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Abstract

In biomedical information extraction (IE), a
central problem is the disambiguation of am-
biguous names for domain specific entities,
such as proteins, genes, etc. One important
dimension of ambiguity is the organism to
which the entities belong: in order to disam-
biguate an ambiguous entity name (e.g. a pro-
tein), it is often necessary to identify the spe-
cific organism to which it refers.

In this paper we present an approach to the
detection and disambiguation of the focus or-
ganism(s), i.e. the organism(s) which are the
subject of the research described in scientific
papers, which can then be used for the disam-
biguation of other entities.

The results are evaluated against a gold stan-
dard derived from IntAct annotations. The
evaluation suggests that the results may al-
ready be useful within a curation environment
and are certainly a baseline for more complex
approaches.

1 Introduction

The task of identifying the organisms which are in-
volved in research described in biomedical articles
is extremely important for the field of biomedical in-
formation extraction (IE), both in itself and in con-
nection with other tasks. In itself, because the con-
cept of biological taxonomy is basic for every re-
searcher: organisms and their taxonomic classifica-
tion can be used very effectively in various contexts,
for example to restrict searches, a classical infor-
mation retrieval (IR) task. At the same time, any
biomedical text mining system would be incomplete
without the possibility to use organisms as concepts,
e.g. in finding (statistical) associations, which can

∗Corresponding author

then be used to form hypotheses about causal rela-
tions.

The necessity of identifying organisms is even
more evident as part of other important entity recog-
nition tasks in biomedical information extraction
(IE), e.g. identification and disambiguation of pro-
teins mentioned in the literature. For example,
within the PPI task (identification of protein-protein
interactions) of Biocreative II (Krallinger et al.,
2008), the identification of the focus organism was
seen by many participants as an essential subtask in
order to properly disambiguate protein names. Pro-
tein interactions are fundamental for most biological
processes, therefore they are at the focus of a huge
and fast growing number of biomedical papers. As
these cannot all be read or even inspected by the re-
searchers, databases such as IntAct (Kerrien et al.,
2006) or MINT (Zanzoni et al., 2002) try to create a
reliable catalogue of experimentally detected inter-
actions by extracting them “manually” from the lit-
erature through the usage of human experts. This is
known as “curation”, a costly and time-consuming
process, which could be speeded up much by effi-
cient, robust and precise extraction tools.

One of the most important obstacles for efficient
automatic identification of proteins is the extreme
ambiguity of the commonly used protein names in
the literature. The fragmentation of the biomedical
scientific community into lots of extremely special-
ized sub-communities seems to be the main reason
for this ambiguity. In most cases, the ambiguity is
between homologous proteins of different species.
Any human reader belonging to the sub-community
concerned can, in general, disambiguate an ambigu-
ous protein name like “goat” (which can refer to
proteins found in four different organisms: human,
rat, mouse and zebrafish), as the species is obvious
to them from the context. However, this ambiguity
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remains problematic for IE systems (and even for
curators in some cases) and needs to be solved be-
fore more complex tasks, such as protein interaction
detection, can be effectively tackled (Rinaldi et al.,
2008).

Our goal is to be able to identify automatically
the focus organisms, i.e. the organisms that are
mentioned in the paper as the hosts of the exper-
iments described, or as the sources of the entities
involved. This information can then be used for tag-
ging papers for more efficient organism-based infor-
mation retrieval, or, more commonly, for the dis-
ambiguation of other entities mentioned in the same
paper. Since organism recognition is normally per-
formed with reference to a taxonomical organization
(of Linnean origin) of all known organisms (in our
case, the NCBI taxonomy) this task is often referred
to as “TX task”.

In the rest of this paper we describe in section 2
the resources used and the approach followed in or-
der to extract and rank candidate organisms. In sec-
tion 3 we present our results and propose a more fine
grained interpretation of the task, which we again
evaluate. Finally in section 4 we compare our ap-
proach to previous work and discuss its limitations.

2 Methods

Our approach can be described briefly as (1) find all
explicit mentions of organisms either by their scien-
tific or “common” names; (2) count these mentions
and combine the resulting numbers with a simple
use of statistics to arrive at a ranked list or a sim-
ple set of organisms which can be used, among other
things, to disambiguate ambiguous protein names in
the article under investigation.

2.1 Resources Used
The first step for this approach was to choose a
widely accepted taxonomy which not just includes
unambiguous identifiers for all known organisms,
but also provides a sufficiently large list of names
for them. The taxonomy selected for this was the
NCBI Taxonomy1.

1Available as archive taxdmp.zip from
ftp://ftp.ncbi.nih.gov/pub/taxonomy/. We worked with a
version downloaded on July 10th 2008. The file nodes.dmp
contains the taxonomy as a set of 443,299 nodes for the taxa
and immediate-dominance-relations between them. The file

As most of these organism are unlikely to ever oc-
cur in biomedical literature, we decided to restrict
our interest to the organisms for which a UniProt
organism mnemonic identifier exists. UniProt
(UniProt Consortium, 2007) is a database containing
detailed information about known proteins, obtained
by a process of curation of the biomedical literature.
For every protein, a “mnemonic” identifier is de-
fined (e.g. HBA HUMAN for “Human Hemoglobin
A”) which is composed by a shorthand for the pro-
tein name and a simple unique identifier for the or-
ganism. Within the UniProt entry for the protein,
the organism is also referred to by its NCBI iden-
tifier, allowing the construction of a mapping from
the mnemonic identifiers for the organisms used by
UniProt to their equivalent NCBI identifiers.

The set of organism that have a UniProt
mnemonic identifier (11,444 organisms) probably
covers the near totality of organisms that have been
subject to research in molecular biology. In the
NCBI taxonomy 31,733 names are defined for that
subset of organisms. Although several classes of
names are defined by NCBI, for the purpose of
this work we distinguish only between “scientific
names” and the other classes (pooled together as
“common names”).2

As an additional source of information, we used
the IntAct database of protein interactions3 for two
different purposes:

• to derive statistical measures used later by the
program, most importantly the frequency of
each focus organism in papers curated by Int-
Act (using the IntAct annotations as the sources
of the ’focus’).

• to derive a gold standard against which our pro-
grams could be tested

IntAct provides an annotated set of protein in-
teractions. Each interaction is enriched with de-
tailed information about the two proteins involved
names.dmp connects one or several names (619,325) of differ-
ent nameclasses (such as “scientific” or “common”) to each
node. The nodes (taxa) are referred to by numeric identifiers.

2While there are no ambiguous “scientific names” in this
taxonomy, there are several ambiguous “common names”, but
only very few of these occurred in our sample, e.g. “mink”,
“barley”, “green monkey”, and they are very rare.

3Version of May 2008, downloaded from
http://www.ebi.ac.uk/intact/site/contents/downloads.jsf
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(from which the reference organisms can be recov-
ered), and with the identifier of the paper from which
the interaction was originally derived in the curation
process. This allows to build a gold standard by as-
sociating each paper to its focus organisms.

The sample used in our experiments is a set of 621
PubMed-indexed full text articles, dating from 1995
to 2007, for which IntAct annotations are available.4

2.2 First Experiments and Normalization

As an initial experiment, we performed a simple
lexical lookup of the names of the 11,444 organ-
isms under consideration. In previous applications
of IE techniques for biomedical literature (Kappeler
et al., 2008; Rinaldi et al., 2008) we found that
simple techniques for the generation of variants of
the known names significantly benefited the recall
of the application. For example, multiword protein
names can be subject to a number of minor variants,
such as the introduction of hyphens or the separation
of compound words, which make automatic recog-
nition more challenging. In the case of organism
names, although our initial expectations were sim-
ilar, we found the benefit (in terms of additional re-
call) of such variants to be extremely limited, possi-
bly because names of species are used more consis-
tently than the names of proteins or genes.

Therefore it was possible to implement a simpler
approach to recognition of organism names, based
on lexical lookup against a database containing all
names of interest, coupled with a simple normaliza-
tion step which removes trivial orthographic differ-
ences (such as hyphens) between the key word in
the database and the lookup word from the docu-
ment (for details see (Kaljurand et al., 2009)). The
inclusion of other biomedical NE’s (such as pro-
tein names, method names, cell line names) in the
database together with a strict implementation of
the “longest match” principle leads to better preci-
sion by eliminating false positives caused by match-
ing organism names with a fragment of a multiword
term for another entity (such as the method “yeast
two-hybrid”).

As mentioned, the names provided by the NCBI
4The reason of this particular choice is that the same subset

was used for experiments related to the automatic detection of
experimental methods, also using IntAct annotations as a gold
standard, described in (Kappeler et al., 2008).

taxonomy have been classified into “scientific
names” or “common names”. Using only “scientific
names” appeared as an effective way to obtain better
precision, but we soon discovered that precision of
the common names suffered most by a few very bad
names, such as “Li”, which is a “common name” for
LIV (Louping ill virus) in the taxonomy, but appears
only (and very frequently) as Chinese surname in the
texts. By eliminating about 25 of similar misleading
“common names” the results of this class rose to the
same level as the “scientific names”, so there was
no reason to exclude the whole class (as that would
have harmed recall).

Since the bibliography might contain spurious
mentions of other organisms, we automatically re-
moved it from the main text. However, contrary to
expectations, this did not lead to better results for
this task (at least after the elimination of the mislead-
ing “common names” mentioned above), but was
not reversed because of its effects on other tasks. An
intuition from other tasks was to use the abstracts
instead of the full text of the articles, because that
would tend to exclude accidental mentions of organ-
isms leading to false positives. But a main problem
of this approach is that many abstracts do not yield
any organism mentions. Whenever they do though,
their precision is high. So there is a strong case for
giving the mentions there a higher weight, but obvi-
ously the rest of the article plays an important role
as well. We experimentally found that counting an
“abstract mention” as equivalent to 25 “fulltext men-
tions” worked best.

2.3 Measures Improving Recall

An experiment using all names provided by NCBI
and considering all mentions of those names in the
fulltext version of each article led to a recall of 83%,
leading us to conclude that either the taxonomy does
not contain all names used, or some organisms are
suggested to the human reader by the context and/or
his anticipations. The first of these problems was
adressed by adding some generated names to the
termbase, the second by the use of a default.

Several possible ways of generating new names
automatically from the names in the database were
considered, but only two were applied successfully,
as described below. One of them was the automatic
generation of additional names from the nameclass
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“scientific name” (for organisms of species or sub-
species level) by the process of replacing the first
word (which would be the genus name in the classi-
cal Linnean binomial nomenclature) by its first letter
and a dot. The resulting names, such as “E. coli”, are
widely used, but not included in the taxonomy. A
seemingly large disadvantage of this approach is its
potential for ambiguity: 338 of the resulting names
refer to more than one organism. But the test on
our sample showed that of these only 4 occurred at
all, only 1 more than once: “C. elegans” (potentially
referring to the organisms identified in UniProt as
CAEEL, CENEL, CESEL and CUNEL) which al-
ways stood for CAEEL, i.e. “Caenorhabditis ele-
gans”. So excluding the other options for “C. ele-
gans” eliminated the ambiguity (at least in our sam-
ple). We observed that this type of name is in fre-
quent use only for few species and in this case the
unabbreviated name is often used first, so the addi-
tion of this generated nameclass added little to re-
call.

The other type of name missing from the taxon-
omy is the use of the (Linnean) genus name for a
very frequent species, e.g. “Arabidopsis” used for
“Arabidopsis thaliana”. Experiments showed that
this type could not be reliably generated automat-
ically from the “scientific names”, as this name-
class includes many names which do not follow
the rules of Linnean binomial nomenclature, mostly
virus names such as “Human papillomavirus type
me180” where the first word is generally not a
genus name, but a host name. So the problem of
(potentially huge) ambiguity in this type of names
was not even researched, instead the names of this
type for the most frequent organisms were gener-
ated manually and those which improved the results
were included into the termbase (Saccharomyces,
Arabidopsis, Drosophila, Escherichia, Xenopus and
Synechocystis). The addition of this generated
nameclass did not add much to recall for the same
reason as for the first group: in most cases the un-
abbreviated name appears in the paper as well. To-
gether both groups improved recall by about 3.4%.

As HUMAN is the most frequent organism in
this context, it was obvious that a default HUMAN
would take care of many cases where human readers
disambiguate ambiguous protein names even with-
out any explicit mentions of this species. As there

Table 1: Most frequent organisms in IntAct (derived from
interactor proteins and host organisms)

ORG freq
HUMAN 0.281
YEAST 0.272
MOUSE 0.091
ARATH 0.056
CERAE 0.037
RAT 0.033
DROME 0.028
SCHPO 0.023
ECOLX 0.020
ECOLI 0.013

are no cases (with the current termbase and sample)
of articles with no organism mentions in the full text,
we chose to have a default triggered by no findings
in the abstract. Experiments showed that — contrary
to intuition — a weight of the default proportional to
the total number of mentions (just adding a percent-
age to HUMAN) would lead to worse results than an
absolute value for the default.5

2.4 Measures Improving Precision

The simple approach of considering every mention
of each organism (after excluding the misleading
common names, as described above), leads to a pre-
cision of only 27.6%, therefore the list of organism
identifiers obtained in this way has to be considered
as a “candidates list” from which a selection has to
be made.

Candidates can be of course ranked according to
number of mentions in each article. A ranking based
on the mention counts, taking into account the cor-
rection factor of 25 for mentions in the abstract (as
described in section 2.2), was still far from opti-
mal, so we multiplied the mentions with the relative
frequencies of the organisms in a micro-averaged
frequency table (table 1) computed over all of Int-
Act (not just our sample, to avoid overfitting) and
smoothed roughly by attributing 1% of the probabil-
ity mass to all unseen organisms (over 11,000). This
ranking did far better than expected and after nor-

5 A tentative explanation: In a small paper, the effect of ac-
cidental mentions of “wrong” organisms is much larger than in
big papers (where the important organisms are mentioned again
and again). This detrimental effect may be counterbalanced by
a relatively stronger default.
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malizing the whole list to 1, a minimal threshold for
the score could be set up to maximize the f-score by
improving precision at the cost of recall. The actual
value of the threshold (currently 0.04) is of course
arbitrary, depending on what measure one wants to
maximize.

Another problem to be tackled is that different pa-
pers will have different numbers of focus organisms,
ranging from one (in about 70% of the cases), to sev-
eral hundreds (in a few very infrequent cases). It
could be assumed that being able to correctly guess
the number of focus organisms would lead to im-
provement in the TX task, as we could pick only as
many candidate organisms (in their ranking order)
as the expected number for the paper. However, an
experiment using the gold standard as an oracle to
predict the number of organisms to be returned as
a result, instead of using a threshold in the ranking,
did not perform much better (recall was about 1.7%
higher), so we decided not to spend any energy on
exploring ways to predict the number of organisms
as the effect would be minimal, even with perfect
prediction.

Further experiments, such as giving different
weights to mentions of names of different name-
classes, did not lead to better results. Including in-
formation about the precision or recall of the names
encountered in our test set (or the organisms pre-
dicted by them) in the formula for the weights6 did
not lead to better results either.

3 Evaluation and analysis of results

So finally the program in its current form considers
all organism mentions, as delivered by the termbase
search, eliminates the problematic common names,
counts the mentions for each organism in fulltext
and abstracts, multiplies the latter by 25 and adds
them to the fulltext mentions. In case of no abstract
mentions, a default of 28 fulltext mentions is added
to HUMAN (equivalent to about one abstract men-
tion).

The result for each organism is multiplied by the
relative frequency of the organism in IntAct and di-
vided by the sum of the results over all organisms to

6An idea suggested by its successful use in the detection of
experimental methods in (Kappeler et al., 2008) and (Rinaldi et
al., 2008).

Table 2: Most frequent false positives for the best results
with our sample

ORG freq
HUMAN 121
YEAST 104
MOUSE 68
ECOLX 18
DROME 13
ARATH 11
RAT 9

Table 3: Most frequent false negatives for the best results
with our sample

ORG freq
CERAE 73
MOUSE 59
RAT 40
YEAST 21
BOVIN 14
ECOLI 13
ECOLX 13

normalize the sum of the values to 1 (100%). All or-
ganisms under the threshold of 0.04 (or 4%) are then
eliminated from the list.

Our best results (max. f-score) for the task of find-
ing all organisms in the gold standard combining or-
ganisms of interacting proteins and host organisms
are: precision: 0.742; recall: 0.738; f-score: 0.740.

An analysis of the most frequent false positives
is reported in table 2. The ranking is more or less
identical with the frequency table (table 1), which is
what we would expect. Manual inspection of some
of the papers causing these false positives gave the
following results:

• Some names of experimental methods contain-
ing organism names (which could avoid false
positives if recognized as methods) were not
yet included in the termbase.

• Some organisms (or their proteins respectively)
are discussed in the paper, but not as results of
the authors own experiments, so they do not ap-
pear in the gold standard. Obviously the cura-
tors consider only the novel findings reported
in the paper, and all background information is
ignored.
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Table 4: Most frequent organisms in IntAct (derived from
interactor proteins only)

ORG freq
HUMAN 0.380
MOUSE 0.123
YEAST 0.108
ARATH 0.080
RAT 0.047
DROME 0.040
SCHPO 0.032
ECOLI 0.019
BOVIN 0.016
CAEEL 0.014

• While in some cases the annotators seem to de-
cide that an organism is just used as part of
the method and does not merit an inclusion, in
other cases the annotators do not seem to treat
the problem the same way.

An analysis of the most frequent false negatives
is reported in table 3. The ranking is certainly not
identical with the frequency table (table 1), which
was unexpected. Manual inspection of some of the
papers causing these false negatives gave the follow-
ing results:

• Some common names such as “mice”, and ad-
jectives such as “murine”, were absent from the
taxonomy (while “transgenic mice” e.g. was
present).

• There are probably more hints to recognize
ECOLI (Escherichia coli K12) than just the
presence of the string “K12” (or “K-12”). Our
program tends to attribute all mentions of “Es-
cherichia coli” without this string to ECOLX,
generating false negatives for ECOLI and false
positives for ECOLX.

• The extremely high false negative rate for
CERAE (Chlorocebus aethiops, also known as
Cercopithecus aethiops) is a consequence of its
very different frequencies as source of interac-
tor proteins and as a host organism.

The problem with CERAE suggests that it might
be necessary to consider separately organisms in
their roles as sources of the interactor proteins and as
hosts for the experiments. CERAE is only frequent

as a host organism, but in this role it does not appear
in the papers by any of the organism names given
by the taxonomy (such as “Chlorocebus aethiops”,
“Cercopithecus aethiops”, “African green monkey”,
“grivet”, “savanah monkey” or “vervet monkey”).
The reason is that often only the names of cell lines
(e.g. “Vero”) derived from the organism appear in
the paper.7 To a lesser degree, this is true as well for
papers where YEAST appears in this role.

A first step to deal with this problem consisted
in creating different frequency tables for organisms
as source of interactor proteins and as hosts of the
experiment (tables 4 and 5). As these frequency ta-
bles are very different from each other and from the
combined one (table 1) and as the combined task
of identifying “protein organisms” and “host organ-
isms” seems to be artificial in any case, we decided
to split the problem accordingly: (a) identify organ-
isms from which interacting proteins are derived; (b)
identify host organisms. The results for each of these
new tasks are not yet as good as the result for the
combined task we described above, but as the infor-
mation we are looking for now is more specific, this
was to be expected.

3.1 Identification of “Interactor Organisms”
In order to obtain a solution for this more specific
task, we just kept the formula as for the original task,
but replaced the frequency table for “interactor and
host organisms” (table 1) by a new one for “interac-
tors only” (table 4). At the same time we raised the
threshold to 18%: as the new freqency tables tended
to nearly eliminate several typical host organisms,
the remaining candidates for “interactor organisms”
profited by this, so the threshold had to be raised
to maximize f-score. The rest of the parameters re-
mained identical.

Obviously, a new gold standard for “interactors
only” had to be derived from IntAct. Our best results
for this new task are: precision: 0.697; recall: 0.693;
f-score: 0.695.

3.2 Identification of “Host Organisms”
For this alternative task we also had to improve the
input, not just the formula, as we noticed that of-

7 The Vero lineage is a very popular cell line isolated from
kidney epithelial cells extracted from an African green monkey
(“Cercopithecus aethiops”).
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Table 5: Most frequent organisms in IntAct (host organ-
isms only), freq* is computed excluding “in vitro”

ORG freq freq*
“in vitro” 0.363 -
YEAST 0.262 0.412
HUMAN 0.167 0.264
CERAE 0.036 0.057
MOUSE 0.035 0.055
ARATH 0.021 0.034
DROME 0.021 0.034
SCHPO 0.020 0.031
ECOLX 0.017 0.027
RAT 0.010 0.015

ten species which were given as hosts by IntAct
were not mentioned by any of their names (most
importantly CERAE). So we decided to include an-
other category of biological named entities in our
termbase, namely cell line names. These were de-
rived from one of the largest collections of cell
lines information: the Cell Lines Knowledge Base
(CLKB, (Sarntivijai et al., 2008)). However, a few
cell line names which are type-ambiguous with other
types of NE’s in our termbase (normally proteins)
had to be ignored to avoid conflicts. Another new
input to the formula was the mention of “in vitro”,
contained in our termbase as a method, but used by
the IntAct annotators as annotation for the “host or-
ganism”.

The following adaptations to the ranking formula
were necessary. The frequency table for “interactor
and host organisms” (table 1) was replaced by a new
one for “hosts only”, including “in vitro” (table 5).
At the same time the default had to be changed to
“in vitro” and was given a nearly identical weight
of 30 fulltext mentions (instead of 28), the thresh-
old remained at 4% and the abstract mentions were
given a weight of 35 fulltext mentions. The new cell
line mentions were given a weight of 3 fulltext men-
tions for their respective organisms. Of course, a
new gold standard for “interactors only” was derived
from IntAct also in this case. Our best results yet for
this new task are: precision: 0.689; recall: 0.737;
f-score: 0.712.

4 Related Work and Discussion

The task of organism recognition is only recently
starting to emerge as an independent subtask in
biomedical IE. For example, the latest BioCreative
competitive evaluation of text mining system for bi-
ology8 included a task of protein-protein interaction
detection (Krallinger et al., 2008). Although organ-
ism recognition was not officially evaluated, many
participants found that it was an indispensable step
in order to perform accurate protein recognition and
disambiguation. As a consequence, the BioCreative
meta-server (Leitner et al., 2008), offers organism
recognition as one of its services (called “TX task”).

(Wang and Matthews, 2008) is perhaps the most
comprehensive study to date dealing with species
disambiguation for term disambiguation. They com-
bine a rule-based species disambiguation approach
with a maximum entropy classifier based on con-
textual features of the term to be disambiguated.
They evaluate in detail the contribution of both ap-
proaches over two separate corpora. While previous
work has shown the benefits of using species infor-
mation for term disambiguation (Alex et al., 2008;
Rinaldi et al., 2008), this is perhaps the first study
which also provides a separate evaluation of species
disambiguation in itself. Since their purpose is to
use the organism mentions to disambiguate entities,
they evaluate how far their system can identify the
organisms associated with each entity mention in
the document. They report a level of accuracy that
reaches 74.24% on one of their test corpora.

Since our results are for whole articles, not single
entity mentions, they are not directly comparable.
The advantage of our approach resides in its simplic-
ity, since it does not require a specifically designed
training set, being based only on publicly available
standard databases. This reduces not only the cost
compared to building own resources, but also en-
sures that their quality is monitored.

In this paper we have not discussed how our re-
sults can be used in the disambiguation of entities.
As long as only one organism is selected as the fo-
cus of a given research publication, this is a rather
trivial task. However, as mentioned already in sec-
tion 2.4, it is often the case that multiple organisms
are considered within the same publication. In that

8http://www.biocreative.org/
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case, organism mentions would need to be ‘local-
ized’ within the article in order to serve for disam-
biguation purposes, as done in (Wang and Matthews,
2008). Our own approach to this problem is pre-
sented and discussed in (Kaljurand et al., 2009).

One important limitation of our approach is its
reliance on explicit mentions of organisms by their
names as stored in the termbase (or minor variants
thereof). Using all the names available to us (in-
cluding cell lines) and their variants we could so far
achieve only a maximal value of 88% recall, which
means that 12% of the organisms are not referred to
by any name in our resources. This may be due to
either missing names in the termbase (the organisms
are mentioned, but by different names) or because
they are identified by human readers through other
contextual hints which may consist of any sort of in-
formation,9 and may presuppose massive amounts
of background knowledge. The first problem might
be adressed by adding other sources of names to our
termbase. The second problem might be adressed
by using a machine learning approach, which how-
ever brings with it a whole set of new problems, such
as selection and representation of the features rele-
vant for training, as well as the fact that a sufficiently
large training corpus needs to be available.

Another limitation of our approach is the fact that
its development and testing rests on its application
to the identification of either organisms of protein
interactors or host organisms. The original formu-
lation of the goal that motivated this work was “to
identify automatically the organisms forming part of
the subject matter of scientific papers”. This leaves
open the question of the application of the results,
and is deliberately vague in the wording “part of the
subject matter”, which includes but is not confined
to the cases mentioned above. This formulation was
motivated by a desire to keep the task as generic as
possible, so that the resulting application could not
only be used as a module for the protein disambigua-
tion task, but also for other tasks of NE disambigua-
tion with respect to organisms, as well as for organ-
ism identification as an independent task. Addition-
ally, the ranked list of candidate organisms delivered
by our program could also be presented to human

9A trivial example would be a publication in a journal which
specializes in research on a single organism.

users, who might want to use them in novel ways,
for example in an assisted curation environment.

However, the gold standard by which we test our
results is tailored to its application as a protein dis-
ambiguation module, just as the frequency tables we
use. Even apart from this, the appropriateness of the
gold standard is partly questionable, as it does not
only prefer organisms involved in protein interac-
tions to those that are not, but also “new” knowledge
to “old” knowledge, etc. Our approach, based on
“correcting” simple counts of organism mentions us-
ing frequency tables, can only be successful as long
as there is a gold standard for the specific applica-
tion that is being pursued. We can derive from Int-
Act useful gold standards for organisms from which
protein interactors are derived or host organisms, but
we have no gold standard for “organism identifica-
tion” as an independent task.

5 Conclusion

In this paper we discussed an approach to the prob-
lem of “organism identification” as an independent
task, based only on standard resources. While
the initial results were interesting, the experimental
setup led us to identify more specific aspects of the
problem, and in particular to distinguish organisms
mentioned in their roles as sources of the interact-
ing proteins and as hosts of the experiments. We
have shown that a clear identification of the different
functional roles played by organism mentions can
lead to more accurate results.

Although a fully automated disambiguation pro-
cess based on organism mentions is not within im-
mediate reach, the results described in this paper
appear already potentially useful for protein name
disambiguation in a curation environment. An-
other possible application would be in biomedi-
cal curation-based databases, for the semi-automatic
tagging of publications with their focus organisms.
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