
Proceedings of the Workshop on BioNLP: Shared Task, pages 19–27,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Event Extraction from Trimmed Dependency Graphs

Ekaterina Buyko, Erik Faessler, Joachim Wermter and Udo Hahn

Jena University Language & Information Engineering (JULIE) Lab
Friedrich-Schiller-Universiẗat Jena

Fürstengraben 30, 07743 Jena, Germany

{ekaterina.buyko|erik.faessler|joachim.wermter|udo.h ahn}@uni-jena.de

Abstract

We describe the approach to event extrac-
tion which the JULIELab Team from FSU
Jena (Germany) pursued to solve Task 1 in
the “BioNLP’09 Shared Task on Event Ex-
traction”. We incorporate manually curated
dictionaries and machine learning method-
ologies to sort out associated event triggers
and arguments on trimmed dependency graph
structures. Trimming combines pruning ir-
relevant lexical material from a dependency
graph and decorating particularly relevant lex-
ical material from that graph with more ab-
stract conceptual class information. Given
that methodological framework, the JULIELab
Team scored on 2nd rank among 24 competing
teams, with 45.8% precision, 47.5% recall and
46.7% F1-score on all 3,182 events.

1 Introduction

Semantic forms of text analytics for the life sciences
have long been equivalent with named entity recog-
nition and interpretation, i.e., finding instances of se-
mantic classes such as proteins, diseases, or drugs.
For a couple of years, this focus has been comple-
mented by analytics dealing with relation extraction,
i.e., finding instances of relations which link one or
more (usually two) arguments, the latter being in-
stances of semantic classes, such as the interaction
between two proteins (PPIs).

PPI extraction is a complex task since cascades
of molecular events are involved which are hard to
sort out. Many different approaches have already
been tried – pattern-based ones (e.g., by Blaschke

et al. (1999), Hakenberg et al. (2005) or Huang et
al. (2004)), rule-based ones (e.g., by Yakushiji et al.
(2001),Šaríc et al. (2004) or Fundel et al. (2007)),
and machine learning-based ones (e.g., by Katrenko
and Adriaans (2006), Sætre et al. (2007) or Airola et
al. (2008)), yet without conclusive results.

In the following, we present our approach to solve
Task 1 within the “BioNLP’09 Shared Task on Event
Extraction”.1 Task 1 “Event detection and charac-
terization” required to determine the intended rela-
tion givena priori supplied protein annotations. Our
approach considers dependency graphs as the cen-
tral data structure on which various trimming oper-
ations are performed involving syntactic simplifica-
tion but also, even more important, semantic enrich-
ment by conceptual overlays. A description of the
component subtasks is provided in Section 2, while
the methodologies intended to solve each subtask
are discussed in Section 3. The system pipeline for
event extraction reflecting the task decomposition is
described in Section 4, while Section 5 provides the
evaluation results for our approach.

2 Event Extraction Task

Event extraction is a complex task that can be sub-
divided into a number of subtasks depending on
whether the focus is on the event itself or on the ar-
guments involved:

Event trigger identification deals with the large
variety of alternative verbalizations of the same
event type, i.e., whether the event is expressed in

1http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/SharedTask/

19

a verbal or in a nominalized form (e.g., “A is ex-
pressed” and “the expression of A” both refer to the
same event type,viz. expression(A)). Since the
same trigger may stand for more than one event type,
event trigger ambiguity has to be resolved as well.

Event trigger disambiguation selects the correct
event name from the set of alternative event triggers.

Event typing, finally, deals with the semantic
classification of a disambiguated event name and the
assignment to an event type category.2

Argument identification is concerned with find-
ing all necessary participants in an event, i.e., the
arguments of the relation.

Argument typing assigns the correct semantic
category (entity class) to each of the determined par-
ticipants in an event (which can be considered as in-
stances of that class).

Argument ordering assigns each identified par-
ticipant its functional role within the event, mostly
Agent (and Patient/Theme).

The sentence “Regulation ofjun andfos gene ex-
pression in human monocytes by the macrophage
colony-stimulating factor”, e.g., contains mentions
of two Gene Expressionevents with respective
THEME arguments “jun” and “fos”, triggered in the
text by the literal phrase “gene expression”.

Task 1 of the “BioNLP’09 Shared Task on Event
Extraction” was defined in such a way as to iden-
tify a proper relation (event) name and link it with
its type, plus one or more associated arguments de-
noting proteins. To focus on relation extraction only
no automatic named entity recognition and interpre-
tation had to be performed (subtask ‘argument typ-
ing’ from above); instead candidate proteins were
already pre-tagged. The complexity of Task 1 was
raised by the condition that not only proteins were
allowed to be arguments but also were events.

3 Event Extraction Solution

Our event extraction approach is summarized in Fig-
ure 1 and consists of three major streams – first, the
detection of lexicalized event triggers (cf. Section
3.1), second, the trimming of dependency graphs
which involves pruning irrelevant and semantically
enriching relevant lexical material (cf. Section 3.2),

2In our approach, event trigger disambiguation already im-
plies event typing.

Pre-processing

Argument Identi f icat ion with

Ensemble of Classifiers

Event Detection

Post-processing

 Trimming of
Dependency Graphs

 Typing of Putative
 Event Triggers

Figure 1: General Architecture of the Event Extraction
Solution of the JULIELab Team.

and, third, the identification of arguments for the
event under scrutiny (cf. Section 3.3). Event typ-
ing results from proper event trigger identification
(see Section 3.1.2), which is interlinked with the out-
come of the argument identification. We talk about
putative triggers because we consider, in a greedy
manner, all relevant lexical items (see Section 3.1.1)
as potential event triggers which might represent an
event. Only those event triggers that can eventually
be connected to arguments, finally, represent a true
event. To achieve this goal we preprocessed both the
original training and test data such that we enrich the
original training data with automatically predicted
event triggers in order to generate more negative ex-
amples for a more effective learning of true events.3

3.1 Event Trigger Identification

Looking at the wide variety of potential lexicalized
triggers for an event, their lacking discriminative
power relative to individual event types and their
inherent potential for ambiguity,4 we decided on
a dictionary-based approach whose curation princi-
ples are described in Section 3.1.1. Our disambigua-
tion policy for the ambiguous lexicalized event trig-

3Although the training data contains cross-sentence event
descriptions, our approach to event extraction is restricted to
the sentence level only.

4Most of the triggers are neither specific for molecular event
descriptions, in general, nor for a special event type. “Induc-
tion”, e.g., occurs 417 times in the training data. In 162 of these
cases it acts as a trigger forPositiveregulation, 6 times as a
trigger for Transcription, 8 instances triggerGeneexpression,
while 241 occurrences do not trigger an event at all.

20

gers assembled in this suite of dictionaries, one per
event type, is discussed in Section 3.1.2.

3.1.1 Manual Curation of the Dictionaries

We started collecting our dictionaries from the
original GENIA event corpus (Kim et al., 2008a).
The extracted event triggers were then automatically
lemmatized5 and the resulting lemmata were subse-
quently ranked by two students of biology according
to their predictive power to act as a trigger for a par-
ticular event type. This expert assessment led us to
four trigger groups (for each event type these groups
were determined separately):

(1) Triggers areimportantanddiscriminativefor
a specific event type. This group contains event trig-
gers such as “upregulate” forPositiveregulation.

(2) Triggers areimportant thoughnot fully dis-
criminativefor a particular event type; yet, this defi-
ciency can be overcome by other lexical cues within
the context of the same sentence. This group with in-
context disambiguators contains lexical items such
as “proteolyse” forProtein catabolism.

(3) Triggers arenon-discriminativefor an event
type and even cannot be disambiguated by linguistic
cues within the context of the same sentence. This
group contains lexical items such as “presence” for
LocalizationandGeneexpression.

(4) Triggers are absolutelynon-discriminativefor
an event. This group holds general lexical triggers
such as “observe”, “demonstrate” or “function”.

The final dictionaries used for the detection of
putative event triggers are a union of the first two
groups. They were further extended by biologists
with additional lexical material of the first group.
The dictionaries thus became event type-specific –
they contain all morphological forms of the original
lemma, which were automatically generated using
the Specialist NLP Tools (2008 release).

We matched the entries from the final set of dic-
tionaries with the shared task data using the Ling-
pipe Dictionary Chunker.6 After the matching pro-
cess, some cleansing had to be done.7

5We used the lemmatizer from the Specialist NLP Tools
(http://lexsrv3.nlm.nih.gov/SPECIALIST/
index.html , 2008 release).

6http://alias-i.com/lingpipe/
7Event triggers were removed which (1) were found within

sentences without any protein annotations, (2) occurred within

3.1.2 Event Trigger Disambiguation

Preliminary experiments indicated that the dis-
ambiguation of event triggers might be beneficial
for the overall event extraction results since events
tend to be expressed via highly ambiguous triggers.
Therefore, we performed a disambiguation step pre-
ceding the extraction of any argument structures.

It is based on theimportanceof an event trig-
ger ti for a particular event typeT as defined by

Imp(tTi) := f(tTi)
P

i f(tTi)
, wheref(tTi) is the frequency

of the event triggerti of the selected event typeT
in a training corpus divided by the total amount of
all event triggers of the selected event typeT in
that training corpus. The frequencies are measured
on stemmed event triggers. For example,Imp for
the trigger stem “depend” amounts to 0.013 for the
event typePositiveregulation, while for the event
typeRegulationit yields 0.036 . If a text span con-
tains several event triggers with the same span off-
set, the event trigger withmax(Imp) is selected and
other putative triggers are discarded. The trigger
stem “depend” remains thus only forRegulation.

3.2 Trimming Dependency Graphs

When we consider event (relation) extraction as a se-
mantic interpretation task, plain dependency graphs
as they result from deep syntactic parsing might not
be appropriate to directly extract semantic informa-
tion from. This is due to two reasons - they contain
a lot of apparently irrelevant lexical nodes (from the
semantic perspective of event extraction) and they
also contain much too specific lexical nodes that
might better be grouped and further enriched se-
mantically. Trimming dependency graphs for the
purposes of event extraction, therefore, amounts to
eliminate semantically irrelevant and to semantically
enrich relevant lexical nodes (i.e., overlay with con-
cepts). This way, we influence the final representa-
tion for the machine learners we employ (in terms of
features or kernel-based representations) — we may
avoid an overfitting of the feature or kernel spaces
with syntactic and lexical data and thus reduce struc-
tural information in a linguistically motivated way.

a longer event trigger, (3) overlapped with a longer trigger of
the same event type, (4) occurred inside an entity mention an-
notation.

21

3.2.1 Syntactic Pruning

Pruning targets auxiliary and modal verbs which
govern the main verb in syntactic structures such as
passives, past or future tense. We delete the aux-
iliars/modals as govenors of the main verbs from
the dependency graph and propagate the semantics-
preserving dependency relations of these nodes di-
rectly to the main verbs. Adhering to the depen-
dency tree format and labeling conventions set up
for the 2006 and 2007 CONLL shared tasks on de-
pendency parsing main verbs are usually connected
with the auxiliar by the VC dependency relation (see
Figure 2). Accordingly, in our example, the verb
“activate” is promoted to the ROOT in the depen-
dency graph and governs all nodes that were origi-
nally governed by the modal “may”.

Figure 2: Trimming of Dependency Graphs.

3.2.2 Conceptual Decoration

Lexical nodes in the (possibly pruned) depen-
dency graphs deemed to be important for argument
extraction were then enriched with semantic class
annotations, instead of keeping the original lexical
(stem) representation (see Figure 2). The rationale
behind this decision was to generate more powerful
kernel-based or features representations (see Section
3.3.2 and 3.3.1).

The whole process is based on a three-tier task-
specific semantic hierarchy of named entity classes.
The top rank is constituted by the equivalent classes
Transcription factor, Binding site, and Promoter.
The second rank is occupied by MESH terms, and
the third tier assembles the named entity classes
GeneandProtein. Whenever a lexical item is cat-
egorized by one of these categories, the associated

node in the dependency graph is overlaid with that
category applying the ranking in cases of conflicts.

We also enriched the gene name mentions with
their respective Gene Ontology Annotations from
GOA.8 For this purpose, we first categorized GO
terms both from the “molecular function” and from
the “biological process” branch with respect to
their matching event type, e.g.,Phosphorylation
or Positiveregulation. We then mapped all gene
name mentions which occurred in the text to their
UNIPROT identifier using the gene name normalizer
GENO (Wermter et al., 2009). This identifier links a
gene with a set of (curated) GO annotations.

In addition, we inserted semantic information in
terms of the event trigger type and the experimen-
tal methods. As far as experimental methods are
concerned, we extracted all instances of them an-
notated in the GENIA event corpus. One student
of biology sorted the experimental methods relative
to the event categories under scrutiny. For example
“affinity chromatography” was assigned both to the
Geneexpressionand to theBinding category. For
our purposes, we only included those GO annota-
tions and experimental methods which matched the
event types to be identified in a sentence.

3.3 Argument Identification and Ordering

The argument identification task can be subdivided
into three complexity levels. Level (1) incorpo-
rates five event types (Geneexpression, Transcrip-
tion, Protein catabolism, Localization, Phosphory-
lation) which involve a single participant with a
THEME role only. Level (2) is concerned with one
event type (Binding) that provides an n-ary argument
structure where all arguments occupy the THEME(n)
role. Level (3) comprises three event types (Posi-
tive regulation, Negativeregulation, or an unspeci-
fied Regulation) that represent a regulatory relation
between the above-mentioned event classes or pro-
teins. These events have usually a binary structure,
with a THEME argument and a CAUSE argument.

For argument extraction, we built sentence-wise
pairs of putative triggers and their putative argu-
ment(s), the latter involving ontological informa-
tion about the event type. For Level (1), we built
pairs only with proteins, while for Level (3) we al-

8http://www.ebi.ac.uk/GOA

22

lowed all events as possible arguments. For Level
(2), Binding events, we generated binary (trigger,
protein) pairs as well as triples (trigger, protein1,
protein2) to adequately represent the binding be-
tween two proteins.9 Pairs of mentions not con-
nected by a dependency path could not be detected.
For the argument extraction we chose two ma-
chine learning-based approaches, feature-based and
a kernel-based one, as described below.10

3.3.1 Feature-based Classifier

We distinguished three groups of features. First,
lexical features (covering lexical items before, af-
ter and between both mentions (of the event trigger
and an argument) as described by Zhou and Zhang
(2007)); second,chunkingfeatures (concerned with
head words of the phrases between two mentions as
described by Zhou and Zhang (2007)); third,de-
pendency parsefeatures (considering both the se-
lected dependency levels of the arguments (parents
and least common subsumer) as discussed by Ka-
trenko and Adriaans (2006), as well as a shortest de-
pendency path structure between the arguments as
used by Kim et al. (2008b) forwalk features).

For the feature-based approach, we chose the
Maximum Entropy (ME) classifier from MALLET .11

3.3.2 Graph Kernel Classifier

The graph kernel uses a converted form of depen-
dency graphs in which each dependency node is rep-
resented by a set of labels associated with that node.
The dependency edges are also represented as nodes
in the new graph such that they are connected to the
nodes adjacent in the dependency graph. Subgraphs
which represent, e.g., the linear order of the words
in the sentence can be added, if required. The entire
graph is represented in terms of an adjacency matrix
which is further processed to contain the summed
weights of paths connecting two nodes of the graph
(see Airola et al. (2008) for details).

9We did not account for the binding of more than two pro-
teins as this would have led to a combinatory explosion of pos-
sible classifications.

10In our experiments, we used full conceptual overlaying
(see Section 3.2) for the kernel-based representation and partial
overlaying for the dependency parse features (only gene/protein
annotation was exploited here). Graph representations allow for
many semantic labels to be associated with a node.

11http://mallet.cs.umass.edu/index.php/
Main_Page

Figure 3: Graph Kernel Representation for a Trimmed
Dependency Graph — (1) original representation, (2)
representation without graph dependency edge nodes
(weights (0.9, 0.3) taken from Airola et al. (2008)).

For our experiments, we tried some variants of the
original graph kernel. In the original version each
dependency graph edge is represented as a node.
That means that connections between graph token
nodes are expressed throughgraph dependency edge
nodes(see Figure 3; (1)). To represent the connec-
tions between original tokens as direct connections
in the graph, we removed the edge nodes and each
token was assigned the edge label (its dependency
label; see Figure 3; (2)). Further variants included
encodings for (1) the shortest dependency path (sp)
between two mentions (argument and trigger)12 (2)
the complete dependency graph (sp-dep), and (3) the
complete dependency graph and linear information
(sp-dep-lin) (the original configuration from Airola
et al. (2008)).

For the graph kernel, we chose the LibSVM
(Chang and Lin, 2001) Support Vector Machine as
classifier.

3.4 Postprocessing

The postprocessing step varies for the three different
Levels (see Section 3.3). For every event trigger of
Level (1) (e.g.,Geneexpression), we generate one
event per relation comprising a trigger and its argu-
ment. For Level (2) (Binding), we create aBinding
event with two arguments only for triples (trigger,
protein1, protein2). For the third Level, we create
for each event trigger and its associated arguments
e = n × m events, forn CAUSE arguments andm
THEME arguments.

12For Binding we extracted the shortest path between two
protein mentions if we encounter a triple (trigger, protein1,
protein2).

23

4 Pipeline

The event extraction pipeline consists of two ma-
jor parts, a pre-processor and the dedicated event
extractor. As far as pre-processing is concerned,
we imported the sentence splitting, tokenization and
GDep parsing results (Sagae and Tsujii, 2007) as
prepared by the shared task organizers for all data
sets (training, development and test). We processed
this data with the OpenNLP POS tagger and Chun-
ker, both re-trained on the GENIA corpus (Buyko et
al., 2006). Additionally, we enhanced the original
tokenization by one which includes hyphenization
of lexical items such as in “PMA-dependent”. 13

The data was further processed with the gene nor-
malizer GENO(Wermter et al., 2009) and a num-
ber of regex- and dictionary-based entity taggers
(covering promoters, binding sites, and transcrip-
tion factors). We also enriched gene name men-
tions with their respective Gene Ontology annota-
tions (see Section 3.2.2). The MESH thesaurus (ex-
cept chemical and drugs branch) was mapped on the
data using the Lingpipe Dictionary Chunker.14

After preprocessing, event extraction was started
distinguishing between the event trigger recognition
(cf. Section 3.1), the trimming of the dependency
graphs (cf. Section 3.2), and the argument extrac-
tion proper (cf. Section 3.3).15 We determined in
our experiments on the development data the perfor-
mance of every classifier type and its variants (for
the graph kernel), and of ensembles of the most per-
formant (F-Score) graph kernel variant and an ME
model.16 We present here the argument extraction
configuration used for the official run.17 For the
prediction of Phosphorylation, Localization, Pro-
tein catabolismtypes we used the graph kernel in

13This tokenization is more advantageous for the detection
of additional event triggers as it allows to generate depen-
dency relations from hyphenated terms. For example, in “PMA-
dependent”, “ PMA” will be a child of “dependent” linked by
the AMOD dependency relation, and “dependent” receives the
original dependency relation of the “PMA-dependent” token.

14http://alias-i.com/lingpipe/
15For the final configurations of the graph kernel, we opti-

mized theC parameter in the spectrum between2−3 and23 on
the final training data for every event type separately.

16In theensembleconfiguration we built the union of positive
instances.

17We achieved with this configuration the best performance
on the development set.

its “sp without dependency-edge-nodes” configura-
tion, while for the prediction ofTranscriptionand
Geneexpressionevents we used an ensemble of the
graph kernel in its “sp with dependency-edge-nodes”
variant, and an ME model. For the prediction of
Binding we used an ensemble of the graph kernel
(“sp-dep with dependency-edge-nodes”) and an ME
model. For the prediction of regulatory events we
used ME models for each regulatory type.

5 Results

The baseline against which we compared our ap-
proach can be captured in a single rule. We extract
for every pair of a putative trigger and a putative ar-
gument the shortest dependency path between them.
If the shortest dependency path does not contain any
direction change, i.e., the argument is either a direct
child or a direct parent of the trigger, and if the path
does not contain any other intervening event trig-
gers, the argument is taken as the THEME role.

We performed evaluations on the shared task de-
velopment and test set. Our baseline achieved com-
petitive results of 36.0% precision, 34.0% recall,
35.0% F-score on the development set (see Table
1), and 30.4% precision, 35.7% recall, 32,8% F-
score on the test set (see Table 2). In particular
the one-argument events, i.e.,Geneexpression, Pro-
tein catabolism, Phosphorylationare effectively ex-
tracted with an F-score around 70.0%. More com-
plex events, in particular events of Level (3), i.e.,
(Regulation) were less properly dealt with because
of their strong internal complexity.

Event Class gold recall prec. F-score
Localization 53 75.47 30.30 43.24

Binding 248 33.47 20.80 25.66
Geneexpression 356 76.12 75.07 75.59

Transcription 82 68.29 40.58 50.91
Protein catabolism 21 76.19 66.67 71.11
Phosphorylation 47 76.60 72.00 74.23

Regulation 169 14.20 15.09 14.63
Positiveregulation 617 15.40 20.83 17.71
Negativeregulation 196 11.73 13.22 12.43

TOTAL 1789 36.00 34.02 34.98

Table 1: Baseline results on the shared task development
data. Approximate Span Matching/Approximate Recur-
sive Matching.

24

Event Class gold recall prec. F-score gold recall prec. F-score
Localization 174 42.53 44.85 43.66 174 42.53 44.85 43.66

Binding 347 32.28 37.09 34.51 398 44.22 58.28 50.29
Geneexpression 722 61.36 80.55 69.65 722 61.36 80.55 69.65

Transcription 137 39.42 35.06 37.11 137 39.42 35.06 37.11
Protein catabolism 14 71.43 66.67 68.97 14 71.43 66.67 68.97
Phosphorylation 135 65.93 90.82 76.39 135 65.93 90.82 76.39

EVT-TOTAL 1529 51.14 60.90 55.60 1580 53.54 65.89 59.08

Regulation 291 9.62 11.72 10.57 338 9.17 12.97 10.75
Positiveregulation 983 10.38 11.33 10.83 1186 14.67 19.33 16.68
Negativeregulation 379 14.25 19.22 16.36 416 14.18 21.00 16.93

REG-TOTAL 1653 11.13 12.96 11.98 1940 13.61 18.59 15.71

ALL-TOTAL 3182 30.36 35.72 32.82 3520 31.53 41.05 35.67

Table 2: Baseline results on the shared task test data. Approximate Span Matching/Approximate Recursive Matching
(columns 3-5). Event decomposition, Approximate Span Matching/Approximate Recursive Matching (columns 7-9).

The event extraction approach, in its final config-
uration (see Section 4), achieved a performance of
50.4% recall, 45.8% precision and 48.0% F-score on
the development set (see Table 4), and 45.8% recall,
47.5% precision and 46.7% F-score on the test set
(see Table 3). This approach clearly outperformed
the baseline with an increase of 14 percentage points
on the test data. In particular, the events of Level (2)
and (3) were more properly dealt with than by the
baseline. In the event decomposition mode (argu-
ment detection is evaluated in a decomposed event)
we achieved a performance of 49.4% recall, 56.2%
precision, and 52.6% F-score (see Table 3).

Our experiments on the development set showed
that the combination of the feature-based and the
graph kernel-based approach can boost the results up
to 6 percentage points F-score (for theBindingevent
type). It is interesting that the combination forBind-
ing increased recall without dropping precision. The
original graph kernel approach forBinding events
performs with 38.3% recall, 27.9% precision and
32.3% F-score on the development set. The com-
bined approach comes with a remarkable increase
of 14 percentage points in recall. The combination
could also boost the recall of theGeneexpression
andTranscriptionby 15 percentage points and 5 per-
centage points, respectively, without seriously drop-
ping the precision (4 points for every type). For
the other event types, no improvements were found
when we combined both approaches.

5.1 Error Discussion

One expert biologist analyzed 30 abstracts randomly
extracted from the development error data. We de-
termined seven groups of errrors based on this anal-
ysis. The first group contains examples for which
an event should be determined, but a false argument
was found (e.g.,Binding arguments were not prop-
erly sorted, or correct and false arguments were de-
tected for the same trigger) (44 examples). The sec-
ond group comprised examples where no trigger was
found (23 examples). Group (3) stands for cases
where no events were detected although a trigger
was properly identified (14 examples). Group (4)
holds examples detected in sentences which did not
contain any events (12 examples). Group (5) lists bi-
ologically meaningful analyses, actually very close
to the gold annotation, especially for the cascaded
regulatory events (12 examples), while Group (6) in-
corporates examples of a detected event with incor-
rect type (1 example). Group (7) gathers misleading
gold annotations (10 examples).

This assessment clearly indicates that a major
source of errors can be traced to the level of argu-
ment identification, in particular forBindingevents.
The second major source has its offspring at the
level of trigger detection (we ignored, for exam-
ple, triggers such as “in the presence of”, “ when”,
“normal”). About 10% of the errors are due to a
slight difference between extracted events and gold
events. For example, in the phrase “role for NF-
kappaB in the regulation of FasL expression” we

25

Event Class gold recall prec. F-score gold recall prec. F-score
Localization 174 43.68 77.55 55.88 174 43.68 77.55 55.88

Binding 347 49.57 35.25 41.20 398 63.57 54.88 58.91
Geneexpression 722 64.82 80.27 71.72 722 64.82 80.27 71.72

Transcription 137 35.77 62.03 45.37 137 35.77 62.03 45.37
Protein catabolism 14 78.57 84.62 81.48 14 78.57 84.62 81.48
Phosphorylation 135 76.30 91.15 83.06 135 76.30 91.15 83.06

EVT-TOTAL 1529 57.49 63.97 60.56 1580 60.76 71.27 65.60

Regulation 291 31.27 30.13 30.69 338 35.21 37.54 36.34
Positiveregulation 983 34.08 37.18 35.56 1186 40.64 49.33 44.57
Negativeregulation 379 40.37 31.16 35.17 416 42.31 39.11 40.65

REG-TOTAL 1653 35.03 34.18 34.60 1940 40.05 44.55 42.18

ALL-TOTAL 3182 45.82 47.52 46.66 3520 49.35 56.20 52.55

Table 3: Offical Event Extraction results on the shared task test data of the JULIELab Team. Approximate
Span Matching/Approximate Recursive Matching (columns 3-5). Event decomposition, Approximate Span Match-
ing/Approximate Recursive Matching (columns 7-9).

could not extract the gold eventRegulationof Regu-
lation (Geneexpression (FasL))associated with the
trigger “role”, but we were able to find the (inside)
eventRegulation (Geneexpression (FasL))associ-
ated with the trigger “regulation”. Interestingly, the
typing of events is not an error source in spite of
the simple disambiguation approach. Still, our dis-
ambiguation strategy is not appropriate for the anal-
ysis of double-annotatedtriggers such as “overex-
pression”, “transfection”, etc., which are annotated
asGeneexpressionandPositiveregulationand are
a major source of errors in Group (2). As Group
(6) is an insignificant source of errors in our ran-
domly selected data, we focused our error analysis
on the especially ambiguous event typeTranscrip-
tion. We found from 34 errors that 14 of them were
due to the disambiguation strategy (in particular for
triggers “(gene) expression” and “induction”).

6 Conclusion

Our approach to event extraction incorporates man-
ually curated dictionaries and machine learning
methodologies to sort out associated event triggers
and arguments on trimmed dependency graph struc-
tures. Trimming combines pruning irrelevant lexi-
cal material from a dependency graph and decorat-
ing particularly relevant lexical material from that
graph with more abstract conceptual class informa-
tion. Given that methodological framework, the
JULIELab Team scored on 2nd rank among 24 com-

Event Class gold recall prec. F-score
Localization 53 71.70 74.51 73.08

Binding 248 52.42 29.08 37.41
Geneexpression 356 75.28 81.46 78.25

Transcription 82 60.98 73.53 66.67
Protein catabolism 21 90.48 79.17 84.44
Phosphorylation 47 82.98 84.78 83.87

Regulation 169 37.87 36.78 37.32
Positiveregulation 617 34.36 35.99 35.16
Negativeregulation 196 41.33 33.61 37.07

TOTAL 1789 50.36 45.76 47.95

Table 4: Event extraction results on the shared task
development data of the official run of the JULIELab
Team. Approximate Span Matching/Approximate Recur-
sive Matching.

peting teams, with 45.8% precision, 47.5% recall
and 46.7% F1-score on all 3,182 events.

7 Acknowledgments

We wish to thank Rico Landefeld for his technical
support, Tobias Wagner and Rico Pusch for their
constant help and great expertise in biological is-
sues. This research was partially funded within the
BOOTSTREP project under grant FP6-028099 and
the CALBC project under grant FP7-231727.

References

Antti Airola, Sampo Pyysalo, Jari Björne, Tapio
Pahikkala, Filip Ginter, and Tapio Salakoski. 2008. A

26

graph kernel for protein-protein interaction extraction.
In Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing, pages 1–9.

Christian Blaschke, Miguel A. Andrade, Christos Ouzou-
nis, and Alfonso Valencia. 1999. Automatic ex-
traction of biological information from scientific text:
Protein-protein interactions. InISMB’99 – Proceed-
ings of the 7th International Conference on Intelligent
Systems for Molecular Biology, pages 60–67.

Ekaterina Buyko, Joachim Wermter, Michael Poprat, and
Udo Hahn. 2006. Automatically adapting an NLP
core engine to the biology domain. InProceedings
of the Joint BioLINK-Bio-Ontologies Meeting. A Joint
Meeting of the ISMB Special Interest Group on Bio-
Ontologies and the BioLINK Special Interest Group on
Text Data M ining in Association with ISMB, pages
65–68. Fortaleza, Brazil, August 5, 2006.

Chih-Chung Chang and Chih-Jen Lin, 2001.LIB-
SVM: a library for support vector machines. Soft-
ware available athttp://www.csie.ntu.edu.
tw/ ˜ cjlin/libsvm .

Katrin Fundel, Robert K̈uffner, and Ralf Zimmer.
2007. Relex-relation extraction using dependency
parse trees.Bioinformatics, 23(3):365–371.

Jörg Hakenberg, Ulf Leser, Conrad Plake, Harald Kirsch,
and Dietrich Rebholz-Schuhmann. 2005. LLL’05
challenge: Genic interaction extraction - identifica-
tion of language patterns based on alignment and finite
state automata. InProceedings of the 4th Learning
Language in Logic Workshop (LLL05), pages 38–45.

Minlie Huang, Xiaoyan Zhu, Donald G. Payan, Kun-
bin Qu, and Ming Li. 2004. Discovering patterns
to extract protein-protein interactions from full texts.
Bioinformatics, 20(18):3604–3612.

Sophia Katrenko and Pieter W. Adriaans. 2006. Learn-
ing relations from biomedical corpora using depen-
dency trees. In Karl Tuyls, Ronald L. Westra, Yvan
Saeys, and Ann Noẃe, editors,KDECB 2006 – Knowl-
edge Discovery and Emergent Complexity in Bioin-
formatics. Revised Selected Papers of the 1st Inter-
national Workshop., volume 4366 ofLecture Notes
in Computer Science, pages 61–80. Ghent, Belgium,
May 10, 2006. Berlin: Springer.

Jin-Dong Kim, Tomoko Ohta, and Jun’ichi Tsujii. 2008a.
Corpus annotation for mining biomedical events from
literature.BMC Bioinformatics, 9(10).

Seon-Ho Kim, Juntae Yoon, and Jihoon Yang. 2008b.
Kernel approaches for genic interaction extraction.
Bioinformatics, 24(1):118–126.

Rune Sætre, Kenji Sagae, and Jun’ichi Tsujii. 2007. Syn-
tactic features for protein-protein interaction extrac-
tion. In Christopher J. O. Baker and Jian Su, editors,
LBM 2007, volume 319, pages 6.1–6.14.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency pars-
ing and domain adaptation with LR models and par ser
ensembles. InProceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, pages 1044–1050.

JasminŠaríc, Lars J. Jensen, Rossitza Ouzounova, Isabel
Rojas, and Peer Bork. 2004. Extracting regulatory
gene expression networks from pubmed. InACL ’04:
Proceedings of the 42nd Annual Meeting on Associa-
tion for Computational Linguistics, page 191, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

Joachim Wermter, Katrin Tomanek, and Udo Hahn.
2009. High-performance gene name normalization
with GeNo.Bioinformatics, 25(6):815–821.

Akane Yakushiji, Yuka Tateisi, Yusuke Miyao, and
Jun’ichi Tsujii. 2001. Event extraction from biomed-
ical papers using a full parser. In Russ B. Altman,
A. Keith Dunker, Lawrence Hunter, Kevin Lauderdale,
and Teri E. Klein, editors,PSB 2001 – Proceedings
of the 6th Pacific Symposium on Biocomputing, pages
408–419. Maui, Hawaii, USA. January 3-7, 2001. Sin-
gapore: World Scientific Publishing.

Guodong Zhou and Min Zhang. 2007. Extracting re-
lation information from text documents by exploring
various types of knowledge.Information Processing
& Management, 43(4):969–982.

27

