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Introduction

Recent years have shown an increased interest in bringing the field of graph theory into Natural
Language Processing. In many NLP applications entities can be naturally represented as nodes in a
graph and relations between them can be represented as edges. Recent research has shown that graph-
based representations of linguistic units as diverse as words, sentences and documents give rise to novel
and efficient solutions in a variety of NLP tasks, ranging from part of speech tagging, word sense
disambiguation and parsing to information extraction, semantic role assignment, summarization and
sentiment analysis. The contribution of the graph representation, in addition to its intuitiveness, resides
in the possibility to relate linguistic entities beyond pairwise comparison. This volume contains papers
accepted for presentation at the TextGraphs-3 2008 Workshop on Graph- Based Algorithms for Natural
Language Processing. This event took place on August 24, 2008, in Manchester, UK, immediately
following COLING 2008, the 22nd International Conference on Computational Linguistics. It was
the third workshop on this topic, building on the success of the first and second TextGraphs workshop
at HLT-NAACL 2006 and 2007. The workshop aimed at bringing together researchers working on
problems related to the use of graph-based algorithms for Natural Language Processing and on the
theory of graph-based methods. It addressed a broad spectrum of research areas to foster exchange of
ideas and to help identify principles of using the graph notions that go beyond an ad-hoc usage.

We issued calls for both regular and short, late-breaking papers. Six regular and three short papers were
accepted for presentation, based on the careful reviews of our program committee. We are indebted
to all program committee members for their thoughtful, high quality and elaborate reviews, especially
considering our extremely tight time frame for reviewing. The papers appearing in this volume have
surely benefited from their expert feedback. This year’s workshop attracted papers employing graphs
in a wide range of settings, so we are proud to present a very diverse program this year. N. Hathout
acquires morphological structure from a lexicon employing the bipartite graph between headwords’
formal semantic features. Mapping of text to a graph-based meaning representation is conducted by
S. Muresan, using a recent grammar formalism. A. B. Massé et al. lay out a general theoretical
framework for addressing the symbol grounding problem in digital dictionaries. A. Moschitti and F.M.
Zanzotto use Kernel methods on tree pairs for recognizing textual entailment. Combining co-occurrence
and phonological similarity, K. Ichioka and F. Fukumoto semantically cluster onomatopoetic words in
Japanese. D. Rao et al. examine several random walk based approaches to measure word similarity. B.
McGillivray et al. address cluster overlapping with correspondence analysis and apply their method
to cluster English and Italian verbs and nouns. A domain-specific summarization method ranking
nodes in a graph of concepts is introduced by L. Plaza Morales et al. The topology of associative
concept dictionaries is modeled by H. Akama et al., who report interesting scale free properties of such
networks.

Finally, having a prominent researcher as an invited speaker greatly contributes to the quality of the
workshop. We thank Dragomir Radev for his talk and for the support he provided for this as well as all
the previous Textgraphs workshops. We are also grateful to Microsoft Research India for sponsoring
the travel and accomodation of the invited speaker.

Irina Matveeva, Chris Biemann, Monojit Choudhury and Mona Diab
August 2008
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Acquistion of the morphological structure of the lexicon
based on lexical similarity and formal analogy

Nabil Hathout
Université de Toulouse

Nabil.Hathout@univ-tlse2.fr

Abstract

The paper presents a computational model
aiming at making the morphological struc-
ture of the lexicon emerge from the for-
mal and semantic regularities of the words
it contains. The model is purely lexeme-
based. The proposed morphological struc-
ture consists of (1) binary relations that
connect each headword with words that
are morphologically related, and especially
with the members of its morphological
family and its derivational series, and of
(2) the analogies that hold between the
words. The model has been tested on the
lexicon of French using the TLFi machine
readable dictionary.

1 Lexeme-based morphology

Morphology is traditionally considered to be the
field of linguistics that studies the structure of
words. In this conception, words are made of
morphemes which combine according to rules
of inflexion, derivation and composition. If the
morpheme-based theoretical framework is both el-
egant and easy to implement, it suffers many draw-
backs pointed out by several authors (Anderson,
1992; Aronoff, 1994). The alternative theoreti-
cal models that have been proposed falls within
lexeme-based or word-based morphology in which
the minimal units are words instead of morphemes.
Words then do not have any structure at all and
morphology becomes a level of organization of the
lexicon based on the sharing of semantic and for-
mal properties.

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

The morpheme-based / lexeme-based distinc-
tion shows up on the computational level. In
the morpheme-based conception, the morpholog-
ical analysis of a word aims at segmenting it into
a sequence of morphemes (Déjean, 1998; Gold-
smith, 2001; Creutz and Lagus, 2002; Bernhard,
2006). In a lexeme-based approach, it is to dis-
cover the relations between the word and the other
lexical items. These relations serve to identify
the morphological family of the word, its deriva-
tional series, and the analogies in which it is in-
volved. For instance, the analysis of the French
word dérivation may be considered as satisfac-
tory if it connects dérivation with enough mem-
bers of its family (dériver ‘derivate’, dérivationnel
‘derivational’, dérivable, dérive ‘drift’, dériveur
‘sailing dinghy’, etc.) and of its derivational
series (formation ‘education’, séduction, varia-
tion, émission, etc.). Each of these relations
is integrated into a large collection of analogies
that characterizes it semantically and formally.
For instance, the relation between dérivation and
dérivable is part of a series of analogies which
includes dérivation:dérivable::variation:variable,
dérivation:dérivable::modification:modifiable, etc.
Similarly, dérivation and variation participates in
a series of analogies such as dérivation:varia-
tion::dériver:varier, dérivation:variation::dériva-
tionnel:variationnel, dérivation:variation::dériva-
ble:variable.

2 Computational modeling

The paper describes a computational model aiming
at making the morphological derivational structure
of the lexicon emerge from the semantic and the
formal regularities of the words it contains. A first
experiment is currently underway on the lexicon
of French using the TLFi machine readable dictio-
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nary.1 The main novelty of the paper is the com-
bination of lexical proximity with formal analogy.
We first use lexical similarity in order to select a
set of words that are likely to be morphologically
related to each other. Then, these candidates are
checked by means of analogy.

The two techniques are complementary. The
first one brings closer the words that are morpho-
logically close and especially the ones that are
members of the same morphological families and
the same derivational series. It is able to deal with
large number of words, but it is too coarse-grained
to discriminate the words that are actually mor-
phological related from the ones that are not. The
second technique, formal analogy, is then used to
perform a fine-grained filtering. Technically, our
model joins:

1. the representation of the lexicon as a graph
and its exploration through random walks,
along the line of (Gaume et al., 2002; Gaume
et al., 2005; Muller et al., 2006), and

2. formal analogies on words (Lepage, 1998;
Stroppa and Yvon, 2005). This approach does
do not make use of morphemes. Correspon-
dence between words is calculated directly on
their graphemic representations.

More generally, our approach is original in that:

1. Our computational model is pure lexeme-
based. The discovery of morphological rela-
tions between words do not involve the no-
tions of morpheme, affix, morphological ex-
ponent, etc. nor any representation of these
concepts.

2. The membership to the families and series is
gradient. It accounts, for instance, for the fact
that dériveur is morphologically and semanti-
cally closer to dérive than to dérivationnelle-
ment, even if the three words belong to the
same family. The model connects the words
that share semantic and / or formal features.
The more features are shared, the closer the
words are.

Besides, the model integrates semantic and for-
mal informations in a uniform manner. All kind
of semantic informations (lexicographic defini-
tions, synonyms, synsets, etc.) and formal ones

1Trésor de la Langue Française (http://atilf.atilf.fr/).

(graphemic, phonological, etc.) can be used. They
can be cumulated easily in spite of the differences
in nature and origin. The model takes advantage of
the redundancy of the features and is fairly insen-
sitive to variation and exceptions.

3 Related work

Many works in the field of computational mor-
phology aim at the discovery of relations be-
tween lexical units. All of them rely primarily on
finding similarities between the word graphemic
forms. These relations are mainly prefixal or suf-
fixal with two exceptions, (Yarowsky and Wicen-
towski, 2000) and (Baroni et al., 2002), who use
string edit distances to estimate formal similarity.
As far as we know, all the other perform some sort
of segmentation even when the goal is not to find
morphemes as in (Neuvel and Fulop, 2002). Our
model differs from these approaches in that the
graphemic similarities are determined solely on the
basis of the sharing of graphemic features. It is the
main contribution of this paper.

Our model is also related to approaches that
combine graphemic and semantic cues in order
to identify morphemes or morphological relations
between words. Usually, these semantic infor-
mations are automatically acquired from corpora
by means of various techniques as latent semantic
analysis (Schone and Jurafsky, 2000), mutual in-
formation (Baroni et al., 2002) or co-occurrence in
an n-word window (Xu and Croft, 1998; Zweigen-
baum and Grabar, 2003). In the experiment we
present here, semantic informations are extracted
from a machine readable dictionary and semantic
similarity is calculated through random walks in a
lexical graph. Our approach can also be compared
with (Hathout, 2002) where morphological knowl-
edge is acquired by using semantic informations
extracted from dictionaries of synonyms or from
WordNet.

4 Lexeme Description

In our model, the lexical units and their properties
are represented in a bipartite graph with the ver-
tices representing the lexemes in one sub-set and
the vertices representing the formal and semantic
features in the other. Lexeme vertices are identi-
fied by the lemma and the grammatical category.

In the experiment reported in the paper, the for-
mal properties are the n-grams of letters that occur
in the lexemes lemma. Figure 1 shows a sub-set of
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$or; $ori; $orie; ...
$orientation; ori; orie; ...
orientation; orientation$; ...
tio; tion; tion$; ion; ion$; on$

Figure 1: Excerpt of the formal features associated
with the noun orientation.

N.action; N.action X.de; N.action
X.de V.orienter; X.de; X.de
V.orienter; V.orienter; X.de
V.s’orienter; V.s’orienter;
N.résultat; N.résultat X.de;
N.résultat X.de X.ce; N.résultat
X.de X.ce N.action; X.de X.ce;
X.de X.ce N.action; X.ce; X.ce
N.action; N.action

Figure 2: Semantic features induced by the defi-
nition “Action d’orienter, de s’orienter ; résultat de
cette action.” of the noun orientation

the formal features associated with the word orien-
tation. The beginning and the end of the lemma are
marked by the character $. We impose a minimum
size on the n-grams (n ≥ 3).

The model is pure lexeme-based because this
decomposition does not confer a special status to
any of the individual n-grams which character-
ize the lexemes. All n-grams play the same role
and therefore no one has the status of morpheme.
These features are only used to bring closer the
words that share the same sounds.

The semantic properties we have used are ex-
tracted from the TLFi definitions. Each headword
is provided with the n-grams of words that occur
in its definitions. The n-grams that contain punc-
tuation marks are eliminated. In other words, we
only use n-grams of words that occur between two
punctuation marks. For instance, the semantic fea-
tures induced by the definition Action d’orienter,
de s’orienter ; résultat de cette action. (‘act of ori-
enting, of finding one’s way; result of this action’)
of the noun orientation are presented in figure 2.
The words in the definitions are POS tagged and
lemmatized. The tags are A for adjectives, N for
nouns, R for adverbs, V for verbs and X for all
other categories.

This is a very coarse semantic representation in-
spired from the repeated segments (Lebart et al.,
1998). It offers three advantages: (1) being heav-
ily redundant, it can capture various levels of sim-

$or

$ori

orient

entati

N.action X.de

N.résultat X.de X.ce

N.orientation

V.orienter

A.original

N.fermentation

N.pointage

Figure 3: Excerpt of the bipartite graph which rep-
resents the lexicon. Words are displayed in ovals,
semantic feature in rectangles and formal features
in octagons. The graph is symmetric.

ilarity between the definitions; (2) it integrates in-
formations of a syntagmatic nature without a deep
syntactic analysis of the definitions; (3) it slightly
reduces the strong variations in the lexicographi-
cal treatment of the headwords, especially in the
division into sub-senses and in the definitions.

The bipartite graph is built up by symmetrically
connecting each headword to its semantic and for-
mal features. For instance, the noun orientation
is connected with the formal feature $or, $ori,
$orie, $orien, etc. which are in turn connected
with the words orienter, orientable, orientement
‘orientation’, orienteur ‘orientor’, etc. Likewise,
orientation is connected with the semantic fea-
tures N.action X.de, N.résultat X.de
X.ce N.action, etc. which are themselves
connected with the nouns orientement, harmoni-
sation ‘synchronization’, pointage ‘checking’, etc.
The general schema is illustrated in figure 4. This
representation corresponds precisely to the Net-
work Model of Bybee (1995).

We use a bipartite graph mainly for two reasons:
(1) We can spread an activation synchronously into
the formal and the semantic sub-graphs. (2) It con-
tains representations of the formal and the seman-
tic properties of the lexemes which, for instance,
could be used in order to describe the semantics of
the -able suffixation or the characteristic endings
of the boat names (-ier, -eur, etc.). However, the
bipartite structure is not essential and we only need

3



to be able to compute morphological distances be-
tween words.

5 Random walks

The computational side of the method is based on
the estimation of the proximity between words rep-
resented in a lexical graph (Gaume et al., 2002;
Gaume et al., 2005; Muller et al., 2006). The
graphs used in this approach are slightly different
from the ones presented above. All their vertices
represent words and the edges describe semantic
relations such as synonymy. The proximity is com-
puted by simulating the spreading into the graph of
an activation initiated at a vertice. Following the
spreading, the nodes which are most excited are
regarded as being the closest to the initial vertice.

The same method can be used to estimate the
morphological proximity between words that are
described in a bipartite graph like the one we pro-
pose (see figure 4). It then connects words that
have the same semantic and formal features. One
has just to propagate the activation into the bipar-
tite graph for an even number of times. When the
graph is heavily redundant, two steps of propaga-
tion are sufficient to obtain the intended proximity
estimations.

In the example in figure 4, the morphological
neighbors of the noun orientation are identified by
activating the vertice which represents it. In the
first step, the activation is spread toward the ver-
tices which represent its formal and semantic fea-
tures. In the second step, the activation located on
the feature vertices is spread toward the headword
vertices. For instance, orienter becomes activated
via the formal features $or, $ori, orien and
fermentation through the formal feature entati
and the semantic feature N.résultat X.de
X.ce. The greater the number of features shared
by a headword with orientation, the stronger the
activation it receives.

The spreading of activation is simulated as a ran-
dom walk in the lexical graph, classically com-
puted as a multiplication of the stochastic adja-
cency matrix. More precisely, let G = (V,E,w)
be a weighted graph consisting of a set of ver-
tices V = {v1, . . . , vn}, a set of edges E ⊂ V 2

and of a weight function w : E → R. Let A
be the adjacency matrix of G, that is a n × n
matrix such that Aij = 0 if (vi, vj) 6∈ E and
Aij = w(vi, vj) if (vi, vj) ∈ E. (In the experi-
ment, w(e) = 1,∀e ∈ E.) We normalize the rows

of A in order to get a stochastic matrix M . Mn
ij is

the probability of reaching node vj from the node
vi through a walk of n steps. This probability can
also be regarded as an activation level of node vj

following an n-step spreading initiated at vertice
vi.

In the experiment presented in this paper, the ac-
tivation is spread for one half toward the seman-
tic feature and for the other toward the formal fea-
tures. The edges of the bipartite graph can be di-
vided in three parts E = J ∪K ∪ L where J con-
tains the edges that connect a headword to a for-
mal feature, K the edges that connect a headword
to a semantic feature and L the edges that connect
a formal or semantic feature to a headword. The
values of M are defined as follows:

• if eij = (vi, vj) ∈ J , Mij = Aij

2
P

eih∈J Aih
if

vi is connected to a semantic feature and
Mij = AijP

eik∈J Aik
otherwise.

• if eik = (vi, vk) ∈ K, Mik = Aik
2

P
eih∈K Aih

if

vi is connected to a formal feature and
Mik = AikP

eih∈K Aih
otherwise.

• if eil = (vi, vl) ∈ L, Mil = AilP
eih∈L Aih

.

6 Lexical neighborhood

The graph used in the experiment has been built
from the definitions of the TLFi. We only removed
the definitions of non standard uses (old, slang,
etc.). The extraction and cleaning-up of the defi-
nitions have been carried out in collaboration with
Bruno Gaume and Philippe Muller. The bipartite
graph has been created from 225 529 definitions
describing 75 024 headwords (lexemes). We then
removed all the features associated only with one
headword. This reduces the size of the graph sig-
nificantly without changing the connections that
hold between the headwords. Table 1 shows that
this reduction is stronger for the semantic feature
(93%) than it is for the formal ones (69%). Indeed,
semantic descriptions show greater variability than
formal ones.

The use of the graph is illustrated in figure 4. It
shows the 20 nearest neighbors of the verb fruc-
tifier for various propagation configurations. The
examples in (a) and (b) show clearly that formal
features are the more predictive ones while seman-
tic features are the less reliable ones. The example
in (c) illustrates the contribution of the semantic

4



(a) V.fructifier N.fructification A.fructificateur A.fructifiant A.fructifère V.sanctifier V.rectifier
A.rectifier V.fructidoriser N.fructidorien N.fructidor N.fructuosité R.fructueusement A.fructueux
N.rectifieur A.obstructif A.instructif A.destructif A.constructif N.infructuosité

(b) V.fructifier V.trouver N.missionnaire N.mission A.missionnaire N.saisie N.police N.hangar N.dîme
N.ban V.affruiter N.melon N.saisonnement N.azédarach A.fruitier A.bifère V.saisonner N.roman
N.troubadour V.contaminer

(c) V.fructifier A.fructifiant N.fructification A.fructificateur V.trouver A.fructifère V.rectifier
V.sanctifier A.rectifier V.fructidoriser N.fructidor N.fructidorien N.missionnaire N.mission
A.missionnaire A.fructueux R.fructueusement N.fructuosité N.rectifieur N.saisie

Figure 4: The 20 nearest neighbors of the verb fructifier when the activation is spread (a) only toward
the formal features, (b) only toward the semantic ones, (c) toward both the semantic and formal features.
Words that do not belong to the family or series of fructifier are emphasized.

graph complete reduced
formal features 1 306 497 400 915
semantic features 7 650 490 548 641

Table 1: Number of the semantic and formal fea-
tures coming from TLFi.

features. They reorder the formal neighbors and
introduce among them the nearest semantic neigh-
bors. We see in the lists in (a) and (c) that the fam-
ily members are the nearest neighbors and that the
members of the series come next.

7 Analogy

The members of the series and families are mas-
sively involved in the analogies which structure the
lexicon. A word x belonging to a family Fx partic-
ipates in several analogies with a large number of
other members of Fx. The analogies that involve
two words (x, y) ∈ F 2 include two other words
(z, t) that belong to one same family F ′. On the
other hand, if x is a complex word that belongs
to a series Sx, then z ∈ Sx, x ∈ Sz , y ∈ St

and t ∈ Sy. For instance, the couple of words
fructifier and fructification form analogies with of
members of other families (rectifier, rectification),
(certifier, certification), (plastifier, plastification),
etc. Moreover, the first elements of these couples
belong to series of fructifier and the second ones to
the series of fructification.

In a dual manner, a word u belonging to a se-
ries S participates in a set of analogies with a large
number of other members of S. The analogies that
involve two elements of the same series are made
up with words which themselves belong to a same

series. For instance, fructifier and sanctifier form
analogies with the members of other series (fruc-
tificateur, sanctificateur), (fructification, sanctifi-
cation) or (fructifiant, sanctifiant). These couples
are respectively made of members of the families
of fructifier and sanctifier.

7.1 Analogies and neighborhoods
The analogies that involve members of families
and series can be used to efficiently filter the
morphological neighbors that are identified by the
method presented above. If v is a correct morpho-
logical neighbor of w, then it is either a member of
the family of m or a member of its series. There-
fore, it exists another neighbor v′ of w (v′ belong
to the family of w if v belongs to the series of w
or vice versa) such that it exists a neighbor w′ of v
and of v′ such that w : v :: v′ : w′.2 Therefore, we
have two configurations:

1. if v ∈ Fw, then ∃v′ ∈ Sw, ∃w′ ∈ Sv∩Fv′ , w :
v :: v′ : w′

2. if v ∈ Sw, then ∃v′ ∈ Fw, ∃w′ ∈ Fv∩Sv′ , w :
v :: v′ : w′

The first case is illustrated by the above examples
with w = fructifier and v = fructification, and the
second one with w = fructifier et v = rectifier.

7.2 Formal analogy
A formal or graphemic analogy is a relation
a : b :: c : d that holds between four strings
such that the graphemic differences between a

2The notation a : b :: c : d is used as a shorthand for the
statement that (a, b, c, d) forms an analogical quadruplet, or
in other words that a is to b as c is to d.
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and b are the same as the ones between c and d.
It can be exemplified with the four Arabic words
kataba:maktoubon::fa3ala:maf3oulon
which respectively are transcriptions of the verb
‘write’, the noun ‘document’, the verb ‘do’ and
the noun ‘effect.’3 The differences between the
first two words and between the two last ones can
be described as in figure 5. They are identical for
the two couples of words.

ε k a t a b a
ma k ε t ou b on

ε f a 3 a l a
ma f ε 3 ou l on

Figure 5: Formal analogy kataba:
maktoubon::fa3ala:maf3oulon. The
differences are locates in frame boxes.

More generally, formal analogies can be
defined in terms of factorization (Stroppa and
Yvon, 2005). Let L be an alphabet and a ∈ L?

a string over L. A factorization of a is a se-
quence f = (f1, · · · , fn) ∈ L?n such that
a = f1 ⊕ · · · ⊕ fn where ⊕ denotes the concate-
nation. For instance, (ma, k, ε, t, ou, b, on)
is a factorization of length 7 of maktoubon.
Morphological analogies can be defined as
follows. Let (a, b, c, d) ∈ L?4 be for strings.
a : b :: c : d is a formal analogy iff there exists
n ∈ N and four factorizations of length n of the
four strings (f(a), f(b), f(c), f(d)) ∈ L?4

such that, ∀i ∈ [1, n], (fi(b), fi(c)) ∈
{(fi(a), fi(d)), (fi(d), fi(a))}. For the analogy
kataba:maktoubon::fa3ala:maf3oulon,
the property holds for n = 7 (see figure 5).

7.3 Implementation

A formal analogy a : b :: c : d can be easily
checked by comparing the sequences of string
edit operations between (a, b) and between (c, d).
Both sequences must minimize Levenshtein edit
distance (i.e. have a minimal cost). Each sequence
corresponds to a path in the edit lattices of the
couple of words. The lattice are represented by
a matrix computed using the standard string edit
algorithm (Jurafsky and Martin, 2000). The path
which describes the sequence of string edit opera-
tions starts at the last cell of the matrix and climbs

3This example is adapted from examples in (Lepage,
1998; Lepage, 2003).

to the first one. Only three directions are allowed:
upward (deletion), to the left (insertion) or in
the upper left diagonal direction (substitution).
Figure 6 shows the sequence of edit operations for
the couple fructueux:infructueusement.
Sequences of edit operations can be simplified
by merging the series of identical character
matchings. The sequence in figure 6 then becomes
((I,ε,i), (I,ε,n), (M,fructueu,fructueu),
(S,x,s), (I,ε,e), (I,ε,m), (I,ε,e), (I,ε,n), (I,ε,t)).
This simplified sequence is identical to the one
for the couple soucieux:insoucieusement
except for the matching operation: ((I,ε,i),
(I,ε,n), (M,soucieu,soucieu), (S,x,s), (I,ε,e),
(I,ε,m), (I,ε,e), (I,ε,n), (I,ε,t)). The two se-
quences can be made identical if the matching
sub-strings are not specified. The resulting
sequence can then be assigned to both cou-
ples as their edit signatures (σ). The formal
analogy fructueux:infructueusement::
soucieux:insoucieusement can be stated
in terms of identity the edit signatures:
σ(fructueux,infructueusement) =
σ(soucieux,insoucieusement) =
((I,ε,i), (I,ε,n), (M,@,@), (S,x,s), (I,ε,e),

(I,ε,m), (I,ε,e), (I,ε,n), (I,ε,t))
More generally, four strings (a, b, c, d) ∈ L?4 form
a formal analogy a : b :: c : d iff σ(a, b) = σ(c, d)
or σ(a, c) = σ(b, d).

7.4 First results

The computational model we have just presented
has been implemented and a first experiment has
been carried out. It consists in determining the
100 closest neighbors of every headword for the
three configurations presented in § 6. All the for-
mal analogies that hold between these words have
then been collected. We have not been able to do a
standard evaluation in terms of recall and precision
because of the lack of morphological resources for
French. However, we have manually checked the
analogies of 22 headwords belonging to 4 morpho-
logical families. An analogy a : b :: c : d is ac-
cepted as correct if:

• b belongs to the family of a, c belongs to the
series of a, d belongs to series of b and to the
family of c, or

• b belongs to the series of a, c belongs to the
family of a, d belongs to family of b and to
the series of c.
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I I M M M M M M M M S I I I I I
ε ε f r u c t u e u x ε ε ε ε ε
i n f r u c t u e u s e m e n t

Figure 6: Sequence of edit operations that transform fructueux into infructueusement. The
type of each operation is indicated on the first line: D for deletion, I for insertion, M for matching and S
for a substitution by a different character.

configuration analogies correct errors
formal 169 163 3.6%
semantics 5 5 0.0%
sem + form 130 128 1.5%

Table 2: Number of the analogies collected for a
sample of 22 headwords and error rate.

The results are summarized in table 2. Their qual-
ity is quite satisfactory. However, the number of
analogies strongly depends on the configuration of
propagation. The best trade-off is a simultaneous
propagation toward the semantic and formal fea-
tures. Here are some of the correct and erroneous
analogies collected:

• R.fructueusement:R.affectueusement::
A.infructueux:A.inaffectueux

• N.fructification:N.identification::
V.fructifier:V.identifier

• N.fruiterie:N.fruitier::N.laiterie:N.laitier

• * N.fruit:N.bruit::V.frusquer:V.brusquer

The first example is particularly interesting be-
cause it involves on one side suffixed words and
on the other prefixed ones.

The performance of the method strongly de-
pends on the length of the headwords. Table 3
presents the number of analogies and the error rate
for 13 groups of 5 words. The words of each group
are of the same length. Lengths range from 4 to 16
letters.

8 Conclusion

We have presented a computational model that
makes the morphological structure of the lexicon
emerge from the formal and semantic regularities
of the words it contains. The model is radically
lexeme-based. It integrates the semantic and for-
mal properties of the words in a uniform manner
and represents them into a bipartite graph. Ran-
dom walks are used to simulate the spreading of

length analogies correct errors
4 29 15 51.7%
5 22 8 36.4%
6 8 1 12.5%
7 10 2 20.0%
8 55 1 1.8%
9 29 2 6.9%

10 30 0 0.0%
11 32 0 0.0%
12 19 0 0.0%
13 11 0 0.0%
14 35 0 0.0%
15 63 0 0.0%
16 39 0 0.0%

Table 3: Number of the analogies and error rate for
headwords of length 4 to 16.

activations in this lexical network. The level of
activation obtained after the propagation indicates
the lexical relatedness of the words. The members
of the morphological family and the derivational
series of each word are then identified among its
lexical neighbors by means of formal analogies.

This is work in progress and we still have to sep-
arate the members of the families from the mem-
bers of the series. We also intend to conduct a
similar experiment on the English lexicon and to
evaluate our results in a more classical manner by
using the CELEX database (Baayen et al., 1995)
as gold standard. The evaluation should also be
done with respect to well known systems like Lin-
guistica (Goldsmith, 2001) or the morphological
analyzer of Bernhard (2006).

Acknowledgments

I would like to thank the ATILF laboratory and
Jean-Marie Pierrel for making available to me the
TLFi. I am in debt to Bruno Gaume and Philippe
Muller for the many discussions and exchanges we
have had on the cleaning-up of the TFLi and its ex-
ploitation through random walks. I am also grate-
ful to Gilles Boyé, Olivier Haute-Cœur and Lu-

7



dovic Tanguy for their comments and suggestions.
All errors are mine.

References
Anderson, Stephen R. 1992. A-Morphous Morphol-

ogy. Cambridge University Press, Cambridge, UK.

Aronoff, Mark. 1994. Morphology by Itself. Stem and
Inflexional Classes. MIT Press, Cambridge, Mass.

Baayen, R. Harald, Richard Piepenbrock, and Leon Gu-
likers. 1995. The CELEX lexical database (release
2). CD-ROM. Linguistic Data Consortium, Univer-
sity of Pennsylvania, Pennsylvania, USA.

Baroni, Marco, Johannes Matiasek, and Harald Trost.
2002. Unsupervised discovery of morphologically
related words based on orthographic and semantic
similarity. In Proceedings of the Workshop on Mor-
phological and Phonological Learning of ACL-2002,
pages 48–57, Philadelphia. ACL.

Bernhard, Delphine. 2006. Automatic acquisition of
semantic relationships from morphological related-
ness. In Advances in Natural Language Processing,
Proceedings of the 5th International Conference on
NLP, FinTAL 2006, volume 4139 of Lecture Notes in
Computer Science, pages 121–13. Springer.

Bybee, Joan L. 1995. Regular morphology and the lex-
icon. Language and cognitive processes, 10(5):425–
455.

Creutz, Mathias and Krista Lagus. 2002. Unsuper-
vised discovery of morphemes. In Proceedings of
the ACL Workshop on Morphological and Phono-
logical Learning, pages 21–30, Philadelphia, Penn.
ACL.

Déjean, Hervé. 1998. Morphemes as necessary con-
cept for structures discovery from untagged corpora.
In Proceedings of the Workshop on Paradigms and
Grounding in Natural Language Learning, pages
295–299, Adelaide, Australia.

Gaume, Bruno, Karine Duvigneau, Olivier Gasquet,
and Marie-Dominique Gineste. 2002. Forms of
meaning, meaning of forms. Journal of Experimen-
tal and Theoretical Artificial Intelligence, 14(1):61–
74.

Gaume, B., F. Venant, and B. Victorri. 2005. Hierar-
chy in lexical organization of natural language. In
Pumain, D., editor, Hierarchy in natural and social
sciences, Methodos series, pages 121–143. Kluwer.

Goldsmith, John. 2001. Unsupervised learning of
the morphology of natural language. Computational
Linguistics, 27(2):153–198.

Hathout, Nabil. 2002. From wordnet to celex: acquir-
ing morphological links from dictionaries of syn-
onyms. In Proceedings of the Third International

Conference on Language Resources and Evalua-
tion, pages 1478–1484, Las Palmas de Gran Canaria.
ELRA.

Jurafsky, Daniel and James H. Martin. 2000. Speech
and language processing. Prentice-Hall.

Lebart, Ludovic, André Salem, and Lisette Berry.
1998. Exploring textual data. Kluwer Academic
Publishers, Dordrecht.

Lepage, Yves. 1998. Solving analogies on words: an
algorithm. In Proceedings of COLING-ACL’98, vol-
ume 2, pages 728–735, Montréal, Canada.

Lepage, Yves. 2003. De l’analogie rendant compte de
la commutation en linguistique. Mémoire de HDR,
Université Joseph Fourier, Grenoble.

Muller, Philippe, Nabil Hathout, and Bruno Gaume.
2006. Synonym extraction using a semantic dis-
tance on a dictionary. In Radev, Dragomir and Rada
Mihalcea, editors, Proceedings of the HLT/NAACL
workshop Textgraphs, pages 65–72, New York, NY.
Association for Computational Linguistics.

Neuvel, Sylvain and Sean A. Fulop. 2002. Unsuper-
vised learning of morphology without morphemes.
In Proceedings of the Workshop on Morphologi-
cal and Phonological Learning 2002, Philadelphia.
ACL Publications.

Schone, Patrick and Daniel S. Jurafsky. 2000.
Knowledge-free induction of morphology using la-
tent semantic analysis. In Proceedings of the Confer-
ence on Natural Language Learning 2000 (CoNLL-
2000), pages 67–72, Lisbon, Portugal.

Stroppa, Nicolas and François Yvon. 2005. An analog-
ical learner for morphological analysis. In Proceed-
ings of the 9th Conference on Computational Natural
Language Learning (CoNLL-2005), pages 120–127,
Ann Arbor, Michigan, June. Association for Compu-
tational Linguistics.

Xu, Jinxi and W. Bruce Croft. 1998. Corpus-based
stemming using co-occurrence of word variants.
ACM Transaction on Information Systems, 16(1):61–
81.

Yarowsky, David and Richard Wicentowski. 2000.
Minimally supervised morphological analysis by
multimodal alignment. In Proceedings of the As-
sociation of Computational Linguistics (ACL-2000),
pages 207–216, Hong Kong.

Zweigenbaum, Pierre and Natalia Grabar. 2003.
Learning derived words from medical corpora. In
9th Conference on Artificial Intelligence in Medicine
Europe, pages 189–198, Cyprus.

8



Coling 2008: Proceedings of 3rd Textgraphs workshop on Graph-Based Algorithms in Natural Language Processing, pages 9–16
Manchester, August 2008

Learning to Map Text to Graph-based Meaning Representations via
Grammar Induction

Smaranda Muresan
Laboratory for Computational Linguistics and Information Processing

Institute for Advanced Computer Studies
University of Maryland

College Park, MD 20742, USA
smara@umiacs.umd.edu

Abstract

We argue in favor of using a graph-based
representation for language meaning and
propose a novel learning method to map
natural language text to its graph-based
meaning representation. We present a
grammar formalism, which combines syn-
tax and semantics, and has ontology con-
straints at the rule level. These constraints
establish links between language expres-
sions and the entities they refer to in the
real world. We present a relational learning
algorithm that learns these grammars from
a small representative set of annotated ex-
amples, and show how this grammar in-
duction framework and the ontology-based
semantic representation allow us to di-
rectly map text to graph-based meaning
representations.

1 Introduction

Recent work (Wong and Mooney, 2007; Zettle-
moyer and Collins, 2005; He and Young, 2006)
has developed learning algorithms for the problem
of mapping sentences to their underlying semantic
representations. These semantic representations
vary from λ-expressions (Bos et al., 2004; Zettle-
moyer and Collins, 2005; Wong and Mooney,
2007) to DB query languages and command-like
languages (RoboCup Coach Language, CLang)
(Ge and Mooney, 2005).

In this paper we focus on an ontology-based
semantic representation which allows us to en-
code the meaning of a text as a direct acyclic
graph. Recently, there is a growing interest
on ontology-based NLP, starting from efforts in
defining ontology-based semantic representations

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

(Nirenburg and Raskin, 2004), to using ontologi-
cal resources in NLP applications, such as ques-
tion answering (Basili et al., 2004; Beale et al.,
2004), and building annotated corpora, such as the
OntoNotes project (Hovy et al., 2006).

There are three novel properties to ontology-
based semantics that we propose in this paper:

• There is a direct link between the ontology
and the grammar through constraints at the
grammar rule level. These ontology con-
straints enable access to meaning during lan-
guage processing (parsing and generation).

• Our ontology-based semantic representation
is expressive enough to capture various phe-
nomena of natural language, yet restric-
tive enough to facilitate grammar learning.
The representation encodes both ontological
meaning (concepts and relations among con-
cepts) and extra-ontological meaning, such as
voice, tense, aspect, modality.

• Our representation and grammar learning
framework allow a direct mapping of text to
its meaning, encoded as a direct acyclic graph
(DAG). We consider that “understanding” a
text is the ability to correctly answer, at the
conceptual level, all the questions asked w.r.t
to that text, and thus Meaning = Text + all
Questions/Answers w.r.t that Text. Under this
assumption, obtaining the meaning of a text
is reduced to a question answering process,
which in our framework is a DAG matching
problem.

First, we review our grammar formalism intro-
duced in (Muresan, 2006; Muresan and Rambow,
2007), called Lexicalized Well-Founded Gram-
mars. Second, we present a relational learning al-
gorithm for inducing these grammars from a rep-
resentative sample of strings annotated with their
semantics, along with minimal assumptions about
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I. Semantic Molecules
a. (major/adj)′=

0BBBBBBB@h1

264cat adj
head X1

mod X2

375

b1

D
X1 .isa = major, X2 .Y=X1

E

1CCCCCCCA

b. (damage/noun)′=
0BBBBBBB@h2

264cat noun
nr sg
head X3

375

b2

D
X3 .isa = damage

E

1CCCCCCCA

c. (major damage)′= 0BBBBBB@h

264cat n
nr sg
head X

375
b

D
X1 .isa = major, X.Y=X1 , X.isa=damage

E

1CCCCCCA
II. Constraint Grammar Rule

N(w,
“

h
b

”
) → Adj(w1,

“
h1
b1

”
), N(w2 ,

“
h2
b2

”
) : Φc(h, h1, h2), Φo(b)

Φc(h, h1, h2) = {h.cat = n, h.head = h1.mod, h.head = h2.head, h.nr = h2.nr, h1.cat = adj, h2.cat = n}
Φo(b) returns 〈X1.isa = major, X.degree = X1, X.isa = damage〉

Figure 1: Examples of three semantic molecules (I), and a constraint grammar rule together with the
semantic composition and ontology-based interpretation constraints, Φc and Φo (II)

syntax. Then, we describe the levels of represen-
tation we use to go from utterances to their graph-
based meaning representations, and show how our
representation is suitable to define the meaning of
an utterance/text through answers to questions. As
a proof of concept we discuss how our framework
can be used to acquire terminological knowledge
from natural language definitions and to query this
knowledge using wh-questions.

2 Grammar Formalism

Lexicalized Well-Founded Grammars (LWFGs)
introduced in (Muresan, 2006; Muresan and Ram-
bow, 2007) are a type of Definite Clause Gram-
mars (Pereira and Warren, 1980) where: (1) the
context-free backbone is extended by introducing
a partial ordering relation among nonterminals (the
basis for “well-founded”); (2) each string is as-
sociated with a syntactic-semantic representation
called a semantic molecule; and (3) grammar rules
have two types of constraints: one for semantic
composition and one for ontology-based semantic
interpretation. The last two properties allow us to
have a syntactic-semantic grammar. The ontology
constraints provide access to meaning during lan-
guage learning, parsing and generation. The first
property allows us to learn these grammars from a
small set of annotated examples.

The semantic molecule is a syntactic-semantic
representation of natural language strings w′ =(h

b

)
, where h (head) encodes the information re-

quired for semantic composition, and b (body) is
the actual semantic representation of the string.
Figure 1 gives examples of semantic molecules for
an adjective, a noun and a noun phrase, as pre-
sented in (Muresan and Rambow, 2007).

The head h of the semantic molecule is a flat
feature structure (i.e., feature values are atomic),
having at least two attributes that encode the syn-
tactic category of the associated string, cat, and

the head of the string, head. In addition, attributes
for agreement and other grammatical features can
be present (e.g., nr, pers for number and person).
The set of attributes is finite and known a-priori for
each syntactic category. Being a one-level feature
structure, no recursive or embedded structures are
allowed (unlike other grammar formalisms such as
HPSG, LFG), which makes this representation ap-
pealing for a learning framework. Recursion in the
grammar is obtained through the recursive gram-
mar rules and the composition constraint.

The body, b, of a semantic molecule is a flat rep-
resentation, called OntoSeR (Ontology-based Se-
mantic Representation). No embedding of pred-
icates is allowed, as in Minimal Recursion Se-
mantics (MRS) (Copestake et al., 1999). Unlike
MRS, OntoSeR is a logical form built as a con-
junction of atomic predicates 〈concept〉.〈attr〉 =
〈concept〉, where variables are either concept or
slot (attr) identifiers in an ontology. For example,
the adjective major is represented as 〈X1.isa =
major,X2.Y = X1〉, which says that the meaning
of an adjective is a concept X1 (X1.isa = major)
that is the value of a property of another concept
X2 (X2.Y = X1) in the ontology.

A LWFG specifies one or more semantic
molecules for each string that can be parsed by
the grammar. The lexicon of a LWFG consists of
words paired with their semantic molecules shown
in Figure 1(Ia and Ib). In addition to the lexicon, a
LWFG has a set of constraint grammar rules. An
example of a LWFG rule is given in Figure 1(II).
Grammar nonterminals are augmented with pairs
of strings and their semantic molecules. These
pairs are called syntagmas, and are denoted by
σ = (w,w′) = (w,

(
h
b

)
). This rule generates the

syntagma corresponding to major damage whose
semantic molecule is given in Figure 1(Ic). There
are two types of constraints at the grammar rule
level — one for semantic composition (how the
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meaning of a natural language expression is com-
posed from the meaning of its parts) and one for
ontology-based semantic interpretation. The com-
position constraints Φc are applied to the heads of
the semantic molecules, the bodies being just con-
catenated. Figure 1 shows that the body of the se-
mantic molecule for major damage is a concate-
nation of the bodies of the adjective major and
noun damage, together with a variable substitu-
tion. This variable substitution {X2/X,X3/X} is
a result of Φc, which is a system of equations —
a simplified version of “path equations” (Shieber
et al., 1983), because the heads are flat feature
structures. These constraints are learned together
with the grammar rules. The ontology-based con-
straints Φo represent the validation on the ontol-
ogy, and are applied to the body of the semantic
molecule associated with the left-hand side non-
terminal. The ontology-based interpretation is not
done during the composition operation, but after-
words. Thus, for example, the head of the noun
phrase major damage does not need to store the
slot Y , a fact that allows us to use flat feature
structures to represent the head of the semantic
molecules. The ontology-based constraints are not
learned; rather, Φo is a general predicate applied
to the logical form semantic representation which
fully contains all the required information needed
for validation on the ontology. Thus, it is indepen-
dent of grammatical categories. This predicate can
succeed or fail as a result of querying the ontology
— when it succeeds, it instantiates the variables of
the semantic representation with concepts/slots in
the ontology (Y = degree). For example, given
the phrase major damage, Φo succeeds and returns
〈X1.isa = major,X.degree = X1, X.isa =
damage〉, while given major birth it fails.

3 Grammar Learning Algorithm

Unlike stochastic grammar learning for syntac-
tic parsing (e.g., (Collins, 1999)), LWFG is well
suited to learning from reduced-size training data.
Furthermore, unlike previous formalisms used for
deeper representations (e.g, HPSG, LFG), our
LWFG formalism is characterized by a formal
guarantee of polynomial learnability (Muresan,
2006).

A key to these properties is the partial order-
ing among grammar nonterminals, i.e., the set of
nonterminals is well-founded. This partial order-
ing among nonterminals allows us to define the

representative examples of a LWFG, and to learn
LWFGs from this small set of examples. The rep-
resentative examples ER of a LWFG, G, are the
simplest syntagmas ground-derived by the gram-
mar G — i.e., for each grammar rule, there ex-
ists a syntagma which is ground-derived from it in
the minimum number of steps. Informally, repre-
sentative examples are building blocks from which
larger structures can be inferred via reference to a
larger corpus Eσ which can be only weakly anno-
tated (i.e., bracketed), or unannotated. This larger
corpus, Eσ , is used for generalization during learn-
ing (Figure 2).

The theoretical learning model is Grammar
Approximation by Representative Sublanguage
(GARS) introduced in (Muresan, 2006; Muresan
and Rambow, 2007). We proved that the search
space for grammar induction is a complete gram-
mar lattice, and we gave a learnability theorem for
LWFG induction. The GARS model uses a poly-
nomial algorithm for LWFG learning that takes
advantage of the building blocks nature of repre-
sentative examples. The learning algorithm be-
longs to the class of Inductive Logic Programming
methods (ILP), based on entailment (Muggleton,
1995; Dzeroski, 2007). Unlike existing ILP meth-
ods that use randomly-selected examples, our al-
gorithm learns from a set of representative exam-
ples allowing a polynomial efficiency for learn-
ing a syntactico-semantic constraint-based gram-
mar, suitable to capture large fragments of natural
language (Muresan, 2006).

The LWFG induction algorithm is a cover set al-
gorithm, where at each step a new constraint gram-
mar rule is learned from the current representative
example, σ ∈ ER. Then this rule is added to the
grammar rule set. The process continues until all
the representative examples are covered. We de-
scribe below the process of learning a grammar
rule from the current representative example, illus-
trated as well in Figure 2.
Step 1. In the first step, the most specific gram-
mar rule is generated from the current represen-
tative example. The category name annotated
in the representative example gives the name of
the left-hand-side nonterminal (“predicate inven-
tion”, in ILP terminology), while a robust parser
returns the minimum number of chunks cover-
ing the representative example. The categories
of the chunks give the nonterminals of the right-
hand side of the most specific rule. For ex-
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cat adj
head X1
mod X2

cat noun

head X3
nr     sg

cat   n

head X
nr     sg

<X1.isa=major, X.Y=X1, X.isa=X1>

)(major damage, 

N A N: 

major damage

very beautiful painting

loud clear noise

N

N

N

Adj   Noun:

A  Noun: 

A  N: 

(score=1)

(score=2)

(score=3)

CANDIDATE GRAMMAR RULES

r1

r3

r2

N Adj  Noun:

Adj (major, )

<X1.isa=major, X2.Y=X1>

(damage,  

<X3.isa=damage>

)Noun

BACKGROUND KNOWLEDGE

Performance Criteria

CURRENT REPRESENTATIVE  EXAMPLE

MOST SPECIFIC CONSTRAINT GRAMMAR RULE

REPRESENTATIVE SUBLANGUAGE

BEST RULE 

STEP 1 (ROBUST PARSING)

chunks={[Adj(major), A(major)],[Noun(damage), N(damage)]}

A

A

N

Adj:

Adv A:

Noun:
N ......

STEP 2 (RULE GENERALIZATION)

=
h.nr=h2.nr, h1.cat=adj, h2.cat=noun }

 {h.cat=n, h.head=h1.mod, h.head=h2.head,

PSfrag replacements
ri

σ

Eσ

r

Φc1
Φc2
Φc3

Φc4

Φc4

Φc4

Φc5
Φc6

Φc6

Figure 2: An iteration step of the learning algorithm

ample, in Figure 2, given the representative ex-
ample major damage annotated with its seman-
tic molecule, and the background knowledge con-
taining the already learned rules A → Adj
and N → Noun,1 the robust parser generates
the chunks corresponding to the adjective major
and the noun damage: [Adj(major),A(major)] and
[Noun(damage),N(damage)], respectively. The
most specific rule generated is thus N →
Adj Noun : Φc4, where the left hand side nonter-
minal is given by the category of the representative
example, in this case n. The compositional con-
straints Φc4 are learned as well. It can be seen that
the annotation of the representative example does
not require us to provide ontology-specific roles or
concepts. Thus, grammar learning is general, and
can be done using a small, generic lexicon.
Step 2. In the second step, this most specific rule is
generalized, obtaining a set of candidate grammar
rules. The performance criterion in choosing the
best grammar rule among these candidate hypothe-
ses is the number of the examples in the represen-
tative sublanguage Eσ (generalization corpus) that
can be parsed using the candidate grammar rule to-
gether with the previous learned rules. In Figure
2 given the representative sublanguage Eσ={ ma-
jor damage, loud clear noise, very beautiful paint-
ing} the learner will generalize to the recursive
rule N → A N : Φ6, since only this rule can parse

1For readability, we only show the context-free backbone
of the grammar rules, and Φo are not discussed since they are
not learned.

all the examples in Eσ .

4 Levels of Representation

In order to transform natural language utterances
to knowledge, we consider three levels of repre-
sentation: the utterance level, the text level and the
ontology level. In Section 4.4 we show that these
levels of representation allow us to define meaning
as Meaning=Text+all Questions/Answers w.r.t that
Text, using a DAG matching approach.

4.1 Utterance-level Representation

At the utterance level, the semantic representation
corresponds directly to a syntagma σ after the on-
tology constraint Φo is applied. This representa-
tion is called Ontology-based Semantic Represen-
tation OntoSeR. At this level, the attrIDs are in-
stantiated with values of the slots from the ontol-
ogy, while the conceptIDs remain variables to al-
low further composition to take place. At OntoSeR
level we can exploit the reversibility of the gram-
mar, since this representation is used during pars-
ing/generation.

In Figure 3 we show the semantic represen-
tation OntoSeR for the utterance Hepatitis B is
an acute viral hepatitis caused by a virus that
tends to persist in the blood serum, obtained using
our parser in conjunction with our learned gram-
mar. The composition constraints bind the con-
ceptID variables, while the ontology constraint in-
stantiates the attrID variables with values of slots
in the ontology. The ontology constraint can be
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Hepatitis B is an acute viral hepatitis caused by a virus that tends to persist in the blood serum.

OntoSeR = 〈(A.name=hepatitisB)HepatitisB , (A.tense=pr)is, (A.det=an)an, (B.is a=acute, A.duration=B)acute,
(C.is a=viral, A.kind of=C)viral, (A.is a=hepatitis)hepatitis, (D.vft=ed, D.voice=pas, D.is a=cause, D.ag=E,
D.th=A)caused, (ag.is a=by, D.ag=E)by, (E.det=a)a, (E.is a=virus)virus, (E.is a=that)that, (F.tense=pr, F.is a=tend,
F.no ag=E, F.prop=G)tends, (G.vft=to, G.is a=persist, G.th=E)to persist, (loc.is a=in, G.loc=H)in, (H.det=the)the,
(I.is a=blood, H.of=I)blood, (H.is a=serum)serum 〉

TKR
˜29.name= hepatitisB ˜33.det= virus
˜29.tense= pr ˜33.is_a= that
˜20.det= an ˜34.tense= pr
˜30.is_a= acute ˜34.is_a= tend
˜29.duration=˜2 ˜34.no_role=˜33
˜31.is_a= viral ˜34.prop=˜35
˜29.kind_of=˜3 ˜35.vft= to
˜29.is_a= hepatitis ˜35.is_a= persist
˜32.vft= ed ˜35.th=˜33
˜32.voice= pas loc.is_a= in
˜32.is_a= cause ˜35.loc=˜36
˜32.ag=˜5 ˜36.det= the
˜32.th=˜1 ˜37.is_a= blood
ag.is_a= by ˜36.of=˜37
˜32.ag=˜33 ˜36.is_a= serum
˜33.det= a

OKR

#viral#acute

#hepatitisB #virus33

#cause32 #persist35

#tend34

#serum36

#blood

th ag

duration kind_of of

th loc

prop
#hepatitis

sub

Figure 3: Example of an utterance and its levels of representation

seen as a local semantic interpretation at the ut-
terance/grammar rule level, providing access to
meaning during parsing/generation. In this pa-
per, this semantic interpretation is based only on
a weak “ontological model”. For the verb the-
matic roles we considered the thematic roles de-
rived from Dorr’s LCS Database (e.g., ag=agent,
th=theme, prop=proposition) (Dorr, 1997). For
adjectives and adverbs we took the roles (prop-
erties) from WordNet (Miller, 1990). For prepo-
sitions we considered the LCS Database. We
also have manually added specific/dummy seman-
tic roles when they were not present in these re-
sources (e.g., of between blood and serum).

The example in Figure 3 shows the output of
our parser in conjunction with the learned gram-
mar for a definitional sentence that contains several
linguistic phenomena such as copula to-be predica-
tive, reduced relative clauses (caused by ...), rel-
ative clauses (virus that ...), raising construction
(tends to persist, where virus is not the argument
of tends but the argument of persist), and noun
compounds (blood serum). For readability, we in-
dicate what part of OntoSeR corresponds to each
lexical item. It can be noticed that OntoSeR con-
tains representations of both ontological meaning
(concepts and relations among concepts) as well as
extra-ontological meaning such as tense and voice
(D.voice = pas; F.tense = pr).

4.2 Text-level Representation

The text-level representation TKR, or discourse
level representation, represents asserted represen-
tations. ConceptIDs become constants, and no
composition can happen at this level. However, we
still have (indirect) reversibility, since TKR repre-
sents all the asserted OntoSeRs. Therefore, all the
information needed for reversibility is still present.
Figure 3 shows an example of the TKR for the
above utterance.

4.3 Ontology-level Representation

Ontology-level knowledge representation OKR is
obtained after task-specific interpretation, which
can be seen as a global semantic interpretation.
OKR is a directed acyclic graph (DAG) G =
(V,E). Edges, E, are either semantic roles given
by verbs, prepositions, adjectives and adverbs,
or extra-ontological meaning properties, such as
tense, aspect, modality, negation. Vertices, V are
either concepts (corresponding to nouns, verbs,
adjectives, adverbs, pronouns, cf. Quine’s crite-
rion (Sowa, 1999, page 496)), or values of the
extra-ontological properties such as present cor-
responding to tense property. In this paper, the
task-specific interpretation is geared mainly to-
wards terminological interpretation. We filter from
OntoSeR determiners and some verb forms, such
as tense, aspect, since temporal relations appear
less in terminological knowledge than in factual
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knowledge. However, we treat modals and nega-
tion, as they are relevant for terminological knowl-
edge. An example of OKR for the above utterance
is given in Figure 3.

We consider both concepts (e.g., #acute,
#blood), and instances of concepts (e.g., #virus33,
#cause32). Concepts are denoted in OKR by
#name concept, and they form a hierarchy of con-
cepts based on the subsume relation (sub), which
is the inverse of the is a relation. An instance of
a concept is denoted by the name of a concept fol-
lowed by the instance number (e.g., #virus33). A
concept and an instance of this concept are two dif-
ferent vertices in OKR, having the same name. At
the OKR level we assume the principle of concept
identity which means that there is a bijection be-
tween a vertex in OKR and a referent. For exam-
ple, if we do not have pronoun resolution, the pro-
noun and the noun it refers to will be represented
as two separate vertices in the graph. Currently,
our semantic interpreter implements only a weak
concept identity principle which facilitates struc-
ture sharing and inheritance.

To give these two properties we first introduce
some notations. A DAG is called rooted at a vertex
u ∈ V , if there exists a path from u to each vertex
of the DAG. We have the following definition:

Definition 1. Two subDAGs rooted at two vertices
u, u′ are equal if the set of the adjacent vertices to
u and u′ respectively, are equal and if the edges in-
cident from u and u′ have the same semantic roles
as labels.

Property 1 (Structure Sharing). In an OKR, all
vertices u, u′ ∈ V with the same name, and whose
subDAGs are equal are identical (i.e., the same
vertex in OKR).

Using a hash table, there is a linear algorithm
O(|V | + |E|) which transforms an OKR to an
equivalent OKR which satisfies Property 1. In Fig-
ure 4 it can be seen that the OKRs of Hepatitis
A and Hepatitis B share the representation corre-
sponding to blood serum (i.e., blood serum is the
same concept instance and due to Property 1 we
have that #serum36=#serum27 and thus they have
the same vertex in the OKR).

Property 2 (Inheritance). A concept in a hierarchy
of concepts can be linked by the sub relation only
to its parent(s), and not to any other ancestors. A
subDAG defining a property of a concept from the
hierarchy of concepts can be found only once in

the OKR at the level of the most general concept
that has this property.

For terminological knowledge we have that any
instance of a concept is a concept, and the defi-
nition is the naming of a concept instance. For
example, the definition of Hepatitis B, is an in-
stance of a concept #hepatitis which has additional
attributes acute, viral and caused by a virus that
tends to persist in the blood serum. Thus, an
additional instance of concept #hepatitis is cre-
ated, which is named #hepatitisB. The fact that
we can have the definition as a naming of a con-
cept instance is facilitated also by our treatment
of copula to-be at the OntoSeR level (A.name =
hepatitisB, . . . , A.is a = hepatitis in Figure 3)

4.4 Meaning as Answers to Questions

We consider that “understanding” a text is the abil-
ity to correctly answer, at the conceptual level,
all the questions asked w.r.t to that text, and thus
Meaning = Text + all Questions/Answers w.r.t that
Text. In our framework we consider the principle
of natural language as problem formulation, and
not problem solving. Thus, we can represent at
OKR level a paradox formulation in natural lan-
guage, even if the reasoning about its solution can-
not be emphasized. Our levels of representations
allow us to define the meaning of questions, an-
swers and utterances using a DAG matching ap-
proach.
Definition 2. The meaning of a question, q, with
respect to an utterance/discourse, is the set of all
answers that can be directly obtained from that ut-
terance/discourse. The semantic representation of
a question is a subgraph of the utterance graph
where the wh-word substitutes the answer con-
cept(s).

Definition 3. The answer to a question is the con-
cept that matches the wh-word through the DAG
matching algorithm between the question’s sub-
DAG and the utterance/discourse DAG.

Definition 4. The meaning of an utterance u is the
set of all questions that can be asked w.r.t that ut-
terance, together with their answers.

Unlike meaning as truth conditions, where the
problem of meaning equivalence is reduced to
logical form equivalence, in our case meaning
equivalence is reduced to semantic equivalence of
DAGs/subDAGs which obey the concept identity
principle (weak, or strong). The matching algo-
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rithm obtains the same answers to questions, rela-
tive to semantic equivalent DAGs. If we consider
only the weak concept identity principle given by
Properties 1 and 2, the problem is reduced to
DAG/subDAG identity.

5 Discussion

The grammar formalism, learning model and our
ontology-based representation allow us to directly
map text to graph-based meaning representations.
Our method relies on a general grammar learn-
ing framework and a task-specific semantic inter-
preter. Learning is done based on annotated ex-
amples that do not contain ontology-specific roles
or concepts as we saw in Section 3, and thus our
learning framework is general. We can use any
ontology, depending on the application. The task-
specific semantic interpreter we are currently using
is targeted for terminological knowledge, and uses
a weak “ontological model” based on admissibility
relations we can find at the level of lexical entries
and a weak concept identity principle.

In (Muresan, 2006) we showed that our gram-
mar formalism and induction model allow us to
learn diverse and complex linguistic phenomena:
complex noun phrases (e.g., noun compounds,
nominalization), prepositional phrases, reduced
relative clauses, finite and non-finite verbal con-
structions (including, tense, aspect, negation), co-
ordination, copula to be, raising and control con-
structions, and rules for wh-questions (including
long-distance dependencies).

In this section we discuss the processes
of knowledge acquisition and natural language
querying, by presenting an example of construct-
ing terminological knowledge from definitions of
hepatitis, Hepatitis A and Hepatitis B. The defi-
nitional text and OKRs are presented in Figure 4,
OKR being shown only for the last two definitions
for readability reasons. A question and answer re-
lated to the resulting OKR are also given.

The definiendum is always a concept, and it is
part of the sub hierarchy. The concepts in the sub
hierarchy are presented in bold in Figure 4. In ad-
dition to the concepts that are defined, we can also
have concepts that are referred (i.e., they are part
of the definiens), if they do not have any modifi-
cation (e.g., #blood in definition of Hepatitis A,
and Hepatitis B). If a referred concept has modi-
fications, it is represented as an instance of a con-
cept in OKR. As a consequence, various verbal-

izations of concept properties can be differentiated
in OKR, allowing us to obtain direct answers that
are specific to each verbalization. For example, the
term virus appears in the definition of both Hepati-
tis A and Hepatitis B. In OKR, they are two differ-
ent instances of a concept, #virus25 and #virus33,
since they have different modifications: persists
in the blood serum, does not persists in the blood
serum, respectively. These modifications are an es-
sential part of the differentia of the two concepts
#hepatitisA and #hepatitisB, causing the distinc-
tion between the two. When we ask the question
What is caused by a virus that persists in the blood
serum? we obtain only the correct answer #hepati-
tisB (Figure 4).

Another important aspect that shows the ade-
quacy of our representation for direct acquisition
and query is the OKR-equivalences that we ob-
tain for different syntactic forms. They are related
mainly to verbal constructions. Among OKR-
equivalences we have: 1) active and passive con-
structions; 2) -ed and -ing verb forms in reduced
relative clauses are equivalent to passive/active
verbal constructions; 3) constructions involving
raising verbs, where we can take advantage of the
fact that the controller is not the semantic argument
of the raising verb (e.g., in the definition of Hep-
atitis B we have . . . caused by a virus that tends to
persist in the blood serum, while the question can
be asked without the raising verb What is caused
by a virus that persists in the blood serum?; see
Figure 4).

Besides acquisition of terminological knowl-
edge, our grammar and semantic interpreter facil-
itates natural language querying of the acquired
knowledge base, by treatment of wh-questions.
Querying is a DAG matching problem, where the
wh-word is matched to the answer concept.

6 Conclusions

This paper has presented a learning framework
to automatically map natural language to graph-
based meaning representations via grammar in-
duction. We presented an ontology-based seman-
tic representation that allows us to define meaning
as Meaning=Text+all Questions/Answers w.r.t that
Text, using a DAG matching approach.

In the future, we plan to extend this work in two
main directions. First, we plan to use a stronger
semantic context with hierarchies of concepts and
semantic roles, selectional restrictions, as well as
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1. Hepatitis is a disease caused by infectious or toxic agents and
characterized by jaundice, fever and liver enlargement.
2. Hepatitis A is an acute but benign viral hepatitis caused by a virus
that does not persist in the blood serum.
3. Hepatitis B is an acute viral hepatitis caused by a virus that tends
to persist in the blood serum.
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Figure 4: Acquisition/Query of terminological knowledge

semantic equivalences based on synonymy and
anaphora. The second direction is to enhance the
ontology with probabilities.
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Universit́e du Qúebecà Montŕeal
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Abstract

Meaning cannot be based on dictionary defini-
tions all the way down: at some point the cir-
cularity of definitions must be broken in some
way, by grounding the meanings of certain
words in sensorimotor categories learned from
experience or shaped by evolution. This is the
“symbol grounding problem”. We introduce
the concept of areachableset — a larger vo-
cabulary whose meanings can be learned from
a smaller vocabulary through definition alone,
as long as the meanings of the smaller vocabu-
lary are themselves already grounded. We pro-
vide simple algorithms to compute reachable
sets for any given dictionary.

1 Introduction

We know from the 19th century philosopher-
mathematician Frege that thereferentand themeaning
(or “sense”) of a word (or phrase) are not the same
thing: two different words or phrases can refer to the
very same object without having the same meaning
(Frege, 1948): “George W. Bush” and “the current
president of the United States of America” have the
same referent but a different meaning. So do “human
females” and “daughters”. And “things that are bigger
than a breadbox” and “things that are not the size of a
breadbox or smaller”.

A word’s “extension” is the set of things to which it
refers, and its “intension” is the rule for defining what

c©2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

things fall within its extension.. A word’s meaning is
hence something closer toa rule for picking out its ref-
erent. Is the dictionary definition of a word, then, its
meaning?

Clearly, if we do not know the meaning of a word,
we look up its definition in a dictionary. But what if
we do not know the meaning of any of the words in its
dictionary definition? And what if we don’t know the
meanings of the words in the definitions of the words
defining those words, and so on? This is a problem of
infinite regress, called the “symbol grounding problem”
(Harnad, 1990; Harnad, 2003): the meanings of words
in dictionary definitions are, in and of themselves, un-
grounded. The meanings of some of the words, at least,
have to be grounded by some means other than dictio-
nary definition look-up.

How are word meanings grounded? Almost certainly
in the sensorimotor capacity to pick out their referents
(Harnad, 2005). Knowingwhat to do with whatis not
a matter of definition but of adaptive sensorimotor in-
teraction between autonomous, behaving systems and
categories of “objects” (including individuals, kinds,
events, actions, traits and states). Our embodied sen-
sorimotor systems can also be described as applying in-
formation processing rules to inputs in order to generate
the right outputs, just as a thermostat defending a tem-
perature of 20 degrees can be. But this dynamic process
is in no useful way analogous to looking up a definition
in a dictionary.

We will not be discussing sensorimotor grounding
(Barsalou, 2008; Glenberg& Robertson, 2002; Steels,
2007) in this paper. We will assume some sort of
grounding as given: when we consult a dictionary, we
already know the meanings of at least some words,
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somehow. A natural first hypothesis is that the ground-
ing words ought to be more concrete, referring to things
that are closer to our overt sensorimotor experience,
and learned earlier, but that remains to be tested (Clark,
2003). Apart from the question of the boundary condi-
tions of grounding, however, there are basic questions
to be asked about the structure of word meanings in dic-
tionary definition space.

In the path from a word, to the definition of that word,
to the definition of the words in the definition of that
word, and so on, through what sort of a structure are
we navigating (Ravasz& Barabasi, 2003; Steyvers&
Tenenbaum, 2005)? Meaning is compositional: A def-
inition is composed of words, combined according to
syntactic rules to form a proposition (with a truth value:
true or false). For example, the word to be definedw
(the “definiendum”) might meanw1 &w2 & . . . &wn,
where thewi are other words (the “definientes”) in its
definition. Rarely does that proposition provide the full
necessary and sufficient conditions for identifying the
referent of the word,w, but the approximation must at
least be close enough to allow most people, armed with
the definition, to understand and use the defined word
most of the time, possibly after looking up a few of its
definientesdw, but without having to cycle through the
entire dictionary, and without falling into circularity or
infinite regress.

If enough of the definientes are grounded, then there
is no problem of infinite regress. But we can still ask
the question: What is the size of the grounding vocab-
ulary? and what words does it contain? What is the
length and shape of the path that would be taken in a
recursive definitional search, from a word, to its defi-
nition, to the definition of the words in its definition,
and so on? Would it eventually cycle through the entire
dictionary? Or would there be disjoint subsets?

This paper raises more questions than it answers, but
it develops the formal groundwork for a new means of
finding the answers to questions about how word mean-
ing is explicitly represented in real dictionaries — and
perhaps also about how it isimplicitly represented in the
“mental lexicon” that each of us has in our brain (Hauk
et al., 2008).

The remainder of this paper is organized as follows:
In Section 2, we introduce the graph-theoretical defi-
nitions and notations used for formulating the symbol
grounding problem in Section 3. Sections 4 and 5 deal
with the implication of this approach in cognitive sci-
ences and show in what ways grounding kernels may
be useful.

2 Definitions and Notations

In this section, we give mathematical definitions for
the dictionary-related terminology, relate them to natu-
ral language dictionaries and supply the pertinent graph
theoretical definitions. Additional details are given to
ensure mutual comprehensibility to specialists in the
three disciplines involved (mathematics, linguistics and

psychology). Complete introductions to graph theory
and discrete mathematics are provided in (Bondy&
Murty, 1978; Rosen, 2007).

2.1 Relations and Functions

LetA be any set. Abinary relation onA is any subset
R of A× A. We writexRy if (x, y) ∈ R. The relation
R is said to be (1)reflexiveif for all x ∈ A, we have
xRx, (2) symmetricif for all x, y ∈ A such thatxRy,
we haveyRx and (3)transitive if for all x, y, z ∈ A
such thatxRy andyRz, we havexRz. The relationR
is anequivalence relationif it is reflexive, symmetric
and transitive. For anyx ∈ A, theequivalence class of
x, designated by[x], is given by[x] = {y ∈ A | xRy}.
It is easy to show that[x] = [y] if and only if xRy and
that the set of all equivalence classes forms a partition
of A.

Let A be any set,f : A → A a function andk a
positive integer. We designate byfk the functionf ◦
f ◦ . . . ◦ f (k times), where◦ denotes thecomposition
of functions.

2.2 Dictionaries

At its most basic level, a dictionary is a set of associ-
ated pairs: aword and itsdefinition, along with some
disambiguating parameters. Theword1 to be defined,
w, is called thedefiniendum(plural: definienda) while
the finite nonempty set of words that definesw, dw, is
called the set ofdefinientesof w (singular:definiens).

Each dictionary entry accordingly consists of a
definiendumw followed by its set of definientes
dw. A dictionary D then consists of a finite set
of pairs (w, dw) where w is a word anddw =
{w1, w2, . . . , wn}, wheren ≥ 1, is its definition, satis-
fying the property that for all(w, dw) ∈ D and for all
d ∈ dw, there exists(w′, dw′) ∈ D such thatd = w′. A
pair (w, dw) is called anentryof D. In other words, a
dictionary is a finite set of words, each of which is de-
fined, and each of its defining words is likewise defined
somewhere in the dictionary.

2.3 Graphs

A directed graphis a pairG = (V,E) such thatV is
a finite set ofverticesandE ⊆ V × V is a finite set
of arcs. GivenV ′ ⊆ V , thesubgraph induced byV ′,
designated byG[V ′], is the graphG[V ′] = (V ′, E′)
whereE′ = E ∩ (V ′ × V ′). For anyv ∈ V , N−(v)
andN+(v) designate, respectively, the set of incoming
and outgoing neighbors ofv, i.e.

N−(v) = {u ∈ V | (u, v) ∈ E}
N+(v) = {u ∈ V | (v, u) ∈ E}.

We write deg−(v) = |N−(v)| and deg+(v) =
|N+(v)|, respectively. Apath of G is a sequence

1In the context of this mathematical analysis, we will use
“word” to mean a finite string of uninterrupted letters having
some associated meaning.
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(v1, v2, . . . , vn), wheren is a positive integer,vi ∈ V
for i = 1, 2, . . . , n and (vi, vi+1) ∈ E, for i =
1, 2, . . . , n − 1. A uv-path is a path starting withu
and ending withv. Finally, we say that auv-path is a
cycleif u = v.

Given a directed graphG = (V,E) andu, v ∈ V , we
write u→ v if there exists auv-path inG. We define a
relation∼ as

u ∼ v ⇔ u→ v andv → u.

It is an easy exercise to show that∼ is an equivalence
relation. The equivalence classes ofV with respect to∼
are called thestrongly connected componentsof G. In
other words, in a directed graph, it might be possible to
go directly from pointA to pointB, without being able
to get back from pointB to pointA (as in a city with
only one-way streets). Strongly connected components,
however, are subgraphs in which whenever it is possible
to go from pointA to pointB, it is also possible to come
back from pointB to pointA (the way back may be
different).

There is a very natural way of representing defini-
tional relations using graph theory, thus providing a for-
mal tool for analyzing grounding properties of dictio-
naries: words can be represented as vertices, with arcs
representing definitional relations, i.e. there is an arc
(u, v) between two wordsu andv if the wordu appears
in the definition of the wordv. More formally, for every
dictionaryD, its associated graphG = (V,E) is given
by

V = {w | ∃dw such that(w, dw) ∈ D},
E = {(v, w) | ∃dw such that(w, dw) ∈ D and

v ∈ dw}.
Note that every vertexv of G satisfiesdeg−G(v) > 0,
but it is possible to havedeg+

G(v) = 0. In other words,
whereas every word has a definition, some words are
not used in any definition.

Example 1. LetD be the dictionary whose definitions
are given in Table 1. Note that every word appearing
in some definition is likewise defined inD (this is one
of the criteria forD to be a dictionary). The associated
graphG of D is represented in Figure 1. Note that
(not, good, eatable, fruit) is a path ofG while (good,
bad, good) is a cycle (as well as a path) ofG.

3 A Graph-Theoretical Formulation of
the Problem

We are now ready to formulate the symbol grounding
problem from a mathematical point of view.

3.1 Reachable and Grounding Sets

Given a dictionaryD of n words and a personx who
knowsm out of thesen words, assume that the only
way x can learn new words is by consulting the dic-
tionary definitions. Can alln words be learned byx

Word Definition Word Definition
apple red fruit bad not good
banana yellow fruit color dark or light
dark not light eatable good
fruit eatable thing good not bad
light not dark not not
or or red dark color
thing thing tomato red fruit
yellow light color

Table 1: Definitions of the dictionaryD

apple

bad

banana

color

dark

eatable
fruit

good

light
not

or

red

thing

tomato

yellow

Figure 1: Graph representation of the dictionaryD.

through dictionary look-up alone? If not, then exactly
what subset of words can be learned byx through dic-
tionary look-up alone?

For this purpose, letG = (V,E) be a directed graph
and consider the following application, where2V de-
notes the collection of all subsets ofV :

RG : 2V 7−→ 2V

U 7−→ U ∪ {v ∈ V | N−(v) ⊆ U}.
When the context is clear, we omit the subscriptG.
Also we letRk denote thekth power ofR. We say
that v ∈ V is k-reachable fromU if v ∈ Rk(U) and
k is a nonnegative integer. It is easy to show that there
exists an integerk such thatR`(U) = Rk(U), for every
integer` > k. More precisely, we have the following
definitions:

Definition 2. LetG = (V,E) be a directed graph,U
a subset ofV , and k an integer such thatR`(U) =
Rk(U) for all ` > k. The setRk(U) is called thereach-
able set fromU and is denoted byR∗(U). Moreover, if
R∗(U) = V , then we say thatU is a grounding setof
G.

We say thatG is p-groundableif there existsU ⊆ V
such that|U | = p andU is a grounding set ofG. The
grounding numberof a graphG is the smallest integer
p such thatG is p-groundable.

Reachable sets can be computed very simply using a
breadth-first-search type algorithm, as shown by Algo-
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rithm 1.

Algorithm 1 Computing reachable sets
1: function REACHABLESET(G,U )
2: R← U
3: repeat
4: S ← {v ∈ V | N−

G (v) ⊆ R} −R
5: R← R ∪ S
6: until S = ∅
7: return R
8: end function

We now present some examples of reachable sets and
grounding sets.

Example 3. Consider the dictionaryD and the graph
G of Example 1. LetU = {bad, light, not, thing}. Note
that

R0(U) = U

R1(U) = U ∪ {dark,good},
R2(U) = R1(U) ∪ {eatable}
R3(U) = R2(U) ∪ {fruit}
R4(U) = R3(U)

so thatR∗(U) = {bad, dark, eatable, fruit, good, light,
not, thing} (see Figure 2). In particular, this means
that the word “eatable” is 2-reachable (but not1-
reachable) fromU and all words inU are 0-reachable
fromU . Moreover, we observe thatU is not a ground-
ing set ofG (“color”, for example, is unreachable). On
the other hand, the setU ′ = U ∪ {or} is a grounding
set ofG, so thatG is 5-groundable.

apple

bad
0

banana

color

dark
1

eatable
2 fruit

3

good
1

light
0not

0

or

red

thing
0

tomato

yellow

Figure 2: The setR∗(U) (the words in squares) ob-
tained fromU

3.2 The Minimum Grounding Set Problem

Given a dictionary and its associated graphG, we are
interested in finding minimum grounding sets ofG.
(Note that in general, there is more than one grounding

set of minimum cardinality.) This is related to a natural
decision problem: we designate byk-GS the problem
of deciding whetherG is k-groundable. We show that
k-GS is closely related to the problem of finding mini-
mum feedback vertex sets. First, we recall the definition
of a feedback vertex set.

Definition 4. LetG = (V,E) be a directed graph and
U a subset ofV . We say thatU is a feedback vertex set
ofG if for every cycleC ofG, we haveU ∩ C 6= ∅. In
other words,U covers every cycle ofG.

The minimum feedback vertex set problemis the
problem of finding a feedback vertex set ofG of mini-
mum cardinality. To show that feedback vertex sets and
grounding sets are the same, we begin by stating two
simple lemmas.

Lemma 5. LetG = (V,E) be a directed graph,C a
cycle ofG andU ⊆ V a grounding set ofG. Then
U ∩ C 6= ∅.

Proof. By contradiction, assume thatU ∩ C = ∅ and,
for all v ∈ C, there exists an integerk such thatv be-
longs toRk(U). Let ` be the smallest index in the set
{k | ∃u ∈ C such thatu ∈ Rk(U)}. Let u be a vertex
in C ∩ R`(U) andw the predecessor ofu in C. Since
U ∩ C = ∅, k must be greater than0 andw a member
of R`−1(U), contradicting the minimality of̀.

Lemma 6. Every directed acyclic graphG is 0-
groundable.

Proof. We prove the statement by induction on|V |.
BASIS. If |V | = 1, then|E| = 0, so that the only vertex
v of G satisfiesN−

G (v) = ∅. HenceR(∅) = V .

INDUCTION. Let v be a vertex such thatdeg+(v) = 0.
Such a vertex exists sinceG is acyclic. Moreover,
let G′ be the (acyclic) graph obtained fromG by re-
moving vertexv and all its incident arcs. By the in-
duction hypothesis, there exists an integerk such that
Rk

G′(∅) = V − {v}. Therefore,V − {v} ⊆ Rk
G(∅) so

thatRk+1
G (∅) = V .

The next theorem follows easily from Lemmas 5 and
6.

Theorem 7. LetG = (V,E) be a directed graph and
U ⊆ V . ThenU is a grounding set ofG if and only if
U is a feedback vertex set ofG.

Proof. (⇒) Let C be a cycle ofG. By Lemma 5,U ∩
C 6= ∅, so thatU is a minimum feedback vertex set
of G. (⇐) Let G′ be the graph obtained fromG by
removingU . ThenG′ is acyclic and∅ is a grounding
set ofG′. Therefore,U ∪ ∅ = U is a grounding set of
G.

Corollary 8. k-GS is NP-complete.
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Proof. Denote by k-FVS the problem of deciding
whether a directed graphG admits a feedback vertex
set of cardinality at mostk. This problem is known
to be NP-complete and has been widely studied (Karp,
1972; Garey& Johnson, 1979). It follows directly from
Theorem 7 thatk-GS is NP-complete as well since the
problems are equivalent.

The fact that problemsk-GS andk-FVS are equiv-
alent is not very surprising. Indeed, roughly speaking,
the minimum grounding problem consists of finding a
minimum set large enough to enable the reader to learn
(reach) all the words of the dictionary. On the other
hand, the minimum feedback vertex set problem con-
sists of finding a minimum set large enough to break the
circularity of the definitions in the dictionary. Hence,
the problems are the same, even if they are stated dif-
ferently.

Although the problem is NP-complete in general, we
show that there is a simple way of reducing the com-
plexity of the problem by considering the strongly con-
nected components.

3.3 Decomposing the Problem

Let G = (V,E) be a directed graph andG1, G2, . . .,
Gm the subgraphs induced by its strongly connected
components, wherem ≥ 1. In particular, there are
no cycles ofG containing vertices in different strongly
connected components. Since the minimum ground-
ing set problem is equivalent to the minimum feed-
back vertex set problem, this means that when seeking
a minimum grounding set ofG, we can restrict our-
selves to seeking minimum grounding sets ofGi, for
i = 1, 2, . . . ,m. More precisely, we have the following
proposition.

Proposition 9. Let G = (V,E) be a directed graph
with m strongly connected components, withm ≥ 1,
and letGi = (Vi, Ei) be the subgraph induced by its
i-th strongly connected component, where1 ≤ i ≤ m.
Moreover, letUi be a minimum grounding set ofGi,
for i = 1, 2, . . . ,m. ThenU =

⋃m
i=1 Ui is a minimum

grounding set ofG.

Proof. First, we show thatU is a grounding set ofG.
LetC be a cycle ofG. ThenC is completely contained
in some strongly connected component ofG, sayGj ,
where1 ≤ j ≤ m. But Uj ⊆ U is a grounding set of
Gj , thereforeUj ∩C 6= ∅ so thatU ∩C 6= ∅. It remains
to show thatU is a minimum grounding set ofG. By
contradiction, assume that there exists a grounding set
U ′ of G, with |U ′| < |U | and letU ′

i = U ′ ∩ Vi. Then
there exists an indexj, with 1 ≤ j ≤ m, such that
|U ′

j | < |Uj |, contradicting the minimality of|Uj |.
Note that this proposition may be very useful for

graphs having many small strongly connected compo-
nents. Indeed, by using Tarjan’s Algorithm (Tarjan,
1972), the strongly connected components can be com-
puted in linear time. We illustrate this reduction by an
example.

Example 10. Consider again the dictionaryD and the
graphG of Example 1. The strongly connected com-
ponents ofG are encircled in Figure 3 and minimum
grounding sets (represented by words in squares) for
each of them are easily found. Thus the grounding num-
ber ofG is 5.

apple

bad

banana

color

dark

eatable
fruit

good

light
not

or

red

thing

tomato

yellow

Figure 3: The strongly connected components and a
minimum grounding set ofG

3.4 The Grounding Kernel

In Example 10, we have seen that there exist some
strongly connected components consisting of only one
vertex without any loop. In particular, there exist
vertices with no successor, i.e. verticesv such that
N+

G (v) = 0. For instance, this is the case of the words
“apple”, “banana” and “tomato”, which are not used in
any definition in the dictionary. Removing these three
words, we notice that “fruit”, “red” and “yellow” are
in the same situation and they can be removed as well.
Pursuing the same idea, we can now remove the words
“color” and “eatable”. At this point, we cannot remove
any further words. The set of remaining words is called
the grounding kernelof the graphG. More formally,
we have the following definition..

Definition 11. LetD be a dictionary,G = (V,E) its
associated graph andG1 = (V1, E1), G2 = (V2, E2),
. . ., Gm = (Vm, Em) the subgraphs induced by the
strongly connected components ofG, wherem ≥ 1. Let
V ′ be the set of verticesu such that{u} is a strongly
connected component without any loop (i.e.,(u, u) is
not an arc ofG). For anyu, letN∗(u) denote the set
of verticesv such thatG contains auv-path. Then the
grounding kernelof G, denoted byKG, is the setV −
{u | u ∈ V ′ andN∗(u) ⊆ V ′}.

Clearly, every dictionaryD admits a grounding ker-
nel, as shown by Algorithm 2. Moreover, the ground-
ing kernel is a grounding set of its associated graphG
and every minimum grounding set ofG is a subset of
the grounding kernel. Therefore, in studying the sym-
bol grounding problem in dictionaries, we can restrict
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Algorithm 2 Computing the grounding kernel
1: function GROUNDINGKERNEL(G)
2: G′ ← G
3: repeat
4: LetW be the set of vertices ofG′

5: U ← {v ∈W | N+
G′(v) = ∅}

6: G′ ← G′[W − U ]
7: until U = ∅
8: return G′

9: end function

ourselves to the grounding kernel of the graphG corre-
sponding toD. This phenomenon is interesting because
every dictionary contains many words that can be recur-
sively removed without compromising the understand-
ing of the other definitions. Formally, this property re-
lates to thelevel of a word: we will say of a wordw
that it is of levelk if it is k-reachable fromKG but not
`-reachable fromKG, for any` < k. In particular, level
0 indicates that the word is part of the grounding kernel.
A similar concept has been studied in (Changizi, 2008).

Example 12. Continuing Example 10 and from what
we have seen so far, it follows that the grounding kernel
ofG is given by

KG = {bad, dark, good, light, not, or, thing}.

Level1 words are “color” and “eatable”, level2 words
are “fruit”, “red” and “yellow”, and level 3 words are
“apple”, “banana” and “tomato”.

4 Grounding Sets and the Mental
Lexicon

In Section 3, we introduced all the necessary terminol-
ogy to study the symbol grounding problem using graph
theory and digital dictionaries. In this section, we ex-
plain how this model can be useful and on what assump-
tions it is based.

A dictionary is a formal symbol system. The pre-
ceding section showed how formal methods can be
applied to this system in order to extract formal fea-
tures. In cognitive science, this is the basis ofcom-
putationalism(or cognitivism or “disembodied cogni-
tion” (Pylyshyn, 1984)), according to which cognition,
too, is a formal symbol system – one that can be stud-
ied and explained independently of the hardware (or,
insofar as it concerns humans, the wetware) on which
it is implemented. However, pure computationalism
is vulnerable to the problem of the grounding of sym-
bols too (Harnad, 1990). Some of this can be reme-
died by the competing paradigm of embodied cogni-
tion (Barsalou, 2008; Glenberg& Robertson, 2002;
Steels, 2007), which draws on dynamical (noncompu-
tational) systems theory to ground cognition in senso-
rimotor experience. Although computationalism and
symbol grounding provide the background context for
our investigations and findings, the present paper does

not favor any particular theory of mental representation
of meaning.

A dictionary is a symbol system that relates words to
words in such a way that the meanings of the definienda
are conveyed via the definientes. The user is intended to
arrive at an understanding of an unknown word through
an understanding of its definition. What was formally
demonstrated in Section 3 agrees with common sense:
although one can learn new word meanings from a dic-
tionary, the entire dictionary cannot be learned in this
way because of circular references in the definitions
(cycles, in graph theoretic terminology). Information
– nonverbalinformation – must come from outside the
system to ground at least some of its symbols by some
means other than just formal definition (Cangelosi&
Harnad, 2001). For humans, the two options are learned
sensorimotor grounding and innate grounding. (Al-
though the latter is no doubt important, our current fo-
cus is more on the former.)

The need for information from outside the dictio-
nary is formalized in Section 3. Apart from confirming
the need for such external grounding, we take a sym-
metric stance: In natural language, some word mean-
ings — especially highly abstract ones, such as those
of mathematical or philosophical terms — are not or
cannot be acquired through direct sensorimotor ground-
ing. They are acquired through thecompositionof pre-
viously known words. The meaning of some of those
words, or of the words in their respective definitions,
must in turn have been grounded through direct senso-
rimotor experience.

To state this in another way: Meaning is not just for-
mal definitions all the way down; nor is it just sensori-
motor experience all the way up. The two extreme poles
of that continuum aresensorimotor inductionat one
pole (trial and error experience with corrective feed-
back; observation, pointing, gestures, imitation, etc.),
andsymbolic instruction(definitions, descriptions, ex-
planation, verbal examples etc.) at the other pole. Be-
ing able to identify from their lexicological structure
which words were acquired one way or the other would
provide us with important clues about the cognitive pro-
cesses underlying language and the mental representa-
tion of meaning.

To compare the word meanings acquired via sensori-
motor induction with word meanings acquired via sym-
bolic instruction (definitions), we first need access to
the encoding of that knowledge. In this component
of our research, our hypothesis is that the representa-
tional structure of word meanings in dictionaries shares
some commonalities with the representational structure
of word meanings in the human brain (Hauk et al.,
2008). We are thus trying to extract from dictionar-
ies the grounding kernel (and eventually a minimum
grounding set, which in general is a proper subset of
this kernel), from which the rest of the dictionary can be
reached through definitions alone. We hypothesize that
this kernel, identified through formal structural analy-
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sis, will exhibit properties that are also reflected in the
mental lexicon. In parallel ongoing studies, we are find-
ing that the words in the grounding kernel are indeed
(1) more frequent in oral and written usage, (2) more
concrete, (3) more readily imageable, and (4) learned
earlier or at a younger age. We also expect they will be
(5) more universal (across dictionaries, languages and
cultures) (Chicoisne et al., 2008).

5 Grounding Kernels in Natural
Language Dictionaries

In earlier research (Clark, 2003), we have been ana-
lyzing two special dictionaries: the Longman’s Dic-
tionary of Contemporary English (LDOCE) (Procter,
1978) and the Cambridge International Dictionary of
English (CIDE) (Procter, 1995). Both are officially
described as being based upon adefining vocabulary:
a set of2000 words which are purportedly the only
words used in all the definitions of the dictionary, in-
cluding the definitions of the defining vocabulary itself.
A closer analysis of this defining vocabulary, however,
has revealed that it is not always faithful to these con-
straints: A significant number of words used in the def-
initions turn out not to be in the defining vocabulary.
Hence it became evident that we would ourselves have
to generate a grounding kernel (roughly equivalent to
the defining vocabulary) from these dictionaries.

The method presented in this paper makes it possi-
ble, given the graph structure of a dictionary, to extract
a grounding kernel therefrom. Extracting this struc-
ture in turn confronts us with two further problems:
morphologyandpolysemy. Neither of these problems
has a definite algorithmic solution. Morphology can
be treated through stemming and associated look-up
lists for the simplest cases (i.e., was→ to be, and chil-
dren→ child), but more elaborate or complicated cases
would require syntactic analysis or, ultimately, human
evaluation. Polysemy is usually treated through statisti-
cal analysis of the word context (as in Latent Semantic
Analysis) (Kintsch, 2007) or human evaluation. Indeed,
a good deal of background knowledge is necessary to
analyse an entry such as: “dominant: the fifth note of a
musical scale of eight notes” (the LDOCE notes 16 dif-
ferent meanings ofscaleand 4 fordominant, and in our
example, none of these words are used with their most
frequent meaning).

Correct disambiguation of a dictionary is time-
consuming work, as the most effective way to do it
for now is through consensus among human evaluators.
Fortunately, a fully disambiguated version of the Word-
Net database (Fellbaum, 1998; Fellbaum, 2005) has just
become available. We expect the grounding kernel of
WordNet to be of greater interest than the defining vo-
cabulary of either CIDE or LDOCE (or what we extract
from them and disambiguate automatically, and imper-
fectly) for our analysis.

6 Future Work

The main purpose of this paper was to introduce a for-
mal approach to the symbol grounding problem based
on the computational analysis of digital dictionaries.
Ongoing and future work includes the following:

The minimum grounding set problem.We have seen
that the problem of finding a minimum grounding set is
NP-complete for general graphs. However, graphs as-
sociated with dictionaries have a very specific structure.
We intend to describe a class of graphs including those
specific graphs and to try to design a polynomial-time
algorithm to solve the problem. Another approach is
to design approximation algorithms, yielding a solution
close to the optimal solution, with some known guaran-
tee.

Grounding sets satisfying particular constraints.Let
D be a dictionary,G = (V,E) its associated graph,
andU ⊆ V any subset of vertices satisfying a given
propertyP . We can use Algorithm 1 to test whether
or notU is a grounding set. In particular, it would be
interesting to test different setsU satisfying different
cognitive constraints.

Relaxing the grounding conditions.In this paper
we imposed strong conditions on the learning of new
words: One must know all the words of the definition
fully in order to learn a new word from them. This is
not realistic, because we all know one can often under-
stand a definition without knowing every single word
in it. Hence one way to relax these conditions would
be to modify the learning rule so that one need only un-
derstand at leastr% of the definition, wherer is some
number between0 and100. Another variation would
be to assign weights to words to take into account their
morphosyntactic and semantic properties (rather than
just treating them as an unordered list, as in the present
analysis). Finally, we could consider “quasi-grounding
sets”, whose associated reachable set consists ofr% of
the whole dictionary.

Disambiguation of definitional relations.Analyzing
real dictionaries raises, in its full generality, the prob-
lem of word and text disambiguation in free text; this
is a very difficult problem. For example, if the word
“make” appears in a definition, we do not know which
of its many senses is intended — nor even what its
grammatical category is. To our knowledge, the only
available dictionary that endeavors to provide fully dis-
ambiguated definitions is the just-released version of
WordNet. On the other hand, dictionary definitions
have a very specific grammatical structure, presumably
simpler and more limited than the general case of free
text. It might hence be feasible to develop automatic
disambiguation algorithms specifically dedicated to the
special case of dictionary definitions.

Concluding Remark: Definition can reach the sense
(sometimes), but only the senses can reach the referent.

Research funded by Canada Research Chair in Cog-
nitive Sciences, SSHRC (S. Harnad)and NSERC (S.
Harnad & O. Marcotte)
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Abstract

In this paper, we provide a statistical ma-
chine learning representation of textual en-
tailment via syntactic graphs constituted
by tree pairs. We show that the natural way
of representing the syntactic relations be-
tween text and hypothesis consists in the
huge feature space of all possible syntac-
tic tree fragment pairs, which can only be
managed using kernel methods. Experi-
ments with Support Vector Machines and
our new kernels for paired trees show the
validity of our interpretation.

1 Introduction

Recently, a lot of valuable work on the recogni-
tion of textual entailment (RTE) has been carried
out (Bar Haim et al., 2006). The aim is to detect
implications between sentences like:

T1 ⇒ H1

T1 “Wanadoo bought KStones”
H1 “Wanadoo owns KStones”

whereT1 andH1 stand for text and hypothesis, re-
spectively.

Several models, ranging from the simple lexi-
cal similarity betweenT andH to advanced Logic
Form Representations, have been proposed (Cor-
ley and Mihalcea, 2005; Glickman and Dagan,
2004; de Salvo Braz et al., 2005; Bos and Mark-
ert, 2005). However, since a linguistic theory able
to analytically show how to computationally solve
the RTE problem has not been developed yet, to

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

design accurate systems, we should rely upon the
application of machine learning. In this perspec-
tive, TE training examples have to be represented
in terms of statistical feature distributions. These
typically consist in word sequences (along with
their lexical similarity) and the syntactic structures
of both text and hypothesis (e.g. their parse trees).
The interesting aspect with respect to other natural
language problems is that, in TE, features useful
at describing an example are composed by pairs of
features from Text and Hypothesis.

For example, using a word representation, a text
and hypothesis pair,〈T,H〉, can be represented
by the sequences of words of the two sentences,
i.e. 〈t1, .., tn〉 and〈h1, .., hm〉, respectively. If we
carry out a blind and complete statistical correla-
tion analysis of the two sequences, the entailment
property would be described by the set of subse-
quence pairs fromT and H, i.e. the setR =
{〈st, sh〉 : st = 〈ti1 , .., til〉, sh = 〈hj1 , .., hjr 〉, l ≤
n, r ≤ m}. The relation setR constitutes a
naive and complete representation of the example
〈T,H〉 in the feature space{〈v,w〉 : v,w ∈ V ∗},
whereV is the corpus vocabulary1.

Although the above representation is correct and
complete from a statistically point of view, it suf-
fers from two practical drawbacks: (a) it is expo-
nential inV and (b) it is subject to high degree of
data sparseness which may prevent to carry out ef-
fective learning. The traditional solution for this
problem relates to consider the syntactic structure
of word sequences which provides their general-
ization.

The use of syntactic trees poses the problem
of representing structures in learning algorithms.

1V ∗ is larger than the actual space, which is the one of
all possible subsequences with gaps, i.e. it only contains all
possible concatenations of words respecting their order.
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For this purpose, kernel methods, and in partic-
ular tree kernels allow for representing trees in
terms of all possible subtrees (Collins and Duffy,
2002). Unfortunately, the representation in entail-
ment recognition problems requires the definition
of kernels over graphs constituted by tree pairs,
which are in general different from kernels applied
to single trees. In (Zanzotto and Moschitti, 2006),
this has been addressed by introducing semantic
links (placeholders) between text and hypothesis
parse trees and evaluating two distinct tree ker-
nels for the trees of texts and for those of hypothe-
ses. In order to make such disjoint kernel combi-
nation effective, all possible assignments between
the placeholders of the first and the second en-
tailment pair were generated causing a remarkable
slowdown.

In this paper, we describe the feature space of
all possible tree fragment pairs and we show that it
can be evaluated with a much simpler kernel than
the one used in previous work, both in terms of
design and computational complexity. Moreover,
the experiments on the RTE datasets show that our
proposed kernel provides higher accuracy than the
simple union of tree kernel spaces.

2 Fragments of Tree Pair-based Graphs

The previous section has pointed out that RTE can
be seen as a relational problem between word se-
quences of Text and Hypothesis. The syntactic
structures embedded in such sequences can be gen-
eralized by natural language grammars. Such gen-
eralization is very important since it is evident that
entailment cases depend on the syntactic structures
of Text and Hypothesis. More specifically, the set
R described in the previous section can be ex-
tended and generalized by considering syntactic
derivations2 that generate word sequences in the
training examples. This corresponds to the follow-
ing set of tree fragment pairs:

Rτ = {〈τt, τh〉 : τt ∈ F(T ), τh ∈ F(H)}, (1)

whereF(·) indicates the set of tree fragments of a
parse tree (i.e. the one of the textT or of the hy-
pothesisH). Rτ contains less sparse relations than
R. For instance, givenT1 andH1 of the previous
section, we would have the following relational de-
scription:

2By cutting derivation at different depth, different degrees
of generalization can be obtained.

Rτ =
{
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〉 , ..
}

These features (relational pairs) generalize the
entailment property, e.g. the pair〈[VP [VBP bought] [NP]],

[VP [VBP own] [NP]]〉 generalizes many word sequences,
i.e. those external to the verbal phrases and inter-
nal to theNPs.

We can improve this space by adding semantic
links between the tree fragments. Such links
or placeholders have been firstly proposed in
(Zanzotto and Moschitti, 2006). A placeholder
assigned to a node ofτt and a node ofτh states
that such nodes dominate the same (or similar) in-
formation. In particular, placeholders are assigned
to nodes whose wordsti in T are equal, similar, or
semantically dependent on wordshj in H. Using
placeholders, we obtain a richer fragment pair
based representation that we callRτp, exemplified
hereafter:

{
〈

S

NP

NNP X

VP

VBP

bought

NP

NNP Y

,

S

NP

NNP X

VP

VBP

owns

NP

NNP Y

〉

, 〈

S

NP VP

VBP
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NP

NNP Y

,

S

NP VP

VBP

owns

NP

NNP Y

〉

, 〈 S

NPVP
,

S

NPVP
〉 , ...

}
The placeholders (or variables) indicated with

X and Y specify that the NNPs labeled by
the same variables dominate similar or identical
words. Therefore, an automatic algorithm that
assigns placeholders to semantically similar con-
stituents is needed. Moreover, althoughRτp con-
tains more semantic and less sparse features than
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bothRτ andR, its cardinality is still exponential in
the number of the words ofT andH. This means
that standard machine learning algorithms cannot
be applied. In contrast, tree kernels (Collins and
Duffy, 2002) can be used to efficiently generate
the huge space of tree fragments but, to generate
the space of pairs of tree fragments, a new kernel
function has to be defined.

The next section provides a solution to both
problems. i.e. an algorithm for placeholders as-
signments and for the computation of paired tree
kernels which generatesRτ and Rτp representa-
tions.

F
(
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NP
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)
=

{
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V NP
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Figure 1: A syntactic parse tree.

3 Kernels over Semantic Tree Pair-based
Graphs

The previous section has shown that placeholders
enrich a tree-based graph with relational informa-
tion, which, in turn, can be captured by means
of word semantic similaritiessimw(wt, wh), e.g.
(Corley and Mihalcea, 2005; Glickman et al.,
2005). More specifically, we use a two-step greedy
algorithm to anchor the content words (verbs,
nouns, adjectives, and adverbs) in the hypothesis
WH to words in the textWT .

In the first step, each wordwh in WH is con-
nected to all wordswt in WT that have the max-
imum similaritysimw(wt, wh) with it (more than
onewt can have the maximum similarity withwh).
As result, we have a set of anchorsA ⊂ WT×WH .
simw(wt, wh) is computed by means of three tech-
niques:

1. Two words are maximally similar if they have
the same surface formwt = wh.

2. Otherwise, WordNet (Miller, 1995) similari-
ties (as in (Corley and Mihalcea, 2005)) and
different relation between words such as verb

entailment and derivational morphology are
applied.

3. The edit distance measure is finally used to
capture the similarity between words that are
missed by the previous analysis (for mis-
spelling errors or for the lack of derivational
forms in WordNet).

In the second step, we select the final anchor set
A′ ⊆ A, such that∀wt (or wh) ∃!〈wt, wh〉 ∈ A′.
The selection is based on a simple greedy algo-
rithm that given two pairs〈wt, wh〉 and 〈w′

t, wh〉
to be selected and a pair〈st, sh〉 already selected,
considers word proximity (in terms of number of
words) betweenwt andst and betweenw′

t andst;
the nearest word will be chosen.

Once the graph has been enriched with seman-
tic information we need to represent it in the learn-
ing algorithm; for this purpose, an interesting ap-
proach is based on kernel methods. Since the con-
sidered graphs are composed by only two trees, we
can carried out a simplified computation of a graph
kernel based on tree kernel pairs.

3.1 Tree Kernels

Tree Kernels (e.g. see NLP applications in (Giu-
glea and Moschitti, 2006; Zanzotto and Moschitti,
2006; Moschitti et al., 2007; Moschitti et al.,
2006; Moschitti and Bejan, 2004)) represent trees
in terms of their substructures (fragments) which
are mapped into feature vector spaces,e.g. ℜn.
The kernel function measures the similarity be-
tween two trees by counting the number of their
common fragments. For example, Figure 1 shows
some substructures for the parse tree of the sen-
tence"book a flight". The main advantage of
tree kernels is that, to compute the substructures
shared by two treesτ1 andτ2, the whole fragment
space is not used. In the following, we report the
formal definition presented in (Collins and Duffy,
2002).

Given the set of fragments{f1, f2, ..} = F , the
indicator functionIi(n) is equal 1 if the targetfi is
rooted at noden and 0 otherwise. A tree kernel is
then defined as:

TK(τ1, τ2) =
∑

n1∈Nτ1

∑
n2∈Nτ2

∆(n1, n2) (2)

whereNτ1 andNτ2 are the sets of theτ1’s andτ2’s
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nodes, respectively and

∆(n1, n2) =
|F|∑
i=1

Ii(n1)Ii(n2)

The latter is equal to the number of common frag-
ments rooted in then1 andn2 nodes and∆ can be
evaluated with the following algorithm:

1. if the productions atn1 andn2 are different
then∆(n1, n2) = 0;

2. if the productions atn1 and n2 are the
same, andn1 andn2 have only leaf children
(i.e. they are pre-terminals symbols) then
∆(n1, n2) = 1;

3. if the productions atn1 andn2 are the same,
andn1 andn2 are not pre-terminals then

∆(n1, n2) =
nc(n1)∏
j=1

(1 + ∆(cj
n1

, cj
n2

)) (3)

where nc(n1) is the number of the children of
n1 and cj

n is the j-th child of the noden. Note
that since the productions are the same,nc(n1) =
nc(n2).

Additionally, we add the decay factorλ by mod-
ifying steps (2) and (3) as follows3:

2. ∆(n1, n2) = λ,

3. ∆(n1, n2) = λ

nc(n1)∏
j=1

(1 + ∆(cj
n1

, cj
n2

)).

The computational complexity of Eq. 2 is
O(|Nτ1 | × |Nτ2 |) although the average running
time tends to be linear (Moschitti, 2006).

3.2 Tree-based Graph Kernels

The above tree kernel function can be applied to
the parse trees of two texts or those of the two hy-
potheses to measure their similarity in terms of the
shared fragments. If we sum the contributions of
the two kernels (for texts and for hypotheses) as
proposed in (Zanzotto and Moschitti, 2006), we
just obtain the feature space of the union of the
fragments which is completely different from the
space of the tree fragments pairs, i.e.Rτ . Note
that the union space is not useful to describe which

3To have a similarity score between 0 and 1, we also ap-
ply the normalization in the kernel space, i.e.K′(τ1, τ2) =

TK(τ1 ,τ2)√
TK(τ1,τ1)×TK(τ2,τ2)

.

grammatical and lexical property is at the same
time held byT andH to trig the implication.

Therefore to generate the space of the frag-
ment pairs we need to define the kernel between
two pairs of entailment examples〈T1,H1〉 and
〈T2,H2〉 as

Kp(〈T1,H1〉, 〈T2,H2〉) =

=
∑

n1∈T1

∑
n2∈T2

∑
n3∈H1

∑
n4∈H2

∆(n1, n2, n3, n4),

where∆ evaluates the number of subtrees rooted
in n1 andn2 combined with those rooted inn3 and
n4. More specifically, each fragment rooted into
the nodes of the two texts’ trees is combined with
each fragment rooted in the two hypotheses’ trees.
Now, since the number of subtrees rooted in the
texts is independent of the number of trees rooted
in the hypotheses,

∆(n1, n2, n3, n4) = ∆(n1, n2)∆(n3, n4).

Therefore, we can rewriteKp as:

Kp(〈T1,H1〉, 〈T2,H2〉) =

=
∑

n1∈T1

∑
n2∈T2

∑
n3∈H1

∑
n4∈H2

∆(n1, n2)∆(n3, n4) =

=
∑

n1∈T1

∑
n2∈T2

∆(n1, n2)
∑

n3∈H1

∑
n4∈H2

∆(n3, n4) =

= Kt(T1, T2)×Kt(H1,H2).
(4)

This result shows that the natural kernel to rep-
resent textual entailment sentences is the kernel
product, which corresponds to the set of all possi-
ble syntactic fragment pairs. Note that, such kernel
can be also used to evaluate the space of fragment
pairs for trees enriched with relational information,
i.e. by placeholders.

4 Approximated Graph Kernel

The feature space described in the previous sec-
tion correctly encodes the fragment pairs. How-
ever, such huge space may result inadequate also
for algorithms such as SVMs, which are in general
robust to many irrelevant features. An approxima-
tion of the fragment pair space is given by the ker-
nel described in (Zanzotto and Moschitti, 2006).
Hereafter we illustrate its main points.

First, tree kernels applied to two texts or two hy-
potheses match identical fragments. When place-
holders are added to trees, the labeled fragments
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are matched only if the basic fragments and the
assigned placeholders match. This means that
we should use the same placeholders for all texts
and all hypotheses of the corpus. Moreover, they
should be assigned in a way that similar syntac-
tic structures and similar relational information be-
tween two entailment pairs can be matched, i.e.
same placeholders should be assigned to the po-
tentially similar fragments.

Second, the above task cannot be carried out at
pre-processing time, i.e. when placeholders are
assigned to trees. At the running time, instead,
we can look at the comparing trees and make a
more consistent decision on the type and order of
placeholders. Although, there may be several ap-
proaches to accomplish this task, we apply a basic
heuristic which is very intuitive:
Choose the placeholder assignment that maxi-
mizes the tree kernel function over all possible cor-
respondences
More formally, letA andA′ be the placeholder sets
of 〈T,H〉 and〈T ′,H ′〉, respectively, without loss
of generality, we consider|A| ≥ |A′| and we align
a subset ofA to A′. The best alignment is the one
that maximizes the syntactic and lexical overlap-
ping of the two subtrees induced by the aligned set
of anchors. By callingC the set of all bijective
mappings fromS ⊆ A, with |S| = |A′|, to A′,
an elementc ∈ C is a substitution function. We
define the best alignmentcmax the one determined
by

cmax = argmaxc∈C(TK(t(T, c), t(T ′, i))+
TK(t(H, c), t(H ′, i)),

where (1)t(·, c) returns the syntactic tree enriched
with placeholders replaced by means of the sub-
stitution c, (2) i is the identity substitution and (3)
TK(τ1, τ2) is a tree kernel function (e.g. the one
specified by Eq. 2) applied to the two treesτ1 and
τ2.

At the same time, the desired similarity value
to be used in the learning algorithm is given
by the kernel sum:TK(t(T, cmax), t(T ′, i)) +
TK(t(H, cmax), t(H ′, i)), i.e. by solving the fol-
lowing optimization problem:

Ks(〈T,H〉, 〈T ′,H ′〉) =
maxc∈C(TK(t(T, c), t(T ′, i))+

TK(t(H, c), t(H ′, i)),
(5)

For example, let us compare the following two
pairs(T1,H1) and(T2,H2) in Fig. 2.

To assign the placeholders1, 2 and 3 of
(T2,H2) to those of(T1,H1), i.e. X and Y , we
need to maximize the similarity between the two
texts’ trees and between the two hypotheses’ trees.
It is straightforward to derive that X=1 and Y=3 al-
low more substructures (i.e. large part of the trees)
to be identical, e.g. [S [NP1 X VP]] , [VP [VBP
NP3 Y ]], [S [NP1 X VP [VBP NP3 Y ]]].

Finally, it should be noted that, (a)
Ks(〈T,H〉, 〈T ′,H ′〉) is a symmetric function
since the set of derivationC are always computed
with respect to the pair that has the largest anchor
set and (b) it is not a valid kernel as themax
function does not in general produce valid kernels.
However, in (Haasdonk, 2005), it is shown that
when kernel functions are not positive semidef-
inite like in this case, SVMs still solve a data
separation problem in pseudo Euclidean spaces.
The drawback is that the solution may be only a
local optimum. Nevertheless, such solution can
still be valuable as the problem is modeled with a
very rich feature space.

Regarding the computational complexity, run-
ning the above kernel on a large training set may
result very expensive. To overcome this drawback,
in (Moschitti and Zanzotto, 2007), it has been de-
signed an algorithm to factorize the evaluation of
tree subparts with respect to the different substitu-
tion. The resulting speed-up makes the application
of such kernel feasible for datasets of ten of thou-
sands of instances.

5 Experiments

The aim of the experiments is to show that the
space of tree fragment pairs is the most effective
to represent Tree Pair-based Graphs for the design
of Textual Entailment classifiers.

5.1 Experimental Setup

To compare our model with previous work we
implemented the following kernels in SVM-light
(Joachims, 1999):

• Ks(e1, e2) = Kt(T1, T2) + Kt(H1,H2),
where e1 = 〈T1,H1〉 and e2 = 〈T2,H2〉
are two text and hypothesis pairs andKt is
the syntactic tree kernel (Collins and Duffy,
2002) presented in the previous section.

• Kp(e1, e2) = Kt(T1, T2) × Kt(H1,H2),
which (as shown in the previous sections) en-
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Figure 2:The problem of finding the correct mapping between placeholders

codes the tree fragment pairs with and with-
out placeholders.

• Kmax(e1, e2) = max
c∈C

(
Kt(φc(T1), φc(T2))+

Kt(φc(H1), φc(H2))
)
, where c is a possi-

ble placeholder assignment which connects
nodes from the first pair with those of the sec-
ond pair andφc(·) transforms trees according
to c.

• Kpmx(e1, e2) = max
c∈C

(
Kt(φc(T1), φc(T2))×

Kt(φc(H1), φc(H2))
)
.

Note thatKmax is the kernel proposed in (Zanzotto
and Moschitti, 2006) andKpmx is a hybrid kernel
based on the maximumKp, which uses the space
of tree fragment pairs. For all the above kernels,
we set the default cost factor and trade-off param-
eters and we setλ to 0.4.

To experiment with entailment relations, we
used the data sets made available by the first (Da-
gan et al., 2005) and second (Bar Haim et al., 2006)
Recognizing Textual Entailment Challenge. These
corpora are divided in the development setsD1
andD2 and the test setsT1 andT2. D1 contains
567 examples whereasT1, D2 andT2 all have the
same size, i.e. 800 instances. Each example is an
ordered pair of texts for which the entailment rela-
tion has to be decided.

5.2 Evaluation and Discussion

Table 1 shows the results of the above kernels
on the split used for the RTE competitions. The
first column reports the kernel model. The second
and third columns illustrate the model accuracy for
RTE1 whereas column 4 and 5 show the accuracy
for RTE2. Moreover,¬ P indicates the use of stan-
dard syntactic trees and P the use of trees enriched
with placeholders. We note that:

First, the space of tree fragment pairs, gener-
ated byKp improves the one generated byKs (i.e.
the simple union of the fragments of texts and hy-
potheses) of 4 (58.9% vs 54.9%) and 0.9 (53.5%
vs 52.6%) points on RTE1 and RTE2, respectively.
This suggests that the fragment pairs are more ef-
fective for encoding the syntactic rules describing
the entailment concept.

Second, on RTE1, the introduction of placehold-
ers does not improveKp or Ks suggesting that for
their correct exploitation an extension of the space
of tree fragment pairs should be modeled.

Third, on RTE2, the impact of placeholders
seems more important but onlyKmax and Ks

are able to fully exploit their semantic contribu-
tion. A possible explanation is that in order to
use the set of all possible assignments (required by
Kmax), we needed to prune the ”too large” syntac-
tic trees as also suggested in (Zanzotto and Mos-
chitti, 2006). This may have negatively biased the
statistical distribution of tree fragment pairs.

Finally, although we show thatKp is better
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Kernels RTE1 RTE2
¬ P P ¬ P P

Ks 54.9 50.0 52.6 59.5
Kp 58.9 55.5 53.5 56.0

Kmax - 58.25 - 61.0
Kpmx - 50.0 - 56.8

Table 1: Accuracy of different kernel models using
(P) and not using (¬ P) placeholder information on
RTE1 and RTE2.

suited for RTE than the other kernels, its accuracy
is lower than the state-of-the-art in RTE. This is be-
cause the latter uses additional models like the lex-
ical similarity between text and hypothesis, which
greatly improve accuracy.

6 Conclusion

In this paper, we have provided a statistical ma-
chine learning representation of textual entailment
via syntactic graphs constituted by tree pairs. We
have analytically shown that the natural way of
representing the syntactic relations between text
and hypothesis in learning algorithms consists in
the huge feature space of all possible syntactic tree
fragment pairs, which can only be managed using
kernel methods.

Therefore, we used tree kernels, which allow for
representing trees in terms of all possible subtrees.
More specifically, we defined a new model for the
entailment recognition problems, which requires
the definition of kernels over graphs constituted by
tree pairs. These are in general different from ker-
nels applied to single trees. We also studied an-
other alternative solution which concerns the use
of semantic links (placeholders) between text and
hypothesis parse trees (to form relevant semantic
fragment pairs) and the evaluation of two distinct
tree kernels for the trees of texts and for those of
hypotheses. In order to make such disjoint kernel
combination effective, all possible assignments be-
tween the placeholders of the first and the second
entailment pair have to be generated (causing a re-
markable slowdown).

Our experiments on the RTE datasets show that
our proposed kernel may provide higher accuracy
than the simple union of tree kernel spaces with a
much simpler and faster algorithm. Future work
will be devoted to make the tree fragment pair
space more effective, e.g. by using smaller and ac-
curate tree representation for text and hypothesis.
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Abstract

This paper presents a method for seman-

tic classication of onomatopoetic words

like “ひゅーひゅー (hum)” and “からん
ころん (clip clop)” which exist in ev-

ery language, especially Japanese being

rich in onomatopoetic words. We used

a graph-based clustering algorithm called

Newman clustering. The algorithm cal-

culates a simple quality function to test

whether a particular division is meaning-

ful. The quality function is calculated

based on the weights of edges between

nodes. We combined two different sim-

ilarity measures, distributional similarity,

and orthographic similarity to calculate

weights. The results obtained by using

the Web data showed a 9.0% improvement

over the baseline single distributional sim-

ilarity measure.

1 Introduction

Onomatopoeia which we call onomatopoetic word

(ono word) is the formation of words whose sound

is imitative of the sound of the noise or action des-

ignated, such as ‘hiss’ (McLeod, 1991). It is one

of the linguistic features of Japanese. Consider two

sentences from Japanese.

(1) 私は廊下のスリッパの音で起こされたので、
とても眠い。

“I’m too sleepy because I awoke to the slip-

pers in the hall.”

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

(2) 私は廊下をぱたぱた走るスリッパの音で起
こされたので、とても眠い。

“I’m too sleepy because I awoke to the pit-a-

pat of slippers in the hall.”

Sentences (1) and (2) are almost the same sense.

However, sentence (2) which includes ono word,

“ぱたぱた (pit-a-pat)” is much better to make

the scene alive, or represents an image clearly.

Therefore large-scale semantic resource of ono

words is indispensable for not only NLP, but

also many semantic-oriented applications such as

Question Answering, Paraphrasing, and MT sys-

tems. Although several machine-readable dictio-

naries which are ne-grained and large-scale se-

mantic knowledge like WordNet, COMLEX, and

EDR dictionary exist, there are none or few ono-

matopoetic thesaurus. Because (i) it is easy to un-

derstand its sense of ono word for Japanese, and

(ii) it is a fast-changing linguistic expressions, as

it is a vogue word. Therefore, considering this re-

source scarcity problem, semantic classication of

ono words which do not appear in the resource but

appear in corpora is very important.

In this paper, we focus on Japanese onomatopo-

etic words, and propose a method for classifying

them into a set with similar meaning. We used

the Web as a corpus to collect ono words, as they

appear in different genres of dialogues including

broadcast news, novels and comics, rather than a

well-edited, balanced corpus like newspaper arti-

cles. The problem using a large, heterogeneous

collection of Web data is that the Web counts are

far more noisy than counts obtained from textual

corpus. We thus used a graph-based clustering al-

gorithm, called Newman clustering for classify-
ing ono words. The algorithm does not simply cal-

culate the number of shortest paths between pairs

of nodes, but instead calculates a quality function
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of how good a cluster structure found by an algo-

rithm is, and thus makes the computation far more

efcient. The efcacy of the algorithm depends

on a quality function which is calculated by us-

ing the weights of edges between nodes. We com-

bined two different similarity measures, and used

them to calculate weights. One is co-occurrence

based distributional similarity measure. We tested

mutual information (MI) and a χ2 statistic as a

similarity measure. Another is orthographic sim-

ilarity which is based on a feature of ono words

called “sound symbolism”. Sound symbolism in-

dicates that phonemes or phonetic sequences ex-

press their senses. As onowords imitate the sounds

associated with the objects or actions they refer to,

their phonetic sequences provide semantic clues

for classication. The empirical results are encour-

aging, and showed a 9.0% improvement over the

baseline single distributional similarity measure.

2 Previous Work

There are quite a lot of work on semantic classi-

cation of words with corpus-based approach. The

earliest work in this direction are those of (Hindle,

1990), (Lin, 1998), (Dagan et al., 1999), (Chen

and Chen, 2000), (Geffet and Dagan, 2004) and

(Weeds and Weir, 2005). They used distributional

similarity. Similarity measures based on distribu-

tional hypothesis compare a pair of weighted fea-

ture vectors that characterize two words. Features

typically correspond to other words that co-occur

with the characterized word in the same context.

Lin (1998) proposed a word similarity measure

based on the distributional pattern of words which

allows to construct a thesaurus using a parsed cor-

pus. He compared the result of automatically cre-

ated thesaurus with WordNet and Roget, and re-

ported that the result was signicantly closer to

WordNet than Roget Thesaurus was.

Graph representations for word similarity have

also been proposed by several researchers (Jan-

nink andWiederhold, 1999; Galley and McKeown,

2003; Muller et al., 2006). Sinha and Mihalcea

(2007) proposed a graph-based algorithm for un-

supervised word sense disambiguation which com-

bines several semantic similarity measures includ-

ing Resnik’s metric (Resnik, 1995), and algorithms

for graph centrality. They reported that the results

using the SENSEVAL-2 and SENSEVAL-3 En-

glish all-words data sets lead to relative error rate

reductions of 5 − 8% as compared to the previous

work (Mihalcea, 2005).

In the context of graph-based clustering of

words, Widdows and Dorow (2002) used a graph

model for unsupervised lexical acquisition. The

graph structure is built by linking pairs of words

which participate in particular syntactic relation-

ships. An incremental cluster-building algorithm

using the graph structure achieved 82% accuracy at

a lexical acquisition task, evaluated against Word-

Net 10 classes, and each class consists of 20 words.

Matsuo et al. (2006) proposed a method of word

clustering based on a word similarity measure by

Web counts. They used Newman clustering for

clustering algorithm. They evaluated their method

using two sets of word classes. One is derived from

the Web data, and another is fromWordNet.1 Each

set consists of 90 noun words. They reported that

the results obtained by Newman clustering were

better than those obtained by average-link agglom-

erative clustering. Our work is similar to their

method in the use of Newman clustering. How-

ever, they classied Japanese noun words, while

our work is the rst to aim at detecting seman-

tic classication of onomatopoetic words. More-

over, they used only a single similarity metric, co-

occurrence based similarity, while Japanese, espe-

cially “kanji” characters of noun words provide se-

mantic clues for classifying words.

3 System Description

The method consists of three steps: retrieving co-

occurrences using the Web, calculating similarity

between ono words, and classifying ono words by

using Newman clustering.

3.1 Retrieving Co-occurrence using the Web

One criterion for calculating semantic similarity

between onowords is co-occurrence based similar-

ity. We retrieved frequency of two ono words oc-

curring together by using the Web search engine,

Google. The similarity between them is calcu-

lated based on their co-occurrence frequency. Like

much previous work on semantic classication of

the lexicons, our assumption is that semantically

similar words appear in similar contexts. A lot

of strategies for searching words are provided in

Google. Of these we focused on two methods:

Boolean search AND and phrase-based search.

1They used WordNet hypernym information. It consists
of 10 classes. They assigned 90 Japanese noun words to each
class.
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When we use AND boolean search, i.e., (Oi Oj)

where Oi and Oj are ono words, we can retrieve

the number of documents which include both Oi

and Oj . In contrast, phrase-based search, i.e.,
(“Oi Oj”) retrieves documents which include two

adjacent words Oi and Oj .

3.2 Similarity Measures

The second step is to calculate semantic similarity

between ono words. We combined two different

similarity measures: the co-occurrence frequency

based similarity and orthographic similarity mea-

sures.

3.2.1 Co-occurrence based Similarity

Measure

We focused on two popular measures: the mu-

tual information (MI) and χ2 statistics.

1. Mutual Information

Church and Hanks (1990) discussed the use

of the mutual information statistics as a way

to identify a variety of interesting linguistic

phenomena, ranging from semantic relations

of the doctor/nurse type (content word/content

word) to lexico-syntactic co-occurrence prefer-

ences between verbs and prepositions (content

word/function word). Let Oi and Oj be ono words

retrieved from the Web. The mutual information

MI(Oi, Oj) is dened as:

MI(Oi, Oj) = log
Sall × f(Oi, Oj)

SOi × SOj

, (1)

where SOi =
∑

k∈Oall

f(Oi, Ok), (2)

Sall =
∑

Oi∈Oall

SOi . (3)

In Eq. (1), f(Oi, Oj) refers to the frequency of Oi

and Oj occurring together, and Oall is a set of all

ono words retrieved from the Web.

2. χ2 statistic

The χ2(Oi, Oj) is dened as:

χ2(Oi, Oj) =
f(Oi, Oj) − E(Oi, Oj)

E(Oi, Oj)
, (4)

where E(Oi, Oj) = SOi ×
SOj

Sall
. (5)

SOi and Sall in Eq. (5) refer to Eq. (2) and (3),

respectively. A major difference between χ2 and

MI is that the former is a normalized value.

3.2.2 Orthographic Similarity Measure

Orthographic similarity has been widely used

in spell checking and speech recognition systems

(Damerau, 1964). Our orthographic similarity

measure is based on a unit of phonetic sequence.

The key steps of the similarity between two ono

words is dened as:

1. Convert each ono word into phonetic se-

quences.

The “hiragana” characters of ono word are

converted into phonetic sequences by a

unique rule. Basically, there are 19 conso-

nants and 5 vowels, as listed in Table 1.

Table 1: Japanese consonants and vowels

Consonant –, N, Q, h, hy, k, ky, m, my, n,

ny, r, ry, s, sy, t, ty, w, y

Vowel a, i, u, e, o

Consider phonetic sequences “hyu-hyu-” of

ono word “ひゅーひゅー” (hum). It is seg-
mented into 4 consonants “hy”, “-”, “hy” and

“-”, and two vowels, “u” and “u”.

2. Form a vector in n-dimensional space.

Each ono word is represented as a vector

of consonants(vowels), where each dimen-

sion of the vector corresponds to each con-

sonant and vowel, and each value of the di-

mension is frequencies of its corresponding

consonant(vowel).

3. Calculate orthographic similarity.

The orthographic similarity between ono

words, Oi and Oj is calculated based on the

consonant and vowel distributions. We used

two popular measures, i.e., the cosine similar-

ity, and α-skew divergence. The cosine mea-
sures the similarity of the two vectors by cal-

culating the cosine of the angle between vec-

tors. α-skew divergence is dened as:

αdiv(x, y) = D(y || α · x + (1 − α) · y),

where D(x||y) refers to Kullback-Leibler
and dened as:

D(x||y) =

n∑

i=1

xi ∗ log
xi

yi
. (6)
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Lee (1999) reported the best results with α
= 0.9. We used the same value. We dened a

similarity metric by combining co-occurrence

based and orthographic similarity measures2:

Sim(Oi, Oj) =

MI(Oi, Oj) × (Cos(Oi, Oj) + 1) (7)

3.3 The Newman Clustering Algorithm

We classied onowords collected from theWWW.

Therefore, the clustering algorithm should be ef-

cient and effective even in the very high dimen-

sional spaces. For this purpose, we chose a graph-

based clustering algorithm, called Newman clus-
tering. The Newman clustering is a hierarchical

clustering algorithm which is based on Network

structure (Newman, 2004). The network structure

consists of nodes within which the node-node con-

nections are edges. It produces some division of

the nodes into communities, regardless of whether

the network structure has any natural such divi-

sion. Here, “community” or “cluster” have in com-

mon that they are groups of densely interconnected

nodes that are only sparsely connected with the rest

of the network. To test whether a particular divi-

sion is meaningful a quality function Q is dened:

Q =
∑

i

(eii − a2
i )

where eij is the sum of the weight of edges be-

tween two communities i and j divided by the sum
of the weight of all edges, and ai =

∑
j eij , i.e., the

expected fraction of edges within the cluster. Here

are the key steps of that algorithm:

1. Given a set of n ono words S = {O1, · · ·,
On}. Create a network structure which con-
sists of nodes O1, · · ·, On, and edges. Here,

the weight of an edge between Oi and Oj

is a similarity value obtained by Eq. (7). If

the “network density” of ono words is smaller

than the parameter θ, we cut the edge. Here,
“network density” refers to a ratio selected

from the topmost edges. For example, if it

2When we used χ2 statistic as a co-occurrence based sim-
ilarity, MI in Eq. (7) is replaced by χ2. In a similar way,
Cos(Oi, Oj) is replaced by max − αdiv(x, y), where max
is the maximum value among all αdiv(x, y) values.

was 0.9, we used the topmost 90% of all

edges and cut the remains, where edges are

sorted in the descending order of their simi-

larity values.

2. Starting with a state in which each ono word

is the sole member of one of n communities,
we repeatedly joined communities together in

pairs, choosing at each step the join that re-

sults in the greatest increase.

3. Suppose that two communities are merged

into one by a join operation. The change in

Q upon joining two communities i and j is
given by:

%Qij = eij + eji − 2aiaj

= 2(eij − aiaj)

4. Apply step 3. to every pair of communities.

5. Join two communities such that"Q is maxi-

mum and create one community. If"Q < 0,

go to step 7.

6. Re-calculate eij and ai of the joined commu-

nity, and go to step 3.

7. Words within the same community are re-

garded as semantically similar.

The computational cost of the algorithm is known

as O((m + n)n) or O(n2), where m and n are the
number of edges and nodes, respectively.

4 Experiments

4.1 Experimental Setup

The data for the classication of ono words have

been taken from the Japanese ono dictionary (Ono,

2007) that consisted of 4,500 words. Of these, we

selected 273 words, which occurred at least 5,000

in the document URLs from the WWW. The min-

imum frequency of a word was found to be 5,220,

while the maximum was about 26 million. These

words are classied into 10 classes. Word classes

and examples of ono words from the dictionary are

listed in Table 2.

“Id” denotes id number of each class. “Sense”

refers to each sense of ono word within the same

class, and “Num” is the number of words which

should be assigned to each class. Each word
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Table 2: Onomatopoetic words and # of words in each class
Id Sense Num Onomatopoetic words

1 laugh 63 あっはっは (a,Q,h,a,Q,h,a),あはは (a,h,a,h,a),わはは (w,a,h,a,h,a)
あはあは (a,h,a,a,h,a),いひひ (i,h,i,h,i),うっしっし (u,Q,s,i,Q,s,i), · · ·

2 cry 34 あーん (a,–,N),うわーん (u,w,a,–,N),あんあん (a,N,a,N),えんえん (e,N,e,N)
うるうる (u,r,u,u,r,u),うるるん (u,r,u,r,u,N),うるっ(u,r,u,Q),えーん (e,–,N), · · ·

3 pain 34 いがいが (i,k,a,i,k,a),ひりひり (h,i,r,i,h,i,r,i),がじがじ (k,a,s,i,k,a,s,i)
がんがん (k,a,N,k,a,N), · · ·

4 anger 33 かーっ(k,a,–,Q),かちん (k,a,t,i,N),かつん (k,a,t,u,N),かっ(k,a,Q),かっか (k,a,Q,k,a),
がみがみ (k,a,m,i,k,a,m,i),かりかり (k,a,r,i,k,a,r,i),かんかん (k,a,N,k,a,N), · · ·

5 spook 31 あわわ (a,w,a,w,a),うぎゃー (u,ky,a,–),がーん (k,a,–,N),ぎく (k,i,k,u)
ぎくっ(k,i,k,u,Q),ぎくり (k,i,k,u,r,i),ぎくん (k,i,k,u,N), · · ·

6 panic 25 あくせく (a,k,u,s,e,k,u),あたふた (a,t,a,h,u,t,a),あっぷあっぷ (a,Q,h,u,a,Q,h,u),
あわあわ (a,w,a,a,w,a)· · ·

7 bloodless 27 かくっ(k,a,k,u,Q),がくっ(k,a,k,u,Q),がっかり (k,a,Q,k,a,r,i),がっくり (k,a,Q,k,u,r,i)
かくん (k,a,k,u,N),ぎゃふん (ky,a,h,u,N),ぎゅー (ky,u,–), · · ·

8 deem 13 うっとり (u,Q,t,o,r,i),きゅーん (ky,u,–,N),きゅん (ky,u,N)
つくづく (t,u,k,u,t,u,k,u), · · ·

9 feel delight 6 うしうし (u,s,i,u,s,i),きゃぴきゃぴ (ky,a,h,i,ky,a,h,i)
うはうは (u,–,h,a,–,u,–,h,a),ほいほい (h,o,i,h,o,i),るんるん (r,u,N,r,u,N), · · ·

10 balk 7 いじいじ (i,s,i,i,s,i),うじうじ (u,s,i,u,s,i),おずおず (o,s,u,o,s,u)
ぐだぐだ (k,u,t,a,k,u,t,a),もじもじ (m,o,s,i,m,o,s,i), · · ·

Total 273

marked with bracket denotes phonetic sequences

consisting of consonants and vowels.

We retrieved co-occurrences of ono words

shown in Table 2 using the search engine, Google.

We applied Newman clustering to the input words.

For comparison, we implemented standard k-
means which is often used as a baseline, as it is

one of the simplest unsupervised clustering algo-

rithms, and compared the results to those obtained

by our method. We used Euclidean distance (L2

norm) as a distance metric used in the k-means.
For evaluation of classication, we used

Precision(Prec), Recall(Rec), and F -measure
which is a measure that balances precision and re-

call (Bilenko et al., 2004). The precise denitions

of these measures are given below:

Prec =
#PairsCorrectlyPredictedInSamecluster

#TotalPairsPredictedInSameCluster
(8)

Rec =
#PairsCorrectlyPredictedInSameCluster

#TotalPairsInSameCluster
(9)

F − measure =
2 × Prec × Rec
(Prec + Rec)

(10)

4.2 Results

The results are shown in Table 3. “Co-occ. &

Sounds” in Data refers to the results obtained by

our method. “Co-occ.” denotes the results ob-

tained by a single measure, co-occurrence based

distributional similarity measure, and “Sounds”

shows the results obtained by orthographic sim-

ilarity. “θ” in Table 3 shows a parameter θ
used in the Newman clustering.3 Table 3 shows

best performance of each method against θ val-
ues. The best result was obtained when we used

phrase-based search and a combined measure of
co-occurrence(MI) and sounds (cos), and F -score
was 0.451.

4.2.1 AND vs phrase-based search

Table 3 shows that overall the results using

phrase-based search were better than those of
AND search, and the maximum difference of F -
score between them was 20.6% when we used a

combined measure. We note that AND boolean

search did not consider the position of a word in

a document, while our assumption was that se-

mantically similar words appeared in similar con-

texts. As a result, two ono words which were

not semantically similar were often retrieved by

AND boolean search. For example, consider two

antonymous words, “a,h,a,h,a” (grinning broadly)

and “w,a,–,N” (Wah, Wah). The co-occurrence fre-

quency obtained byAND was 5,640, while that of

phrase-based search was only one. The observa-
tion shows that we nd phrase-based search to be

a good choice.

3In case of k-means, we used the weights which satises
network density.
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Table 3: Classication results
Data Algo. Sim (Co-occ.) Sim (Sounds) Search method θ Prec Rec F # of clusters

χ2
AND .050 .134 .799 .229 10

cos
Phrase .820 .137 .880 .236 10

MI
AND .050 .134 .562 .216 10

k-means
Phrase .150 .190 .618 .289 10

χ2
AND .680 .134 .801 .229 10

αdiv
Phrase .280 .138 .882 .238 10

MI
AND .040 .134 .602 .219 10

Co-occ. & Sounds
Phrase .140 .181 .677 .285 10

χ2
AND .170 .182 .380 .246 9

cos
Phrase .100 .322 .288 .304 14

MI
AND .050 .217 .282 .245 13

Newman
Phrase .080 .397 .520 .451 7

χ2
AND .130 .212 .328 .258 9

αdiv
Phrase .090 .414 .298 .347 17

MI
AND .090 .207 .325 .253 6
Phrase .160 .372 .473 .417 8

χ2
AND .460 .138 .644 .227 10

k-means –
Phrase .110 .136 .870 .236 10

MI
AND .040 .134 .599 .219 10

Co-occ.
Phrase .150 .191 .588 .286 10

χ2
AND .700 .169 .415 .240 8

Newman –
Phrase .190 .301 .273 .286 14

MI
AND .590 .159 .537 .245 3
Phrase .140 .275 .527 .361 5

k-means –
cos – .050 .145 .321 .199 10

Sounds
αdiv – .020 .126 .545 .204 10

Newman –
cos – .270 .151 .365 .213 4
αdiv – .350 .138 .408 .206 3

4.2.2 A single vs combined similarity measure

To examine the effectiveness of the combined

similarity measure, we used a single measure as

a quality function of the Newman clustering, and

compared these results with those obtained by our

method. As shown in Table 3, the results with

combining similarity measures improved overall

performance. In the phrase-based search, for ex-
ample, the F-score using a combined measure “Co-

occ(MI) & Sounds(cos)” was 23.8% better than

the baseline single measure “Sounds(cos)”, and
9.0% better a single measure “Co-occ(MI)”.
Figure 1 shows F-score by “Co-occ(MI) &

Sounds(cos)” and “Co-occ(MI)” against changes
in θ. These curves were obtained by phrase-
based search. We can see from Figure 1 that the

F-score by a combined measure “Co-occ(MI) &
Sounds(cos)” was better than “Co-occ(MI)” with
θ value ranged from .001 to .25. One possible rea-
son for the difference of F-score between them is

the edges selected by varying θ. Figure 2 shows
the results obtained by each single measure, and a

combined measure to examine how the edges se-

lected by varying θ affect overall performance, F-
measure. “Precision” in Figure 2 refers to the ratio

of correct ono word pairs (edges) divided by the to-

tal number of edges. Here, correct ono word pairs

were created by using the Japanese ono dictionary,

i.e., we extracted word pairs within the same sense

of the dictionary. Surprisingly, there were no sig-

nicant difference between a combined measure

“Co-occ(MI) & Sounds(cos)” and a single mea-
sure “Co-occ(MI)” curves, while the precision of
a single measure “Sounds” was constantly worse

than that obtained by a combined measure. An-

other possible reason for the difference of F-score

is due to product of MI and Cos in Eq. (7). Fur-
ther work is needed to analyze these results in de-

tail.

4.2.3 k-means vs Newman algorithms

We examined the results obtained by standard k-
means and Newman clustering algorithms. As can

be seen clearly from Table 3, the results with New-

man clustering were better than those of the stan-

dard k-means at all search and similarity measures,
especially the result obtained by Newman clus-

tering showed a 16.2 % improvement over the k-
means when we used Co-occ.(MI) & Sounds(cos)
& phrase-based search. We recall that we used
273 ono words for clustering. However, Newman

clustering is applicable for a large number of nodes

and edges without decreasing accuracy too much,

as it does not simply calculate the number of short-
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est paths between pairs of nodes, but instead calcu-

lates a simple quality function. Quantitative eval-

uation by applying the method to larger data from

the Web is worth trying for future work.

4.3 Qualitative Analysis of Errors

Finally, to provide feedback for further devel-

opment of our classication approach, we per-

formed a qualitative analysis of errors. Con-

sider the following clusters (the Newman output

for Co-occ.(MI), Sounds(cos) and phrase-based
search), where each parenthetic sequences denotes

ono word:

A1: (t,o,Q) (t,o,Q,t,o) (t,o,Q,k,i,N,t,o,Q,k,i,N)
A2: (o,h,o,h,o), (e,h,e,h,e), (h,e,h,e,h,e), (o,-,o,-)
A3: (u,s,i,u,s,i), (m,o,s,i,m,o,s,i), (m,o,s,o,m,o,s,o)

Three main error types were identied:

1. Morphological idiosyncrasy: This was

the most frequent error type, exemplied

in A1, where “(t,o,Q,k,i,N,t,o,Q,k,i,N)“

(pain sense) was incorrectly clustered with

other two words (laugh sense) merely be-

cause orthographic similarity between them

was large, as the phonetics sequences of

“(t,o,Q,k,i,N,t,o,Q,k,i,N)” included “t” and

“o”.

2. Sparse data: Many of the low frequency ono

words performed poorly. In A2, “(o,-,o,-)”

(cry sense) was classied with other three

words (laugh sense) because it occurred few
in our data.

3. Problems of polysemy: In A3,

“(m,o,s,o,m,o,s,o)” (pain sense) was

clustered with other two words (balk sense)
of its gold standard class. However, the ono

word has another sense, balk sense when it
co-occurred with action verbs.

5 Conclusion

We have focused on onomatopoetic words, and

proposed a method for classifying them into a set

of semantically similar words. We used a graph-

based clustering algorithm, called Newman clus-

tering with a combined different similarity mea-

sures. The results obtained by using the Web

data showed a 9.0% improvement over the base-

line single distributional similarity measure. There

are number of interesting directions for future re-

search.

The distributional similarity measure we used

is the basis of the ono words, while other content

words such as verbs and adverbs are also effective

for classifying ono words. In the future, we plan to

investigate the use of these words and work on im-

proving the accuracy of classication. As shown

in Table 2, many of the ono words consist of du-

plicative character sequences such as “h” and “a”

of “a,h,a,h,a”, and “h” and “i” of “i,h,i,h,i”. More-

over, characters which consist of ono words within

the same class match. For example, the hiragana

character “は” (h,a) frequently appears in laugh
sense class. These observations indicate that in-

tegrating edit-distance and our current similarity

measure will improve overall performance.

Another interesting direction is a problem of

polysemy. It clearly supports the classication

of (Ono, 2007) to insist that some ono words

belong to more than one cluster. For example,

“(i,s,o,i,s,o)” has at least two senses, panic and feel

delight sense. In order to accommodate this, we
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should apply an appropriate soft clustering tech-

nique (Tishby et al., 1999; Reichardt and Born-

holdt, 2006; Zhang et al., 2007).
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Abstract

Several language processing tasks can be
inherently represented by a weighted graph
where the weights are interpreted as a
measure of relatedness between two ver-
tices. Measuring similarity between ar-
bitary pairs of vertices is essential in solv-
ing several language processing problems
on these datasets. Random walk based
measures perform better than other path
based measures like shortest-path. We
evaluate several random walk measures
and propose a new measure based on com-
mute time. We use the psuedo inverse
of the Laplacian to derive estimates for
commute times in graphs. Further, we
show that this pseudo inverse based mea-
sure could be improved by discarding the
least significant eigenvectors, correspond-
ing to the noise in the graph construction
process, using singular value decomposi-
tion.

1 Introduction

Natural language data lend themselves to a graph
based representation. Words could be linked by
explicit relations as in WordNet (Fellbaum, 1989)
or documents could be linked to one another via
hyperlinks. Even in the absence of such a straight-
forward representation it is possible to derive
meaningful graphs such as the nearest neighbor
graphs as done in certain manifold learning meth-
ods (Roweis and Saul, 2000; Belkin and Niyogi,

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

2001). All of these graphs share the following
properties:

• They are edge-weighted.

• The edge weight encodes some notion of re-
latedness between the vertices.

• The relation represented by edges is at least
weakly transitive. Examples of such rela-
tions include, “is similar to”, “is more general
than”, and so on. It is important that the re-
lations selected are transitive for the random
walk to make sense.

Such graphs present several possibilities in solv-
ing language problems on the data. One such task
is, given two vertices in the graph we would like
to know how related the two vertices are. There
is an abundance of literature on this topic, some
of which will be reviewed here. Finding similarity
between vertices in a graph could be an end in it-
self, as in the lexical similarity task, or could be a
stage before solving other problems like clustering
and classification.

2 Contributions of this paper

The major contributions of this paper are

• A comprehensive evaluation of various ran-
dom walk based measures

• Propose a new similarity measure based on
commute time.

• An improvement to the above measure by
eliminating noisy features via singular value
decomposition.
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3 Problem setting

Consider an undirected graph G(V, E, W) with
vertices V , edges E, and W = [wij ] be the sym-
metric adjacency weight matrix with wij as the
weight of the edge connecting vertices i and j. The
weight, wij = 0 for vertices i and j that are not
neighbors and when wij > 0 it is interpreted as an
indication of relatedness between i and j. In our
case, we consider uniformly weighted graphs, i.e,
wij = 1 for neighbors but this need not be the case.
Let n = |V | be the order of the graph. We define
a relation sim : V × V → R+ such that sim(i, j)
is the relatedness between vertices i and j. There
are several ways to define sim; the ones explored
in this paper are:

• simG(i, j) is the reciprocal of the shortest
path length between vertices i and j. Note
that this is not a random walk based mea-
sure but a useful baseline for comparison pur-
poses.

• simB(i, j) is the probability of a random walk
from vertex i to vertex j using all paths of
length less than m.

• simP(i, j) is the probability of a random walk
from vertex i to vertex j defined via a pager-
ank model.

• simC(i, j) is a function of the commute time
between vertex i and vertex j.

4 Data and Evaluation

We evaluate each of the similarity measure we
consider by using a linguistically motivated task
of finding lexical similarity. Deriving lexical
relatedness between terms has been a topic of
interest with applications in word sense disam-
biguation (Patwardhan et al., 2005), paraphras-
ing (Kauchak and Barzilay, 2006), question an-
swering (Prager et al., 2001), and machine trans-
lation (Blatz et al., 2004) to name a few. Lex-
ical relatedness between terms could be derived
either from a thesaurus like WordNet or from
raw monolingual corpora via distributional simi-
larity (Pereira et al., 1993). WordNet is an inter-
esting graph-structured thesaurus where the ver-
tices are the words and the edges represent rela-
tions between the words. For the purpose of this
work, we only consider relations like hypernymy,
hyponymy, and synonymy. The importance of this

problem has generated copious literature in the
past – see (Pedersen et al., 2004) or (Budanitsky
and Hirst, 2006) for a detailed review of various
lexical relatedness measures on WordNet. Our fo-
cus in this paper is not to derive the best similar-
ity measure for WordNet but to use WordNet and
the lexical relatedness task as a method to evalu-
ate the various random walk based similarity mea-
sures. Following the tradition in previous litera-
ture we evaluate on the Miller and Charles (1991)
dataset. This data consists of 30 word-pairs along
with human judgements which is a real value be-
tween 1 and 4. For every measure we consider,
we derive similarity scores and compare with the
human judgements using the Spearman rank cor-
relation coefficient.

5 Graph construction

For the purpose of evaluation of the random walk
measures, we construct a graph for every pair of
words for which similarity has to be computed.
This graph is derived from WordNet as follows:

• For each word w in the pair (w1, w2):

– Add an edge between w and all of its
parts of speech. For example, if the word
is coast, add edges between coast and
coast#noun and coast#verb.

– For each word#pos combination,
add edges to all of its senses (For
example, coast#noun#1 through
coast#noun#4.

– For each word sense, add edges to all of
its hyponyms

– For each word sense, add edges to all of
its hypernyms recursively.

In this paper we consider uniform weights on all
edges as our main aim is to illustrate the differ-
ent random walk measures rather than fine tune the
graph construction process.

6 Shortest path based measure

The most obvious measure of distance in a graph is
the shortest path between the vertices which is de-
fined as the minimum number of intervening edges
between two vertices. This is also known as the
geodesic distance. To convert this distance mea-
sure to a similarity measure, we take the recipro-
cal of the shortest-path length. We refer to this as
the geodesic similarity. This is not a random walk
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Figure 1: Shortest path distances on graphs

measure but will serve as an important baseline for
our work. As can be observed from Table 1, the

Method Spearman correlation
Geodesic 0.275

Table 1: Similarity using shortest-path measure.

correlation is rather poor for the shortest path mea-
sure.

7 Why are shortest path distances bad?

While shortest-path distances are useful in many
applications, it fails to capture the following obser-
vation. Consider the subgraph of WordNet shown
in Figure 1. The term moon is connected to the
terms religious leader and satellite1.
Observe that both religious leader and
satellite are at the same shortest path dis-
tance from moon. However, the connectivity
structure of the graph would suggest satellite
to be “more” similar than religious leader
as there are multiple senses, and hence multiple
paths, connecting satellite and moon.

Thus it is desirable to have a measure that cap-
tures not only path lengths but also the connectiv-
ity structure of the graph. This notion is elegantly
captured using random walks on graphs.

7.1 Similarity via Random walks
A random walk is a stochastic process that consists
of a sequence of discrete steps taken at random de-
fined by a distribution. Random walks have inter-
esting connections to Brownian motion, heat diffu-
sion and have been used in semi-supervised learn-
ing – for example, see (Zhu et al., 2003). Certain
properties of random walks are defined for ergodic
processes only2. In our work, we assume these

1The religious leader sense of moon is due to Sun
Myung Moon, a US religious leader.

2A stochastic process is ergodic if the underlying Markov
chain is irreducible and aperiodic. A Markov chain is irre-

hold true as the graphs we deal with are connected,
undirected, and non-bipartite.

7.1.1 Bounded length walks
As our first random walk measure, we consider

the bounded length walk – i.e., all random walks of
length less than or equal to a bound m. We derive
a probability transition matrix P from the weight
matrix W as follows:

P = D−1W

where, D is a diagonal matrix with dii =∑n
j = 1 wij . Observe that:

• pij = P[i, j] ≥ 0, and

• ∑n
j = 1 pij = 1

Hence pij can be interpreted as the probability
of transition from vertex i to vertex j in one step. It
is easy to observe that Pk gives the transition prob-
ability from vertex i to vertex j in k steps. This
leads to the following similarity measure:

S = P + P2 + P3 + ... + Pm

Observe that S[i, j] derives the total probability of
transition from vertex i to vertex j in at most m
steps3. Given S, we can derive several measures of
similarity:

1. Bounded Walk: S[i, j]

2. Bounded Walk Cosine: dot product of
rowvectors Si and Sj .

When we evaluate these measures on the Miller-
Charles data the results shown in Table 2. are ob-
served. For this experiment, we consider all walks
that are at most 20 steps long, i.e., m = 20. Ob-
serve that these results are significantly better than
the Geodesic similarity based on shortest-paths.

ducible if there exists a path between any two states and it is
aperiodic if the GCD of all cycle lengths is one.

3The matrix S is row normalized to ensure that the entries
can be interpreted as probabilities.
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Method Spearman correlation
Bounded Walk 0.346
Bounded Walk Cosine 0.365

Table 2: Similarity using bounded random walks
(m = 20).

7.1.2 How many paths are sufficient?
In the previous experiment, we arbitrarily fixed

m = 20. However, as observed in Figure 2. , be-
yond a certain value the choice of m does not affect
the result as the random walk converges to its sta-
tionary distribution. The choice of m depends on

Figure 2: Effect of m in Bounded walk

the amount of computation available. A reason-
ably large value of m (m > 10) should be suffi-
cient for most purposes and one could use lower
values of m to derive an approximation for this
measure. One could derive an upper bound on the
value of m using the mixing time of the underlying
Markov chain (Aldous and Fill, 2001).

7.1.3 Similarity via pagerank
Pagerank (Page et al., 1998) is the celebrated ci-

tation ranking algorithm that has been applied to
several natural language problems from summa-
rization (Erkan and Radev, 2004) to opinion min-
ing (Esuli and Sebastiani, 2007) to our task of
lexical relatedness (Hughes and Ramage, 2007).
Pagerank is yet another random walk model with a
difference that it allows the random walk to “jump”
to its initial state with a nonzero probability (α).
Given the probability transition matrix P as defined
above, a stationary distribution vector for any ver-
tex (say i) could be derived as follows:

1. Let ei be a vector of all zeros with ei(i) = 1

2. Let v0 = ei

3. Repeat until ‖vt − vt−1‖F < ε

• vt+1 = αvtP + (1− α)v0

• t = t + 1

4. Assign vt+1 as the stationary distribution for
vertex i.

Armed with the stationary distribution vectors for
vertices i and j, we define pagerank similarity ei-
ther as the cosine of the stationary distribution vec-
tors or the reciprocal Jensen-Shannon (JS) diver-
gence4 between them. Table 3. shows results on
the Miller-Charles data. We use α = 0.1, the best
value on this data. Observe that these results are

Method Spearman correlation
Pagerank JS-Divergence 0.379
Pagerank Cosine 0.393

Table 3: Similarity via pagerank (α = 0.1).

better than the best bounded walk result. We fur-
ther note that our results are different from that
of (Hughes and Ramage, 2007) as they use exten-
sive feature engineering and weight tuning during
the graph generation process that we have not been
able to reproduce. Hence for simplicity we stuck to
a simpler graph generation process. Nevertheless,
the result in Table 3. is still useful as we are in-
terested in the performance of the various spectral
similarity measures rather than achieving the best
performance on the lexical relatedness task. The
graphs we use in all methods are identical making
comparisons across methods possible.

7.2 Similarity via Hitting Time
Given a graph with the transition probability ma-
trix P as defined above, the hitting time between
vertices i and j, denoted as h(i, j), is defined as
the expected number of steps taken by a random
walker to first encounter vertex j starting from ver-
tex i. This can be recursively defined as follows:

h(i, j) =

 1 +
∑

k : wik > 0
pikh(k, j) if i 6= j

0 if i = j
(1)

4The Jensen-Shannon divergence between two distribu-
tions p and q is defined as D(p ‖ a)+D(q ‖ a), where D(. ‖
.) is the Kullback-Liebler divergence and a = (p + q)/2.
Note that unlike KL-divergence this measure is symmetric.
See (Lin, 1991) for additional details.
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The lower the hitting times of two vertices, the
more similar they are. It can be easily verified
that hitting time is not a symmetric relation hence
graph theory literature suggests another symmet-
ric measure – the commute time.5 The commute
time, c(i, j), is the expected number of steps taken
to leave vertex i, reach vertex j, and return back to
i. Thus,

c(i, j) = h(i, j) + h(j, i) (2)

Observe that, the commute time is a metric in that
it is positive definite, symmetric, and satisifies tri-
angle inequality. Hence, commute time could be
used as a distance measure as well. We derive a
similarity measure from this distance measure us-
ing the following lemma.

Lemma 1. For every edge (i, j), c(i, j) ≤ 2l
where l = |E|, the number of edges.

Proof. This can be easily observed by defining a
Markov chain on the edges with probability tran-
sition matrix Q with 2l states, such that Qe1e2 =
1/degree(e1 ∩ e2). Since this matrix is doubly
stochastic, the stationary distribution on this chain
will be uniform with a probability 1/2l. Now
c(i, j) = h(i, j)+h(j, i), is the expected time for a
walk to start at i, visit j, and return back to i. When
the stationary probability at each edge is 1/2l, this
expected time evaluates to 2l. Hence the commute
time can be at most 2l.

This lemma allows us to define a similarity mea-
sure as follows:

simC(i, j) = 1− c(i, j)
2l

(3)

Observe that the measure defined in Equation 3 is
a metric and further its range is defined in [0, 1].
We now only need a way to compute the commute
times to use Equation 3. One could compute the
hitting times and hence the commute times from
the Equations 1 and 2 using dynamic program-
ming, akin to shortest paths in graphs. In this pa-
per, we instead choose to derive commute times
via the graph Laplacian. This also allows us to
handle “noise” in the graph construction process
which cannot be taken care by naive dynamic pro-
gramming.

5Note that distance measures, in general, need not be sym-
metric but we interpret distance as proximity which mandates
symmetry.

Chandra et. al. (1989) show that the commute
time between two vertices is equal to the resis-
tance distance between them. Resistance distance,
as proposed by Klein and Randic (1993), is the
effective resistance between two vertices in the
electrical network represented by the graph, where
the edges have resistance 1/wij . Xiao and Gut-
man (2003), show the relation between resistance
distances in graphs to the Laplacian spectrum, thus
enabling a way to derive commute times from the
graph Laplacian in closed form.

We now introduce graph Laplacians, which are
interesting in their own right besides being related
to commute time. The Laplacian of a graph could
be viewed as a discrete version of the Laplace-
Beltrami operator on Riemannian manifolds. It is
defined as

L = D−W

The graph Laplacian has interesting properties and
a wide range of applications, in semi-supervised
learning (Zhu et al., 2003), non-linear dimension-
ality reduction (Roweis and Saul, 2000; Belkin and
Niyogi, 2001), and so on. See (Chung, 1997) for
a thorough introduction on Laplacians and their
properties. We depend on the fact that L is:

1. symmetric (since D and W are for undirected
graphs)

2. positive-semidefinite : since it is symmet-
ric, all of the eigenvalues are real and by
the Greshgorin circle theorem, the eigenval-
ues must also be non-negative and hence L is
positive-semidefinite.

Throughout this paper we use normalized Lapla-
cians as defined below:

L = D−1/2LD−1/2 = I− D−1/2WD−1/2

The normalized Laplacians preserve all properties
of the Laplacian by construction.

As noted in Xiao and Gutman (2003), the re-
sistance distances can be derived from the gener-
alized Moore-Penrose pseudo-inverse of the graph
Laplacian(L†) – also called the inverse Laplacian.
Like Laplacians, their pseudo inverse counterparts
are also symmetric, and positive semi-definite.

Lemma 2. L† is symmetric

Proof. The Moore-Penrose pseudo-inverse is de-
fined as L† = (LT L)−1LT . From this definition,
it is clear that (L†)T = (LT )†. By the symmetry
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property of graph Laplacians, LT = L. Hence,
(L†)T = L†.

Lemma 3. L† is positive semi-definite

Proof. We make use of the following properties
from (Chung, 1997):

• The Laplacian, L, is positive semi-definite
(also shown above).

• If the Eigen-decomposition of L is QΛQT ,
then the Eigen-decomposition of the pseudo-
inverse L† is QΛ−1QT . If any of the eigenval-
ues of L is zero then the corresponding eigen-
value for L† is also zero.

Since L is positive semi-definite, and the eigen-
values of L† have the same sign as L, the pseudo
inverse L† has to be positive semi-definite.

Lemma 4. The inverse Laplacian is a gram matrix

Proof. To prove this, we use the fact that the
Laplacian Matrix is symmetric and positive semi-
definite. Hence by Cholesky decomposition we
can write L = UUT .

Therefore L† = (UT )†U† = (U†)T (U†).
Hence L† is a matrix of dot-products or a gram-

matrix.

Thus, from Lemmas 2, 3 and 4, the inverse
Laplacian L† is a valid Kernel.

7.2.1 Similarity measures from the Laplacian
The pseudo inverse of the Laplacian allows us

to compute the following similarity measures.

1. Since L† is a kernel, L†ij can be interpreted a
similarity value of vertices i and j.

2. Commute time: This is due to (Aldous and
Fill, 2001). The commute time, c(i, j) ∝
(L†ii + L†jj − 2L†ij). This allows us to derive
similarities using Equation 3.

Evaluating the above measures with the Miller-
Charles data yields results shown in Table 4.
Again, these results are better than the other ran-
dom walk methods compared in the paper.

Method Spearman correlation
L†ij 0.469
Commute Time (simC) 0.520

Table 4: Similarity via inverse Laplacian.

7.2.2 Noise in the graph construction process
The graph construction process outlined in Sec-

tion 5 is not necessarily the best one. In fact, any
method that constructs graphs from existing data
incorporates “noise” or extraneous features. These
could be spurious edges between vertices, miss-
ing edges, or even improper edge weights. It is
however impossible to know any of this a priori
and some noise is inevitable. The derivation of
commute times via the pseudo inverse of a noisy
Laplacian matrix makes it even worse because the
pseudo inverse amplifies the noise in the original
matrix. This is because the largest singular value
of the pseudo inverse of a matrix is equal to the in-
verse of the smallest singular value of the original
matrix. A standard technique in signal processing
and information retrieval to eliminate noise or han-
dle missing values is to use singular value decom-
position (Deerwester et al., 1990). We apply SVD
to handle noise in the graph construction process.

For a given matrix A, SVD decomposes A into
three matrices U, S, and V such that A = USV T ,
where S is a diagonal matrix of eigenvalues of A,
and U and V are orthonormal matrices containing
the left and the right eigenvectors respectively. The
top-k eigenvectors and eigenvalues are computed
using the iterative method by Lanczos-Arnoldi (us-
ing LAPACK) and the product of these matrices
represents a “smoothed” version of the original
Laplacian. The pseudo inverse is then computed
on this smooth Laplacian. Table 5., shows the im-
provements obtained by discarding bottom 20% of
the eigenvalues.

Method Original After SVD
L†ij 0.469 0.472
Commute Time (simC) 0.520 0.542

Table 5: Denoising graph Laplacian via SVD

Figure 3. shows the dependence on the num-
ber of eigenvalues selected. As can be observed in
both curves there is a reduction in performance by
adding the last few eigenvectors and hence may be
safely discarded. This observation is true in other
text processing tasks like document clustering or
classification using Latent Semantic Indexing.

8 Related Work

Apart from the related work cited throughout this
paper, we would also like to note the paper by Yen
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Figure 3: Noise reduction via SVD.

et al (2007) on using sigmoid commute time kernel
on a graph for document clustering but our work
differs in that our goal was to study various ran-
dom walk measures rather than a specific task and
we provide a new similarity measure (ref. Eqn
3) based on an upper bound on the commute time
(Lemma 1). Our work also suggests a way to han-
dle noise in the graph construction process.

9 Conclusions and Future Work

This paper presented an evaluation of random
walk based similarity measures on weighted undi-
rected graphs. We provided an intuitive explana-
tion of why random walk based measures perform
better than shortest-path or geodesic measures,
and backed it with empirical evidence. The ran-
dom walk measures we consider include bounded
length walks, pagerank based measures, and a new
measure based on the commute times in graphs.
We derived the commute times via pseudo inverse
of the graph Laplacian. This enables a new method
of graph similarity using SVD that is robust to the
noise in the graph construction process. Further,
the inverse Laplacian is also interesting in that it is
a kernel by itself and could be used for other tasks
like word clustering, for example.
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Università di Pisa
Pisa, Italy

barbara.mcgillivray@aksis.uib.no

Christer Johansson
Dept. of Linguistics
University of Bergen

Bergen, Norway
christer.johansson@uib.no

Daniel Apollon
Text Technology Lab.

Aksis, UNIFOB
Bergen, Norway

daniel.apollon@aksis.uib.no

Abstract

A common problem for clustering tech-
niques is that clusters overlap, which
makes graphing the statistical structure in
the data difficult. A related problem is
that we often want to see the distribution
of factors (variables) as well as classes
(objects). Correspondence Analysis (CA)
offers a solution to both these problems.
The structure that CA discovers may be an
important step in representing similarity.
We have performed an analysis for Italian
verbs and nouns, and confirmed that simi-
lar structures are found for English.

1 Introduction

Over the past years, distributional methods have
been used to explore the semantic behaviour of
verbs, looking at their contexts in corpora (Lan-
dauer and Laham, 1998; Redington and Finch,
1998; Biemann, 2006, inter al.). We follow a gen-
eral approach suggested already by Firth (1957),
to associate distributional similarity with semantic
similarity.

One question concerns the syntax-semantics in-
terface. Results using distributions of verbs in con-
text had an impact on verb classification (Levin,
1993), automatic verb clustering (Schulte im
Walde, 2003), and selectional preference acquisi-
tion (Resnik, 1993; Li and Abe, 1995; McCarthy,
2001; Agirre and Martinez, 2001, inter al.).

In automatic verb clustering, verbs are repre-
sented by vectors of a multidimensional space
whose dimensions (variables) are identified by
some linguistic features, ranging, for example,
from subcategorization frames to participation in

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

diathesis alternations and lexical selectional pref-
erences. The verbs cluster on co-occurrence with
the features chosen, and such information provide
a generalisation over the verbs with respect to the
variables.

In the case of selectional preference acquisition,
a verb (or a verb class) is associated to a class of
nouns that can be the lexical fillers of a case frame
slot for the verb. This allows us to calculate the
association strength between the verb and its filler
nouns. The generalisation step is performed for the
case frame instances (observations) and produces
more abstract noun classes that can be applied to
unseen cases. This often utilizes hierarchies of ex-
isting thesauri or wordnets.

We propose a method that uses Correspondence
Analysis (CA) to study the distribution (and asso-
ciated semantic behaviour) of a list of verbs with
nouns occurring in a particular syntactic relation,
for example their subjects. This is collected from
a corpus, and reflects usage in that corpus. Un-
like clustering methods, this technique does not
imply an exclusive choice between a) classifying
verbs on the basis of the noun fillers in their syn-
tactic frame, or b) associating noun classes to verbs
(sometimes mediated by a semantic hierarchy). In-
stead, this approach yields a geometric representa-
tion of the relationships between the nouns and the
verbs in a common dual space (biplot). CA aims
to find an overall structure (if any) of the data. The
method emphasizes unusual observations, as de-
viance from the expected is what creates the axes
of the analysis. CA generalizes over the actual oc-
currences of verb-noun pairs in the corpus, and vi-
sualizes the shape of the correspondence space.

When associating verbs with nouns, CA takes as
input a contingency table (here rows correspond to
the verbs, and columns correspond to their subject
fillers). Each verb is a row point in the multidimen-
sional noun space, and each noun is a column point
in the multidimensional verb space. The CA goals
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are to reduce the dimension of the dual original
space, and to find an optimal subspace that is the
closest to this cloud of points in the χ2-metric. The
best subspace is determined by finding the smallest
number of orthogonal axes that describe the most
variance from the original cloud.

Finally the coordinates of both row and col-
umn points of the χ2 contingency table are pro-
jected onto this optimal subspace, simultaneously
displaying row and column points. If we consider
those points that are well represented, the closer
they are in this geometric representation, the more
similar their original distributions are. In this way,
we can detect not only that there is a relationship
between the verb (e.g. explode) and the noun (e.g.
bomb), but also how each word relates to each
other word.

2 Correspondence Analysis
CA is a data analytic technique developed by
Benzécri in the 1960s, which has been widely used
in describing large contingency tables and binary
data. At the heart of CA is Singular Value Decom-
position (SVD), from which many other methods
were derived (Biplot, Classical Principal Compo-
nent Analysis, PCA and more).

Compared to usual clustering methods, CA
gives a more fine-grained view of the spread of
the input points. Benzécri (1973) points out that
CA is more efficient than clustering in terms of de-
composition of variance. Secondly, CA represents
possible regions in space with varying density, and
produces a flexible ”compound clustering” on both
objects and variables. Verb-nouns association pro-
files may not cluster in distinct space regions, but
may be evenly distributed, follow a gradient-like
distribution, or show overlapping clusters. In such
difficult cases for clustering, CA is able to offer
a representation of the geometry of the input pro-
files. Finally, CA offers the possibility of recon-
structing the original space from the output sub-
space.

Let us consider a data matrix M whose size is
(r, c), the (i, j)th entry of M containing the num-
ber of occurrences of verb j with noun i as its sub-
ject in a corpus. We calculate the relative frequen-
cies by dividing each entry M(i, j) by the sum of
row i, i. e. the frequency of noun i, to get the ma-
trix of row profiles R(i, j). Therefore, the more
similar two row profiles i1 and i2 are, the more
these two nouns can be considered as distributional
synonyms.

The next step implies comparing the row pro-
files with the average distribution where each entry
(i, j) is the product of the frequency of noun i by
the frequency of verb j divided by the grand total
N of the table. This comparison is calculated us-
ing the χ2-distance (i.e. a weighted Euclidean dis-
tance), which eliminates effects of high frequency
alone. The next formula shows calculations for
rows. Calculations for columns are analogous.

δ2(i1, i2) =

c∑
j=1

(R(i1, j)−R(i2, j))
2∑r

i=1M(i, j)

The χ2-distance between a profile point and the av-
erage profile (barycentre) is called inertia of the
profile point and the total inertia measures how
the individual profiles pi are spread around the
barycentre:

Inertia =
1

N

r∑
i=1

c∑
j=1

M(i, j)δ2(pi, p̄)

CA then searches for the optimal subspace S that
minimises the distance from the profile points.
Once specified its dimension k ≤ min(r − 1, c −
1), S is found by applying the Singular Value De-
composition (SVD) to matrix R − 1p̄ , which de-
composes it as the product N ·D ·M : where D is
a diagonal matrix with positive coefficients λ1 ≥
λ2 ≥ . . . ≥ λk (singular values) and N and M are
orthonormal matrices (NTN = MTM = I). The
rows of M are the orthonormal basis vectors that
define S (called principal axes of inertia) and the
rows of matrix F = N · D are the projections of
the row profiles onto S. For k = 2, this allows us
to plot the new coordinates in a two-dimensional
space and get the correspondence analysis of the
row profiles.

The total inertia is decomposed into the direc-
tion of the principal axes of inertia. The first axis
represents the direction where the inertia of the
cloud is the maximum; the second axis maximises
the inertia among all the directions orthogonal to
the first axis, and so on.

The geometry of column profiles can be anal-
ysed similarly, because the two problems are di-
rectly linked and two transition formulae can be
used to pass from one coordinate system to the
other, explaining the French name ”analyse des
correspondances”.

As a result, both analyses decompose the same
inertia into the same system of principal axes. This
allows us to merge the two representations in one
single geometric display showing at the same time
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the projections of row and column points in the
subspace.

In addition to this dual space representation, CA
gives a system of diagnostic measures for each of
the two dual spaces:

• contributions of the rows (and columns) to the
axes, i. e. the inertia of the points projected onto
the axes, which contributes to the principal inertia;
• contributions of the axes to the row (and col-

umn) points;
• quality of representation (cumulative sum of

contributions of the axes for each point); this high-
lights well represented points.

3 Explorations
We performed a CA using the Matlab Analytica
Toolbox developed by Daniel Apollon. We tested
this technique first on the Italian newspaper corpus
LA REPUBBLICA, which consists of 450 million
word tokens. This corpus was syntactically parsed
using the MALT dependency parser (Nivre, 2006).
A list of 196 verbs was compiled following the list
of German verbs contained in (Schulte im Walde,
2003) and adapting it to Italian. Looking at the
syntactic analyses of the corpus where the verbs of
the list showed a subcategorization frame contain-
ing a subject slot, their lexical subject fillers were
automatically extracted. The matrix M , whose
2553 row entries correspond to the nouns extracted
as subject fillers, was then used as input for the CA
(|M | = 196× 2553 = 500388).

Starting from the quality of representation
scores of this analysis, we isolated a set of points
with increasingly good representation, ending with
an extremely faithful and low dimensional rep-
resentation. We called this method ”incremental
pruning”. Figure 1 shows the dual display of the
analysis for the Italian data in a two dimensional
space, after filtering out those points showing a
quality of representation below a threshold of 30%.

We can conceptualize the data set C after a CA
as the cumulative effect of three different underly-
ing phenomena: K, R and E.
K can be seen as a reduction of the latent struc-

ture of C; it contains its core structure as it has
been underlined by the analysis and left after prun-
ing.
R refers to the residual variance, not included in

the core analysis. It contains the most predictable
points1, which are plotted near to origin (barycen-

1In our data: pronouns she, I, he, every-, no-, some-body,

Figure 1: Correspondence graph for Italian

tre of the data cloud). These points give a small
contribution to the inertia of the principal axes.

E contains the error in the representation, as
well as badly represented points.

Points far from the origin display strong struc-
ture; they may correspond to rare words used in
special contexts. Figure 1 shows that words related
to destruction2 are aligned in the same direction,
whereas the second vector is mainly constituted by
nouns and verbs that have to do with the political
and legal area3. The first principal axis accounts
for nearly 16% of the total inertia, whereas the
second axis accounts for 12%. The first six axes
accounts for over 70% of variation. Many words
were not well represented, but contribute to vari-
ance.

We confirmed our method on English, using the
British National Corpus4. A similar structure was
found. We restrict ourselves to reproduce the graph
for Italian.

who, nouns with partly pronominal qualities husband, wife,
friend, sir, son, father, mother, fact, event.

2Along the y-axis from top down to the middle, we find the
nouns flame, extend, stick of dynamite, excavator, chemother-
apy, effusion, blaze, seism, demon, dynamite, fire, aviation,
earthquake, artificer, explosive device, insect, gas, landslide,
virus, rain, bulldozer, hurricane, wave, speculation, artillery,
remorse, bomb, missile, violence, revolution, etc.

3Along the x-axis we find, from left to the middle,
the nouns order, regulations, norm, code, legislation, rules,
treaty, constitution, circular letter, system, directive, law, de-
cree, article, judgement, amendment, court, etc.

4via sketchengine http://www.sketchengine.co.uk
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4 Conclusion
CA detects a structure for Italian verb-noun cor-
respondences in LA REPUBBLICA (∼ 450 mil-
lion words). A similar structure was confirmed us-
ing BNC for English. Both global and local struc-
tures are found, which gives possibilities to rep-
resent lexical units with reference to both princi-
pal axes and word similarity. The main dimen-
sions of the Italian corpus are topical (crime re-
lated vs. natural catastrophes, and laws vs. po-
litical institutions). Semantic relatedness were ob-
served in closely mapped words. Both global and
local structure is found, and we can speculate that
this helps representing lexical units in semantic la-
beling (Giuglea and Moschitti, 2006) for machine
learning tasks. We can conceptualize text graphs in
two distinct usages: knowledge re-presenting (e.g.
FrameNet) and visualizing relations in a data set.
Our method belongs in the second category.
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Abstract

One of the main problems in research on
automatic summarization is the inaccu-
rate semantic interpretation of the source.
Using specific domain knowledge can con-
siderably alleviate the problem. In this pa-
per, we introduce an ontology-based ex-
tractive method for summarization. It is
based on mapping the text to concepts
and representing the document and its sen-
tences as graphs. We have applied our
approach to summarize biomedical litera-
ture, taking advantages of free resources as
UMLS. Preliminary empirical results are
presented and pending problems are iden-
tified.

1 Introduction

In recent years, the amount of electronic biomedi-
cal literature has increased explosively. Physicians
and researchers constantly have to consult up-to
date information according to their needs, but the
process is time-consuming. In order to tackle this
overload of information, text summarization can
undoubtedly play a role.

Simultaneously, a big deal of resources, such
as biomedical terminologies and ontologies, have
emerged. They can significantly benefit the deve-
lopment of NLP systems, and in particular, when
used in automatic summarization, they can in-
crease the quality of summaries.

In this paper, we present an ontology-based ex-
tractive method for the summarization of biomed-
ical literature, based on mapping the text to con-
cepts in UMLS and representing the document and
its sentences as graphs. To assess the importance

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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of the sentences, we compute the centrality of their
concepts in the document graph.

2 Previous Work

Traditionally, automatic summarization methods
have been classified in those which generate ex-
tracts and those which generate abstracts. Al-
though human summaries are typically abstracts,
most of existing systems produce extracts.

Extractive methods build summaries on a super-
ficial analysis of the source. Early summariza-
tion systems are based on simple heuristic fea-
tures, as the position of sentences in the docu-
ment (Brandow et al., 1995), the frequency of
the words they contain (Luhn, 1958; Edmundson,
1969), or the presence of certain cue words or in-
dicative phrases (Edmundson, 1969). Some ad-
vanced approaches also employ machine learning
techniques to determine the best set of attributes
for extraction (Kupiec et al., 1995). Recently,
several graph-based methods have been proposed
to rank sentences for extraction. LexRank (Erkan
and Radev, 2004) is an example of a centroid-
based method to multi-document summarization
that assess sentence importance based on the con-
cept of eigenvector centrality. It represents the
sentences in each document by its tf*idf vectors
and computes sentence connectivity using the co-
sine similarity. Even if results are promising, most
of these approaches exhibit important deficiencies
which are consequences of not capturing the se-
mantic relations between terms (synonymy, hyper-
onymy, homonymy, and co-occurs and associated-
with relations).

We present an extractive method for summariza-
tion which attempts to solve this deficiencies. Un-
like researches conducted by (Yoo et al., 2007;
Erkan and Radev, 2004), which cluster sentences
to identify shared topics in multiple documents, in
this work we apply clustering to identify groups
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of concepts closely related. We hypothesize that
each cluster represents a theme or topic in the do-
cument, and we evaluate three different heuristics
to ranking sentences.

3 Biomedical Ontologies. UMLS

Biomedical ontologies organize domain concepts
and knowledge in a system of hierarchical and as-
sociative relations. One of the most widespread
in NLP applications is UMLS1 (Unified Medi-
cal Language System). UMLS consists of three
components: the Metathesaurus, a collection of
concepts and terms from various vocabularies and
their relationships; the Semantic Network, a set of
categories and relations used to classify and relate
the entries in the Metathesaurus; and the Special-
ist Lexicon, a database of lexicographic informa-
tion for use in NLP. In this work, we have se-
lected UMLS for several reasons. First, it pro-
vides a mapping structure between different ter-
minologies, including MeSH or SNOMED, and
thus allows to translate between them. Secondly, it
contains vocabularies in various languages, which
allows to process multilingual information.

4 Summarization Method

The method proposed consists of three steps. Each
step is discussed in detail below. A preliminary
system has been implemented and tested on several
documents from the corpus developed by BioMed
Central2.

As the preprocessing, text is split into sentences
using GATE3, and generic words and high fre-
quency terms are removed, as they are not useful
in discriminating between relevant and irrelevant
sentences.

4.1 Graph-based Document Representation
This step consists in representing each document
as a graph, where the vertices are the concepts in
UMLS associated to the terms, and the edges indi-
cate the relations between them. Firstly, each sen-
tence is mapped to the UMLS Metathesaurus using
MetaMap (Aronson, 2001). MetaMap allows
to map terms to UMLS concepts, using n-grams
for indexing in the ULMS Metathesaurus, and
performing disambiguation to identify the correct

1NLM Unified Medical Language System (UMLS). URL:
http://www.nlm.nih.gov/research/umls

2BioMed Central: http://www.biomedcentral.com/
3GATE (Generic Architecture for Text Engineering):

http://gate.ac.uk/

concept for a term. Secondly, the UMLS concepts
are extended with their hyperonyms. Figure 1
shows the graph for sentence ”The goal of the trial
was to assess cardiovascular mortality and mor-
bidity for stroke, coronary heart disease and con-
gestive heart failure, as an evidence-based guide
for clinicians who treat hypertension.”

Next, each edge is assigned a weight, which is
directly proportional to the deep in the hierarchy at
which the concepts lies (Figure 1). That is to say,
the more specific the concepts connected are, the
more weight is assigned to them. Expression (1)
shows how these values are computed.

|α ∩ β|
|α ∪ β| =

|β|
|α| (1)

where α is the set of all the parents of a con-
cept, including the concept, and β is the set of all
the parents of its immediate higher-level concept,
including the concept.

Finally, the sentence graphs are merged into
a document graph, enriched with the associated-
with relations between the semantic types in
UMLS corresponding to the concepts (Figure 1).
Weights for the new edges are computed using ex-
pression (1).

4.2 Concept Clustering and Theme
Recognition

The second step consists of clustering concepts in
the document graph, using a degree-based method
(Erkan and Radev, 2004). Each cluster is com-
posed by a set of concepts that are closely related
in meaning, and can be seen as a theme in the do-
cument. The most central concepts in the cluster
give the sufficient and necessary information re-
lated to its theme. We hypothesize that the docu-
ment graph is an instance of a scale-free network
(Barabasi, 1999). Following (Yoo et al., 2007),
we introduce the salience of vertices. Mathemati-
cally, the salience of a vertex (vi) is calculated as
follows.

salience(vi) =
∑

ej |∃vk∧ejconecta(vi,vk)

weight(ej)

(2)

Within the set of vertices, we select the n
that present the higher salience and iteratively
group them in Hub Vertex Sets (HVS). A HVS
represents a group of vertices that are strongly
related to each other. The remaining vertices are
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Figure 1: Sentence graph

assigned to that cluster to which they are more
connected.

Finally, we assign each sentence to a cluster. To
measure the similarity between a cluster and a sen-
tence graph, we use a vote mechanism (Yoo et al.,
2007). Each vertex (vk) of a sentence (Oj) gives to
each cluster (Ci) a different number of votes (pi,j)
depending on whether the vertex belongs to HVS
or non-HVS (3).

similarity(Ci, Oj) =
∑

vk|vk∈Oj

wk,j (3)

where

{
wk,j=0 si vk 6∈Ci

wk,j=1.0,si vk∈HV S(Ci)

wk,j=0.5,si vk 6∈HV S(Ci)

4.3 Sentence Selection
The last step consists of selecting significant sen-
tences for the summary, based on the similarity
between sentences and clusters. We investigated
three alternatives for this step.

• Heuristic 1: For each cluster, the top ni sen-
tences are selected, where ni is proportional
to its size.

• Heuristic 2: We accept the hypothesis that
the cluster with more concepts represents the
main theme in the document, and select the
top N sentences from this cluster.

• Heuristic 3: We compute a single score for
each sentence, as the sum of the votes as-

signed to each cluster adjusted to their sizes,
and select the N sentences with higher scores.

5 Results and Evaluation

In order to evaluate the method, we analyze the
summaries generated by the three heuristics over
a document4 from the BioMed Central Corpus,
using a compression rate of 20%. Table 1 shows
the sentences selected along with their scores.

Although results are not statistically significant,
they show some aspects in which our method be-
haves satisfactorily. Heuristics 1 and 3 extract sen-
tence 0, and assign to it the higher score. This
supports the positional criterion of selecting the
first sentence in the document, as the one that con-
tains the most significant information. Sentence 58
represents an example of sentence, situated at the
end, which gathers the conclusions of the author.
In general, these sentences are highly informative.
Sentence 19, in turn, evidences how the method
systematically gives preference to long sentences.
Moreover, while summaries by heuristics 1 and 3
have a lot of sentences in common (9 out of 12),
heuristic 2 generates a summary considerably dif-
ferent and ignores important topics in the docu-
ment. Finally, we have compared these summaries
with the author’s abstract. It can be observed that
heuristics 1 and 3 cover all topics in the author’s
abstract (see sentences 0, 4, 15, 17, 19, 20 and 25).

4BioMed Central: www.biomedcentral.com/content/
download/xml/cvm-2-6-254.xml
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Sentences 0 4 19 58 7 28 25 20 21 8 43 15
Heuristic 1 99.0 20.0 19.0 18.5 17.0 16.5 16.0 15.5 15.5 13.5 13.5 12.0
Heuristic 2 19.0 16.5 15.5 12.5 12.0 10.5 9.0 9.0 7.5 7.0 7.0 7.0
Heuristic 3 98.8 18.7 17.9 16.3 15.3 14.5 13.4 13.0 13.0 12.7 12.7 12.2

Table 1: Results

As far as heuristic 2 is concerned, it does not cover
adequately the information in the abstract.

6 Conclusions and Future Work

In this paper we introduce a method for summa-
rizing biomedical literature. We represent the do-
cument as an ontology-enriched scale-free graph,
using UMLS concepts and relations. This way we
get a richer representation than the one provided by
a vector space model. In section 5 we have evalu-
ated several heuristics for sentence extraction. We
have determined that heuristic 2 does not cover all
relevant topics and selects sentences with a low rel-
ative significance. Conversely, heuristics 1 and 3,
present very similar results and cover all important
topics.

Nonetheless, we have identified several prob-
lems and some possible improvements. Firstly, as
our method extracts whole sentences, long ones
have higher probability to be selected, because
they contain more concepts. The alternative could
be to normalise the sentences scores by the number
of concepts. Secondly, concepts associated with
general semantic types in UMLS, as functional
concept, temporal concept, entity and language,
could be ignored, since they do not contribute to
distinguish what sentences are significant.

Finally, in order to formally evaluate the method
and the different heuristics, a large-scale evalua-
tion on the BioMed Corpus is under way, based on
computing the ROUGE measures (Lin, 2004).
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 Abstract 

Word association data in dictionary form 
can be simulated through the combina-
tion of three components: a bipartite 
graph with an imbalance in set sizes; a 
scale-free graph of the Barabási-Albert 
model; and a normal distribution con-
necting the two graphs.  Such a model 
makes it possible to simulate the complex 
features in degree distributions and the 
interesting graph clustering results that 
are typically observed for real data. 

1 Modeling background 

Associative Concept Dictionaries (ACDs) consist 
of word pair data based on psychological ex-
periments where the participants are typically 
asked to provide the semantically-related re-
sponse word that comes to mind on presentation 
of a stimulus word. Two well-known ACDs for 
English are the University of South Florida word 
association, rhyme and word fragment norms 
(Nelson et al., 1998) and the Edinburgh Word 
Association Thesaurus of English (EAT; Kiss et 
al., 1973). Two ACDs for Japanese are Ishizaki’s 
Associative Concept Dictionary (IACD) (Oka-
moto and Ishizaki, 2001) and the Japanese Word 
Association Database (JWAD) (Joyce, 2005, 
2006, 2007). 

While there are a number of practical applica-
tions for ACDs, three are singled out for mention 
                                                
© 2008. Licensed under the Creative Commons Attri-
bution-Noncommercial-Share Alike 3.0 Unported 
license (http://creativecommons.org/licenses/by-nc-
sa/3.0/). Some rights reserved. 
 

here. The first is in the area of artificial intelli-
gence, where ACDs can contribute to the devel-
opment of intelligent information retrieval sys-
tems for societies requiring increasingly sophisti-
cated navigation methods. A second application 
is in the field of medicine, where ACDs could be 
used in developing systems that seek to prevent 
dementia by checking higher brain functions 
with a brain dock. Finally, within educational 
settings, ACDs can greatly facilitate language 
learning through the manifestation of inherent 
cultural modes of thinking. 

The typical format of an ACD is to list the 
stimulus words (cue words) and their response 
words together with some statistics relating to the 
word pairing. The stimulus words are generally 
basic words determined in advance by the ex-
perimenter, while the response words are seman-
tically associated words provided by respondents 
on presentation of the stimulus word. The statis-
tics for the word pairing include, for example, 
measured or calculated indices of distance or 
perhaps some classification of the semantic rela-
tionship between the pair of words. 

In order to mathematically analyze the struc-
ture of ACDs, the raw association data is often 
transformed into some form of graph or complex 
network representation, where the vertices stand 
for words and the edges indicate an associative 
relationship (Joyce and Miyake, 2007). However, 
to our knowledge, there have been no attempts at 
mathematically simulating an ACD as a way of 
determining in advance the architectural design 
of a dictionary. One reason is that it is a major 
challenge to compute maximum likelihood esti-
mations (MLEs) or Monte-Carlo simulations for 
graph data (Snijder, 2005). Thus, it is extremely 
difficult to predict dependences for unknown 
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factors such as the lexical distribution across a 
predetermined and controllable dictionary 
framework starting simply from a list of basic 
words. Accordingly, we propose an easier and 
more basic approach to constructing an ACD 
model by combining random graph models to 
simulate graph features in terms of degree distri-
butions and clustering results. 

 

2 Degree distributions for ACDs 

2.1 Typical local skew 

It is widely known that Barabási and Albert 
(1999) have suggested that the degree 
distributions of scale-free network structures 
correspond to a power law, expressed as 

r
ddxP
!

== )(  (where d stands for degree and 
r  is a small number, such as 2 or 3). This type of 
distribution is also known as Zipf's law 
describing the typical frequency distribution of 
words in a document and plots on a log scale as a 
falling diagonal stroke. However, in the degree 
distribution of ACDs, there is always a local 
skew, as a local peak or bump with a low 
hemline. Figure 1 presents two degree 
distributions; for the IACD (upper) ( r  = 1.8) and 
the JWAD (lower) ( r  = 2.3). 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 1. Degree distributions for actual data 

 
The plots indicate a combination of heteroge-

neous distributions, consisting of a single degree 

distribution represented as a bell form with a 
steep slope on the right side. However, what is 
most interesting here is that throughout the dis-
tribution range the curves remain regular and 
continuous, with an absence of any ruptures or 
fractures both before and after the local peaks. 

When actual ACD data is examined, one finds 
that as response words are not linked together, 
almost all the words located in the skewed part 
are stimulus words (which we refer to as peak 
words in this study), while the items before the 
local peak are less frequent response words that 
have a strong tendency to conform to a decaying 
distribution. It is therefore relatively natural to 
divide all word pairs into two types of graph: 
either a bipartite graph for new response words 
that are not already part of the stimulus list and a 
graph that conforms to Zipf's law for the fre-
quencies of response words that are already pre-
sent in the stimulus list. For the first type, new 
response words are represented as nodes only 
with incoming links, generating a bipartite graph 
with two sets of different sizes. This bipartite 
graph would exhibit the decaying distribution 
due to low-frequency response words prior to the 
local peak. In the second type of graph, response 
words are represented as nodes with both incom-
ing and outgoing links. This second type is simi-
lar to a scale-free graph, such as that incorpo-
rated within the Barabási-Albert (BA) model. 

2.2 Bipartite Graph and BA Model 

A bipartite graph is a graph consisting of vertices 
that are divided into two independent sets, S and 
R, such that every edge connects to one S vertex 
and one R vertex. The graph can be represented 
by an adjacency matrix with diagonal zero sub-
matrices, where the values of the lower right sub-
matrices would all be zero were it not for the 
appearances of some stimulus words as response 
words. The lower right section is exactly where 
the extremely high degrees of hubs are produced, 
which far exceed the average numbers of 
response words. 

Thus, we adopt an approach to generating a 
scale-free graph that reflects Zipf's law for fre-
quency distributions. According to the BA model, 
the probability that a node receives an additional 
link is proportional to its degree. Here, we im-
plement the principle of preferential attachment 
formulated by Bollobás (2003): 
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with the addition of one condition that is specific 
to ACDs, which we explain below. The BA 
model starts with a small number, 

0
m  of vertices, 

and at each time step, T , a new vertex with m  
edges is added and linked to m  different vertices 
that already exist in the graph. 

1+tN  represents a 

random set of m  early vertices, )(id
t

 the degree 
of vertex i  in the process at time t . The 
probability that a new vertex will be connected to 
a vertex i  depends on the connectivity of that 
vertex, as expressed by Equation (1). However, 
we specifically assume that m  is a random 
natural number that is smaller than 

0
m , because 

in actual data the ratio of stimulus words among 
all responses words for each stimulus word is 
obviously far from constant. 

Moreover, the graph for the BA model here 
should be regarded as being a directed graph, 
because the very reason that hubs emerge within 
semantic network representations of ACDs is 
that the number of incoming edges is much larger 
than the expected number of nodes for each 
possible in-degree. In contrast, out-degree is 
limited by the number of responses for each 
stimulus word i , which is represented as )(ic . 
Let )(ic  follow a normal distribution with a 
mean cm and a small variance value 2!  (which is 
not constant but nearly so) to smoothly combine 
the distribution of the bipartite graph and the 
power distribution. If a directed adjacency matrix 
for the network exclusively between stimulus 
words is expressed as )( ijBD , then the sum of the 
non-zero values for each row in a random 
bipartite graph introducing new response words 
will be !

"

#
i

ijBDiC )()(  (The vertices of stimulus 

words with the subscript j are linked with the 
vertex of the stimulus word i). Thus, new 
response words—words that are not stimulus 
words—will be randomly allocated within a 
bipartite graph according to Equation (2): 

!
"

# #==
i

ijBDicrliP ))()(()1),(( 1            (2), 

where r is the approximate number of such 
words. Equation (2) will yield the lower left and 
the upper right sections of the complete adja-
cency matrix A  for the ACD model. The subse-
quent sub-matrix t

P  refers to the transposition 
of the prior sub-matrix P . The adjacency matrix 
in Equation (3) represents a pseudo bipartite 
graph structure where the upper left section is a 
zero sub-matrix (because there are no intercon-

nections among new response words), but the 
lower right section is not. Here, ijB  (not )( ijBD , 
but the undirected counterpart to it), which corre-
sponds to the BA model, is taken as a subsection 
of the adjacency matrix that must be non-
directed for the whole composition. 

!
!

"

#

$
$

%

&
=

ij

t

BP

PO
A           (3) 

The key to understanding Equation (3) is to real-
ize that P  is conditionally dependent on ijB , 
because we assume a normal distribution for the 
number of non-zero values at each row in the 
lower section of A . 

2.3 Simulation Results 

Taking into account the approximate numbers of 
possible new response words, in other words, the 
balance in sizes between the two sets in the 
bipartite graph, we built a composition of partial 
random graphs that could represent an adjacency 
matrix of the ACD model. Figure 2 presents one 
of the results obtained for the following 
conditions:

3000,1,5,3,10,90
0

====== rcmmt
m

! .  
As the Figure shows, the local peak and the 

accompanying hemline in the degree distribution 
are clearly simulated by the complex 
combination of random graphs. 
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Figure 2. Degree distribution of an ACD model 
 

The degree distribution for the artificial net-
work is consistent with the features observed for 
actual ACD data, where more than 96% of the 
stimulus words in each data set are distributed 
across the peak section of the degree distribution, 
which is why we have referred to them as peak 
words. Moreover, it is easy to verify that without 
the assumption of a normal distribution for )(ic , 
distinct fractures emerge in the artificial curve 
where new response words in the bipartite struc-

Local peak 
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ture would be distinguished from stimulus words 
located at initial points of the local peak. 

3 Markov Clustering of ACDs 

3.1 MCL 

This section introduces the graph clustering 
method that is applied to both the real and artifi-
cial ACD data in order to compare them. Markov 
Clustering (MCL) proposed by Van Dongen 
(2001) is well known as a scalable unsupervised 
cluster algorithm for graphs that decomposes a 
whole graph into small coherent groups by simu-
lating the probability movements of a random 
walker across the graph. It is believed that when 
MCL is applied to semantic networks, it yields 
clusters of words that share certain similarities in 
meaning or appear to be related to common con-
cepts. 

3.2 MCL Results 

The clustering results for the ACD model created 
by combining random graphs reveal that each of 
the resultant clusters contains only one stimulus 
word surrounded by several response words. This 
result is somewhat strange because there are 
dense connections between stimulus words, 
which would lead us to assume that clusters 
would have multiple stimulus word. However, 
the results of applying MCL clustering to the 
graph for the ACD model are in reality highly 
influenced by the sub-structure of the bipartite 
graph and less dependent on the scale-free 
structure. 

Nevertheless, the result is quite similar to 
results observed with real data. On examining 
MCL clustering results for different ACD 
semantic networks, we have observed that MCL 
clusters tend to consist of one word node with a 
relatively high degree and some other words with 
relatively low degrees. On closer inspection of 
the graph, it is possible to see several supporter 
nodes that gather around one leader node, 
forming a kind of small conceptual community. 
This suggests that the highest degree word for 
each cluster becomes a representative for that 
particular cluster consisting of some other low 
degree words. In short, MCL clustering is 
executed based on such high degree words that 
tend to have relatively low curvature values 
(Dorow, 2005) compared to their high average 
degree values. 

4 Conclusion 

In this paper, we have proposed a basic approach 
to simulating word association dictionary data 
through the application of graph methodologies. 
This modeling is expected not only to provide 
insights into the structures of real ACD data, but 
also to predict, by manipulating the model pa-
rameters, possible forms for future ACDs. Future 
research will focus on constructing an exponen-
tial random graph model for ACDs based on 
Markov Chain Monte Carlo (MCMC) methods. 

References 
Barabási, Albert-László and Réka Albert. 1999. 

Emergence of scaling in random networks, Science. 
286:509-512. 

Bollobás, Béla. 2003. Mathematical Results on Scale-
free Random Graphs, http://www.stat.berk 
eley.edu/~aldous/Networks/boll1.pdf 

Dorow, Beate et al. 2005. Using Curvature and 
Markov Clustering in Graphs for Lexical Acquisi-
tion and Word Sense Discrimination, MEANING-
2005,2nd Workshop organized by the MEANING 
Project, February,3rd-4th. 

Joyce, Terry and Maki Miyake. 2007. Capturing the 
Structures in Association Knowledge: Application 
of Network Analyses to Large-Scale Databases of 
Japanese Word Associations, Large-Scale Knowl-
edge Resources. Construction and Application, 
Springer Verlag:116-131. 

Kiss, G.R., Armstrong, C., Milroy, R., and Piper, J. 
1973. An associative thesaurus of English and its 
computer analysis, In Aitken, A.J., Bailey, R.W. 
and Hamilton-Smith, N. (Eds.), The Computer and 
Literary Studies, Edinburgh University Press. 

Nelson, Douglas L., Cathy L. McEvoy, & Thomas A. 
Schreiber. 1998. The University of South Florida 
word association, rhyme, and word fragment 
norms, Retrieved August 31, 2005, from 
http://www.usf.edu/FreeAssociation 

Okamato, Jun and Shun Ishizaki. 2001. Associative 
Concept Dictionary and its Comparison Electronic 
Concept Dictionaries. PACLING2001-4th Confer-
ence of the Pacific Association for Computational 
Linguistics:214-220. 

Snijders, Tom A.B., Philippa E. Pattison, Garry 
L.Robins, Mark S. Handcock, 2005. New Specifi-
cations for Exponential Random Graph Models, 
http://stat.gamma.rug.nl/SnijdersPattisonRobinsHa
ndcock2006.pdf 

Steyvers, Mark and Josh Tenenbaum. 2005. The 
Large-Scale Structure of Semantic Networks, Sta-
tistical Analyses and a Model of Semantic Growth, 
Cognitive Science. 29 (1):41-78. 

60



 

61





Author Index

Akama, Hiroyuki, 57
Apollon, Daniel, 49

Blondin Mass, Alexandre, 17

Callison-Burch, Chris, 41
Chicoisne, Guillaume, 17

Daz, Alberto, 53

Fukumoto, Fumiyo, 33

Gargouri, Yassine, 17
Gervs, Pablo, 53

Harnad, Stevan, 17
Hathout, Nabil, 1

Ichioka, Kenichi, 33

Johansson, Christer, 49
Joyce, Terry, 57
Jung, Jaeyoung, 57

Marcotte, Odile, 17
McGillivray, Barbara, 49
Miyake, Maki, 57
Moschitti, Alessandro, 25
Muresan, Smaranda, 9

Picard, Olivier, 17
Plaza, Laura, 53

Rao, Delip, 41

Yarowsky, David, 41

Zanzotto, Fabio Massimo, 25

63


	Programme
	Acquistion of the Morphological Structure of the Lexicon Based on Lexical Similarity and Formal Analogy
	Learning to Map Text to Graph-Based Meaning Representations via Grammar Induction
	How is Meaning Grounded in Dictionary Definitions?
	Encoding Tree Pair-Based Graphs in Learning Algorithms: The Textual Entailment Recognition Case
	Graph-Based Clustering for Semantic Classification of Onomatopoetic Words
	Affinity Measures Based on the Graph Laplacian
	Semantic Structure from Correspondence Analysis
	Concept-Graph Based Biomedical Automatic Summarization Using Ontologies
	Random Graph Model Simulations of Semantic Networks for Associative Concept Dictionaries

