs, such as the

SSU that follows a given SSU-CC pair. We do

this by increasing the number of columns in the

SSU-CC matrix to separate the examples based

on the surrounding context.

For example, in Table 2, we cannot determine

whether LAHN should map to 伦 or 连. But the

SSU that follows LAHN clears up the ambiguity,

because when LAHN immediately precedes

BER, it maps to 伦, but when it is followed by

NAH, it corresponds to 连. Table 6 displays a

portion of the SSU-CC matrix that accounts for

the contextual information provided by the SSU

that follows an SSU-CC pair.

3.5 The Threshold

Given an SSU-CC name pair, the system produc-

es a number between 0 and 1. But in order to

evaluate the system in terms of precision, recall,

and F-score, we need the system to return a yes

(a match) or no (not a match) response. So we

use a threshold value to separate those two cases.

The threshold value can be manually selected

by a human, but this is often difficult to do effec-

tively. So we developed the following automated

approach to choose the threshold. After the train-

ing phase finishes developing Matrix #2, the sys-

tem processes the training data
12

 one more time.

12 We tried selecting the threshold with data that was not

used in training, and we found no statistically significant

improvement.

But this time it runs in application mode (Section

3.1), computing a match score for each training

example. Then the system considers all possible

ways to separate the yes and no responses with a

threshold, selecting the threshold value that is the

most effective on the training data.

Building the SSU-CC matrices does not re-

quire any negative examples (name pairs that do

not match). However, we do require negative

examples in order to determine the threshold and

to evaluate the system. Our technique for gene-

rating negative examples involves randomly

rearranging the names in the data.
13

4 Evaluation of the System

We ran several experiments to test our system

under a variety of different conditions. After de-

scribing our data and experimental method, we

present some of our most interesting experimen-

tal results.

We used a set of nearly 500,000 Roman-

Chinese person name pairs collected from Xin-

hua News Agency newswire texts. (Huang,

2005) Table 7 shows the distribution of the data

based on alignment. Note that the PA hypothesis

applies to more than 60% of the data.

We used the popular 10-fold cross validation

approach
14

 to obtain ten different evaluation

scores. For each experiment we present the aver-

age of these scores.

Our system‟s precision (P), recall (R), and F-

score (F) are: P = 98.19%, R = 94.83%, and F =

96.48%. These scores are much better than we

originally expected to see for the challenging

task of Roman-Chinese name matching.

Table 8 shows P, R, and F for subsets of the

test data, organized by the number of SSUs mi-

13 Unfortunately, there is no standard way to generate nega-

tive examples.
14 The data is divided into ten subsets of approximately the

same size, testing the system on each subset when trained

on the other nine.

LAHN
(BER)

LAHN
(NAH)

BER
(G)

BER
(T)

伦 1 0 0 0

贝 0 0 1 2

连 0 1 0 0

Table 6. Considering Context

Alignment % of Data

#SSUs - #CCs ≥ 3 1.62%

#SSUs - #CCs = 2 6.66%

#SSUs - #CCs = 1 20.00%

#SSUs - #CCs = 0 60.60%

#SSUs - #CCs = -1 10.48%

#SSUs - #CCs = -2 0.61%

#SSUs - #CCs ≤ -3 0.02%

Table 7. Statistics of the Data

156

nus the number of CCs in the name pairs. The

differences between scores in adjacent rows of

each column are statistically significant.
15

 Per-

fectly aligned name pairs proved to be the ea-

siest, with F = 97.55%, but the system was also

very successful on the examples with the number

of SSUs and the number of CCs differing by one

(F = 96.08% and F = 97.37%). These three cases

account for more than 91% of the positive exam-

ples in our data set. (See Table 7.)

4.1 Deletion Hypotheses

We ran tests to determine whether the second

pass through the training data (in which the

SSUD and CCD hypotheses are applied) is effec-

tive. Table 9 shows the results on the complete

set of test data, and all of the differences between

the scores are statistically significant.

The first row of Table 9 presents F when the

system made only one pass through the training

data. The second row‟s experiments utilized the

CCD hypothesis but ignored examples with more

SSUs than CCs during training. For the third

row, we used the SSUD hypothesis, but not the

CCD hypothesis, and the last row corresponds to

system runs that used all of the training exam-

ples. From these results, it is clear that both of

the deletion hypotheses are useful, particularly

the SSUD hypothesis.

4.2 Context

In Section 3.4, we suggested that contextual in-

formation might be useful. So we ran some tests,

obtaining the results shown in Table 10. For the

second row, we used no contextual information.

Row 5 corresponds to the case where we gave

the system access to the SSU immediately fol-

lowing the SSU-CC pair being analyzed. In row

15 We use the homoscedastic t test (“Student‟s t Test”, 2009)

to decide whether the difference between two results is

statistically significant.

6‟s experiment, we used the SSU immediately

preceding the SSU-CC pair under consideration,

and row 7 corresponds to system runs that ac-

counted for both surrounding SSUs.

We also tried simplifying the contextual in-

formation to boolean values that specify whether

an SSU-CC pair is at a boundary of its name or

not, and rows 1, 3, and 4 of Table 10 show those

results. “Left Border” is true if and only if the

SSU-CC pair is at the beginning of its name,

“Right Border” is true if and only if the SSU-CC

pair is at the end of its name, and “Both Borders”

is true if and only if the SSU-CC pair is at the

beginning or end of its name. All differences in

the table are statistically significant, except for

those between rows 2, 3, and 4. These results

suggest that the right border provides no useful

information, even if the left border is also in-

cluded in the SSU-CC matrix. But when the

SSU-CC matrix only accounted for the left bor-

der, the F-score was significantly higher than the

baseline. Providing more specific information in

the form of SSUs actually made the scores go

down significantly.

4.3 Sparse Data

We were initially surprised to discover that using

the rich information in the surrounding SSUs

made the results worse. The explanation for this

is that adding contextual information increases

the size of the SSU-CC matrix, and so several of

the numbers in the matrix become smaller. (For

example, compare the values in the “BER” col-

umns in Table 2 and Table 6.) This means that

the system might have been suffering from a

sparse data problem, which is a situation where

there are not enough training examples to distin-

guish correct answers from incorrect answers,

and so incorrect answers can appear to be correct

by random chance.

There are two factors that can contribute to a

sparse data problem. One is the amount of train-

ing data available ― as the quantity of training

data increases, the sparse data problem becomes

less severe. The other factor is the complexity of

Alignment P R F

#SSUs - #CCs ≥ 3 72.38% 94.02% 81.79%

#SSUs - #CCs = 2 95.26% 92.67% 93.95%

#SSUs - #CCs = 1 99.07% 93.27% 96.08%

#SSUs - #CCs = 0 99.87% 95.33% 97.55%

#SSUs - #CCs = -1 98.33% 96.42% 97.37%

#SSUs - #CCs = -2 73.80% 94.98% 83.04%

#SSUs - #CCs ≤ -3 7.54% 78.04% 13.71%

Table 8. Varying Alignment of Name Pairs

Contextual Information F

1 Left Border 96.48%

2 No Context 96.25%

3 Both Borders 96.24%

4 Right Border 96.19%

5 Next SSU 87.53%

6 Previous SSU 85.89%

7 Previous SSU and Next SSU 47.89%

Table 10. Evaluation with Context

Hypotheses F

PA 75.25%

PA & CCD 83.74%

PA & SSUD 92.86%

PA & CCD & SSUD 96.48%
Table 9. Varying the Training Data

157

the learned model ― as the model becomes more

complex, the sparse data problem worsens.

Our system‟s model is the SSU-CC matrix,

and a reasonable measure of the its complexity is

the number of entries in the matrix. The second

column of Table 11 shows the number of SSU-

CC pairs in training divided by the number of

cells in the SSU-CC matrix. These ratios are

quite low, suggesting that there is a sparse data

problem. Even without using any context, there

are nearly 8 cells for each SSU-CC pair, on aver-

age.
16

It might be more reasonable to ignore cells

with extremely low values, since we can assume

that these values are effectively zero. The third

column of Table 11 only counts cells that have

values above 10
-7

. The numbers in that column

look better, as the ratio of cells to training pairs

is better than 1:4 when no context is used. How-

ever, when using the previous SSU, there are still

more cells than training pairs.

Another standard way to test for sparse data is

to compare the system‟s results as a function of

the quantity of training data. As the amount of

training data increases, we expect the F-score to

rise, until there is so much training data that the

F-score is at its optimal value.
17

 Figure 3 shows

the results of all of the context experiments that

we ran, varying the amount of training data.

(90% of the training data was used to get the F-

scores in Table 10.) The t test tells us that “No

Context” is the only curve that does not increase

significantly on the right end. This suggests that

all of the other curves might continue increasing

if we used more training data. So even the “Both

SSUs” case could potentially achieve a competi-

tive score, given enough training examples. Also,

16 It is true that a name pair can have multiple SSU-CC

pairs, but even if the average number of SSU-CC pairs per

name pair is as high as 8 (and it is not), one training name

pair per SSU-CC matrix cell is still insufficient.

17 Note that this value may not be 100%, because there are

factors that can make perfection difficult to achieve, such

as errors in the data.

more training data could produce higher scores

than 96.48%.

5 Summary

We designed a system that achieved an F-score

of 96.48%, and F = 97.55% on the 60.61% of the

data that satisfies the PA hypothesis‟s condition.

Due to the paper length restriction, we can on-

ly provide short summaries of the other experi-

ments that that we ran.

1) We experimentally compared six different

equations for computing match scores and

found that the best of them is an arithmetic

or geometric average of Prob(SSU|CC) and

Prob(CC|SSU).

2) We attempted to make use of two simple

handcrafted rules, but they caused the sys-

tem‟s performance to drop significantly.

3) We compared two approaches for automati-

cally computing the pronunciation of a Ro-

man name and found that using the Festival

system (Black et al., 1999) alone is just as ef-

fective as using the CMU Pronunciation Dic-

tionary (CMUdict, 1997) supplemented by

Festival.

4) We tried computing the threshold value with

data that was not used in training the system.

However, this failed to improve the system‟s

performance significantly.

6 Future Work

There are so many things that we still want to do,

including:

1. modifying our system for the task of

transliteration (Section 6.1),

2. running fair comparisons between our

work and related research,

3. using Levenshtein‟s algorithm (Levensh-

tein, 1966) to implement the SSUD and

Contextual Info. All Cells Cells > 10
-7

No Context 0.128 4.35

Right Border 0.071 3.45

Left Border 0.069 3.45

Both Borders 0.040 3.13

Next SSU 0.002 1.12

Previous SSU 0.001 0.78

Both SSUs far less far less

Table 11. Num. SSU-CC Pairs per Matrix Cell

Figure 3. Testing for Sparse Data

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90%

F
-S

c
o

re

Training Set Size (% of available data)

Left Border Next SSU
No Context Previous SSU
Right Border Both SSUs
Both Borders

158

CCD hypotheses, instead of exhaustively

evaluating all possible deletion sets (Sec-

tion 3.3),
18

4. developing a standard methodology for

creating negative examples,

5. when using contextual information, split-

ting rows or columns of the SSU-CC

matrix only when they are ambiguous

according to a metric such as Informa-

tion Gain (Section 3.4),
19

6. combining our system with other Ro-

man-Chinese name matching systems in

a voting structure (Van Halteren, Zavrel,

and Daelemans, 1998),

7. independently evaluating the modules

that determine pronunciation, construct

syllables, and separate subsyllable units

(Section 3),

8. converting phonemes into feature vectors

(Aberdeen, 2006),

9. modifying our methodology to apply it

to other similar languages, such as Japa-

nese, Korean, Vietnamese, and Ha-

waiian.

10. manually creating rules based on infor-

mation in the SSU-CC matrix, and

11. utilizing graphemic information.

6.1 Transliteration

We would like to modify our system to enable

it to transliterate a given Roman name into Chi-

nese in the following way. First, the system

computes the SSUs as in Section 3.1. Then it

produces a match score for every possible se-

quence of CCs that has the same length as the

sequence of SSUs, returning all of the CC se-

quences with match scores that satisfy a prede-

termined threshold restriction.

For example, in a preliminary experiment,

given the Roman name Ellen, the matcher pro-

duced the transliterations below, with the match

scores in parentheses.
20

 埃 伦 (0.32)

 埃 兰 (0.14)

 埃 隆 (0.11)

 埃 朗 (0.05)

18 We thank a reviewer for suggesting this method of im-

proving efficiency.

19 We thank a reviewer for this clever way to control the

size of the SSU-CC matrix when context is considered.

20 A manually-set threshold of 0.05 was used in this experi-

ment.

Based on our data, the first and fourth results

are true transliterations of Ellen, and the only

true transliteration that failed to make the list is

埃连.

7 Conclusion

There was a time when computational linguistics

research rarely used machine learning. Research-

ers developed programs and then showed how

they could successfully handle a few examples,

knowing that their programs were unable to ge-

neralize much further. Then the language com-

munity became aware of the advantages of ma-

chine learning, and statistical systems almost

completely took over the field. Researchers

solved all kinds of problems by tapping into the

computer‟s power to process huge corpora of

data. But eventually, the machine learning sys-

tems reached their limits.

We believe that, in the future, the most suc-

cessful systems will be those developed by

people cooperating with machines. Such systems

can solve problems by combining the computer‟s

ability to process massive quantities of data with

the human‟s ability to intuitively come up with

new ideas.

Our system is a success story of human-

computer cooperation. The computer tirelessly

processes hundreds of thousands of training ex-

amples to generate the SSU-CC matrix. But it

cannot work at all without the insights of Wan

and Verspoor. And together, they made a system

that is successful more than 96% of the time.

References

Aberdeen, J. (2006) “geometric-featurechart-jsa-

20060616.xls”. Unpublished.

Andrade, Miguel. Smith, S. Paul. Cowlisha, Mike F.

Gantner, Zeno. O‟Brien, Philip. Farmbrough, Rich.

et al. “F1 Score.” (2009) Wikipedia: The Free En-

cyclopedia. http://en.wikipedia.org/wiki/F-score.

Black, Alan W. Taylor, Paul. Caley, Richard. (1999)

The Festival Speech Synthesis System: System Do-

cumentation. Centre for Speech Technology Re-

search (CSTR). The University of Edinburgh.
http://www.cstr.ed.ac.uk/projects/festival/manual

CMUdict. (1997) The CMU Pronouncing Dictionary.

v0.6. The Carnegie Mellon Speech Group.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

Cohen, W. Ravikumar, P. Fienberg, S. (2003) “A

Comparison of String Distance Metrics for Name-

159

Matching Tasks.” Proceedings of the IJCAI-03

Workshop on Information Integration on the Web.

Eds. Kambhampati, S. Knoblock, C. 73-78.

Condon, Sherri. Aberdeen, John. Albin, Matthew.

Freeman, Andy. Mani, Inderjeet. Rubenstein, Alan.

Sarver, Keri. Sexton, Mike. Yeh, Alex. (2006)

“Multilingual Name Matching Mid-Year Status

Report.”

Condon, S. Freeman, A. Rubenstein, A. Yeh, A.

(2006) “Strategies for Chinese Name Matching.”

Freeman, A. Condon, S. Ackermann, C. (2006)

"Cross Linguistic Name Matching in English and

Arabic: A „One to Many Mapping‟ Extension of

the Levenshtein Edit Distance Algorithm." Pro-

ceedings of NAACL/HLT.

Gao, W. Wong, K. Lam, W. (2004) “Phoneme-Based

Transliteration of Foreign Names for OOV Prob-

lem.” Proceedings of the First International Joint

Conference on Natural Language Processing.

Goto, I. Kato, N. Uratani, N. Ehara, T. (2003) “Trans-

literation Considering Context Information Based

on the Maximum Entropy Method.” Proceedings

of MT-Summit IX.

Huang, Shudong. (2005) “LDC2005T34: Chinese <->

English Named Entity Lists v 1.0.” Linguistics Da-

ta Consortium. Philadelphia, Pennsylvania. ISBN

#1-58563-368-2. http://www.ldc.upenn.edu/Cata

log/CatalogEntry.jsp?catalogId=LDC2005T34.

International Phonetic Association. (1999) Handbook

of the International Phonetic Association : A Guide

to the Use of the International Phonetic Alphabet.

Cambridge University Press, UK. ISBN

0521652367. http://www.cambridge.org/uk/cata

logue/catalogue.asp?isbn=0521652367.

Jung, S. Hong, S. Paek, E. (2000) “An English to Ko-

rean Transliteration Model of Extended Markov

Window.” Proceedings of COLING.

Kang, B.J. Choi, K.S. (2000) “Automatic Translitera-

tion and Back-Transliteration by Decision Tree

Learning.” Proceedings of the 2
nd

 International

Conference on Language Resources and Evalua-

tion.

Klatt, D.H. (1990) “Review of the ARPA Speech Un-

derstanding Project.” Readings in Speech Recogni-

tion. Morgan Kaufmann Publishers Inc. San Fran-

cisco, CA. ISBN 1-55860-124-4. 554-575.

Knight, K. Graehl, J. (1997) “Machine Translitera-

tion.” Proceedings of the Conference of the Asso-

ciation for Computational Linguistics (ACL).

Kondrak, G. (2000) “A New Algorithm for the

Alignment of Phonetic Sequences.” Proceedings of

the First Meeting of the North American Chapter

of the Association for Computational Linguistics

(NAACL). Seattle, Washington. 288-295.

Kondrak, G. Dorr, B. (2004) “Identification of Con-

fusable Drug Names: A New Approach and Evalu-

ation Methodology.” Proceedings of the Twentieth

International Conference on Computational Lin-

guistics (COLING). 952-958.

 Levenshtein, V.I. (1966) “Binary Codes Capable of

Correcting Deletions, Insertions and Reversals.”

Sov. Phys. Dokl. 6. 707-710.

Li, H. Zhang, M. Su, J. (2004) “A Joint Source-

Channel Model for Machine Transliteration.” Pro-

ceedings of ACL 2004.

Mani, Inderjeet. Yeh, Alexander. Condon, Sherri.

(2006) "Machine Learning from String Edit Dis-

tance and Phonological Similarity."

Meng, H. Lo, W. Chen, B. Tang, T. (2001) “Generat-

ing Phonetic Cognates to Handle Named Entities in

English-Chinese Cross-Language Spoken Docu-

ment Retrieval.” Proceedings of ASRU.

Oh, Jong-Hoon. Choi, Key-Sun. (2006) “An Ensem-

ble of Transliteration Models for Information Re-

trieval.” Information Processing & Management.

42(4). 980-1002.

 “Student‟s t Test.” (2009) Wikipedia: The Free En-

cyclopedia. http://en.wikipedia.org/wiki/T_test#

Equal_sample_sizes.2C_equal_variance.

Van Halteren, H., Zavrel, J. Daelemans, W. (1998)

”Improving Data Driven Word-Class Tagging by

System Combination.” Proceedings of the 36th

Annual Meeting of the Association for Computa-

tional Linguistics and the 17th International Con-

ference on Computational Linguistics. Montréal,

Québec, Canada. 491-497.

Virga, P. Khudanpur, S. (2003) “Transliteration of

Proper Names in Cross-Lingual Information Re-

trieval.” Proceedings of the ACL Workshop on

Multi-lingual Named Entity Recognition.

Wan, Stephen. Verspoor, Cornelia Maria. (1998).

"Automatic English-Chinese Name Transliteration

for Development of Multilingual Resources." Pro-

ceedings of the 36th Annual Meeting of the Associ-

ation for Computational Linguistics. Montréal,

Québec, Canada.

Wellner, B. Castano, J. Pustejovsky, J. (2005) “Adap-

tive String Similarity Metrics for Biomedical Ref-

erence Resolution.” Proceedings of the ACL-ISMB

Workshop on Linking Biological Literature, Ontol-

ogies, and Databases: Mining Biological Seman-

tics. 9-16. http://www.cs.brandeis.edu/~wellner/

pubs/Wellner-StringSim-BioLINK.pdf.

Winkler, W. “Methods for Record Linkage and Baye-

sian Networks.” (2002) Proceedings of the Section

on Survey Research Methods, American Statistical

Association. http://www.census.gov/srd/www/

byyear.html.

160

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 161–167,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Analysis and Robust Extraction of Changing Named Entities

Masatoshi Tsuchiya† Shoko Endo‡ Seiichi Nakagawa‡
†Information and Media Center / ‡Department of Information and Computer Sciences,

Toyohashi University of Technology
tsuchiya@imc.tut.ac.jp, {shoko,nakagawa}@slp.ics.tut.ac.jp

Abstract

This paper focuses on the change of named
entities over time and its influence on the
performance of the named entity tagger.
First, we analyze Japanese named enti-
ties which appear in Mainichi Newspaper
articles published in 1995, 1996, 1997,
1998 and 2005. This analysis reveals that
the number of named entity types and
the number of named entity tokens are
almost steady over time and that 70 ∼
80% of named entity types in a certain
year occur in the articles published either
in its succeeding year or in its preceding
year. These facts lead that 20 ∼ 30%
of named entity types are replaced with
new ones every year. The experiment
against these texts shows that our propos-
ing semi-supervised method which com-
bines a small annotated corpus and a large
unannotated corpus for training works ro-
bustly although the traditional supervised
method is fragile against the change of
name entity distribution.

1 Introduction

It is widely agreed that extraction of named entity
(henceforth, denoted as NE) is an important sub-
task for various NLP applications, such as infor-
mation retrieval, machine translation, information
extraction and natural language understanding.
Several conferences like Message Understanding
Conference(Grishman and Sundheim, 1996) and
the IREX workshop (Sekine and Eriguchi, 2000)
were conducted to encourage researchers of NE
extraction and to provide its common evaluation
basis.

In Japanese NE extraction, it is quite common
to apply morphological analysis as preprocessing
stage which segments a sentence into a sequence

of morphemes. After that, either a pattern matcher
based on hand-crafted rules or a statistical chun-
ker is employed to extract NEs from a sequence of
morphemes. Various machine learning approaches
such as maximum entropy(Uchimoto et al., 2000),
decision list(Sassano and Utsuro, 2000; Isozaki,
2001), and Support Vector Machine(Yamada et
al., 2002; Isozaki and Kazawa, 2002) were in-
vestigated for extracting NEs. These researches
show that machine learning approaches are more
promising than approaches based on hand-crafted
rules if a large corpus whose NEs are properly an-
notated is available as training data.

However, it is difficult to obtain an enough cor-
pus in the real world because of the increasing
number of NE types and the increasing time gap
between the training corpus and the test corpus.
There is the increasing number of NE types like
personal names and company names in the real
world. For example, a large database of organi-
zation names(Nichigai Associates, 2007) already
contains 171,708 types and is still increasing. Be-
cause annotation work is quite expensive, the an-
notated corpus may become obsolete in a short
period of time. Both of two factors expands the
difference of NE distribution between the training
corpus and the test corpus, and it may decrease the
performance of the NE tagger as shown in (Mota
and Grishman, 2008). Therefore, a robust method
to extract NEs which do not occur or occur few
times in a training corpus is necessary.

This paper focuses on the change of NEs over
time and its influence on the performance of the
NE tagger. First, we annotate NEs in Mainichi
Newspaper articles published in 1996, 1997, 1998
and 2005, and analyze NEs which appear in
these texts and an existing corpus. It consists of
Mainichi Newspaper articles published in 1995,
thus, we get an annotated corpus that spans 10
years. This analysis reveals that the number of
NE types and the number of NE tokens are almost

161

Table 1: Statistics of NE categories of IREX cor-
pus

NE Categories Frequency (%)
ARTIFACT 747 (4.0)
DATE 3567 (19.1)
LOCATION 5463 (29.2)
MONEY 390 (2.1)
ORGANIZATION 3676 (19.7)
PERCENT 492 (2.6)
PERSON 3840 (20.6)
TIME 502 (2.7)
Total 18677

steady over time and that that 70 ∼ 80% of NE
types in a certain year occur in the articles pub-
lished either in its succeeding year or in its preced-
ing year. These facts lead that 20 ∼ 30% of named
entity types are replaced with new ones every year.
The experiment against these corpora shows that
the traditional supervised method is fragile against
the change of NE types and that our proposing
semi-supervised method which combines a small
annotated corpus and a large unannotated corpus
for training is robust against the change of NE
types.

2 Analysis of Changing Named Entities

2.1 Task of the IREX Workshop

The task of NE extraction of the IREX work-
shop (Sekine and Eriguchi, 2000) is to recognize
eight NE categories in Table 1. The organizer
of the IREX workshop provided a training corpus
(henceforth, denoted as IREX corpus), which con-
sists of 1,174 Mainichi Newspaper articles pub-
lished from January 1st 1995 to 10th which in-
clude 18,677 NEs. In the Japanese language, no
other corpora whose NEs are annotated are pub-
licly available as far as we know.1 Thus, IREX
corpus is referred as a golden sample of NE distri-
bution in this paper.

2.2 Data Description

The most homogeneous texts which are written in
different days are desirable, to explore the influ-
ence of the text time frame on NE distribution. Be-
cause IREX corpus is referred as a golden sample

1The organizer of the IREX workshop also provides the
testing data to its participants, however, we cannot see it be-
cause we did not join it.

Figure 1: Distribution of NE categories

Figure 2: Overlap ratio of NEs over years

in this paper, Mainichi Newspaper articles writ-
ten in different years than IREX corpus is suit-
able. Thus, ordinal days of June and October in
1996, 1997, 1998 and 2005 are randomly selected
as sampling days.

Because annotating work is too expensive for
us to annotate all articles published in sampling
days, thirty percent of them are only annotated.
Each article of Mainichi Newspaper belongs into
16 categories like front page articles, international
stories, economical stories, political stories, edito-
rial columns, and human interest stories. Because
these categories may influence to NE distribution,
it is important to keep the proportion of categories
in the sampled texts to the proportion in the whole
newspaper, in order to investigate NE distribution
over the whole newspaper. Therefore, thirty per-
cent articles of each category published at sam-
pling days are randomly selected and annotated in
accordance with the IREX regulation.

2.3 Analysis of Annotated Samples

Table 2 shows the statistics of our annotated cor-
pus. The leftmost column of Table 2 (whose pub-

162

Table 2: Statistics of sampling texts

Published date 1995 1996 1997 1998 2005
Jan. 1∼10 Jun. 5 Oct. 15 Jun. 10 Oct. 7 Jun. 8 Oct. 21 Jun. 23 Oct. 12

of articles 1174 120 133 106 117 96 126 90 99
of characters 407881 60790 53625 46653 50362 51006 67744 49038 44344
of NE types 6979 1446 1656 1276 1350 1190 1226 1230 1113
of NE tokens 18677 2519 2652 2145 2403 2126 2052 1902 2007
of NE types / # of characters 0.0171 0.0238 0.0309 0.0274 0.0268 0.0233 0.0181 0.0251 0.0251
of NE tokens / # of characters 0.0458 0.0414 0.0495 0.0460 0.0477 0.0417 0.0303 0.0388 0.0453

Table 3: Overlap of NE types between texts published in different years

Published date of Published year of unannotated corpus U
annotated corpus A 1993 1994 1995 1996 1997 1998 1999

Jan. 1∼10 (1995) 73.2% 78.6% — 74.4% 65.0% 64.4% 63.3%
Jun. 6, Oct. 15 (1996) 67.2% 71.7% 72.2% — 77.3% 76.0% 75.1%
Jun. 6, Oct. 7 (1997) 71.2% 73.4% 74.4% 78.6% — 80.8% 78.6%
Jun. 8, Oct. 21 (1998) 72.5% 74.6% 76.2% 79.7% 82.7% — 84.0%
Jun. 23, Oct. 12 (2005) 62.3% 64.1% 66.8% 68.7% 71.2% 72.9% 73.8%

lish date is January 1st to 10th in 1995) is corre-
sponding to IREX corpus, and other columns are
corresponding to articles annotated by ourselves.
Table 2 illustrates that the normalized number of
NE types and the normalized number of NE tokens
are almost steady over time. Figure 1 shows the
distributions of NE categories for sampling texts
and that there is no significant difference between
them.

We also investigate the relation of the time gap
between texts and NE types which appear in these
texts. The overlap ratio of NE types between the
annotated corpus A published in the year YA and
the annotated corpus B published in the year YB

was defined in (Mota and Grishman, 2008) as fol-
lows

type overlap(A,B) =
|TA ∩ TB|

|TA|+ |TB| − |TA ∩ TB|
,

where TA and TB are lists of NE types which ap-
pear in A and B respectively. However, it is im-
possible to compute reliable type overlap in our
research because enough annotated texts are un-
available. As an alternative of type overlap, the
overlap ratio of NE types between the annotated
corpus A and the unannotated corpus U published
in the year YU is defined as follows

string overlap(A,U) =
∑

s∈TA
δ(s, U)

|TA|
,

where δ(s, U) is the binary function to indicate
whether the string s occurs in the string U or not.

Table 3 shows string ratio values of annotated
texts. It shows that 70 ∼ 80% of TA appear in the
preceding year of YA, and that 70 ∼ 80% of TA

appear in the succeeding year of YA.
Figure 2 shows the relation between the time

gap YU − YA and string ratio(A,U). Sup-
pose that all NEs are independent and equiv-
alent on their occurrence probability and that
string ratio(A,U) is equal to 0.8 when the time
gap YU − YA is equal to one. When the time gap
YU ′ − YA is equal to two years, although this as-
sumption leads that string ratio(A,U ′) will be
equal to 0.64, string ratio(A,U ′) in Figure 2 is
greater than 0.7. This suggests that NEs are not
equivalent on their occurrence probability. And
more, Table 4 shows that the longer time span
of the annotated text increases the number of NE
types. These facts lead that some NEs are short-
lived and superseded by other new NEs.

3 Robust Extraction of Changing Named
Entities

It is infeasible to prepare a large annotated cor-
pus which covers all increasing NEs. A semi-
supervised learning approach which combines a
small annotated corpus and a large unannotated
corpus for training is promising to cope this prob-
lem. (Miller et al., 2004) proposed the method
using classes which are assigned to words based
on the class language model built from a large
unannotated corpus. (Ando and Zhang, 2005) pro-

163

Table 4: Number of NE types and Time Span of Annotated Text

1995 1995∼1996 1995∼1997 1995∼1998 1995∼2005
ARTIFACT 541 (1.00) 743 (1.37) 862 (1.59) 1025 (1.89) 1169 (2.16)
DATE 950 (1.00) 1147 (1.21) 1326 (1.40) 1461 (1.54) 1583 (1.67)
LOCATION 1403 (1.00) 1914 (1.36) 2214 (1.58) 2495 (1.78) 2692 (1.92)
MONEY 301 (1.00) 492 (1.63) 570 (1.89) 656 (2.18) 749 (2.49)
ORGANIZATION 1487 (1.00) 1890 (1.27) 2280 (1.53) 2566 (1.73) 2893 (1.95)
PERCENT 249 (1.00) 319 (1.28) 353 (1.42) 401 (1.61) 443 (1.78)
PERSON 1842 (1.00) 2540 (1.38) 3175 (1.72) 3683 (2.00) 4243 (2.30)
TIME 206 (1.00) 257 (1.25) 291 (1.41) 314 (1.52) 332 (1.61)

Total 6979 (1.00) 9302 (1.33) 11071 (1.59) 12601 (1.81) 14104 (2.02)
(Values in brackets are rates of increase comparing to 1995.)

Morpheme Feature Similar Morpheme Feature Character
(English POS (English POS Type Chunk Label
translation) translation) Feature

今日 (kyou) (today) Noun–Adverbial 今日 (kyou) (today) Noun–Adverbial 〈1, 0, 0, 0, 0, 0〉 O
の (no) gen Particle の (no) gen Particle 〈0, 1, 0, 0, 0, 0〉 O
石狩 (Ishikari) (Ishikari) Noun–Proper 関東 (Kantou) (Kantou) Noun–Proper 〈1, 0, 0, 0, 0, 0〉 B-LOCATION
平野 (heiya) (plain) Noun–Generic 平野 (heiya) (plain) Noun–Generic 〈1, 0, 0, 0, 0, 0〉 I-LOCATION
の (no) gen Particle の (no) gen Particle 〈0, 1, 0, 0, 0, 0〉 O
天気 (tenki) (weather) Noun–Generic 天気 (tenki) (weather) Noun–Generic 〈1, 0, 0, 0, 0, 0〉 O
は (ha) top Particle は (ha) top Particle 〈0, 1, 0, 0, 0, 0〉 O
晴れ (hare) (fine) Noun–Generic 晴れ (hare) (fine) Noun–Generic 〈1, 1, 0, 0, 0, 0〉 O

Figure 3: Example of Training Instance for Proposed Method

posed the method using thousands of automati-
cally generated auxiliary classification problems
on an unannotated corpus. (?) proposed the semi-
supervised discriminative model whose potential
function can treat both an annotated corpus and an
unannotated corpus.

In this paper, the method proposed by (Tsuchiya
et al., 2008) is employed, because its implementa-
tion is quite easy. It consists of two steps. The
first step is to assign the most similar and famil-
iar morpheme to each unfamiliar morpheme based
on their context vectors calculated from a large
unannotated corpus. The second step is to employ
Conditional Random Fields(CRF)2(Lafferty et al.,
2001) using both features of original morphemes
and features of similar morphemes.

This section gives the detail of this method.

3.1 Chunking of Named Entities

It is quite common that the task of extracting
Japanese NEs from a sentence is formalized as
a chunking problem against a sequence of mor-
phemes. For representing proper chunks, we em-
ploy IOB2 representation, one of representations
which have been studied well in various chunking

2http://chasen.org/˜taku/software/CRF+
+/

tasks of NLP (Tjong Kim Sang, 1999). This rep-
resentation uses the following three labels.

B Current token is the beginning of a chunk.
I Current token is a middle or the end of a

chunk consisting of more than one token.
O Current token is outside of any chunk.

Actually, we prepare the 16 derived labels from
the label B and the label I for eight NE categories,
in order to distinguish them.

When the task of extracting Japanese NEs from
a sentence is formalized as a chunking problem
of a sequence of morphemes, the segmentation
boundary problem arises as widely known. For
example, the NE definition of IREX tells that a
Chinese character “米 (bei)” must be extracted as
an NE means America from a morpheme “訪米
(hou-bei)” which means visiting America. A naive
chunker using a morpheme as a chunking unit can-
not extract such a kind of NEs. In order to cope
this problem, (Uchimoto et al., 2000) proposed
employing translation rules to modify problematic
morphemes, and (Asahara and Matsumoto, 2003;
Nakano and Hirai, 2004) formalized the task of ex-
tracting NEs as a chunking problem of a sequence
of characters instead of a sequence of morphemes.
In this paper, we keep the naive formalization, be-
cause it is still enough to analyze the influence of

164

the text time frame.

3.2 Assignment of Similar Morpheme

A context vector Vm of a morpheme m is a vector
consisting of frequencies of all possible unigrams
and bigrams,

Vm =

f(m, m0), · · · f(m,mN),
f(m, m0,m0), · · · f(m,mN ,mN),
f(m0, m), · · · f(mN ,m),
f(m0, m0,m), · · · f(mN , mN ,m)

 ,

where M ≡ {m0,m1, . . . ,mN} is a set of all
morphemes of the unannotated corpus, f(mi,mj)
is a frequency that a sequence of a morpheme mi

and a morpheme mj occurs in the unannotated
corpus, and f(mi,mj ,mk) is a frequency that a
sequence of morphemes mi,mj and mk occurs in
the unannotated corpus.

Suppose an unfamiliar morpheme mu ∈ M ∩
MF , where MF is a set of familiar morphemes
that occur frequently in the annotated corpus. The
most similar morpheme m̂u to the morpheme mu

measured with their context vectors is given by the
following equation,

m̂u = argmax
m∈MF

sim(Vmu , Vm), (1)

where sim(Vi, Vj) is a similarity function between
context vectors. In this paper, the cosine function
is employed as it.

3.3 Features

The feature set Fi at i-th position is defined as
a tuple of the morpheme feature MF (mi) of the
i-th morpheme mi, the similar morpheme feature
SF (mi), and the character type feature CF (mi).

Fi = 〈 MF (mi), SF (mi), CF (mi) 〉

The morpheme feature MF (mi) is a pair of the
surface string and the part-of-speech of mi. The
similar morpheme feature SF (mi) is defined as

SF (mi) =

{
MF (m̂i) if mi ∈ M ∩MF

MF (mi) otherwise
,

where m̂i is the most similar and familiar mor-
pheme to mi given by Eqn. 1. The character type
feature CF (mi) is a set of six binary flags to in-
dicate that the surface string of mi contains a Chi-
nese character, a hiragana character, a katakana

−→ Chunking Direction −→
Feature set Fi−2 Fi−1 Fi Fi+1 Fi+2

Chunk label ci−2 ci−1 ci

Figure 4: Chunking Direction

character, an English alphabet, a number and an
other character respectively.

When we identify the chunk label ci for the i-
th morpheme mi, the surrounding five feature sets
Fi−2, Fi−1, Fi, Fi+1, Fi+2 and the preceding two
chunk labels ci−2, ci−1 are referred as shown in
Figure 4.

Figure 3 shows an example of training instance
of the proposed method for the sentence “今日
(kyou)の (no)石狩 (Ishikari)平野 (heiya)の (no)
天気 (tenki)は (ha)晴れ (hare)” which means “It
is fine at Ishikari-plain, today”. “関東 (Kantou)”
is assigned as the most similar and familiar mor-
pheme to “石狩 (Ishikari)” which is unfamiliar in
the training corpus.

3.4 Experimental Result
Figure 5 compares performances of the proposed
method and the baseline method over the test texts
which were published in 1996, 1997, 1998 and
2005. The proposed method combines a small an-
notated corpus and a large unannotated corpus as
already described. This experiment refers IREX
corpus as a small annotated corpus, and refers
Mainichi Newspaper articles published from 1993
to the preceding year of the test text published
year as a large unannotated corpus. For example,
when the test text was published in 1998, Mainichi
Newspaper articles published from 1993 to 1997
are used. The baseline method is trained from
IREX corpus with CRF. But, it uses only MF and
CF as features, and does not use SF . Figure 5 il-
lustrates two points: (1) the proposed method out-
performs the baseline method consistently, (2) the
baseline method is fragile to changing of test texts.

Figure 6 shows the relation between the per-
formance of the proposed method and the size of
unannotated corpus against the test corpus pub-
lished in 2005. It reveals that that increasing unan-
notated corpus size improves the performance of
the proposed method.

4 Conclusion

In this paper, we explored the change of NE dis-
tribution over time and its influence on the per-

165

Figure 5: Comparison between proposed method
and baseline method

Figure 6: Relation of performance and unanno-
tated corpus size

formance of the NE tagger. First, we annotated
Mainichi Newspaper articles published in 1996,
1997, 1998 and 2005, and analyzed NEs which
appear in these texts and IREX corpus which con-
sists of Mainichi Newspaper articles published in
1995. This analysis illustrated that the number of
NE types and the number of NE tokens are al-
most steady over time, and that 70 ∼ 80% of NE
types seen in a certain year occur in the texts pub-
lished either in its succeeding year or in its pre-
ceding year. The experiment against these texts
showed that our proposing semi-supervised NE
tagger works robustly although the traditional su-
pervised NE tagger is fragile against the change of
NE types. Based on the results described in this
paper, we will investigate the relation between the
performance of NE tagger and the similarity of its
training corpus and its test corpus.

References
Rie Kubota Ando and Tong Zhang. 2005. A high-

performance semi-supervised learning method for
text chunking. In Proc. of ACL ’05, pages 1–9, June.

Masayuki Asahara and Yuji Matsumoto. 2003.
Japanese named entity extraction with redundant
morphological analysis. In Proc. of HLT–NAACL
’03, pages 8–15.

Ralph Grishman and Beth Sundheim. 1996. Mes-
sage understanding conference-6: a brief history. In
Proc. of the 16th COLING, pages 466–471.

Hideki Isozaki and Hideto Kazawa. 2002. Efficient
support vector classifiers for named entity recogni-
tion. In Proc. of the 19th COLING, pages 1–7.

Hideki Isozaki. 2001. Japanese named entity recogni-
tion based on a simple rule generator and decision
tree learning. In Proc. of ACL ’01, pages 314–321.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data. In Proceedings of ICML, pages 282–
289.

Scott Miller, Jethran Guinness, and Alex Zamanian.
2004. Name tagging with word clusters and dis-
criminative training. In Proc. of HLT-NAACL 2004,
pages 337–342, May.

Cristina Mota and Ralph Grishman. 2008. Is this NE
tagger getting old? In Proceedings of the Sixth
International Language Resources and Evaluation
(LREC’08), May.

Keigo Nakano and Yuzo Hirai. 2004. Japanese named
entity extraction with bunsetsu features. Transac-
tions of Information Processing Society of Japan,
45(3):934–941, Mar. (in Japanese).

Nichigai Associates, editor. 2007. DCS Kikan-mei
Jisho. Nichigai Associates. (in Japanese).

Manabu Sassano and Takehito Utsuro. 2000. Named
entity chunking techniques in supervised learning
for japanese named entity recognition. In Proc. of
the 18th COLING, pages 705–711.

Satoshi Sekine and Yoshio Eriguchi. 2000. Japanese
named entity extraction evaluation: analysis of re-
sults. In Proc. of the 18th COLING, pages 1106–
1110.

E. Tjong Kim Sang. 1999. Representing text chunks.
In Proc. of the 9th EACL, pages 173–179.

Masatoshi Tsuchiya, Shinya Hida, and Seiichi Naka-
gawa. 2008. Robust extraction of named entity in-
cluding unfamiliar word. In Proceedings of ACL-
08: HLT, Short Papers, pages 125–128, Columbus,
Ohio, June. Association for Computational Linguis-
tics.

166

Kiyotaka Uchimoto, Ma Qing, Masaki Murata, Hiromi
Ozaku, Masao Utiyama, and Hitoshi Isahara. 2000.
Named entity extraction based on a maximum en-
tropy model and transformation rules. Journal of
Natural Language Processing, 7(2):63–90, Apr. (in
Japanese).

Hiroyasu Yamada, Taku Kudo, and Yuji Matsumoto.
2002. Japanese named entity extraction using sup-
port vector machine. Transactions of Information
Processing Society of Japan, 43(1):44–53, Jan. (in
Japanese).

167

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 168–176,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

 Tag Confidence Measure for Semi-Automatically Updating

Named Entity Recognition

Kuniko Saito and Kenji Imamura
NTT Cyber Space Laboratories, NTT Corporation

1-1 Hikarinooka, Yokosuka-shi, Kanagawa, 239-0847, Japan
{saito.kuniko, imamura.kenji}@lab.ntt.co.jp

Abstract

We present two techniques to reduce ma-
chine learning cost, i.e., cost of manually
annotating unlabeled data, for adapting
existing CRF-based named entity recog-
nition (NER) systems to new texts or
domains. We introduce the tag posterior
probability as the tag confidence measure
of an individual NE tag determined by
the base model. Dubious tags are auto-
matically detected as recognition errors,
and regarded as targets of manual correc-
tion. Compared to entire sentence poste-
rior probability, tag posterior probability
has the advantage of minimizing system
cost by focusing on those parts of the
sentence that require manual correction.
Using the tag confidence measure, the
first technique, known as active learning,
asks the editor to assign correct NE tags
only to those parts that the base model
could not assign tags confidently. Active
learning reduces the learning cost by
66%, compared to the conventional
method. As the second technique, we
propose bootstrapping NER, which semi-
automatically corrects dubious tags and
updates its model.

1 Introduction

Machine learning, especially supervised learning,
has achieved great success in many natural lan-
guage tasks, such as part-of-speech (POS) tag-
ging, named entity recognition (NER), and pars-
ing. This approach automatically encodes lin-
guistic knowledge as statistical parameters
(models) from large annotated corpora. In the
NER task, which is the focus of this paper, se-
quential tagging1 based on statistical models is

1Tags are assigned to each input unit (e.g., word) one by one.

similarly used; studies include Conditional Ran-
dom Fields (CRFs; Lafferty et al., 2001, Suzuki
et al., 2006). However, the manual costs incurred
in creating annotated corpora are extremely high.

On the other hand, Consumer Generated Me-
dia (CGM) such as blog texts has attracted a lot
of attention recently as an informative resource
for information retrieval and information extrac-
tion tasks. CGM has two distinctive features;
enormous quantities of new texts are generated
day after day, and new vocabularies and topics
come and go rapidly. The most effective ap-
proach to keep up with new linguistic phenom-
ena is creating new annotated corpora for model
re-training at short intervals. However, it is diffi-
cult to build new corpora expeditiously because
of the high manual costs imposed by traditional
schemes.
 To reduce the manual labor and costs, vari-
ous learning methods, such as active learning
(Shen et al., 2004, Laws and Schütze, 2008),
semi-supervised learning (Suzuki and Isozaki,
2008) and bootstrapping (Etzioni, 2005) have
been proposed. Active learning automatically
selects effective texts to be annotated from huge
raw-text corpora. The correct answers are then
manually annotated, and the model is re-trained.
In active learning, one major issue is data selec-
tion, namely, determining which sample data is
most effective. The data units used in conven-
tional methods are sentences.
 Automatically creating annotated corpora
would dramatically decrease the manual costs. In
fact, there always are some recognition errors in
any automatically annotated corpus and the edi-
tor has to correct errors one by one. Since sen-
tences are used as data units, the editor has to pay
attention to all tags in the selected sentence be-
cause it is not obvious where the recognition er-
ror is. However, it is a waste of manual effort to

168

annotate all tags because most tags must be la-
beled correctly by the base model2.

In this paper, we propose a confidence meas-
ure based on tag posterior probability for the
NER task. Our method does not use the confi-
dence of a sentence, but instead computes the
confidence of the tag assigned to each word. The
tag confidence measure allows the sentence to
which the base model might assign an incorrect
tag to be selected automatically. Active learning
becomes more efficient because we correct only
those tags that have low confidence (cf. Sec. 4).

We can realize the same effect as active
learning if we can automatically correct the se-
lected data based upon our tag confidence meas-
ure. Our proposal "Semi-Automatically Updating
NER" automatically corrects erroneous data by
using a seed NE list generated from other infor-
mation sources. Semi-Automatically Updating
NER easily keeps up with new words because it
enables us to update the model simply by provid-
ing a new NE list (cf. Sec. 5).

2 Named Entity Recognition Task

The NER task is to recognize entity names such
as organizations and people. In this paper, we use
17 NE tags based on the IOB2 scheme (Sang and
De Meulder, 1999) combined with eight
Japanese NE types defined in the IREX
workshop (IREX 1999) as shown in Table 1.

For example, “ 東京 (Tokyo)/ 都 (City)/ に
(in)” is labeled like this:

“東京/B-<LOC> 都/I-<LOC> に/O”.
This task is regarded as the sequential tagging
problem, i.e., assigning NE tag sequences

nttT L1= to word sequences nwwW L1= .
Recently, discriminative models such as
Conditional Random Fields (CRFs) have been
successfully applied to this task (Lafferty et al.,
2001). In this paper, we use linear-chain CRFs
based on the Minimum Classification Error
framework (Suzuki et al., 2006). The posterior
probability of a tag sequence is calculated as
follows:

))},,(

),((exp{
)(

1)|(

1

1

iibbb

iiaaa

n

i

ttf

wtf
WZ

WTP

−

=

⋅Σ+

⋅Σ= Σ
λ

λ
 (1)

where iw and it are the i-th word and its
corresponding NE tag, respectively.),(iia wtf

2 A base model is the initial model trained with the initial
annotated corpora.

and),(1 iib ttf − is a feature function 3 . aλ and
bλ is a parameter to be estimated from the

training data. Z(W) is a normalization factor
over all candidate paths expressed as follows:

))}.,(

),((exp{)(

1

1

iibbb

iiaaa

n

iT

ttf

wtfWZ

−

=

⋅Σ+

⋅Σ= ΣΣ
λ

λ
(2)

The best tag sequence that maximizes Formula
(1) is located using the Viterbi algorithm.

Table 1. NE Types and Tags.
NE Types NE Tags

PERSON B-<PSN> I-<PSN>
LOCATION B-<LOC> I-<LOC>
ORGANIZATION B-<ORG> I-<ORG>
ARTIFACT B-<ART> I-<ART>
DATE B-<DAT> I-<DAT>
TIME B-<TIM> I-<TIM>
MONEY B-<MNY> I-<MNY>
PERCENT B-<PCT> I-<PCT>
outside an NE O

3 Error Detection with Tag Confidence
Measure

3.1 Tag Posterior Probability

It is quite natural to consider sentence posterior
probability as a confidence measure of the esti-
mated tag sequences. We focus on tag posterior
probability, and regard it as the confidence
measure of the decoded tag itself. Our method
tries to detect the recognition error of each tag by
referring to the tag confidence measure.

Figure 1 overviews the calculation of tag
confidence measure. The confidence score of tag

ji,t , which is a candidate tag for word iw , is
calculated as follows:

 ,W)|T,P(t=W)|P(t
T

ji,ji, ∑ (3)

where ∑T ji, W)|T,P(t is the summation of all NE

tag sequences that pass through ji,t . This prob-
ability is generally called the marginal probabil-
ity. k,=j L1, represents the number of NE
tags shown in Table 1(i.e., k=17 in this paper).

The tag confidence score of ji,t can be cal-
culated efficiently using forward and backward

3 We used n-grams (n=1, 2, 3) of surface forms and parts-
of-speech within a five word window and 2-gram combina-
tions of NE tags as the feature set.

169

Figure 1. Overview of the tag confidence measure calculation.

The W ord Sequence

The Tag C andidates

1w 12 −iww K iw ni ww K1+

< s> 1,1t 1,11,2 −itt K 1,it 1,1,1 ni tt K+ < /s>

jt ,1 jnji tt ,,1 K+

M M M M M M

jij tt ,1,2 −K

MM

kt ,1 kit , knki tt ,,1 K+kik tt ,1,2 −K

jit ,

ji ,α ji ,β

The W ord Sequence

The Tag C andidates

1w 12 −iww K iw ni ww K1+

< s> 1,1t 1,11,2 −itt K 1,it 1,1,1 ni tt K+ < /s>

jt ,1 jnji tt ,,1 K+

M M M M M M

jij tt ,1,2 −K

MM

kt ,1 kit , knki tt ,,1 K+kik tt ,1,2 −K

jit ,

ji ,α ji ,β

algorithms as follows (Manning and Schütze,
1999):

,βα
Z(W)

=W)|P(t ji,ji,ji, ⋅
1

 (4)

where

)}},,(

),(exp{{

1

,1,

iibbb

iiaaa
k

kiji

ttf

wtf

−

−

⋅Σ+

⋅Σ⋅=∑
λ

λαα
 (5)

)}},,(

),(exp{{

1

11,1,

+

+++

⋅Σ+

⋅Σ⋅=∑
iibbb

iiaaa
k

kiji

ttf

wtf

λ

λββ
 (6)

1,0, =α j (7)
1.1, =β j+n (8)

In this manner, the confidence scores of all
tags of each word in a given sentence are calcu-
lated. The rejecter then refers to the highest tag
confidence score in judging whether the decoded
NE tag is correct or incorrect.

3.2 Rejecter

The rejecter tries to detect dubious tags in the
NER result derived by the method described in
Section 2. For each word, the rejecter refers to
the decoded tag td, which maximizes Formula (1),
and the most confident tag t1, in terms of the pos-
terior probability as defined in Formula (4). The
judgment procedure is as follows:

[1] If td is NOT identical to t1, then td is deter-

mined to be dubious, and so is rejected as an
incorrect tag.4

[2] Else, if the confidence score of t1, called cs1,
is below the predefined threshold, td is de-
termined to be dubious, and so is rejected as
an incorrect tag.

[3] Otherwise, td is accepted as a correct tag.

4 The decoded tag td rarely disagrees with the most confi-
dent tag t1 due to a characteristic of the CRFs.

Increasing the threshold also increases the
number of rejected tags and manual annotation
cost. In practice, the threshold should be empiri-
cally set to achieve the lowest judgment error
rate using development data. There are two types
of judgment errors: false acceptance and false
rejection. False rejection is to reject a correct tag,
and false acceptance is to accept an incorrect tag
in error. The judgment error rate is taken as the
ratio of these two types of errors in all instances.

4 Active Learning

Tag-wise recognition error detection is also help-
ful for data selection in active learning. If a sen-
tence contains several rejected tags, it contains
some new information which the base model
does not have. In other words, this sentence is
worth learning. Our approach, then, is to base
data selection (sentence selection) on the pres-
ence of rejected tags. However, it is not neces-
sary to check and correct all tags in each selected
sentence. We only have to check and correct the
rejected tags to acquire the annotated sentences.

Figure 2 shows our active learning scheme.

Model
Re-training

Selected Data

Base Data
(Labeled)

Additional Data
(Unlabeled)

Base
Model

Recognition Error Detector

Morphological
Analyzer

NER Decoder

Calculation of the
Tag Confidence Measure

Data Selection

Manually
Corrected Data

Updated
Model

Model Learning

Correct the Rejected
Tags by Hand

Rejecter

Model
Re-training

Selected Data

Base Data
(Labeled)

Additional Data
(Unlabeled)

Base
Model

Recognition Error Detector

Morphological
Analyzer

NER Decoder

Calculation of the
Tag Confidence Measure

Data Selection

Manually
Corrected Data

Updated
Model

Model Learning

Correct the Rejected
Tags by Hand

Rejecter

Figure 2. Active Learning Scheme

170

Figure 3. Learning Curves.

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0 0.2 0.4 0.6 0.8 1

Word Check Rate

F
-
m

e
as

u
re

Tag Base(proposed)

Sentence Base

First, the NER decoder assigns an NE tag to each
word5 of the additional data using the base model
trained with the base data. The recognition error
detector then determines whether each tag can be
confidently accepted as described in Section 3. In
this step, the confidence score is calculated using
the same base model used for NER decoding.
Next, the sentences with at least one rejected tag
are selected. Only the rejected tags are manually
checked and corrected. Finally, the model is re-
trained and updated with the merged data con-
sisting of the manually corrected data and the
base data.

4.1 Experiments

We evaluated the efficiency of our active learn-
ing method from the perspective of learning cost.
A blog corpus consisting of 45,694 sentences in
blog articles on the WWW was prepared for the
experiments. This corpus was divided into four
segments as shown in Table 2. All sentences
were manually annotated including additional
data. For additional data, these tags were initially
hidden and used only for simulating manual cor-
rection as shown below. Development data was
used for optimizing the threshold by measuring
the rejecter’s judgment error rate as described in
Subsection 3.2.

Table 2. Data Used for Active Learning.

Base Data 11,553 sentences, 162,227 words
Development Data 1,000 sentences, 19,710 words
Additional Data 32,163 sentences, 584,077 words
Test Data 978 sentences, 17,762 words

We estimated the learning cost from the rate

of hand-labeled tags. The Word Check Rate
(WCR) represents the ratio of the number of the
words in the additional data that need to be
manually checked and annotated, to the total
number of words in the additional data, and is
expressed as follows:

WCR= Checked Tags / Total Words.

The system obtained various sizes of selected

data as the rejecter changed its threshold from
0.1 to 1.0 for data selection. Only the rejected
tags in the selected data were replaced with the
tags originally assigned by hand (i.e., correct
tags). This procedure simulates manual correc-
tion. The manually corrected data was merged
with the base data to update the base model.

5 The morphological analyzer segments an input sen-
tence into a word sequence and assigns parts-of-
speech to each word.

We compared our method with data selection
based on the sentence confidence measure.
Posterior probabilities of sentences were used as
the confidence measure, and low-confidence
scoring sentences were selected. In contrast to
our active learning method, all tags in the se-
lected sentences were replaced with the correct
tags in this case.

We evaluated the effectiveness of the up-
dated models against the test data by F-measure
as follows:

.2
precision+recall

precisionrecall=F ××
 (9)

4.2 Results and Discussions

4.2.1 Learning Curves and Accuracies

Figure 3 shows learning curves of two active
learning methods; one is based on our tag confi-
dence measure (Tag Based selection), and the
other is based on the sentence confidence meas-
ure (Sentence Based selection). In order to reach
the F-measure of approximately 0.76, Sentence
Based selection requires approximately 60% of
the entire data set to be checked by hand. In con-
trast, Tag Based selection requires only 20% or
thereabouts. In other words, our Tag Based selec-
tion technique basically matches the performance
of Sentence Based selection with only 1/3 of the
learning cost.

4.2.2 Types of Tag Replacement

We further investigated the effects of tag-based
judgment from the results of an experiment on
our Tag Based selection. We categorized tag re-
placements of the rejected tags into the following
four types:

• No Change: the rejected tag is replaced

with the same tag.
• O-to-BI: the rejected tag is an O-tag. It is

replaced with a B-tag or an I-tag.

171

• BI-to-O: the rejected tag is a B-tag or an I-
tag. It is replaced with an O-tag.

• BI-to-BI: the rejected tag is a B-tag or an I-
tag. It is replaced with another B-tag or I-tag.

Table 3 shows the distribution of these four

categories in the selected data for the threshold
of 0.5. This threshold achieves the lowest judg-
ment error rate given the development set.

The rate of No Change replacement type is
the highest. This means that the rejecter rejected
too many tags, which actually did not need to be
checked by hand. Although this result does not
have a negative influence on the accuracy of the
updated model, it is not preferable from the
learning cost perspective. Further consideration
should be given in order to improve the rejecter's
judgment.

O-to-BI type accounts for the 2nd highest per-
centage of all replacements: it is almost one third
of all changes. Excluding No Change type (i.e.,
among O-to-BI, BI-to-O and BI-to-BI types), O-
to-BI type makes up nearly 60% of these three
replacement types. This result shows that there
were many new NEs not recognized by the base
model in the selected data.

Table 3. The Distribution of Replacement Types.

Replacement Type Frequency %
No Change 13,253 43.6
O-to-BI 10,042 33.0
BI-to-O 2,419 8.0
BI-to-BI 4,688 15.4
Total 30,402 100.0

5 Bootstrapping for NER

As mentioned in Section 4, we have to correct an
O-tag to a B-tag or an I-tag in many cases, al-
most 60% of all actual corrections. This situation
arises from a characteristic of the NER task. In
the NER task, most NE tags in the entire corpus
are O-tags. In fact, we found that 91 % of all tags
were O-tags in the additional data discussed in
Section 4. Thus, when a new NE appears in a
sentence, this new NE is often mistakenly given
an O-tag by the base model.

The fact that only O-tags are dominant im-
plies that we have a chance to find a correct B-
tag or I-tag when we look up the 2nd candidate.
This is because one of these top two candidates
is inevitably a B-tag or an I-tag. Thus, it is valu-
able to consider what the NEXT preferable tag is
when the most preferable tag is rejected.

We examined in detail the accuracy of the tag
candidates when the threshold is 0.5 as summa-
rized in Table 4. When the top tag (i.e., the tag
with the highest tag confidence score) is accepted,
its accuracy is 94 %, obviously high. On the
other hand, the top tag’s accuracy is only 43 %
when it is rejected. However, focusing both on
the top tag and on the 2nd tag provides an oppor-
tunity to correct the rejected tag in this case. If
we consider these top two tags together when the
1st tag is rejected, the possibility of finding the
correct tag is 72 %, relatively high. This suggests
that the system is capable of correcting the re-
jected tag automatically by using the top two tag
candidates. On this background, automatic cor-
rection is attempted for re-training the model
through the use of a bootstrapping scheme.

Table 4. Accuracy of the Tags.
Rejecter’s Judgment of the Top Tag

ACCEPT REJECT
Top Tag Top Tag 2nd Tag

94 % 43 % 29 %

Figure 4 shows an example of the top two tag
candidates and their tag confidence scores when
the top tag’s confidence score is lower than the
threshold (=0.5). We call this lattice the “tag
graph” in this paper. The system failed to recog-
nize the movie title “3丁目の夕日” (“Sancho-
me no Yuuhi”, which means “Sunset on Third
Street”) as ARTIFACT only with the top tag
candidates. However, it may find a correct tag
sequence using the top two tag candidates
(shaded cells in Figure 4). Once the system iden-
tifies the correct tag sequence automatically in
the tag graph, the sequence is used as a manually
annotated sequence. We introduce this new tech-
nique, Semi-Automatically Updating NER.

Figure 4. The Top Two Tag Candidates with
Tag Confidence Measures.

Top Tag 2nd Tag
Tag score Tag scor

e
今日(Today) B-<DAT> 0.95
「(“) O 0.98
3(Third) O 0.47 B-<ART> 0.36
丁目(Street) O 0.38 I-<ART> 0.36
の(on) O 0.49 I-<ART> 0.38
夕日(Sunset) I-<ART> 0.39 O 0.34
」(”) O 0.99
が(is) O 0.99
放映(broadcast) O 0.99

172

5.1 Semi-Automatically Updating NER

Figure 5. Semi-Automatically Updating
NER Scheme.

Selected Data
with Tag Graphs

Model
Re-training

Base Data
(Labeled)

Additional Data
(Unlabeled)

Base
Model Recognition Error Detector

Morphological
Analyzer

NER Decoder

Calculation of the
Tag Confidence Measure

Data Selection

Automatically
Corrected Data

Updated
Model

Model Learning

Rejecter

Automatic Correction

Seed NE List

By extracting the correct tag sequence in each
tag graph as shown in Figure 4, it is possible to
obtain automatically corrected data, which also
serve as new training data. Based on this idea,
we propose Semi-Automatically Updating NER,
which is hereafter simply referred to as Updating
NER.

Figure 5 overviews Updating NER. The re-
jecter produces the sentences with tag graphs
based on the tag confidence measure. In this new
procedure, however, the rejecter’s role differs
from that described in Section 4 as follows:

[1] When the highest confidence score cs1 equals

or exceeds the threshold, the rejecter accepts
only the top candidate tag t1, otherwise it
goes to Step 2.

[2] When cs1 is less than the threshold, the re-
jecter accepts not only the top tag t1 but also
the 2nd tag t2.

Sentences that contain the 2nd candidates are

selected in data selection for subsequent process-
ing. The correct tag sequence in each tag graph is
identified in automatic correction as follows:

[1] Select the tag sequence that has the longest6

and consistent NE from the tag graph.
[2] If the longest NE also exists in a seed NE list,

which will be described below, the system
extracts the entire sentence with its tag se-
quence as corrected data.

In Step 1, the system selects one preferable

tag sequence based on the longest NE match. In
the tag graph shown in Figure 4, there are 16
possible sequences because four words “3”, “丁
目(Street)”, “ (on)” and “の 夕日(Sunset)” each
have two tag candidates; O or B for “3”, O or I
for “ (Street)” and “ (on)”, and I or O for “丁目 の

夕日(Sunset)”. For example, “B I I I”, “B I I O”,
“B I O O”, “O O O I”, “O O O O” and the rest.
Because the sequence “B I I I” constructs the
longest NE, the system selects the tag sequence
that contains the ARTIFACT “3丁目の夕日 .”
Other sequences that contain partial NEs such as
“3”, “3 ”, “3丁目 丁目の”, which are all ARTI-
FACTs, are ignored.

In Step 2, the system judges whether the tag
sequence selected in Step 1 is indeed correct.

6 By longest, we mean the longest tag sequence that does
not include any O-tags.

However, the system requires some hints to
judge the correctness, so we need to prepare a
seed NE list, which contains surface forms and
NE types. This list can be created by manually
annotation of possible NEs or automatic genera-
tion from other sources such as dictionaries.
When the same NE exists both in the selected tag
sequence and the seed NE list, the system re-
gards the selected tag sequence as reliable and
extracts it as automatically corrected data. Fi-
nally, the model is updated by merging the
automatically corrected data with the base data.

Bootstrapping means that data selection and
correction of the selected data are completely
automatic; we still have to prepare the seed NE
list somehow. Thus the learning cost is quite low
because we only need to provide an NE list as a
seed. Updating NER is capable of modifying the
model to keep up with the emergence of new
named entities. Therefore, it is effective to ana-
lyze the large amount of texts that emerge every-
day, such as blogs on the WWW.

5.2 Experiments

We tested our Updating NER with a large
amount of blog texts from the WWW. One
week’s worth of blog texts was crawled on the
WWW to generate the additional data. Table 5
shows the statistics of the data used in our ex-
periments. The test data contained only the blog
texts generated in December 2006, and the base
data is about a half year older than the test data.
Therefore, it is difficult for the base model to
recognize new NEs in the test data. One week’s

173

worth of December 2006 blog texts were pre-
pared for bootstrapping. The overlap between the
test data and the additional data was removed in
advance. We set the rejecter’s threshold at 0.5
and selected the data with tag graphs from the
additional data.

Japanese Wikipedia entries were used as the
seed NE list. The titles of Wikipedia articles
were regarded as surface forms. NE types were
estimated from the category sections of each arti-
cle, based on heuristic rules prepared in advance.
We collected 104,296 entries as a seed NE list.

Using this seed list, Updating NER extracted
the seed NE and its context from the selected
data automatically. If the system found a match,
it extracted the sentence with its tag sequence
from the selected data. The automatically cor-
rected data was then merged with the base data in
order to re-train the base model.

For comparison, we evaluated the effect of the
seed NE list itself. If there is a sequence of words
that can be found in the seed list, then that se-
quence is always recognized as a NE. Note that
the other words are simply decoded using the
base model. We call this method ‘user diction-
ary’. Here, we use recall and precision to evalu-
ate the accuracy of the model.

Table 5. Data Description for Updating NER.

Base Data
(blog in Sep. 04-Jun. 06)

43,716 sentences
746,304 words

Additional Data
(one week’s blog in Dec. 06)

240,474 sentences
3,677,077 words

Selected Data from the
Additional Data

113,761 sentences
2,466,464 words

Test Data
(blog in Dec.06)

1,609 sentences
21,813 words

5.3 Results

Table 6 shows the details of accuracy results re-
garding the following four NE types: PERSON,
LOCATION, ORGANIZATION, and ARTI-
FACT, which are referred to hereafter as PSN,
LOC, ORG and ART, respectively. Although we
added Wikipedia as a user dictionary to the base
model, it only slightly improved the recall. In
fact, it has no positive and sometimes a negative
effect on precision (e.g., ART decreased from
0.666 to 0.619). This indicates that adding an NE
list as a dictionary is not enough to improve the
accuracy of a NER system. This is because the
NER system cannot discriminate an NE from
surrounding unrelated words. It simply extracts
matched sequences of words, so it overestimates
the number of NEs.

On the contrary, our Updating NER improved
both recall and precision (e.g., the recall and the
precision in ART improved from 0.320 to 0.364
and from 0.666 to 0.694, respectively.). This
means that not only the NE list but also the con-
texts are actually needed to retrain the model.
Our Updating NER scheme has the advantage of
finding the reliable context of a seed NE list
automatically. Although some manual effort is
needed to provide a seed NE list, its associated
cost is lower than the cost of annotating the en-
tire training data. Thus, we regard Updating NER
as a promising solution for reducing learning
cost in practical NER systems.
 As shown in Table 6, neither user dictionary
method nor Updating NER improves the accu-
racy in ORG. We assume that this is caused by
the distribution of NE types in the seed NE list.
In the seed list selected from the Wikipedia en-
tries, PSN-type is dominant (74%). ORG-type is
scant at only 11%, so the system did not have
enough chances to retrain the ORG-type. Rather,
it might be the case that the system had a ten-
dency to recognize ORG-type as PSN-type be-
cause peoples' names are often used as organiza-
tion names. Further investigation is needed to
clarify the impact of the distribution and the
quality of the seed NE list.

Table 6. Details of Accuracy.
 PSN LOC ORG ART

rec. 0.640 0.737 0.688 0.320Base Model
prec. 0.699 0.811 0.652 0.666
rec. 0.686 0.729 0.688 0.354+Wikipedia

(user dic.) prec. 0.716 0.815 0.654 0.619
rec. 0.649 0.747 0.678 0.364+Wikipedia

(UpdatingNER) prec. 0.728 0.822 0.632 0.694

5.4 Discussions

Compared to conventional machine learning
techniques, the most distinctive feature of Updat-
ing NER is that the system can focus on the top
two candidates when the confidence score of the
top candidate is low. This feature actually has a
great advantage in the NER task, because the
system is capable of determining what the next
preferable tag is when a new NE appears which
is assigned an O-tag by the base model.
 Updating NER, however, has one weak point.
That is, the following two strict conditions are
required to correct the selected data automati-
cally. First, the correct tag sequence must appear
in tag graphs (i.e., as one of the top two tag can-
didates). Second, the NE must also appear in the
seed NE list. These conditions decrease the

174

chance of extracting sentences with correct tag
sequences from the selected data.

To overcome this weakness, one practical
approach is to use Updating NER in combination
with active learning. In the case of active learn-
ing, we do not need the correct tags in the top
two candidates. The editor can assign correct
tags without considering the order of candidates.
In short, active learning has broad coverage in
terms of learning, while Updating NER does not.
Therefore, active learning is suitable for improv-
ing the performance level of the entire base
model. Updating NER has the advantage of stay-
ing current with new named entities which
emerge every day on the WWW. In practical use,
for example, it will be better to update the model
every week with Updating NER to keep up with
new named entities, and occasionally perform
active learning (every six months or so) to en-
hance the entire model. In the future, we plan to
evaluate the efficiency of our two learning meth-
ods in practical applications, such as domain ad-
aptation and acquisition of hot trend NE words
from blog texts on the WWW.

6 Related Works

To date, there have been many related works on
active learning not only for the NER task (Shen
et al., 2004, Laws and Schütze, 2008) but also
for other tasks, such as POS tagging (Engelson
and Dagan, 1996), text classification (Lewis and
Catlett, 1994), parsing (Hwa, 2000), and confu-
sion set disambiguation (Banko and Brill, 2001).
Active learning aims at effective data selection
based on criterion measures, such as the confi-
dence measure. Most previous works focus on
the Sentence-Based criterion evaluation and data
selection. Our proposal differs from those previ-
ous works in that we focus on the Tag-Based
strategy, which judges whether each tag should
be accepted or rejected. This approach maxi-
mizes the effectiveness of manual annotation by
leaving the accepted tags in without any manual
correction. As a result, our Tag-based approach
reduces the manual annotation cost by 66 %,
compared to the Sentence-Base method.
 Semi-supervised learning has become an ac-
tive area in machine learning; it utilizes not only
annotated corpora but also huge amounts of plain
text for model training. Several studies adapted
semi-supervised learning to suit NLP tasks, such
as word sense disambiguation (Yarowsky, 1995),
text classification (Fujino et al., 2008), and
chunking and NER (Suzuki and Isozaki, 2008).

Suzuki and Isozaki (2008) suggest that a GIGA-
word size plain text corpus may further improve
the performance of the state-of-the-art NLP sys-
tem. In this paper, however, we aim at model
adaptation to the CGM domain to keep up with
the new linguistic phenomena that are emerging
every day. Because it is difficult to obtain GIGA-
word size plain text sets that reflect such new
linguistic phenomena, it is not practical to di-
rectly apply this approach to our task.
 Bootstrapping is similar to semi-supervised
learning in that it also allows the use of plain text
(Etzioni 2005, Pantel and Pennacchioti 2006). In
this learning method, it is possible to extract new
instances automatically from plain text with
small seed data prepared manually. Our Updating
NER is similar to bootstrapping in that it extracts
new annotated corpora automatically from plain
text data starting with a seed NE list. However,
the goal of conventional bootstrapping is to de-
velop a new dictionary or thesaurus by extracting
new instances. On the contrary, our goal is to
acquire a new NE and its surrounding context in
a sentence, not to build a NE dictionary (i.e., cor-
rect tag sequence). It is the tag sequence and not
a single NE that is needed for model training.
Updating NER is a novel approach in the point
of applying bootstrapping to the framework of
supervised learning. This approach is quite effec-
tive in that it has the advantage of reducing learn-
ing cost compared with active learning because
only a seed NE list is needed.

7 Conclusions

To reduce machine learning cost, we introduced
two techniques that are based on a tag confidence
measure determined from tag posterior probabil-
ity. Dubious tags are automatically detected as
recognition errors using the tag confidence
measure. This approach maximizes the effective-
ness of manual annotation by leaving the confi-
dent tags in without any manual correction.
 We first applied this technique to active
learning by correcting error tags manually. We
found that it matches the performance of the
learning method based on the sentence confi-
dence measure with only 1/3 of the learning cost.
 Next, we proposed Semi-Automatic Updat-
ing NER which has a bootstrap learning scheme,
by expanding the scope from the top tag candi-
date to include the 2nd candidate. With this new
scheme, it is possible to collect auto-labeled data
from a large data source, such as blog texts on
the WWW, by simply providing a seed NE list.

175

References
M. Banko and E. Brill. 2001. Scaling to Very Very

Large Corpora for Natural Language Disambigua-
tion. In Proc. of ACL-2001, pages 26-33.

S. A. Engelson and I. Dagan. 1999. Committee-Based
Sample Selection for Probabilistic Classifiers.
Journal of Artificial Intelligence Research,
vol.11(1999), pages 335-360.

O. Etzioni, M. Cafarella, D. Downey, A. Popescu, T.
Shaked, S. Soderland, D. S. Weld, and A. Yates.
2005. Unsupervised Named-Entity Extraction from
the Web: An Experimental Study. Artificial Intelli-
gence, 165(1), pages 91-134.

A. Fujino, N. Ueda, and K. Saito. 2008. Semisuper-
vised Learning for a Hybrid Generative
/Discriminative Classifier Based on the Maximum
Entropy Principle. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 30(3),
pages 424-437.

R. Hwa. 2000. Sample Selection for Statistical
Grammer Induction. In Proc. of EMNLP/VLC-2000,
pages 45-52.

IREX Committee (ed.), 1999. In Proc. of the IREX
workshop. http://nlp.cs.nyu.edu/irex/

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In Proc.
of ICML-2001. pages 282-289.

F. Laws and H. Schütze. 2008. Stopping Criteria for
Active Learning of Named Entity Recognition. In
Proc. of COLING-2008, pages 465-472.

D. Lewis and J. Gatlett. 1994. Heterogeneous uncer-
tainty sampling for supervised learning. In Proc. of
ICML-1994, pages 148-156.

C. D. Manning and H. Schütze. 1999. Foundations of
Statistical Natural Language Processing. The MIT
Press.

P. Pantel and M. Pennacchiotti. 2006. Espresso: Lev-
eraging Generic Patterns for Automatically Har-
vesting Semantic Relations. In Proc. of COLING-
ACL-2006, pages 113-120.

E. F. T. K. Sang and F. De Meulder. 1999. Represent-
ing text chunks. In Proc. of EACL-1999, pages
173-179.

D. Shen, J. Zhang, J. Su, G. Zhou, and C. L. Tan.
2004. Multi-Criteria-based Active Learning for
Named Entity Recognition. In Proc. of ACL-2004,
pages 589-596.

J. Suzuki and H. Izozaki. 2008. Semi-Supervised Se-
quential Labeling and Segmentation using Giga-
word Scale Unlabeled Data. In Proc. of ACL-2008,
pages 665-673.

J. Suzuki, E. McDermott, and H. Isozaki. 2006. Train-
ing Conditional Random Fields with Multivariate
Evaluation Measures. In Proc. of COLING-ACL-
2006. pages 617-624.

D. Yarowsky. 1995. Unsupervised Word Sense Dis-
ambiguation Rivaling Supervised Methods. In Proc.
of ACL-1995, pages 189-196.

X. Zhu. 2007. Semi-Supervised Learning, ICML-
2007 Tutorial.

176

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 177–185,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

A Hybrid Model for Urdu Hindi Transliteration

Abbas Malik Laurent Besacier Christian Boitet
GETALP, Laboratoire d’Informatique Grenoble (LIG)

Université Joseph Fourier
Abbas.Malik, Laurent.Besacier,

Christian.Boitet@imag.fr

Pushpak Bhattacharyya
IIT Bombay

pb@cse.iitb.ac.in

Abstract

We report in this paper a novel hybrid ap-
proach for Urdu to Hindi transliteration that
combines finite-state machine (FSM) based
techniques with statistical word language
model based approach. The output from the
FSM is filtered with the word language model
to produce the correct Hindi output. The main
problem handled is the case of omission of di-
acritical marks from the input Urdu text. Our
system produces the correct Hindi output even
when the crucial information in the form of di-
acritic marks is absent. The approach improves
the accuracy of the transducer-only approach
from 50.7% to 79.1%. The results reported
show that performance can be improved using
a word language model to disambiguate the
output produced by the transducer-only ap-
proach, especially when diacritic marks are not
present in the Urdu input.

1 Introduction

Transliteration is a process to transcribe a word
written in one language, in another language by
preserving its articulation. It is crucial for han-
dling out-of-vocabulary (OOV) words in differ-
ent domains of Natural Language Processing
(NLP), especially in Machine Translation
(Knight and Graehl, 1998; Knight and Stall,
1998; Paola and Sanjeev, 2003), Cross-Lingual
Information Retrieval (Pirkola et al., 2003), the
development of multi-lingual resources (Yan et
al., 2003) and multi-lingual text and speech
processing. It is also useful for Inter-dialectal
translation without lexical changes and some-
times it is mandatory when the dialects in ques-
tion use mutually incomprehensible writing sys-
tems. Such cases exists in Malay (written in 2
different scripts), Turkish (2 scripts), Kurdish (3
scripts), Hindi/Urdu (2 scripts), Punjabi (2

scripts), etc., where words are transliterated from
one script to the other, irrespective of their type
(noun, verb, etc., and not only proper nouns and
unknown words). In this study, we will focus on
Hindi/Urdu example.

Hindi and Urdu are written in two mutually
incomprehensible scripts, Devanagari and Urdu
script – a derivative of Persio-Arabic script re-
spectively. Hindi and Urdu are the official lan-
guages of India and the later is also the National
language of Pakistan (Rahman, 2004). Table 1
gives an idea about the number of speakers of
Hindi and Urdu.

 Native
Speaker

2nd Lang.
Speaker Total

Hindi 366 487 853
Urdu 60.29 104 164.29
Total 426.29 591 1,017.29

Source: (Grimes, 2000) all numbers are in millions

Table 1: Hindi and Urdu Speakers

Notwithstanding the transcriptional differences,
Hindi and Urdu share phonology, grammar,
morphology, literature, cultural heritage, etc.
People from Hindi and Urdu communities can
understand the verbal expressions of each other
but the written expression of one community is
alien to the other community.

A finite-state transliteration model for Hindi
and Urdu transliteration using the Universal In-
termediate Transcription (UIT – a pivot between
the two scripts) was proposed by Malik et al.
(2008). The non-probabilistic finite-state model
is not powerful enough to solve all problems of
Hindi ↔ Urdu transliteration. We visit and ana-
lyze Hindi ↔ Urdu transliteration problems in
the next section and show that the solution of
these problems is beyond the scope of a non-
probabilistic finite-state transliteration model.

177

Following this, we show how a statistical model
can be used to solve some of these problems,
thereby enhancing the capabilities of the finite-
state model.

Thus, we propose a hybrid transliteration
model by combining the finite-state model and
the statistical word language model for solving
Hindi ↔ Urdu transliteration problems, dis-
cussed in section 2. Section 3 will throw light on
the proposed model, its different components and
various steps involved in its construction. In sec-
tion 4, we will report and various aspects of dif-
ferent experiments and their results. Finally, we
will conclude this study in section 5.

2 Hindi Urdu Transliteration

In this section, we will analyze Hindi ↔ Urdu
transliteration problems and will concentrate on
Urdu to Hindi transliteration only due to shortage
of space and will discuss the reverse translitera-
tion later. Thus, the remainder of the section ana-
lyzes the problems from Urdu to Hindi translite-
ration.

2.1 Vowel, Yeh (ی) and Waw (و)

Urdu is written in a derivation of Persio-Arabic
script. Urdu vowels are represented with the help
of four long vowels Alef-madda (آ), Alef (ا),
Waw (و), Yeh (ی) and diacritical marks. One
vowel can be represented in many ways depend-
ing upon its context or on the origin of the word,
e.g. the vowel [ɑ] is represented by Alef-madda
 in the (ا) at the beginning of a word, by Alef (آ)
middle of a word and in some Persio-Arabic loan
word, it is represented by the diacritical mark
Khari Zabar (G◌). Thus Urdu has very complex
vowel system, for more details see Malik et al.
(2008). Urdu contains 10 vowels, and 7 of them
also have their nasalization forms (Hussain,
2004; Khan, 1997) and 15 diacritical marks.
Thou diacritical marks form the cornerstone of
the Urdu vowel system, but are sparingly used
(Zia, 1999). They are vital for the correct Urdu to
Hindi transliteration using the finite-state transli-
teration model. The accuracy of the finite-state
transliteration model decreases from above 80%
to 50% in the absence of diacritical marks. Fig-
ure 1 shows two example Urdu phrases (i) with
and (ii) without the diacritical marks and their
Hindi transliteration using the finite-state transli-
teration model. Due to the absence of Zabar (F◌)
in the first and the last words in (1)(ii) and in the
5th word in (2)(ii), vowels ◌ ै [æ] and औ [ɔ] are

transliterated into vowels ◌े [e] and ओ [o] re-
spectively. Similarly, due to the absence of Pesh
(E◌) and Zer (G◌) in 3rd and 4th words respectively

in (1)(ii), both vowels ◌ ु [ʊ] and ि◌ [ɪ] are con-

verted into the vowel [ə]. All wrongly converted
words are underlined.

(1) (i) ہَے مَيں نے بہُت ادهِک کام نہِيں کِيا

 (ii) ہے کام نہيں کيا ميں نے بہت ادهک
(i) मैं ने बहुत अिधक काम नहीं िकया है

हे कया नहें काम अधक बहत ने में (ii)
I have not done a lot of work

(2) (i) یسْطر پر به يہاَور راجْ یپر به سْطر ينْدْرِيّہک
 (ii) راجيہ سطر پر بهی کيندريہ سطر پر بهی اور

(i) केन्िीय ःतर पर भी और राज्य ःतर पर भी

भी पर सतर राजय ओर भी पर सतर कें दरय (ii)
Both at the central level and at the state level

Figure 1: Example Urdu Phrases

In Hindi, each vowel is represented by a cha-
racter and a vowel sign except the vowel [ə],
which is only represented by the character अ and
do not have a vowel sign (Malik et al., 2008).
Table 2 gives all vowel conversion problems.

Sr. IPA
Vowel

Conversion
Problems

Hindi

1 ɪ ɪ → ə इ or ि◌ → अ or 0*

2 ʊ ʊ → ə उ or ◌ु → अ or 0*

3 i i → e ई or ◌ी → ए or ◌े
4 æ æ → e ऐ or ◌ै → ए or ◌े
5 u u → o ऊ or ◌ू → ओ or ◌ो
6 ɔ ɔ → o औ or ◌ौ → ओ or ◌ो
7 j j → e य → ◌े
8 v v → o व → ◌ो

* Zero (0) means deleted.

Table 2: Vowel Problems from Urdu to Hindi

Long vowels Yeh (ی) [j] and Waw (و) [v] are
also used as consonants and certain contextual
rules help us to decide whether they are used as a
consonant or as a vowel, e.g., Yeh (ی) and Waw
 are used as consonants at the start of a word (و)
and after the long vowel Alef-madda (آ), etc. Fi-

178

nite-state transliteration model can exploit such
contextual rules but it is not possible to decide
Yeh (ی) and Waw (و) as consonants in the ab-
sence of diacritics. Thus a finite-state translitera-
tion model wrongly converts consonant Yeh (ی)
and Waw (و) into vowels ◌े [e] and ◌ो [o], also
given in Table 2, instead of consonants Ya (य)
and Wa (व) respectively, e.g., in the word کُنور

(prince) [kʊɲvr], Waw is wrongly converted into

the vowel [o] due to the absence of Zabar (F◌)

after it and the word becomes [kʊnor], which is
not a valid word of Hindi/Urdu.

2.2 Native Sounds

The Hindi writing system contains some native
sounds/characters, e.g., vocalic R (ऋ) [r̥], retrof-

lex form of Na (ण) [ɳ], etc. On the other hand
Urdu does not have their equivalents. Thus
words containing such sounds are transcribed in
Urdu with their approximate phonetic equiva-
lents. All such cases are problematic for Urdu to
Hindi transliteration and are given in Table 3.

Sr. IPA Hindi Urdu
1 r̥ ऋ or ◌ृ ر [r]

2 ɳ ण ن [n]

3 ʃ ष ش [ʃ]
4 Half h ◌ः ہ [h]

Table 3: Sounds of Sanskrit Origin

2.3 Conjunct Form

The Hindi alphabet is partly syllabic because
each consonant inherits the vowel [ə]. Two or
more consonants may be combined together to
form a cluster called Conjunct that marks the
absence of the inherited vowel [ə] between con-
sonants (Kellogg, 1872; Montaut, 2004). Con-
junction is also used to represent the gemination
of a consonant, e.g., क[k]+◌्+क[k]=क्क[kk]

where ◌् is the conjunct marker and aspiration of

some consonants like न [n], म [m], र [r] and ल

[l] when used as conjunction with ह [h], e.g.,

न[n] + ◌् + ह[h] = न्ह[nh]. Conjunction has a spe-

cial meaning but native speakers use conjunct
forms without any explicit rule (Montaut, 2004).

On the other hand, Urdu uses Jazam (H◌ – a
diacritic) and Shadda (H◌) to mark the absence of
a vowel between two consonants and gemination
of a consonant respectively. In the absence of
these diacritics in the input Urdu text, it is not
possible to decide on the conjunct form of con-
sonants except in the case of aspiration. In Urdu,
aspiration of a consonant is marked with the spe-
cial character Heh-Doachashmee (ه) (Malik et
al., 2008), thus a finite-state transducer can easi-
ly decide about the conjunction for aspiration
with a simple contextual rule, e.g. the word دُلهن
(bride) [ḓʊlhn] is correctly transliterated by our
finite-state transliteration model into दलु्हन.

2.4 Native Hindi Spellings and Sanskritized
Vocabulary

Sanskrit highly influences Hindi and especially
its vocabulary. In some words of Sanskrit origin,
the vowel ◌ी [i] and ◌ू [u] are transcribed as ि◌

[ɪ] and ◌ु [ʊ] respectively at the end of a word.
Javaid and Ahmed (2009) have pointed to this
issue in these words “Hindi language can have
words that end on short vowel…”. Table 4 gives
some examples of such native words. On the
other hand in Urdu, short vowels can never come
at the end of a word (Javaid and Ahmed, 2009;
Malik et al., 2008).

Vowel Examples

◌ी [i]
व्यिक्त – ويکتی (person) [vjəkti]
संःकृित – سنسکرتی (culture) [səɲskrəṱi]
उच्चकोिट – اُچکوٹی (high) [ʊʧʧkoʈi]

◌ू [u]
हेतु – ہيتُو (for) [heṱu]

िकन्त ु– کنتُو (but) [kɪnṱu]

धातु – دهاتُو (metal) [ḓɑṱu]

Table 4: Hindi Word with Short vowel at End

It is clear from above examples that short vowels
at the end of a Hindi word can easily be translite-
rated in Urdu using a contextual rule of a finite-
state transducer, but it is not possible to do so for
Urdu to Hindi transliteration using a non-
probabilistic finite-state transliteration model.
Thus Urdu to Hindi transliteration can also be

179

considered as a special case of Back Translitera-
tion.

In some words, the vowel ◌ू [u] is written as

the vowel ◌ु [ʊ], e.g., हुए – ہُوئے or हुआ – ہُوا (to be)

[hue], राजनपुर (name of a city) [rɑʤənpur].
Some of these cases are regular and can be im-
plemented as contextual rules in a finite-state
transducer but it is not possible in every case.

2.5 Ain (ع)

Ain (ع – glottal stop) exists in the Arabic alpha-
bet and native Arabic speakers pronounce it
properly. Urdu also has adopted Ain (ع) in its
alphabet as well as Arabic loan words but native
speakers of the sub-continent cannot produce its
sound properly, rather they produce a vowel
sound by replacing Ain (ع) with Alef (ا). The
Hindi alphabet follows one character for one
sound rule and it does not have any equivalent of
Ain (ع). Then, Ain (ع) in Urdu words is tran-
scribed in Hindi by some vowel representing the
pronunciation of the word by native sub-
continent speakers. Thus it is always translite-
rated in some vowel in Hindi. For example, Ain
جيبع gives the sound of the vowel [ə] in (ع) –

अजीब (strange) [əʤib] and the vowel [ɑ] with
and without Alef (ا) in words معا – आम (com-

mon) [ɑm] and دعب – बाद (after) [bɑḓ] respective-
ly. In some words, Ain (ع) is not pronounced at
all and should be deleted while transliterating
from Urdu to Hindi, e.g., عشُرُو – शुरू (to start)

[ʃƱru], etc. Conversion of Ain (ع) is a big prob-
lem for transliteration.

2.6 Nasalization

Noonghunna (ں) [ɲ] is the nasalization marker of
vowels in Urdu. Interestingly, it is only used to
nasalize a vowel at the end of a word. In the
middle of a word, Noon (ن) [n] is used to mark
the nasalization of a vowel and it is also used as
a consonant. It is difficult to differentiate be-
tween nasalized and consonant Noon (ن). There
are certain contextual rules that help to decide
that Noon (ن) is used as a consonant or a nasali-
zation marker, but it not possible in all cases.

2.7 Persio-Arabic Vocabulary

Urdu borrows a considerable portion of it voca-
bulary from Persian and Arabic and translitera-

tion of these words in Hindi is not regular. Table
5 explains it with few examples.

Urdu Hindi
FST Conversion Correct

لبالکُ बालकुल
(surely)

िबलकुल

[bɪlkƱl]

 बालवासता بالواستہ
(with reference of)

िबलवासता
[bɪlvɑsṱɑ]

فی الحقِيقت फ़ीअलहक़ीक़त
(in fact)

िफ़लहक़ीक़त

[fɪlhəqiqət]

Table 5: Persio-Arabic Vocabulary in Urdu

3 Hybrid Transliteration Model

The analysis of the previous section clearly
shows that solution of these problems is beyond
the scope of the non-probabilistic Hindi Urdu
Finite-state transliteration model (Malik et al.,
2008). We propose a hybrid transliteration model
that takes the input Urdu text and converts it in
Hindi using the Finite-state Transliteration Mod-
el (Malik et al, 2008). After that, it tries to cor-
rect the orthographic errors in the transducer-
only Hindi output string using a statistical word
language model for Hindi with the help of a
Hindi Word Map described later. The approach
used is rather similar to what is done in text re-
capitalization (Stolcke et al. 1998) for instance.

Figure 2: Hybrid Transliteration Model for Urdu
Hindi

Normally, the Urdu text does not contain neces-
sary diacritical marks that are mandatory for the
correct transliteration by the finite-state compo-
nent Urdu Hindi Transliteration

180

Finite-state Machine (UHT-FSM),
described by Malik et al. (2008). The proposed
hybrid model focuses on the correct translitera-
tion of Urdu texts without diacritical marks. Fig-
ure 2 gives the proposed Model architecture.

3.1 Preprocessing UHT-FSM Output

The goal of this pre-processing is to generate a
more “normalized” (and consequently more am-
biguous) form of Hindi, e.g. pre-processing
transforms both corpus words इस (this) [ɪs] and

उस (that) [ʊs] (if encountered in the UHT-FSM
Hindi output) into the default input Hindi word
अस* [əs] (not a valid Hindi word but is a finite-
state transliteration of the input Urdu word اس, a
word without diacritical marks). Thus pre-
processing is vital for establishing connections
between the UHT-FSM Hindi output words
(from the Urdu input without diacritical marks)
and the Hindi corpus words. In the example
above, the word अस* [əs] is aligned to two Hin-
di corpus words. All such alignments are record-
ed in the Hindi Word Map. This ambiguity will
be solved by the Hindi word language
model, trained on a large amount of Hindi data.
Thus pre-processing is a process that establishes
connections between the most likely expected
input Hindi word forms (UHT-FSM Hindi output
from the Urdu input without diacritical marks)
and the correct Hindi word forms (words that are
present in the Hindi corpus).

The Preprocessing component is a finite-
state transducer that normalizes the Hindi output
of UHT-FSM component for the Hindi word
language model. The transducer converts all
cases of gemination of consonants into a simple
consonant. For example, the UHT-FSM converts
the Urdu word ّرب (God) [rəbb] into रब्ब and the

Preprocessing converts it into रब [rb]. The

transducer also removes the conjunct marker (◌्)
from the output of the UHT-FSM except when it
is preceded by one of the consonant from the set
{र [r], ल [l], म [m], न [n]} and also followed by

the consonant ह [h] (first 3 lines of Figure 3),
e.g., UHT-FSM converts the Urdu words ہِنْدی
(Hindi) [hɪndi] and دُلهن (bride) [ḓʊlhn] into िहन्दी
and दलु्हन respectively and the Preprocess-
ing component converts them into िहनदी (re-

moves ◌्) and दलु्हन (no change). Actually, Pre-
processing deteriorates the accuracy of the output
of the UHT-FSM component. We will come back
to this point with exact figures in the next sec-
tion.

The code of the finite-state transducer is given
in XFST (Beesley and Karttunen, 2003) style in
Figure 3. In XFST, the rules are applied in re-
verse order due to XFST’s transducer stack, i.e. a
rule written at the end of the XFST script file
will apply first and so on.

read regex [◌ ्-> 0 || [? - [र | ल | म | न]] _ [? -
ह]];
read regex [◌् -> 0 || [र | ल | म | न] _ [? - ह]];
read regex [◌् -> 0 || [? - [र | ल | म | न]] _ [ह]];
read regex [[क ◌ ्क] -> क, [क ◌ ्ख] -> ख,
[ग ◌ ्ग] -> ग, [ग ◌ ्घ] -> घ, [च ◌ ्च] -> च,
[च ◌् छ] -> छ, [ज ◌ ्ज] -> ज, [ज ◌ ्झ] -> झ,
[ट ◌ ्ट] -> ट, [ट ◌ ्ठ] -> ठ, [ड ◌ ्ड] -> ड, [ड ◌ ्
ढ] -> ढ, [त ◌् त] -> त, [त ◌ ्थ] -> थ, [द ◌ ्द]
-> द, [द ◌ ्ध] -> ध, [प ◌ ्प] -> प, [प ◌ ्फ] ->
फ, [ब ◌ ्ब] -> ब, [ब ◌ ्भ] -> भ, [म ◌ ्म] -> म,
[य ◌ ्य] -> य, [र ◌ ्र] -> र, [ल ◌ ्ल] -> ल,
[व ◌् व] -> व, [श ◌् श] -> श, [ष ◌् ष] -> ष,
[स ◌् स] -> स, [ह ◌् ह] -> ह, [क़ ◌् क़] -> क़,
[ख़ ◌् ख़] -> ख़, [ग़ ◌् ग़] -> ग़, [ज़ ◌् ज़] -> ज़,
[ड़ ◌् ड़] -> ड़, [ढ़ ◌् ढ़] -> ढ़, [फ़ ◌ ्फ़] -> फ़];

Figure 3: Preprocessing Transducer

3.2 Hindi Word Language Model

The Hindi Word Language Model is an
important component of the hybrid transliteration
model. For the development of our statistical
word language model, we have used the Hindi
Corpus freely available from the Center for In-
dian Language Technology1, Indian Institute of
Technology Bombay (IITB), India.

First, we extracted all Hindi sentences from
the Hindi corpus. Then we removed all punctua-
tion marks from each sentence. Finally, we add-
ed ‘<s>’ and ‘</s>’ tags at the start and at the
end of each sentence. We trained a tri-gram
Hindi Word Language Model with the
SRILM (Stolcke, 2002) tool. The processed Hin-
di corpus data contains total 173,087 unique sen-

1 http://www.cfilt.iitb.ac.in/

181

tences and more than 3.5 million words. The
SRILM toolkit command ‘disambig’ is used to
generate the final Hindi output using the statis-
tical word language model for Hindi and the
Hindi Word Map described in the next section.

3.3 Hindi Word Map

The Hindi Word Map is another very important
component of the proposed hybrid transliteration
model. It describes how each “normalized” Hindi
word that can be seen after the Preprocess-
ing step and can be converted to one or several
correct Hindi words, the final decision being
made by the statistical word language model for
Hindi. We have developed it from the same
processed Hindi corpus data that was used to
build the Hindi Word Language Model.
We extracted all unique Hindi words (120,538
unique words in total).

The hybrid transliteration model is an effort to
correctly transliterate the input Urdu text without
diacritical marks in Hindi. Thus we take each
unique Hindi word and try to generate all possi-
ble Hindi word options that can be given as input
to the Hindi Word Language Model
component for the said word. Consider the Urdu
word ّرب (God) [rəbb]; its correct Hindi spel-

lings are रब्ब. If we remove the diacritical mark
Shadda (H◌) after the last character of the word,
then the word becomes رب and UHT-FSM trans-
literates it in रब*. Thus the Hindi Word

Language Model will encounter either रब्ब or

रब* for the Hindi word रब्ब (two possible word
options). In other words, the Hindi Word Map is
a computational model that records all possible
alignments between the “normalized” or pre-
processed words (most likely input word forms)
and the correct Hindi words from the corpus.

We have applied a finite-state transducer that
generates all possible word options for each
unique Hindi word. We cannot give the full
XFST code of the ‘Default Input Creator’ due to
space shortage, but a sample XFST code is given
in Figure 4. If the Urdu input contains all neces-
sary diacritical marks, then pre-processing of the
output of the UHT-FSM tries to remove the effect
of some of these diacritical marks from the Hindi
output. In the next section, we will show that
actually it increases the accuracy at the end.

define CONSONANTS [क | ख | ग | घ | ङ | च |
छ | ज | झ | ञ | ट | ठ | ड | ढ | ण | त | थ | द | ध |
न | प | फ | ब | भ | म | य | र | ल | व | श | ष | स |
ह | क़ | ख़ | ग़ | ज़ | ड़ | ढ़ | फ़];
…
read regex [◌ै (->) ◌,े ◌ी (->) ◌,े ◌ू (->) ◌ो, ◌ौ
(->) ◌ो, ि◌ (->) 0, ◌ ु(->) 0 || [CONSONANTS]
_];
read regex [◌ी (->) ◌ े|| [CONSONANTS] _ [? -
 .#.]];
read regex [ि◌ -> ◌ी, ◌ ु -> ◌ो, ◌ ु -> ◌ ू ||
[CONSONANTS] _ .#.];
…

Figure 4: Default Input Creator Transducer

Practically, the Hindi Word Map is a file in
which each line contains a possible input word to
Hindi Word Language Model, followed
by a list of one (see line 3 of Figure 5) or more
(see line 1 of Figure 5) words from the corpus
that are associated with this possible input word.

The ‘Default Input Creator’ transducer has
generated in total 961,802 possible input words
for 120,538 unique Hindi words. For implemen-
tation reasons, we also added non-ambiguous
pair entries in the word map (see line 2 of Figure
5), thus the initial word map contains in total
1,082,340 entries. We extract unique option
words and finally, Hindi Word Map contains in
total 962,893 entries. Some examples from Hindi
Word Map file are given in Table 5.

(1) कीजे कीिज कीजै
(2) कीजो कीजो
(3) रब रब्ब
(4) कीमयागरी कीिमयागरी कीिमयािगरी
(5) अस इस उस

Figure 5: Sample Hindi Word Map

4 Test and Results

For testing purposes, we extracted 200 Hindi
sentences from the Hindi corpus before removing
punctuation marks. These sentences were of
course removed from the training corpus used to
build the statistical word language model for
Hindi. First we converted these 200 Hindi sen-
tences in Urdu using Hindi Urdu Finite-state
transliteration model (Malik et al., 2008). Trans-

182

literated Urdu sentences were post edited ma-
nually for any error and we also made sure that
the Urdu text contained all diacritical marks. 200
original Hindi sentences served as Hindi refer-
ence for evaluation purposes.

From the post-edited Urdu sentences, we de-
veloped two test corpora. The first test corpus
was the Urdu test with all diacritical marks. In
the second test corpus, all diacritical marks were
removed. We calculated both word level and
character level accuracy and error rates using the
SCLITE 2 tool. Our 200 sentence test contains
4,250 words and 16,677 characters in total.

4.1 Test: UHT-FSM

First we converted both Urdu test data using
UHT-FSM only and compared the transliterated
Hindi texts with the Hindi reference. UHT-FSM
shows a word error rate of 21.5% and 51.5% for
the Urdu test data with and without diacritics
respectively. Results are given in Table 6, row 1.

Urdu Test Data With
diacritics

Without
diacritics

UHT-FSM
Accuracy/Error

80.7% /
21.5%

50.7% /
51.5%

UHT-FSM +
HLM

82.6% /
19.6%

79.1% /
23.1%

UHT-FSM +
PrePro

67.5% /
32.4%

50.7% /
51.5%

UHT-FSM +
PrePro + HLM

85.8% /
16.4%

79.1% /
23.1%

Table 6: Word Level Results

These results support our claims that the absence
of diacritical marks considerably increases the
error rate.

4.2 Test: UHT-FSM + Hindi Language
Model

Both outputs of UHT-FSM are first passed direct-
ly to Hindi Word Language Model with-
out preprocessing. The Hindi Word Lan-
guage Model converts UHT-FSM Hindi out-
put in the final Hindi output with the help of
Hindi Word Map.

Two final outputs were again compared with
the Hindi reference and results are given in Table
6, row 2. For Urdu test data without diacritics,
error rate decreased by 28.4% due to the Hindi
Word Language Model and Hindi Word

2 http://www.itl.nist.gov/iad/mig//tools/

Map as compared to the UHT-FSM error rate.
The Hindi Word Language Model also decreases
the error rate by 1.9% for the Urdu test data with
diacritics.

4.3 Test: UHT-FSM + Preprocessing

In this test, both outputs of UHT-FSM were pre-
processed and the intermediate Hindi outputs
were compared with the Hindi reference. Results
are given in Table 6, row 3. After the comparison
of results of row 1 and row 3, it is clear that pre-
processing deteriorates the accuracy of Urdu test
data with diacritics and does not have any effect
on Urdu test data without diacritics.

4.4 Test: UHT-FSM + Preprocessing +
Hindi Language Model

Preprocessed UHT-FSM Hindi outputs of the test
of Section 4.3 were passed to the Hindi Word
Language Model that produced final Hindi
outputs with the help of the Hindi Word Map.
Results are given in Table 6, row 4. They show
that the Hindi Word Language Model
increases the accuracy by 5.1% and 18.3% when
compared with the accuracy of UHT-FSM and
UHT-FSM + Preprocessing tests respectively, for
the Urdu test data with diacritical marks.

For the Urdu test data without diacritical
marks, the Hindi Word Language Model
increases the accuracy rate by 28.3% in compari-
son to the accuracy of the UHT-FSM output
(whether pre-processed or not).

4.5 Character Level Results

All outputs of tests of Sections 4.1, 4.2, 4.3 and
4.4 and the Hindi reference are processed to cal-
culate the character level accuracy and error
rates. Results are given in Table 7.

Urdu Test

Data
With

diacritics
Without
diacritics

UHT-FSM 94.1% / 6.5% 77.5% / 22.6%
UHT-FSM +

HLM 94.6% / 6.1% 89.8% / 10.7

UHT-FSM +
PreP 87.5% / 13.0% 77.5% / 22.6

UHT-FSM +
PreP + HLM 94.5% / 6.1% 89.8% / 10.7

Table 7: Character Level Results

183

4.6 Results and Examples

The Hindi Word Language Model in-
creases the accuracy of Urdu Hindi translitera-
tion, especially for the Urdu input without dia-
critical marks.

Consider the examples of Figure 7. Figure 1 is
reproduced here by adding the Hindi translitera-
tion of example sentences using the proposed
hybrid transliteration model and Hindi reference.

(1) (i) نے بہُت ادهِک کام نہِيں کِيا ہَے مَيں

 (ii) ميں نے بہت ادهک کام نہيں کيا ہے
(i) मैं ने बहुत अिधक काम नहीं िकया है

हे कया नहें काम अधक बहत ने में(ii)
I have not done a lot of work
Output of Hybrid Transliteration Model
(i) मैं ने बहुत अिधक काम नहीं िकया है

(ii) मैं ने बहुत अिधक काम नहीं िकया है
Hindi Reference
मैंने बहुत अिधक काम नहीं िकया है

(2) (i) یسْطر پر به يہاَور راجْ یسْطر پر به ينْدْرِيّہک
 (ii) کيندريہ سطر پر بهی اور راجيہ سطر پر بهی

(i) केन्िीय ःतर पर भी और राज्य ःतर पर भी

 पर सतर राजय ओर भी पर सतर कें दरय(ii)

भी
Both at the central level and at the state level
Output of Hybrid Transliteration Model
(i) केन्िीय ःतर पर भी और राज्य ःतर पर भी
(ii) कें ििय ःतर पर भी और राज्य ःतर पर भी
Hindi Reference
केन्िीय ःतर पर भी और राज्य ःतर पर भी

Figure 7: Examples

By comparing Hindi outputs of Hindi Word
Language Model with the Hindi reference,
only the first word of (2)(ii) is wrong and other
errors due to the absence of diacritical marks in
the source Urdu sentences are corrected properly.

5 Conclusion

From the test results of the previous section we
can conclude that the statistical word language
model increases the accuracy of Urdu to Hindi
transliteration, especially for Urdu input text
without diacritical marks. The proposed Hybrid
Transliteration Model improves the accuracy and
produces the correct Hindi output even when the
crucial information in the form of diacritical

marks is absent. It increases the accuracy by
28.3% in comparison to our previous Finite-state
Transliteration Model. This study also shows that
diacritical marks are crucial and necessary for
Hindi Urdu transliteration.

References
Beesley, Kenneth R. and Karttunen, Lauri. 2003. Fi-

nite State Morphology, CSLI Publication, USA.

Grimes, Barbara F. (ed). 2000. Pakistan, in Ethnolo-
gue: Languages of the World, 14th Edition Dallas,
Texas; Summer Institute of Linguistics, pp: 588-
598.

Hussain, Sarmad. 2004. Letter to Sound Rules for
Urdu Text to Speech System, proceedings of Work-
shop on Computational Aproaches to Arabic
Script-based Languages, COLING 2004, Geneva,
Switzerland.

Jawaid, Bushra and Tafseer Ahmed. 2009. Hindi to
Urdu Conversion: Beyond Simple Transliteration,
in proceedings of Conference on Language &
Technology, Lahore, Pakistan.

Kellogg, Rev. S. H. 1872. A Grammar of Hindi Lan-
guage, Delhi, Oriental Book reprints.

Khan, Mehboob Alam. 1997. اُردو کا صوتی نظام (Sound
System in Urdu), National Language Authority,
Pakistan

Knight, K. and Graehl, J. 1998. Machine Translitera-
tion, Computational Linguistics, 24(4).

Knight, K. and Stall, B. G. 1998. Transliterating
Names and Technical Terms in Arabic Text, pro-
ceedings of COLING/ACL Workshop on Compu-
tational Approaches to Semitic Languages.

Malik, M. G. Abbas. Boitet, Christian. Bhattcharyya,
Pushpak. 2008. Hindi Urdu Machine Translitera-
tion using Finite-state Transducers, proceedings of
COLING 2008, Manchester, UK.

Montaut, A. 2004. A Linguistic Grammar of Hindi,
Studies in Indo-European Linguistics Series, Mun-
chen, Lincom Europe.

Paola, V. and Sanjeev, K. 2003. Transliteration of
Proper Names in Cross-language Application, pro-
ceedings of 26th Annual International ACM SIGIR
Conference on Research and Development in In-
formation Retrieval, Toronto, Canada.

Pirkola, A. Toivonen, J. Keshustalo, H. Visala, K. and
Jarvelin, K. 2003. Fuzzy Translation of Cross-
lingual Spelling Variants, proceedings of 26th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
Toronto, Canada.

Rahman, Tariq. 2004. Language Policy and Localiza-
tion in Pakistan: Proposal for a Paradigmatic

184

Shift, Crossing the Digital Divide, SCALLA Con-
ference on Computational Linguistics.

Stolcke, A. 2002. SRILM – An Extensible Language
Modeling Toolkit, in proceedings of International
Conference on Spoken Language Processing.

Stolcke, A. Shriberg, E. Bates, R. Ostendorf, M. Hak-
kani, D. Plauche, M. Tur, G. and Lu, Y. 1998. Au-
tomatic Detection of Sentence Boundaries and Dis-
fluencies based on Recognized Words. Proceedings
of International Conference on Spoken Language
Processing (ICSLP), Sydney, Australia.

Yan, Qu. Gregory, Grefenstette. and David A. Evans.
2003. Automatic Transliteration for Japanese-to-
English Text Retrieval. In proceedings of the 26th
annual international ACM SIGIR conference on
Research and Development in Information Retriev-
al, pp: 353 – 360.

Zia, Khaver. 1999. Standard Code Table for Urdu.
Proceedings of 4th Symposium on Multilingual In-
formation Processing (MILIT-4), Yangon, Myan-
mar, CICC, Japan.

185

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 186–193,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Graphemic Approximation of Phonological Context

for English-Chinese Transliteration

Oi Yee Kwong

Department of Chinese, Translation and Linguistics

City University of Hong Kong

Tat Chee Avenue, Kowloon, Hong Kong

Olivia.Kwong@cityu.edu.hk

Abstract

Although direct orthographic mapping has

been shown to outperform phoneme-based

methods in English-to-Chinese (E2C) translit-

eration, it is observed that phonological con-

text plays an important role in resolving gra-

phemic ambiguity. In this paper, we investi-

gate the use of surface graphemic features to

approximate local phonological context for

E2C. In the absence of an explicit phonemic

representation of the English source names,

experiments show that the previous and next

character of a given English segment could ef-

fectively capture the local context affecting its

expected pronunciation, and thus its rendition

in Chinese.

1 Introduction

Proper names including personal names, place

names, and organization names, make up a con-

siderable part of naturally occurring texts. Per-

sonal names, in particular, do not only play an

important role in identifying an individual, but

also carry the family history, parental expecta-

tion, as well as other information about a person.

In natural language processing, the proper rendi-

tion of personal names, especially between dis-

similar languages such as Chinese and English,

often contributes significantly to machine trans-

lation accuracy and intelligibility, and cross-

lingual information retrieval. This paper ad-

dresses the problem of automatic English-

Chinese forward transliteration (referred to as

E2C hereafter) of personal names.

Unlike many other languages, Chinese names

are characteristic in their relatively free choice

and combination of characters, particularly for

given names. Such apparent flexibility does not

only account for the virtually infinite number of

authentic Chinese names, but also leads to a con-

siderable sample space when foreign names are

transliterated into Chinese. Underlying the large

sample space, however, is not entirely a random

distribution. On the one hand, there are no more

than a few hundred Chinese characters which are

used in names (e.g. Sproat et al., 1996). On the

other hand, beyond linguistic and phonetic prop-

erties, many other social and cognitive factors

such as dialect, gender, domain, meaning, and

perception, are simultaneously influencing the

naming process and superimposing on the sur-

face graphemic correspondence.

As the state-of-the-art approach, direct ortho-

graphic mapping (e.g. Li et al., 2004), making

use of graphemic correspondence between Eng-

lish and Chinese directly, has been shown to out-

perform phoneme-based methods (e.g. Virga and

Khudanpur, 2003). In fact, transliteration of for-

eign names into Chinese is often based on the

surface orthographic forms, as exemplified in the

transliteration of Beckham, where the supposedly

silent h in “ham” is taken as pronounced, result-

ing in 汉姆 han4-mu3 in Mandarin Chinese and

咸 haam4 in Cantonese
1
.

However, as we have observed, there is con-

siderable graphemic ambiguity in E2C, where an

English segment might correspond to different

Chinese segments. Such multiple mappings, to a

large extent, is associated with the phonological

context embedding the English segment, thus

affecting its expected pronunciation. Hence, if

such phonological context could be considered in

1
 Mandarin names are shown in simplified Chinese

characters and transcribed in Hanyu Pinyin, while

Cantonese names are shown in traditional Chinese

characters and transcribed in Jyutping published by

the Linguistic Society of Hong Kong.

186

the transliteration model, some of the graphemic

ambiguity could be resolved. However, instead

of going for an explicit phonemic representation,

which might introduce an extra step for error

propagation, in the current study we investigate

the usefulness of surface graphemic features for

approximating the local phonological context in

E2C. Experiments show that the previous and

next character of a given segment could effec-

tively capture the local phonological context and

improve transliteration accuracy.

A short note on terminology before we move

on: We use “segment” to refer to a minimal gra-

phemic transliteration unit in the names. For

instance, in the data, the name Amyx is translit-

erated as 阿米克斯 a1-mi3-ke4-si1, the graph-

eme pairs are <a, 阿>, <my, 米>, and <x, 克斯>.

There are three English segments: “a”, “my” and

“x”; and three Chinese segments: 阿, 米 and 克

斯. A segment may or may not correspond to

exactly a syllable, although it often does.

In Section 2, we will briefly review some re-

lated work. In Section 3, we will discuss some

observations on graphemic ambiguity in E2C.

The proposed method will be presented in Sec-

tion 4. Experiments will be reported in Section 5,

with results discussed in Section 6, followed by a

conclusion in Section 7.

2 Related Work

There are basically two categories of work on

machine transliteration. On the one hand, vari-

ous alignment models are used for acquiring

transliteration lexicons from parallel corpora and

other resources (e.g. Lee et al., 2006; Jin et al.,

2008; Kuo and Li, 2008). On the other hand,

statistical transliteration models are built for

transliterating personal names and other proper

names, such as by means of noisy channel mod-

els or direct models amongst others, phoneme-

based (e.g. Knight and Graehl, 1998; Virga and

Khudanpur, 2003), or grapheme-based (e.g. Li et

al., 2004), or a combination of them (Oh and

Choi, 2005), or based on phonetic (e.g. Tao et al.,

2006; Yoon et al., 2007) and semantic (e.g. Li et

al., 2007) features.

Li et al. (2004), for instance, used a Joint

Source-Channel Model under the direct ortho-

graphic mapping (DOM) framework, skipping

the middle phonemic representation in conven-

tional phoneme-based methods, and modelling

the segmentation and alignment preferences by

means of contextual n-grams of the translitera-

tion units. Their method was shown to outper-

form phoneme-based methods and those based

on the noisy channel model.

The n-gram model used in Li et al. (2004) was

based on previous local context of grapheme

pairs. However, as we are going to show in Sec-

tion 3, contexts on both sides of a segment are

important in determining the actual rendition of

it in Chinese. In addition, graphemic ambiguity

could in part be resolved by means of the phono-

logical context embedding the segment. Hence

in the current study, we propose a method modi-

fied from the Joint Source-Channel Model to

take into account contexts on both sides of a

segment, and to approximate local phonological

context by means of surface graphemic features.

3 Some Observations

In this section, we will quantitatively analyse

some properties of E2C based on our data, and

show the importance of considering neighbour-

ing context on both sides of a certain segment, as

well as the possibility of approximating phono-

logical properties graphemically.

3.1 Dataset

The data used in the current study are based on

the English-Chinese (EnCh) training and devel-

opment data provided by the organisers of the

NEWS 2009 Machine Transliteration Shared

Task. There are 31,961 English-Chinese name

pairs in the training set, and 2,896 English-

Chinese name pairs in the development set. The

data were manually cleaned up and aligned with

respect to the correspondence between English

and Chinese segments, e.g. Aa/l/to 阿 /尔 /托 .

The analysis in this section is based on the train-

ing set.

The Chinese transliterations in the data basi-

cally correspond to Mandarin Chinese pronun-

ciations of the English names, as used by media

in Mainland China (Xinhua News Agency, 1992).

Note that transliterations for English names

could differ considerably in Chinese, depending

on the dialect in question. Names transliterated

according to Mandarin Chinese pronunciations

are very different from those according to Can-

tonese pronunciations, for instance. Translitera-

tions used in Mainland China are also different

from those used in Taiwan region, despite both

are based on Mandarin Chinese. A well cited

example is a syllable initial /d/ may surface as in

Baghdad 巴格达 ba1-ge2-da2, but the syllable

final /d/ is not represented. This is true for trans-

literation based on Mandarin Chinese pronuncia-

187

tions. For Cantonese, however, it is different

since ending stops like –p, –t and –k are allowed

in Cantonese syllables. Hence the syllable final

/d/ in Baghdad is already captured in the last syl-

lable of巴格達 baa1-gaak3-daat6 in Cantonese.

Such phonological properties of Mandarin

Chinese might also account for the observation

that extra syllables are often introduced for cer-

tain consonant segments in the middle of an Eng-

lish name, as in Hamilton, transliterated as 汉密

尔顿 han4-mi4-er3-dun4 in Mandarin Chinese

(c.f. 咸美頓 haam4-mei5-deon6 in Cantonese);

and Beckham, transliterated as 贝克汉姆 bei4-

ke4-han4-mu3 in Mandarin Chinese (c.f. 碧咸

bik1-haam4 in Cantonese).

3.2 Graphemic Ambiguity

Table 1 quantitatively describes the training data.

On average each English name has around 3.14

segments, or transliteration units. On average

each English segment has around 1.7 different

renditions in Chinese. On the other hand, al-

though the number of unique Chinese segments

is just a few hundred, on average one Chinese

segment could correspond to about 10 different

English segments. This suggests that English-

Chinese graphemic segment correspondence

could be quite ambiguous. Further analysis is

therefore needed to see if any systematic patterns

could be found among such ambiguity.

Unique English names 31,822

Total English segments 99,930

Unique English segments 2,822

Unique Chinese segments 458

Unique grapheme pairs 4,750

Table 1. Quantitative Aspects of the Data

Assume transliteration pair mappings are in

the form <ek, {ck1,ck2,…,ckn}>, where ek stands

for the kth unique English segment, and

{ck1,ck2,…,ckn} for the set of n unique Chinese

segments observed for it in the data. It was

found in the training data that n varies from 1 to

15, while 32.2% of the distinct English segments

have multiple grapheme correspondence. Table 2

shows the degree of graphemic ambiguity with

illustrative examples. Some of the ambiguity,

however, is the result of homophones. The effect

of homophones (whether or not tones are taken

into account) in E2C transliteration is worth

more in-depth investigation, but it is beyond the

scope of the current study.

Examples

n Proportion English

Segment

Chinese

Segments
Source Name Transliteration

内 nei4 Abernathy 阿伯内内内内西

娜 na4 Adamina 阿达米娜娜娜娜

尼 ni2 Cranage 克拉尼尼尼尼奇

拿 na2 Buonaparte 波拿拿拿拿巴

瑙 nao3 Kenall 克瑙瑙瑙瑙尔

纳 na4 Stranahan 斯特拉纳纳纳纳汉

≥5 4.8% na

诺 nuo4 Widnall 威德诺诺诺诺尔

丹 dan1 Lafontain 拉方丹丹丹丹

坦 tan3 Stainton 斯坦坦坦坦顿

廷 ting2 Sartain 沙廷廷廷廷
4 2.9% tain

顿 dun4 Chastain 查斯顿顿顿顿

兰 lan2 Granberg 格兰兰兰兰伯格

朗 lang3 Francine 佛朗朗朗朗辛 3 7.3% ran

伦 lun2 Karran 卡伦伦伦伦

蒂 di4 Christy 克里斯蒂蒂蒂蒂
2 17.2% ty

太 tai4 Style 斯太太太太尔

Angie 安吉吉吉吉
1 67.8% gie 吉 ji2

Cowgiel 考吉吉吉吉尔

Table 2. Graphemic Ambiguity of the Data

188

The other multiple correspondences are never-

theless genuine ambiguity. The same English

graphemic segment, depending on its pronuncia-

tion within the name, could be rendered in vari-

ous Chinese segments of very different pronun-

ciations. To determine the expected pronuncia-

tion of the ambiguous English segment, however,

the phonological context embedding the segment

has an important role to play. For instance, the

graphemic segment “na”, when appearing at the

end of a name, is often pronounced as /na/ and

rendered as 娜 na4, especially for female names.

But when it is in the middle of a name, and espe-

cially before “th”, it is often pronounced as /nei/

and rendered as 内 nei4. Similarly, the segment

“ty” is often pronounced as /ti/ at the end of a

name and transliterated as 蒂 di4. On the other

hand, if it is in the middle of a name, after an “s”

or in front of “le” or “re”, it is often pronounced

as /tai/ and therefore transliterated as 太 tai4.

Take another segment “le” as an example. It

is found to correspond to as many as 15 different

Chinese segments, including 利 li4, 勒 le4, 历 li4,

尔 er3, 莱 lai2, 里 li3, etc. When “le” appears at

the end of a name, all but a few cases are pro-

nounced as /l/ and rendered as 尔 er3, particu-

larly when it follows “a”, e.g. Dale 戴尔 dai4-

er3 and Dipasquale 迪帕斯奎尔 di2-pa4-si1-

kui2-er3. Exceptions are when “le” at the end of

a name follows “r”, where it is often rendered as

利 li4 instead. On the other hand, when “le” ap-

pears at the beginning of a name where the

vowel is often prominently pronounced, it is usu-

ally rendered as 勒 le4 or 莱 lai2, e.g. Lepke 莱

普克 lai2-pu3-ke4, except when it is followed by

the vowel “o”, where it is then often transliter-

ated as 利 li4, e.g. Leonor 利奥诺 li4-ao4-nuo4.

When “le” appears in the middle of a name, the

transliteration is nevertheless more variable.

Still it is remarkable that “le” is transliterated as

历 li4 when it is followed by “c” or “x”, e.g.

Alex 阿历克斯 a4-li4-ke4-si1.

Such observations thus suggest two important

points for E2C. First, contexts on both sides of

a given segment do play a role in determining its

likely rendition in Chinese. Second, the phono-

logical context is important for determining the

expected pronunciation of an English segment

given its position in a name. Hence we propose

a method, making use of contexts on both sides

of a segment, to approximate the local phono-

logical context of a segment via surface gra-

phemic features.

4 Proposed Method

The Joint Source-Channel Model in Li et al.

(2004) making use of direct orthographic map-

ping and a bigram language model for the seg-

ment pairs (or token pairs in their terms) is as

follows:

∏
=

−− ><><≈

><><><=

=

K

k

kkkk

kk

kk

ceceP

cececeP

ccceeePCEP

1

11

2211

2121

),|,(

),,...,,,,(

),...,,,,...,,(),(

where E refers to the English source name and C

refers to the transliterated Chinese name. With K

segments aligned between E and C, ek and ck re-

fer to the kth English segment and its corre-

sponding Chinese segment respectively.

While we have grounds for orthographic map-

ping as mentioned in the introduction, there is

some modification we hope to make to the above

model. As pointed out in the last section, local

contexts on both sides of a given segment should

be important and useful for modelling the con-

text embedding the segment, which in turn could

help determine its expected pronunciation. In

addition, the phonological environment might be

sufficiently represented by a neighbouring pho-

neme instead of even a syllable. Thus we take

the last character from the previous segment and

the first character of the next segment (instead of

the whole neighbouring segment) into account,

irrespective of their corresponding Chinese seg-

ments. This could be considered an attempt to

approximate the local phonological context of a

given segment by means of surface graphemic

features, even if we do not go for an explicit

phonemic representation of the source name.

Hence we propose to make use of bigrams in

both directions with equal weighting, and assign

a score, Score(E,C), to a transliteration candidate

as below:

∏
=

+− ><><
K

k

kkkkkk efccePelcceP
1

11))(|,())(|,(

where lc(ek-1) refers to the last character of the

previous English segment, and fc(ek+1) refers to

the first character of the next English segment.

In the rest of this paper, we will refer to this

method as GAP, which stands for Graphemic

Approximation of Phonological context.

189

5 Experiments

The 31,961 English-Chinese name pairs from the

NEWS shared task training set were used for

training, and the 2,896 names in the development

set were used for testing. The data were first

manually cleaned up and aligned with respect to

the correspondence between English segments

and Chinese segments.

5.1 Segmentation of Test Names

Each test name was first segmented. All possible

segmentations were obtained based on the unique

English segments obtained from the manual

alignment above.

The graphemic units are made case-insensitive.

When finding all possible graphemic segmenta-

tions of the English source names, segments with

length 1 are only allowed if no longer segment

with that initial letter followed by a vowel is pos-

sible. For example, while “a”, “k”, “l”, “o”, “v”,

“s” and “y” are all observed segments in the

training data, when computing the transliteration

for the test name Akalovsky, only two of the

possible segmentations, A/ka/lo/v/s/ky and

A/kal/o/v/s/ky, were considered while the rest

involving more single-letter segments were ig-

nored. This is justified by three reasons. First,

the more alternative segmentations, the more

alternative transliteration candidates are to be

evaluated. This is computationally expensive,

and many alternatives are in fact quite unlikely.

Second, single-letter segments are redundant if a

longer segment is possible. On the one hand,

transliterations are usually based on a consonant-

vowel combination as a unit. A consonant will

only be on its own as a segment if it occurs

among a consonant cluster, which has no direct

syllable correspondence in Chinese. For exam-

ple, it is useless to single out the second “k” in

Akalovsky as the longer segment “ka” is pro-

nounceable anyway, unlike in names with con-

sonant clusters like Akst. On the other hand, in

the cases of doubling consonants like Ross, both

“s” and “ss” will correspond to similar sounds.

Third, the n-gram models favour transliterations

with fewer segments anyway, so the segmenta-

tions with more single-letter segments will be

less probable in any case.

The possible segmentations obtained were

then ranked by a method similar to GAP. The

score for each segmentation candidate S,

Score(S), is computed by:

∏
=

+−

K

k

kkkk sfcsPslcsP
1

11))(|())(|(

where sk is the kth segment in a name, lc(sk-1) is

the last character of the previous segment and

fc(sk+1) is the first character of the next segment.

In the experiments, we selected the top N seg-

mentation candidates for use in subsequent steps,

where N was varied from 1 to 3.

5.2 Transliteration Candidates

With the top N segmentation candidates, the

transliteration candidates were generated by

looking up the grapheme pairs obtained from

manual alignment with frequency over a certain

threshold f. We tested with f ≥ 3 and f ≥ 5. If

there is no grapheme pair for a certain segment

above the threshold, all pairs below the threshold

would be considered. All combinations obtained

were then subject to ranking by the GAP translit-

eration method.

5.3 Testing

The transliteration candidates were evaluated and

ranked by the GAP method. For comparison, we

also run the Joint Source-Channel Model (JSCM)

described in Li et al. (2004) on the test data. In

addition, we also tested a variation of GAP,

called GAP-s, where the neighbouring characters

are replaced by the neighbouring segments in the

computation of the scores, that is, lc(ek-1) is re-

place by <ek-1,ck-1> and fc(ek+1) is replaced by

<ek+1,ck+1>. Note that similar changes were ap-

plied to the ranking of the source name segmen-

tations for both methods accordingly.

System performance was measured by the

Mean Reciprocal Rank (MRR) (Kantor and

Voorhees, 2000), as well as the Word Accuracy

in Top-1 (ACC) and Fuzziness in Top-1 (Mean

F-score) used in the NEWS shared task. Only

the top 10 transliteration candidates produced by

the systems were considered.

6 Results and Discussion

6.1 Candidates Filtering

As mentioned in the last section, candidates were

filtered in two stages. First, when the source

English name was segmented, only the top N

segmentation candidates were retained for sub-

sequent processes. Second, when transliteration

candidates were generated, only those grapheme

pairs with frequency ≥ f, where applicable, were

considered for the candidates. Table 3 shows the

190

results of GAP with various combinations of N

and f.

 f \ N 1 2 3

ACC 0.6357 0.6443 0.6450

Mean F 0.8558 0.8600 0.8598

MRR

3

0.6961 0.7279 0.7319

ACC 0.6336 0.6423 0.6430

Mean F 0.8547 0.8597 0.8595

MRR

5

0.6910 0.7233 0.7280

Table 3. Performance of GAP

As seen in Table 3, although the top 1 seg-

mentation candidate could already achieve a cer-

tain performance level, taking the top 3 segmen-

tation candidates could nevertheless considerably

improve the MRR. This apparently suggests that

the source name segmentation step could have

significantly affected the overall performance of

transliteration. Taking more segmentation can-

didates into account could help raise some cor-

rect transliterations to a higher rank, but there

was not much improvement in terms of the accu-

racy at the top 1 position.

In terms of the grapheme pair frequency, set-

ting the threshold at 3 gave only slightly better

results than setting it at 5. A possible reason is

that about 70% of all unique grapheme pairs

have frequency below 5, and out of these over

47% only have single correspondence. In other

words, there are a lot of grapheme pairs of low

frequency, and for those ambiguous English seg-

ments, the distribution of their corresponding

Chinese segments could be relatively uneven.

Hence the following comparison between

various transliteration methods was based on the

combination of N=3 and f ≥ 3.

6.2 System Performance

To show the effectiveness of our proposed

method, GAP was compared with JSCM and

GAP-s. Table 4 shows the results of the three

methods.

 JSCM GAP-s GAP

ACC 0.5760 0.6174 0.6450

Mean F 0.8309 0.8507 0.8598

MRR 0.6881 0.7175 0.7319

Table 4. System Performance Comparison

As evident from Table 4, system GAP-s out-

performed JSCM. The accuracy at top 1 position

is much improved, thus boosting the MRR too.

This improvement therefore supports our hy-

pothesis that contexts on both sides of a given

segment are important for determining its rendi-

tion in Chinese, where part of the graphemic am-

biguity could be successfully resolved. Mean-

while, system GAP further improves the results

from GAP-s, bringing ACC up to 0.6450 and

MRR to 0.7319. This shows that the phonologi-

cal context could be better captured, though only

approximately, by means of the last character of

the previous segment and the first character of

the next segment, instead of the whole

neighbouring segments. This is because the

phonological context is often most closely re-

lated to the neighbouring phonemes instead of a

whole syllable.

6.3 Examples

In this section we show two examples from the

experimental outcomes to illustrate the useful-

ness of the GAP method.

The name Abercromby, according to the gold

standard, should be transliterated as 阿伯克龙比

a4-bo2-ke4-long2-bi3. This transliteration came

third in the JSCM system, whose top first and

second candidates were 阿伯克罗姆比 a4-bo2-

ke4-luo2-mu3-bi3 and阿贝尔克罗姆比 a4-bei4-

er3-ke4-luo2-mu3-bi3 respectively. On the con-

trary, the expected transliteration came first in

the GAP system.

The top 3 source name segmentation candi-

dates for both methods are shown in Table 5.

The expected segmentation has already been

identified as the best candidate in GAP, while it

came third in JSCM.

Top JSCM GAP

1 a/ber/c/ro/m/by a/ber/c/rom/by

2 a/be/r/c/ro/m/by a/ber/c/ro/m/by

3 a/ber/c/rom/by a/be/r/c/rom/by

Table 5. Segmentations for Abercromby

When it comes to the evaluation of the trans-

literation candidates, the longer candidates could

even score higher than the expected outcome in

JSCM. The statistical data show that the bigram

c/克+ro/罗 is far more likely than c/克+rom/龙,

but P(<ek,ck>=<rom,龙> | fc(ek+1)=b) is much

stronger than P(<ek,ck>=<m,姆 > | fc(ek+1)=b).

Hence, taking the character on both sides of a

segment, GAP managed to rank 阿伯克龙比

highest.

Another example is the name Regelson, which

is transliterated as 里格尔森 li3-ge2-er3-sen1 in

the gold standard. The expected transliteration is

191

ranked 8th in JSCM and 2nd in GAP. Although

P(<ek,ck>=<ge,杰> | <ek-1,ck-1>=<re,里>) is much

higher than P(<ek,ck>=<ge,格> | <ek-1,ck-1>=<re,

里>), when taking the next segment <l,尔> into

account, the likelihood of <ge,杰> is lowered.

Hence the expected transliteration is ranked

higher in GAP.

6.4 Error Analysis

As the proposed method stands, errors could

have been propagated from two steps. The first

is the source name segmentation step. If it hap-

pens that the top segmentation candidates are

already wrong to start with, there is no way to

reach the expected transliteration at all. Hence it

is even more important to maintain a high accu-

racy for the segmentation step. The other error-

propagation step is certainly when transliteration

candidates are evaluated. The results for this

step often heavily rely on the training data. If it

happens that the grapheme pair distributions are

somewhat skewed, particular Chinese segments

would be preferred irrespective of relevant lin-

guistic or other factors. On the other hand, if

many homophones are used for a particular Eng-

lish segment, the chance of reaching the expected

transliteration with one of the homophones is

again loosened. More on this will be discussed

in the next section.

For the latter error-propagation step, our at-

tempt to make use of contexts on both sides of a

segment has been shown to be able to improve

the results. To see how much of the errors is at-

tributable to the segmentation step, we roughly

made an estimation by comparing the length of

the top 1 candidates given in JSCM and GAP

with the gold standard. It was found that 17.8%

and 14.2% of the first candidates in JSCM and

GAP respectively do not match the length of the

gold standard. More detailed analysis of the

segmentation results is in progress.

6.5 Current Limitations and Future Work

Our current treatment of neighbouring context

and graphemic approximation of phonological

context is shown to outperform pure DOM based

on previous context only. Nevertheless, there are

several directions of work which would require

more investigation to further improve E2C per-

formance.

First, the source name segmentation step needs

further improvement to minimise error propaga-

tion from an early step. Phonological knowledge

is obviously important in this regard as how a

given English name should be segmented and

pronounced is determined by its phonological

context. Even without an explicit phonemic rep-

resentation of the source names, more could be

done in terms of modelling the phonological con-

text via the surface graphemes.

Second, relating to the above, foreign names

of different origins often have very different

phonological properties leading to different pro-

nunciations for the same orthographic forms.

The silent h in Beckham mentioned earlier is one

example, even though Chinese transliterations

are often based on surface orthographic proper-

ties. Other problematic cases could be from lan-

guages like Russian and German where there are

relatively more consonant clusters. For instance,

the segment “scho” is often transliterated as one

syllable (e.g. 绍 shao4, 肖 xiao4, or 舍 she4) but

the segment “stro” often leads to three syllables

(e.g. 斯特罗 si1-te4-luo2). It is therefore impor-

tant to incorporate more phonological knowledge

into the transliteration model, not only to gener-

ate more reliable and acceptable transliteration

candidates, but also to reduce effort in evaluating

phonologically invalid segmentation candidates

and syllable structures, thus making the task

computationally less expensive.

Third, as one of our separate ongoing studies

shows, homophones are not only abundant in

Chinese language per se, but also in E2C trans-

literation. The situation is particularly salient in

Chinese transliterations based on Cantonese pro-

nunciations. For example, while some names

might have two transliterations with different

pronunciations, like Jackson as 積遜 zik1-seon3

or 積臣 zik1-san4, the same name might also be

rendered in two forms with a different character

having the same pronunciation, such as Adam as

亞當 or 阿當 (both pronounced as aa3-dong1 in

Cantonese). Two transliterations for the same

name might have the same sound but different

tones, e.g. Ashley as 艾殊利 aai6-syu4-lei6 or 艾

舒利 aai6-syu1-lei6. We therefore attempt to

model the English-Chinese segment correspon-

dence via an intermediate representation of the

phonetic transcription of the Chinese characters.

Preliminary results are reported in Kwong (2009).

Although it happens that only one transliteration

is given for each name in the gold standard data

used in this study, the variability of E2C in real-

ity is evident. It is therefore important for sys-

tems to be able to accommodate acceptable

transliteration alternatives, particularly for trans-

literation extraction and information retrieval.

192

Fourth, given that tonal patterns could help

distinguish some homophone ambiguity, the ef-

fect of the tonal factor and its potential associa-

tion with the pitch and accent in the English

names is worth further investigation.

7 Conclusion

Hence in this paper, we have reported our work

on approximating phonological context for E2C

with surface graphemic features. This is based

on the observation that certain graphemic ambi-

guity is closely associated with the local contexts

on both sides of a given segment, the phonologi-

cal properties of which often determine its ex-

pected pronunciation. Experiments have shown

that in the absence of an explicit phonemic repre-

sentation of the English source names, the previ-

ous and next character of a given segment could

be effectively employed to approximate the local

phonological context affecting the rendition of a

given segment in Chinese. Our proposed method

GAP gives better results than the conventional

JSCM which only makes use of previous context,

and GAP-s which considers the whole

neighbouring segments. Future work includes

improving the source name segmentation step to

minimise error propagation from an early stage,

incorporating other factors like name origin and

special phonological properties of different

source languages into the transliteration model,

as well as effectively handling homophones and

tonal patterns in E2C transliteration.

Acknowledgements

The work described in this paper was substan-

tially supported by a grant from City University

of Hong Kong (Project No. 7002203).

References

Jin, C., Na, S-H., Kim, D-I. and Lee, J-H. (2008)

Automatic Extraction of English-Chinese Translit-

eration Pairs using Dynamic Window and Token-

izer. In Proceedings of the Sixth SIGHAN Work-

shop on Chinese Language Processing (SIGHAN-

6), Hyderabad, India, pp.9-15.

Kantor, P.B. and Voorhees, E.M. (2000) The TREC-

5 Confusion Track: Comparing Retrieval Methods

for Scanned Text. Information Retrieval, 2(2-3):

165-176.

Knight, K. and Graehl, J. (1998) Machine Translit-

eration. Computational Linguistics, 24(4):599-612.

Kuo, J-S. and Li, H. (2008) Mining Transliterations

from Web Query Results: An Incremental Ap-

proach. In Proceedings of the Sixth SIGHAN

Workshop on Chinese Language Processing

(SIGHAN-6), Hyderabad, India, pp.16-23.

Kwong, O.Y. (2009) Homophones and Tonal Pat-

terns in English-Chinese Transliteration. To ap-

pear in Proceedings of ACL-IJCNLP 2009, Singa-

pore.

Lee, C-J., Chang, J.S. and Jang, J-S. R. (2006) Ex-

traction of transliteration pairs from parallel cor-

pora using a statistical transliteration model. In-

formation Sciences, 176:67-90.

Li, H., Zhang, M. and Su, J. (2004) A Joint Source-

Channel Model for Machine Transliteration. In

Proceedings of the 42nd Annual Meeting of the As-

sociation for Computational Linguistics (ACL

2004), Barcelona, Spain, pp.159-166.

Li, H., Sim, K.C., Kuo, J-S. and Dong, M. (2007)

Semantic Transliteration of Personal Names. In

Proceedings of the 45th Annual Meeting of the As-

sociation for Computational Linguistics (ACL

2007), Prague, Czech Republic, pp.120-127.

Oh, J-H. and Choi, K-S. (2005) An Ensemble of

Grapheme and Phoneme for Machine Translitera-

tion. In R. Dale, K-F. Wong, J. Su and O.Y.

Kwong (Eds.), Natural Language Processing –

IJCNLP 2005. Springer, LNAI Vol. 3651, pp.451-

461.

Sproat, R., Shih, C., Gale, W. and Chang, N. (1996)

A stochastic finite-state word-segmentation algo-

rithm for Chinese. Computational Linguistics,

22(3): 377-404.

Tao, T., Yoon, S-Y., Fister, A., Sproat, R. and Zhai, C.

(2006) Unsupervised Named Entity Transliteration

Using Temporal and Phonetic Correlation. In Pro-

ceedings of the 2006 Conference on Empirical

Methods in Natural Language Processing (EMNLP

2006), Sydney, Australia, pp.250-257.

Virga, P. and Khudanpur, S. (2003) Transliteration of

Proper Names in Cross-lingual Information Re-

trieval. In Proceedings of the ACL2003 Workshop

on Multilingual and Mixed-language Named Entity

Recognition.

Xinhua News Agency. (1992) Chinese Translitera-

tion of Foreign Personal Names. The Commercial

Press.

Yoon, S-Y., Kim, K-Y. and Sproat, R. (2007) Multi-

lingual Transliteration Using Feature based Pho-

netic Method. In Proceedings of the 45th Annual

Meeting of the Association for Computational Lin-

guistics (ACL 2007), Prague, Czech Republic,

pp.112-119.

193

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 194–201,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Czech Named Entity Corpus and SVM-based Recognizer

Jana Kravalová
Charles University in Prague

Institute of Formal and Applied Linguistics
kravalova@ufal.mff.cuni.cz

Zdeněk Žabokrtský
Charles University in Prague

Institute of Formal and Applied Linguistics
zabokrtsky@ufal.mff.cuni.cz

Abstract

This paper deals with recognition of
named entities in Czech texts. We present
a recently released corpus of Czech sen-
tences with manually annotated named en-
tities, in which a rich two-level classifica-
tion scheme was used. There are around
6000 sentences in the corpus with roughly
33000 marked named entity instances. We
use the data for training and evaluating a
named entity recognizer based on Support
Vector Machine classification technique.
The presented recognizer outperforms the
results previously reported for NE recog-
nition in Czech.

1 Introduction

After the series of Message Understanding
Conferences (MUC; (Grishman and Sundheim,
1996)), processing of named entities (NEs) be-
came a well established discipline within the NLP
domain, usually motivated by the needs of Infor-
mation Extraction, Question Answering, or Ma-
chine Translation. For English, one can find liter-
ature about attempts at rule-based solutions for the
NE task as well as machine-learning approaches,
be they dependent on the existence of labeled data
(such as CoNLL-2003 shared task data), unsuper-
vised (using redundancy in NE expressions and
their contexts, see e.g. (Collins and Singer, 1999))
or a combination of both (such as (Talukdar et al.,
2006), in which labeled data are used as a source
of seed for an unsupervised procedure exploiting
huge unlabeled data). A survey of research on
named entity recognition is available in (Ekbal and
Bandyopadhyay, 2008).

There has been considerably less research
done in the NE field in Czech, as discussed in
(Ševčı́ková et al., 2007b). Therefore we focus on
it in this paper, which is structured as follows. In

Section 2 we present a recently released corpus
of Czech sentences with manually annotated in-
stances of named entities, in which a rich classi-
fication scheme is used. In Section 3 we describe
a new NE recognizer developed for Czech, based
on the Support Vector Machine (SVM) classifi-
cation technique. Evaluation of such approach is
presented in Section 4. The summary is given in
Section 5.

2 Manually Annotated Corpus

2.1 Data Selection
We have randomly selected 6000 sentences
from the Czech National Corpus1 from the re-
sult of the query ([word=".*[a-z0-9]"]
[word="[A-Z].*"]). This query makes the
relative frequency of NEs in the selection higher
than the corpus average, which makes the sub-
sequent manual annotation much more effective,
even if it may slightly bias the distribution of NE
types and their observed density.2

2.2 Annotation NE Instances with Two-level
NE Classification

There is no generally accepted typology of Named
Entities. One can see two trends: from the view-
point of unsupervised learning, it is advantageous
to have just a few coarse-grained categories (cf.
the NE classification developed for MUC confer-
ences or the classification proposed in (Collins
and Singer, 1999), where only persons, locations,
and organizations were distinguished), whereas
those interested in semantically oriented applica-
tions prefer more informative (finer-grained) cat-
egories (e.g. (Fleischman and Hovy, 2002) with

1http://ucnk.ff.cuni.cz
2The query is trivially motivated by the fact that NEs in

Czech (as well as in many other languages) are often marked
by capitalization of the first letter. Annotation of NEs in a cor-
pus without such selection would lower the bias, but would
be more expensive due to the lower density of NE instances
in the annotated material.

194

Types of NE

a - Numbers in addresses

c - Bibliographic items

g - Geographical names

i - Institutions

m - Media names

n - Specific number usages

o - Artifact names

p - Personal names

q - Quantitative expressions

t - Time expressions

ah - street numbers
at - phone/fax numbers

az - zip codes

cb - volume numbers
cn - chapt./sect./fig. numbers

cp - page numbers
cr - legisl. act numbers

cs - article titles

gc - states
gh - hydronyms

gl - nature areas / objects
gp - planets, cosmic objects

gq - urban parts
gr - territorial names

gs - streets, squares
gt - continents

gu - cities/towns
g_ - underspecified

ia - conferences/contests
ic - cult./educ./scient. inst.

if - companies, concerns...
io - government/political inst.

i_ - underspecified

mi - internet links
mn - periodical

mr - radio stations
mt - TV stations

na - age
nc - sport score

ni - itemizer
nm - in formula

np - part of personal name
nq - town quarter

nr - ratio
nw - flat size

n_ - underspecified

oa - cultural artifacts (books, movies)
oc - chemical

oe - measure units
om - currency units

op - products
or - directives, norms

o_ - underspecified

pb - animal names
pc - inhabitant names

pd - (academic) titles
pf - first names

pm - second names
pp - relig./myth persons

ps - surnames p_ - underspecified

qc - cardinal numbers
qo - ordinal numbers

tc - centuries
td - days

tf - feasts
th - hours

tm - months tn - minutes

tp - epochs
ts - seconds

ty - years

Figure 1: Two-level hierarchical classification of NEs used in the corpus. Note that the (detailed) NE
types are divided into two columns just because of the space reasons here.

195

eight types of person labels, or Sekine’s Extended
NE Hierarchy, cf. (Sekine, 2003)).

In our corpus, we use a two-level NE classifi-
cation depicted in Figure 1. The first level corre-
sponds to rough categories (called NE supertypes)
such as person names, geographical names etc.
The second level provides a more detailed classi-
fication: e.g. within the supertype of geographi-
cal names, the NE types of names of cities/towns,
names of states, names of rivers/seas/lakes etc.
are distinguished.3 If more robust processing is
necessary, only the first level (NE supertypes)
can be used, while the second level (NE types)
comes into play when more subtle information is
needed. Each NE type is encoded by a unique two-
character tag (e.g., gu for names of cities/towns,
gc for names of states; a special tag, such as g ,
makes it possible to leave the NE type underspec-
ified).

Besides the terms of NE type and supertype, we
use also the term NE instance, which stands for a
continuous subsequence of tokens expressing the
entity in a given text. In the simple plain-text for-
mat, which we use for manual annotations, the NE
instances are marked as follows: the word or the
span of words belonging to the NE is delimited by
symbols < and >, with the former one immediately
followed by the NE type tag (e.g. <pf John> loves
<pf Mary>).

The annotation scheme allows for the embed-
ding of NE instances. There are two types of em-
bedding. In the first case, the NE of a certain
type can be embedded in another NE (e.g., the
river name can be part of a name of a city as in
<gu Ústı́ nad <gh Labem>>). In the second case,
two or more NEs are parts of a (so-called) con-
tainer NE (e.g., two NEs, a first name and a sur-
name, form together a person name container NE
such as in <P<pf Paul> <ps Newman>>). The
container NEs are marked with a capital one-letter
tag: P for (complex) person names, T for tempo-
ral expressions, A for addresses, and C for biblio-
graphic items. A more detailed description of the
NE classification can be found in (Ševčı́ková et al.,
2007b).

3Given the size of the annotated data, further subdivi-
sion into even finer classes (such as persons divided into cat-
egories such as lawyer, politician, scientist used in (Fleis-
chman and Hovy, 2002)) would result in too sparse annota-
tions.

2.3 Annotated Data Cleaning
After collecting all the sentences annotated by the
annotators, it was necessary to clean the data in or-
der to improve the data quality. For this purpose,
a set of tests was implemented. The tests revealed
wrong or “suspicious” spots in the data (based e.g.
on the assumption that the same lemma should
manifest an entity of the same type in most its oc-
currences), which were manually checked and cor-
rected if necessary. Some noisy sentences caused
e.g. by wrong sentence segmentation in the origi-
nal resource were deleted; the final size of the cor-
pus is 5870 sentences.

2.4 Morphological Analysis of Annotated
Data

The sentences have been enriched with morpho-
logical tags and lemmas using Jan Hajič’s tagger
shipped with Prague Dependency Treebank 2.0
(Hajič et al., 2006) integrated into the TectoMT
environment (Žabokrtský et al., 2008). Motivation
for this step was twofold

• Czech is a morphologically rich language,
and named entities might be subject to
paradigms with rich inflection too. For
example, male first name Tomáš (Thomas)
migh appear also in one of the following
forms: Tomáše, Tomášovi, Tomáši, Tomášem,
Tomášové, Tomášům . . . (according to gram-
matical case and number), which would make
the training data without lemmatization much
sparser.

• Additional features (useful for SVM as well
as for any other Machine Learning approach)
can be mined from the lemma and tag se-
quences, as shown in Section 3.2.

2.5 Public Data Release
Manually annotated and cleaned 6000 sentences
with roughly 33000 named entities were released
as Czech Named Entity Corpus 1.0. The corpus
consists of manually annotated sentences and mor-
phological analysis in several formats: a simple
plain text format, a simple xml format, a more
complex xml format based on the Prague Markup
Language (Pajas and Štěpánek, 2006) and contain-
ing also the above mentioned morphological anal-
ysis, and the html format with visually highlighted
NE instances.

For the purposes of supervised machine learn-
ing, division of data into training, development

196

and evaluation subset is provided in the corpus.
The division into training, development and evalu-
ation subsets was made by random division of sen-
tences into three sets, in proportion 80% (training),
10% (development) and 10% (evaluation), see Ta-
ble 1. Other basic quantitative properties are sum-
marized in Table 2 and Table 3.

The resulting data collection, called
Czech Named Entity Corpus 1.0, is
now publicly available on the Internet at
http://ufal.mff.cuni.cz/tectomt.

Set #Sentences #Words #NE instances
train 4696 119921 26491
dtest 587 14982 3476
etest 587 15119 3615
total 5870 150022 33582

Table 1: Division of the annotated corpus into
training, development test, and evaluation test sets.

Lenght #Occurrences Proportion
one-word 23057 68.66%
two-word 6885 20.50%
three-word 1961 5.84%
longer 1679 5.00%
total 33582 100.00%

Table 2: Occurrences of NE instances of different
length in the annotated corpus.

3 SVM-based Recognizer

3.1 NER as a classification task
In this section, we formulate named entity recog-
nition as a classification problem. The task of
named entity recognition as a whole includes sev-
eral problems to be solved:

• detecting “basic” one-word, two-word and
multiword named entities,

• detecting complex entities containing other
entities (e.g. an institution name containing
a personal name).

Furthermore, one can have different require-
ments on what a correctly recognized named entity
is (and train a separate recognizer for each case):

• an entity whose span and type are correctly
recognized,

NE type #Occurrences Proportion
ps 4040 12.03%
pf 3072 9.15%
P 2722 8.11%
gu 2685 8.00%
qc 2040 6.07%
oa 1695 5.05%
ic 1410 4.20%
ty 1325 3.95%
th 1325 3.95%
s 1285 3.83%
gc 1107 3.30%
if 834 2.48%
io 830 2.47%
tm 559 1.66%
n 512 1.52%
f 506 1.51%

Table 3: Distribution of several most frequent NE
types in the annotated corpus.

• an entity whose span and supertype are cor-
rectly recognized,

• an entity whose span is correctly recognized
(without regard to its type).

Therefore, we subdivide the classification prob-
lem into a few subproblems. Firstly, we indepen-
dently evaluate the recognition system for one-
word named entities, for two-word named enti-
ties and for multiword named entities. For each
of these three problems, we define three tasks, or-
dered from the easiest to the most difficult:

• Named entity span recognition – all words of
named entity must be found but the type is
not relevant. For one-word entities, this re-
duces to 0/1 classification problem, that is,
each word is either marked as named entity
(1) or as regular word (0). For two-word en-
tities, this 0/1 decision is made for each cou-
ple of subsequent words (bigram) in the sen-
tence.

• Named entity supertype recognition – all
words of named entity must be found and the
supertype must be correct. This is a multi-
class classification problem, where classes
are named entity classes of the first level in
hierarchy (p, g, i, ...) plus one class
for regular words.

197

• Named entity type recognition – all words
of named entity must be found and the type
must be correct.

In our solution, a separate SVM classifier
is built for one-word named entities, two-word
named entities and three-word named entities.
Then, as we proceed through the text, we apply the
classifier on each “window” or “n-gram” of words
– one-word, two-word and three-word, classifying
the n-gram with the corresponding SVM classi-
fier. We deliberately omit named entities contain-
ing four and more words, as they represent only a
small portion of the instances (5%).

3.2 Features
Classification features which were used by the
SVM classifier(s), are as follows:

• morphological features – part of speech, gen-
der, case and number,

• orthographic features – boolean features
such as capital letter at the beginning of the
word or regular expression for time and year
,

• lists of known named entities – boolean fea-
tures describing whether the word is listed
in lists of Czech most used names and sur-
names, Czech cities, countries or famous in-
stitutions,

• lemma – some lemmas contain shortcuts de-
scribing the property of lemma, for example
“Prahou” (Prague, 7th case) would lemma-
tize to “Praha ;G” with mark “ ;G” hinting
that “Praha” is a geographical name,

• context features – similar features for pre-
ceding and following words, that is, part of
speech, gender, case and number for the pre-
ceding and following word, orthographic fea-
tures, membership in a list of known entities
and lemma hints for the preceding and fol-
lowing word.

All classification features were transformed into
binary (boolean) features, resulting in roughly
200-dimensional binary feature space.

3.3 Classifier implementation
For the classification task, we decided to use Sup-
port Vector Machine classification method. First,

this solution has been repeatedly shown to give
better scores in NE recognition in comparison to
other Machine Learning methods, see e.g. (Isozaki
and Kazawa, 2002) and (Ekbal and Bandyopad-
hyay, 2008). Second, in our preliminary experi-
ments on our data it outperformed all other solu-
tions too (based on naive Bayes, k nearest neigh-
bors, and decision trees).

As an SVM classifier, we used its CPAN Perl
implementation Algorithm-SVM.4

Technically, the NE recognizer is implemented
as a Perl module included into TectoMT, which is
a modular open source software framework for im-
plementing NLP applications, (Žabokrtský et al.,
2008).5

4 Evaluation

4.1 Evaluation metrics

We use the following standard quantities for eval-
uating performance of the presented classifier:

• precision – the number of correctly predicted
NEs divided by the number of all predicted
NEs,

• recall – the number of correctly predicted
NEs divided by the number of all NEs in the
data,

• f-score – harmonic mean of precision and re-
call.

In our opinion, simpler quantities such as accu-
racy (the percentage of correctly marked words)
are not suitable for this task, since the number
of NE instances to be found is not known in ad-
vance.6

4.2 Results

The results for SVM classifier when applied on
the evaluation test set of the corpus are summa-
rized in Table 4. The table evaluates all subtasks
as defined in Section 3.1, that is, for combination

4http://www.cpan.org/authors/id/L/LA/LAIRDM/
5One of the reasons for integrating the classifier into Tec-

toMT is the fact that it requires the input texts to be sentence-
segmented, tokenized, tagged and lemmatized; all the nec-
essary tools for such preprocessing are already available in
TectoMT.

6Counting also all non-NE words predicted as non-entities
as a success would lead to very high accuracy value without
much information content (obviously most words are not NE
instances).

198

All NEs One-word NEs Two-word NEs
P R F P R F P R F

span+type 0.75 0.62 0.68 0.80 0.71 0.75 0.68 0.62 0.65
span+supertype 0.75 0.67 0.71 0.87 0.78 0.82 0.71 0.64 0.67
span 0.84 0.70 0.76 0.89 0.80 0.84 0.76 0.69 0.72

Table 4: Summary of the SVM classifier performance (P=precision, R=recall, F=f-measure). Recogni-
tion of NEs of different length is evaluated separately. The other dimension corresponds to the gradually
released correctness requirements.

true type predicted type true type description predicted type description errors
oa x cultural artifacts (books, movies) no entity 184
ic x cult./educ./scient. inst. no entity 74
x gu no entity cities/towns 71
x P no entity personal name container 66
if x companies, concerns . . . no entity 60
x ic no entity cult./educ./scient. inst. 59
io x government/political inst. no entity 57
x ps no entity surnames 47
P x personal name container no entity 43
ps x surnames no entity 41
gu x cities/towns no entity 37
x td no entity days 35
op x products no entity 33
x pf no entity first names 31
T x time container no entity 30

Table 5: The most frequent types of errors in NE recognition made by the SVM classifier.

of subtask defined for all entities, one-word enti-
ties and two-word entities and with gradually re-
leased requirements for correctness: correct span
and correct (detailed) type, correct span and cor-
rect supertype, correct span only.

The most common SVM classification errors
are shown in Table 5.

4.3 Discussion

As we can see in Table 4, the classifier recognizes
span and type of all named entities in text with
f-measure = 0.68. This improves the results re-
ported on this data in (Ševčı́ková et al., 2007a),
which was 0.62. For one-word named entities, the
improvement is also noticeable, from 0.70 to 0.75.

In our opinion, the improvement is caused by
better feature selection on one hand. We do not
use as many classification features as the authors
of (Ševčı́ková et al., 2007a), instead we made a
preliminary manual selection of features we con-
sidered to be helpful. For example, we do not use
the whole variety of 15 Czech morphological cat-

egories for every word in context, but we use only
part of speech, gender, case and number. Also,
we avoided using features based on storing words
which occurred in training data, such as boolean
feature, which is true for words, which appeared
in training data as named entity. We tried employ-
ing such features, but in our opinion, they result in
sparsity in space searched by SVM.

It would be highly difficult to correctly compare
the achieved results with results reported on other
languages (such as f-score 88.76% achieved for
English in (Zhang and Johnson, 2003)), especially
because of different task granularity (and obvi-
ously highly different baselines). Furthermore, in
Czech the task is more complicated due to inflec-
tion: many named entities can appear in several
many different forms. For example, the Czech
capital city “Praha” appeared in these forms in
training data: Praha, Prahy, Prahou, Prahu.

Table 5 describes the most common errors made
by classifier. Clearly, the most problematic classes
are objects (oa) and institutions (ic, if, io),

199

which mostly remain unrecognized. The problem
is that, cultural artifacts like books or movies, or
institutions, tend to have quite new and unusual
names, as opposed to personal names, for which
fairly limited amount of choice exists, and cities,
which do not change and can be listed easily.

Institutions also tend to have long and com-
plicated names, for which it is especially diffi-
cult to find the ending frontier. We believe that
dependency syntax analysis (such as dependency
trees resulting from the maximum spanning tree
parser, (McDonald et al., 2005)) might provide
some clues here. By determining the head of the
clause, e.g. theatre, university, gallery and it’s de-
pendants, we might get some hints about which
words are part of the name and which are not.

Yet another improvement in overall perfor-
mance could be achieved by incorporating hyper-
nym discovery (making use e.g. of Wikipedia) as
proposed in (Kliegr et al., 2008).

5 Conclusions

We have presented a new recently published cor-
pus of Czech sentences with manually annotated
named entities with fine-grained two-level annota-
tion. We used the data for training and evaluating a
named entity recognizer based on Support Vector
Machines classification technique. Our classifier
reached f-measure 0.68 in recognizing and classi-
fying Czech named entities into 62 categories and
thus outperformed the results previously reported
for NE recognition in Czech in (Ševčı́ková et al.,
2007a).

We intend to further improve our classifier,
especially recognition of institution and object
names, by employing dependency syntax features.
Another improvement is hoped to be achieved us-
ing WWW-based ontologies.

Acknowledgments

This research was supported by MSM
0021620838, GAAV ČR 1ET101120503, and
MŠMT ČR LC536.

References
Michael Collins and Yoram Singer. 1999. Unsuper-

vised Models for Named Entity Classification. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing and Very Large
Corpora (EMNLP/VLC), pages 189–196.

Asif Ekbal and Sivaji Bandyopadhyay. 2008. Named
Entity Recognition using Support Vector Machine:
A Language Independent Approach . International
Journal of Computer Systems Science and Engineer-
ing, 4(2):155–170.

Michael Fleischman and Eduard Hovy. 2002. Fine
Grained Classification of Named Entities . In Pro-
ceedings of the 19th International Conference on
Computational Linguistics (COLING), volume I,
pages 267–273.

Ralph Grishman and Beth Sundheim. 1996. Mes-
sage Understanding Conference - 6: A Brief History.
In Proceedings of the 16th International Conference
on Computational Linguistics (COLING), volume I,
pages 466–471.

Jan Hajič, Jarmila Panevová, Eva Hajičová, Petr
Sgall, Petr Pajas, Jan Štěpánek, Jiřı́ Havelka,
Marie Mikulová, Zdeněk Žabokrtský, and Magda
Ševčı́ková. 2006. Prague Dependency Treebank
2.0.

Hideki Isozaki and Hideto Kazawa. 2002. Effi-
cient Support Vector Classifiers For Named Entity
Recognition. In Proceedings of the 19th Inter-
national Conference on Computational Linguistics
(COLING’02).

Tomas Kliegr, Krishna Chandramouli, Jan Nemrava,
Vojtech Svatek, and Ebroul Izquierdo. 2008.
Wikipedia as the premiere source for targeted hy-
pernym discovery. WBBT ECML08.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-Projective Dependency Pars-
ing using Spanning Tree Algorithms. In Proceed-
ings of Human Langauge Technology Conference
and Conference on Empirical Methods in Natural
Language Processing (HTL/EMNLP), pages 523–
530, Vancouver, BC, Canada.

Petr Pajas and Jan Štěpánek. 2006. XML-based rep-
resentation of multi-layered annotation in the PDT
2.0. In Richard Erhard Hinrichs, Nancy Ide, Martha
Palmer, and James Pustejovsky, editors, Proceed-
ings of the LREC Workshop on Merging and Layer-
ing Linguistic Information (LREC 2006), pages 40–
47, Paris, France.

Satoshi Sekine. 2003. Sekine’s Extended Named En-
tity Hierarchy. http://nlp.cs.nyu.edu/ene/.

Magda Ševčı́ková, Zdeněk Žabokrtský, and Oldřich
Krůza. 2007. Named Entities in Czech: Annotat-
ing Data and Developing NE Tagger. In Václav Ma-
toušek and Pavel Mautner, editors, Lecture Notes in
Artificial Intelligence, Proceedings of the 10th Inter-
national Conference on Text, Speech and Dialogue,
volume 4629 of Lecture Notes in Computer Science,
pages 188–195, Pilsen, Czech Republic. Springer
Science+Business Media Deutschland GmbH.

200

Partha Pratim Talukdar, Thorsten Brants, Mark Liber-
man, and Fernando Pereira. 2006. A Context Pat-
tern Induction Method for Named Entity Extraction.
In Proceedings of the 10th Conference on Com-
putational Natural Language Learning (CoNLL-X),
pages 141–148.

Magda Ševčı́ková, Zdeněk Žabokrtský, and Oldřich
Krůza. 2007. Zpracovánı́ pojmenovaných entit
v českých textech. Technical report, ÚFAL MFF
UK, Praha.

Zdeněk Žabokrtský, Jan Ptáček, and Petr Pajas. 2008.
TectoMT: Highly Modular MT System with Tec-
togrammatics Used as Transfer Layer. In Proceed-
ings of the 3rd Workshop on Statistical Machine
Translation, ACL.

Tong Zhang and David Johnson. 2003. A robust risk
minimization based named entity recognition sys-
tem. In Walter Daelemans and Miles Osborne, ed-
itors, Proceedings of CoNLL-2003, pages 204–207.
Edmonton, Canada.

201

Proceedings of the 2009 Named Entities Workshop, ACL-IJCNLP 2009, pages 202–210,
Suntec, Singapore, 7 August 2009. c©2009 ACL and AFNLP

Voted NER System using Appropriate Unlabeled Data

Asif Ekbal

Dept. of Computer Science &Engg.,
Jadavpur University, Kolkata-700032,

India
asif.ekbal@gmail.com

Sivaji Bandyopadhyay
Dept. of Computer Science &Engg.,

Jadavpur University, Kolkata-700032,
India

sivaji_cse_ju@yahoo.com

Abstract

This paper reports a voted Named Entity Rec-
ognition (NER) system with the use of appro-
priate unlabeled data. The proposed method is
based on the classifiers such as Maximum En-
tropy (ME), Conditional Random Field (CRF)
and Support Vector Machine (SVM) and has
been tested for Bengali. The system makes use
of the language independent features in the
form of different contextual and orthographic
word level features along with the language
dependent features extracted from the Part of
Speech (POS) tagger and gazetteers. Context
patterns generated from the unlabeled data us-
ing an active learning method have been used
as the features in each of the classifiers. A
semi-supervised method has been used to de-
scribe the measures to automatically select ef-
fective documents and sentences from unla-
beled data. Finally, the models have been
combined together into a final system by
weighted voting technique. Experimental re-
sults show the effectiveness of the proposed
approach with the overall Recall, Precision,
and F-Score values of 93.81%, 92.18% and
92.98%, respectively. We have shown how the
language dependent features can improve the
system performance.

1 Introduction

Named Entity Recognition (NER) is an impor-
tant tool in almost all Natural Language Process-
ing (NLP) application areas. Machine learning
(ML) approaches are more popularly used in
NER because these are easily trainable, adopt-
able to different domains and languages as well
as their maintenance are also less expensive.
Some of the very effective ML approaches used
in NER are ME (Borthwick, 1999), CRF
(Lafferty et al., 2001) and SVM (Yamada et al.,
2002). In the earlier work (Florian et al., 2003), it
has been shown that combination of several ML

models yields better performance than any single
ML model. One drawback of the ML techniques
to NLP tasks is the requirement of a large
amount of annotated data to achieve a reasonable
performance.

Indian languages are resource-constrained and
the manual preparation of NE annotated data is
both time consuming and cost intensive. It is im-
portant to decide how the system should effec-
tively select unlabeled data and how the size and
relevance of data impact the performance. India
is a multilingual country with great cultural di-
versities. Named Entity (NE) identification in
Indian languages in general and Bengali in par-
ticular is difficult and challenging as:

1. Unlike English and most of the European
languages, Bengali lacks capitalization infor-
mation, which plays a very important role in
identifying NEs.
2. Indian person names are generally found in
the dictionary as common nouns with some
specific meanings. For example, kabitA
[Kabita] is a person name and can also be
found in the dictionary as a common noun with
the meaning ‘poem’.
3. Bengali is an inflectional language provid-
ing one of the richest and most challenging sets
of linguistic and statistical features resulting in
long and complex wordforms. For example, the
person name sachin [root] can appear as sa-
chiner [inflection:-er], sachInke [inflection:-
ke], sachInbAbu [inflection: -bAbu], sachIndA
[inflection:-dA] etc. The location name kol-
kAtA [root] can appear in different wordforms
like kolkAtAr [inflection:-r], kolkAtAte [inflec-
tion:-te], kolkAtAi [inflection:-i] etc.
4. Bengali is a relatively free phrase order lan-
guage. Thus, NEs can appear in any position of
the sentence making the NER task more diffi-
cult.
5. Bengali, like other Indian languages, is a re-
source-constrained language. The annotated
corpus, name dictionaries, good morphological

202

analyzers, POS taggers etc. are not yet avail-
able in the required measure.
6. Although Indian languages have a very old
and rich literary history, technological devel-
opments are of recent origin.
7. Web sources for name lists are available in
English, but such lists are not available in Ben-
gali. This necessitates the use of transliteration
for creating such lists.
A HMM based NER system for Bengali has

been reported in Ekbal et al. (2007b), where ad-
ditional contextual information has been consid-
ered during emission probabilities and NE suf-
fixes are used for handling the unknown words.
More recently, the works in the area of Bengali
NER can be found in Ekbal et al. (2008a), and
Ekbal and Bandyopadhyay (2008b) with the CRF,
and SVM approach, respectively. Other than
Bengali, the works on Hindi can be found in Li
and McCallum (2004) with CRF and Saha et al.
(2008) with a hybrid feature set based ME ap-
proach. Various works of NER involving Indian
languages are reported in IJCNLP-08 NER
Shared Task on South and South East Asian
Languages (NERSSEAL) 1 using various tech-
niques.

2 Named Entity Recognition in Bengali

We have used a Bengali news corpus (Ekbal and
Bandyopadhyay, 2008c), developed from the
web-archive of a widely read Bengali newspaper
for NER. A portion of this corpus containing
200K wordforms has been manually annotated
with the four NE tags namely, Person, Location,
Organization and Miscellaneous. We have also
used the NE annotated data of 122K wordforms,
collected from the NERSSEAL shared task. The
shared task data was originally annotated with a
fine-grained NE tagset of twelve tags. We con-
sider only those tags that represent person, loca-
tion, organization, and miscellaneous names
(NEN [number], NEM [Measurement] and NETI
[Time]). Other tags have been mapped to the
NNE tags that represent the “other-than-NE”
category. In order to properly denote the bounda-
ries of NEs, four NE tags are further divided into
the following forms:

 B-XXX: Beginning of a multiword NE, I-
XXX: Internal of a multiword NE consisting of
more than two words, E-XXX: End of a multi-
word NE, XXX PER/LOC/ORG/MISC. For
example, the name sachin ramesh tendulkar is

1 http://ltrc.iiit.ac.in/ner-ssea-08/proc/index.html

tagged as sachin/B-PER ramesh/I-PER tendul-
kar/E-PER. The single word NE is tagged as,
PER: Person name, LOC: Location name, ORG:
Organization name and MISC: Miscellaneous
name. In the output, sixteen NE tags are replaced
with the four NE tags.

2.1 Our Approaches

Initially, we started with the development of a
NER system using an active learning method.
This is used as the baseline model. Four super-
vised NER systems based on ME, CRF and SVM
have been developed. Two different systems with
the SVM model, one using forward parsing
(SVM-F) that parses from left to right and other
using backward parsing (SVM-B) that parses
from right to left, have been developed. The
SVM system has been developed based on
(Valdimir, 1995), which perform classification
by constructing an N-dimensional hyperplane
that optimally separates data into two categories.
We have used YamCha toolkit (http://chasen-
org/~taku/software/yamcha), an SVM based tool
for detecting classes in documents and formulat-
ing the NER task as a sequential labeling prob-
lem. Here, the pairwise multi-class decision
method and polynomial kernel function have
been used. The TinySVM-0.02 classifier has been
used for classification. The C++ based CRF++
package (http://crfpp.sourceforge.net) and the
C++ based ME package 3 have been used for NER.

Performance of the supervised NER models is
limited in part by the amount of labeled training
data available. A part of the available unlabeled
corpus (Ekbal and Bandyopadhyay, 2008c) has
been used to address this problem. Based on the
original training on the labeled corpus, there will
be some tags in the unlabeled corpus that the
taggers will be very sure about. We have pro-
posed a semi-supervised learning technique that
selects appropriate data from the available large
unlabeled corpora and adds to the initial training
set in order to improve the performance of the
taggers. The models are retrained with this new
training set and this process is repeated in a boot-
strapped manner.

2.2 Named Entity Features

The main features for the NER task have been
identified based on the different possible combi-
nations of available word and tag contexts. In

2http://cl.aist-nara.ac.jp/~taku ku/software/TinySVM
3http://homepages.inf.ed.ac.uk/s0450736/software/ma
xent/maxent-20061005.tar.bz2

203

addition to these, various gazetteer lists have
been developed for use in the NER tasks.

The set of features ‘F’ contains language inde-
pendent as well as language dependent features.
The set of language independent features in-
cludes the context words, fixed length prefixes
and suffixes of all the words, dynamic NE infor-
mation of the previous word(s), first word, length
of the word, digit and infrequent word informa-
tion. Language dependent features include the set
of known suffixes that may appear with the vari-
ous NEs, clue words that help in predicting the
location and organization names, words that help
to recognize measurement expressions, designa-
tion words that help to identify person names,
various gazetteer lists that include the first
names, middle names, last names, location
names, organization names, function words,
weekdays and month names. We have also used
the part of speech (POS) information of the cur-
rent and/or the surrounding word(s) as the fea-
tures.

Language independent NE features can be ap-
plied for NER in any language without any prior
knowledge of that language. The lists or gazet-
teers are basically language dependent at the
lexical level and not at the morphology or syntax
level. Also, we include the POS information in
the set of language dependent features as the
POS information depends on some language spe-
cific phenomenon such as person, number, tense,
gender etc. Also, the particular POS tagger, used
in this work, makes use of the several language
specific resources such as lexicon, inflection lists
and a NER system to improve its performance.
Evaluation results have demonstrated that the use
of language specific features is helpful to im-
prove the performance of the NER system. In the
resource-constrained Indian language environ-
ment, the non-availability of language specific
resources acts as a stimulant for the development
of such resources for use in NER systems. This
leads to the necessity of apriori knowledge of the
language. The features are described below very
briefly.
 •Context words: Such words include the pre-
ceding and succeeding words of the current
word. This is based on the observation that the
surrounding words carry effective information
for the identification of NEs.
•Word suffix and prefix: Fixed length word

suffixes and prefixes are helpful to identify NEs.
In addition, variable length word suffixes are
also used. Word suffixes and prefixes are the ef-

fective features and work well for the inflective
Indian languages like Bengali.
•Named Entity Information: This is the only

dynamic feature in the experiment. The previous
word NE tag is very informative in deciding the
current word NE tag.
•First word (binary valued): This feature

checks whether the current token is the first word
of the sentence or not. Though Bengali is a rela-
tively free phrase order language, the first word
of the sentence is most likely a NE as it appears
most of the time in the subject position.
•Length of the word (binary valued): This fea-

ture checks whether the length of the token is
less than three or not. We have observed that
very short words are most probably not the NEs.
•Infrequent word (binary valued): A cut off

frequency has been chosen in order to consider
the infrequent words in the training corpus. This
is based on the observation that the infrequent
words are rarely NEs.
•Digit features: Several digit features have

been considered depending upon the presence
and/or the number of digit(s) in a token. These
binary valued features are helpful in recognizing
miscellaneous NEs such as time, monetary and
date expressions, percentages, numerical num-
bers etc.
•Position of the word (binary valued): Posi-

tion of the word (whether last word or not) in a
sentence is a good indicator of NEs.
•Part of Speech (POS) Information: We have

used an SVM-based POS tagger (Ekbal and
Bandyopadhyay, 2008d) that was originally de-
veloped with 26 POS tags, defined for the Indian
languages. For SVM models, we have used this
POS tagger. However, for the ME and CRF
models, we have considered a coarse-grained
POS tagger that has the following tags: Nominal,
PREP (Postpositions) and Other.
•Gazetteer Lists: Gazetteer lists, developed

manually as well as semi-automatically from the
news corpus (Ekbal and Bandyopadhyay, 2008c),
have been used as the features in each of the
classifiers. The set of gazetteers along with the
number of entries are as follows:

 (1). Organization clue word (e.g., ko.m [Co.],
limited [Limited] etc): 94, Person prefix words
(e.g., shrimAn [Mr.], shrImati [Mrs.] etc.): 145,
Middle names: 2,491, Surnames: 5,288, NE suf-
fixes (e.g., -bAbu [-babu], -dA [-da], -di [-di] for
person and -lyAnd [-land] -pur[-pur], -liyA [-lia]
etc for location):115, Common location (e.g.,
sarani [Sarani], roDa [Road] etc.): 147, Action

204

verb (e.g., balen [says], ballen [told] etc.):141,
Function words:743, Designation words (e.g.,
netA[leader], sA.msad [MP] etc.): 139, First
names:72,206, Location names:7,870, Organiza-
tion names:2,225, Month name (English and
Bengali calendars):24, Weekdays (English and
Bengali calendars):14

 (2). Common word (521 entries): Most of the
Indian language NEs appears in the dictionary
with some meanings. For example, the word ka-
mol may be the name of a person but also ap-
pears in the dictionary with another meaning lo-
tus, the name of a flower; the word dhar may be
a verb and also can be the part of a person name.
We have manually created a list, containing the
words that can be NEs as well as valid dictionary
words.

3 Active Learning Method for Baseline
NER System

We have used a portion, containing 35,143 news
documents and approximately 10 million word-
forms, of the Bengali news corpus (Ekbal and
Bandyopadhyay, 2008c) for developing the base-
line NER system.

The frequently occurring words have been col-
lected from the reporter, location and agency
tags of the Bengali news corpus. The unlabeled
corpus is tagged with the elements from the seed
lists. In addition, various gazetteers have been
used that include surname, middle name, person
prefix words, NE suffixes, common location and
designations for further tagging of the NEs in the
training corpus. The following linguistic rules
have been used to tag the training corpus:

 (i). If there are two or more words in a se-
quence that represent the characters of Bengali or
English alphabet, then such words are part of
NEs. For example, bi e (B A), ci em di e (C M D
A), bi je pi (B J P) are all NEs.
 (ii). If at the end of a word, there are strings like
- era(-er), -eraa (-eraa), -ra (-ra), -rA (-raa), -ke
(-ke), -dera (-der) then the word is likely to be a
person name.
 (iii). If a clue word like saranI (sarani), ro.Da
(road), lena (lane) etc. is found after an unknown
word then the unknown word along with the clue
word may be a location name.
 (iv). A few names or words in Bengali consist
of the characters chandrabindu or khanda ta. So,
if a particular word W is not identified as NE by
any of the above rules but includes any of these
two characters, then W may be a NE. For
example o.NrI (onry) is a person name.

 (v). The set of action verbs like balen (says),
ballen (told), ballo (told), shunla (heared),
ha.Nslo (haslo) etc. often determines the
presence of person names. If an unknown word
W appears in the sentence followed by the action
verbs, then W is most likely a person name.
Otherwise, W is not likely to be a NE.
 (vi). If there is reduplication of a word W in a
sentence then W is not likely to be a NE. This is
so because rarely name words are reduplicated.
In fact, reduplicated name words may signify
something else. For example, rAm rAm (ram
ram) is used to greet a person.
 (vii). If at the end of any word W there are
suffixes like -gulo (-gulo), -guli (guli), -khAnA (-
khana) etc., then W is not a NE.

For each tag T inserted in the training corpus,
the algorithm generates a lexical pattern p using
a context window of maximum width 6 (exclud-
ing the tagged NE) around the left and the right
tags, e.g.,
 p = [l-3l-2 l-1 <T> ...</T> l+1 l+2 l+3],
 where, l±i are the context of p. All these pat-
terns, derived from the different tags of the la-
beled and unlabeled training corpora, are stored
in a Pattern Table (or, set P), which has four dif-
ferent fields namely, pattern id (identifies any
particular pattern), pattern example (pattern), pat-
tern type (Person/Location/Organization) and
relative frequency (indicates the number of times
any pattern of a particular type appears in the
entire training corpus relative to the total number
of patterns generated of that type). This table has
20,967 distinct entries.

Every pattern p in the set P is matched against
the same unlabeled corpus. In a place, where the
context of p matches, p predicts the occurrence
of the left or right boundary of name. POS in-
formation of the words as well as some linguistic
rules and/or length of the entity have been used
in detecting the other boundary. The extracted
entity may fall in one of the following categories:

 positive example: The extracted entity is
of the same NE type as that of the pattern.

 negative example: The extracted entity is
of the different NE type as that of the pattern.

 error example: The extracted entity is
not at all a NE.

The type of the extracted entity is determined
by checking whether it appears in any of the seed
lists; otherwise, its type is determined manually.
The positive and negative examples are then
added to the appropriate seed lists. The accuracy
of the pattern is calculated as follows:

205

 accuracy(p)= |positive (p)|/[| positive (p)| +
|negative (p)| + |error(p)|]

A threshold value of accuracy has been cho-
sen in order to discard the patterns below this
threshold. A pattern is also discarded if its total
positive count is less than a predetermined
threshold value. The remaining patterns are
ranked by their relative frequency values. The n
top high frequent patterns are retained in the pat-
tern set P and this set is denoted as Accept Pat-
tern.

All the positive and negative examples ex-
tracted by a pattern p can be used to generate
further patterns from the same training corpus.
Each new positive or negative instance (not ap-
pearing in the seed lists) is used to further tag the
training corpus. We repeat the previous steps for
each new NE until no new patterns can be gener-
ated. A newly generated pattern may be identical
to a pattern that is already in the set P. In such a
case, the type and relative frequency fields in the
set P are updated accordingly. Otherwise, the
newly generated pattern is added to the set with
the type and relative frequency fields set prop-
erly. The algorithm terminates after 13 iterations
and there are 20,176 distinct entries in the set P.

4 Semi-supervised Approach for Unla-
beled Document and Sentence Selec-
tion

A method for automatically selecting the appro-
priate unlabeled data from a large collection of
unlabeled documents for NER has been de-
scribed in Ekbal and Bandyopadhyay (2008e).
This work reported the selection of unlabeled
documents based on the overall F-Score value of
the individual system. In this work, the unlabeled
documents have been selected based on the Re-
call, Precision as well as the F-Score values of
the participating systems. Also, we have consid-
ered only the SVM-F model trained with the lan-
guage independent, language dependent and con-
text features for selecting the appropriate sen-
tences to be included into the initial training data.
The use of single model makes the training faster
compared to Ekbal and Bandyopadhyay (2008e).
The SVM-F model has been considered as it
produced the best results for the development set
as well as during the 10-fold cross validation test.
The unlabeled 35,143 news documents have been
divided based on news sources/types in order to
create segments of manageable size, separately
evaluate the contribution of each segment using a

gold standard development test set and reject
those that are not helpful and to apply the latest
updated best model to each subsequent segment.
It has been observed that incorporation of unla-
beled data can only be effective if it is related to
the target problem, i.e., the test set. Once the ap-
propriate documents are selected, it is necessary
to select the tagged sentences that are useful to
improve both the Recall and Precision values of
the system. Appropriate sentences are selected
using the SVM-F model depending upon the
structure and/or contents of the sentences.

4.1 Unlabeled Document Selection

The unlabeled data supports the acquisition of
new names and contexts to provide new evi-
dences to be incorporated in the models. Unla-
beled data can degrade rather than improve the
classifier’s performance on the test set if it is ir-
relevant to the test document. So, it is necessary
to measure the relevance of the unlabeled data to
our target test set. We construct a set of key
words from the test set T to check whether an
unlabeled document d is useful or not.

 We do not use all words in the test set T as

the key words since we are only concerned
about the distribution of name candidates.
So, each document is tested with the CRF
model using the language independent fea-
tures, language dependent features and the
context features.

 We take all the name candidates in the top N
best hypotheses (N=10) for each sentence of
the test set T to construct a query set Q. Us-
ing this query set, we find all the relevant
documents that include three (heuristically
set) names belonging to the set Q. In addi-
tion, the documents are not considered if
they contain fewer than seven (heuristic)
names.

4.2 Sentence Selection

All the tagged sentences of a relevant document
are not added to training corpus as incorrectly
tagged or irrelevant sentences can lead to the
degradation in model performance. Our main
concern is on how much new information is ex-
tracted from each sentence of the unlabeled data
compared to the training corpus that already we
have in our hand.

The SVM-F model has been used to select the
relevant sentences. All the relevant documents
are tagged with the SVM-F model developed
with the language independent, language de-

206

pendent and context features along with the class
decomposition technique. If both Recall and Pre-
cision values of the SVM-F model increase then
that sentence is selected to be added to the initial
training corpus. A close investigation reveals the
fact that this criterion often selects a number of
sentences which are too short or do not include
any name. These words may make the model
worse if added to the training data. For example,
the distribution of non-names may increase sig-
nificantly that may lead to degradation of model
performance. In this experiment, we have not
included the sentences that include fewer than
five words or do not include any names. The
bootstrapping procedure is given as follows:

1. Select a relevant document RelatedD
from a large corpus of unlabeled data
with respect to the test set T using the
document selection method described in
Section 4.1.

2. Split RelatedD into n subsets and mark
them C1, C2, …., Cn.

3. Call the development set DevT.
4. For I=1 to n
4.1. Run SVM-F model, developed with the

language independent features, language
dependent feature and context features
along with the class decomposition tech-
nique, on Ci.

4.2. If the length of each tagged sentence S is
less than five or it does not contain any
name then discard S.

4.3. Add Ci to the training data and retrain
SVM-F model. This produces the up-
dated model.

4.4. Run the updated model on DevT; if the
Recall and Precision values reduce then
don’t use Ci and use the old model.

5. Repeat steps 1-4 until Recall and Precision
values of the SVM-F model either become equal
or differ by some threshold values (set to 0.01) in
consecutive two iterations.

5 Evaluation Results and Discussions

Out of 200K wordforms, 150K wordforms along
with the IJCNLP-08 shared task data has been
used for training the models. Out of 200K word-
forms, 50K wordforms have been used as the
development data. The system has been tested
with a gold standard test set of 35K wordforms.
Each of the models has been evaluated in two
different ways, being guided by language inde-
pendent features (language independent system
denoted as LI) and being guided by language

independent as well as language dependent fea-
tures (language dependent system denoted as
LD).

5.1 Language Independent Evaluation

A number of experiments have been carried out
in order to identify the best-suited set of lan-
guage independent features for NER in each of
models. Evaluation results of the development
set for the NER models are presented in Table 1
in terms of percentages of Recall (R), Precision
(P) and F-Score (FS). The ME based system has
demonstrated the F-Score value of 74.67% for
the context word window of size three, i.e., pre-
vious one word, current word and the next word,
prefixes and suffixes of length up to three char-
acters of only the current word, dynamic NE tag
of the previous word, first word, infrequent word,
length and the various digit features. The CRF
based system yielded the highest F-Score value
of 76.97% for context window of size five, i.e.,
two preceding, current and two succeeding words
along with the other set of features as in the ME
model. Both the SVM based systems have dem-
onstrated the best performance for the context
window of size seven, i.e., three preceding, cur-
rent and two succeeding words, dynamic NE in-
formation of the previous two words along with
the other set of features as in the ME and CRF
based systems. In SVM models, we have con-
ducted experiments with the different polynomial
kernel functions and observed the highest F-
Score value with degree 2. It has been also ob-
served that pairwise multiclass decision method
performs better than the one vs rest method. For
all the models, context words and prefixes and/or
suffixes have been found to be the most effective
features.

Model R P FS
ME 76.82 72.64 74.67
CRF 78.17 75.81 76.97
SVM-F 79.14 77.26 78.19
SVM-B 79.09 77.15 78.11

Table 1. Results on the development set for
the language independent supervised models

5.2 Language Dependent Evaluation

Evaluation results of the systems that include the
POS information and other language dependent
features are presented in the Table 2. During the
experiments, it has been observed that all the
language dependent features are not equally im-
portant. POS information is the most effective

207

followed by NE suffixes, person prefix words,
designations, organization clue words and loca-
tion clue words. Table 1 and Table 2 show that
the language dependent features can improve the
overall performance of the systems significantly.

Model R P FS
ME 87.02 80.77 83.78
CRF 87.63 84.03 85.79
SVM-F 87.74 85.89 86.81
SVM-B 87.69 85.17 86.72
Table 2. Results on the development set for the
language dependent supervised models

5.3 Use of Context Features as Features

Now, the high ranked patterns of the Accept Pat-
tern set (Section 3) can be used as the features of
the individual classifier. A feature ‘ContextInf’ is
defined by observing the three preceding and
succeeding words of the current word. Evalua-
tion results are presented in Table 3. Clearly, it is
evident from the results of Table 2 and Table 3
that context features are very effective to im-
prove the Precision values in each of the models.

Model R P FS
ME 88.22 83.71 85.91
CRF 89.51 85.94 87.69
SVM-F 89.67 86.49 88.05
SVM-B 89.61 86.47 88.01

Table 3. Results on the development set by in-
cluding context features

5.4 Results on the Test Set

A gold standard test set of 35K wordforms has
been used to report the evaluation results. The
models have been trained with the language in-
dependent, language dependent and the context
features. Results have been presented in Table 4
for the test set. In the baseline model, each pat-
tern of the Accept Pattern set is matched against
the test set. Results show that SVM-F model per-
forms best for the test set.

Error analyses have been conducted with the
help of confusion matrix. In order to improve the
performance of the classifiers, we have used
some post-processing techniques.

Output of the ME based system has been post-
processed with a set of heuristics (Ekbal and
Bandyopadhyay, 2009) to improve the perform-
ance further. The post-processing as described in
Ekbal and Bandyopadhyay (2008e) tries to as-
sign the correct tag according to the n-best re-

sults for every sentence of the test set in the CRF
framework. In order to remove the unbalanced
class distribution between names and non-names
in the training set, we have considered the class
decomposition technique (Ekbal and Bandyop-
adhyay, 2008e) for SVM. Evaluation results of
the post-processed systems are presented in Ta-
ble 5.

 Model R P FS
Baseline 68.11 71.37 69.32
ME 86.04 84.98 85.51
CRF 87.94 87.12 87.53
SVM-F 89.91 85.97 87.89
SVM-B 89.82 85.93 87.83

 Table 4. Results on the test set

Model R P FS
ME 87.29 86.81 87.05
CRF 89.19 88.85 89.02
SVM-F 90.23 88.62 89.41
SVM-B 90.05 88.61 89.09

Table 5. Results of the post-processed models
on the test set

Each of the models has been also evaluated for
the 10-fold cross validation tests. Initially all the
models have been developed with the language
independent features along with the context fea-
tures. Then, language dependent features have
been included into the models. In each run of the
10 tests, the outputs have been post-processed
with the several post-processing techniques as
described earlier. Results are shown in Table 6.

 Model R P FS

ME 81.34 79.01 80.16
CRF 82.66 80.75 81.69
SVM-F 83.87 81.83 82.83

LI

SVM-B 83.87 81.77 82.62
ME 87.54 87.97 87.11
CRF 89.5 88.73 89.19
SVM-F 89.97 88.61 89.29

LD

SVM-B 89.76 88.51 89.13
Table 6. Results of the 10-fold cross validation
tests

Statistical ANOVA tests (Anderson and
Scolve, 1978) demonstrated that the performance
improvement in each of the language dependent
model is statistically significant over the lan-
guage independent model. We have also carried
out the statistical tests to show that performance
improvement in CRF over ME and SVM-F over
CRF are statistically significant.

208

5.5 Impact of Unlabeled Data Selection

In order to investigate the contribution of
document selection in bootstrapping, the post-
processed models are run on 35,143 news
documents. This yields the gradually improving
performance for the SVM-F model as shown in
Table 7. After selection of the appropriate
unlabeled data, all the models have been
retrained by including the unlabeled documents.
Results have been presented in Table 8.

Itera-
tion

Sentences
added

R P FS

0 0 89.97 88.61 89.29
1 129 90.19 88.97 89.58
2 223 90.62 89.14 89.87
3 332 90.89 89.73 90.31
4 416 91.24 90.11 90.67
5 482 91.69 90.65 91.16
6 543 91.88 90.97 91.42
7 633 92.07 91.05 91.56
8 682 92.33 91.31 91.82
9 712 92.52 91.39 91.95
10 723 92.55 91.44 91.99
11 729 92.57 91.45 92.01
12 734 92.58 91.45 92.01
Table 7. Incremental improvement of perform-
ance

Model R P FS
ME 90.7 89.78 90.24
CRF 92.02 91.66 91.84
SVM-B 92.34 91.42 91.88
SVM-F 92.58 91.45 92.01
Table 8. Results after unlabeled data selection

5.6 Voting Techniques

In order to obtain higher performance, we have
applied weighted voting to the four models. We
have used the following weighting methods:

 (1). Uniform weights (Majority voting): All
the models are assigned the same voting weight.
The combined system selects the classifications,
which are proposed by the majority of the mod-
els. In case of a tie, the output of the SVM-F
model is selected. The output of the SVM-F
model has been selected due to its highest per-
formance among all the models.

 (2). Cross validation Precision values: Two
different types of weights have been defined de-
pending on the 10-fold cross validation Precision
on the training data as follows:

 (a). Total Precision: In this method, the
overall average Precision of any classifier is as-
signed as the weight for it.

 (b). Tag Precision: In this method, the aver-
age Precision value of the individual tag is as-
signed as the weight for the corresponding model.

Experimental results of the voted system are

presented in Table 9. Evaluation results show
that the system achieves the highest performance
for the voting scheme ‘Tag Precision’. Voting
shows (Tables 8-9) an overall improvement of
2.74% over the least performing ME based sys-
tem and 0.97% over the best performing SVM-F
system. This also shows an improvement of
23.66% F-Score over the baseline model.

Voting R P FS
Majority 92.59 91.47 92.03
Total Precision 93.08 91.79 92.43
Tag Precision 93.81 92.18 92.98

Table 9. Results of the voted system

6 Conclusion

In this paper, we have reported a voted system
with the use of appropriate unlabeled data. We
have also demonstrated how language dependent
features can improve the system performance. It
has been experimentally verified that effective
measures to select relevant documents and useful
labeled sentences are important. The system has
demonstrated the overall Recall, Precision, and
F-Score values of 93.81%, 92.18%, and 92.98%,
respectively.

Future works include the development of NER
system using other machine learning techniques
such as decision tree, AdaBoost etc. We would
like to apply the proposed voted technique for
the development of NER systems in other Indian
languages. Future direction of the work will be to
investigate an appropriate clustering technique
that can be very effective for the development of
NER systems in the resource-constrained Indian
language environment. Instead of the words, the
cluster of words can be used as the features of
the classifiers. It may reduce the cost of training
as well as may be helpful to improve the per-
formance. We would like to explore other voting
techniques.

209

References
Anderson, T. W. and Scolve, S. Introduction to the

Statistical Analysis of Data. Houghton Mifflin,
1978.

Bikel, Daniel M., R. Schwartz, Ralph M. Weischedel.
1999. An Algorithm that Learns What’s in Name.
Machine Learning (Special Issue on NLP), 1-20.

Bothwick, Andrew. 1999. A Maximum Entropy Ap-
proach to Named Entity Recognition. Ph.D. Thesis,
NYU.

Ekbal, Asif, Naskar, Sudip and S. Bandyopadhyay.
2007b. Named Entity Recognition and Translitera-
tion in Bengali. Named Entities: Recognition,
Classification and Use, Special Issue of Lingvisti-
cae Investigationes Journal, 30:1 (2007), 95-114.

Ekbal, Asif, Haque, R and S. Bandyopadhyay. 2008a.
Named Entity Recognition in Bengali: A Condi-
tional Random Field Approach. In Proceedings of
3rd International Joint Conference on Natural Lan-
guage Processing (IJCNLP-08), 589-594.

Ekbal, Asif, and S. Bandyopadhyay. 2008b. Bengali
Named Entity Recognition using Support Vector
Machine. In Proceedings of the Workshop on
Named Entity Recognition on South and South East
Asian Languages (NERSSEAL), IJCNLP-08, 51-58.

Ekbal, Asif, and S. Bandyopadhyay. 2008c. A Web-
based Bengali News Corpus for Named Entity
Recognition. Language Resources and Evaluation
Journal, Volume (40), 173-182.

Ekbal, Asif and S. Bandyopadhyay. 2008d. Web-
based Bengali News Corpus for Lexicon Develop-
ment and POS Tagging. In POLIBITS, an Interna-
tional Journal, Volume (37), 20-29, ISSN: 1870-
9044.

Ekbal, Asif and S. Bandyopadhyay. 2008e. Appropri-
ate Unlabeled Data, Post-processing and Voting
Can Improve the Performance of NER System. In
Proceedings of the 6th International Conference on
Natural Language Processing (ICON-08), 234-
239, India.

Ekbal, Asif and S. Bandyopadhyay. 2009. Improving
the Performance of a NER System by Post-
processing, Context Patterns and Voting. In W. Li
and D. Molla-Aliod (Eds): ICCPOL 2009, Lecture
Notes in Artificial Intelligence (LNAI), Springer
Berlin/Heidelberg, Volume (5459), 45-56.

Florian, Radu, Ittycheriah, A., Jing, H. and Zhang, T.
2003. Named Entity Recognition through Classifier
Combination. In Proceedings of CoNLL-2003.

Lafferty, J., McCallum, A., and Pereira, F. 2001.
Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data. In
Proceedings of 18th International Conference on
Machine Learning (ICML), 282-289.

Li, Wei and Andrew McCallum. 2003. Rapid Devel-
opment of Hindi Named Entity Recognition Using
Conditional Random Fields and Feature Induc-
tions. ACM TALIP, 2(3), (2003), 290-294.

Saha, Sujan, Sarkar, S and Mitra, P. 2008. A Hybrid
Feature Set based Maximum Entropy Hindi Named
Entity Recognition. In Proceedings of the 3rd Inter-
national Joint Conference on Natural Language
Processing (IJCNLP-08), 343-349.

Valdimir N., Vapnik 1995. The Nature of Statistical
Learning Theory. Springer.

Yamada, Hiroyasu, Taku Kudo and Yuji Matsumoto.
2002. Japanese Named Entity Extraction using
Support Vector Machine. In Transactions of IPSJ,
Vol. 43 No. 1, 44-53.

210

Author Index

Abekawa, Takeshi, 65
Aramaki, Eiji, 65

Bandyopadhyay, Sivaji, 80, 202
Besacier, Laurent, 177
Bhargava, Aditya, 28
Bhattacharyya, Pushpak, 84, 177
Boitet, Christian, 177
Bose, Dipankar, 61

Campora, Simone, 136
Chen, Xiao, 57
Cherry, Colin, 69
Chinnakotla, Manoj Kumar, 44
Condon, Sherri, 152

Damani, Om P., 44
Dandapat, Sandipan, 104
Danqing, Zhu, 88
Das, Amitava, 80
Dixon, Paul, 72
Dou, Qing, 28
Dwyer, Kenneth, 28

Ekbal, Asif, 80, 202
Endo, Shoko, 161

Finch, Andrew, 52
Freitag, Dayne, 132
Furui, Sadaoki, 72

Gali, Karthik, 124
Gliozzo, Alfio Massimiliano, 136

Haque, Rejwanul, 104
Hong, Gumwon, 108

Imamura, Kenji, 168

Jansche, Martin, 32
Jiampojamarn, Sittichai, 28
Jiang, Xue, 96

Khapra, Mitesh, 84
Kim, Min-Jeong, 108
Kit, Chunyu, 57

Knight, Kevin, 27
Kondrak, Grzegorz, 28
Kravalova, Jana, 194
Kumaran, A, 1, 19
Kwong, Oi Yee, 76, 186

Lee, Do-Gil, 108
Li, Haizhou, 1, 19

Malik, Abbas, 177
Mondal, Tapabrata, 80

Nabende, Peter, 100
Nakagawa, Seiichi, 161
Nakamura, Masanobu, 72
Naskar, Sudip Kumar, 104
Noeman, Sara, 112

Oh, Jong-Hoon, 36
Oonishi, Tasuku, 72

Pan, Yi-Cheng, 72
Pervouchine, Vladimir, 1, 19
Picca, Davide, 136

Rama, Taraka, 124
Rao, Delip, 120
Reddy, Sravana, 92
Ren, Feiliang, 143
Rim, Hae-Chang, 108
Rubenstein, Alan, 152

Saito, Kuniko, 168
Samuel, Ken, 152
Sarkar, Sudeshna, 61
Shishtla, Praneeth, 40
Shiwen, Yu, 88
Song, Yan, 57
Sproat, Richard, 32
Srivastava, Ankit Kumar, 104
Subramaniam, Sethuramalingam, 40
Sumita, Eiichiro, 52
Sun, Le, 96
Suzuki, Hisami, 69

Torisawa, Kentaro, 36

211

Tsuchiya, Masatoshi, 161

Uchimoto, Kiyotaka, 36

V, Surya Ganesh, 40
Varadarajan, Balakrishnan, 120
Varma, Vasudeva, 40
Vijayanand, Kommaluri, 48

Wang, Huizhen, 143
Wang, Zhiqiang, 132
Waxmonsky, Sonjia, 92
Way, Andy, 104

Yang, Dong, 72
Yeh, Alex, 152
Yuxiang, Jia, 88

Zabokrtsky, Zdenek, 194
Zelenko, Dmitry, 116
Zhang, Dakun, 96
Zhang, Min, 1, 19
Zhou, Yilu, 128
Zhu, Jingbo, 143
Zhu, Muhua, 143

	Program
	Report of NEWS 2009 Machine Transliteration Shared Task
	Whitepaper of NEWS 2009 Machine Transliteration Shared Task
	Automata for Transliteration and Machine Translation
	DirecTL: a Language Independent Approach to Transliteration
	Named Entity Transcription with Pair n-Gram Models
	Machine Transliteration using Target-Language Grapheme and Phoneme: Multi-engine Transliteration Approach
	A Language-Independent Transliteration Schema Using Character Aligned Models at NEWS 2009
	Experiences with English-Hindi, English-Tamil and English-Kannada Transliteration Tasks at NEWS 2009
	Testing and Performance Evaluation of Machine Transliteration System for Tamil Language
	Transliteration by Bidirectional Statistical Machine Translation
	Transliteration of Name Entity via Improved Statistical Translation on Character Sequences
	Learning Multi Character Alignment Rules and Classification of Training Data for Transliteration
	Fast Decoding and Easy Implementation: Transliteration as Sequential Labeling
	NEWS 2009 Machine Transliteration Shared Task System Description: Transliteration with Letter-to-Phoneme Technology
	Combining a Two-step Conditional Random Field Model and a Joint Source Channel Model for Machine Transliteration
	Phonological Context Approximation and Homophone Treatment for NEWS 2009 English-Chinese Transliteration Shared Task
	English to Hindi Machine Transliteration System at NEWS 2009
	Improving Transliteration Accuracy Using Word-Origin Detection and Lexicon Lookup
	A Noisy Channel Model for Grapheme-based Machine Transliteration
	Substring-based Transliteration with Conditional Random Fields
	A Syllable-based Name Transliteration System
	Transliteration System Using Pair HMM with Weighted FSTs
	English-Hindi Transliteration Using Context-Informed PB-SMT: the DCU System for NEWS 2009
	A Hybrid Approach to English-Korean Name Transliteration
	Language Independent Transliteration System Using Phrase-based SMT Approach on Substrings
	Combining MDL Transliteration Training with Discriminative Modeling
	-extension Hidden Markov Models and Weighted Transducers for Machine Transliteration
	Modeling Machine Transliteration as a Phrase Based Statistical Machine Translation Problem
	Maximum n-Gram HMM-based Name Transliteration: Experiment in NEWS 2009 on English-Chinese Corpus
	Name Transliteration with Bidirectional Perceptron Edit Models
	Bridging Languages by SuperSense Entity Tagging
	Chinese-English Organization Name Translation Based on Correlative Expansion
	Name Matching between Roman and Chinese Scripts: Machine Complements Human
	Analysis and Robust Extraction of Changing Named Entities
	Tag Confidence Measure for Semi-Automatically Updating Named Entity Recognition
	A Hybrid Model for Urdu Hindi Transliteration
	Graphemic Approximation of Phonological Context for English-Chinese Transliteration
	Czech Named Entity Corpus and SVM-based Recognizer
	Voted NER System using Appropriate Unlabeled Data

