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Abstract
We present a vector space model that sup-
ports the computation of appropriate vec-
tor representations for words in context,
and apply it to a paraphrase ranking task.
An evaluation on the SemEval 2007 lexical
substitution task data shows promising re-
sults: the model significantly outperforms
a current state of the art model, and our
treatment of context is effective.

1 Introduction

Knowledge about paraphrases is of central impor-
tance to textual inference modeling. Systems which
support automatic extraction of large repositories
of paraphrase or inference rules like Lin and Pantel
(2001) or Szpektor et al. (2004) thus form first-class
candidate resources to be leveraged for NLP tasks
like question answering, information extraction, or
summarization, and the meta-task of recognizing
textual entailment.

Existing knowledge bases still suffer a number
of limitations, making their use in applications
challenging. One of the most serious problems
is insensitivity to context. Natural-language infer-
ence is highly context-sensitive, the applicability
of inference rules depending on word sense and
even finer grained contextual distinctions in us-
age (Szpektor et al., 2007). Application of a rule
like “X shed Y ⇔ X throw Y ” is appropriate in a
sentence like “a mouse study sheds light on the
mixed results,” but not in sentences like “the econ-
omy seems to be shedding fewer jobs” or “cats
do not shed the virus to other cats.” Systems like
the above-mentioned ones base the extraction of
inference rules on distributional similarity of words
rather than word senses, and apply unconditionally
whenever one side of the rule matches on the word
level, which may lead to considerable precision
problems (Geffet and Dagan, 2005) .

Some approaches address the problem of con-
text sensitivity by deriving inference rules whose

argument slots bear selectional preference infor-
mation (Pantel et al., 2007; Basili et al., 2007). A
different line of accounting for contextual variation
has been taken by Mitchell and Lapata (2008), who
propose a compositional approach, “contextualiz-
ing” the vector-space meaning representation of
predicates by combining the distributional proper-
ties of the predicate with those of its arguments.
A related approach has been proposed by Erk and
Padó (2008), who integrate selectional preferences
into the compositional picture. In this paper, we
propose a context-sensitive vector-space approach
which draws some important ideas from Erk and
Pado’s paper (“E&P” in the following), but imple-
ments them in a different, more effective way: An
evaluation on the SemEval 2007 lexical substitu-
tion task data shows that our model significantly
outperforms E&P in terms of average precision.

Plan of the paper. Section 2 presents our model
and briefly relates it to previous work. Section 3
describes the evaluation of our model on the lexical
substitution task data. Section 4 concludes.

2 A model for meaning in context

We propose a dependency-based model whose di-
mensions reflect dependency relations, and distin-
guish two kinds or layers of lexical meaning: ar-
gument meaning and predicate meaning. The argu-
ment meaning of a word w is a vector representing
frequencies of all pairs (w′,r′) of predicate expres-
sions w′ and dependency relations r′ such that w′

stands in relation r′ to w. Intuitively, argument
meaning is similar to E&P’s “inverse selectional
preferences.” Argument meanings are used for two
purposes in our model: (i) to construct predicate
meanings, and (ii) to contextually constrain them.

For technical convenience, we will use a defini-
tional variant of argument meaning, by indexing
it with an “incoming” relation, which allows pred-
icate and argument meaning to be treated techni-
cally as vectors of the same type. Assuming a set
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R of role labels and a set W of words, we represent
both predicate and argument meaning as vectors
in a vector space V with a basis {ei}i∈R×R×W , i.e.,
a vector space whose dimensions correspond to
triples of two role labels and a word. The argument
meaning vr(w) of a word w is defined as follows:

vr(w) = ∑w′∈W,r′∈R f (w′,r′,w) · e(r,r′,w′), (1)

where r is the “incoming” relation, and f (w′,r′,w)
denotes the frequency of w occurring in relation r′

to w′ in a collection of dependency trees. To obtain
predicate meaning vP(w), we count the occurrences
of argument words w′ standing in relation r to w,
and compute the predicate meaning as the sum of
the argument meanings vr(w′), weighted by these
co-occurrence frequencies:

vP(w) = ∑r∈R,w′∈W f (w,r,w′) · vr(w′) (2)

That is, the meaning of a predicate is modelled by a
vector representing “second order” co-coccurrence
frequencies with other predicates.

In general, words have both a “downward look-
ing” predicate meaning and an “upward looking”
argument meaning. In our study, only one of them
will be relevant, since we will restrict ourselves
to local predicate-argument structures with verbal
heads and nominal arguments.

Computing meaning in context. Vectors repre-
senting predicate meaning are derived by collecting
co-occurrence frequencies for all uses of the pred-
icate, possibly resulting in vector representations
in which different meanings of the predicate are
combined. Given an instance of a predicate w that
has arguments w1, . . . ,wk, we can now contextually
constrain the predicate meaning of w by the argu-
ment meanings of its arguments. Here, we propose
to simple “restrict” the predicate meaning to those
dimensions that have a non-zero value in at least
one of its argument meanings. More formally, we
write v|v′ to denote a vector that is identical to v
for all components that have a non-zero value in v′,
zero otherwise. We compute predicate meaning in
context as follows:

vP(w)|∑1≤i≤k vri (wi), (3)

where ri is the argument position filled by wi.

Parameters. To reduce the effect of noise and
provide a more fine-grained control over the ef-
fect of context, we can choose different thresholds

target subject object paraphrases

shed study light throw 3, reveal 2, shine 1
shed cat virus spread 2, pass 2, emit 1, transmit 2
shed you blood lose 3, spill 1, give 1

Table 1: Lexical substitution task data set

for function f in the computation of predicate and
argument meaning. In Section 3, we obtain best
results if we consider only dependency relations
that occur at least 6 times in the British National
Corpus (BNC) for the computation of predicate
meaning, and relations occurring at least 15 times
for the computation of argument meanings when
predicate meaning is contextually constrained.

Related work. Our model is similar to the struc-
tured vector space model proposed by Erk and Padó
(2008) in that the representation of predicate mean-
ing is based on dependency relations, and that “in-
verse selectional preferences” play an important
role. However, inverse selectional preferences are
used in E&P’s model mainly to compute mean-
ing in context, while they are directly “built into”
the vectors representing predicate meaning in our
model.

3 Evaluation

We evaluate our model on a paraphrase ranking
task on a subset of the SemEval 2007 lexical substi-
tution task (McCarthy and Navigli, 2007) data, and
compare it to a random baseline and E&P’s state
of the art model.

Dataset. The lexical substitution task dataset con-
tains 10 instances for 44 target verbs in different
sentential contexts. Systems that participated in
the task had to generate paraphrases for each of
these instances, which are evaluated against a gold
standard containing up to 9 possible paraphrases
for individual instances. Following Erk and Padó
(2008), we use the data in a different fashion: we
pool paraphrases for all instances of a verb in all
contexts, and use the models to rank these para-
phrase candidates in specific contexts.

Table 1 shows three instances of the target verb
shed together with its paraphrases in the gold stan-
dard as an expample. The paraphrases are attached
with weights, which correspond to the number of
times they have been given by different annotators.

To allow for a comparision with E&P’s model,
we follow Erk and Padó (2008) and extract only
sentences from the dataset containing target verbs
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with overtly realized subject and object, and re-
move instances from the dataset for which the tar-
get verb or one of its arguments is not in the BNC.
We obtain a set of 162 instances for 34 different
verbs. We also remove paraphrases that are not
in the BNC. On average, target verbs have 20.5
paraphrase candidates, 3.9 of which are correct in
specific contexts.

Experimental setup. We parse the BNC using
MiniPar (Lin, 1993) and extract co-occurrence fre-
quencies, considering only dependency relations
for the most frequent 2000 verbs. We don’t use raw
frequency counts directly but reweight the vectors
by pointwise mutual information.

To rank paraphrases in context, we compute con-
textually constrained vectors for the verb in the
input sentence and all its paraphrase candidates
by taking the corresponding predicate vectors and
restricting them to the argument meanings of the
argument head nouns in the input sentence. The
restricted vectors for the paraphrase candidates are
then ranked by comparing them to the restricted
vector of the input verb using cosine similarity.

In order to compare our model with state of the
art, we reimplement E&P’s structured vector space
model. We filter stop words, and compute lexical
vectors in a “syntactic” space using the most fre-
quent 2000 words from the BNC as basis. We also
consider a variant in which the basis corresponds
to words indexed by their grammatical roles. We
choose parameters that Erk and Padó (2009) report
to perform best, and use the method described in
Erk and Padó (2009) to compute vectors in context.

Evaluation metrics. As scoring methods, we
use both “precision out of ten” (Poot), which was
originally used in the lexical substitution task and
also used by E&P, and generalized average preci-
sion (Kishida, 2005), a variant of average precision
which is frequently used in information extraction
tasks and has also been used in the PASCAL RTE
challenges (Dagan et al., 2006).

Poot can be defined as follows:

Poot =
Σs∈M

⋂
G f (s)

Σs∈G f (s)
,

where M is the list of 10 paraphrase candidates
top-ranked by the model, G is the corresponding
annotated gold data, and f (s) is the weight of the
individual paraphrases. Here, Poot is computed for
each target instance separately; below, we report
the average over all instances.

Model Poot GAP

Random baseline 54.25 26.03
E&P (target only) 64.61 (63.31) 29.95 (32.02)
E&P (add, object only) 66.20 (62.90) 29.93 (31.54)
E&P (min, both) 64.86 (59.62) 32.22 (31.28)
TDP 63.32 36.54
TDP (target only) 62.60 33.04

Table 2: Results

Generalized average precision (GAP) is a more
precise measure than Poot: Applied to a ranking
task with about 20 candidates, Poot just gives the
percentage of good candidates found in the upper
half of the proposed ranking. Average precision
is sensitive to the relative position of correct and
incorrect candidates in the ranking, GAP moreover
rewards the correct order of positive cases w.r.t.
their gold standard weight.

We define average precision first:

AP =
Σn

i=1xi pi

R
pi =

Σi
k=1xk

i

where xi is a binary variable indicating whether
the ith item as ranked by the model is in the gold
standard or not, R is the size of the gold standard,
and n the number of paraphrase candidates to be
ranked. If we take xi to be the gold standard weight
of the ith item or zero if it is not in the gold standard,
we can define generalized average precision as
follows:

GAP =
Σn

i=1I(xi) pi

R′
R′ = ΣR

i=1I(yi)yi

where I(xi) = 1 if xi is larger than zero, zero oth-
erwise, and yi is the average weight of the ideal
ranked list y1, . . . ,yi of paraphrases in the gold stan-
dard.

Results and discussion. Table 2 shows the re-
sults of our experiments for two variants of our
model (“TDP”), and compares them to a random
baseline and three instantiations (in two variants) of
E&P’s model. The “target only” models don’t use
context information, i.e., paraphrases are ranked by
cosine similarity of predicate meaning only. The
other models take context into account. The “min”
E&P model takes the component-wise minimum to
combine a lexical vector with context vectors and
considers both subject and object as context; it is
the best performing model in Erk and Padó (2009).
The “add” model uses vector addition and consid-
ers only objects as context; it is the best-performing
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Figure 1: “Precision out of n” for 1≤ n≤ 10.

model (in terms of Poot) for our dataset. The num-
bers in brackets refer to variants of the E&P models
in which the basis corresponds to words indexed
by their syntactic roles. Note that the results for the
E&P models are better than the results published
in Erk and Padó (2009), which might be due to
slightly different datasets or lists of stop-words.

As can be seen, our model performs > 10% bet-
ter than the random baseline. It performs > 4%
better than the “min” E&P model and > 6% better
then the “add” model in terms of GAP if we use a
vectors space with words as basis. For the variants
of the E&P models in which the basis corresponds
to words indexed by their syntactic role, we ob-
tain different results, but our model is still > 4%
better than these variants. We can also see that
our treatment of context is effective, leading to a
> 3% increase of GAP. A stratified shuffling-based
randomization test (Yeh, 2000) shows that the dif-
ferences are statistically significant (p < 0.05).

In terms of Poot, the “add” E&P model performs
better than our model, which might look surprising,
given its low GAP score. Fig. 1 gives a more fine-
grained comparison between the two models. It
displays the “precision out of n” of the two models
for varying n. As can be seen, our model performs
better for all n < 10, and much better than the base-
line and E&P for n≤ 4.

4 Conclusion

In this paper, we have proposed a dependency-
based context-sensitive vector-space approach that
supports the computation of adequate vector-based
representations of predicate meaning in context.
An evaluation on a paraphrase ranking task using
a subset of the SemEval 2007 lexical substitution
task data shows promising results: our model per-
forms significantly better than a current state of the
art system (Erk and Padó, 2008), and our treatment
of context is effective.

Since the dataset we used for the evaluation is
relatively small, there is a potential danger for over-
fitting, and it remains to be seen whether the results
carry over to larger datasets. First experiments
indicate that this is actually the case.

We expect that our approach can be generalized
to arrive at a general compositional model, which
would allow to compute contextually appropriate
meaning representations for complex relational ex-
pressions rather than single lexical predicates.
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