
ACL-08: HLT

The Third Workshop on
Issues in Teaching

Computational Linguistics
(TeachCL-08)

Proceedings of the Workshop

June 19–20, 2008
The Ohio State University

Columbus, Ohio, USA

Production and Manufacturing by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53707
USA

c©2008 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-932432-14-5

ii

Introduction

Many of us in this field face the daily challenge of trying to teach computer scientists, linguists and/or
psychologists together. Following the success of the two previous ACL workshops (2002 and 2005,
http://www.eecs.umich.edu/∼radev/TeachingNLP) on this theme, we held this 2-day
workshop associated with ACL-HLT 2008 to carefully examine the advantages and disadvantages of
an interdisciplinary approach, and to explore techniques specifically aimed at teaching programming
to social scientists and linguistics to computer scientists. As computational linguistics (hopefully)
becomes of more and more relevance to industrial applications, we must ensure that our students (both
undergraduate and graduate) are given adequate preparation for functioning in a practical industrial
environment as well as an academic research environment. We need to exchange views on appropriate
curriculum for both undergraduate students and graduate students, and linguists, psychologists and
computer scientists. There are many questions to be addressed about the necessary background for
linguists, psychologists and computer scientists before they can communicate effectively with each
other and learn at the same pace.

How much math is necessary? Is it possible to teach linguists Natural Language Processing techniques
without first teaching them how to program? Can undergraduates hold their own in graduate courses?
Can linguists and computer scientists make separate but equal contributions to term projects? How
can linguistics students get ACL publications? What is the relevance of psycholinguistics?

In addition to fifteen high quality reviewed papers and an invited talk by Lori Levin and Drago Radev
on the recent very successful American Computational Linguistics Olympiad, the program includes
three panels: a panel on industry expectations for computational linguists organized by Chris Brew; a
panel on essential curriculum for computational linguistics organized by Emily Bender and Fei Xia;
and a panel on techniques for teaching extremely interdisciplinary classes organized by Gina Levow.

The specific goals of this workshop build upon the goals of past CL teaching workshops:

• To provide a setting for mutual feedback on participants’ instructional approaches as well as
guidance on future directions.

• To identify and separate from the general teaching aspirations of host departments the key features
of an elective undergraduate and graduate curriculum in computational linguistics.

• To determine a curriculum that embraces diversity of background as an opportunity rather than
shies from it as a problem.

• To generally promote visibility for the study of CL teaching as a bona fide scholarly activity

• In the case of the industrial panel, to set up a situation in which those responsible for education
and training in CL-using industry become more aware of the diversity of backgrounds available
in the ACL world.

We are especially grateful to the panel organizers, the presenters who submitted excellent papers
and to our hard working program committee. Particular thanks go to Richard Wicentowski for being
Publications Chair.

Martha Palmer, Chris Brew, Fei Xia

iii

Organizers:

Martha Palmer, University of Colorado, USA
Chris Brew, The Ohio State University, USA
Fei Xia, University of Washington, USA

Program Committee:

Steven Bird, Melbourne University, Australia
Robert Dale, Macquarie University, Australia
Jason Eisner, Johns Hopkins University, USA
Tomaz Erjavec, Josef Stefan Institute, Slovenia
Mary Harper, University of Maryland, USA
Julia Hirschberg, Columbia University, USA
Graeme Hirst, University of Toronto, Canada
Julia Hockenmaier, University of Illinois - UIUC, USA
Ewan Klein, University of Edinburgh, UK
Lillian Lee, Cornell University, USA
Lori Levin, Carnegie Mellon University, USA
Gina-Anne Levow, University of Chicago, USA
Liz Liddy, Syracuse University, USA
Edward Loper, University of Pennsylvania, USA
Detmar Meurers, Universität Tübingen, Germany
Ani Nenkova, University of Pennsylvania, USA
James Pustejovksy, Brandeis University, USA
Massimo Poesio, University of Trento, Italy / University of Essex, UK
Dragomir Radev, University of Michigan, USA
Anoop Sarkar, Simon Fraser University, Canada,
Harold Somers, University of Manchester, UK
Matthew Stone, Rutgers University, USA
Richard Wicentowski (Publications Chair), Swarthmore College, USA
Dekai Wu, Hong Kong University of Science and Technology, China

Invited Speakers:

Dragomir Radev, University of Michigan, USA
Lori Levin, Carnegie-Mellon University, USA

Panel Organizers:

Emily Bender, University of Washington, USA
Chris Brew, The Ohio State University, USA
Gina-Anne Levow, University of Chicago, USA
Fei Xia, University of Washington, USA

v

Table of Contents

Teaching Computational Linguistics to a Large, Diverse Student Body: Courses, Tools, and Interde-
partmental Interaction

Jason Baldridge and Katrin Erk . 1

Building a Flexible, Collaborative, Intensive Master’s Program in Computational Linguistics
Emily M. Bender, Fei Xia and Erik Bansleben . 10

Freshmen’s CL Curriculum: The Benefits of Redundancy
Heike Zinsmeister . 19

Defining a Core Body of Knowledge for the Introductory Computational Linguistics Curriculum
Steven Bird . 27

Strategies for Teaching “Mixed” Computational Linguistics Classes
Eric Fosler-Lussier . 36

The Evolution of a Statistical NLP Course
Fei Xia . 45

Exploring Large-Data Issues in the Curriculum: A Case Study with MapReduce
Jimmy Lin . 54

Multidisciplinary Instruction with the Natural Language Toolkit
Steven Bird, Ewan Klein, Edward Loper and Jason Baldridge . 62

Combining Open-Source with Research to Re-engineer a Hands-on Introductory NLP Course
Nitin Madnani and Bonnie J. Dorr . 71

Zero to Spoken Dialogue System in One Quarter: Teaching Computational Linguistics to Linguists
Using Regulus

Beth Ann Hockey and Gwen Christian . 80

The North American Computational Linguistics Olympiad (NACLO)
Dragomir R. Radev, Lori Levin and Thomas E. Payne . 87

Competitive Grammar Writing
Jason Eisner and Noah A. Smith . 97

Studying Discourse and Dialogue with SIDGrid
Gina-Anne Levow . 106

Teaching NLP to Computer Science Majors via Applications and Experiments
Reva Freedman . 114

Psychocomputational Linguistics: A Gateway to the Computational Linguistics Curriculum
William Gregory Sakas . 120

vii

Support Collaboration by Teaching Fundamentals
Matthew Stone . 129

viii

Workshop Program

Thursday, June 19, 2008

8:55–9:00 Welcome

Paper Presentation I: Curriculum Design

9:00–9:30 Teaching Computational Linguistics to a Large, Diverse Student Body: Courses,
Tools, and Interdepartmental Interaction
Jason Baldridge and Katrin Erk

9:30–10:00 Building a Flexible, Collaborative, Intensive Master’s Program in Computational
Linguistics
Emily M. Bender, Fei Xia and Erik Bansleben

10:00–10:30 Freshmen’s CL Curriculum: The Benefits of Redundancy
Heike Zinsmeister

10:30–11:00 Coffee Break

Paper Presentation II and Panel I: Curriculum Design

11:00–11:30 Defining a Core Body of Knowledge for the Introductory Computational Linguistics
Curriculum
Steven Bird

11:30–12:30 Panel Discussion I: Curriculum Design (organized by Fei Xia and Emily Bender)

12:30–2:00 Lunch Break

ix

Thursday, June 19, 2008 (continued)

Paper Presentation III: Course Design

2:00–2:30 Strategies for Teaching “Mixed” Computational Linguistics Classes
Eric Fosler-Lussier

2:30–3:00 The Evolution of a Statistical NLP Course
Fei Xia

3:00–3:30 Exploring Large-Data Issues in the Curriculum: A Case Study with MapReduce
Jimmy Lin

3:30–4:00 Coffee Break

Paper Presentation IV: Using NLP Tools

4:00–4:30 Multidisciplinary Instruction with the Natural Language Toolkit
Steven Bird, Ewan Klein, Edward Loper and Jason Baldridge

4:30–5:00 Combining Open-Source with Research to Re-engineer a Hands-on Introductory NLP
Course
Nitin Madnani and Bonnie J. Dorr

Panel II: Industry Panel

5:00–6:00 Panel Discussion II: Industry Panel (organized by Chris Brew)

Friday, June 20, 2008

x

Friday, June 20, 2008 (continued)

Paper Presentation V and Invited Talk

9:00–9:30 Zero to Spoken Dialogue System in One Quarter: Teaching Computational Linguistics to
Linguists Using Regulus
Beth Ann Hockey and Gwen Christian

9:30–10:30 The North American Computational Linguistics Olympiad (NACLO)
Dragomir R. Radev, Lori Levin and Thomas E. Payne

10:30–11:00 Coffee Break

Paper Presentation VI: Course Design

11:00–11:30 Competitive Grammar Writing
Jason Eisner and Noah A. Smith

11:30–12:00 Studying Discourse and Dialogue with SIDGrid
Gina-Anne Levow

12:00–12:30 Teaching NLP to Computer Science Majors via Applications and Experiments
Reva Freedman

12:30–1:30 Lunch Break

Paper Presentation VII: Course Design

1:30–2:00 Psychocomputational Linguistics: A Gateway to the Computational Linguistics Curricu-
lum
William Gregory Sakas

2:00–2:30 Support Collaboration by Teaching Fundamentals
Matthew Stone

xi

Friday, June 20, 2008 (continued)

Panel III: Course Design

2:30–3:30 Panel Discussion III: Course Design (organized by Gina-Anne Levow)

3:30–4:00 Coffee Break

4:00–5:00 General Discussion and Closing

xii

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 1–9,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Teaching computational linguistics to a large, diverse student body:
courses, tools, and interdepartmental interaction

Jason Baldridge and Katrin Erk
Department of Linguistics

The University of Texas at Austin
{jbaldrid,erk}@mail.utexas.edu

Abstract

We describe course adaptation and develop-
ment for teaching computational linguistics
for the diverse body of undergraduate and
graduate students the Department of Linguis-
tics at the University of Texas at Austin. We
also discuss classroom tools and teaching aids
we have used and created, and we mention
our efforts to develop a campus-wide compu-
tational linguistics program.

1 Introduction

We teach computational linguistics courses in the
linguistics department of the University of Texas
at Austin, one of the largest American universi-
ties. This presents many challenges and opportu-
nities; in this paper, we discuss issues and strate-
gies for designing courses in our context and build-
ing a campus-wide program.1 The main theme of
our experience is that courses should be targeted to-
ward specific groups of students whenever possible.
This means identifying specific needs and design-
ing the course around them rather than trying to sat-
isfy a diverse set of students in each course. To this
end, we have split general computational linguistics
courses into more specific ones, e.g., working with
corpora, a non-technical overview of language tech-
nology applications, and natural language process-
ing. In section 2, we outline how we have stratified
our courses at both the graduate and undergraduate
levels.

1Links to the courses, tools, and resources described in this
paper can be found on our main website:
http://comp.ling.utexas.edu

As part of this strategy, it is crucial to ensure that
the appropriate student populations are reached and
that the courses fulfill degree requirements. For ex-
ample, our Language and Computers course fulfills
a Liberal Arts science requirement and our Natural
Language Processing is cross-listed with computer
science. This is an excellent way to get students in
the door and ensure that courses meet or exceed min-
imum enrollments. We find that many get hooked
and go on to specialize in computational linguistics.

Even for targeted CL courses, there is still usually
significant diversity of backgrounds among the stu-
dents taking them. Thus, it is still important to care-
fully consider the teaching tools that are used; in sec-
tion 3, we discuss our experience with several stan-
dard tools and two of our own. Finally, we describe
our efforts to build a campus-wide CL program that
provides visibility for CL across the university and
provides coherence in our course offerings.

2 Courses

Our courses are based on those initiated by Jonas
Kuhn between 2002 and 2005. Since 2005, we have
created several spin-off courses for students with
different backgrounds. Our broad goals for these
courses are to communicate both the practical util-
ity of computational linguistics and its promise for
improving our understanding of human languages.

2.1 Graduate

We started with two primary graduate courses, Com-
putational Linguistics I and II. The first introduces
central algorithms and data structures in computa-
tional linguistics, while the second focuses on learn-

1

Figure 1: Flow for non-seminar courses. Left: graduate
courses, right: undergraduate courses.

ing and disambiguation. This served a computation-
ally savvy segment of the student population quite
well. However, we view one of our key teaching
contributions as computational linguists in a linguis-
tics department to be providing non-computational
students with technical and formal skills useful for
their research. We discovered quickly that our first
computational linguistics course did not fill these
needs, and the second is not even accessible to most
students. The graduate linguistics students did put
in the effort to learn Python for Computational Lin-
guistics I, but many would have preferred a (much)
gentler introduction and also more coverage of is-
sues connected to their linguistic concerns. This led
us to create a new course, Working with Corpora.

Still, there is a need for the primary courses,
which receive interest from many students in com-
puter science and also graduate students from other
departments such as German and English. One of
the great surprises for us in our graduate courses has
been the interest from excellent linguistics and com-
puter science undergraduates.

We have sought to encourage our students to be
active in the academic community outside of UT
Austin. One way we do this is to have a final
project for each course (and most seminars) that has
four distinct stages: (i) a project proposal halfway
through the semester, (ii) a progress report three-
quarters of the way through, (iii) a 10-minute pre-
sentation during the last week of class, and (iv) a
final report at the end. We have found that having
course projects done in this staged manner ensures
that students think very thoroughly about what their

topic is early on, receive significant feedback from
us, and then still have enough time to do significant
implementation for their project, rather than rushing
everything in last minute. Also, by having students
do presentations on their work before they hand in
the final report, they can incorporate feedback from
other students. A useful strategy we have found for
scoring these projects is to use standard conference
reviews in Computational Linguistics II. The final
projects have led to several workshops and confer-
ence publications for the students so far, as well
as honors theses. The topics have been quite var-
ied (in line with our varied student body), including
lexicon induction using genetic algorithms (Ponvert,
2007), alignment-and-transfer for bootstrapping tag-
gers (Moon and Baldridge, 2007), lemmatization us-
ing parallel corpora (Moon and Erk, 2008), graphi-
cal visualization of articles using syntactic depen-
dencies (Jeff Rego, CS honors thesis), and feature
extraction for semantic role labeling (Trevor Foun-
tain, CS honors thesis).

Working with corpora. Computational linguis-
tics skills and techniques are tremendously valuable
for linguists using corpora. Ideally, a linguist should
be able to extract the relevant data, count occur-
rences of phenomena, and do statistical analyses.
The intersection of these skills and needs is the core
of this course, which covers corpus formats (XML,
bracket formats for syntax, “word/POS” formats for
part-of-speech information), query languages and
tools (regular expressions, cqp, tregex), and some
statistical analysis techniques. It also teaches Python
gently for liberal arts students who have never pro-
grammed and have only limited or no knowledge of
text processing. Other main topics are the compi-
lation of corpora and corpus annotation, with issues
like representativity and what meta-data to include.
At the end of this course, students are prepared for
our primary computational courses.

We observed the tremendous teaching potential
of effective visualization in this course with the R
statistics package. It was used for statistical anal-
yses: students loved it because they could produce
meaningful results immediately and visualize them.
The course includes only a very short two-session
introduction to working with R. We were worried
that this would overtax students because R is its own

2

programming language. But interestingly they had
no problems with learning this second programming
language (after Python). This is particularly striking
as most of the students had no programming experi-
ence prior to the class.

We have not yet used the Natural Language
Toolkit (Loper and Bird, 2002) (see Section 3.1) in
this course. But as it, too, offers visualization and
rapid access to meaningful results, we intend to use
it in the future. In particular, the NLTK allows very
easy access to Toolbox data (Robinson et al., 2007),
which we feel will greatly improve the utility and
appeal of the course for the significant number of
documentary linguistics students in the department.

Seminars. We also offer several seminars in
our areas of interest. These include Categorial
Grammar, Computational Syntax, and Lexical Ac-
quisition. These courses have attracted “non-
computational” linguistics students with related in-
terests, and have served as the launching point for
several qualifying papers and masters theses. It
is important to offer these courses so that these
students gain a view into computational linguistics
from the standpoint of a topic with which they al-
ready have some mastery; it also ensures healthier
enrollments from students in our own department.

We are currently co-teaching a seminar called
Spinning Straw into Gold: Automated Syntax-
Semantics Analysis, that is designed to overlap with
the CoNLL-2008 shared task on joint dependency
parsing and semantic role labeling. The entire class
is participating in the actual competition, and we
have been particularly pleased with how this exter-
nal facet of the course motivates students to consider
the topics we cover very carefully – the papers truly
matter for the system we are building. It provides an
excellent framework with which to judge the contri-
butions of recent research in both areas and compu-
tational linguistics more generally.

2.2 Undergraduate

Our first undergraduate course was Introduction to
Computational Linguistics in Fall 2006. Our expe-
rience with this course, which had to deal with the
classic divide in computational linguistics courses
between students with liberal arts versus computer
science backgrounds, led us to split it into two

courses. We briefly outline some of the missteps
with this first course (and what worked well) and
how we are addressing them with new courses.

Introduction to Computational Linguistics.
This course is a boiled-down version of the graduate
Computational Linguistics I taught in Fall 2006.
Topics included Python programming, regular
expressions, finite-state transducers, part-of-speech
tagging, context-free grammar, categorial grammar,
meaning representations, and machine translation.

Overall, the course went well, but enrollment
dropped after the mid-term. As many have found
teaching such courses, some students truly struggled
with the course material while others were ready for
it to go much faster. Several students had interpreted
“introduction” to mean that it was going to be about
computational linguistics, but that they would not
actually have to do computational linguistics. Many
stayed with it, but there were still others who could
have gone much further if it had not been necessary
to slow down to cover basic material like for loops.
Note that several linguistics majors were among the
compationally savvy students.

In fairness to the students who struggled, it was
certainly ill-advised to ask students with no previous
background to learn Python and XFST in a single
semester. One of the key points of confusion was
regular expression syntax. The syntax used in the
textbook (Jurafsky and Martin, 2000) transfers eas-
ily to regular expressions in Python, but is radically
different from that of XFST. For students who had
never coded anything in their life, this proved ex-
tremely frustrating. On the other hand, for computa-
tionally savvy students, XFST was great fun, and it
was an interesting new challenge after having to sit
through very basic Python lectures.

On the other hand, the use of NLTK to drive learn-
ing about Python and NLP tasks (like building POS-
taggers) significantly eased the burden for new pro-
grammers. Many of them were highly satisfied that
they could build interesting programs and experi-
ment with their behavior so easily.

Language and Computers. We had fortunately
already planned the first replacement course: Lan-
guage and Computers, based on the course designed
at the Department of Linguistics at the Ohio State
University (Brew et al., 2005). This course intro-

3

duces computational linguistics to a general audi-
ence and is ideal for students who want exposure
to computational methods without having to learn
to program. We designed and taught it jointly, and
added several new aspects to the course. Whereas
OSU’s course fulfills a Mathematical and Logical
Analysis requirement, our course fulfills a Science
requirement for liberal arts majors. These require-
ments were met by course content that requires un-
derstanding and thinking about formal methods.

The topics we added to our course were question
answering, cryptography,2 and world knowledge.
The course provides ample opportunity to discuss
high-level issues in language technology with low-
level aspects such as understanding particular algo-
rithms (e.g., computing edit distance with dynamic
programming) and fundamental concepts (such as
regular languages and frequency distributions).

In addition to its target audience, the course
nonetheless attracts students who are already well-
versed in many of the low-level concepts. The high-
level material plays an important role for such stu-
dents: while they find the low-level problems quite
easy, many find a new challenge in thinking about
and communicating clearly the wider role that such
technologies play. The high-level material is even
more crucial for holding the interest of less formally
minded students. It gives them the motivation to
work through and understand calculations and com-
putations that might otherwise bore them. Finally,
it provides an excellent way to encourage class dis-
cussion. For example, this year’s class became very
animated on the question of “Can a machine think?”
that we discussed with respect to dialogue systems.

Though the course does not require students to
do any programming, we do show them short pro-
grams that accomplish (simplified versions of) some
of the tasks discussed in the course; for example,
short programs for document retrieval and creating
a list of email address from US census data. The
goal is to give students a glimpse into such applica-
tions, demonstrate that they are not hugely compli-
cated magical systems, and hopefully entice some of
them to learn how to do it for themselves.

The 2007 course was quite successful: it filled

2The idea to cover cryptography came from a discussion
with Chris Brew; he now teaches an entire course on it at OSU.

up (40 students) and received very positive feedback
from the students. It filled up again for this year’s
Spring 2008 offering. The major challenge is the
lack of a textbook, which means that students must
rely heavily on lecture slides and notes.

Words in a Haystack: Methods and Tools for
Working with Corpora. This advanced under-
graduate version of Working with corpora was of-
fered because we felt that graduate and undergrad-
uate linguistics students were actually on an equal
footing in their prior knowledge, and could profit
equally from a gentle introduction to programming.
Although the undergraduate students were active
and engaged in the class, they did not benefit as
much from it as the graduate students. This is likely
because graduate students had already experienced
the need for extracting information from corpora for
their research and the consequent frustration when
they did not have the skills to do so.

Natural Language Processing. This is an de-
manding course that will be taught in Fall 2008. It
is cross-listed with computer science and assumes
knowledge of programming and formal methods in
computer science, mathematics, or linguistics. It is
designed for the significant number of students who
wish to carry on further from the courses described
previously. It is also an appropriate course for un-
dergraduates who have ended up taking our graduate
courses for lack of such an option.

Much of the material from Introduction to Com-
putational Linguistics will be covered in this course,
but it will be done at a faster pace and in greater
detail since programming and appropriate thinking
skills are assumed. A significant portion of the grad-
uate course Computational Linguistics II also forms
part of the syllabus, including machine learning
methods for classification tasks, language modeling,
hidden Markov models, and probabilistic parsing.

We see cross-listing the course with computer sci-
ence as key to its success. Though there are many
computationally savvy students in our liberal arts
college, we expect cross-listing to encourage signif-
icantly more computer science students to try out a
course that they would otherwise overlook or be un-
able to use for fulfilling degree requirements.

4

3 Teaching Tools and Tutorials

We have used a range of external tools and have
adapted tools from our own research for various as-
pects of our courses. In this section, we describe our
experience using these as part of our courses.

We have used Python as the common language in
our courses. We are pleased with it: it is straight-
forward for beginning programmers to learn, its in-
teractive prompt facilitates in-class instruction, it is
text-processing friendly, and it is useful for gluing
together other (e.g., Java and C++) applications.

3.1 External tools and resources
NLTK. We use the Natural Language Toolkit
(NLTK) (Loper and Bird, 2002; Bird et al., 2008) in
both undergraduate and graduate courses for in-class
demos, tutorials, and homework assignments. We
use the toolkit and tutorials for several course com-
ponents, including introductory Python program-
ming, text processing, rule-based part-of-speech tag-
ging and chunking, and grammars and parsing.
NLTK is ideal for both novice and advanced pro-
grammers. The tutorials and extensive documenta-
tion provide novices with plenty of support outside
of the classroom, and the toolkit is powerful enough
to give plenty of room for advanced students to play.
The demos are also very useful in classes and serve
to make many of the concepts, e.g. parsing algo-
rithms, much more concrete and apparent. Some
students also use NLTK for course projects. In all,
NLTK has made course development and execution
significantly easier and more effective.

XFST. A core part of several courses is finite-state
transducers. FSTs have unique qualities for courses
about computational linguistics that are taught in
linguistics department. They are an elegant exten-
sion of finite-state automata and are simple enough
that their core aspects and capabilities can be ex-
pressed in just a few lectures. Computer science stu-
dents immediately get excited about being able to
relate string languages rather than just recognizing
them. More importantly, they can be used to ele-
gantly solve problems in phonology and morphol-
ogy that linguistics students can readily appreciate.

We use the Xerox Finite State Toolkit (XFST)
(Beesley and Karttunen, 2003) for in-class demon-
strations and homeworks for FSTs. A great aspect of

using XFST is that it can be used to show that differ-
ent representations (e.g., two-level rules versus cas-
caded rules) can be used to define the same regular
relation. This exercise injects some healthy skepti-
cism into linguistics students who may have to deal
with formalism wars in their own linguistic subfield.
Also, XFST allows one to use lenient composition to
encode Optimality Theory constraints and in so do-
ing show interesting and direct contrasts and com-
parisons between paper-and-pencil linguistics and
rigorous computational implementations.

As with other implementation-oriented activities
in our classes, we created a wiki page for XFST tu-
torials.3 These were adapted and expanded from Xe-
rox PARC materials and Mark Gawron’s examples.

Eisner’s HMM Materials. Simply put: the
spreadsheet designed by Jason Eisner (Eisner, 2002)
for teaching hidden Markov models is fantastic. We
used that plus Eisner’s HMM homework assignment
for Computational Linguistics II in Fall 2007. The
spreadsheet is great for interactive classroom explo-
ration of HMMs—students were very engaged. The
homework allows students to implement an HMM
from scratch, giving enough detail to alleviate much
of the needless frustration that could occur with this
task while ensuring that students need to put in sig-
nificant effort and understand the concepts in order
to make it work. It also helps that the new edition
of Jurafsky and Martin’s textbook discusses Eisner’s
ice cream scenario as part of its much improved
explanation of HMMs. Students had very positive
feedback on the use of all these materials.

Unix command line. We feel it is important to
make sure students are well aware of the mighty
Unix command line and the tools that are available
for it. We usually have at least one homework as-
signment per course that involves doing the same
task with a Python script versus a pipeline using
command line tools like tr, sort, grep and awk.
This gives students students an appreciation for the
power of these tools and for the fact that they are at
times preferable to writing scripts that handle every-
thing, and they can see how scripts they write can
form part of such pipelines. As part of this module,

3http://comp.ling.utexas.edu/wiki/doku.
php/xfst

5

we have students work through the exercises in the
draft chapter on command line tools in Chris Brew
and Marc Moens’ Data-Intensive Linguistics course
notes or Ken Church’s Unix for Poets tutorial.4

3.2 Internal tools

Grammar engineering with OpenCCG. The
grammar engineering component of Computational
Syntax in Spring 2006 used OpenCCG,5 a catego-
rial grammar parsing system that Baldridge created
with Gann Bierner and Michael White. The prob-
lem with using OpenCCG is that its native grammar
specification format is XML designed for machines,
not people. Students in the course persevered and
managed to complete the assignments; nonetheless,
it became glaringly apparent that the non-intuitive
XML specification language was a major stumbling
block that held students back from more interesting
aspects of grammar engineering.

One student, Ben Wing, was unhappy enough us-
ing the XML format that he devised a new specifica-
tion language, DotCCG, and a converter to generate
the XML from it. DotCCG is not only simpler—it
also uses several interesting devices, including sup-
port for regular expressions and string expansions.
This expressivity makes it possible to encode a sig-
nificant amount of morphology in the specification
language and reduce redundancy in the grammar.

The DotCCG specification language and con-
verter became the core of a project funded by UT
Austin’s Liberal Arts Instructional Technology Ser-
vices to create a web and graphical user interface,
VisCCG, and develop instructional materials for
grammar engineering. The goal was to provide suit-
able interfaces and a graduated series of activities
and assignments that would allow students to learn
very basic grammar engineering and then grow into
the full capabilities of an established parsing system.

A web interface provided an initial stage that al-
lowed students in the undergraduate Introduction to
Computational Linguistics course (Fall 2006) to test
their grammars in a grammar writing assignment.
This simple interface allows students to first write
out a grammar on paper and then implement it and
test it on a set of sentences. Students grasped the

4http://research.microsoft.com/users/church/
wwwfiles/tutorials/unix for poets.ps

5http://openccg.sf.net

concepts and seemed to enjoy seeing the grammar’s
coverage improve as they added more lexical entries
or added features to constrain them appropriately. A
major advantage of this interface, of course, is that
it was not necessary for students to come to the lab
or install any software on their own computers.

The second major development was VisCCG,
a graphical user interface for writing full-fledged
OpenCCG grammars. It has special support for
DotCCG, including error checking, and it displays
grammatical information at various levels of granu-
larity while still allowing direct source text editing
of the grammar.

The third component was several online
tutorials—written on as publicly available wiki
pages—for writing grammars with VisCCG and
DotCCG. A pleasant discovery was the tremendous
utility of the wiki-based tutorials. It was very easy
to quickly create tutorial drafts and improve them
with the graduate assistant employed for creating
instructional materials for the project, regardless of
where we were. More importantly, it was possible
to fix bugs or add clarifications while students were
following the tutorials in the lab. Furthermore,
students could add their own tips for other students
and share their grammars on the wiki.

These tools and tutorials were used for two grad-
uate courses in Spring 2007, Categorial Grammar
and Computational Linguistics I. Students caught on
quickly to using VisCCG and DotCCG, which was a
huge contrast over the previous year. Students were
able to create and test grammars of reasonable com-
plexity very quickly and with much greater ease. We
are continuing to develop and improve these materi-
als for current courses.

The resources we created have been not only ef-
fective for classroom instruction: they are also be-
ing used by researchers that use OpenCCG for pars-
ing and realization. The work we did produced sev-
eral innovations for grammar engineering that we
reported at the workshop on Grammar Engineering
Across the Frameworks (Baldridge et al., 2007).

3.3 A lexical semantics workbench:
Shalmaneser

In the lexical semantics sections of our classes, word
sense and predicate-argument structure are core top-
ics. Until now, we had only discussed word sense

6

disambiguation and semantic role labeling theoret-
ically. However, it would be preferable to give the
students hands-on experience with the tasks, as well
as a sense of what does and does not work, and why
the tasks are difficult. So, we are now extending
Shalmaneser (Erk and Pado, 2006), a SHALlow se-
MANtic parSER that does word sense and semantic
role assignment using FrameNet frames and roles,
to be a teaching tool. Shalmaneser already offers a
graphical representation of the assigned predicate-
argument structure. Supported by an instructional
technology grant from UT Austin, we are extend-
ing the system with two graphical interfaces that
will allow students to experiment with a variety of
features, settings and machine learning paradigms.
Courses that only do a short segment on lexical se-
mantic analysis will be able to use the web inter-
face, which does not offer the full functionality of
Shalmaneser (in particular, no training of new clas-
sifiers), but does not require any setup. In addition,
there will be a stand-alone graphical user interface
for a more in-depth treatment of lexical semantic
analysis. We plan to have the new platform ready
for use for Fall 2008.

Besides a GUI and tutorial documents, there is
one more component to the new Shalmaneser sys-
tem, an adaptation of the idea of grammar engi-
neering workbenches to predicate-argument struc-
ture. Grammar engineering workbenches allow stu-
dents to specify grammars declaratively. For seman-
tic role labeling, the only possibility that has been
available so far for experimenting with new features
is to program. But, since semantic role labeling fea-
tures typically refer to parts of the syntactic struc-
ture, it should be possible to describe them declar-
atively using a tree description language. We are
now developing such a language and workbench as
part of Shalmaneser. We aim for a system that will
be usable not only in the classroom but also by re-
searchers who develop semantic role labeling sys-
tems or who need an automatic predicate-argument
structure analysis system.

4 University-wide program

The University of Texas at Austin has a long tra-
dition in the field of computational linguistics that
goes back to 1961, when a major machine transla-

tion project was undertaken at the university’s Lin-
guistics Research Center under the direction of Win-
fred Lehman. Lauri Karttunen, Stan Peters, and
Bob Wall were all on the faculty of the linguistics
department in the late 1960’s, and Bob Simmons
was in the computer science department during this
time. Overall activity was quite strong throughout
the 1970’s and 1980’s. After Bob Wall retired in the
mid-1990’s, there was virtually no computational
work in the linguistics department, but Ray Mooney
and his students in computer science remained very
active during this period.6

The linguistics department decided in 2000 to
revive computational linguistics in the department,
and consequently hired Jonas Kuhn in 2002. His
efforts, along with those of Hans Boas in the Ger-
man department, succeeded in producing a com-
putational linguistics curriculum, funding research,
(re)establishing links with computer science, and at-
tracting an enthusiastic group of linguistics students.

Nonetheless, there is still no formal interdepart-
mental program in computational linguistics at UT
Austin. Altogether, we have a sizable group of
faculty and students working on topics related to
computational linguistics, including many other lin-
guists, computer scientists, psychologists and oth-
ers who have interests directly related to issues in
computational linguistics, including our strong arti-
ficial intelligence group. Despite this, it was easy
to overlook if one was considering only an individ-
ual department. We thus set up a site7 to improve
the visibility of our CL-related faculty and research
across the university. There are plans to create an ac-
tual program spanning the various departments and
drawing on the strengths of UT Austin’s language
departments. For now, the web site is a low-cost and
low-effort but effective starting point.

As part of these efforts, we are working to in-
tegrate our course offerings, including the cross-
listing of the undergraduate NLP course. Our stu-
dents regularly take Machine Learning and other
courses from the computer science department. Ray
Mooney will teach a graduate NLP course in Fall
2008 that will offer students a different perspective
and we hope that it will drum up further interest

6For a detailed account, see: http://comp.ling.
utexas.edu/wiki/doku.php/austin compling history

7http://comp.ling.utexas.edu

7

in CL in the computer science department and thus
lead to further interest in our other courses.

As part of the web page, we also created a wiki.8

We have already mentioned its use in teaching and
tutorials. Other uses include lab information, a
repository of programming tips and tricks, list of im-
portant NLP papers, collaboration areas for projects,
and general information about computational lin-
guistics. We see the wiki as an important reposi-
tory of knowledge that will accumulate over time
and continue to benefit us and our students as it
grows. It simplifies our job since we answer many
student questions on the wiki: when questions get
asked again, we just point to the relevant page.

5 Conclusion

Our experience as computational linguists teaching
and doing research in a linguistics department at a
large university has given us ample opportunity to
learn a number of general lessons for teaching com-
putational linguistics to a diverse audience.

The main lesson is to stratify courses according
to the backgrounds different populations of students
have with respect to programming and formal think-
ing. A key component of this is to make expec-
tations about the level of technical difficulty of a
course clear before the start of classes and restate
this information on the first day of class. This is im-
portant not only to ensure students do not take too
challenging a course: other reasons include (a) re-
assuring programming-wary students that a course
will introduce them to programming gently, (b) en-
suring that programming-savvy students know when
there will be little programming involved or formal
problem solving they are likely to have already ac-
quired, and (c) providing awareness of other courses
students may be more interested in right away or af-
ter they have completed the current course.

Another key lesson we have learned is that the for-
mal categorization of a course within a university
course schedule and departmental degree program
are massive factors in enrollment, both at the under-
graduate and graduate level. Computational linguis-
tics is rarely a required course, but when taught in a
liberal arts college it can easily satisify undergradu-
ate math and/or science requirements (as Language

8http://comp.ling.utexas.edu/wiki/doku.php

and Computers does at OSU and UT Austin, respec-
tively). However, for highly technical courses taught
in a liberal arts college (e.g., Natural Language Pro-
cessing) it is useful to cross-list them with computer
science or related areas in order to ensure that the ap-
propriate student population is reached. At the grad-
uate level, it is also important to provide structure
and context for each course. We are now coordinat-
ing with Ray Mooney to define a core set of com-
putational linguistics courses that we offer regularly
and can suggest to incoming graduate students. This
will not be part of a formal degree program per se,
but will provide necessary structure for students to
progress through either the linguistics or computer
science program in a timely fashion while taking
courses relevant to their research interests.

One of the big questions that hovers over nearly
all discussions of teaching computational linguistics
is: how do we teach the computer science to the
linguistics students and teach the linguistics to the
computer science students? Or, rather, the question
is how to teach both groups computational linguis-
tics. This involves getting students to understand the
importance of a strong formal basis, ranging from
understanding what a tight syntax-semantics inter-
face really means to how machine learning mod-
els relate to questions of actual language acquisi-
tion to how corpus data can or should inform lin-
guistic analyses. It also involves revealing the cre-
ativity and complexity of language to students who
think it should be easy to deal with. And it involves
showing linguistics students how familiar concepts
from linguistics translate to technical questions (for
example, addressing agreement using feature log-
ics), and showing computer science students how
familiar friends like finite-state automata and dy-
namic programming are crucial for analyzing nat-
ural language phenomena and managing complexity
and ambiguity. The key is to target the courses so
that the background needs of each type of student
can be met appropriately without needing to skimp
on linguistic or computational complexity for those
who are ready to learn about it.

Acknowledgments. We would like to thank Hans
Boas, Bob Harms, Ray Mooney, Elias Ponvert, Tony
Woodbury, and the anonymous reviewers for their
help and feedback.

8

References
Jason Baldridge, Sudipta Chatterjee, Alexis Palmer, and

Ben Wing. 2007. DotCCG and VisCCG: Wiki and
programming paradigms for improved grammar engi-
neering with OpenCCG. In Proceeings of the GEAF
2007 Workshop.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Publications.

Steven Bird, Ewan Klein, Edward Loper, and Jason
Baldridge. 2008. Multidisciplinary instruction with
the Natural Language Toolkit. In Proceedings of the
Third Workshop on Issues in Teaching Computational
Linguistics. Association for Computational Linguis-
tics.

C. Brew, M. Dickinson, and W. D. Meurers. 2005. Lan-
guage and computers: Creating an introduction for a
general undergraduate audience. In Proceedings of the
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing And Compu-
tational Linguistics, Ann Arbor, Michigan.

Jason Eisner. 2002. An interactive spreadsheet for teach-
ing the forward-backward algorithm. In Dragomir
Radev and Chris Brew, editors, Proceedings of the
ACL Workshop on Effective Tools and Methodologies
for Teaching NLP and CL, pages 10–18.

Katrin Erk and Sebastian Pado. 2006. Shalmaneser – a
flexible toolbox for semantic role assignment. In Pro-
ceedings of LREC-2006, Genoa, Italy.

D. Jurafsky and J. H. Martin. 2000. Speech and language
processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech
Recognition. Prentice-Hall, Upper Saddle River, NJ.

Edward Loper and Steven Bird. 2002. NLTK: The natu-
ral language toolkit. In Proceedings of the ACL Work-
shop on Effective Tools and Methodologies for Teach-
ing Natural Language Processing and Computational
Linguistics, pages 62–69. Somerset, NJ: Association
for Computational Linguistics.

Taesun Moon and Jason Baldridge. 2007. Part-of-speech
tagging for middle English through alignment and pro-
jection of parallel diachronic texts. In Proceedings
of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pages
390–399.

Taesun Moon and Katrin Erk. 2008. Minimally super-
vised lemmatization scheme induction through bilin-
gual parallel corpora. In Proceedings of the Interna-
tional Conference on Global Interoperability for Lan-
guage Resources.

Elias Ponvert. 2007. Inducing Combinatory Categorial
Grammars with genetic algorithms. In Proceedings
of the ACL 2007 Student Research Workshop, pages
7–12, Prague, Czech Republic, June. Association for
Computational Linguistics.

Stuart Robinson, Greg Aumann, and Steven Bird. 2007.
Managing fieldwork data with Toolbox and the Natu-
ral Language Toolkit. Language Documentation and
Conservation, 1:44–57.

9

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 10–18,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Building a Flexible, Collaborative, Intensive Master’s
Program in Computational Linguistics

Emily M. Bender
University of Washington
Department of Linguistics

Box 354340
Seattle WA 98195-4340

ebender@u.washington.edu

Fei Xia
University of Washington
Department of Linguistics

Box 354340
Seattle WA 98195-4340
fxia@u.washington.edu

Erik Bansleben
University of Washington

Educational Outreach
UW Tower, Box 359485
4333 Brooklyn Ave., NE
Seattle, WA 98105-9485

ebansleben@extn.washington.edu

Abstract

We present the design of a professional mas-
ter’s program in Computational Linguistics.
This program can be completed in one-year of
full-time study, or two-three years of part-time
study. Originally designed for CS profession-
als looking for additional training, the pro-
gram has evolved in flexibility to accommo-
date students from more diverse backgrounds
and with more diverse goals.

1 Introduction

In the past two decades, there has been tremendous
progress in natural language processing and various
undergraduate/graduate programs in language tech-
nology have been established around the world (Koit
et al., 2002; Frederking et al., 2002; Dale et al.,
2002; Uszkoreit et al., 2005; Pilon et al., 2005).

This paper introduces the University of Wash-
ington’s Professional Masters Program in Computa-
tional Linguistics (CLMA)—one of the largest pro-
grams of its kind in the United States—and high-
lights unique features that are key to its success. The
CLMA program is currently operating in its third
year as a fee-based degree program managed jointly
by the Department of Linguistics and the Educa-
tional Outreach arm of the University. The program
is distinguished by its programmatic focus, its flexi-
bility, its format and delivery as well as in the part-
nerships that are an integral part of this degree.

This paper highlights how these features of our
program contribute to effective teaching in our in-
terdisciplinary field as well as making the program

relevant to both working professionals and students
on the research track. We provide a brief program
overview highlighting the people and partnerships
involved, course design, practicum and research op-
tions, and dealing with student diversity. We then
reflect on how we have approached the challenges
of setting up the program and our future plans.

2 Program Overview

With working professionals who wanted to return
to school to retool for a career change in mind, we
designed a curriculum that can be completed in 12
months of intensive full-time study. In this way, stu-
dents can complete the degree without leaving the
working world for too long. In addition, the com-
pactness of the program means that even with part-
time study (one-two courses per quarter), the pro-
gram can be completed within a reasonable time
horizon (two-three years). Once the program got
underway, we found that we also had strong interest
from Linguistics students. The flexibility of the part-
time option has allowed us to develop a two-year
schedule which accommodates students who need
time to get up to speed with key CS concepts.

The curriculum is designed around hands-on and
collaborative work which prepares students for in-
dustry jobs. At the same time, the courses are struc-
tured around fundamental building blocks rather
than applications in order to teach students to think
like computational linguists, and to provide them
with an educational foundation which will remain
relevant for years to come.

This section gives an overview of the CLMA pro-
gram, including its structure and participants.

10

2.1 Program Structure

The CLMA program comprises three quarters (nine
courses) of coursework and a summer master’s
project, which can take the form of an internship
or a master’s thesis (§3.5). The courses, described
in more detail in §3 below, include three courses in
Linguistics and six in Computational Linguistics.

The program also offers a series of talks by com-
putational linguists working at local companies, an
informal seminar of the computational Linguistics
lab group (which includes PhD students and focuses
on research methodology), and career development
services as we work with students to place them in
internships and post-degree jobs.

2.2 The new certificate program

This summer, the program is branching out with
a new Certificate in Natural Language Technol-
ogy. This three-course Certificate includes two NLP
courses from the Masters degree and an introduc-
tory course titled “Computational Linguistics Foun-
dations” which serves both this Certificate audience
and acts as a refresher course for some degree stu-
dents. It reinforces the concepts from Linguistics,
CS and statistics that students rely on heavily in the
core course sequence (see §4). The Certificate is an
alternate course of study for those students wanting
to study a single topic in depth but who are not yet
ready to commit to the entire degree.

2.3 Synchronous online and in-person courses

As part of the certificate summer launch, we will
be offering a selection of courses in a synchronous
online and in-person format, streaming the content
from the classroom to a live remote audience. This
will allow us to extend the reach of the program and
make study in Computational Linguistics available
to students who otherwise would not have access to
instruction in this field without relocating.

In the context of current globalization trends, the
need for online and distance education is grow-
ing (Zondiros, 2008), and indeed we hope that our
audience will extend beyond North America. At
the same time, we agree with Neal and Miller’s
(2004) position that even with remote participants,
the classroom remains a key part of the educational
experience. We have thus adopted an approach that

allows students to be part of a virtual classroom
where they can engage with other students while still
working from a remote location. This surmounts the
hurdle of more traditional distance or online educa-
tion that is primarily text-based and asynchronous.

In a pilot of an online course offering in Autumn
2007 (with Intro to Syntax), we found that most
of the pieces were already in place for taking our
courses online: Course materials are already dissem-
inated through websites, student programming work
is done on a server cluster that is always accessed
remotely, and most of the discussion outside of class
happens on electronic discussion boards.

2.4 Faculty and Staff
The CLMA program is taught by a group of instruc-
tors who combine academic knowledge and practi-
cal expertise in the field. The program budget sup-
ports two faculty positions, one tenure-track (and
guaranteed by the College of Arts and Sciences), and
one two-year visiting position.1 Each of these fac-
ulty teach two of the core NLP courses described in
§3.1 below and one seminar each year. In addition,
they share the work of supervising MA theses and
internships over the summer. In recognition of this
supervising load, their schedules are arranged so that
they each have one non-summer quarter off from
teaching. A third faculty member in Computational
Linguistics teaches three graduate-level courses in
Computational Linguistics per year, and takes on
one-two MA students from each CLMA cohort.

The program also includes a part-time administra-
tor and a technical specialist within the Department
of Linguistics. In addition, the program includes af-
filiated instructors and guest lecturers, ranging from
faculty members of other departments such as CS
and Statistics to researchers from industry.

2.5 Students
A strength of the program is its emphasis on stu-
dent diversity and allowance for individualized stu-
dent needs. The program allows for both part-
time and full-time enrollment and includes both re-
cent college graduates as well older, more non-
traditional students who work in industry. We have
students from throughout the US, as well as from

1To be converted to tenure-track in the future, once the pro-
gram has a longer track-record.

11

Canada, China, Germany, India, Japan, and Russia.
Two-year course schedules allow students to begin
CLMA course work while simultaneously taking CS
and statistics courses in the first year, increasing the
diversity of backgrounds of our students. The pro-
gram is starting to deliver several courses online (see
§2.3) which provides additional flexibility to local
students while also reaching a wider national and
international audience. Lastly, the program seeks to
foster both research and industry interests by provid-
ing both thesis and internship options.

2.6 Advisory board

The program maintains an advisory board composed
of significant industry researchers and practition-
ers, including representatives from AT&T, Boeing,
Google, IBM, Microsoft, Nuance, PARC, and Ya-
hoo!, and faculty from several departments at the
University. This board was instrumental in develop-
ing the original program focus and curriculum out-
line, as well as providing input from the perspective
of employers as the University decided whether or
not to launch the program. It continues to be en-
gaged in guiding the program’s content, providing
internship opportunities for students, and keeping
the content relevant to current industry trends.

2.7 Support from Educational Outreach

Another element of success is a centralized in-
frastructure of administration and support available
through the University’s Educational Outreach divi-
sion (UWEO) which manages the CLMA program,
among more than 30 degree offerings.

UWEO provides many benefits, including con-
siderable institutional knowledge in starting a new
degree program, providing methods of separating
fee-based revenue from that of state-run programs,
marketing expertise, fiscal management, registration
services and more. As the outreach arm of the Uni-
versity, UWEO works closely with non-traditional
students and is able to leverage its industry contacts
to assist serving this community most effectively.

Lastly, partnering with UWEO also serves as a
method of risk management for all new degree pro-
grams. As a state school, the University may have
difficulty in getting state approval and funding for
new degree programs unless initial need and demand
can be demonstrated persuasively. UWEO can as-

sume a certain degree of risk during the start-up
phase of new programs allowing for additional flex-
ibility and time to reach financial viability.

3 Curriculum Design

The program curriculum was designed according to
the following principles: (1) we should provide stu-
dents with an educational foundation that is relevant
in the long term; (2) we should emphasize hands-
on coursework to provide depth of understanding as
well as practical experience students can point to
when looking for a job; and (3) we should highlight
unifying themes in a diverse set of subject matter.

The courses were designed by taking an inven-
tory of the applications and research areas that com-
prise Computational Linguistics, and then breaking
them down into subtasks. These subtasks were then
grouped by similarity into coherent courses, and the
courses into core and elective sets. Three topics re-
sisted classification into any particular course: am-
biguity resolution, evaluation, and multilingualism.
These became our cross-cutting themes which are
highlighted throughout all of the courses. In addi-
tion to understanding each subtask, working compu-
tational linguists need to know how to combine the
stages of linguistic processing into end-to-end sys-
tems. For this reason, we include a capstone “Sys-
tems and Applications” course in which students
work in groups to create an NLP application.

Key to making the Computational Linguistics cur-
riculum fit into one calendar year was deciding not
to include the course “Intro to Computational Lin-
guistics.” Such a course serves to expose students to
a broad range of topics in the field and get them in-
terested in exploring further. CLMA students are al-
ready interested in further studies in Computational
Linguistics, and will be exposed to a broad range
of topics throughout the curriculum. However, we
did still want to give the students an overview of
the field so that they could see how the rest of their
studies will fit in. This is done through a two-day
orientation at the start of each year. The orienta-
tion also introduces the three cross-cutting themes
mentioned above, gives the students a chance to get
to know each other and the CLMA faculty, and pro-
vides practical information about the university such
as libraries, computing lab facilities, etc.

12

3.1 Required courses

There are six required courses: The first two are Lin-
guistics courses, and the remaining four form the
NLP core courses. Among the four NLP courses,
Ling 572 should be taken after Ling 570, and Ling
573 should be taken after Ling 570, 571, and 572.

Ling 450 (Intro to Linguistic Phonetics): Intro-
duction to the articulatory and acoustic correlates
of phonological features. Issues covered include
the mapping of dynamic events to static represen-
tations, phonetic evidence for phonological descrip-
tion, universal constraints on phonological structure,
and implications of psychological speech-sound cat-
egorization for phonological theory.

Ling 566 (Intro to Syntax for Computational
Linguistics): Introduction to syntactic analysis and
concepts (e.g., constituent structure, the syntax-
semantics interface, and long-distance dependen-
cies). Emphasis is placed on formally precise en-
coding of linguistic hypotheses and designing gram-
mars so that they can be scaled up for practical appli-
cations. Through the course we progressively build
up a consistent grammar for a fragment of English.
Problem sets introduce data and phenomena from
other languages.

Ling 570 (Shallow Processing Techniques for
NLP): Techniques and algorithms for associating
relatively surface-level structures and information
with natural language data, including tasks such as
tokenization, POS tagging, morphological analysis,
language modeling, named entity recognition, shal-
low parsing, and word sense disambiguation.

Ling 571 (Deep Processing Techniques for NLP):
Techniques and algorithms for associating deep or
elaborated linguistic structures with natural lan-
guage data (e.g., parsing, semantics, and discourse)
and for associating natural language strings with in-
put semantic representations (generation).

Ling 572 (Advanced Statistical Methods in NLP):
Major machine learning algorithms for NLP, includ-
ing Decision Tree, Naive Bayes, kNN, Maximum
Entropy, Support Vector Machine, Transformation-
Based Learning, and the like. Students implement
many of these algorithms and use them to solve clas-
sification and sequence labeling problems.

Ling 573 (NLP Systems and Applications): De-
sign and implementation of coherent systems for
practical applications, with topics varying year to
year. Sample topics: machine translation, ques-
tion answering, information retrieval, information
extraction, dialogue systems, and spell/grammar
checking. In 2006, the students collectively built a
question answering system, which was further de-
veloped into a submission to the TREC competition
(Jinguji et al., 2006). This year’s class is developing
a chatbot to submit to the Loebner Prize competi-
tion, an implementation of the Turing Test.

Among the required courses, Ling 566 was cre-
ated a year before the CLMA program started, and
has been taught four times. Ling 450 is an estab-
lished course from our Linguistics curriculum. Ling
570-573 were newly created for this program, and
have each been taught three times now. We have
put much effort in improving course design, as dis-
cussed in (Xia, 2008).

3.2 The prerequisites for the required courses
In order to cover the range of methodologies and
tasks that our program does in its core sequence, we
need to set as a prerequisite the ability to program,
including knowledge of data structures and algo-
rithms, and expertise in C++ or Java.2 Another pre-
requisite is a college-level course in probability and
statistics. Without such knowledge, it is all but im-
possible to discuss the sophisticated statistical mod-
els covered in the core NLP courses. For the two
Linguistics required courses, the only prerequisite is
a college-level introductory course in Linguistics or
equivalent. Because our students have very diverse
backgrounds, we have tried several approaches to
help the students meet all these prerequisites, which
will be discussed in §4.

3.3 Elective courses
All students must take three electives, including
one in Linguistics, one in Computational Linguis-
tics, and one more in Computational Linguistics or
a related field. The Linguistics electives are drawn
from the broad range of graduate-level Linguistics
courses offered in the department. The related fields

2Knowing Perl or Python is recommended but not required,
as we believe that good C++ or Java programmers can learn Perl
or Python quickly.

13

electives include courses in CS and Electrical Engi-
neering on topics such as Machine Learning, Graph-
ical Models, Artificial Intelligence, and Human-
Computer Interaction as well as courses in the In-
formation School on topics such as Information Re-
trieval. We maintain a list of pre-approved courses,
which grows as students find additional courses of
interest and petition to have them approved.

The annual elective offerings in Computational
Linguistics include Multilingual Grammar Engi-
neering, as well as seminars taught by the Com-
putational Linguistics faculty and by guest experts
(including researchers in local industry), covering
new topics each year. Recent topics include: Cor-
pus Management, Development and Use, Text-to-
Speech, Multimodal Interfaces, Lexical Acquisition
for Precision Grammars, Semi-supervised and Un-
supervised Learning for NLP, and Information Ex-
traction from Heterogeneous Resources. There are
four-five such seminars per year, three from the
Computational Linguistics faculty and one-two from
guest experts.

We ask students to present their choices of elec-
tives for approval, and require that they articulate
reasons why their range of choices constitutes a co-
herent course of study.

3.4 Hands on, interactive courses

All of the courses in the curriculum are hands-on,
emphasizing learning through doing as well as col-
laboration between the students. Theoretical con-
cepts introduced in lecture are put into practice
with problem sets (e.g., in Intro to Syntax), pro-
gramming assignments (in the core sequence) and
opened-ended projects (in the Systems and Applica-
tions course and the seminars). Student collabora-
tion is promoted through group projects as well as
active online discussion boards where students and
faculty together solve problems as they arise.

3.5 The master’s project

In addition to nine courses, the students need to
complete a master’s project, either through an in-
ternship or through completing a master’s thesis.

The internship option: Internships counting to-
wards the MA degree must be relevant to Compu-
tational Linguistics or human language technology

more broadly. Students develop a pre-internship
proposal, including a statement of the area of inter-
est and proposed contributions, a discussion of why
the company targeted is a relevant place to do this
work, and a list of relevant references. Once the stu-
dents have been offered and accepted an internship,
they write a literature review on existing approaches
to the task in question.

At the end of the internship, students write a self-
evaluation which they present to the internship su-
pervisor for approval and then to the faculty advisor.
In addition, we require a confidential, written evalu-
ation from the intern’s supervisor which references
the self-evaluation. If this evaluation does not indi-
cate satisfactory work, the internship will not count.

Students also write a post-internship report, in-
cluding a description of the activities undertaken
during the internship and their results, a discussion
of how the program course work related to and/or
prepared the student for the internship work, and a
second version of the literature review. We expect
the second review to be different from the initial
version in incorporating the additional perspective
gained in the course of the internship as well as any
additional key papers that the student discovered in
the course of internship work.

The thesis option: This option is recommended for
students who wish to petition for admission to the
Department’s PhD program, and encouraged for stu-
dents who wish to apply to other PhD programs in
the near future. An MA thesis typically involves
the implementation of working systems (or exten-
sions or experimental evaluations thereof). In some
cases, they may provide theoretical contributions in-
stead. MA theses require a thorough literature re-
view, are typically longer (30-50 pages), and repre-
sent the kind of research which could be presented
at major conferences in our field.

The milestones: While the internship and a sig-
nificant portion of the thesis work are conducted in
the summer for full-time students, we start monthly
graduation planning meetings as early as the pre-
ceding October to help students decide which op-
tion they should take. For those seeking internships,
we will help them identify the companies that match
their interests and make the contact if possible.

14

Students who choose the thesis option are re-
quired to turn in an initial thesis proposal that in-
cludes a thesis topic, a summary of major existing
approaches, the students’ proposed approach, and a
plan for evaluation. With the feedback from the fac-
ulty, the students will revise their proposals several
times before finalizing the thesis topic. Students are
encouraged to take elective courses relevant to their
topic. Because the amount of research is required for
a good master’s thesis, we expect students with this
option to take one or two additional quarters to finish
than the ones who choose the internship option.

4 Challenges

In this section, we address several challenges that we
encountered while establishing the new program.

Students enrolling in our program have varied
backgrounds in Linguistics, CS and other under-
graduate majors. In addition, some students come
to us straight from undergraduate studies, while oth-
ers are re-entry students. To better prepare students
for the program, starting this year we offer an eight-
week summer refresher course, which reinforces the
most important skills from contributing disciplines
to prepare students for the CLMA core courses. The
course covers the following topics: (1) formal gram-
mars and formal languages, (2) finite-state automata
and transducers, (3) review of main concepts from
probability and statistics, (4) review of major data
structures and algorithms, and (5) using Unix and
computer clusters.

After students are admitted to the program, they
are asked to take an online placement test to identify
the areas that they need to strengthen before enter-
ing the program. They can then choose to take the
summer course or study on their own.

While some of our students, typically fresh out
of college or stepping out of the workforce for re-
training to switch careers, are eager to complete the
degree in one year, others wish to complete the pro-
gram while continuing their current employment or
simply need more time. We offer various options to
accommodate different needs:

Part-time vs. full-time Students can complete the
program in one year, taking three classes each quar-
ter and completing the master’s project in the sum-
mer. At this pace, the program is very intense.

The program also offers part-time options, allow-
ing students to take courses one or two at a time.
This works well for students who are currently em-
ployed and also leaves time for students coming
from a Linguistics background to take CS and Statis-
tics courses before approaching the Computational
Linguistics core sequence. While full-time students
must start in Autumn quarter, part-time students can
start in any academic quarter.

Curriculum flexibility Students who come to us
with an extensive background in Linguistics (e.g., a
prior MA), can waive one or more of the Linguistics
requirements, giving them more time in their sched-
ule for Computational Linguistics or related fields
courses, such as CS.

Program options Our courses are open to qual-
ified students for single-course enrollment, allow-
ing people who don’t have the time or financial re-
sources to commit to the whole master’s program
to benefit from the course offerings. In addition,
the three-course certificate provides more continuity
than single-course enrollment (though less than the
full master’s program) as well as the recognition of a
certificate. In either case, graduate non-matriculated
status allows such students to apply their coursework
to the master’s program at a later date.

Master’s project options In providing for both in-
ternships and master’s theses, the program can ac-
commodate students seeking training for positions
in industry as well as those seeking to continue grad-
uate studies. In the former case, the practical ex-
perience of an internship together with the indus-
try connections it can provide are most valuable. In
the latter case, a chance to do independent research
is more appropriate. Students who spread the pro-
gram out over more than one year can do internships
in the summer between years one and two in addi-
tion to the master’s project (internship or thesis) in
the second summer. Finally, the “internship option”
can also be fulfilled by ordinary full-time employ-
ment: when students begin full-time positions in the
summer after they complete coursework or apply the
knowledge gained in the master’s program to new
projects at their current places of employment.

In class or online By offering our courses in a hy-
brid, synchronous in-person and online format, we

15

add the flexibility to attend our program from any-
where in the world while still benefiting from the
same courses, lectures, online discussions and col-
laborative work. The online option is also benefi-
cial to local students, allowing them to tune in, for
example, when home caring for a sick child, to re-
view lectures previously attended, to attend online
on days without other on-campus obligations and to
avoid the commute. In the 2008-2009 school year,
three of our courses will be offered in this format,
and we plan to extend the offerings going forward.

5 Outcomes

5.1 Enrollment, graduation rate and placement

In years 1-3, 70 students have enrolled, and about
30 of them enrolled as full-time students.3 To data
13 have completed the program, and at least nine
of them are currently in jobs related to Computa-
tional Linguistics. Another 12 are projected to grad-
uate this year. Out of these 25 students, 15 chose
the internship option and 10 chose the thesis option.
We have placed students in internships with com-
panies such as Amazon.com, Google, Microsoft,
PARC, Tegic (Nuance), and VoiceBox, and have
graduates working at companies such as Cataphora,
Cisco, Google, InXight, Tegic (Nuance), and Voice-
Box. Among the 10 students who took the thesis op-
tion, four received RAships from CLMA faculty’s
research grants, and at least two will enroll in our
Ph.D. program after receiving their MAs.

Recent internal research completed by UWEO
identified a total of 34 CL programs, 23 in the US
and 11 in Western Europe. These programs vary
from named degrees in Computational Linguistics or
a similar variant, to concentrations in other degrees
and to loose courses of study. It appears that there is
one other university in the US that has enrollment as
high or higher than our own, but all other programs
typically have at least 50% fewer students enrolling
as of 2007. Given that this program is only in its
third year, we consider this level of high compara-
tive enrollment a strong measure of success. Addi-
tionally, during this 3 year period, there has been an
upward trend in applications which may be a reflec-

3Some of them later switched to part-time status due to vari-
ous reasons (e.g., the intensity of the program, financial consid-
eration).

tion on the growth and awareness of the discipline,
but may also be a reflection on the growing reputa-
tion of the program.

5.2 Student feedback

We sent an anonymous survey to all alumni and
current students (N=70) asking them about the ef-
fectiveness of the overall CLMA program, individ-
ual courses, the curriculum, success in getting a job
as well as for some qualitative feedback about the
strengths and weaknesses of the program. We re-
ceived 31 responses (44% response rate). For the
sake of brevity, we will provide a selection of ques-
tions and categorize the results as follows: positive
(1=very well, 2=fairly well), neutral (3=so so); neg-
ative (4=not very well, 5=poorly).

0%

10%

20%

30%

40%

50%

60%

Q1 Q2 Q3 Q4 Q5

P
e
rc

e
n

ta
g

e
 o

f
re

sp
o

n
se

s

very well
fairly well
so so
not very well
poorly

Figure 1: Student and alumni responses

As shown in Figure 1, the responses were over-
whelmingly positive. The first four questions ask
how well the program as a whole helped the students
achieve the goals of learning to think like a computa-
tional linguist (Q1), understanding the state of the art
in Computational Linguistics (Q2), understanding
the potential contributions of both machine learning
and knowledge engineering (Q3), and preparation
for a job in industry (Q4). The fifth question asks
how helpful the CLMA experience has been/will be
in finding a job.4 There were a number of other ques-
tions, but the results are all very similar to the ones
above. These same questions were also asked with
respect to individual courses. The results were again
similar, although slightly lower. Positive responses
were in the range of 80%-95%, neutral in the range

4Each of these questions was answered by 24-27 students.

16

of 5-20% and negative responses were usually lim-
ited to no more than 5%. For the question of how
well the program has prepared students for their cur-
rent job (alumni only, N=5), 100% answered posi-
tively. For the question about how important the pro-
gram was in attaining their current job, again 100%
felt that the program was crucial.

We also received valuable qualitative feedback on
this survey. The majority of students (67%) felt that
the program was very intense, but very much worth-
while. The faculty consistently receives high praise;
students enjoy the small hard-working community;
and comments indicate that the coursework is rele-
vant for their future career. When asked about sug-
gestions for improvement, students provided a num-
ber of logistical suggestions, would like to see some
degree of student mentoring, and seek to find ways
to reduce the intensity of the program, especially
for part-time students who are working. It is clear,
though, from the overall survey results, that students
feel very positive about the program as a whole, and
its relevance for their professional future.

While we at first thought the program to be pri-
marily a one-year program, the intensity of the cur-
riculum has resulted in a number students taking
longer than one year to complete the program which
has impacted the number of students who have thus
far completed. Consequently, we will consider stu-
dent feedback from the survey which—in conjunc-
tion with the new preparatory course—should lead
us to find methods of reducing the intensity but
maintaining the high quality.

6 Conclusion and future directions

6.1 Lessons learned

In starting this program, we had the privilege of de-
signing the curriculum first and then hiring faculty to
teach the required courses. We worked closely with
our advisory board to develop a course of study well-
suited to training students for industry jobs, while
also striving to design a program that will remain
relevant to graduates many years down the line.

Financial support from UWEO allowed us to
jump in with both feet, offering the full curriculum
from year one. This was critical in attracting a strong
and reasonably large student body. It also provided
the freedom to design a curriculum that goes in-

depth into Computational Linguistics.
Other facets of our curriculum which contribute to

its success include: (1) We combine in-depth explo-
ration of particular topics with cross-cutting themes
that tie the courses together. (2) The courses em-
phasize hands-on work, providing immediate moti-
vation to delve deeper into the theoretical concepts
presented. (3) The program combines high inten-
sity with high levels of support: We ask the stu-
dents to attempt real-world scale projects and then
assist them in achieving these goals through provid-
ing software to work from, offering high levels of
online interaction to answer questions, and facili-
tating collaboration. By working together, the stu-
dents can build more interesting systems than any-
one could alone, and therefore explore a broader ter-
ritory. In addition, collaborative projects help stu-
dents benefit from each other’s diverse backgrounds.

At the same time, we’ve found providing multi-
ple ways of completing program requirements to be
key to allowing students from different backgrounds
to succeed. Exceptional students coming from Lin-
guistics can get up to speed quickly enough to com-
plete the program on a full-time schedule (and some
have), but many others benefit from being able to
take it more slowly, as do some students from a CS
background. We also find that having expertise in
Linguistics among the students significantly benefits
the overall cohort.

6.2 Future directions

In the near future, we plan to expand our online of-
ferings, which directly expands our audience and
benefits local students as described above. We have
found connecting course work to faculty research
and/or external competitions such as TREC and the
Loebner Prize to be extremely motivating and re-
warding for students, and plan to seek more opportu-
nities for doing so. We are also expanding out inter-
disciplinary reach within the university. The TREC
submission was done jointly with faculty from the
Information School. This year’s guest faculty course
will be offered jointly with a course in the School
of Art on interface design. In pursuing all of these
directions, we will benefit from input from our advi-
sory board as well as feedback from current students
and alumni.

17

References
Robert Dale, Diego Molla Aliod, and Rolf Schwit-

ter. 2002. Evangelising Language Technology: A
Practically-Focussed Undergraduate Program. In Pro-
ceedings of the First ACL Workshop on Effective Tools
and Methodologies for Teaching NLP and CL.

Robert Frederking, Eric H. Nyberg, Teruko Mitamura,
and Jaime G. Carbonell. 2002. Design and Evolution
of a Language Technologies Curriculum. In Proceed-
ings of the First ACL Workshop on Effective Tools and
Methodologies for Teaching NLP and CL.

Dan Jinguji, William D. Lewis, Efthimis N. Efthimiadis,
Joshua Minor, Albert Bertram, Shauna Eggers, Joshua
Johanson, Brian Nisonger, Ping Yu, and Zhengbo
Zhou. 2006. The University of Washington’s UW-
CLMAQA system. In Proceedings of the Text Re-
trieval Conference (TREC) 2006, Gaithersburg, Mary-
land.

Mare Koit, Tiit Roosmaa, and Haldur Oim. 2002. Teach-
ing Computational Linguistics at the University of
Tartu: Experience, Perspectives and Challenges. In
Proceedings of the First ACL Workshop on Effective
Tools and Methodologies for Teaching NLP and CL.

Diane Neal, Lisa nad Miller. 2004. Distance educa-
tion. In Robert W. Proctor and Kim-Phuong L. Vu,
editors, Handbook of Human Factors in Web Design.
Lawrence Erlbaum Associates.

Suléne Pilon, Gerhard B Van Huyssteen, and Bertus
Van Rooy. 2005. Teaching language technology at the
North-West University. In Proceedings of the Second
ACL Workshop on Effective Tools and Methodologies
for Teaching NLP and CL.

Hans Uszkoreit, Valia Kordoni, Vladislav Kubon,
Michael Rosner, and Sabine Kirchmeier-Andersen.
2005. Language technology from a European perspec-
tive. In Proceedings of the Second ACL Workshop on
Effective Tools and Methodologies for Teaching NLP
and CL.

Fei Xia. 2008. The evolution of a statistical nlp course.
In Proceedings of the Third ACL Workshop on Effec-
tive Tools and Methodologies for Teaching NLP and
CL, Columbus, Ohio, June.

Dimitris Zondiros. 2008. Online, distance education
and globalization: Its impact on educational access,
inequality and exclusion. European Journal of Open,
Distance and E-Learning, Volume I.

18

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 19–26,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Freshmen’s CL curriculum: the benefits of redundancy ∗

Heike Zinsmeister
Department of Linguistics

University of Konstanz
78457 Konstanz, Germany

Heike.Zinsmeister@uni-konstanz.de

Abstract

In the course of the European Bologna ac-
cord on higher education, German universities
have been reorganizing their traditional ”Mag-
ister” and ”Diplom” studies into modularized
bachelor’s and master’s programs. This re-
vision provides a chance to update the pro-
grams. In this paper we introduce the curricu-
lum of a first semester B.A. program in Com-
putational Linguistics which was taught for
the first time last semester. In addition, we an-
alyze the syllabi of four mandatory courses of
the first semester to identify overlapping con-
tent which led to redundancies. We suggest for
future semesters to reorganize the schedules in
a way that students encounter recurring topics
iteratively in a constructive way.

1 Introduction

We present the first semester curriculum of a newly
revised bachelor’s program in Computational Lin-
guistics at the University of Heidelberg, Germany,
which was taught for the first time at the Department
of Computational Linguistics last winter semester.
Four courses are mandatory for the students in
the first semester: a comprehensive Introduction to
Computational Linguistics, backed up with a course
on Formal Foundations that emphasizes mathemat-
ical topics, and a general introduction to linguistic
core modules in Foundations of Linguistic Analysis,
the set up is completed by an Introduction to Pro-

∗This paper is about the curriculum taught at the Depart-
ment of Computational Linguistics at the University of Heidel-
berg, where the author used to work.

gramming that introduces core concepts of program-
ming employing the programming language Python.

The parallel design leads to a situation in which
related topics are introduced in the same semester
in parallel fashion. Redundant duplication per se is
to be avoided given that lecture time is always too
sparse and should be used most efficiently such that
there is enough room for examples, short in-course
exercises, questions and discussions.

We analyzed the syllabi for common topics and
plotted these topics to see whether they are dealt
with in a constructive way across the curricu-
lum. For future semesters we suggest some re-
organization to optimize the courses’ interactions.
Since all courses are taught in the department of
Computational Linguistics, decisions on both the
courses’ subtopics as well as their temporal sequenc-
ing is in full control of the local department.

We think that it is reasonable to keep the com-
mon topics and even the redundancy of introducing
them in more than one course only. Iterative re-
introduction could be helpful for the students if it
is accompanied by a reference to the earlier men-
tion as well as a motivation of the specific relevance
for the course at hand. We expect that such an iter-
ative approach reinforces understanding since it al-
lows the students to build upon their prior knowl-
edge and, furthermore, to approach the very same
concept from different perspectives. This iterative
method is inspired by the idea of spiral learning in
the sense of Jerome S. Bruner (Bruner, 1960) which
builds on a constructivist view on learning. It as-
sumes that learning is an active process in which
learners construct new ideas or concepts based upon

19

their prior knowledge. A curriculum can support this
process if it revisits its basic ideas repeatedly: ”the
spiral curriculum [..] turns back on itself at higher
levels” (Bruner, 1960, p.53).

The rest of this paper is organized as follows.
First, we briefly sketch the Bologna Process, an ef-
fort of harmonizing higher education in Europe and
also the special situation in Heidelberg being the
background against which the bachelor’s program
described is created. Then, we introduce the bach-
elor’s program of Computational Linguistics at the
University of Heidelberg in Germany and describe
its four mandatory courses of the first semester. We
analyze the syllabi for common topics, and, finally,
present a re-organized schedule for future semesters
which is inspired by an iterative learning approach.

2 Background

The European Bologna Process is an effort of Eu-
ropean countries to establish a common higher ed-
ucation area by the year 2010. Its central element
is the introduction of a two-cycle study system con-
sisting of bachelor’s and master’s degrees with com-
parable qualifications throughout Europe based on
a common credit transfer system which allows for
comparing the workload of individual courses.1

In the course of this international harmonizing ef-
fort, German universities are reorganizing their pro-
grams from traditional ”Magister” or ”Diplom” pro-
grams to modular bachelor’s and master’s programs.
Previously ”Magister” or ”Diplom” was first degree
in Germany, i.e. a bachelor’s degree did not exist.
A characteristic of the traditional programs was the
freedom of choice they offered to their students,
more pronounced in the ”Magister” programs than
in the ”Diplom” programs the latter of which were
traditionally realized in more technically oriented
disciplines and the former in the humanities. Both
type of programs were set up with a standard period
of study of nine to ten semesters but the average stu-
dent required more than this. European bachelor’s
programs predetermine a highly structured curricu-

1One European Credit Transfer System point cor-
responds to 25-30 hours workload on the student cf.
http://www.uni-heidelberg.de/studium/bologna/

materialien/diploma/ECTSUsersGuide05.pdf. For the
Bologna Process in general see http://ec.europa.eu/

education/policies/educ/bologna/bologna_en.html.

lum and offer a first university degree after six or
seven semester of study.

The Computational Linguistics department in
Heidelberg was pioneering with an early bachelor’s
program devised by Peter Hellwig at the beginning
of the Bologna Process. Adaptions of the orig-
inal bachelor’s program became necessary due to
general developments in the international Bologna
policy and finally the need for a revised program
emerged. This was realized in 2007 by Anette Frank
who had filled the by then vacant chair in Compu-
tational Linguistics. The change of the departmen-
tal head brought a change from a more vocationally
oriented program that prepared students to take jobs
in the local language technology industry to a more
academically oriented one, which is reflected in the
revised syllabus. We will point to differences be-
tween the original program and the revised program
where relevant.

3 The Study of Computational Linguistics
in Heidelberg

Computational linguistics (CL) is a
discipline between linguistics and com-
puter science which is concerned with the
computational aspects of the human lan-
guage faculty. [...] The applied compo-
nent of CL is more interested in the practi-
cal outcome of modeling human language
use. The goal is to create software prod-
ucts that have some knowledge of human
language. [...] Theoretical CL takes up
issues in formal theories. [...] Compu-
tational linguists develop formal models
simulating aspects of the human language
faculty and implement them as computer
programs. (www.aclweb.org/nlpfaq.txt,
credited to Hans Uszkoreit)

This quote from Hans Uszkoreit outlines the
knowledge and skills that a study of CL should equip
its students with: programming skills, handling of
formal models, algorithmic thinking and last but not
least an explicit knowledge of linguistic analysis.

All four areas are covered in our freshmen’s
classes which are introduced in more detail in subse-
quent subsections after the presentation of the over-
all program.

20

In Heidelberg, B.A. students have to collect 180
credit points to complete their study. They nor-
mally enroll in two or three subjects which means
that they take Computational Linguistics as main
subject (in which it provides 75% of the overall
workload), secondary main subject (50%) or mi-
nor subject (25%) 2 in combination with comple-
mentary subjects in the areas of computer science3,
humanities, psychology, economics, or law. Table
1 gives an overview of the courses in a 75% B.A.
The first semester requirements are the same in all
B.A. options involving Computational Linguistics.4

In addition to the courses depicted in Table 1 stu-
dents need to gain credits in Generic Competences
(’übergreifende Kompetenzen’ aka soft skills and
courses from other departments of the faculty).5

3.1 The Curriculum
We thought it relevant for the students to get ac-
quainted with Computational Linguistics proper as
early as the first semester. Therefore, in addition to
an introduction to formal foundations and program-
ming a comprehensive introduction to algorithms
and analysis in computational linguistics is manda-
tory. It was the first time that this combination of
courses was taught. Before that, the Introduction
to Computational Linguistics also introduced stu-
dents to core linguistic topics which were spread
across the whole course. The motivation for an inde-
pendent introduction to linguistics was that students
should get a profound background knowledge in lin-
guistic analysis such that further courses could build
on them. Before that, even basic concepts such as
morpheme had to be reintroduced. Introduction to
Programming and Formal Foundations used to be in
complementary distribution due to the fact that they
used to be taught by the one and the same person.
An additional lecturer position in the department al-
lowed us to to offer both courses in parallel.

The Freshmen’s curriculum consists of four
2The minor subject option had to be introduced due to for-

mal requirements. It is likely to be dispensed with in the future.
3Computer science can only be taken as minor subject.
4In the 25% B.A. the workload on students is reduced. They

only need to attend one of the two courses on formal founda-
tions either Mathematical Foundations in the first semester or
Logical Foundations in the second one.

5In the 75% B.A. students need to collect 20 credit points in
Generic Competences during their three-year study.

mandatory courses which are described in the fol-
lowing.

3.1.1 Introduction to Computational
Linguistics

The core lecture of the first semester is the Intro-
duction to Computational Linguistics. It is held four
hours a week and is worth six credit points. It in-
troduces the foundations of Computational Linguis-
tics, its research objectives and research methods. It
provides an overall survey of the field: the levels
of language description, formal-mathematical and
logical models as well as algorithmic approaches
for processing such formal models. Specific top-
ics are: dealing with ambiguities, approximation of
linguistic regularities, and the relation of language
and knowledge; some applications of Computational
Linguistics are also introduced. Mandatory read-
ings are selected sections from Jurafsky & Martin
(2000), complemented by chapters from Carstensen
et al. (2004) and Bird et al. (forthcoming).

This course is seen as the backbone of the first
semester curriculum. We therefore list the lectures
in detail. The content of the other three courses is
only briefly described below and will be discussed
in Section 4.

The first part of the schedule was strongly inspired
by Jurafsky & Martin (2000):

• Sub-token level (3 lectures): computing mor-
phology by means of regular expressions, au-
tomata, and transducers.

• Token level and context (4 lectures): identify-
ing tokens and computing them by means of
tokenizing, edit distance, n-grams, and part-of-
speech tagging.

• Syntactic level (6 lectures): syntactic analysis
in terms of constituency, dependency, phrase
structure grammars and probabilistic context
free grammars; formal grammar types: compu-
tation of syntactic structure by means of pars-
ing strategies and parsing algorithms, and syn-
tactic resources in terms of treebanks.

The second part of the schedule built more on
Carstensen et al. (2004). It mainly dealt with se-
mantic issues in term of analysis, computation, and
resources.

21

Computational Linguistics Linguistic Computational
Semester Modules Modules Modules

6 BA-Thesis, Oral Exam

5 Advanced Studies (Computational Linguistics Core Studies in Software
or Formal Linguistics) Theoretical Project

4 Core Studies in Computational Linguistics or Applied
Computer

3 Statistical Methods Algorithmic CL Formal Semantics Science
for CL

2 Logical Formal Syntax Advanced Programming
Foundations

1 Introduction Mathematical Foundations of Introduction to
to CL Foundations Linguistic Analysis Programming

Table 1: Modules in B.A. Computational Linguistics (75%)

• predicate logic (2 lectures)

• propositional logic and inferences (2 lectures)

• compositional semantics and Lambda calculus
(1 lecture)

• lexical semantics including resources (2 lec-
tures)

• discourse semantics / pragmatics (1 lecture)

The schedule was rounded off by two lectures
on applications, in particular information extraction
and machine translation.

There were eight assessments during the semester
of which students had to pass 60%. Most of them
dealt with theoretical comprehension, two more
practical assessments involved an introduction to ba-
sic UNIX tools, and (probabilistic) parsing with the
NLTK tools (Bird et al., forthcoming). We decided
to split the written exam into two sub-exams, the first
one took place in half time the second one in the fi-
nal week of the semester. Thus students could better
focus on the topics at hand.

3.1.2 Formal Foundations part 1:
Mathematical Foundations

Formal Foundations is held two hours a week and
is worth six credit points. The theory of formal
languages is a prerequisite for e.g. model-theoretic
semantics and parsing approaches. This lecture in

particular deals with mathematical foundations, for-
mal languages and formal grammars, regular expres-
sions and finite automata, context-free languages,
context-sensitive languages and Type-0 languages,
Turing machines, and computability theory. The
recommended reading includes Schöning (2001),
Klabunde (1998), Partee et al. (1990), as well as
Hopcroft and Ullman (1979).

There were eight graded assessments and the stu-
dents had to pass 50% of the overall tasks .

3.1.3 Foundations of Linguistic Analysis
The introduction to linguistics is also held two

hours a week and is worth four credit points. Lin-
guistic knowledge is a distinctive property of com-
putational linguistics. In this lecture students get a
thorough introduction to the core modules of the lan-
guage faculty: phonetics and phonology, morphol-
ogy, syntax, semantics, and pragmatics with a spe-
cial emphasis on linguistic phenomena of German.
The core reading was Meibauer et al. (2002).

There were ten small assessments of which the
students had to pass eight.

3.1.4 Introduction to Programming
The fourth mandatory course is held four hours

a week and is worth six credit points. In this lec-
ture, students learn to devise algorithmic solutions
and implementations for problems related to Natu-
ral Language Processing. Moreover, the course in-
troduces basic principles of software engineering in

22

order to equip the students with skills to develop cor-
rect and maintainable programs. These capabilities
are further facilitated in the Advanced Programming
course during the second semester and a comprehen-
sive hands-on software project during the advanced
phase of undergraduate studies.

Recommended reading is Demleitner (unpub-
lished), Lutz and Ascher (2007), Martelli (2006),
as well as the official Python documentation (van
Rossum, 2008).

There were ten programming assessments of
which the students had to hand in eight and earn half
of the points to be permitted to take the final exam.

3.2 Local Conditions

3.2.1 Students
Students require higher education entrance quali-

fication and no other prerequisites. Language of in-
struction is German but students come from various
countries and speak a diversity of native languages,
including Bulgarian, Chinese, English, French, Ital-
ian, Japanese, Kurdish, Polish, Russian, Spanish,
Turkish, Turkmen and Ukrainian. About 40 stu-
dents enrolled in Computational Linguistics, about
two third of which classified themselves as program-
ming beginners. In general about 20% of the first
semester students failed at least one of the courses
first time.

3.2.2 Realization of Courses
Three of the four courses under examination are

taught by faculty members holding a PhD (or a
comparable doctoral degree) and one by a member
of the faculty still completing his doctorate. The
courses are taught as lectures which are accompa-
nied by optional tutorial sessions. These tutorials
were coached by undergraduate student tutors who
mainly corrected and discussed the students’ assess-
ments. The students had to hand in assessments on a
regular basis which could either be solved as a group
or individually depending on the course. Passing a
substantial portion of the exercises was a prerequi-
site for being permitted to take the courses’ exams.
Each course provided its own wiki platform for the
students to communicate easily among themselves
as well as with student tutors and lecturers. The
wikis were also a common platform for publishing

example solutions by the tutors and keeping records
of answers to students’ questions.

4 Analysis of the Syllabi

The individual courses were planned in accordance
with the sequence of topics in standard textbooks
such as Jurafsky and Martin (2000) and Carstensen
et al. (2004) for Introduction to Computational Lin-
guistics, Schöning (2001) for Formal Foundations,
and Meibauer et al. (2002) for Foundations of Lin-
guistic Analysis. In Introduction to Programming
we used a hands-on manuscript (Demleitner, unpub-
lished).

The following list summarizes the main topics
that are dealt with in more than one syllabus. Com-
mon topics include:

• modules of linguistics: ICL, FLA

• regular expressions: ICL, FF, IP

• automata: ICL, FF

• grammar types: ICL, FF

• morphology: ICL, FLA

• segmentation, tokenization: ICL, FLA, IP

• n-grams: ICL, IP

• phrase-structure grammars: ICL, FF, FLA

• parsing: ICL, FF, IP

• lexical semantics: ICL, FLA

• model in semantics: ICL, FF

• discourse semantics, pragmatics: ICL, FLA

Before the semester started, the group of lectur-
ers met and arranged the general schedules of the
courses. During the semester, the lecturers happened
to lose track of the progression of other courses. In
some cases explicit cross-references were given, for
example in the case of lexical semantics, but most
of the time, concepts were (re-)introduced in each
course independently. Sometimes lecturers asked
students whether they were already familiar with
a newly introduced topic from other courses; then
there was a short discussion in class and students

23

were reminded of previous mentions of that topic. In
general, the didactics of the individual courses were
not adapted to take account of such recurrence of
topics across the curriculum.

Nevertheless, the parallel fashion of the four
courses at hand seemed to be reasonable even in
this form. Students deemed the interdependence be-
tween the courses as appropriate in the final evalua-
tion of the courses. They gave it an average score of
2.052 with a standard deviation of 1.05 on a scale of
1 (very appropriate) to 6 (non-existent).

Our conclusion is that a slight rescheduling of
the courses would improve teaching efficiency in
the sense that lecturers could count on already in-
troduced materials and students could benefit from
recurring topics by exploring them in the context of
different disciplines. Table 2 depicts our proposed
schedule.

An important and easily realizable change that we
suggest is to ensure that all linguistic modules are
dealt with first in Foundation of Linguistic Anal-
ysis (FLA) before they are set into a more formal
and also computational setting in the Introduction to
Computational Linguistics (ICL). This could be re-
alized by starting FLA with morphology right from
the beginning, instead of introducing the linguistic
modules first which was also part of the introduc-
tion in ICL. FLA also entered the areas of lexicogra-
phy and psycho linguistics (aka the mental lexicon)
which could be skipped in future semesters. Lec-
tures on phonetics and phonology which were taught
after morphology could be rescheduled to the end
of the semester. Both topics are relevant for appli-
cations which were introduced in the final sessions
of ICL and also for subsequent optional seminars
in speech generation or speech synthesis in higher
semesters.

In Formal Foundations (FF) lectures on gram-
mars, the Chomsky hierarchy, and decision theory
took place in lectures 5 and 6. They could be post-
poned and lectures on automata moved forward in-
stead. This would ensure that both of these topics
are dealt with in FF after they have been introduced
in ICL. Formal Foundations provides a more formal
and deepened insight into these topics and should,
therefore, be encountered last.

In Introduction to Programming (IP) issues of al-
gorithms and analysis are a means to an end: they

are used in programming examples and assessments.
Therefore, such topics should be referred to in IP
only after they have been introduced in ICL. The
coordination of this already worked out well with
respect to n-grams and phrase structure grammars.
Lectures on segmentation and regular expressions
took place in the last third of the semester and could
be moved forward to have them closer to their intro-
duction in the other courses.

From a student’s perspective these changes would
result in a kind of spiral curriculum. For example,
the first encounter with constituency and syntactic
phrase structure would be in FLA, the course which
is least formal and relates most to secondary school
knowledge. Their second involvement with phrase
structure would be in ICL and was more formal
and also involved computational aspects of syntactic
analysis. Then, they would learn more on the formal
characteristics of grammars in FF, and finally, they
perceived it as an application in an IP programming
task. If these lectures are seen as stages on a com-
mon pathway of learning then they conform to the
idea of spiral learning: in course of time the students
return to the same concepts each time on a more ad-
vanced level.

Table 2 gives a contrastive overview of the four
course curricula and shows how the individual topics
could temporally related to one another to support an
iterative leaning approach.

The first column counts the semester’s teaching
units in the average winter semester (which includes
some public holidays). Introduction to Computa-
tional Linguistics (ICL) and Introduction to Pro-
gramming (IP) took place twice a week, Foun-
dations of Linguistic Analysis (FLA) and Formal
Foundations (FF) only once. The 25th session is fol-
lowed by another week of revision and final exams,
which is not included here.

5 Conclusion

We proposed an enhanced curriculum for teaching
parallel freshman’s courses in Computational Lin-
guistics, in the spirit of the newly revised bache-
lor’s program in Computational Linguistics at the
University of Heidelberg. In particular, we exam-
ined the first semester curriculum of four mandatory
courses: Introduction to Computational Linguis-

24

Introduction to Formal Foundations of Introduction to
Computational Linguistics Foundations Linguistic Analysis Programming
1 sets, introduction

iterations, relations
2 introduction to morphology: morphemes data types

Computational Linguistics inflection, derivation
and linguistic modules

3 regular expression equivalence relation functions and
and automata function, induction methods

formal languages
4 morphology and syntax: PoS, strings, data structures,

finite automata topological fields control structures
5 morphology and automata: sequences

finite transducers DFAs and NFAs
6 tokenizer and NFAs, regular grammars data structures:

spelling editor regular expression dictionaries
7 tokenizing syntax: phrases encodings

and n-grams chunks, X-bar schema
8 tagging: rule-based, Pumping lemma, modules,

HMMs, Brill minimizing of automata packages, tests
9 tagging syntax: valency, semantic modules

roles, gram. functions
10 syntax and CFGs closures exercise: n-grams

constituency, dependency
11 grammar types, syntax: sentential level regular expressions

parsing CP/IP structures
12 parsing: bottom up, grammars, left-right regular expressions

top down derivation, Chomsky hierarchy
13 parsing: Earley semantics: meaning, PS grammar,

algorithm lexical semantics recursion
14 midterm exam decision theory file handling

15 treebanks and PCFCs parsing: CYK algorithm tuple, list
comprehensions

16 treebanks: semantics: compositional object-oriented
resources semantics programming: basics

17 semantics: predicate logic pushdown automata oo programming:
Turing machines, techniques

computability theory
18 Christmas puzzle: pragmatics: deixis, Christmas lecture

predicate logic and anaphora, information
model theory structure

19 semantics: propositional revision: oo programming:
logic and inferences Pumping lemma techniques

20 semantics: propositional pragmatics: speech acts exercise:
logic and inference conversational maxims, segmentation

presuppositions
21 semantics: compositional a simple grammar factory functions

semantics and λ-calculus for English
22 semantics: lexical phonetics blocks and visibility

semantics
23 semantics: lexical exceptions

semantics revision
24 semantics: discourse phonology object

semantics customization
25 applications exam revision exam

Table 2: Re-organized curriculum of first semester courses

25

tics, Formal Foundations, Foundations of Linguis-
tic Analysis, and Introduction to Programming, and
identified common topics. When the four courses
were first held in parallel last semester, it happened
that recurring topics were introduced independently
without taking into account their previous mention
in other courses. For future semesters we suggest a
better alignment of recurring topics and sketch re-
arrangements of the courses’ schedules. Instead of
pruning recurrent topics, we think that from the per-
spective of the psychology of learning it is useful
for the students if the same concepts and ideas are
approached from different angles iteratively.

Acknowledgments

We are indebted to our co-instructors in Heidel-
berg: Anette Frank, teaching the Introduction to
Computational Linguistics, Philipp Cimiano teach-
ing Formal Foundations, as well as Matthias Har-
tung and Wolodja Wentland, co-teaching Introduc-
tion to Programming, for sharing their experiences
and commenting on versions of this paper. We
would also like to thank Anke Holler for valuable
input on the history of the Heidelberg B.A. program,
Karin Thumser-Dauth for pointing us to the work of
Jerome Bruner, Piklu Gupta for commenting on a
pre-final version and also for help with the English.
A special thank goes to three anonymous reviewers
for their very detailed and constructive comments.

References
Steven Bird, Ewan Klein, and Edward Loper. forthcom-

ing. Natural Language Processing in Python.
Jerome S. Bruner. 1960. The Process of Education. Har-

vard University Press, Cambridge, Mass.
Kai-Uwe Carstensen, Christian Ebert, Cornelia Endriss,

Susanne Jekat, Ralf Klabunde, Hagen Langer. eds.
2004. Computerlinguistik und Sprachtechnologie.
Eine Einführung. Spektrum, Akademischer Verlag,
Heidelberg.

Markus Demleitner. unpublished. Programmieren I.
www.cl.uni-heidelberg.de/kurs/skripte/prog1/

html/

John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduc-
tion to Automata Theory, Languages and Computation
Addison Wesley.

Daniel Jurafsky and James H. Martin. 2000. Speech
and Language Processing. An Introduction to Natural

Language Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall Series in Artificial
Intelligence. Prentice Hall.

Ralf Klabunde. 1998. Formale Grundlagen der Linguis-
tik Narr, Tübingen.

Mark Lutz and David Ascher. 2007. Learning Python.
O’Reilly, 2nd Edition.

Alex Martelli. 2006. Python in a Nutshell. A Desktop
Quick Reference. O’Reilly, 2nd Edition.

Jörg Meibauer et al. eds. 2007. Einführung in die ger-
manistische Linguistik. Metzler, Stuttgart.

Barbara Partee et al.. 1990. Mathematical Methods in
Linguistics. Kluwer, Dordrecht.

Guido van Rossum. 2008. Python Tutorial. Python Soft-
ware Foundation. docs.python.org/tut/tut.html

Uwe Schöning. 2001. Theoretische Informatik kurzge-
fasst. Spektrum Akademischer Verlag in Elsevier.

26

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 27–35,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Defining a Core Body of Knowledge for the
Introductory Computational Linguistics Curriculum

Steven Bird
Department of Computer Science and Software Engineering

University of Melbourne, Victoria 3010, Australia
sb@csse.unimelb.edu.au

Abstract

Discourse in and about computational linguis-
tics depends on a shared body of knowledge.
However, little content is shared across the
introductory courses in this field. Instead,
they typically cover a diverse assortment of
topics tailored to the capabilities of the stu-
dents and the interests of the instructor. If the
core body of knowledge could be agreed and
incorporated into introductory courses several
benefits would ensue, such as the proliferation
of instructional materials, software support,
and extension modules building on a com-
mon foundation. This paper argues that it is
worthwhile to articulate a core body of knowl-
edge, and proposes a starting point based on
the ACM Computer Science Curriculum. A
variety of issues specific to the multidisci-
plinary nature of computational linguistics are
explored.

1 Introduction

Surveys of introductory courses in computational
linguistics and natural language processing provide
evidence of great diversity.1 Regional variation is
stark: courses may emphasise theory over program-
ming (or vice versa), rule-based approaches over
statistical approaches (or vice versa), tagging and
parsing over semantic interpretation (or vice versa),
and so on. The diversity is hardly surprising given
the particular background of a student cohort and the
particular expertise of an instructor.

1http://aclweb.org/aclwiki/index.php?
title=List_of_NLP/CL_courses

In spite of this variation, the introductory course
needs to serve some common, basic needs. For some
students, it will be the first step in a pathway leading
to specialised courses, graduate research, or employ-
ment in this field. These students should receive a
solid technical foundation and should come away
with an accurate picture of the many opportunities
that lie ahead. For students who do not continue, the
introductory course will be their main exposure to
the field. In addition to the technical content, these
students need to understand how the field draws
from and contributes back to its parent disciplines
of linguistics and computer science, along with tech-
nological applications that are helping to shape the
future information society. Naturally, this course
is also a prime opportunity to promote the field to
newcomers and encourage them to pursue advanced
studies in this area. In all cases, the introductory
course needs to cover a core body of knowledge.

The fact that a core body of knowledge exists
in computational linguistics is demonstrated anec-
dotally: a doctoral student is told to curtail her
extended discussions of basic POS tagging and CFG
parsing algorithms since they are part of the pre-
sumed knowledge of the audience; a researcher pre-
senting work to a general linguistics or computer sci-
ence audience discovers to his surprise that certain
methodologies or algorithms need to be explicated
and defended, even though they was uncontroversial
when presented at a conference; a keynote speaker at
a computational linguistics conference can presume
that certain theoretical programs and practical goals
of the field are widely accepted. These three areas
– terminology, methodology, ideology – constitute

27

part of the core body of knowledge of computational
linguistics. They provide us with the starting point
for identifying the concepts and skills to be covered
in the introductory course.

Identifying a core body of knowledge would bring
three major benefits. First, technical support would
be consolidated: instructional materials together
with implementations of standard algorithms would
be available in several programming paradigms and
languages. Second, colleagues without a research
specialization in computational linguistics would
have a non-controversial curriculum with external
support, a standard course that could be promoted
to a broad range of students as a mainstream option,
in both linguistics and computer science. Similarly,
new graduates beginning a teaching career would
be better equipped to push for the adoption of a
new computational linguistics or natural language
processing course at institutions where it is not
yet established. Third, employers and graduate
schools would be able to make assumptions about
the knowledge and skills of a new graduate.

The goal of this paper is to advocate the idea of
consensus around a body of knowledge as a promis-
ing way to coordinate the introductory computa-
tional linguistics curriculum, without attempting to
mandate the structure of individual courses or the
choice of textbooks. The paper is organised as fol-
lows: section 2 sets the scene by describing a vari-
ety of contexts in which computational linguistics
is taught, drawing on the author’s first-hand experi-
ence; section 3 sets out a possible organization for
the introductory topics in computational linguistics,
modelled on the ACM Computer Science Curricu-
lum; section 4 explores some implications of this
approach for curriculum and assessment. The paper
closes with remarks about next steps.

2 Contexts for Teaching and Learning in
Computational Linguistics

In this section a variety of scenarios are described
in which the author has had direct first-hand experi-
ence. All cases involve entry-level courses in com-
putational linguistics. They provide the back-drop
to the current proposal, exemplifying a range of
contexts in which a core body of knowledge would
need to be delivered, contexts imposing different

constraints on implementation.
Before embarking on this discussion it is helpful

to be reminded of the differing backgrounds and
goals of new students. Some want to use com-
putational techniques in the analysis of language,
while others want to use linguistic knowledge in the
development of language technologies. These back-
grounds and goals are orthogonal, leading to the grid
shown in Table 1.

I will begin with the most common context of a
graduate-level course, before progressing to upper-
level undergraduate, lower-level undergraduate, and
secondary levels.

2.1 Graduate-Level Courses

Dozens of graduate programs in computer science
and in linguistics have an introductory course on
computational linguistics or natural language pro-
cessing. In most cases, this is all the formal train-
ing a student will receive, and subsequent training
is happens in private study or on the job. In some
universities this is the entry point into a suite of more
advanced courses in such areas as lexical semantics,
statistical parsing, and machine translation. Even so,
it is important to consider the shared assumptions of
these specialised courses, and the needs of a student
who only undertakes the introductory course.

There are two principal challenges faced by
instructors at this level. The first is to adequately
cover the theoretical and practical sides of the field
in a single semester. A popular solution is not to try,
i.e. to focus on theory to the exclusion of practical
exercises, or to simply teach “programming for
linguists.” The former deprives students of the
challenge and excitement of writing programs to
automatically process language. The latter fails to
cover any significant domain-specific theories or
algorithms.

The second challenge is to address the diverse
backgrounds of students, ranging from those with a
computer science background to a linguistics back-
ground, with a scattering of students who have a
background in both or in neither.

The author taught at this level at the University
of Pennsylvania over a period of three years. Per-
haps the most apt summary of the experience is
triage. Cohorts fell into three groups: (i) students

28

Background: Arts and Humanities Background: Science and Engineering
Language
Analysis

Programming to manage language data,
explore linguistic models, and test empir-
ical claims

Language as a source of interesting prob-
lems in data modeling, data mining, and
knowledge discovery

Language
Technology

Knowledge of linguistic algorithms and
data structures for high quality, maintain-
able language processing software

Learning to program, with applications
to familiar problems, to work in language
technology or other technical field

Table 1: Summary of Students’ Backgrounds and Goals, from (Bird et al., 2008a)

who are well prepared in either linguistics or com-
puter science but not both (the majority) who will
perform well given appropriate intervention; (ii) stu-
dents who are well-prepared in both linguistics and
computer science, able to complete learning tasks
on their own with limited guidance; and (iii) stu-
dents with minimal preparation in either linguis-
tics or computer science, who lack any foundational
knowledge upon which to build. Resources targetted
at the first group invariably had the greatest impact.

2.2 Specialised Upper-Level Undergraduate
Courses

In contrast with graduate-level courses, a specialised
upper-level undergraduate course will typically be
an elective, positioned in the later stages of an
extended sequence of courses (corresponding to
ACM unit IS7 Natural Language Processing, see
§3). Here it is usually possible to make reliable
assumptions about background knowledge and
skills, and to provide training that is pitched at
exactly the right level.

The author taught at this level in the Computer
Science and Linguistics departments at the
University of Melbourne during the past five
years (five times in Computer Science, once in
Linguistics). In the Linguistics department, the
course began by teaching programming, with
illustrations drawn from linguistic domains,
before progressing to topics in text processing
(tokenization, tagging), grammars and parsing, and
data management. Laboratory sessions focussed on
the acquisition of programming skills, and we found
that a 1:5 staff-student ratio was insufficient.

In the Computer Science department, the first
approach was to introduce linguistics for 2-3 weeks
before looking at algorithms for linguistic process-
ing. This was unpopular with many students, who

did not see the motivation for learning about such
topics as morphology and verb subcategorization in
isolation from practical applications. A revised ver-
sion of the course opened with topics in text process-
ing, including tokenization, extracting text from the
web, and moving on to topics in language engineer-
ing. (Bird et al. (2008b) provide a more extended
discussion of opening topics.)

A third option is to teach computational linguistic
topics in the context of a specialised course in an
allied field. Thus a course on morphology could
include a module on finite-state morphology, and a
course on machine learning could include a mod-
ule on text mining. In the former case, a linguistic
domain is presupposed and the instructor needs to
teach the linguist audience about a particular corpus
to be processed or an algorithm to be implemented
or tested. In the latter case, a family of algorithms
and data structures is presupposed and the instructor
needs to teach a computer science audience about
linguistic data, structures, and processes that can
serve as a domain of application.

2.3 Cross-Disciplinary Transition

People entering computational linguistics from
either a linguistics or computer science background
are faced with a daunting challenge of learning
the fundamentals of the other field before they
can progress very far with the study of the target
domain. A major institution with a long history
of teaching computational linguistics will have
a cadre of graduate students and post-doctoral
researchers who can support an instructor in
teaching a course. However, one measure of the
success of the approach being advocated here are
that such institutions will be in the minority of those
where computational linguistics is taught. In such
contexts, a computational linguistics course will be

29

a lone offering, competing for enrolments with a
variety of more established electives. To compound
the problem, a newcomer to the field may be faced
with taking a course in a department other than
their host department, a course which presumes
background knowledge they lack. Additional
support and self-paced learning materials are
crucial. Efforts on filling out the computational
linguistics content in Wikipedia – by instructors and
students alike – will help the entire community.

2.4 Lower-Level Undergraduate Courses

An intriguing option for delivery of an introduc-
tion to computational linguistics is in the context
of entry-level courses in linguistics and computer
science. In some cases, this may help to address
the declining interest of students in these individual
disciplines.

As computer science finds a broader role in ser-
vice teaching, rather than in training only those stu-
dents doing a major, the curriculum needs to be
driven by topics of broad appeal. In the author’s cur-
rent first year teaching, such topics include climate
change, population health, social anthropology, and
finance. Many fundamental concepts in data struc-
tures and algorithms can be taught from such start-
ing points. It is possible to include language pro-
cessing as one of the drivers for such a course.

Many possibilities for including computational
linguistics exist in the second-level computer sci-
ence curriculum. For example, algorithmic methods
involving time-space trade-offs and dynamic pro-
gramming can be motivated by the task of building a
simple web search engine (Bird and Curran, 2006).
Concrete tasks involve web crawling, text extrac-
tion, stemming, and indexing. Spelling correction
can be used as a driver for teaching core computer
science concepts in associative arrays, linked lists,
and sorting by a secondary key.

An analogous opportunity exists in the context of
entry-level courses in linguistics. Linguistics stu-
dents will readily agree that most human knowledge
and communication is represented and expressed
using language. But it will come as a surprise that
language technologies can process language auto-
matically, leading to more natural human-machine
interfaces, and more sophisticated access to stored
information. In this context, a linguistics student

may grasp a broader vision for his/her role in the
multilingual information society of the future.

In both cases, the hope is that students are inspired
to do further undergraduate study spanning linguis-
tics and computer science, and to enter industry
or graduate school with a solid preparation and a
suitable mix of theoretical knowledge and technical
skills.

The major obstacle is the lack of resources avail-
able to the typical instructor, who is not a specialist
in computational linguistics, and who has to deliver
the course to a large audience having no prior inter-
est or knowledge in this area. They need simple
packages and modules that can be incorporated into
a variety of teaching contexts.

2.5 Secondary School

Programming and Information Technology have
found a place in the secondary curriculum in many
countries. The coursework is typically animated
with projects involving games, databases, and
dynamic websites. In contrast, the curriculum
involving the grammar and literature of a major
world language typically only uses information
technology skills for such mundane tasks as word
processing and web-based research. However, as
innovators in the language curriculum look for
new ways to enliven their classes with technology,
computational linguistics offers a ready-made
source of interesting problems and methods.

In Australia, theEnglish Languagecurriculum of
the Victorian Certificate of Education is a linguistics
program offered as part of the last two years of
secondary education (VCAA, 2006; Mulder et al.,
2001). This course provides a promising host for
computational linguistics content in the Victorian
secondary curriculum. The author has delivered an
“Electronic Grammar” module2 in an English class
in a Victorian secondary school over a three week
period, jointly with a teacher who has a double
degree in linguistics and computer science. Students
were taught the elements of programming together
with some simple applications involving taggers,
parsers and annotated corpora. These activities
served to reinforce students’ understanding of
lexical categories, lexical semantics, and syntactic

2http://nltk.org/electronic_grammar.html

30

ambiguity (i.e. prepositional phrase attachment).
Similar methods could be applied in second
language learning classes to locate common words
and idioms in corpora.

In this context, key challenges are the installa-
tion of specialised software (even a programming
language interpreter), overcoming the impenetrable
nature of standard part-of-speech tagsets by map-
ping them to simplified tagsets, and providing suit-
able training for teachers. A promising solution
is to provide a self-paced web-based programming
and testing environment, side-stepping issues with
school infrastructure and teacher training.3

3 Defining the CL Body of Knowledge

A promising approach for identifying the CL body
of knowledge is to begin with the ACMComputing
Curricula 2001 Computer Science Volume(ACM,
2001). In this scheme, the body of knowledge within
computer science is organised in a three-level hierar-
chy: subfields, units and topics. Each subfield has a
two-letter designator, such as OS for operating sys-
tems. Subfields are divided into several units, each
being a coherent theme within that particular area,
and each identified with a numeric suffix. Within
each unit, individual topics are identified. We can
select from this body of knowledge the areas that
are commonly assumed in computational linguistics
(see the Appendix), and then expect them to be part
of the background of an incoming computer science
student.

The field of linguistics is less systematised, and no
professional linguistics body has attempted to devise
an international curriculum standard. Helpful com-
pendia of topics exist, such as theLanguage Files
(Stewart and Vaillette, 2008). However, this does
not attempt to define the curriculum but to provide
supporting materials for introductory courses.

Following the ACM scheme, one could try to
establish a list of topics comprising the body of
knowledge in computational linguistics. This is not
an attempt to create a comprehensive ontology for
the field (cf. Cole (1997), Uszkoreit et al. (2003)),
but rather a simple practical organization of intro-
ductory topics.

3This is a separate activity of the author and colleagues,
available viaivle.sourceforge.net

CL. Computational Linguistics
CL1. Goals of computational linguistics

roots, philosophical underpinnings,
ideology, contemporary divides

CL2. Introduction to Language
written vs spoken language; linguistic levels;
typology, variation and change

CL3. Words, morphology and the lexicon
tokenization, lexical categories, POS-tagging,
stemming, morphological analysis, FSAs

CL4. Syntax, grammars and parsing
grammar formalisms, grammar development,
formal complexity of natural language

CL5. Semantics and discourse
lexical semantics, multiword expressions,
discourse representation

CL6. Generation
text planning, syntactic realization

CL7. Language engineering
architecture, robustness, evaluation paradigms

CL8. Language resources
corpora, web as corpus, data-intensive linguistics,
linguistic annotation, Unicode

CL9. Language technologies
named entity detection, coreference, IE, QA,
summarization, MT, NL interfaces

Following the ACM curriculum, we would expect
to designate some of these areas as core (e.g.
CL1-3), while expecting some number of additional
areas to be taken as electives (e.g. three from the
remaining six areas). A given curriculum would
then consist of three components: (a) bridging
studies so students can access the core knowledge;
(b) the core body of knowledge itself; and (c)
a selection of electives chosen to give students
a balance of linguistic models, computational
methodologies, and application domains. These
issues involve fleshing out the body of knowledge
into a sequential curriculum, the topic of the next
section.

4 Implications for the Curriculum

The curriculum of an introductory course builds out
from the body of knowledge of the field by lin-
earizing the topic areas and adding bridging studies
and electives. The result is a pathway that medi-
ates between students’ backgrounds and their goals
as already schematised in Table 1. Figure 1 dis-
plays two hypothetical pathways, one for students

31

Parsing

Computational Linguistics Core Body of Knowledge

LinguisticsPREPARATION

FOUNDATION

EXTENSION

Computer
Science

Mathematics,
Statistics

Psychology

Discourse Generation

...

Language
Engineering

...

"LING-380 Language Technology""CS-390 Natural Language Processing"

Figure 1: Curriculum as a Pathway Through the Core Body of Knowledge, with Two Hypothetical Courses

from a computer science background wanting to
learn about natural language processing, and one for
students from a linguistics background wanting to
learn about language technology. These could serve
as templates for individual advanced undergraduate
courses with names that are driven by local market-
ing needs rather than the need to emphasise the com-
putational linguistics content. However, they could
also serve as a guide for a whole series of course
selections in the context of a coursework masters
program. Clearly, the adoption of a core body of
knowledge has rather limited implications for the
sequence of an individual curriculum.

This section explores these implications for the
curriculum and raises issues for wider discussion
and exploration.

4.1 Diverse Entry Points

An identified body of knowledge is not yet a cur-
riculum. It must sit in the context of the background
and goals of a particular audience. An analysis of
the author’s experience in teaching computational
linguistics to several types of audience has led to
a four-way partitioning of the possible entry points,
shown in Figure 2.

The approaches in the top half of the figure are
driven by applications and skills, while those in the
bottom half are driven by theoretical concerns both
inside and outside computational linguistics. The
entry points in the top-left and bottom-right of the
diagram seem to work best for a computer science

audience, while the other two seem to work best
for a linguistics audience (though further work is
required to put such impressionistic observations on
a sound footing).

By definition, all students would have to cover
the core curriculum regardless of their entry point.
Depending on the entry point and the other courses
taken, different amounts of the core curriculum
would already be covered. For students with
minimal preparation, it might actually take more
than one course to cover the core curriculum.

4.2 Bridging Studies

One approach to preparation, especially suitable at
the graduate level, is to mandate bridging studies
for students who are not adequately prepared for the
introductory course. This could range from an indi-
vidual program of preparatory readings, to a sum-
mer intensive course, to a full semester course (e.g.
auditing a first or second year undergraduate course
such asIntroduction to Languageor Algorithms and
Data Structures).

It is crucial to take seriously the fact that some
students may be learning to program for the first
time in their lives. Apart from learning the syntax
of a particular programming language, they need to
learn a new and quite foreign algorithmic approach
to problem solving. Students often report that they
understand the language constructs and follow the
examples provided by the instructor, but find they
are unable to write new programs from scratch.

32

Programming First:
skills and problem-solving

focus, with CL for motivation,

illustrations, and applications

Text Processing First:
application focus, token-

ization, tagging, evaluation,

language engineering

Linguistics First:
syntax, semantics, morph-

ology, with CL for testing a

theory, exploring corpora

Algorithms First:
CL algorithms or CL as

application for an allied field

(e.g. AI, IR, ML, DB, HCI)

Language Computing

Application

Theory

Figure 2: Approaches to Teaching NLP

This accords with the finding that the way in
which programmers understand or write programs
differs greatly between the novice and the expert
(Lister et al., 2006). The issue is independent of
the computational linguistics context, and fits the
more general pattern that students completing an
introductory programming course do not perform as
well as expected (McCracken et al., 2001).

Bridging studies can also overlap with the course
itself, as already indicated in Figure 1. For example,
in the first week of classes one could run a quiz that
identifies students who are not sufficiently prepared
for the programming component of the course. Such
a quiz could include a diagnostic non-programming
task, like articulating the search process for looking
up a name in a telephone book, which is a predictor
of programming skill (Simon et al., 2006). Early
intervention could include extra support, readings,
classes, and so on. Some students could be alerted
to the fact that they will find the course very chal-
lenging. Some students in this category may opt
to switch to a less demanding course, which might
actually be the best outcome for all concerned.

4.3 Organizational Models

Linguistics Model: A natural way to structure the
computational linguistics curriculum is to adopt
organizational patterns from linguistics courses.
This could involve progression up through the
linguistic levels from phonology to discourse, or
a focus on the analysis of a particular language or

language family, the implementation of a particular
linguistic theory, or skills development in corpus
linguistics or field methods. In this way, content can
be packaged to meet local needs, while retaining
latitude to enter and exit the core body of knowledge
in computational linguistics.

Computer Science Model: The curriculum
could adopt organizational patterns from other
computer science courses. This could involve
progression through families of algorithms, or
navigating the processing pipeline of speech
understanding, or exploring the pieces of a
multi-component system (e.g. question answering).
As with the linguistics model, the course would be
badged to appeal to students in the local context,
while covering the core body of knowledge in
computational linguistics.

Vocational Model: In some contexts, established
theoretical courses dominate, and there is room to
promote a course that is focussed on building pro-
gramming skills in a new language or for some new
application area. This may result in a popular elec-
tive that gives students a readily marketable skill.4

This approach may also work at the secondary level
in the form of an after-school club. The course is
structured according to the features of a particular
programming language, but examples and projects
on text processing succeed in covering the core body

4The author found this approach to be successful in the case
of a database theory course, in which a semester project on
building a web database using PHP and MySQL added signifi-
cant appeal to an otherwise dry subject.

33

of knowledge in computational linguistics.
Dialectic Model: As discussed above, a major

goal for any curriculum is to take students from one
of the entry points in Figure 2 into the core body of
knowledge. One approach is to consider transitions
to topics covered in one of the other entry points:
the entry point is a familiar topic, but from there the
curriculum goes across to the other side, attempt-
ing to span the divide between computer science
and linguistics. Thus, a computational linguistics
curriculum for a computer science audience could
begin with algorithms (bottom-left) before applying
these to a range of problems in text processing (top-
left) only to discover that richer sources of linguistic
knowledge were required (bottom-right). Similarly
a curriculum for a linguistics audience could begin
with programming (top-right), then seek to apply
these skills to corpus processing for a particular lin-
guistic domain (bottom-left).

This last approach to the curriculum criss-crosses
the divide between linguistics and computer science.
Done well, it will establish a dialectic between the
two fields, one in which students reach a mature
understanding of the contrasting methodologies
and ideologies that exist within computational
linguistics including: philosophical assumptions
(e.g. rationalism vs empiricism); the measurement
of success (e.g. formal evaluation vs linguistic
explanation); and the role of observation (e.g.
a single datum as a valuable nugget vs massive
datasets as ore to be refined).

5 Conclusion

A core body of knowledge is presumed background
to just about any communication within the field
of computational linguistics, spanning terminology,
methodology, and ideology. Consensus on this body
of knowledge would serve to underpin a diverse
range of introductory curricula, ensuring they cover
the core without imposing much restriction on the
details of any particular course. Curricula beginning
from four very different starting points can progress
towards this common core, and thence to specialised
topics that maximise the local appeal of the course
and its function of attracting newcomers into the
field of computational linguistics.

There is enough flexibility in the curriculum of

most existing introductory computational linguis-
tics courses to accommodate a core body of knowl-
edge, regardless of the aspirations of students or the
research interests of an instructor. If the introductory
course is part of a sequence of courses, a larger body
of knowledge is in view and there will be scope for
switching content into and out of the first course. If
the introductory course stands alone as an elective
that leads to no other courses, there will also be
scope for adding or removing content.

The preliminary discussion of this paper leaves
many areas open for discussion and exploration.
The analyses and recommendations remain at the
level of folk pedagogy and need to be established
objectively. The various pathways have only been
described schematically, and still need to be fleshed
out into complete syllabuses, down to the level of
week-by-week topics. Support for skill development
is crucial, especially in the case of students learn-
ing to program for the first time. Finally, obsta-
cles to conceptual learning and skill development
need to be investigated systematically, with the help
of more sophisticated and nuanced approaches to
assessment.

Acknowledgments

The experiences and ideas discussed in this paper
have arisen during my computational linguistics
teaching at the Universities of Edinburgh,
Pennsylvania and Melbourne. I’m indebted to
several co-teachers who have accompanied me on
my journey into teaching computational linguistics,
including Edward Loper, Ewan Klein, Baden
Hughes, and Selina Dennis. I am also grateful
to many students who have willingly participated
in my explorations of ways to bridge the divide
between linguistics and computer science over the
past decade. This paper has benefitted from the
feedback of several anonymous reviewers.

34

References

ACM. 2001.Computing Curricula 2001: Computer Sci-
ence Volume. Association for Computing Machinery.
http://www.sigcse.org/cc2001/.

Steven Bird and James Curran. 2006. Building a
search engine to drive problem-based learning. In
Proceedings of the Eleventh Annual Conference on
Innovation and Technology in Computer Science Edu-
cation. http://eprints.unimelb.edu.au/
archive/00001618/.

Steven Bird, Ewan Klein, and Edward Loper. 2008a.
Natural Language Processing in Python.http://
nltk.org/book.html.

Steven Bird, Ewan Klein, Edward Loper, and Jason
Baldridge. 2008b. Multidisciplinary instruction with
the Natural Language Toolkit. InProceedings of the
Third Workshop on Issues in Teaching Computational
Linguistics. Association for Computational Linguis-
tics.

Ronald Cole, editor. 1997.Survey of the State of the Art
in Human Language Technology. Studies in Natural
Language Processing. Cambridge University Press.

Raymond Lister, Beth Simon, Errol Thompson, Jacque-
line L. Whalley, and Christine Prasad. 2006. Not
seeing the forest for the trees: novice programmers
and the SOLO taxonomy. InProceedings of the 11th
Annual SIGCSE Conference on Innovation and Tech-
nology in Computer Science Education, pages 118–
122.

Michael McCracken, Vicki Almstrum, Danny Diaz,
Mark Guzdial, Dianne Hagan, Yifat Ben-David
Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and
Tadeusz Wilusz. 2001. A multi-national, multi-
institutional study of assessment of programming
skills of first-year CS students.SIGCSE Bulletin,
33:125–180.

Jean Mulder, Kate Burridge, and Caroline Thomas.
2001.Macmillan English Language: VCE Units 1 and
2. Melbourne: Macmillan Education Australia.

Simon Simon, Quintin Cutts, Sally Fincher, Patricia
Haden, Anthony Robins, Ken Sutton, Bob Baker, Ilona
Box, Michael de Raadt, John Hamer, Margaret Hamil-
ton, Raymond Lister, Marian Petre, Denise Tolhurst,
and Jodi Tutty. 2006. The ability to articulate strategy
as a predictor of programming skill. InProceedings of
the 8th Australian Conference on Computing Educa-
tion, pages 181–188. Australian Computer Society.

Thomas W. Stewart and Nathan Vaillette, editors. 2008.
Language Files: Materials for an Introduction to Lan-
guage and Linguistics. Ohio State University Press.

Hans Uszkoreit, Brigitte Jörg, and Gregor Erbach. 2003.
An ontology-based knowledge portal for language
technology. InProceedings of ENABLER/ELSNET

Workshop “International Roadmap for Language
Resources”.

VCAA. 2006. English Language: Victorian
Certicate of Education Study Design. Victorian
Curriculum and Assessment Authority. http:
//www.vcaa.vic.edu.au/vce/studies/
englishlanguage/englangindex.htm%l.

Appendix: Selected Topics from ACM CS
Body of Knowledge Related to
Computational Linguistics

DS. Discrete Structures
DS1. Functions, relations and sets
DS2. Basic logic
DS5. Graphs and trees
DS6. Discrete probability

PF. Programming Fundamentals
PF1. Fundamental programming constructs
PF2. Algorithms and problem solving
PF3. Fundamental data structures
PF4. Recursion

AL. Algorithms and Complexity
AL1. Basic algorithmic analysis
AL2. Algorithmic strategies

IS. Intelligent Systems
IS1. Fundamental issues in intelligent systems
IS2. Search and constraint satisfaction
IS3. Knowledge representation and reasoning
IS7. (Natural language processing)

IM. Information Management
IM1. Information models and systems
IM3. Data modeling

SP. Social and Professional Issues
SP4. Professional and ethical responsibilities
SP5. Risks and liabilities of computer-based systems

SE. Software Engineering
SE1. Software design
SE2. Using application programming interfaces
SE9. Component-based computing

35

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 36–44,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Strategies for Teaching “Mixed” Computational Linguistic s classes

Eric Fosler-Lussier
Dept. of Computer Science and Engineering

Dept. of Linguistics
The Ohio State University

Columbus, OH 43210, USA
fosler@cse.ohio-state.edu

Abstract

Many of the computational linguistics classes
at Ohio State draw a diverse crowd of students,
who bring different levels of preparation to
the classroom. In the same classroom, we of-
ten get graduate and undergraduate students
from Linguistics, Computer Science, Electri-
cal Engineering and other departments; teach-
ing the same material to all of these students
presents an interesting challenge to the in-
structor. In this paper, I discuss some of the
teaching strategies that I have employed to
help integrate students in two classes on auto-
matic speech recognition topics; strategies for
a graduate seminar class and a standard “lec-
ture” class are presented. Both courses make
use of communal, online activities to facilitate
interaction between students.

1 Introduction

As one of the themes of the Teach-CL08 workshop
suggests, teaching students of many kinds and many
levels of preparation within a single course can be
an interesting challenge; this situation is much more
prevalent in a cross-disciplinary area such as compu-
tational linguistics (as well as medical bioinformat-
ics, etc.). At Ohio State, we also define the compu-
tational linguistics field relatively broadly, including
automatic speech recognition and (more recently)
information retrieval as part of the curriculum. Thus,
we see three major variations in the preparation of
students at OSU:

1. Home department: most of the students tak-
ing CL courses are either in the Linguistics

or Computer Science and Engineering depart-
ments, although there have been students from
foreign language departments, Electrical En-
gineering, Psychology, and Philosophy. Al-
though there are exceptions, typically the en-
gineers have stronger mathematical and com-
putational implementation skills and the non-
engineers have a stronger background in the
theoretical linguistics literature. Bringing these
groups together requires a balancing between
the strengths of each group.

2. Specialization (or lack thereof): Many of the
students, particularly in seminar settings, have
particular research agendas that are not tradi-
tionally aligned with the topic of the class (e.g.,
students interested in parsing or computer vi-
sion taking an ASR-learning course). Further-
more, there are often students who are not se-
nior enough to have a particular research track,
but are interested in exploring the area of the
course. Our courses need to be designed to
reach across areas and draw on other parts of
the curriculum in order to both provide con-
nections with the student’s current knowledge
base, and allow the student to take away use-
ful lessons even they do not plan to pursue the
topic of the course further.

3. Graduate vs. undergraduate students: in
both the CSE and Linguistics departments at
Ohio State, CL (and many other) courses are
open to both undergraduates and graduate stu-
dents. These courses fall far enough down the
prerequisite chain that the undergraduates who

36

enroll are usually very motivated (and conse-
quently do well), but one must keep in mind
the differences in abilities and time constraints
of each type of student. If the graduate stu-
dents outnumber the undergraduates, introduc-
ing mentoring opportunities can provide a re-
warding experience for all concerned.

From a practical perspective, this diversity
presents a significant challenge – especially in uni-
versities where enrollment concerns drive curricular
matters to some degree. Inclusiveness is also a rea-
sonable goal from a financial, not just a pedagog-
ical, perspective. CSE enrollments have declined
significantly since the dot-com bust (Vegso, 2008),
and while the declines are not as sharp as they once
were, the current environment makes it more diffi-
cult to justify teaching narrow, advanced courses to
only a few students (even if this were the practice in
the past).

In this paper, I describe a number of strategies
that have been successful in bringing all of these
diverse populations into two different classes of-
fered at OSU: a graduate seminar and a under-
grad/graduate lecture class. The topic of both classes
was statistical language processing, with a signif-
icant emphasis on ASR. Sample activities are dis-
cussed from each class.

While there are significant differences in the way
that each class runs, there are several common ele-
ments that I try to provide in all of my classes.:

I first establish the golden rule: primary
among my self-imposed rules is to make clear to
all participants that all points of view are to be re-
spected (although not necessarily agreed with), and
that students are coming to this class with different
strengths. If possible, an activity that integrates both
linguistic and computer science knowledge should
be brought in within the first week of the class; in
teaching CSE courses, I tend to emphasize the lin-
guistics a bit more in the first week.

I try to help students to engage with each
other: a good way to foster inter- and intra-
disciplinary respect is to have the students work col-
laboratively towards some goal. This can be chal-
lenging in a diverse student population setting; mon-
itoring progress of students and gently suggesting
turn-taking/mentoring strategies as well as design-

ing activities that speak to multiple backgrounds
can help ease the disparity between student back-
grounds. Preparing the students to engage with each
other on the same level by introducing online pre-
class activities can also help bring students together.

I try to allow students to build on previous
knowledge via processes other than lecturing:a
lecture, presented by either a student or a profes-
sor, is a “one-size-fits-all” solution that in a diverse
population can sometimes either confuse unprepared
students, bore prepared students, or both. Interac-
tive in-class and out-of-class activities have the ad-
vantage of real-time evaluation of the understanding
of students. This is not to say that I never lecture;
but as a goal, lecturing should be short in duration
and focused on coordinating understanding among
the students. Over the years, I am gradually reduc-
ing the amount of lecturing I do, replacing it with
other activities.

By putting some simple techniques into place,
both students and I have noticed a significant im-
provement in the quality of classes. In Section 2,
I describe improvements to a graduate seminar that
facilitated interaction among a diverse group of par-
ticipants. The most recent offering of the 10-week
seminar class had 22 participants: 14 from CSE,
7 from Linguistics, and one from another depart-
ment. In my informal evaluation of background, 13
of the 22 participants were relatively new to the field
of computational linguistics (< 2 years experience).
Student-directed searching for background materi-
als, pre-posing of questions via a class website, and
blind reviewing of extended project abstracts by fel-
low students were effective strategies for providing
common ground.

Section 3 describes improvements in a lecture-
style class (Foundations of Spoken Language Pro-
cessing) which has a similarly diverse participant
base: the most recently completed offering had 7
CSE and 3 Linguistics Students, with the under-
grad/graduate student ratio 3:7. Devoting one of the
two weekly sessions to in-class group practical ex-
ercises also bolstered performance of all students.

2 Seminar structure

In developing a graduate seminar on machine learn-
ing for language processing, I was faced with a seri-

37

ous challenge: the previous seminar offering (on se-
quential machine learning) two years prior was not
as inspiring as one would hope, with several students
not actively participating in the class. This happened
in part because students were permitted to suggest
papers to read that week, which usually came from
their own research area and often had esoteric termi-
nology and mathematics. There was nothing wrong
with the papersper se, but many of the students were
not able to bridge the gap from their own experience
to get into the depths of the current paper. While I
thought having students partially control the seminar
agenda might provide ownership of the material, in
practice it gave a few students control of the session
each time. In the more recent offering, this problem
was likely to be exacerbated: the increased diversity
of backgrounds of the students in the class suggested
that it would be difficult to find common ground for
discussing advanced topics in machine learning.

In previous seminars, students had given
computer-projected presentations of papers, which
led to rather perfunctory, non-engaged discussions.
In the offering two years prior, I had banned
computerized presentations, but was faced with
the fact that many students still came unprepared
for discussions, so the sessions were somewhat
hit-and-miss.

In sum, a reorganization of the class seemed de-
sirable that would encourage more student partici-
pation, provide students the opportunity to improve
their background understanding, and still cover ad-
vanced topics.

2.1 A revised seminar structure

The previous instantiation of the seminar met twice
weekly for 1 1/2 hours; in the most recent offering
the seminar was moved to a single 2 1/2 hour block
on Fridays. Each week was assigned a pair of stu-
dent facilitators who were to lead the discussion for
the week. The instructor chose roughly four papers
on the topic of the week: one or two were more ba-
sic, overview papers (e.g., the Rabiner HMM tuto-
rial (Rabiner, 1989) or Laffertyet al.’s Conditional
Random Fields paper (Lafferty et al., 2001)), and
the remaining were more advanced papers. Students
then had varying assigned responsibilities relating
to these papers and the topic throughout the week.
Out-of-class assignments were completed using dis-

cussion boards as part of Ohio State’s online course
management system.

The first assignment (due Tuesday evening) was
to find relevant review articles or resources (such as
class or tutorial slides) on the internet relating to the
topic of the week. Each student was to write and
post a short, one-paragraph summary of the tuto-
rial and its strengths and weaknesses. Asking the
students to find their own “catch-up” resources pro-
vided a wealth of information for the class to look
at, as well as boosting the confidence of many stu-
dents by letting them find the information that best
suited them. I usually picked one (or possibly two)
of the tutorials for the class to examine as a whole
that would provide additional grounding for class
discussions.

The second assignment (due Thursday evening
at 8 pm) was for each student to post a series of
questions on the readings of the week. At a min-
imum, each student was required to ask one ques-
tion per week, but all of the students far exceeded
this. Comments such as “I totally don’t understand
this section” were welcome (and encouraged) by the
instructor. Often (but not exclusively) these ques-
tions would arise from students whose background
knowledge was sparser. In the forum, there was a
general air of collegiality in getting everyone up to
speed: students often read each others’ questions
and commented on them inline. Figure 1 shows a
sample conversation from the course; many of the
small clarifications that students needed were han-
dled in this manner, whereas the bigger discussion
topics were typically dealt with in class. Students
often pointed out the types of background informa-
tion that, if discussed in class, could help them better
understand the papers.

The facilitators of the week then worked Thurs-
day evening to collate the questions, find the ones
that were most common across the attendees or that
would lead to good discussion points, and develop
an order for the discussion on Friday. Facilitators
started each Friday session with a summary of the
main points of the papers (10-15 minutes maximum)
and then started the discussion by putting the ques-
tions up to the group. It was important that the facil-
itators did not need to know the answers to the ques-
tions, but rather how to pose the questions so that a
group discussion ensued. Facilitators almost always

38

Student 1: After reading all of these papers on [topic], astoundingly,a few of the concepts have started to sink in. The
formulas are mostly gibberish, but at least they’re familiar. Anyhow, I have only mostly dumb questions....

• [Paper 1]:

– Anyone want to talk about Kullback-Leibler divergence?

– We’ve see this before, but I forget. What is anl2 norm?

– What’s the meaning of an equal symbol with a delta over it?

– When it talked about the “SI mode”, does that mean “speaker independent”?

• [Paper 2]:

– In multiple places, we see the where we have a vector and a matrix, and they compute the product of the
transpose of the vector with the matrix with the vector. Why are they doing that?

• [Paper 3]:

– I came away from this paper feeling like they gave a vague description of what they did, followed by results.
I mean, nice explanation of [topic] in general, but their whole innovation, as far as I can tell, fits into section
[section number]. I feel like I’m missing something huge here.

• [Paper 4]:

– So, they want to maximize2/|w|, so they decide instead to minimize|w|2/2. Why? I mean, I get that it’s a
reciprocal, so you change from max to min, and that squaring it still makes it a minimization problem. But
why square it? Is this another instance of making the calculus easier?

– What are the ‘sx’ and ‘si’ training sentences?

Student 2: But why square it? Is this another instance of making the calculus easier?I think so. I think it has to do
with the fact that we will take its derivative, hence the2 and 1/2 cancel each other. And since they’re just getting an
argmax, the2 exponent doesn’t matter, since the maximumx2 can be found by finding the maximumx.
Student 3: ‘sx’ are the phonetically-compact sentences in the TIMIT database and ‘si’ are the phonetically-diverse
sentences.
Student 4: Ah thanks for that; I’ve wondered the same thing when seeing the phrase “TIMIT si/sx”
Student 5: Oh, so ‘si’ and ‘sx’ do not represent the phones they are trying to learn and discern?

Figure 1: Conversation during question posting period in online discussion forum. Participants and papers have been
anonymized to protect the students.

had something to contribute to the conversation; re-
leasing them from absolutely needing to be sure of
the answer made them (and other participants) able
to go out on a limb more in the discussion.

I found that since the instructor usually has more
background knowledge with respect to many of the
questions asked, it was critical for me to have a
sense of timing for when the discussion was falter-
ing or getting off track and needed for me to jump
in. I spent roughly a half hour total of each session
(in 5-10 minute increments) up at the blackboard
quickly sketching some material (such as algorithms
unknown to about half of the class) to make a con-
nection. However, it was also important for me to
realize when to let the control of the class revert to

the facilitators.
The blackboard was a communal workspace: in

some of the later classes students also started to get
up and use the board to make points, or make points
on top of other students drawings. In the future, I
will encourage students to use this space from the
first session. I suspect that the lack of electronic pre-
sentation media contributed to this dynamism.

2.2 Class projects

The seminar required individual or team projects
that were developed through the term; presentations
took place in the last session and in finals week.
Three weeks prior to the end of term, each team sub-
mitted a two-page extended abstract describing their

39

What single aspect of the course did you find most helpful? Why?
Discussions.
Very good papers used.
Style of teaching atmosphere.
Just the discussion style.
Informal, discussion based.
The project.
[Instructor] really explained the intuitions behind the dense math. The pictorial method to explain algorithms.
The breadth of NLP problems addressed.
Instructor’s encouragement to get students involved in theclassroom discussion.
Interaction between students, sharing questions.
Reading many papers on these topics was good training on how to pull out the important parts of the papers.

What single change in the course would you most like to see? Why?
There are a lot of papers – keeps us busy and focused on the course, but it may be too much to comprehend in a single
term.
More background info.
None.
I think it is highly improved from 2 years ago. Good job.
Less emphasis on ASR.
Have some basic optional exercises on some of the math techniques discussed.
Less reading, covered at greater depth.
Make the material slightly less broad in scope.
More quick overviews of the algorithms for those of us who haven’t studied them before.

Figure 2: Comments from student evaluation forms for the seminar class

work, as if for a conference submission.
Each abstract was reviewed by three members

of the class using a standard conference reviewing
form; part of the challenge of the abstract submis-
sion is that it needed to be broad enough to be re-
viewed by non-experts in their area, but also needed
to be detailed enough to show that it was a reason-
able project. The reviews were collated and pro-
vided back to authors; along with the final project
writeup the team was required to submit a letter ex-
plaining how they handled the criticisms of the re-
viewers. This proved to be an excellent exercise
in perspective-taking (both in reviewing and writing
the abstract) and provided experience in tasks that
are critical to academic success.

I believe that injecting the tutorial-finding and
question-posting activities also positively affected
the presentations; many of the students used ter-
minology that was developed/discussed during the
course of the term. The project presentations
were generally stronger than presentations for other

classes that I have run in the past.

2.3 Feedback on new course structure

The student evaluations of the course were quite
positive (in terms of numeric scores), but perhaps
more telling were the free-form comments on the
course itself. Figure 2 shows some of the comments,
which basically show that students enjoyed the dy-
namic, interactive atmosphere; the primary negative
comment was about how much material was pre-
sented in the course.

After this initial experiment, some of my col-
leagues adopted the technique of preparing the stu-
dents for class via electronic discussion boards for
their own seminars. This has been used already for
two CL seminars (one at Ohio State and another at
University of Tübengen), and plans for a third semi-
nar at OSU (in a non-CL setting) are underway. The
professors leading those courses have also reported
positive experiences in increased interaction in the
class.

40

All in all, while the course was clearly not perfect,
it seems that many of the simple strategies that were
put into place helped bridge the gap between the
backgrounds of students; almost all of the students
found the class a rewarding experience. It is not
clear how this technique will scale to large classes:
there were roughly 20 participants in the seminar
(including auditors who came occasionally); dou-
bling the number of postings would probably make
facilitation much more difficult, so modifications
might be necessary to accommodate larger classes.

3 Group work within a lecture class

I have seen similar issues in diversity of prepara-
tion in an undergraduate/graduate lecture class enti-
tled “Foundations of Spoken Language Processing.”
This class draws students from CSE, ECE, and Lin-
guistics departments, and from both undergraduate
and graduate populations.

3.1 Course structure

In early offerings of this class, I had primarily pre-
sented the material in lecture format; however, when
I taught it most recently, I divided the material
into weekly topics. I presented lectures on Tues-
day only, whereas on most Thursdays students com-
pleted group lab assignments; the remaining Thurs-
days were for group discussions. For the practi-
cal labs, students would bring their laptops to class,
connect wirelessly to the departmental servers, and
work together to solve some introductory problems.

The course utilizes several technologies for build-
ing system components: MATLAB for signal pro-
cessing, the AT&T Finite State Toolkit (Mohri et
al., 2001) for building ASR models and doing text
analysis1, and the SRI Language Modeling Toolkit
(Stolcke, 2002) for training n-gram language mod-
els. One of the key ideas behind the class is that
students learn to build an end-to-end ASR system
from the component parts, which helps them iden-
tify major research areas (acoustic features, acous-
tic models, search, pronunciation models, and lan-
guage models). We also re-use the same FST tools
to build the first pieces of a speech synthesis mod-
ule. Componentized technologies allow the students

1Subsequent offerings of the course will likely use the Open-
FST toolkit (Riley et al., 2008).

to take the first step beyond using a black-box sys-
tem and prepare them to understand the individual
components more deeply. The FST formalism helps
the Linguistics students, who often come to the class
with knowledge of formal language theory.

The group activities that get students of varying
backgrounds to interact constitute the heart of the
course, and provide a basis for the homework assign-
ments. Figure 3 outlines the practical lab sessions
and group discussions that were part of the most re-
cent offering of the course.

Weeks 1 and 3 offer complementary activities that
tend to bring the class together early on in the term.
In the first week, students are given some speech
examples from the TIMIT database; the first ex-
ample they see is phonetically labeled. Using the
Wavesurfer program (Sjölander and Beskow, 2000),
students look for characteristics in spectrograms that
are indicative of particular phonemes. Students are
then presented with a second, unlabeled utterance
that they need to phonetically label according to a
pronunciation chart. The linguists, who generally
have been exposed to this concept previously, tend
to lead groups; most students are surprised at how
difficult the task is, and this task provokes good
discussion about the difference between canonical
phonemes versus realized phones.

In the third week, students are asked to recreate
the spectrograms by implementing the mel filter-
bank equations in MATLAB. Engineering students
who have seen MATLAB before tend to take the
lead in this session, but there has been enough rap-
port among the students at this point, and there is
enough intuition behind the math in the tutorial in-
structions, that nobody in the previous session had
trouble grasping what was going on with the math:
almost all of the students completed the follow-on
homework, which was to fully compute Mel Fre-
quency Cepstral Coefficients (MFCCs) based on the
spectrogram code they developed in class. Because
both linguists and engineers have opportunities to
take the lead in these activities they help to build
groups that trust and rely on each other.

The second week’s activity is a tutorial that I had
developed for the Johns Hopkins University Sum-
mer School on Human Language Technology (sup-
ported by NSF and NAACL) based around the Finite
State Toolkit; the tutorial acquaints students with

41

Week Lecture topic Group activity
1 Speech production &

perception
Group discussion about spectrograms and phonemes; groups use
Wavesurfer (Sjölander and Beskow, 2000) to transcribe speech data.

2 Finite state representationsUse FST tools for a basic language generation task where parts of speech
are substituted with words; use FST tools to break a simple letter-
substitution cipher probabilistically.

3 Frequency analysis &
acoustic features

Use MATLAB to implement Mel filterbanks and draw spectrograms (re-
ferring back to Week 1); use spectral representations to develop a “Radio
Rex” simulation.

4 Dynamic Time Warping,
Acoustic Modeling

Quiz; Group discussion: having read various ASR toolkit manuals, if you
were a technical manager who needed to direct someone to implement
a system, which would you choose? What features does each toolkit
provide?

5 HMMs, EM, and Search The class acts out the token passing algorithm (Young et al.,1989), with
each group acting as a single HMM for a digit word (one, two, three...),
and post-it notes being exchanged as tokens.

6 Language models Build language models using the SRILM toolkit (Stolcke, 2002), and
compute the perplexity of Wall Street Journal text.

7 Text Analysis &
Speech Synthesis

Use FST tools to turn digit strings like ”345” into the corresponding word
string (”three hundred and forty five”). This tutorial grants more indepen-
dence than previous ones; students are expected to figure outthat ”0” can
be problematic, for example.

8 Speech Synthesis
Speaker Recognition

Group discussion on a speaker recognition and verification tutorial paper
(Campbell, 1997)

9 Spoken Dialogue Systems Quiz; General discussion of any topic in the class.
10 Project presentations over the course of both sessions

Week Homework Task
2 Rank poker hands and develop end-to-end ASR system, both using finite state toolkit.
3 Finish Radio Rex implementation, compute MFCCs.
4 Replace week 2 homework’s acoustic model with different classifier/probabilistic model.
5 Implement Viterbi algorithm for isolated words.
6 Lattice rescoring with language models trained by the student.
7 Text normalization of times, dates, money, addresses, phone numbers, course numbers.

Figure 3: Syllabus for Foundations of Spoken Language Processing class with group activities and homeworks.

various finite state operations; the two tasks are a
simplified language generation task (convert the se-
quence “DET N V DET N” into a sentence like “the
man bit the dog”) and a cryptogram solver (solve
a simple substitution cipher by comparing frequen-
cies of crypttext letters versus frequencies of plain-
text letters). The students get experience, in par-
ticular, with transducer composition (which is novel
for almost all of the students); these techniques are
used in the first homework, which involves build-
ing a transducer-based pronunciation model for dig-
its (converting “w ah n” into “ONE”) and imple-
menting a FST composition chain for an ASR sys-
tem, akin to that of (Mohri et al., 2002). A sub-

sequent homework reuses this chain, but asks stu-
dents to implement a new acoustic model and re-
place the acoustic model outputs that are given in
the first homework. Similarly, practical tutorials on
language models (Week 6) and text analysis (Week
7) feed into homework assignments on rescoring
lattices with language models and turning different
kinds of numeric strings (addresses, time, course
numbers) into word strings.

Using group activities raises the question of how
to evaluate individual understanding. Homework
assignments in this class are designed to extend
the work done in-class, but must be done individ-
ually. Because many people will be starting from a

42

group code base, assignments will often look simi-
lar. Since the potential for plagiarism is a concern,
it is important that the assignments extend the group
activities enough that one can distinguish between
group and individual effort.

Another group activity that supports a homework
assignment is the Token Passing tutorial (Week 5).
The Token Passing algorithm (Young et al., 1989)
describes how to extend the Viterbi algorithm to
continuous speech: each word in the vocabulary is
represented by a single HMM, and as the Viterbi al-
gorithm reaches the end of an HMM at a particu-
lar timeframe, a token is “emitted” from the HMM
recording the ending time, word identity, acous-
tic score, and pointer to the previous word-token.
The students are divided into small groups and each
group is assigned a digit word (one, two, ...) with
a particular pronunciation. The HMM topology as-
sumes only one, self-looping state per phone for
simplicity. The instructor then displays on the pro-
jector a likelihood for every phone for the first time
frame. The groups work to assign the forward prob-
abilities for the first frame. Once every group is syn-
chronized, the second frame of data likelihoods is
displayed, and students then again calculate forward
probabilities, and so forth. After the second frame,
some groups (“two”) start to emit tokens, which are
posted on the board; groups then have to also con-
sider starting a new word at the third time step. The
activity continues for roughly ten frames, at which
point the global best path is found. Including this ac-
tivity has had a beneficial effect on homework per-
formance: a significantly higher proportion of stu-
dents across all backgrounds correctly completed an
assignment to build an isolated word decoder in this
offering of the class compared to the previous offer-
ing.

Some of the activities were more conceptual in
nature, involving reading papers or manuals and
discussing the high-level concepts in small groups
(Weeks 4 and 8), with each group reporting back to
the class. One of the skills I hope to foster in stu-
dents is the ability to pick out the main points of pa-
pers during the reports back to the main group; I am
still thinking about ways to tie these activities into
strengthening the project presentations (Week 10).

For the next offering of the class in the upcoming
quarter, I would like to reuse the ideas developed in

the seminar to reduce the amount of lecturing. The
strategy I am considering is to give the students the
old lecture slides as well as readings, and have them
post questions the evening before class; we can then
focus discussion on the points they did not under-
stand. This will likely require the instructor to seed
the online pre-discussion with some of the impor-
tant points from the slides. These changes can be
discussed at the workshop.

3.2 Feedback

Student evaluations of the course were very positive;
in response to “what single aspect of the course did
you find most helpful?,” half of the students chose to
respond, and all of the responses focused on the util-
ity of the hands-on practicals or homeworks. Anec-
dotally, I also felt that students were better able to re-
tain the concepts presented in the course in the most
recent offering than in previous offerings.

4 Summary

In trying to serve multiple populations of students
with different aims and goals, I have found that
activities can be designed that foster students’ de-
velopment through team problem-solving and small
group work. Online resources such as discussion
boards and tutorials using software toolkits can be
effectively deployed to minimize the discrepancy in
preparations of the students.

Moving away from lecture formats (either in lec-
ture class or seminar presentations) has been helpful
in fostering cross-disciplinary interaction for both
seminar and lecture classes. I have found that ac-
tive learning techniques, such as the ones described
here, provide more immediate feedback to the in-
structor as to what material is understood and what
material needs extra emphasis.

Acknowledgments

The author would like to thank the anonymous students
who agreed to have their conversations published and
whose comments appear throughout the paper, as well as
Mike White for providing input on the use of the seminar
strategies in other contexts. This work was supported in
part by NSF CAREER grant IIS-0643901. The opinions
and findings expressed here are of the author and not of
any funding agency.

43

References

J.P. Campbell. 1997. Speaker recognition: A tutorial.
Proceedings of IEEE, 85:1437–1462.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. InProc. 18th In-
ternational Conference on Machine Learning.

M. Mohri, F. Pereira, and M. Riley, 2001.AT&T FSM
LibraryTM – General-Purpose Finite-State Machine
Software Tools. AT&T, Florham Park, New Jersey.
Available at http://research.att.com/f̃smtools/fsm.

M. Mohri, F. Pereira, and M. Riley. 2002. Weighted
finite-state transducers in speech recognition.Com-
puter Speech and Language, 16(1):69–88.

L. Rabiner. 1989. A tutorial on hidden Markov models
and selected applications in speech recognition.Pro-
ceedings of the IEEE, 77(2).

M. Riley, J. Schalkwyk, W. Skut, C. Allauzen, and
M. Mohri. 2008. OpenFst library. www.openfst.org.

K. Sjölander and J. Beskow. 2000. Wavesurfer – an open
source speech tool. InProceedings of ICSLP, Beijing.

A. Stolcke. 2002. SRILM — an extensible language
modeling toolkit. InProc. Int’l Conf. on Spoken Lan-
guage Processing (ICSLP 2002), Denver, Colorado.

J. Vegso. 2008. Enrollments and degree produc-
tion at us cs departments drop further in 2006/2007.
http://www.cra.org/wp/index.php?p=139.

S. Young, N. Russell, and J. Thornton. 1989. To-
ken passing: a simple conceptual model for connected
speech recognition systems. Technical Report TR-38,
Cambridge University Engineering Department, Cam-
bridge, England.

44

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 45–53,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

The evolution of a statistical NLP course

Fei Xia
University of Washington
Department of Linguistics

Box 354340
Seattle, WA 98195-4340

fxia@u.washington.edu

Abstract

This paper describes the evolution of a statis-
tical NLP course, which I have been teaching
every year for the past three years. The pa-
per will focus on major changes made to the
course (including the course design, assign-
ments, and the use of discussion board) and
highlight the lessons learned from this experi-
ence.

1 Introduction

In the past two decades, there has been tremendous
progress in natural language processing (NLP) and
NLP techniques have been applied to various real-
world applications such as internet/intranet search
and information extraction. Consequently, there
has been an increasing demand from the industry
for people with special training in NLP. To meet
the demand, the University of Washington recently
launched a new Professional Masters Program in
Computational Linguistics (CLMA). To earn the
master’s degree, students must take nine courses and
complete a final project. The detail of the program
can be found in (Bender et al., 2008).

One of the required courses is LING572 (Ad-
vanced statistical methods in NLP), a course that
I have been teaching every year for the past three
years. During the process and especially in Year 3, I
have made many changes to course content, assign-
ments, and the usage of discussion board. In this
paper, I will describe the evolution of the course and
highlight the lessons learned from this experience.

2 Background

LING572 is part of the four-course NLP core se-
quence in the CLMA program. The other three
are LING570 (Shallow Processing Techniques for
NLP), LING571 (Deep Processing Techniques for
NLP), and LING573 (NLP Systems and Applica-
tions). LING570 and LING571 are organized by
NLP tasks (e.g., language model, POS tagging,
Named-entity tagging, chunking for LING570, and
parsing, semantics and discourse for LING571);
LING572 is organized by machine learning meth-
ods; LING573 is the place where students use the
knowledge learned in LING570-572 to build NLP
systems for some real applications (e.g., question
answering and information extraction).

The prerequisites for LING572 are (1) at least
one college-level course in probability and statistics,
(2) strong programming skills, and (3) LING570.
The quarter is ten weeks long, with two 80-minute
sessions per week. The class size is relatively
small, with ten to twenty students. Most students
in LING572 are from the CLMA program and are
taking LING571 and other NLP courses at the same
time. About a half of the students are from computer
science background, and the remaining are from lin-
guistics or other humanity background.

3 Course content

It would be impossible to cover all the major ma-
chine learning (ML) algorithms in one quarter;
therefore, one of the decisions that I made from the
very beginning is that the course would focus on
major classification algorithms and spend only one
week showing how these algorithms can be applied
to sequence labeling problems. I believe that once

45

students have a solid grasp of these algorithms, it
would be easy for them to learn algorithms for other
kinds of learning problems (e.g., regression, cluster-
ing, and ranking).

The next question is what classification algo-
rithms should be included in the syllabus. Table 1
shows the topics covered each year and the num-
ber of sessions spent on each topic. The topics can
be roughly divided into three units: (1) supervised
learning, (2) semi- and unsupervised learning, and
(3) other related topics.

3.1 Year 1

The teaching plan for Year 1 turned out to be too
ambitious. For instance, six supervised algorithms
were covered in four weeks (i.e., 8 sessions) and four
semi-/unsupervised algorithms were covered in 2.5
weeks. Such a tight schedule did not leave sufficient
time for students to digest all the important concepts
and equations.

3.2 Year 2

In Year 2, I reduced the amount of time spent on Unit
(2). For instance, I spent only one session discussing
the main ideas in the EM algorithm, without going
through the details of the mathematic deduction and
special cases of the algorithm such as the backward-
forward algorithm and the inside-outside algorithm.
Other changes were made to other units, as shown in
the second column of Table 1.

3.3 Year 3

In the first two years, my lecturing style was simi-
lar to the tutorials given at major NLP conferences
(e.g., ACL) in that I covered a lot of material in a
short period of time and expected students to digest
all the details after class. This approach did not work
very well because our students came from very di-
verse backgrounds (e.g., linguistics, literature, com-
puter science) and many of them were not famil-
iar with mathematic concepts (e.g., Lagrangian, dual
problem, quadratic programming, hill climbing) that
are commonly used in machine learning. Most of
the students were also new to NLP, taking only
one quarter of NLP-related courses before taking
LING572.

Based on this observation, I made major changes
to the syllabus in Year 3: I reduced the lecture ma-

Table 1: Content changes over the years (-: topics not
covered, *: topics moved to LING570 in the previous
quarter, †: topics moved to an NLP seminar)

Y1 Y2 Y3
(1) Supervised learning:
kNN - 1 1
Decision Tree 1 1 1
Decision List 1 1 -
Naive Bayes - 1 2
Maximum entropy (MaxEnt) 2 2 4
Support vector machine (SVM) - - 4
Transformation-based learning (TBL) 2 1 1
Bagging 1 1 -
Boosting 1 2 -

subtotal 8 10 13
(2) Semi-/unsupervised learning:
Semisupervised 2 1 1†
Unsupervised 3 1 -†

subtotal 5 2 1
(3) Other topics:
Introduction 1 1 1
Information theory - - 1
Feature selection - 1 1
System combination 1 - -
Relation between FSA and HMM 1 - -*
Multiclass→ binary - 1 -*
Beam search - 1 -*
Student presentation 1 1 -
Recap, summary 3 2 3

subtotal 7 7 6
Total 20 19 20

terial and spent more time on discussion and illus-
trative examples. For example, on average 1.25 ses-
sions were spent on a supervised algorithm in Year
2 and that number increased to 2.17 sessions in Year
3. I also added one session on information theory,
which provides theoretic foundation for many learn-
ing methods. Because of this change, some impor-
tant topics had to be cut, as shown in the last col-
umn of Table 1. Fortunately, I was able to incorpo-
rate some of the removed topics to two other courses
(i.e., LING570 and a seminar on semi- and unsuper-
vised learning) that I was teaching in the same year.
The feedback from students indicated that the new
course plan for Year 3 was more effective than the
ones for the previous two years.

Another change I made was that I divided the
teaching material into three types: (1) the essential
knowledge that students should fully understand, (2)

46

more advanced topics that students should be aware
of but do not have to understand all the details, and
(3) related topics that are not covered in class but are
available on additional slides for people who want
to learn more by themselves. Taking MaxEnt as an
example, Type (1) includes the maximum entropy
principle, the modeling, GIS training, and decod-
ing; Type (2) includes regularization and the math-
ematic proof that shows the relation between maxi-
mum likelihood and maximum entropy as provided
in (Ratnaparkhi, 1997), and Type (3) includes L-
BFGS training and the similarity between SVM and
MaxEnt with regularization (Klein, 2007). Making
this distinction helps students focus on the most es-
sential part of the algorithms and at the same time
provides additional material for more advanced stu-
dents.

4 Reading material

One challenge of teaching a statistic NLP course is
the lack of good textbooks on the subject; as a result,
most of the reading material come from conference
and journal papers. The problem is that many of the
algorithms covered in class were originally proposed
in non-NLP fields such as machine learning and ap-
plied mathematics, and the original papers are often
heavy in mathematical proofs and rarely refer to the
NLP tasks that our students are familiar with. On the
other hand, NLP papers that apply these algorithms
to NLP tasks often assume that the readers are al-
ready familiar with the algorithms and consequently
do not explain the algorithms in detail.

Because it is hard to find a suitable paper to cover
all the theoretic and application aspects of a learning
algorithm, I chose several papers for each algorithm
and specified the sections that the students should
focus on. For instance, for Maximum Entropy, I
picked (Berger et al., 1996; Ratnaparkhi, 1997) for
the basic theory, (Ratnaparkhi, 1996) for an appli-
cation (POS tagging in this case), and (Klein and
Manning, 2003) for more advanced topics such as
optimization and smoothing.

For the more sophisticated learning methods (e.g.,
MaxEnt and SVM), it is very important for students
to read the assigned papers beforehand. However,
some students choose not to do so for various rea-
sons; meanwhile, other students might spend too

much time trying to understand everything in the pa-
pers. To address this problem, in Year 3 I added five
reading assignments, one for each of the following
topics: information theory, Naive Bayes, MaxEnt,
SVM, and TBL. Each assignment consists of simple
questions such as the one in Appendix A. Students
were asked to turn in their answers to the questions
before class. Although the assignments were very
simple, the effect was obvious as students started to
ask in-depth questions even before the topics were
covered in class.

5 Written and programming assignments

In addition to the reading assignments mentioned
above, students also have weekly assignments. For
the sake of clarity, we divide the latter into two
types, written and programming assignments, de-
pending on whether programming is required. Sig-
nificant changes have been made to both types, as
explained below.

5.1 Year 1

In Year 1, there were three written and six pro-
gramming assignments. The written assignments
were mainly on mathematic proof, and one example
is given in Appendix B. The programming assign-
ments asked students to use the following existing
packages to build NLP systems.

1. Carmel, a finite state transducer package writ-
ten by Jonathan Graehl at USC/ISI.

2. fnTBL (Ngai and Florian, 2001), an efficient
implementation of TBL created by Ngai and
Florian at JHU.

3. A MaxEnt toolkit written
by Le Zhang, available at
http://homepages.inf.ed.ac.uk/s0450736.

To complete the assignments, the students needed
to study some functions in the source code to under-
stand exactly how the learning algorithms were im-
plemented in the packages. They would then write
pre- and post-processing tools, create data files, and
build an end-to-end system for a particular NLP
task. They would then present their work in class
and write a final paper to report their findings.

47

5.2 Year 2

In Year 2 I made two major changes to the assign-
ments. First, I reduced the number of written as-
signments on theoretic proof. While such assign-
ments strengthen students’ mathematic capability,
they were very challenging to many students, espe-
cially the ones who lacked mathematics and statis-
tics training. The assignments were also not as ef-
fective as programming assignments in understand-
ing the basic concepts for the learning algorithms.

The second major change was to replace the three
packages mentioned above with Mallet (McCallum,
2002), a well-known package in the NLP field. Mal-
let is a well-designed package that contains almost
all the learning methods covered in the course such
as Naive Bayes, decision tree, MaxEnt, boosting,
and bagging; once the training and test data were
put into the Mallet data format, it was easy to run all
these methods and compared the results.

For the programming assignments, in addition
to reading certain Mallet functions to understand
how the learning methods were implemented, the
students were also asked to extend the package
in various ways. For instance, the package in-
cludes a text-user-interface (TUI) class called Vec-
tors2Classify.java, which produces a classifier from
the training data, uses the classifier to classify the
test data, compares the results with gold standard,
and outputs accuracy and the confusion matrix. In
one assignment, students were asked to first sepa-
rate the code for training and testing, and then add
the beam search to the latter module so that the new
code would work for sequence labeling tasks.

While using Mallet as a black box is straight-
forward, extending it with additional functionality
is much more difficult. Because the package did
not have a detailed document that explained how
its main classes should be used, I spent more than
a week going through hundreds of classes in Mal-
let and wrote a 11-page guide based on my find-
ings. While the guide was very helpful, many stu-
dents still struggled with the assignments, especially
the ones who were not used to navigating through
other people’s code and/or who were not familiar
with Java, the language that Mallet was written in.

5.3 Year 3

To address these problems, in Year 3, we changed
the focus of the assignments: instead of studying and
extending Mallet code, students would create their
own package from scratch and use Mallet only as
a reference. For instance, in one assignment, stu-
dents would implement the two Naive Bayes mod-
els as described in (McCallum and Nigam, 1998)
and compare the classification results with the re-
sults produced by the Mallet Naive Bayes learner. In
the beam search assignment, students’ code would
include modules that read in the model produced by
Mallet and calculate P (y | x) for a test instance
x and a class label y. Because the code no longer
needed to call Mallet functions, students were free to
use whatever language they were comfortable with
and could treat Mallet as a black box.

The complete assignments are shown in Appendix
C. In summary, students implemented six learners
(Naive Bayes, kNN, Decision Tree, MaxEnt, SVM,
TBL),1 beam search, and the code for feature selec-
tion. All the coding was completed in eight weeks
in total, and the students could choose to either work
alone or work with a teammate.

6 Implementation issues

All the programming assignments in Year 3, except
the one for MaxEnt, were due in a week, and stu-
dents were expected to spend between 10 and 20
hours on each assignment. While the workload was
demanding, about 90% of students completed the as-
signments successfully. Several factors contribute to
the success:

• All the learners were evaluated on the same
classification task.2 The input and output data
format were very similar across different learn-
ers; as a result, the code that handled input and
output could be reused, and the classification
results of different learners could be compared
directly.

1For SVM, students implemented only the decoder, not the
trainer, and they would test their decoder with the models pro-
duced by libSVM (Chang and Lin, 2001).

2The task is a simplified version of the classic 20-newsgroup
text classification task, with only three out of the 20 classes be-
ing used. The training data and the test data consist of 900 and
100 examples from each class, respectively.

48

• I restricted the scope of the assignments so that
they were doable in a week. For instance, the
complexity of a TBL learner highly depends on
the form of the transformations and the type of
learning problem. In the TBL assignment, the
learner was used to handle classification prob-
lems and the transformation had the form if a
feature is present in an instance, change the
class label from A to B. Implementing such
a learner was much easier than implementing
a learner (e.g., fnTBL) that use more com-
plex transformations to handle sequence label-
ing problems.

• Efficiency is an important issue, and there are
often differences between algorithms on pa-
per and the code that implements the algo-
rithms. To identify those differences and po-
tential pitfalls that students could run into, I
completed all the assignments myself at least
a week before the assignments were due, and
shared some of my findings in class. I also told
students the kind of results to be expected, and
encouraged students to discuss the results and
implementation tricks on the discussion board.

Implementing machine learning algorithms is of-
ten an art, as there are many ways to improve effi-
ciency. Two examples are given below. While such
tricks are well-known to NLP researchers, they are
often new to students and going through them in
class can help students to speed up their code sig-
nificantly.

The trainer for TBL
As described in (Brill, 1995), a TBL trainer picks

one transformation in each iteration, applies it to the
training data, and repeats the process until no more
good transformations can be found. To choose the
best transformation, a naive approach would enu-
merate all the possible transformations, for each
transformation go through the data once to calculate
the net gain, and choose the transformation with the
highest net gain. This approach is very inefficient as
the data have to be scanned through multiple times.3

3Let Nf be the number of features and Nc be the number
of classes in a classification task, the number of transformations
in the form we specified above is O(NfN2

c), which means that
the learner has to go through the data O(NfN2

c) times.

A much better implementation would be to go
through the training data only once, and for each fea-
ture in each training instance, update the net gains
of the corresponding transformations accordingly.4

Students were also encouraged to read (Ngai and
Florian, 2001), which proposed another efficient im-
plementation of TBL.

The decoder for Naive Bayes
In the multi-variate Bernoulli event model for

the text classification task (McCallum and Nigam,
1998), at the test time the class for a document d is
chosen according to Eq (1). If we calculate P (d|c)
according to Eq (2), as given in the paper, we have
to go through all the features in the feature set F .
However, as shown in Eq (3) and (4), the first prod-
uct in Eq (3), denoted as Z(c) in Eq (4), is a constant
with respect to d and can be calculated beforehand
and stored with each c. Therefore, to classify d, we
only need to go through the features that are present
in d. Implementing Eq (4) instead of Eq (2) reduces
running time tremendously.5

c∗ = arg maxcP (c)P (d|c) (1)

P (d|c) =
∏
f 6∈d

(1− P (f |c))
∏
f∈d

P (f |c) (2)

=
∏
f∈F

(1− P (f |c))
∏
f∈d

P (f |c)
1− P (f |c)

(3)

= Z(c)
∏
f∈d

P (f |c)
1− P (f |c)

(4)

7 Discussion board

A discussion board is one of the most effective ve-
hicles for outside-class communication and collab-
oration, as anyone in the class can start a new con-
versation, read recent posts, or reply to other peo-

4For each feature t in each training instance x, if x’s current
label yc is different from the true label y, there would be only
one transformation whose net gain would be affected by this
feature in this instance, and the transformation is if t is present,
change class label from yc to y. If yc is the same as y, there
would be Nc − 1 transformations whose net gain would be af-
fected, where Nc is the number of classes.

5This trick was actually pointed out by a student in my class.

49

ple’s posts.6 Furthermore, some students feel more
comfortable posting to a discussion board than rais-
ing the questions in class or emailing the instructor.
Therefore, I provided a discussion board each time
LING572 was offered and the board was linked to
the course website. However, the board was not used
as much as I had hoped in the first two years.

In Year 3, I took a more pro-active approach:
first, I reminded students several times that emails
to me should be reserved only for confidential ques-
tions and all the non-confidential questions should
be posted to the discussion board. They should also
check the discussion board at least daily and they
were encouraged to reply to their classmates’ ques-
tions if they knew the answers. Second, if a stu-
dent emailed me any questions that should go to the
discussion board, I would copy the questions to the
board and ask the sender to find my answers there.
Third, I checked the board several times per day and
most of the questions raised there were answered
within an hour if not sooner.

As a result, there was a significant increase of the
usage of the board, as shown in Table 2. For in-
stance, compared to Year 2, the average number of
posts per student in Year 3 more than quadrupled,
and at the same time the number of emails I re-
ceived from the students was cut by 65%. More im-
portantly, more than a half of the questions posted
to the board were answered by other students, in-
dicating the board indeed encouraged collaboration
among students.

A lesson I learned from this experience is that the
success of a discussion board relies on active partic-
ipation by its members, and strong promotion by the
instructor is essential in helping students take advan-
tage of this form of communication.

8 Course evaluation

Students were asked to evaluate the course at the
end of the quarter using standard evaluation forms.
The results are shown in Table 3.7 For (1)-(11), stu-
dents were asked to answer the questions with a 6-

6The software we used is called GoPost. It is one of the
Web-based communication and collaboration applications de-
veloped by the Center for Teaching, Learning, and Technology
at the University of Washington.

7The complete form has thirty questions, the most relevant
ones are listed in the table.

Table 2: The usage of the course discussion board
Y1 Y2 Y3

of students 15 16 11
of conversations 13 47 116
Total # of posts 42 149 589
of posts by the instructor 7 21 158
of posts by students 35 128 431

Ave # of post/student 2.3 8 39.2

point scale: 0 being Very Poor and 5 being Excel-
lent. The question for (12) is “on average how many
hours per week have you spent on this course?”; The
question for (13) is “among the total average hours
spent on the course, how many do you consider were
valuable in advancing your education?” The values
for (1)-(13) in the table are the average of the re-
sponses. The last row, Challenge and Engagement
Index (CEI), is a score computed from several items
on the evaluation form, and reported as a decile rank
ranging from 0 (lowest) to 9 (highest). It reflects
how challenging students found the course and how
engaged they were in it.

The table shows that the overall evaluation in Year
2 was worse than the one in Year 1, despite much
effort put into improving course design. The main
problem in Year 2 was the programming assign-
ments, as discussed in Section 5.2 and indicated in
Row (11): many students found the task of extend-
ing Mallet overwhelming, especially since some of
them had never used Java and debugged a large pre-
existing package before. As a result, they spent
much time on learning Java and trying to figure out
how Mallet code worked, and they felt that was not
the best way to learn the subjects (cf. the big gap
between the values for Row (12) and (13)).

Based on the feedback from the first two years,
in Year 3 I made a major overhaul to the course, as
discussed in Sections 3-7 and summarized here:

• The lecture material was cut substantially; for
instance, the average number of slides used in a
session was reduced from over 60 in Year 2 to
below 30 in Year 3. The saved time was spent
on class discussion and going through exam-
ples on the whiteboard.

• Reading assignments were introduced to help
students focus on the most relevant part of the

50

Table 3: Student evaluation of instruction (For Item (1)-(11), the scale is between 0 and 5: 0 is Very Poor and 5 is
Excellent; The scale for Item (14) is between 0 and 9, 9 being most challenging)

Y1 Y2 Y3
Number of respondents 14 15 11
(1) The course as a whole 3.9 3.8 5.0
(2) The course content 4.0 3.7 4.9
(3) Course organization 4.0 3.8 4.8
(4) Explanations by instructor 3.7 3.5 4.6
(5) Student confidence in instructor’s knowledge 4.5 4.5 4.9
(6) Instructor’s enthusiasm 4.5 4.6 4.9
(7) Encouragement given students to express themselves 3.9 4.3 4.6
(8) Instructor’s interest in whether students learned 4.5 4.0 4.8
(9) Amount you learned in the course 3.8 3.3 4.8
(10) Relevance and usefulness of course content 4.3 3.9 4.9
(11) Reasonableness of assigned work 3.8 2.0 3.8
(12) Average number of hours/week spent on the course 7.9 21.9 19.8
(13) How many were valuable in advancing your education 6.2 14.5 17.2
(14) Challenge and engagement index (CEI) 7 9 9

reading material.

• Instead of extending Mallet, students were
asked to create their own packages from scratch
and many implementation issues were ad-
dressed in class and in the discussion board.

• Discussion board was highly promoted to en-
courage outside-class discussion and collabora-
tion, and its usage was increased dramatically.

As shown in the last column of the table, the
new strategies worked very well and the feedback
from the students was very positive. Interestingly,
although the amount of time spent on the course
in Y2 and Y3 was about the same, the students in
Y3 felt the assigned work was more reasonable than
the students in Y2. This highlights the importance
of choosing appropriate assignments based on stu-
dents’ background. Also, while the lecture material
was cut substantially over the years, students in Y3
felt that they learned more than the students in Y1
and Y2, implying that it is more beneficial to cover
a small number of learning methods in depth than to
hurry through a large number of topics.

9 Conclusion

Teaching LING572 has been a great learning expe-
rience, and significant changes have been made to

course content, assignments, and the like. Here are
some lessons learned from this experience:

• A common pitfall for course design is being
over-ambitious with the course plan. What
matters the most is not how much material is
covered in class, but how much students actu-
ally digest.

• When using journal/conference papers as read-
ing material, it is often better to select multi-
ple papers and specify the sections in the pa-
pers that are most relevant. Giving reading
assignments would encourage students to read
papers before class and provide guidelines as
what questions they should focus on.

• Adding new functionality to an existing pack-
age is often difficult if the package is very com-
plex and not well-documented. Therefore, this
kind of assignments should be avoided if pos-
sible. In contrast, students often learn more
from implementing the methods from scratch
than from reading other people’s source code.

• Implementing ML methods is an art, and point-
ing out various tricks and potential obstacles
beforehand would help students tremendously.
With careful design of the assignments and in-
class/outside-class discussion of implementa-

51

tion issues, it is possible to implement multiple
learning methods in a short period of time.

• Discussion board is a great venue for students
to share ideas, but it will be successful only if
students actively participate. The instructor can
play an important role in promoting the usage
of the board.

Many of the lessons above are not specific to
LING572, and I have made similar changes to other
courses that I am teaching. So far, the feedback from
the students have been very positive. Compared to
the first two years, in Year 3, students were much
more active both in and outside class; they were
much more satisfied with the assignments; many stu-
dents said that they really appreciated all the imple-
mentation tips and felt that they had a much better
understanding of the algorithms after implementing
them. Furthermore, several students expressed inter-
est in pursuing a Ph.D. degree in NLP.

In the future, I plan to replace some of the early
ML algorithms (e.g., kNN, Decision Tree, TBL)
with more recent ones (e.g., conditional random
field, Bayesian approach). This adjustment has to be
done with special care, because the early algorithms,
albeit quite simple, often provide the foundation for
understanding more sophisticated algorithms. I will
also fine tune the assignments to make them more
manageable for students with less CS/math training.

A Reading assignment example

The following is the reading assignment for MaxEnt
in Year 3.

(Q1) Let P(X=i) be the probability of getting an i
when rolling a dice. What is P (X) accord-
ing to the maximum entropy principle under the
following condition?
(a) P(X=1) + P(X=2) = 0.5
(b) P(X=1) + P(X=2) = 0.5 and P(X=6) = 0.2

(Q2) In the text classification task, |V | is the num-
ber of features, |C| is the number of classes.
How many feature functions are there?

(Q3) How to calculate the empirical expectation of
a feature function?

B Written assignment example

The following is part of a written assignment for
Boosting in Year 1: In the basic AdaBoost algo-
rithm, let ht be the hypothesis created at time t,
Dt(i) be the weight of the i-th training instance,
and εt be the training error rate of ht. Let the hy-
pothesis weight αt be 1

2 ln
1−αt
αt

and the normaliza-
tion factor Zt be

∑
iDt(i)e−αtyiht(xi). Prove that

Zt = 2
√
αt(1− αt) for any t.

C Programming assignment examples

In Year 3, there were seven programming assign-
ments, as summarized below:

Hw1: Implement the two Naive Bayes models as
described in (McCallum and Nigam, 1998).

Hw2: Implement a decision tree learner, assuming
all features are binary and using information
gain as the split function.

Hw3: Implement a kNN learner using cosine and
Euclidean distance as similarity/dissimilarity
measures. Implement one of feature selection
methods covered in class, and test the effect of
feature selection on kNN.

Hw4: Implement a MaxEnt learner. For training,
use General Iterative scaling (GIS).

Hw5: Run the svm-train command in the libSVM
package (Chang and Lin, 2001) to create a
SVM model from the training data. Write a de-
coder that classifies test data with the model.

Hw6: Implement beam search and reduplicate the
POS tagger described in (Ratnaparkhi, 1996).

Hw7: Implement a TBL learner for the text clas-
sification task, where a transformation has the
form if a feature is present in a document,
change the class label from A to B.

For Hw6, students compared their POS tag-
ging results with the ones reported in (Ratnaparkhi,
1996). For all the other assignments, students tested
their learners on a text classification task and com-
pare the results with the ones produced by pre-
existing packages such as Mallet and libSVM.

Each assignment was due in a week except for
Hw4 and Hw6, which were due in 1.5 weeks. Stu-
dents could choose to work alone or work with a
teammate.

52

References
Emily Bender, Fei Xia, and Erik Bansleben. 2008.

Building a flexible, collaborative, intensive master’s
program in computational linguistics. In Proceedings
of the Third ACL Workshop on Effective Tools and
Methodologies for Teaching NLP and CL, Columbus,
Ohio, June.

Adam L. Berger, Stephen A. Della Pietra, and Vincent
J. Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational Lin-
guistics, 22(1), March.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging. Computational Lin-
guistics, 21(4):543–565.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM:
a library for support vector machines. Available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Dan Klein and Christopher Manning. 2003. Maxent
model, conditional estimation, and optimization. ACL
2003 tutorial.

Dan Klein. 2007. Introduction to Classification: Like-
lihoods, Margins, Features, and Kernels. Tutorial at
NAACL-2007.

Andrew McCallum and Kamal Nigam. 1998. A compar-
ison of event models for naive bayes text classification.
In In AAAI/ICML-98 Workshop on Learning for Text
Categorization.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Grace Ngai and Radu Florian. 2001. Transformation-
based learning in the fast lane. In Proceedings of
North American ACL (NAACL-2001), pages 40–47,
June.

Adwait Ratnaparkhi. 1996. A Maximum Entropy Model
for Part-of-speech Tagging. In Proc. of Joint SIGDAT
Conference on Empirical Methods in Natural Lan-
guage Processing and Very Large Corpora (EMNLP-
1996), Philadelphia.

Adwait Ratnaparkhi. 1997. A simple introduction to
maximum entropy models for natural language pro-
cessing. Technical Report Technical Report 97-08, In-
stitute for Research in Cognitive Science, University
of Pennsylvania.

53

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 54–61,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Exploring Large-Data Issues in the Curriculum:
A Case Study with MapReduce

Jimmy Lin
The iSchool, College of Information Studies

Laboratory for Computational Linguistics and Information Processing
University of Maryland, College Park

jimmylin@umd.edu

Abstract

This paper describes the design of a pilot re-
search and educational effort at the Univer-
sity of Maryland centered around technologies
for tackling Web-scale problems. In the con-
text of a “cloud computing” initiative lead by
Google and IBM, students and researchers are
provided access to a computer cluster running
Hadoop, an open-source Java implementation
of Google’s MapReduce framework. This
technology provides an opportunity for stu-
dents to explore large-data issues in the con-
text of a course organized around teams of
graduate and undergraduate students, in which
they tackle open research problems in the hu-
man language technologies. This design rep-
resents one attempt to bridge traditional in-
struction with real-world, large-data research
challenges.

1 Introduction

Over the past couple of decades, the field of compu-
tational linguistics, and more broadly, human lan-
guage technologies, has seen the emergence and
later dominance of empirical techniques and data-
driven research. Concomitant with this trend is the
requirement of systems and algorithms to handle
large quantities of data. Banko and Brill (2001)
were among the first to demonstrate the importance
of dataset size as a significant factor governing pre-
diction accuracy in a supervised machine learning
task. In fact, they argue that size of training set
is perhaps more important than the choice of ma-
chine learning algorithm itself. Similarly, exper-
iments in question answering have shown the ef-

fectiveness of simple pattern-matching techniques
when applied to large quantities of data (Brill et
al., 2001). More recently, this line of argumenta-
tion has been echoed in experiments with large-scale
language models. Brants et al. (2007) show that
for statistical machine translation, a simple smooth-
ing method (dubbed Stupid Backoff) approaches the
quality of Kneser-Ney Smoothing as the amount of
training data increases, and with the simple method
one can process significantly more data.

Given these observations, it is important to in-
tegrate discussions of large-data issues into any
course on human language technology. Most ex-
isting courses focus on smaller-sized problems and
datasets that can be processed on students’ personal
computers, making them ill-prepared to cope with
the vast quantities of data in operational environ-
ments. Even when larger datasets are leveraged in
the classroom, they are mostly used as static re-
sources. Thus, students experience a disconnect as
they transition from a learning environment to one
where they work on real-world problems.

Nevertheless, there are at least two major chal-
lenges associated with explicit treatment of large-
data issues in an HLT curriculum:

• The first concerns resources: it is unclear where
one might acquire the hardware to support ed-
ucational activities, especially if such activities
are in direct competition with research.

• The second involves complexities inherently
associated with parallel and distributed pro-
cessing, currently the only practical solution to
large-data problems. For any course, it is diffi-

54

cult to retain focus on HLT-relevant problems,
since the exploration of large-data issues ne-
cessitates (time-consuming) forays into parallel
and distributed computing.

This paper presents a case study that grapples
with the issues outlined above. Building on previ-
ous experience with similar courses at the Univer-
sity of Washington (Kimball et al., 2008), I present
a pilot “cloud computing” course currently under-
way at the University of Maryland that leverages a
collaboration with Google and IBM, through which
students are given access to hardware resources. To
further alleviate the first issue, research is brought
into alignment with education by structuring a team-
oriented, project-focused course. The core idea is to
organize teams of graduate and undergraduate stu-
dents focused on tackling open research problems in
natural language processing, information retrieval,
and related areas. Ph.D. students serve as leaders
on projects related to their research, and are given
the opportunity to serve as mentors to undergradu-
ate and masters students.

Google’s MapReduce programming framework is
an elegant solution to the second issue raised above.
By providing a functional abstraction that isolates
the programmer from parallel and distributed pro-
cessing issues, students can focus on solving the
actual problem. I first provide the context for this
academic–industrial collaboration, and then move
on to describe the course setup.

2 Cloud Computing and MapReduce

In October 2007, Google and IBM jointly an-
nounced the Academic Cloud Computing Initiative,
with the goal of helping both researchers and stu-
dents address the challenges of “Web-scale” com-
puting. The initiative revolves around Google’s
MapReduce programming paradigm (Dean and
Ghemawat, 2004), which represents a proven ap-
proach to tackling data-intensive problems in a dis-
tributed manner. Six universities were involved
in the collaboration at the outset: Carnegie Mellon
University, Massachusetts Institute of Technology,
Stanford University, the University of California at
Berkeley, the University of Maryland, and Univer-
sity of Washington. I am the lead faculty at the Uni-
versity of Maryland on this project.

As part of this initiative, IBM and Google have
dedicated a large cluster of several hundred ma-
chines for use by faculty and students at the partic-
ipating institutions. The cluster takes advantage of
Hadoop, an open-source implementation of MapRe-
duce in Java.1 By making these resources available,
Google and IBM hope to encourage faculty adop-
tion of cloud computing in their research and also
integration of the technology into the curriculum.

MapReduce builds on the observation that many
information processing tasks have the same basic
structure: a computation is applied over a large num-
ber of records (e.g., Web pages) to generate par-
tial results, which are then aggregated in some fash-
ion. Naturally, the per-record computation and ag-
gregation function vary according to task, but the ba-
sic structure remains fixed. Taking inspiration from
higher-order functions in functional programming,
MapReduce provides an abstraction at the point of
these two operations. Specifically, the programmer
defines a “mapper” and a “reducer” with the follow-
ing signatures:

map: (k1, v1)→ [(k2, v2)]
reduce: (k2, [v2])→ [(k3, v3)]

Key/value pairs form the basic data structure in
MapReduce. The mapper is applied to every input
key/value pair to generate an arbitrary number of in-
termediate key/value pairs. The reducer is applied to
all values associated with the same intermediate key
to generate output key/value pairs. This two-stage
processing structure is illustrated in Figure 1.

Under the framework, a programmer need only
provide implementations of the mapper and reducer.
On top of a distributed file system (Ghemawat et al.,
2003), the runtime transparently handles all other
aspects of execution, on clusters ranging from a
few to a few thousand nodes. The runtime is re-
sponsible for scheduling map and reduce workers
on commodity hardware assumed to be unreliable,
and thus is tolerant to various faults through a num-
ber of error recovery mechanisms. The runtime also
manages data distribution, including splitting the in-
put across multiple map workers and the potentially
very large sorting problem between the map and re-
duce phases whereby intermediate key/value pairs
must be grouped by key.

1http://hadoop.apache.org/

55

input input input input

map map map map

input input input input

Barrier: group values by keys

reduce reduce reduce

output output output

Figure 1: Illustration of the MapReduce framework: the
“mapper” is applied to all input records, which generates
results that are aggregated by the “reducer”.

The biggest advantage of MapReduce from a ped-
agogical point of view is that it allows an HLT
course to retain its focus on applications. Divide-
and-conquer algorithms running on multiple ma-
chines are currently the only effective strategy for
tackling Web-scale problems. However, program-
ming parallel and distributed systems is a difficult
topic for students to master. Due to communica-
tion and synchronization issues, concurrent opera-
tions are notoriously challenging to reason about—
unanticipated race conditions are hard to detect and
even harder to debug. MapReduce allows the pro-
grammer to offload these problems (no doubt im-
portant, but irrelevant from the perspective of HLT)
onto the runtime, which handles the complexities as-
sociated with distributed processing on large clus-
ters. The functional abstraction allows a student to
focus on problem solving, not managing the details
of error recovery, data distribution, etc.

3 Course Design

This paper describes a “cloud computing” course at
the University of Maryland being offered in Spring
2008. The core idea is to assemble small teams of
graduate and undergraduate students to tackle re-
search problems, primarily in the areas of informa-
tion retrieval and natural language processing. Ph.D.
students serve as team leaders, overseeing small
groups of masters and undergraduates on topics re-
lated to their doctoral research. The roles of “team
leader” and “team member” are explicitly assigned

at the beginning of the semester, and are associated
with different expectations and responsibilities. All
course material and additional details are available
on the course homepage.2

3.1 Objectives and Goals
I identified a list of desired competencies for stu-
dents to acquire and refine throughout the course:

• Understand and be able to articulate the chal-
lenges associated with distributed solutions to
large-scale problems, e.g., scheduling, load
balancing, fault tolerance, memory and band-
width limitations, etc.

• Understand and be able to explain the concepts
behind MapReduce as one framework for ad-
dressing the above issues.

• Understand and be able to express well-known
algorithms (e.g., PageRank) in the MapReduce
framework.

• Understand and be able to reason about engi-
neering tradeoffs in alternative approaches to
processing large datasets.

• Gain in-depth experience with one research
problem in Web-scale information processing
(broadly defined).

With respect to the final bullet point, the students
are expected to acquire the following abilities:

• Understand how current solutions to the par-
ticular research problem can be cast into the
MapReduce framework.

• Be able to explain what advantages the MapRe-
duce framework provides over existing ap-
proaches (or disadvantages if a MapReduce
formulation turns out to be unsuitable for ex-
pressing the problem).

• Articulate how adopting the MapReduce
framework can potentially lead to advances in
the state of the art by enabling processing not
possible before.

I assumed that all students have a strong foun-
dation in computer science, which was operational-
ized in having completed basic courses in algo-
rithms, data structures, and programming languages

2http://www.umiacs.umd.edu/∼jimmylin/cloud-computing/

56

Week Monday Wednesday

1

2

3

Hadoop Boot Camp

3

4

5

6 Project Meetings:
Ph I

Proposal Presentations

6

7

8

9

Phase I

G t S k
10

11

12

Project Meetings:
Phase II

Guest Speakers

13

14

15
Final Project

Presentations

Figure 2: Overview of course schedule.

(in practice, this was trivially met for the graduate
students, who all had undergraduate degrees in com-
puter science). I explicitly made the decision that
previous courses in parallel programming, systems,
or networks was not required. Finally, prior experi-
ence with natural language processing, information
retrieval, or related areas was not assumed. How-
ever, strong competency in Java programming was a
strict requirement, as the Hadoop implementation of
MapReduce is based in Java.

In the project-oriented setup, the team leaders
(i.e., Ph.D. students) have additional roles to play.
One of the goals of the course is to give them experi-
ence in mentoring more junior colleagues and man-
aging a team project. As such, they were expected to
acquire real-world skills in project organization and
management.

3.2 Schedule and Major Components

As designed, the course spans a standard fifteen
week semester, meeting twice a week (Monday and
Wednesday) for one hour and fifteen minutes each
session. The general setup is shown in Figure 2. As
this paper goes to press (mid-April), the course just
concluded Week 11.

During the first three weeks, all students are im-
mersed in a “Hadoop boot camp”, where they are

introduced to the MapReduce programming frame-
work. Material was adapted from slides developed
by Christophe Bisciglia and his colleagues from
Google, who have delivered similar content in var-
ious formats.3 As it was assumed that all students
had strong foundations in computer science, the
pace of the lectures was brisk. The themes of the
five boot camp sessions are listed below:

• Introduction to parallel/distributed processing

• From functional programming to MapReduce
and the Google File System (GFS)

• “Hello World” MapReduce lab

• Graph algorithms with MapReduce

• Information retrieval with MapReduce

A brief overview of parallel and distributed pro-
cessing provides a natural transition into abstrac-
tions afforded by functional programming, the inspi-
ration behind MapReduce. That in turn provides the
context to introduce MapReduce itself, along with
the distributed file system upon which it depends.
The final two lectures focus on specific case stud-
ies of MapReduce applied to graph analysis and in-
formation retrieval. The first covers graph search
and PageRank, while the second covers algorithms
for information retrieval. With the exception of the
“Hello World” lab session, all lecture content was
delivered at the conceptual level, without specific
reference to the Hadoop API and implementation
details (see Section 5 for discussion). The boot
camp is capped off with a programming exercise
(implementation of PageRank) to ensure that stu-
dents have a passing knowledge of MapReduce con-
cepts in general and the Hadoop API in particular.

Concurrent with the boot camp, team leaders are
expected to develop a detailed plan of research:
what they hope to accomplish, specific tasks that
would lead to the goals, and possible distribution of
those tasks across team members. I recommend that
each project be structured into two phases: the first
phase focusing on how existing solutions might be
recast into the MapReduce framework, the second
phase focusing on interesting extensions enabled by
MapReduce. In addition to the detailed research

3http://code.google.com/edu/parallel/

57

plan, the leaders are responsible for organizing intro-
ductory material (papers, tutorials, etc.) since team
members are not expected to have any prior experi-
ence with the research topic.

The majority of the course is taken up by the re-
search project itself. The Monday class sessions
are devoted to the team project meetings, and the
team leader is given discretion on how this is man-
aged. Typical activities include evaluation of deliv-
erables (code, experimental results, etc.) from the
previous week and discussions of plans for the up-
coming week, but other common uses of the meeting
time include whiteboard sessions and code review.
During the project meetings I circulate from group
to group to track progress, offer helpful suggestions,
and contribute substantially if possible.

To the extent practical, the teams adopt standard
best practices for software development. Students
use Eclipse as the development environment and
take advantage of a plug-in that provides a seamless
interface to the Hadoop cluster. Code is shared via
Subversion, with both project-specific repositories
and a course-wide repository for common libraries.
A wiki is also provided as a point of collaboration.

Concurrent with the project meetings on Mon-
days, a speaker series takes place on Wednesdays.
Attendance for students is required, but otherwise
the talks are open to the public. One of the goals
for these invited talks is to build an active commu-
nity of researchers interested in large datasets and
distributed processing. Invited talks can be clas-
sified into one of two types: infrastructure-focused
and application-focused. Examples of the first in-
clude alternative architectures for processing large
datasets and dynamic provisioning of computing
services. Examples of the second include survey
of distributed data mining techniques and Web-scale
sentiment analysis. It is not a requirement for the
talks to focus on MapReduce per se—rather, an em-
phasis on large-data issues is the thread that weaves
all these presentations together.

3.3 Student Evaluation
At the beginning of the course, students are assigned
specific roles (team leader or team member) and
are evaluated according to different criteria (both in
grade components and relative weights).

The team leaders are responsible for producing

the detailed research plan at the beginning of the
semester. The entire team is responsible for three
checkpoint deliverables throughout the course: an
initial oral presentation outlining their plans, a short
interim progress report at roughly the midpoint of
the semester, and a final oral presentation accompa-
nied by a written report at the end of the semester.

On a weekly basis, I request from each stu-
dent a status report delivered as a concise email: a
paragraph-length outline of progress from the previ-
ous week and plans for the following week. This,
coupled with my observations during each project
meeting, provides the basis for continuous evalua-
tion of student performance.

4 Course Implementation

Currently, 13 students (7 Ph.D., 3 masters, 3 under-
graduates) are involved in the course, working on
six different projects. Last fall, as planning was
underway, Ph.D. students from the Laboratory for
Computational Linguistics and Information Process-
ing at the University of Maryland were recruited
as team leaders. Three of them agreed, developing
projects around their doctoral research—these repre-
sent cases with maximal alignment of research and
educational goals. In addition, the availability of this
opportunity was announced on mailing lists, which
generated substantial interest. Undergraduates were
recruited from the Computer Science honors pro-
gram; since it is a requirement for those students to
complete an honors project, this course provided a
suitable vehicle for satisfying that requirement.

Three elements are necessary for a successful
project: interested students, an interesting research
problem of appropriate scope, and the availability
of data to support the work. I served as a broker
for all three elements, and eventually settled on five
projects that satisfied all the desiderata (one project
was a later addition). As there was more interest
than spaces available for team members, it was pos-
sible to screen for suitable background and matching
interests. The six ongoing projects are as follows:

• Large-data statistical machine translation

• Construction of large latent-variable language
models

• Resolution of name mentions in large email
archives

58

• Network analysis for enhancing biomedical
text retrieval

• Text-background separation in children’s pic-
ture books

• High-throughput biological sequence align-
ment and processing

Of the six projects, four of them fall squarely in
the area of human language technology: the first two
are typical of problems in natural language process-
ing, while the second two are problems in informa-
tion retrieval. The final two projects represent at-
tempts to push the boundaries of the MapReduce
paradigm, into image processing and computational
biology, respectively. Short project descriptions can
be found on the course homepage.

5 Pedagogical Discussion

The design of any course is an exercise in tradeoffs,
and this pilot project is no exception. In this section,
I will attempt to justify course design decisions and
discuss possible alternatives.

At the outset, I explicitly decided against a “tradi-
tional” course format that would involve carefully-
paced delivery of content with structured exercises
(e.g., problem sets or labs). Such a design would
perhaps be capped off with a multi-week final
project. The pioneering MapReduce course at the
University of Washington represents an example of
this design (Kimball et al., 2008), combining six
weeks of standard classroom instruction with an op-
tional four week final project. As an alternative, I or-
ganized my course around the research project. This
choice meant that the time devoted to direct instruc-
tion on foundational concepts was very limited, i.e.,
the three-week boot camp.

One consequence of the boot-camp setup is some
disconnect between the lecture material and imple-
mentation details. Students were expected to rapidly
translate high-level concepts into low-level pro-
gramming constructs and API calls without much
guidance. There was only one “hands on” session
in the boot camp, focusing on more mundane is-
sues such as installation, configuration, connecting
to the server, etc. Although that session also in-
cluded overview of a simple Hadoop program, that
by no means was sufficient to yield in-depth under-
standing of the framework.

The intensity of the boot camp was mitigated by
the composition of the students. Since students were
self-selected and further screened by me in terms of
their computational background, they represent the
highest caliber of students at the university. Further-
more, due to the novel nature of the material, stu-
dents were highly motivated to rapidly acquire what-
ever knowledge was necessary outside the class-
room. In reality, the course design forced students
to spend the first few weeks of the project simulta-
neously learning about the research problem and the
details of the Hadoop framework. However, this did
not appear to be a problem.

Another interesting design choice is the mixing
of students with different backgrounds in the same
classroom environment. Obviously, the graduate
students had stronger computer science backgrounds
than the undergraduates overall, and the team lead-
ers had far more experience on the particular re-
search problem than everyone else by design. How-
ever, this was less an issue than one would have ini-
tially thought, partially due to the selection of the
students. Since MapReduce requires a different ap-
proach to problem solving, significant learning was
required from everyone, independent of prior expe-
rience. In fact, prior knowledge of existing solutions
may in some cases be limiting, since it precludes a
fresh approach to the problem.

6 Course Evaluation

Has the course succeeded? Before this question can
be meaningfully answered, one needs to define mea-
sures for quantifying success. Note that the evalua-
tion of the course is distinct from the evaluation of
student performance (covered in Section 3.3). Given
the explicit goal of integrating research and educa-
tion, I propose the following evaluation criteria:

• Significance of research findings, as measured
by the number of publications that arise directly
or indirectly from this project.

• Placement of students, e.g., internships and
permanent positions, or admission to graduate
programs (for undergraduates).

• Number of projects with sustained research ac-
tivities after the conclusion of the course.

59

• Amount of additional research support from
other funding agencies (NSF, DARPA, etc.)
for which the projects provided preliminary re-
sults.

Here I provide an interim assessment, as this pa-
per goes to press in mid-April. Preliminary results
from the projects have already yielded two sepa-
rate publications: one on statistical machine trans-
lation (Dyer et al., 2008), the other on information
retrieval (Elsayed et al., 2008). In terms of student
placement, I believe that experience from this course
has made several students highly attractive to com-
panies such as Google, Yahoo, and Amazon—both
for permanent positions and summer internships. It
is far too early to have measurable results with re-
spect to the final two criteria, but otherwise prelim-
inary assessment appears to support the overall suc-
cess of this course.

In addition to the above discussion, it is also worth
mentioning that the course is emerging as a nexus
of cloud computing on the Maryland campus (and
beyond), serving to connect multiple organizations
that share in having large-data problems. Already,
the students are drawn from a variety of academic
units on campus:

• The iSchool

• Department of Computer Science

• Department of Linguistics

• Department of Geography

And cross-cut multiple research labs:

• The Institute for Advanced Computer Studies

• The Laboratory for Computational Linguistics
and Information Processing

• The Human-Computer Interaction Laboratory

• The Center for Bioinformatics and Computa-
tional Biology

Off campus, there are ongoing collaborations
with the National Center for Biotechnology In-
formation (NCBI) within the National Library of
Medicine (NLM). Other information-based organi-
zations around the Washington, D.C. area have also
expressed interest in cloud computing technology.

7 Conclusion

This paper describes the design of an integrated re-
search and educational initiative focused on tackling
Web-scale problems in natural language processing
and information retrieval using MapReduce. Pre-
liminary assessment indicates that this project rep-
resents one viable approach to bridging classroom
instruction and real-world research challenges. With
the advent of clusters composed of commodity ma-
chines and “rent-a-cluster” services such as Ama-
zon’s EC2,4 I believe that large-data issues can be
practically incorporated into an HLT curriculum at a
reasonable cost.

Acknowledgments

I would like to thank the generous hardware sup-
port of IBM and Google via the Academic Cloud
Computing Initiative. Specifically, thanks go out
to Dennis Quan and Eugene Hung from IBM for
their tireless support of our efforts. This course
would not have been possible without the participa-
tion of 13 enthusiastic, dedicated students, for which
I feel blessed to have the opportunity to work with.
In alphabetical order, they are: Christiam Camacho,
George Caragea, Aaron Cordova, Chris Dyer, Tamer
Elsayed, Denis Filimonov, Chang Hu, Greg Jablon-
ski, Alan Jackoway, Punit Mehta, Alexander Mont,
Michael Schatz, and Hua Wei. Finally, I would like
to thank Esther and Kiri for their kind support.

References
Michele Banko and Eric Brill. 2001. Scaling to very very

large corpora for natural language disambiguation. In
Proceedings of the 39th Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2001),
pages 26–33, Toulouse, France.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,
and Jeffrey Dean. 2007. Large language models in
machine translation. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 858–867, Prague, Czech Re-
public.

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais,
and Andrew Ng. 2001. Data-intensive question an-
swering. In Proceedings of the Tenth Text REtrieval

4http://aws.amazon.com/ec2

60

Conference (TREC 2001), pages 393–400, Gaithers-
burg, Maryland.

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce:
Simplified data processing on large clusters. In Pro-
ceedings of the 6th Symposium on Operating System
Design and Implementation (OSDI 2004), pages 137–
150, San Francisco, California.

Chris Dyer, Aaron Cordova, Alex Mont, and Jimmy Lin.
2008. Fast, easy, and cheap: Construction of statistical
machine translation models with MapReduce. In Pro-
ceedings of the Third Workshop on Statistical Machine
Translation at ACL 2008, Columbus, Ohio.

Tamer Elsayed, Jimmy Lin, and Douglas Oard. 2008.
Pairwise document similarity in large collections with
MapReduce. In Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2008), Companion Volume, Columbus, Ohio.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. 2003. The Google File System. In Proceedings
of the 19th ACM Symposium on Operating Systems
Principles (SOSP-03), pages 29–43, Bolton Landing,
New York.

Aaron Kimball, Sierra Michels-Slettvet, and Christophe
Bisciglia. 2008. Cluster computing for Web-scale
data processing. In Proceedings of the 39th ACM
Technical Symposium on Computer Science Education
(SIGCSE 2008), pages 116–120, Portland, Oregon.

61

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 62–70,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Multidisciplinary Instruction with the Natural Language Toolkit

Steven Bird
Department of Computer Science

University of Melbourne
sb@csse.unimelb.edu.au

Ewan Klein
School of Informatics

University of Edinburgh
ewan@inf.ed.ac.uk

Edward Loper
Computer and Information Science

University of Pennsylvania
edloper@gradient.cis.upenn.edu

Jason Baldridge
Department of Linguistics

University of Texas at Austin
jbaldrid@mail.utexas.edu

Abstract

The Natural Language Toolkit (NLTK) is
widely used for teaching natural language
processing to students majoring in linguistics
or computer science. This paper describes
the design ofNLTK , and reports on how
it has been used effectively in classes that
involve different mixes of linguistics and
computer science students. We focus on three
key issues: getting started with a course,
delivering interactive demonstrations in the
classroom, and organizing assignments and
projects. In each case, we report on practical
experience and make recommendations on
how to useNLTK to maximum effect.

1 Introduction

It is relatively easy to teach natural language pro-
cessing (NLP) in a single-disciplinary mode to a uni-
form cohort of students. Linguists can be taught to
program, leading to projects where students manip-
ulate their own linguistic data. Computer scientists
can be taught methods for automatic text processing,
leading to projects on text mining and chatbots. Yet
these approaches have almost nothing in common,
and it is a stretch to call either of theseNLP: more
apt titles for such courses might be “linguistic data
management” and “text technologies.”

The Natural Language Toolkit, orNLTK , was
developed to give a broad range of students access
to the core knowledge and skills ofNLP (Loper
and Bird, 2002). In particular,NLTK makes it
feasible to run a course that covers a substantial
amount of theory and practice with an audience

consisting of both linguists and computer scientists.
NLTK is a suite of Python modules distributed
under the GPL open source license vianltk.org .
NLTK comes with a large collection of corpora,
extensive documentation, and hundreds of exercises,
makingNLTK unique in providing a comprehensive
framework for students to develop a computational
understanding of language.NLTK ’s code base of
100,000 lines of Python code includes support
for corpus access, tokenizing, stemming, tagging,
chunking, parsing, clustering, classification,
language modeling, semantic interpretation,
unification, and much else besides. As a measure of
its impact,NLTK has been used in over 60 university
courses in 20 countries, listed on theNLTK website.

Since its inception in 2001,NLTK has undergone
considerable evolution, based on the experience
gained by teaching courses at several universities,
and based on feedback from many teachers and
students.1 Over this period, a series of practical
online tutorials aboutNLTK has grown up into a
comprehensive online book (Bird et al., 2008). The
book has been designed to stay in lock-step with the
NLTK library, and is intended to facilitate “active
learning” (Bonwell and Eison, 1991).

This paper describes the main features of
NLTK , and reports on how it has been used
effectively in classes that involve a combination
of linguists and computer scientists. First we
discuss aspects of the design of the toolkit that

1(Bird and Loper, 2004; Loper, 2004; Bird, 2005; Hearst,
2005; Bird, 2006; Klein, 2006; Liddy and McCracken, 2005;
Madnani, 2007; Madnani and Dorr, 2008; Baldridge and Erk,
2008)

62

arose from our need to teach computational
linguistics to a multidisciplinary audience (§2). The
following sections cover three distinct challenges:
getting started with a course (§3); interactive
demonstrations (§4); and organizing assignments
and projects (§5).

2 Design Decisions Affecting Teaching

2.1 Python

We chose Python2 as the implementation language
for NLTK because it has a shallow learning curve, its
syntax and semantics are transparent, and it has good
string-handling functionality. As an interpreted
language, Python facilitates interactive exploration.
As an object-oriented language, Python permits
data and methods to be encapsulated and re-used
easily. Python comes with an extensive standard
library, including tools for graphical programming
and numerical processing, which means it can be
used for a wide range of non-trivial applications.
Python is ideal in a context serving newcomers and
experienced programmers (Shannon, 2003).

We have taken the step of incorporating a detailed
introduction to Python programming in theNLTK

book, taking care to motivate programming con-
structs with linguistic examples. Extensive feedback
from students has been humbling, and revealed that
for students with no prior programming experience,
it is almost impossible to over-explain. Despite the
difficulty of providing a self-contained introduction
to Python for linguists, we nevertheless have also
had very positive feedback, and in combination with
the teaching techniques described below, have man-
aged to bring a large group of non-programmer stu-
dents rapidly to a point where they could carry out
interesting and useful exercises in text processing.

In addition to theNLTK book, the code in the
NLTK core is richly documented, using Python doc-
strings and Epydoc3 support for API documenta-
tion.4 Access to the code documentation is available
using the Pythonhelp() command at the interac-
tive prompt, and this can be especially useful for
checking the parameters and return type of func-
tions.

2http://www.python.org/
3http://epydoc.sourceforge.net/
4http://nltk.org/doc/api/

Other Python libraries are useful in theNLP con-
text: NumPy provides optimized support for linear
algebra and sparse arrays (NumPy, 2008) and PyLab
provides sophisticated facilities for scientific visual-
ization (Matplotlib, 2008).

2.2 Coding Requirements

As discussed in Loper & Bird (2002), the priorities
for NLTK code focus on its teaching role. When code
is readable, a student who doesn’t understand the
maths ofHMMs, smoothing, and so on may benefit
from looking at how an algorithm is implemented.
Thus consistency, simplicity, modularity are all vital
features ofNLTK code. A similar importance is
placed on extensibility, since this helps to ensure that
the code grows as a coherent whole, rather than by
unpredictable and haphazard additions.

By contrast, although efficiency cannot be
ignored, it has always taken second place to
simplicity and clarity of coding. In a similar vein,
we have tried to avoid clever programming tricks,
since these typically hinder intelligibility of the
code. Finally, comprehensiveness of coverage has
never been an overriding concern ofNLTK ; this
leaves open many possibilities for student projects
and community involvement.

2.3 Naming

One issue which has absorbed a considerable
amount of attention is the naming of user-oriented
functions inNLTK . To a large extent, the system of
namingis the user interface to the toolkit, and it is
important that users should be able to guess what
action might be performed by a given function.
Consequently, naming conventions need to be
consistent and semantically transparent. At the same
time, there is a countervailing pressure for relatively
succinct names, since excessive verbosity can also
hinder comprehension and usability. An additional
complication is that adopting an object-oriented
style of programming may be well-motivated for
a number of reasons but nevertheless baffling to
the linguist student. For example, although it is
perfectly respectable to invoke an instance method
WordPunctTokenizer().tokenize(text)

(for some input stringtext), a simpler version is
also provided:wordpunct tokenize(text) .

63

2.4 Corpus Access

The scope of exercises and projects that students
can perform is greatly increased by the inclusion
of a large collection of corpora, along with easy-to-
use corpus readers. This collection, which currently
stands at 45 corpora, includes parsed, POS-tagged,
plain text, categorized text, and lexicons.5

In designing the corpus readers, we emphasized
simplicity, consistency, and efficiency. Corpus
objects, such as nltk.corpus.brown and
nltk.corpus.treebank , define common
methods for reading the corpus contents, abstracting
away from idiosyncratic file formats to provide a
uniform interface. See Figure 1 for an example of
accessing POS-tagged data from different tagged
and parsed corpora.

The corpus objects provide methods for loading
corpus contents in various ways. Common meth-
ods include: raw() , for the raw contents of the
corpus; words() , for a list of tokenized words;
sents() , for the same list grouped into sentences;
tagged words() , for a list of (word, tag) pairs;
tagged sents() , for the same list grouped into
sentences; andparsed sents() , for a list of parse
trees. Optional parameters can be used to restrict
what portion of the corpus is returned, e.g., a partic-
ular section, or an individual corpus file.

Most corpus reader methods return acorpus view
which acts as a list of text objects, but maintains
responsiveness and memory efficiency by only load-
ing items from the file on an as-needed basis. Thus,
when we print a corpus view we only load the first
block of the corpus into memory, but when we pro-
cess this object we load the whole corpus:

>>> nltk.corpus.alpino.words()
[’De’, ’verzekeringsmaatschappijen’,
’verhelen’, ...]
>>> len(nltk.corpus.alpino.words())
139820

2.5 Accessing Shoebox Files

NLTK provides functionality for working with
“Shoebox” (or “Toolbox”) data (Robinson et
al., 2007). Shoebox is a system used by many
documentary linguists to produce lexicons and
interlinear glossed text. The ability to work

5http://nltk.org/corpora.html

straightforwardly with Shoebox data has created a
new incentive for linguists to learn how to program.

As an example, in the Linguistics Department at
the University of Texas at Austin, a course has been
offered on Python programming and working with
corpora,6 but so far uptake from the target audience
of core linguistics students has been low. They usu-
ally have practical computational needs and many of
them are intimidated by the very idea of program-
ming. We believe that the appeal of this course can
be enhanced by designing a significant component
with the goal of helping documentary linguistics stu-
dents take control of theirown Shoebox data. This
will give them skills that are useful for their research
and also transferable to other activities. Although
the NLTK Shoebox functionality was not originally
designed with instruction in mind, its relevance to
students of documentary linguistics is highly fortu-
itous and may prove appealing for similar linguistics
departments.

3 Getting Started

NLP is usually only available as an elective course,
and students will vote with their feet after attending
one or two classes. This initial period is important
for attracting and retaining students. In particular,
students need to get a sense of the richness of lan-
guage in general, andNLP in particular, while gain-
ing a realistic impression of what will be accom-
plished during the course and what skills they will
have by the end. During this time when rapport
needs to be rapidly established, it is easy for instruc-
tors to alienate students through the use of linguistic
or computational concepts and terminology that are
foreign to students, or to bore students by getting
bogged down in defining terms like “noun phrase”
or “function” which are basic to one audience and
new for the other. Thus, we believe it is crucial
for instructors to understand and shape the student’s
expectations, and to get off to a good start. The best
overall strategy that we have found is to use succinct
nuggets ofNLTK code to stimulate students’ interest
in both data and processing techniques.

6http://comp.ling.utexas.edu/courses/
2007/corpora07/

64

>>> nltk.corpus.treebank.tagged_words()
[(’Pierre’, ’NNP’), (’Vinken’, ’NNP’), (’,’, ’,’), ...]
>>> nltk.corpus.brown.tagged_words()
[(’The’, ’AT’), (’Fulton’, ’NP-TL’), ...]
>>> nltk.corpus.floresta.tagged_words()
[(’Um’, ’>N+art’), (’revivalismo’, ’H+n’), ...]
>>> nltk.corpus.cess_esp.tagged_words()
[(’El’, ’da0ms0’), (’grupo’, ’ncms000’), ...]
>>> nltk.corpus.alpino.tagged_words()
[(’De’, ’det’), (’verzekeringsmaatschappijen’, ’noun’) , ...]

Figure 1: Accessing Different Corpora via a Uniform Interface

3.1 Student Expectations

Computer science students come toNLP expecting
to learn aboutNLP algorithms and data structures.
They typically have enough mathematical prepara-
tion to be confident in playing with abstract for-
mal systems (including systems of linguistic rules).
Moreover, they are already proficient in multiple
programming languages, and have little difficulty in
learningNLP algorithms by reading and manipulat-
ing the implementations provided withNLTK . At the
same time, they tend to be unfamiliar with the termi-
nology and concepts that linguists take for granted,
and may struggle to come up with reasonable lin-
guistic analyses of data.

Linguistics students, on the other hand, are
interested in understandingNLP algorithms and
data structures only insofar as it helps them to
use computational tools to perform analytic tasks
from “core linguistics,” e.g. writing a set of CFG
productions to parse some sentences, or plugging
together NLP components in order to derive the
subcategorization requirements of verbs in a corpus.
They are usually not interested in reading significant
chunks of code; it isn’t what they care about and
they probably lack the confidence to poke around in
source files.

In a nutshell, the computer science students typ-
ically want to analyze the tools and synthesize new
implementations, while the linguists typically want
to use the tools to analyze language and synthe-
size new theories. There is a risk that the former
group never really gets to grips with natural lan-
guage, while the latter group never really gets to
grips with processing. Instead, computer science

students need to learn thatNLP is not just an applica-
tion of techniques from formal language theory and
compiler construction, and linguistics students need
to understand thatNLP is not just computer-based
housekeeping and a solution to the shortcomings of
office productivity software for managing their data.

In many courses, linguistics students or computer
science students will dominate the class numeri-
cally, simply because the course is only listed in
one department. In such cases it is usually enough
to provide additional support in the form of some
extra readings, tutorials, and exercises in the open-
ing stages of the course. In other cases, e.g. courses
we have taught at the universities of Edinburgh, Mel-
bourne, Pennsylvania, and Texas-Austin or in sum-
mer intensive programs in several countries, there is
more of an even split, and the challenge of serving
both cohorts of students becomes acute. It helps to
address this issue head-on, with an early discussion
of the goals of the course.

3.2 Articulating the Goals

Despite an instructor’s efforts to add a cross-
disciplinary angle, students easily “revert to
type.” The pressure of assessment encourages
students to emphasize what they do well. Students’
desire to understand what is expected of them
encourages instructors to stick to familiar
assessment instruments. As a consequence,
the path of least resistance is for students to
remain firmly monolingual in their own discipline,
while acquiring a smattering of words from a
foreign language, at a level we might call “survival
linguistics” or “survival computer science.” If they
ever get to work in a multidisciplinary team they are

65

likely only to play a type-cast role.
Asking computer science students to write their

first essay in years, or asking linguistics students
to write their first ever program, leads to stressed
students who complain that they don’t know what
is expected of them. Nevertheless, students need
to confront the challenge of becoming bilingual, of
working hard to learn the basics of another disci-
pline. In parallel, instructors need to confront the
challenge of synthesizing material from linguistics
and computer science into a coherent whole, and
devising effective methods for teaching, learning,
and assessment.

3.3 Entry Points

It is possible to identify several distinct pathways
into the field of Computational Linguistics. Bird
(2008) identifies four; each of these are supported
by NLTK , as detailed below:

Text Processing First: NLTK supports variety of
approaches to tokenization, tagging, evaluation, and
language engineering more generally.

Programming First: NLTK is based on Python
and the documentation teaches the language and
provides many examples and exercises to test and
reinforce student learning.

Linguistics First: Here, students come with a
grounding in one or more areas of linguistics, and
focus on computational approaches to that area by
working with the relevant chapter of theNLTK book
in conjunction with learning how to program.

Algorithms First: Here, students come with a
grounding in one or more areas of computer sci-
ence, and can use, test and extendNLTK ’S reference
implementations of standard NLP algorithms.

3.4 The First Lecture

It is important that the first lecture is effective at
motivating and exemplifyingNLP to an audience
of computer science and linguistics students. They
need to get an accurate sense of the interesting
conceptual and technical challenges awaiting them.
Fortunately, the task is made easier by the simple
fact that language technologies, and language itself,
are intrinsically interesting and appealing to a wide
audience. Several opening topics appear to work
particularly well:

The holy grail: A long term challenge,
mythologized in science fiction movies, is to
build machines that understand human language.
Current technologies that exhibit some basic level
of natural language understanding include spoken
dialogue systems, question answering systems,
summarization systems, and machine translation
systems. These can be demonstrated in class
without too much difficulty. The Turing test is a
linguistic test, easily understood by all students, and
which helps the computer science students to see
NLP in relation to the field of Artificial Intelligence.
The evolution of programming languages has
brought them closer to natural language, helping
students see the essentially linguistic purpose of
this central development in computer science.
The corresponding holy grail in linguistics is full
understanding of the human language faculty;
writing programs and building machines surely
informs this quest too.

The riches of language: It is easy to find
examples of the creative richness of language in its
myriad uses. However, linguists will understand
that language contains hidden riches that can only
be uncovered by careful analysis of large quantities
of linguistically annotated data, work that benefits
from suitable computational tools. Moreover, the
computational needs for exploratory linguistic
research often go beyond the capabilities of the
current tools. Computer scientists will appreciate
the cognate problem of extracting information from
the web, and the economic riches associated with
state-of-the-art text mining technologies.

Formal approaches to language: Computer sci-
ence and linguistics have a shared history in the area
of philosophical logic and formal language theory.
Whether the language is natural or artificial, com-
puter scientists and linguists use similar logical for-
malisms for investigating the formal semantics of
languages, similar grammar formalisms for model-
ing the syntax of languages, and similar finite-state
methods for manipulating text. Both rely on the
recursive, compositional nature of natural and arti-
ficial languages.

3.5 First Assignment

The first coursework assignment can be a significant
step forwards in helping students get to grips with

66

the material, and is best given out early, perhaps
even in week 1. We have found it advisable for
this assignment to include both programming and
linguistics content. One example is to ask students
to carry out NP chunking of some data (e.g. a section
of the Brown Corpus). Thenltk.RegexpParser

class is initialized with a set of chunking rules
expressed in a simple, regular expression-oriented
syntax, and the resulting chunk parser can be run
over POS-tagged input text. Given a Gold Standard
test set like the CoNLL-2000 data,7 precision
and recall of the chunk grammar can be easily
determined. Thus, if students are given an existing,
incomplete set of rules as their starting point, they
just have to modify and test their rules.

There are distinctive outcomes for each set of stu-
dents: linguistics students learn to write grammar
fragments that respect the literal-minded needs of
the computer, and also come to appreciate the noisi-
ness of typicalNLP corpora (including automatically
annotated corpora like CoNLL-2000). Computer
science students become more familiar with parts
of speech and with typical syntactic structures in
English. Both groups learn the importance of formal
evaluation using precision and recall.

4 Interactive Demonstrations

4.1 Python Demonstrations

Python fosters a highly interactive style of teaching.
It is quite natural to build up moderately complex
programs in front of a class, with the less confi-
dent students transcribing it into a Python session
on their laptop to satisfy themselves it works (but
not necessarily understanding everything they enter
first time), while the stronger students quickly grasp
the theoretical concepts and algorithms. While both
groups can be served by the same presentation, they
tend to ask quite different questions. However, this
is addressed by dividing them into smaller clusters
and having teaching assistants visit them separately
to discuss issues arising from the content.

The NLTK book contains many examples, and
the instructor can present an interactive lecture that
includes running these examples and experiment-
ing with them in response to student questions. In

7http://www.cnts.ua.ac.be/conll2000/
chunking/

early classes, the focus will probably be on learning
Python. In later classes, the driver for such interac-
tive lessons can be an externally-motivated empiri-
cal or theoretical question.

As a practical matter, it is important to consider
low-level issues that may get in the way of students’
ability to capture the material covered in interactive
Python sessions. These include choice of appropri-
ate font size for screen display, avoiding the prob-
lem of output scrolling the command out of view,
and distributing a log of the instructor’s interactive
session for students to study in their own time.

4.2 NLTK Demonstrations

A significant fraction of anyNLP syllabus covers
fundamental data structures and algorithms. These
are usually taught with the help of formal notations
and complex diagrams. Large trees and charts are
copied onto the board and edited in tedious slow
motion, or laboriously prepared for presentation
slides. It is more effective to use live demonstrations
in which those diagrams are generated and updated
automatically. NLTK provides interactive graphical
user interfaces, making it possible to view program
state and to study program execution step-by-step.
Most NLTK components have a demonstration
mode, and will perform an interesting task without
requiring any special input from the user. It is
even possible to make minor modifications to
programs in response to “what if” questions. In this
way, students learn the mechanics ofNLP quickly,
gain deeper insights into the data structures and
algorithms, and acquire new problem-solving skills.

An example of a particularly effective set
of demonstrations are those for shift-reduce
and recursive descent parsing. These make
the difference between the algorithms glaringly
obvious. More importantly, students get a concrete
sense of many issues that affect the design of
algorithms for tasks like parsing. The partial
analysis constructed by the recursive descent
parser bobs up and down as it steps forward and
backtracks, and students often go wide-eyed as the
parser retraces its steps and does “dumb” things
like expanding N toman when it has already
tried the rule unsuccessfully (but is now trying
to match a bare NP rather than an NP with a PP
modifier). Linguistics students who are extremely

67

knowledgeable about context-free grammars and
thus understand the representations gain a new
appreciation for just how naive an algorithm can be.
This helps students grasp the need for techniques
like dynamic programming and motivates them to
learn how they can be used to solve such problems
much more efficiently.

Another highly useful aspect ofNLTK is the abil-
ity to define a context-free grammar using a sim-
ple format and to display tree structures graphically.
This can be used to teach context-free grammars
interactively, where the instructor and the students
develop a grammar from scratch and check its cov-
erage against a testbed of grammatical and ungram-
matical sentences. Because it is so easy to modify
the grammar and check its behavior, students readily
participate and suggest various solutions. When the
grammar produces an analysis for an ungrammatical
sentence in the testbed, the tree structure can be dis-
played graphically and inspected to see what went
wrong. Conversely, the parse chart can be inspected
to see where the grammar failed on grammatical sen-
tences.

NLTK ’s easy access to many corpora greatly facil-
itates classroom instruction. It is straightforward to
pull in different sections of corpora and build pro-
grams in class for many different tasks. This not
only makes it easier to experiment with ideas on the
fly, but also allows students to replicate the exer-
cises outside of class. Graphical displays that show
the dispersion of terms throughout a text also give
students excellent examples of how a few simple
statistics collected from a corpus can provide useful
and interesting views on a text—including seeing the
frequency with which various characters appear in a
novel. This can in turn be related to other resources
like Google Trends, which shows the frequency with
which a term has been referenced in news reports or
been used in search terms over several years.

5 Exercises, Assignments and Projects

5.1 Exercises

Copious exercises are provided with theNLTK book;
these have been graded for difficulty relative to the
concepts covered in the preceding sections of the
book. Exercises have the tremendous advantage of
building on theNLTK infrastructure, both code and

documentation. The exercises are intended to be
suitable both for self-paced learning and in formally
assigned coursework.

A mixed class of linguistics and computer sci-
ence students will have a diverse range of program-
ming experience, and students with no programming
experience will typically have different aptitudes for
programming (Barker and Unger, 1983; Caspersen
et al., 2007). A course which forces all students
to progress at the same rate will be too difficult for
some, and too dull for others, and will risk alien-
ating many students. Thus, course materials need
to accommodate self-paced learning. An effective
way to do this is to provide students with contexts
in which they can test and extend their knowledge at
their own rate.

One such context is provided by lecture or lab-
oratory sessions in which students have a machine
in front of them (or one between two), and where
there is time to work through a series of exercises to
consolidate what has just been taught from the front,
or read from a chapter of the book. When this can be
done at regular intervals, it is easier for students to
know which part of the materials to re-read. It also
encourages them to get into the habit of checking
their understanding of a concept by writing code.

When exercises are graded for difficulty, it is
easier for students to understand how much effort
is expected, and whether they even have time to
attempt an exercise. Graded exercises are also good
for supporting self-evaluation. If a student takes
20 minutes to write a solution, they also need to
have some idea of whether this was an appropriate
amount of time.

The exercises are also highly adaptable. It is com-
mon for instructors to take them as a starting point
in building homework assignments that are tailored
to their own students. Some instructors prefer to
include exercises that do not allow students to take
advantage of built-inNLTK functionality, e.g. using
a Python dictionary to count word frequencies in the
Brown corpus rather thanNLTK ’s FreqDist (see
Figure 2). This is an important part of building
facility with general text processing in Python, since
eventually students will have to work outside of
the NLTK sandbox. Nonetheless, students often use
NLTK functionality as part of their solutions, e.g.,
for managing frequencies and distributions. Again,

68

nltk.FreqDist(nltk.corpus.brown.words())

fd = nltk.FreqDist()
for filename in corpus_files:

text = open(filename).read()
for w in nltk.wordpunct_tokenize(text):

fd.inc(w)

counts = {}
for w in nltk.corpus.brown.words():

if w not in counts:
counts[w] = 0

counts[w] += 1

Figure 2: Three Ways to Build up a Frequency Distribu-
tion of Words in the Brown Corpus

this flexibility is a good thing: students learn to
work with resources they know how to use, and can
branch out to new exercises from that basis. When
course content includes discussion of Unix com-
mand line utilities for text processing, students can
furthermore gain a better appreciation of the pros
and cons of writing their own scripts versus using
an appropriate Unix pipeline.

5.2 Assignments

NLTK supports assignments of varying difficulty and
scope: experimenting with existing components to
see what happens for different inputs or parameter
settings; modifying existing components and
creating systems using existing components;
leveraging NLTK ’s extensible architecture by
developing entirely new components; or employing
NLTK ’s interfaces to other toolkits such as Weka
(Witten and Frank, 2005) and Prover9 (McCune,
2008).

5.3 Projects

Group projects involving a mixture of linguists
and computer science students have an initial
appeal, assuming that each kind of student can
learn from the other. However, there’s a complex
social dynamic in such groups, one effect of which
is that the linguistics students may opt out of the
programming aspects of the task, perhaps with
view that their contribution would only hurt the
chances of achieving a good overall project mark.
It is difficult to mandate significant collaboration

across disciplinary boundaries, with the more
likely outcome being, for example, that a parser is
developed by a computer science team member,
then thrown over the wall to a linguist who will
develop an appropriate grammar.

Instead, we believe that it is generally more pro-
ductive in the context of a single-semester introduc-
tory course to have students work individually on
their own projects. Distinct projects can be devised
for students depending on their background, or stu-
dents can be given a list of project topics,8 and
offered option of self-proposing other projects.

6 Conclusion

We have argued that the distinctive features of
NLTK make it an apt vehicle for teachingNLP

to mixed audiences of linguistic and computer
science students. On the one hand, complete
novices can quickly gain confidence in their ability
to do interesting and useful things with language
processing, while the transparency and consistency
of the implementation also makes it easy for
experienced programmers to learn about natural
language and to explore more challenging tasks.
The success of this recipe is borne out by the
wide uptake of the toolkit, not only within tertiary
education but more broadly by users who just want
try their hand atNLP. We also have encouraging
results in presentingNLTK in classrooms at the
secondary level, thereby trying to inspire the
computational linguists of the future!

Finally, we believe thatNLTK has gained much
by participating in the Open Source software move-
ment, specifically from the infrastructure provided
by SourceForge.net and from the invaluable
contributions of a wide range of people, including
many students.

7 Acknowledgments

We are grateful to the members of theNLTK com-
munity for their helpful feedback on the toolkit and
their many contributions. We thank the anonymous
reviewers for their feedback on an earlier version of
this paper.

8http://nltk.org/projects.html

69

References

Jason Baldridge and Katrin Erk. 2008. Teaching com-
putational linguistics to a large, diverse student body:
courses, tools, and interdepartmental interaction. In
Proceedings of the Third Workshop on Issues in Teach-
ing Computational Linguistics. Association for Com-
putational Linguistics.

Ricky Barker and E. A. Unger. 1983. A predictor for
success in an introductory programming class based
upon abstract reasoning development.ACM SIGCSE
Bulletin, 15:154–158.

Steven Bird and Edward Loper. 2004. NLTK: The Nat-
ural Language Toolkit. InCompanion Volume to the
Proceedings of 42st Annual Meeting of the Association
for Computational Linguistics, pages 214–217. Asso-
ciation for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2008.
Natural Language Processing in Python.http://
nltk.org/book.html .

Steven Bird. 2005. NLTK-Lite: Efficient scripting
for natural language processing. In4th International
Conference on Natural Language Processing, Kanpur,
India, pages 1–8.

Steven Bird. 2006. NLTK: The Natural Language
Toolkit. In Proceedings of the COLING/ACL 2006
Interactive Presentation Sessions, pages 69–72, Syd-
ney, Australia, July. Association for Computational
Linguistics.

Steven Bird. 2008. Defining a core body of knowledge
for the introductory computational linguistics curricu-
lum. In Proceedings of the Third Workshop on Issues
in Teaching Computational Linguistics. Association
for Computational Linguistics.

Charles C. Bonwell and James A. Eison. 1991.Active
Learning: Creating Excitement in the Classroom.
Washington, D.C.: Jossey-Bass.

Michael Caspersen, Kasper Larsen, and Jens Benned-
sen. 2007. Mental models and programming aptitude.
SIGCSE Bulletin, 39:206–210.

Marti Hearst. 2005. Teaching applied natural language
processing: Triumphs and tribulations. InProceedings
of the Second ACL Workshop on Effective Tools and
Methodologies for Teaching NLP and CL, pages 1–8,
Ann Arbor, Michigan, June. Association for Compu-
tational Linguistics.

Ewan Klein. 2006. Computational semantics in the Nat-
ural Language Toolkit. InProceedings of the Aus-
tralasian Language Technology Workshop, pages 26–
33.

Elizabeth Liddy and Nancy McCracken. 2005. Hands-on
NLP for an interdisciplinary audience. InProceedings
of the Second ACL Workshop on Effective Tools and

Methodologies for Teaching NLP and CL, pages 62–
68, Ann Arbor, Michigan, June. Association for Com-
putational Linguistics.

Edward Loper and Steven Bird. 2002. NLTK: The Nat-
ural Language Toolkit. InProceedings of the ACL
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computa-
tional Linguistics, pages 62–69. Association for Com-
putational Linguistics.

Edward Loper. 2004. NLTK: Building a pedagogical
toolkit in Python. InPyCon DC 2004. Python Soft-
ware Foundation.

Nitin Madnani and Bonnie Dorr. 2008. Combining
open-source with research to re-engineer a hands-on
introductory NLP course. InProceedings of the Third
Workshop on Issues in Teaching Computational Lin-
guistics. Association for Computational Linguistics.

Nitin Madnani. 2007. Getting started on natural lan-
guage processing with Python.ACM Crossroads,
13(4).

Matplotlib. 2008. Matplotlib: Python 2D plotting
library. http://matplotlib.sourceforge.
net/ .

William McCune. 2008. Prover9: Automated
theorem prover for first-order and equational logic.
http://www.cs.unm.edu/˜mccune/mace4/
manual-examples.html .

NumPy. 2008. NumPy: Scientific computing with
Python.http://numpy.scipy.org/ .

Stuart Robinson, Greg Aumann, and Steven Bird. 2007.
Managing fieldwork data with Toolbox and the Natu-
ral Language Toolkit.Language Documentation and
Conservation, 1:44–57.

Christine Shannon. 2003. Another breadth-first
approach to CS I using Python. InProceedings of
the 34th SIGCSE Technical Symposium on Computer
Science Education, pages 248–251. ACM.

Ian H. Witten and Eibe Frank. 2005.Data Mining: Prac-
tical machine learning tools and techniques. Morgan
Kaufmann.

70

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 71–79,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Combining Open-Source with Research to Re-engineer
a Hands-on Introductory NLP Course

Nitin Madnani Bonnie J. Dorr
Laboratory for Computational Linguistics and Information Processing

Institute for Advanced Computer Studies
Department of Computer Science

University of Maryland, College Park
{nmadnani,bonnie}@umiacs.umd.edu

Abstract

We describe our first attempts to re-engineer
the curriculum of our introductory NLP course
by using two important building blocks: (1)
Access to an easy-to-learn programming lan-
guage and framework to build hands-on pro-
gramming assignments with real-world data
and corpora and, (2) Incorporation of interest-
ing ideas from recent NLP research publica-
tions into assignment and examination prob-
lems. We believe that these are extremely im-
portant components of a curriculum aimed at a
diverse audience consisting primarily of first-
year graduate students from both linguistics
and computer science. Based on overwhelm-
ingly positive student feedback, we find that
our attempts were hugely successful.

1 Introduction

Designing an introductory level natural language
processing course for a class of first year computer
science and linguistics graduate students is a chal-
lenging task. It is important to strive for balance be-
tween breadth and depth—it is important not only
to introduce the students to a variety of language
processing techniques and applications but also to
provide sufficient detail about each. However, we
claim that there is another important requirement for
a successful implementation of such a course. Like
any other graduate-level course offered to first year
students, it should encourage them to approach so-
lutions to problems as researchers. In order to meet
such a requirement, the course should have two im-
portant dimensions:

1. Access to a programming framework that pro-
vides the tools and data used in the real world
so as to allow the students to explore each topic
hands-on and easily attempt creative solutions
to problems. The framework should be simple
enough to use so that students are not bogged
down in its intricacies and can focus on the
course concepts.

2. Exposure to novel and innovative research in
each topic. One of the most valuable contribu-
tions of a large community, such as the NLP
and CL community, is the publicly accessible
repository of research publications for a range
of topics. While the commonly used textbooks
describe established and mainstream research
methods for each topic in detail, more recent
research papers are usually omitted. By using
such papers as the bases for programming
assignments—instantiated in the framework
described earlier—and exam questions, stu-
dents can gain important insights into how new
solutions to existing problems are formulated;
insights that can only come from a hands-on
approach to problem solving.

In this paper, we describe our attempts to engineer
such a course. In section 2, we describe the specific
goals we had in mind for such a course and how it
differs from the previous version of the introductory
course we taught at our institution. Section 3 dis-
cusses how we fully integrated an open-source pro-
gramming framework into our curriculum and used
it for programming assignments as well as in-class

71

sessions. In a similar vein, section 4 describes our
preliminary efforts to combine interesting research
ideas for various topics with the framework above.
We also have definite plans to expand the course cur-
riculum to take more novel ideas from recent NLP
literature for each topic and adapt them to instructive
hands-on assignments. Furthermore, we are devel-
oping extensions and add-ons for the programming
framework that we plan to contribute to the project.
We outline these plans in section 6 and conclude in
section 7.

2 Goals

We wanted our course curriculum to fulfill some
specific goals that we discuss below, provide moti-
vation wherever appropriate.

• A Uniform Programming Framework. The
previous version of our introductory course
took a more fragmented approach and used dif-
ferent programming languages and tools for
different assignments. For example, we used
an in-house HMM library written in C for any
HMM-based assignments and Perl for some
other assignments. As expected, such an ap-
proach requires students to familiarize them-
selves with a different programming interface
for each assignment and discourages students
to explore on their own. To address this con-
cern, we chose the Python (Python, 2007) pro-
gramming language and the Natural Language
Toolkit (Loper and Bird, 2002), written entirely
in Python, for all our assignments and program-
ming tasks. We discuss our use of NLTK in
more detail in the next section.

• Real-world Data & Corpora. In our previ-
ous course, students did not have access to any
of the corpora that are used in actual NLP re-
search. We found this to be a serious short-
coming and wanted to ensure that our new cur-
riculum allowed students to use real corpora for
evaluating their programming assignments.

• Exposure to Research. While we had cer-
tainly made it a point to introduce recent re-
search work in our lectures for all topics in
the previous course, we believed that a much

richer integration was required in order to al-
low a more realistic peek into NLP research.

• Satisfying a Diverse Audience. We wanted the
curriculum to appeal to both computer science
and linguistics students since they the course
was cross-listed in both departments.

• Continuing Interest. A large number of the
students enrolled in the course were undecided
about what research area to pursue. We wanted
to present a fair picture of what NLP research
actually entails and encourage any interested
students to take the more advanced part of the
course being offered later in the year.

3 Incorporating Open Source

We use the Python programming language and
NLTK as our programming framework for the
curriculum. Python is currently one of the most
popular programming languages—it is fully object
oriented and multi-platform, natively supports
high-level dynamic data types such as lists and
hashes (termed dictionaries in Python), has very
readable syntax and, most importantly, ships with
an extensive standard library for almost every con-
ceivable task. Although Python already has most
of the functionality needed to perform very simple
NLP tasks, its still not powerful enough for most
standard ones. This is where the Natural Language
Toolkit (NLTK) comes in. NLTK1, written entirely
in Python, is a collection of modules and corpora,
released under an open-source license, that allows
students to learn and conduct research in NLP (Bird
et al., 2008). The most important advantage of
using NLTK is that it is entirely self-contained.
Not only does it provide convenient functions
and wrappers that can be used as building blocks
for common NLP tasks, it also provides raw and
pre-processed versions of standard corpora used
frequently in NLP literature. Together, Python and
NLTK constitute one of the most potent tools for
instruction of NLP (Madnani, 2007) and allow us
to develop hands-on assignments that can appeal
to a broad audience including both linguistics and
computer science students.

1http://nltk.org

72

Figure 1: An Excerpt from the output of a Python script used for an in-class exercise demonstrating the simplicity of
the Python-NLTK combination.

In order to illustrate the simplicity and utility of
this tool to the students, we went through an in-class
exercise at the beginning of the class. The exercise
asked the students to solve the following simple
language processing problem:

Find the frequency of occurrences of the following
words in the state-of-the-union addresses of the last
6 American Presidents: war, peace, economy & aid.
Also draw histograms for each word.

We then went through a step-by-step process of how
one would go about solving such a problem. The
solution hinged on two important points:

(a) NLTK ships with a corpus of the last 50 years
of state-of-the-union addresses and provides a
native conditional frequency distribution object
to easily keep track of conditional counts.

(b) Drawing a histogram in Python is as simple as
the statement print ’#’*n where n is the
count for each query word.

Given these two properties, the Python solution for
the problem was only 20 lines long. Figure 1 shows
an excerpt from the output of this script. This ex-
ercise allowed us to impress upon the students that
the programming framework for the course is sim-
ple and fun so that they may start exploring it on
their own. We describe more concrete instances of
NLTK usage in our curriculum below.

3.1 HMMs & Part-of-speech Tagging

Hidden Markov Models (Rabiner, 1989) have
proven to be a very useful formalism in NLP
and have been used in a wide range of problems,
e.g., parsing, machine translation and part-of-speech
(POS) tagging. In our previous curriculum, we
had employed an in-house C++ implementation of
HMMs for our assignments. As part of our new
curriculum, we introduced Markov models (and
HMMs) in the context of POS tagging and in a much
more hands-on fashion. To do this, we created an
assignment where students were required to imple-
ment Viterbi decoding for an HMM and output the
best POS tag sequence for any given sentence. There
were several ways in which NLTK made this ex-
tremely simple:

• Since we had the entire source code of the
HMM module from NLTK available, we fac-
tored out the part of the code that handled the
HMM training, parameterized it and provided
that to students as a separate module they they
could use to train the HMMs. Such refactor-
ing not only allows for cleaner code boundaries
but it also allows the students to use a variety
of training parameters (such as different forms
of smoothed distributions for the transition and
emission probabilities) and measure their ef-
fects with little effort. Listing 1 shows how
the refactoring was accomplished: the train-
ing code was put into a separate module called
hmmtrainer and automatically called in the

73

Listing 1: A skeleton of the refactored NLTK HMM code
used to build a hands-on HMM assignment

import hmmtrainer
import nltk.LidStoneProbDist as lidstone
class hmm:

def __init__(self):
params = hmmtrainer.train(smooth=lidstone)
self.params = params

def decode(self, word_sequence)

def tag(self, word_sequence)

main hmm class when instantiating it. The stu-
dents had to write the code for the decode and
tag methods of this class. The HMM train-
ing was setup to be able to use a variety of
smoothed distributions, e.g. Lidstone, Laplace
etc., all available from NLTK.

• NLTK ships with the tokenized and POS tagged
version of the Brown corpus—one of the most
common corpora employed for corpus linguis-
tics and, in particular, for evaluating POS tag-
gers. We used Section A of the corpus for train-
ing the HMMs and asked the students to evalu-
ate their taggers on Section B.

Another advantage of this assignment was that the if
students were interested in how the supervised train-
ing process actually worked, they could simply ex-
amine the hmmtrainer module that was also writ-
ten entirely in Python. An assignment with such
characteristics in our previous course would have
required knowledge of C++, willingness to wade
through much more complicated code and would
certainly not have been as instructive.

3.2 Finite State Automata

Another topic where we were able to leverage the
strengths of both NLTK and Python was when
introducing the students to finite state automata.
Previously, we only discussed the fundamentals of
finite state automata in class and then asked the
students to apply this knowledge to morphological
parsing by using PC-Kimmo (Koskenniemi, 1983).
However, working with PC-Kimmo required the
students to directly fill entries in transition tables

Listing 2: An illustration of the simple finite state trans-
ducer interface in NLTK

from nltk_contrib.fst import fst
f = fst.FST(’test’) #instantiate
f.add_state(’1’) # add states
f.add_state(’2’)
f.add_state(’3’)
f.initial_state = 1 # set initial
f.set_final(’2’) # set finals
f.set_final(’3’)
f.add_arc(’1’,’2’,’a’, ’A’) # a −> A
f.add_arc(’1’,’3’,’b’, ’B’) # b −> B
print f.transduce([’a’, ’a’, ’b’, ’b’])

using a very rigid syntax.

In the new curriculum, we could easily rely on
the finite state module that ships with NLTK to use
such automata in a very natural way as shown in
Listing 2. With such an easy to use interface, we
could concentrate instead on the more important
concepts underlying the building and cascading of
transducers to accomplish a language processing
task.

As our example task, we asked the students
to implement the Soundex Algorithm, a phonetic
algorithm commonly used by libraries and the
Census Bureau to represent people’s names as they
are pronounced in English. We found that not only
did the students easily implement such a complex
transducer, they also took the time to perform some
analysis on their own and determine the short-
comings of the Soundex algorithm. This was only
possible because of the simple interface and short
development cycle provided by the Python-NLTK
combination. In addition, NLTK also provides a
single method2 that can render the transducer as a
postscript or image file that can prove extremely
useful for debugging.

In our new version of the course, we consciously
chose to use primarily open-source technologies in
the curriculum. We feel that it is important to say a
few words about this choice: an open-source project

2This method interfaces with an existing installation of
Graphviz, a popular open-source graph drawing software (Ell-
son et al., 2004).

74

not only allows instructors to examine the source
code and re-purpose it for their own use (as we
did in section 3.1) but it also encourages students
to delve deep into the programming framework
if they are curious about how something works.
In fact, a few of our students actually discovered
subtle idiosyncrasies and bugs in the NLTK source
while exploring on their own, filed bug reports
where necessary and shared the findings with the
entire class. This experience allowed all students
to understand the challenges of language processing.

More importantly, we believe an open-source
project fosters collaboration in the community that
it serves. For example, a lot of the functionality of
NLTK hinges on important technical contributions,
such as our SRILM interface described in section 6,
from the large academic NLP community that can be
used by any member of the community for research
and for teaching.

4 Incorporating Research

Besides employing a uniform programming frame-
work that the students could pick up easily and learn
to explore on their own, the other important goal
of the new curriculum was to incorporate ideas and
techniques from interesting NLP research publica-
tions into assignments and exams. The motivation,
of course, was to get our students to think about
and possibly even implement these ideas. Since we
cannot discuss all instances in the curriculum where
we leveraged research publications (due to space
considerations), we only discuss two such instances
in detail below.

The first topic for which we constructed a more
open-ended research-oriented assignment was lex-
ical semantics. We focused, in particular, on the
WordNet (Fellbaum, 1998) database. WordNet is
a very popular lexical database and has been used
extensively in NLP literature over the years. In the
previous course, our assignment on lexical seman-
tics asked the students to use the online interface to
WordNet to learn the basic concept of a synset and
the various relations that are defined over synsets
such as hyponymy, hypernymy etc. A very sim-
ple change would have been to ask the students to

use the WordNet interface included with NLTK to
perform the same analysis. However, we thought
that a more interesting assignment would be to ex-
plore the structure of the four WordNet taxonomies
(Noun, Verb, Adjective and Adverb). This taxon-
omy can be simplified and thought of as a directed
acyclic graph G = (V,E) where each synset u ∈ V
is a node and each edge (u, v) ∈ E represents that
v is a hypernym of u. Given such a graph, some
very interesting statistics can be computed about the
topology of WordNet itself (Devitt and Vogel, 2004).
In our assignment, we asked the students to use the
NLTK WordNet interface to compute some of these
statistics automatically and answer some interesting
questions:

(a) What percentage of the nodes in the Noun tax-
onomy are leaf nodes?

(b) Which are the nine most general root nodes in
the Noun taxonomy and what is the node dis-
tribution across these roots?

(c) Compute the branching factor (number of de-
scendants) for each node in the Noun taxonomy
both including and excluding leaf nodes. What
percentage of nodes have a branching factor
less than 5? Less than 20? Does this tell some-
thing you about the shallowness/depth of the
taxonomy?

(d) If we plot a graph with the number of senses
of each verb in the Verb taxonomy against its
polysemy rank, what kind of graph do we get?
What conclusion can be drawn from this graph?

(e) Compare the four taxonomies on average pol-
ysemy, both including and excluding monose-
mous words. What conclusions can you draw
from this?

Of course, the assignment also contained the usual
questions pertaining to the content of the WordNet
database rather than just its structure. We believe
that this assignment was much more instructive
because not only did it afford the students a close
examination into the usage as well as structure of a
valuable NLP resource, but also required them to
apply their knowledge of graph theory.

75

The second instance where we used a research pa-
per was when writing the HMM question for the fi-
nal exam. We thought it would be illuminating to
ask the students to apply what they had learned in
class about HMMs to an instance of HMM used in
an actual NLP scenario. For this purpose, we chose
the HMM described in (Miller et al., 1999) and as
shown in Figure 2. As part of the question, we ex-

qS

qD

qGE

qE

∏s = 1.0

1.0

1.0a0

a1

bqD
(ui)

bqGE
(ui)

1.0

Figure 2: An HMM used and described in a popular re-
search publication formed the basis of a question in the
final exam.

plained the information retrieval task: generate a
ranked list of documents relevant to a user query
U = 〈ui〉, where the rank of the document D is
based on the probability P (D is relevant|U). We
further explained that by applying Bayes’ theorem
to this quantity and assuming a uniform prior over
document selection, the only important quantity was
the probability of the query U being generated by a
relevant document D, or P (U |D is relevant). The
rest of the question demonstrated how this genera-
tive process could be modeled by the HMM in Fig-
ure 2:

• Start at the initial state qS .

• Transition with the probability a0 to state qD

which represents choosing a word directly from
document D OR transition with probability a1

to state qGE which represents choosing a word
from “General English”, i.e., a word unrelated
to the document but that occurs commonly in
other queries.

• If in state qD, emit the current, say ith, query
word either directly from document D with
emission probability bqD(ui). Otherwise, if in
state qGE , emit the current query word from
“General English” with emission probability
bqGE (ui).

• Transition to the end state qE .

• If we have generated all the words in the query,
then stop here. If not, transition to qS and
repeat.

Given this generative process, we then asked the stu-
dents to answer the following questions:

(a) Derive a simplified closed-form expression for
the posterior probability P (U |D is relevant)
in terms of the transition probabilities
{a0, a1} and the emissions probabilities
{bqD(ui), bqGE (ui)}. You may assume that
U = 〈ui〉ni=1.

(b) What HMM algorithm will you use to com-
pute P (U |D is relevant) when implementing
this model?

(c) How will you compute the maximum like-
lihood estimate for the emission probability
bqD(ui) ?

(d) What about bqGE (ui) ? Is it practical to com-
pute the actual value of this estimate? What
reasonable approximation might be used in
place of the actual value?

This question not only required the students to apply
the concepts of probability theory and HMMs that
they learned in class but also to contemplate more
open-ended research questions where there may be
no one right answer.

For both these and other instances where we used
ideas from research publications to build assign-
ments and exam questions, we encouraged the stu-
dents to read the corresponding publications after
they had submitted their solutions. In addition, we
discussed possible answers with them in an online
forum set up especially for the course.

76

5 Indicators of Success

Since this was our first major revision of the curricu-
lum for an introductory NLP course, we were inter-
ested in getting student feedback on the changes that
we made. To elicit such feedback, we designed a
survey that asked all the students in the class (a total
of 30) to rate the new curriculum on a scale of one
to five on various criteria, particularly for the expe-
rience of using NLTK for all programming assign-
ments and on the quality of the assignments them-
selves.

 0

 20

 40

 60

 80

 100

Excellent Good Satisfactory Fair Poor

pe
rc

en
ta

ge
 o

f s
tu

de
nt

s

Figure 3: Histogram of student feedback on the experi-
ence of using the Python-NLTK combination.

 0

 20

 40

 60

 80

 100

Excellent Good Satisfactory Fair Poor

pe
rc

en
ta

ge
 o

f s
tu

de
nt

s

Figure 4: Histogram of student feedback on the quality
of course assignments.

Figures 3 and 4 show the histograms of the stu-
dents’ survey responses for these two criteria. The
overwhelmingly positive ratings clearly indicate
that we were extremely successful in achieving the
desired goals for our revised curriculum. As part of
the survey, we had also asked the students to provide
any comments they had about the curriculum. We

received a large number of positive comments some
of which we quote below:

“Using Python and NLTK for assignments removed
any programming barriers and enabled me to focus
on the course concepts.”

“The assignments were absolutely fantastic and
supplemented the material presented in class.”

“A great experience for the students.”

The first comment—echoed by several linguistics
as well as computer science students—validates
our particular choice of programming language
and framework. In the past, we had observed
that linguistics students with little programming
background spent most of their time figuring out
how to wield the programming language or tool to
accomplish simple tasks. However, the combination
of Python and NLTK provided a way for them to
work on computational solutions without taking
too much time away from learning the core NLP
concepts.

While it is clearly apparent to us that the students
really liked the new version of the curriculum, it
would also have been worthwhile to carry out a
comparison of students’ reviews of the old and new
curricula. The most frequent comments that we saw
in older versions of the course were similar to the
following:

“Although I feel you did a decent job repeating and
pointing out the interesting facts of the book, I don’t
think you really found many compelling examples of
using these techniques in practice.”

The feedback we received for the revamped curricu-
lum, such as the second comment above, clearly in-
dicated that we had addressed this shortcoming of
the older curriculum. However, due to significant
format changes in the review forms between various
offerings of this course, it is not possible to conduct
a direct, retroactive comparison. It is our intent to
offer such comparisons in the future.

77

6 Future Plans

Given the success that we had in our first attempt
to re-engineer the introductory NLP course, we plan
to continue: (1) our hands-on approach to program-
ming assignments in the NLTK framework and, (2)
our practice of adapting ideas from research publi-
cations as the bases for assignment and examination
problems. Below we describe two concrete ideas for
the next iteration of the course.

1. Hands-on Statistical Language Modeling.
For this topic, we have so far restricted our-
selves to the textbook (Jurafsky and Mar-
tin, 2000); the in-class discussion and pro-
gramming assignments have been missing a
hands-on component. We have written a
Python interface to the SRI Language Model-
ing toolkit (Stolcke, 2002) for use in our re-
search work. This interface uses the Simpli-
fied Wrapper & Interface Generator (SWIG) to
generate a Python wrapper around our C code
that does all the heavy lifting via the SRILM
libraries. We are currently working on integrat-
ing this module into NLTK which would allow
all NLTK users, including our students in the
next version of the course, to build and query
statistical language models directly inside their
Python code. This module, combined with the
large real-world corpora, would provide a great
opportunity to perform hands-on experiments
with language models and to understand the
various smoothing methods. In addition, this
would also allow a language model to be used
in an assignment for any other topic should we
need it.

2. Teaching Distributional Similarity. The
idea that a language possesses distributional
structure—first discussed at length by Har-
ris (1954)—says that one can describe a lan-
guage in terms of relationships between the oc-
currences of its elements (words, morphemes,
phonemes). The name for the phenomenon
is derived from an element’s distribution—sets
of other elements in particular positions that
occur with the element in utterances or sen-
tences. This work led to the concept of distribu-
tional similarity—words or phrases that share

the same distribution, i.e., the same set of words
or in the same context in a corpus, tend to have
similar meanings. This is an extremely popular
concept in corpus linguistics and forms the ba-
sis of a large body of work. We believe that this
is an important topic that should be included in
the curriculum. We plan to do so in the context
of lexical paraphrase acquisition or synonyms
automatically from corpora, a task that relies
heavily on this notion of distributional similar-
ity. There has been a lot of work in this area in
the past years (Pereira et al., 1993; Gasperin et
al., 2001; Glickman and Dagan, 2003; Shimo-
hata and Sumita, 2005), much of which can be
easily replicated using the Python-NLTK com-
bination. This would allow for a very hands-on
treatment and would allow the students to gain
insight into this important, but often omitted,
idea from computational linguistics.

7 Conclusion

Our primacy goal was to design an introductory level
natural language processing course for a class of first
year computer science and linguistics graduate stu-
dents. We wanted the curriculum to encourage the
students to approach solutions to problems with the
mind-set of a researcher. To accomplish this, we re-
lied on two basic ideas. First, we used a program-
ming framework which provides the tools and data
used in the real world so as to allow hands-on ex-
ploration of each topic. Second, we adapted ideas
from recent research papers into programming as-
signments and exam questions to provide students
with insight into the process of formulating a solu-
tion to common NLP problems. At the end of the
course, we asked all students to provide feedback
and the verdict from both linguistics and computer
science students was overwhelmingly in favor of the
new more hands-on curriculum.

References

Steven Bird, Ewan Klein, Edward Loper, and Jason
Baldridge. 2008. Multidisciplinary Instruction with
the Natural Language Toolkit. In Proceedings of the
Third ACL Workshop on Issues in Teaching Computa-
tional Linguistics.

Ann Devitt and Carl Vogel. 2004. The Topology of

78

WordNet: Some metrics. In Proceedings of the Sec-
ond International WordNet Conference (GWC2004).

J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North, and
G. Woodhull. 2004. Graphviz and Dynagraph – Static
and Dynamic Graph Drawing Tools. In Graph Draw-
ing Software, pages 127–148. Springer-Verlag.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Caroline Gasperin, P. Gamallo, A. Agustini, G. Lopes,
and Vera de Lima. 2001. Using syntactic contexts for
measuring word similarity. In Workshop on Knowl-
edge Acquisition Categorization, ESSLLI.

Oren Glickman and Ido Dagan. 2003. Identifying lex-
ical paraphrases from a single corpus: A case study
for verbs. In Recent Advantages in Natural Language
Processing (RANLP’03).

Zellig Harris. 1954. Distributional Structure. Word,
10(2):3.146–162.

Daniel Jurafsky and James H. Martin. 2000. Speech
and Language Processing: An Introduction to Natu-
ral Language Processing, Computational Linguistics,
and Speech Recognition. Prentice Hall.

Kimmo Koskenniemi. 1983. Two-level morphology: a
general computational model for word-form recogni-
tion and production. Publication No. 11, University of
Helsinki: Department of General Linguistics.

Edward Loper and Steven Bird. 2002. NLTK: The Nat-
ural Language Toolkit. In Proceedings of ACL Work-
shop on Effective Tools and Methodologies for Teach-
ing NLP and CL, pages 62–69.

Nitin Madnani. 2007. Getting Started on Natural Lan-
guage Processing with Python. ACM Crossroads,
13(4).

D. R. Miller, T. Leek, and R. M. Schwartz. 1999. A
hidden Markov model information retrieval system. In
Proceedings of SIGIR, pages 214–221.

Fernando Pereira, Naftali Tishby, and Lillian Lee. 1993.
Distributional clustering of english words. In Proceed-
ings of ACL, pages 183–190.

Python. 2007. The Python Programming Language.
http://www.python.org.

Lawrence R. Rabiner. 1989. A tutorial on hidden markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2):257–286.

Mitsuo Shimohata and Eiichiro Sumita. 2005. Acquir-
ing synonyms from monolingual comparable texts. In
Proceedings of IJCNLP, pages 233–244.

Andreas Stolcke. 2002. SRILM – an extensible language
modeling toolkit. In Proceedings of International
Conference on Spoken Language Processing (ICSLP).

79

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 80–86,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Zero to Spoken Dialogue System in One Quarter: Teaching Computational
Linguistics to Linguists Using Regulus

Beth Ann Hockey
Department of Linguistics,

UARC
UC Santa Cruz

Mail-Stop 19-26, NASA Ames
Moffett Field, CA 94035-1000
bahockey@ucsc.edu

Gwen Christian
Department of Linguistics

UCSC
Santa Cruz, CA 95064, USA
jchristi@ucsc.edu

Abstract

This paper describes a Computational Lin-
guistics course designed for Linguistics stu-
dents. The course is structured around the ar-
chitecture of a Spoken Dialogue System and
makes extensive use of the dialogue system
tools and examples available in the Regu-
lus Open Source Project. Although only a
quarter long course, students learn Computa-
tional Linguistics and programming sufficient
to build their own Spoken Dialogue System as
a course project.

1 Introduction

Spoken Dialogue Systems model end-to-end ex-
ecution of conversation and consequently require
knowledge of many areas of computational linguis-
tics, speech technology and linguistics. The struc-
ture of Spoken Dialogue Systems offers a ready-
made structure for teaching a computational linguis-
tics course. One can work through the components
and cover a broad range of material in a grounded
and motivating way. The course described in this
paper was designed for linguistics students, upper-
division undergraduate and graduate, many having
limited experience with programming or computer
science. By the end of a quarter long course, stu-
dents were able to build a working spoken dialogue
systems and had a good introductory level under-
standing of the related computational linguistics top-
ics.

When this course was first being contemplated,
it became apparent that there were a number of
somewhat unusual properties that it should have,

and a number of useful goals for it to accomplish.
The Linguistics Department in which this course is
given had only sporadic offerings of computational
courses, due in part to having no faculty with a pri-
mary focus in Computational Linguistics. linguis-
tics students are very interested in having courses in
this area, but even in the University as a whole avail-
ability is limited. A course on information extraction
is offered in the Engineering School and while some
linguistics students are equipped to take that course,
many do not have sufficient computer science back-
ground or programming experience to make that a
viable option.

This course, in the Linguistics department,
needed to be for linguistics students, who might not
have well-developed computer skills. It needed to
fit into a single quarter, be self-contained, depend
only on linguistics courses as prerequisites, and give
students at least an overview of a number of areas
of CL. These students are also interested in con-
nections with industry; now that there are industry
jobs available for linguists, students are eager for in-
ternships and jobs where they can apply the skills
learned in their linguistics courses. Given this, it
was also important that the students learn to program
during the course, both to make engineering courses
more accessible, and to attract potential employers.

In addition, since the department was interested
in finding ways to expand computational linguistics
offerings, it clearly would be good if the course ap-
pealed to the students, the department’s faculty and
to higher levels of the University administration.

80

2 Class Demographics

Students in the course are a mix of graduates and
upper-division undergraduates with a solid back-
ground in syntax and semantics but are not expected
to have much in the way of programming experi-
ence. Familiarity with Windows, Unix and some
minimal experience with shell scripting are recom-
mended but not required. Students have been very
successful in the course starting with no program-
ming experience at all. Because the Linguistics de-
partment is especially strong in formal linguistics,
and the courses typically require extensive problem
sets, linguistics students have good aptitude for and
experience working with formal systems and this ap-
titude and skill set seems to transfer quite readily to
programming.

3 Regulus Open Source Platform

The Regulus Open Source Platform is a major re-
source for the course. Regulus is designed for
corpus-based derivation of efficient domain-specific
speech recognisers from general linguistically-
motivated unification grammars. The process of
creating an application-specific Regulus recogniser
starts with a general unification grammar (UG), to-
gether with a supplementary lexicon containing ex-
tra domain-specific vocabulary. An application-
specific UG is then automatically derived using Ex-
planation Based Learning (EBL) specialisation tech-
niques (van Harmelen and Bundy, 1988). This
corpus-based EBL method is parameterised by 1) a
small domain-specific training corpus, from which
the system learns the vocabulary and types of
phrases that should be kept in the specialised gram-
mar, and 2) a set of “operationality criteria”, which
control the specialised grammar’s generality. The
application-specific UG is then compiled into a
Nuance-compatible CFG. Processing up to this point
is all carried out using Open Source Regulus tools.
Two Nuance utilities then transform the output CFG
into a recogniser. One of these uses the training cor-
pus a second time to convert the CFG into a PCFG;
the second performs the PCFG-to-recogniser com-
pilation step. This platform has been used the base
for an number of applications including The Clarissa
Procedure Browser (Clarissa, 2006) and MedSLT
(Bouillon et al., 2005)

The Regulus website (Regulus, 2008) makes
available a number of resources, including compil-
ers, an integrated development environment, a Reg-
ulus resource grammar for English, online docu-
mentation and a set of example dialogue and trans-
lation systems. These examples range from com-
pletely basic to quite complex. This material is all
described in detail in the Regulus book (Rayner et
al., 2006), which documents the system and pro-
vides a tutorial. As noted in reviews of the book,
(Roark, 2007) (Bos, 2008) it is very detailed. To
quote Roark, “the tutorial format is terrifically ex-
plicit which will make this volume appropriate for
undergraduate courses looking to provide students
with hands-on exercises in building spoken dialog
systems.” Not only does the Regulus-based dia-
logue architecture supply an organizing principle for
the course but a large proportion of the homework
comes from the exercises in the book. The exam-
ples serve as starting points for the students projects,
give good illustrations of the various dialogue com-
ponents and are nice clean programming examples.
The more research-oriented material in the Regulus
book also provides opportunities for discussion of
topics such as unification, feature grammars, ellip-
sis processing, dialogue-state update, Chomsky hi-
erarchy and compilers. Reviewers of the book have
noted a potential problem: although Regulus itself
is open source it is currently dependent on two com-
mercial pieces of software, SICStus Prolog and Nu-
ance speech recognition platform (8.5). Nuance 8.5
is a speech recognition developer platform that is
widely used for build telephone call centers. This
developer kit supplies the acoustic models which
model the sounds of the language, the user supplies
a language model which defines the range of lan-
guage that will be recognized for a particular appli-
cation. This dependance on these commercial prod-
ucts has turned out not to be a serious problem for
us since we were able to get a research license from
Nuance and purchase a site license for SICStus Pro-
log. However, beyond the fact that we were able to
get licenses, we are not convinced that eliminating
the commercial software would be an educational
win. While, for example, SWI Prolog might work
as well in the course the commercial SISCtus Pro-
log given a suitable port of Regulus, we think that
having the students work with a widely used com-

81

mercial speech recognition product such as Nuance,
is beneficial training for students looking for jobs
or internships. Using Nuance also avoids frustration
because its performance is dramatically better than
the free alternatives.

4 Other Materials

The course uses a variety of materials in addition to
the Regulus platform and book. For historical and
current views of research in dialogue and speech,
course sessions typically begin with an example
project or system, usually with a video or a runnable
version. Examples of system web materials
that we use include: (Resurrected)SHRDLU
(http://www.semaphorecorp.com/
misc/shrdlu.html), TRIPS and TRAINS
(http://www.cs.rochester.edu/
research/cisd/projects/trips/
movies/TRIPS\ Overview/), Galaxy
(http://groups.csail.mit.edu/sls/
/applications/jupiter.shtml), Vo-
calJoyStick (http://ssli.ee.washington.
edu/vj/), and ProjectListen (http://
www.cs.cmu.edu/∼listen/mm.html)and
NASA’s Clarissa Procedure Browser (http://
ti.arc.nasa.gov/projects/clarissa/
gallery.php?ta\=\&gid\=\&pid\=).

Jurasfsky and Martin (Jurafsky and Martin, 2000)
is used as an additional text and various research pa-
pers are given as reading in addition to the Regulus
material. Jurafsky and Martin is also good source
for exercises. The Jurafsky and Martin material and
the Regulus material are fairly complementary and
fit together well in the context of this type of course.
Various other exercises are used, including two stu-
dent favorites: a classic ’construct your own ELIZA’
task, and a exercise in reverse engineering a tele-
phone call center, which is an original created for
this course.

5 Programming languages

Prolog is used as the primary language in the course
for several reasons. First, Prolog was built for pro-
cessing language and consequently has a natural fit
to language processing tasks. Second, as a high-
level language, Prolog allows students to stay on a
fairly conceptual level and does not require them to

spend time learning how to handle low-level tasks.
Prolog is good for rapid prototyping; a small amount
of Prolog code can do a lot of work and in a one
quarter class this is an important advantage. Also,
Prolog is very close to predicate logic, which the lin-
guistics students already know from their semantics
classes. When the students look at Prolog and see
something familiar, it builds confidence and helps
make the task of learning to program seem less
daunting. The declarative nature of Prolog, which
often frustrates computer science students who were
well trained in procedural programming, feels natu-
ral for the linguists. And finally, the Regulus Open
Source System is written mainly in Prolog, so using
Prolog for the course makes the Regulus examples
maximally accessible.

Note that Regulus does support development of
Java dialogue processing components, and provides
Java examples. However, the Java based examples
are two to three times longer, more complicated and
less transparent than their Prolog counterparts, for
the same functionality. We believe that the Java
based materials would be very good for a more ad-
vanced course on multimodal applications, where
the advantages of Java would be evident, but in a
beginning course for linguists, we find Prolog peda-
gogically superior.

A potential downside to using Prolog is that it
is not a particularly mainstream programming lan-
guage. If the course was solely about technical train-
ing for immediate employment, Java or C++ would
probably be better. However, because most students
enter the course with limited programming expe-
rience, the most important programming outcomes
for the course are that they end up with evidence
that they can complete a non-trivial programming
project, that they gain the experience of debugging
and structuring code and that they end up better
able to learn additional computer science subsequent
to the course. The alternative these students have
for learning programming is to take traditional pro-
gramming courses, starting with an extremely basic
introduction to computers course and taking 1-2 ad-
ditional quarter long courses to reach the level of
programming sophistication that they reach in one
quarter in this course. In addition, taking the alterna-
tive route, they would learn no Computational Lin-
guistics, and would likely find those courses much

82

less engaging.

6 Course Content

Figure 6, depicts relationships between the dialogue
system components and related topics both in Lin-
guistics and in Computational Linguistics and/or
Computer Science. The course follows the flow of
the Dialogue System processing through the various
components, discussing topics related to each com-
ponent. The first two weeks of the course are used
as an overview. Spoken Dialogue Systems are put
in the context of Computational Linguistics, Speech
Technology, NLP and current commercial and re-
search state of the art. General CL tools and tech-
niques are introduced and a quick tour is made of the
various dialogue system components. In addition to
giving the students background about the field, we
want them to be functioning at a basic level with the
software at the end of two weeks so that they can be-
gin work on their projects. Following the two week
introduction, about two weeks are devoted to each
component.

The speech recognition discussion is focused
mainly on language modeling. This is an area of par-
ticular strength for Regulus and the grammar-based
modeling is an easy place for linguists to start. Cov-
ering the details of speech recognition algorithms in
addition to the other material being covered would
be too much for a ten week course. In addition, the
department has recently added a course on speech
recognition and text-to-speech, so this is an obvi-
ous thing to omit from this course. With the Nu-
ance speech recognition platform, there is plenty for
the students to learn as users rather than as speech
recognition implementers. In practice, it is not un-
usual for a Spoken Dialogue System implementer to
use a speech recognition platform rather than build-
ing their own, so the students are getting a realistic
experience.

For the Input Management, Regulus has imple-
mented several types of semantic representations,
from a simple linear list representation that can be
used with the Alterf robust semantics tool, to one
that handles complex embedding. So the Input Man-
ager related component can explore the trade offs in
processing and representation, using Regulus exam-
ples.

The Dialogue Managment section looks at simple
finite state dialogue management as well as the dia-
logue state update approach that has typically been
used in Regulus based applications. Many other top-
ics are possible depending on the available time.

The Output Management unit looks at various as-
pects of generation, timing of actions and could also
discuss paraphrase generation or prosodic mark up.

Other topics of a system wide nature such as N-
best processing or help systems can be discussed at
the end of the course if time allows.

7 Improvements for ’08

The course is currently being taught for Spring quar-
ter and a number of changes have been implemented
to address what we felt were the weak points of the
course as previously taught. It was generally agreed
that the first version of the course was quite success-
ful and had many of the desired properties. Students
learned Computational Linguistics and they learned
how to program. The demo session of the students’
projects held at the end of the course was attended by
much of the linguistics department, plus a few out-
side visitors. Attendees were impressed with how
much the students had accomplished. In building on
that success, we wanted to improve the following ar-
eas: enrollment, limiting distractions from the spo-
ken dialogue material, building software engineer-
ing skills, making connections with industry and/or
research, and visibility.

The first time the course was given, enrollment
was six students. This level of enrollment was no
doubt in part related to the fact that the course was
announced relatively late and students did not have
enough lead time to work it into their schedules. The
small size was intimate, but it seemed as though it
would be better for more students to be able to ben-
efit from the course. For the current course, students
knew a year and a half in advance that it would be
offered. We also had an information session about
the course as part of an internship workshop, and
apparently word of mouth was good. With addition
of a course assistant the maximum we felt we could
handle without compromising the hands-on experi-
ence was twenty. Demand greatly exceeded supply
and we ended up with twenty two students initially
enrolled. As of the deadline for dropping without

83

Figure 1: Course Schematic: Architecture of Dialogue System with associated linguistic areas/topic at above and
Computational Linguistics and/or Computer Science topicsbelow

penalty course enrollment is 16. The course is cur-
rently scheduled to be taught every other year but we
are considering offering it in summer school in the
non-scheduled years.

Two activities in the first incarnation of the course
were time-consuming without contributing directly
to learning about CL and Dialogue Systems. First,
students spent considerable time getting the soft-
ware, particularly the Nuance speech recognition
software and the Nuance text-to-speech, installed on
their personal machines. The variability across their
machines and fact we did not at that time have a
good way to run the software on Machintoshes con-
tributed to the problem. This made the speech as-
pects seem more daunting than they should have,
and delayed some of the topics and exercises.

For the current course, we arranged to have all
of the software up and running for them on day
one, in an instructional lab on campus. Mandatory

lab sessions were scheduled for the course in the
instructional lab, starting on the first day of class,
so that we could make sure that students were able
to run the software from the very beginning of the
course. These arrangements did not work out quite
as smoothly as we had hoped, but was still an im-
provement over the first time the course was taught.

Rather than being completely dependent on stu-
dents’ personal machines, the labs, combined with
a strategy we worked out for running the software
from external USB drives, provide students with a
way to do their assignments even if they have un-
suitable personal machines. In the labs, students are
able to see how the software should behave if prop-
erly installed, and this is very helpful to them when
installing on their personal machines. We refined the
installation instructions considerably, which seemed
to improve installation speed. The Macintosh prob-
lem has been solved, at least for Intel Macs, since we

84

have been successful in running the software with
BootCamp. The twice weekly lab sessions also give
students a chance do installation and practical lab
exercises in an environment in which the course as-
sistant is able see what they are doing, and give them
assistance. Observing and getting help from more
computationally savy classmates is also common in
the labs. Athough the measures taken to reduce the
software installation burden still leave some room
for improvement, students were able to use Regulus
and Nuance successfully, on average, in less than
half the time required the first time the course was
taught.

The other distracting activity was building the
backend for the course projects. Spoken Dialogue
Systems are usually an interface technology, but the
students in the first offering of the course had to
build their projects end to end. While this was not
a complete loss, since they did get useful program-
ming experience, it seemed as though it would be
an improvement if students could focus more on the
spoken dialogue aspects. The approach for doing
this in the current course is to recruit Project Part-
ners from industry, government, academic research
projects and other university courses. Our students
build the spoken dialogue system components and
then work with their Project Partner to connect to
the Project Partner’s system. The students will then
demonstrate the project as a whole, that is, their di-
alogue system working with the Project Partner’s
material/system, at the course end demo sessions.
We have project partners working in areas such as:
robotics, telephone based services, automotive in-
dustry, and virtual environments. There are a num-
ber of potential benefits to this approach. Students
are able to spend most of their time on the spoken
dialogue system and yet have something interest-
ing to connect to. In fact, they have access to sys-
tems that are real research projects, and real com-
mercial products that are beyond what our students
would be capable of producing on their own. Stu-
dents gain the experience of doing a fairly realistic
software collaboration, in which they are the spo-
ken dialogue experts. Project partners are enthu-
siastic because they get to try projects they might
not have time or resources to do. Industry partners
get to check out potential interns and research part-
ners may find potential collaborators. In the previ-

ous version of the course, half of the students who
finished the course subsequently worked on Spoken
Dialogue oriented research projects connected with
the department. One of the students had a successful
summer internship with Ford Motors as a result of
having taken the course. The research and industry
connection was already there, but the Project Partner
program strengthens it and expands the opportuni-
ties beyond projects connected with the department.

One enhancement to students’ software engineer-
ing skills in the current version of the course is that
students are using version control from day one.
Each student in the course is being provided with
a Subversion repository with a Track ticket system
hosted by Freepository.com. Part of the incentive
for doing this was to protect Project Partners’ IP, so
that materials provided by (particularly commercial)
Project Partners would not be housed at the Univer-
sity, and would only be accessible to relevant stu-
dent(s), the Project Partner, the instructor and the
course assistant. The repositories also support re-
mote collaboration making a wider range of orga-
nizations workable as project partners. With the
repositories the students gain experience with ver-
sion control and bug-tracking. Having the version
control and ticket system should also make the de-
velopment of their projects easier. Another way we
are hoping to enhance the students software skills is
through simply having more assistance available for
students in this area. We have added the previously
mentioned lab sections in the instructional labs, we
have arranged for the course assistant to have sub-
stantial time available for tutoring, and we are post-
ing tutorials as needed on the course website.

The final area of improvement that we wanted to
address is visibility. This is a matter of some prac-
tical importance for the course, the addition of CL
to the department’s offerings, and the students. Vis-
ibility among students has improved with word of
mouth and with the strategically timed information
session held the quarter prior to holding the course.
The course end demo session in the first offering of
the course did a good job of bringing it to the at-
tention of the students and faculty in the Linguis-
tics Department. For the current course, the Project
Partner program provides considerable visibility for
students, the department, and the University, among
industry, government and other Universities. We are

85

also expanding the demo session at the end of the
course. This time the demo session will be held as a
University wide event, and will be held at the main
UC Santa Cruz campus and a second time at the Uni-
versity’s satellite Silicon Valley Center, in order to
tap into different potential audiences. The session
at the Silicon Valley Center has potential for giving
students good exposure to potential employers, and
both sessions have good potential for highlighting
the Linguistics department.

8 Summary and Conclusion

The course presented in this paper has three key fea-
tures. First it is designed for linguistics students.
This means having linguistics and not computer sci-
ence as prerequisites and necessitates teaching stu-
dents programming and computer science when they
may start with little or no background. Second,
the course takes the architecture of a Spoken Dia-
logue System as the structure of the course, working
through the components and discussing CL topics
as they relate to the components. The third feature is
the extensive use of the Regulus Open Source plat-
form as key resource for the course. Regulus ma-
terial is used for exercises, as a base for construc-
tion of students’ course projects, and for introducing
topics such as unification, feature grammars, Chom-
sky hierarchy, and dialogue management. We have
found this combination excellent for teaching CL to
linguistics students. The grammar-based language
modeling in Regulus, the use of Prolog and relat-
ing linguistic topics as well as computational ones to
the various dialogue system components, gives lin-
guistics students familiar material to build on. The
medium vocabulary type of Spoken Dialogue sys-
tem supported by the Regulus platform, makes a
very motivating course project and students are able
to program by the end of the course.

We discuss a number of innovations we have in-
troduced in the latest version of the course, such as
the Project Partner program, use of instructional labs
and subversion repositories, and expanded course
demo session. Since we are teaching the course for
the second time during Spring Quarter, we will be
able to report on the outcome of these innovations at
the workshop.

Acknowledgments

We would like to thank Nuance, for giving us the
research licenses for Nuance 8.5 and Vocalizer that
helped make this course and this paper possible.

References

Johan Bos. 2008. A review of putting linguistics into
speech recognition. the regulus grammar compiler.
Natural Language Engineering, 14(1).

P. Bouillon, M. Rayner, N. Chatzichrisafis, B.A. Hockey,
M. Santaholma, M. Starlander, Y. Nakao, K. Kanzaki,
and H. Isahara. 2005. A generic multi-lingual open
source platform for limited-domain medical speech
translation. InIn Proceedings of the 10th Conference
of the European Association for Machine Translation
(EAMT), Budapest, Hungary.

Clarissa, 2006. http://www.ic.arc.nasa.gov/projects/clarissa/.
As of 1 Jan 2006.

D. Jurafsky and J. H. Martin. 2000. Speech and
Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics and
Speech Recognition. Prentice Hall Inc, New Jersey.

M. Rayner, B.A. Hockey, and P. Bouillon. 2006.Putting
Linguistics into Speech Recognition: The Regulus
Grammar Compiler. CSLI Press, Chicago.

Regulus, 2008. http://www.issco.unige.ch/projects/regulus/,
http://sourceforge.net/projects/regulus/. As of 1 Jan
2008.

Brian Roark. 2007. A review of putting linguistics into
speech recognition: The regulus grammar compiler.
Computational Linguistics, 33(2).

T. van Harmelen and A. Bundy. 1988. Explanation-
based generalization = partial evaluation (research
note).Artificial Intelligence, 36:401–412.

86

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 87–96,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

The North American Computational Linguistics Olympiad (NACLO)

Dragomir R. Radev Lori S. Levin Thomas E. Payne
SI, EECS, and Linguistics Language Technologies Institute Department of Linguistics

University of Michigan Carnegie-Mellon University University of Oregon
radev@umich.edu lsl@cs.cmu.edu tpayne@uoregon.edu

Abstract

1 Introduction

NACLO (North American Computational Linguis-
tics Olympiad) is an annual Olympiad-style contest
for high school students, focusing on linguistics,
computational linguistics, and language technolo-
gies.

The goal of NACLO is to increase participation
in these fields by introducing them before students
reach college. Since these subjects are not nor-
mally taught in high school, we do not expect stu-
dents to have any background of these areas before
the contest. The contest consists of self-contained
problems that can be solved with analytical think-
ing, but in the course of solving each problem, the
students learn something about a language, culture,
linguistic phenomenon, or computational tool.

The winners of NACLO are eligible to partici-
pate in the International Linguistics Olympiad as
part of the US team.

1.1 History of the LO and ILO

The International Olympiad in Linguistics is one
of twelve international Science Olympiads (the
others include Mathematics, Physics, Chemistry,
Biology, Informatics, Philosophy, Astronomy, Ge-
ography, and Earth Science). It has existed since
2003 and has, so far, been held exclusively in
Europe (Russia, Estonia, Bulgaria, and the Nether-
lands). ILO 2007 took place in Zelenogorsk near
St. Petersburg, Russia whereas ILO 2008 will be in

Slantchev Bryag near Burgas, Bulgaria. ILO 2009
will be held in Poland.

Individual national linguistics Olympiads have
been held in Russia since 1965 (based on an initia-
tive by Andrey Zaliznyak) and in other countries
more recently1. Recently, a collection of problems
from different decades appeared in Russian (Be-
likov et al., 2007).

1.2 Linguistics Contests in the US

Thomas Payne pioneered LO-style competitions
in the USA by organizing three consecutive con-
tests for middle and high school students in the
Eugene, Oregon area in 1998-2000. In the course
of publicizing NACLO, we have discovered that
other local linguistics contests have taken place in
Tennessee, San Jose, and New York City.

1.3 Origin of NACLO

NACLO began with a planning workshop
funded by NSF in September 2006. The attendees
included faculty and graduate students from about
ten universities as well as representatives from
NSF and ACL. Two high school teachers were
present. The workshop opened with presentations
from organizers of other Olympiads and contests in
linguistics and computer programming. In particu-
lar we received excellent advice from Ivan Derz-
hanski, representing the International Linguistics
Olympiad, and Boris Iomdin, representing the
Moscow Olympiad. The remainder of the work-
shop dealt with scheduling the first contest, elect-

1 The first author of this paper participated in the Bulgarian
national LO in the early 1980s.

87

ing committee chairs, and making organizational
decisions.

1.4 Pedagogical goals

We have two goals in organizing NACLO. We
want to increase broad participation and diversity
in all language-related careers. We want every
student to have a fun and educational experience
and have a positive attitude toward taking linguis-
tics and language technologies courses in college.
However, we also want to conduct a talent search
for the most promising future researchers in our
field. NACLO uses two mechanisms to be sure
that we reach all levels of participation. The first
mechanism is to separate an open round with easier
problems from an invitation-only round with
harder problems. The second mechanism is related
to grading the problems. Forty percent of the score
is for a correct answer and sixty percent is for ex-
plaining the answer. The students who write the
most insightful explanations are the focus of our
talent search.

When publicizing NACLO in high schools we

have been focusing on certain aspects of linguistics
and computer science. With respect to linguistics,
we emphasize that languages have rules and pat-
terns that native speakers are not aware of; that
there are procedures by which these rules and pat-
terns can be discovered in your own language; and
that the same procedures can be used to discover
rules and patterns in languages other than your
own. With respect to computer science the term
computational thinking has been coined (Wing
2006) to refer to those parts of the field that are not
about computers or programming: thinking algo-
rithmically, using abstraction to model a problem,
structuring and reducing a search space, etc.

1.5 Organization at the national level

NACLO has two co-chairs, currently Lori
Levin, Carnegie Mellon University, and Thomas
Payne, University of Oregon. Dragomir Radev is
the program chair and team coach. Amy Troyani,
a high school teacher with board certification, is
the high school liaison and advisor on making the
contest appropriate and beneficial to high school
students.

NACLO has several committees. James Puste-
jovsky currently chairs the sponsorship committee.

The other committees are currently unchaired, al-
though we would like to thank William Lewis (out-
reach and publicity) and Barbara Di Eugenio
(followup) for chairing them in the first year.
NACLO is not yet registered as a non-profit or-
ganization and does not yet have a constitution.
We would welcome assistance in these areas.

The national level organization provides materi-
als that are used at many local sites. The materials
include a comprehensive web site
(http://www.naclo.cs.cmu.edu), practice
problems, examples of flyers and press releases,
PowerPoint presentations for use in high schools,
as well as contest booklets from previous competi-
tions.

The contest is held on the same day in all loca-
tions (universities and "online" sites as described
below). In 2007 there was a single round with 195
participants. In 2008 there was an open round with
763 participants and an invitation-only round with
115 participants. Grading is done centrally. Each
problem is graded at one location to ensure consis-
tency.

Three national prizes are awarded for first, sec-
ond, and third place. National prizes are also given
for the best solution to each problem. Local hosts
can also award prizes for first, second, and third
place at their sites based on the national scores.

1.6 Funding

The main national expenses are prizes, planning
meetings, and the trip to the International Linguis-
tics Olympiad (ILO). The trip to the ILO is the
largest expense, including airfare for eight team
members (two teams of four), a coach, and two
chaperones. The national level sponsors are the
National Science Foundation (2007, 2008), Google
(2007, 2008), Cambridge University Press (2007,
2008), and the North American Chapter of the As-
sociation for Computational Linguistics (2007).
The organizers constantly seek additional sponsors.

1.7 Publicity before the contest

At the national level, NACLO is publicized
through its own web site as well as on LinguistList
and Language Log. From there, word spreads
through personal email and news groups. No press
releases have been picked up by national papers
that we know of. Local level publicity depends on
the organization of local schools and the hosting

88

university's high school outreach programs. In
Pittsburgh, publicity is facilitated by a central mail-
ing list for gifted program coordinators in the city
and county. Some of the other local organizers (in-
cluding James Pustejosvky at Brandeis, Alina
Johnson at the University of Michigan and Barry
Schiffman at Columbia University as well as sev-
eral others) sent mail to literally hundreds of high
schools in their areas. Word of mouth from the
2007 contest also helped reach out to more places.

1.8 Registration

NSF REU-funded Justin Brown at CMU created
an online registration site for the 2008 contest
which proved very helpful. Without such a site, the
overhead of dealing with close to 1,000 students,
teachers, and other organizers would have been
impossible.

1.9 Participation of graduate and under-
graduate students

Graduate and undergraduate students participate
in many activities including: web site design, vis-
iting high schools, formulating problems, testing
problems, advising on policy decisions, and facili-
tating local competitions.

2 Problem selection

We made a difficult decision early on not to re-
quire knowledge of linguistics, programming or
mathematics. Requiring these subjects would have
reduced diversity in our pool of contestants as well
as its overall size. Enrollment in high school pro-
gramming classes has dropped, perhaps because of
a perception that programming jobs are not inter-
esting. NACLO does not require students to know
programming, but by introducing a career option, it
gives them a reason to take programming classes
later.

2.1 Problem types

The NACLO problem sets include two main
categories of problems: “traditional” and “compu-
tational/formal”. The ILO includes mostly tradi-
tional problems which include translations from
unknown languages, glyph decoding, calendar sys-
tems, kinship systems, mathematical expressions
and counting systems, among others. The other

category deals with linguistic phenomena (often in
English) as well as algorithms and formal analyses
of text.

2.2 Problem committee

A problem committee was formed each year to
work on the creation, pre-testing, and grading of
problems. The members in 2007 included Emily
Bender, John Blatz, Ivan Derzhanski, Jason Eisner,
Eugene Fink, Boris Iomdin, Mahesh Joshi, Anagha
Kulkarni, Will Lewis, Patrick Littell, Ruslan Mit-
kov, Thomas Payne, James Pustejovsky, Roy
Tromble, and Dragomir Radev (chair). In 2008, the
following people were members: Emily Bender,
Eric Breck, Lauren Collister, Eugene Fink, Adam
Hesterberg, Joshua Katz, Stacy Kurnikova, Lori
Levin, Will Lewis, Patrick Littell, David
Mortensen, Barbara Partee, Thomas Payne, James
Pustejovsky, Richard Sproat, Todor Tchervenkov,
and Dragomir Radev (chair).

2.3 Problem pool

At all times, the problem committee maintains a
pool of problems which are constantly being
evaluated and improved. Professional linguists and
language technologists contribute problems or
problem ideas that reflect cutting-edges issues in
their disciplines. These are edited and tested for
age appropriateness, and the data are thoroughly
checked with independent experts.

2.4 Booklets

The three booklets (one for 2007 and two for
2008) were prepared using MS Publisher. Addi-
tionally, booklets with solutions were prepared in
MS Word. All of these are available from the
NACLO web site.

2.5 List of problems

This is the list of problems for NACLO 2007 (8
problems) and 2008 (12 problems). They can be
divided into two categories: traditional (2007: C,
D, G and 2008: A, C, D, E, G, J, K) and for-
mal/computational (2007: A, B, E, F, H and 2008:
B, F, H, I, L). The traditional problems addressed
topics such as phonology, writing systems, calen-
dar systems, and cognates, among others. The
other category included problems on stemming,

89

finite state automata, clustering, sentence similarity
identification, and spectrograms.

2007

A. English (Molistic)
B. English (Encyclopedia)
C. Ancient Greek
D. Hmong
E. English (Verb forms)
F. English (Spelling correction)
G. Huishu (Phonology)
H. English (Sentence processing)

2008 (A-E Open; F-L Invitational)

A. Apinaye (Brazil)
B. Hindi
C. Ilocano (Philippines)
D. Swedish and Norwegian
E. Aymara (South America)
F. Japanese
G. Manam Pile (Papua New Guinea)
H. English (Stemming)
I. Rotokas (Automata; Bougainville Island)
J. Irish
K. Mayan (Calendar)
L. English (Spectrograms)

Figure 1: List of languages used in NACLO 2007 and
2008.

3 Contest administration

NACLO is run in a highly distributed fashion and
involves a large number of sites across the USA in
Canada.

3.1 Local administration

NACLO is held at hosting universities and also
"online". The online category includes students
who cannot get to one of the hosting universities,
but instead are monitored by a teacher at a conven-
ient location, usually the student's high school.
There were three hosting universities (Carnegie-
Mellon, Brandeis, and Cornell) in 2007 and thir-
teen hosting universities (the three above + U.
Michigan, U. Illinois, U. Oregon, Columbia, Mid-
dle Tennessee State, San Jose State, U. Wisconsin,
U. Pennsylvania, U. Ottawa, and U. Toronto) in
2008. Any university in the US or Canada may
host NACLO. Local organizers are responsible for
providing a room for the contest, contacting high
local high schools, and facilitating the contest on
the specified contest date. Local organizers may
decide on the number of participants. The number

of participants at the 2008 sites ranged from a
handful to almost 200 (CMU-Pitt).

Local organizers may choose their level of in-
vestment of time and money. They may spend
only a few hours recruiting participants from one
or two local high schools and may spend a small
amount of money on school visits and copying.
But they may also run large scale operations in-
cluding extensive fundraising and publicity. The
site with the largest local participation, Carnegie
Mellon/University of Pittsburgh, donated adminis-
trative staff time, invested hundreds of volunteer
hours, and raised money for snacks and souvenirs
from local sponsors2. The CMU-Pitt site also hosts
a problem club for faculty and students where
problems are proposed, fleshed out, and tested. At
the University of Oregon, a seminar course was
taught on Language Task Creation (formulation of
problems) for which university students received
academic credit.

3.2 Remote (“online”) sites

We had about 65 such sites in 2008. All local
teachers and other facilitators did an amazing job
following the instructions for administering the
competition and for promptly returning the sub-
missions by email or regular mail.

3.3 Clarifications

During each of the three competitions, the jury
was online (in some cases for 8 hours in a row) to
provide live clarifications. Each local facilitator
was asked to be online during the contest and relay
to the jury any questions from the students. The
jury then, typically within 10 minutes, either re-
plied “no clarification needed” (the most frequent
reply) or provided an answer which was than
posted online for all facilitators to see. We re-
ceived dozens of clarifications requests at each of
the rounds.

3.4 Grading

Grading was done by the PC with assistance
from local colleagues. To ensure grade consis-
tency, each problem was assigned to a single

2 We are grateful to the Pittsburgh sponsors: M*Modal,
Vivísimo, JustSystems Evans Research, and Carnegie Mel-
lon's Leonard Gelfand Center for Service Learning and Out-
reach.

90

grader or team of graders. Graders were asked to
provide grading rubrics which assigned individual
points for both “practice” (that is, getting the right
answers) and “theory” (justifying the answers).

3.5 Results from 2007

195 students participated in 2007. The winners
are shown here. One of the students was a high
school sophomore (15 years old) while three were
seniors at the time of the 2007 NACLO.

1. Rachel Zax, Ithaca, NY
2. Ryan Musa, Ithaca, NY
3. Adam Hesterberg, Seattle, WA
4. Jeffrey Lim, Arlington, MA
5. (tie) Rebecca Jacobs, Encino, CA
5. (tie) Michael Gottlieb, Tarrytown, NY
7. (tie) Mitha Nandagopalan, San Jose, CA
7. (tie) Josh Falk, Pittsburgh, PA
Alternate. Anna Tchetchetkine, San Jose, CA

Figure 2: List of team members from 2007. Mitha was
unable to travel and was replaced by Anna Tchetchet-

kine.

3.6 2008 Winners

The 2008 contest included 763 participants in
the Open Round and 115 participants in the Invita-
tional Round. The winners of the Invitational
Round are listed below. These are the eight stu-
dents who are eligible to represent the USA at the
2008 ILO. As of the writing of this paper, all eight
were available for the trip. One of the eight is a
high school freshman (9th grade).

1. Guy Tabachnick, New York, NY
2. Jeffrey Lim, Arlington, MA
3. Josh Falk, Pittsburgh, PA
4. Anand Natarajan, San Jose, CA
5. Jae-Kyu Lee, Andover, MA
6. Rebecca Jacobs, Encino, CA
7. Hanzhi Zhu, Shrewsbury, MA
8. Morris Alper, San Jose, CA

Figure 3: List of team members from 2008.

3.7 Canadian Participation

Canada participated for the first time in 2008
(about 20 students from Toronto, a handful from
Ottawa and one from Vancouver). Two students
did really well at the 2008 Open (one ranked sec-
ond and two tied for 13th) but were not in the top
20 at the Invitational.

3.8 Diversity

About half of the participants in NACLO were
girls in 2007 and 2008. In 2007, 25 out of the top
50 students were female.

The two US teams that went to the ILO in 2007
included three girls, out of eight total team mem-
bers (two teams of four). The 2008 teams include
only one girl.

3.9 Other statistics

Some random statistics: (a) of the top 20 stu-
dents in 2008, 14 are from public schools, (b) 26
states, 3 Canadian provinces, and the District of
Columbia were represented in 2008.

4 Preparation for the ILO

Preparation for the ILO was a long and painful
process. We had to obtain visas for Russia, fund
and arrange for the trip, and do a lot of practices.

4.1 Teams

 One of the students who was eligible to be on
the second USA team was unable to travel. We
went down the list of alternates and picked a dif-
ferent student to replace her.

4.2 Funding

The ILO covered room and board for the first
team and the team coach. The second team was
largely self-funded (including airfare and room and
board). Everyone else was funded as part of the
overall NACLO budget. The University of Michi-
gan covered the coach’s airfare.

4.3 Training

We ran multiple training sessions. The activities
included individual problem solving, team problem
solving (using Skype’s chat facility), readings, as
well as live lectures (both at the summer school in
Estonia and on the day before the main ILO in
Russia).

4.4 Travel logistics

Four students, two chaperones, and one parent
left early to attend a summer school organized by
the Russian team in Narva, Estonia. The third

91

chaperone and three students traveled directly to
the ILO. The eighth student traveled with her par-
ents and did some sightseeing in Russia prior to the
ILO.

5 Participation in the ILO

The ILO was organized by a local committee from
St. Petersburg chaired by Stanislav Gurevych. The
organization was extraordinary. Everything (prob-
lem selection, grading, hotel, activities, food) was
excellent.

5.1 Organization of the ILO

The ILO was held at a decent hotel in Ze-
lenogorsk, a suburb of St. Petersburg on the Baltic
Sea. The first day included an orientation, the sec-
ond day was the individual contest and team build-
ing activities, the third day – an excursion to St.
Petersburg, the fourth day – the team contest and
awards ceremony.

5.2 Problems

The problems given at the ILO were quite di-
verse and difficult. The hardest problems were the
one in the Ndom language which involved a non-
standard number system and the Hawaiian problem
given at the team contests which involved a very
sophisticated kinship system.

Turkish/Tatar
Braille
Ndom (Papua New Guinea)
Movima (Bolivia)
Georgian (Caucasus)
Hawaiian

Figure 4: List of languages used in ILO 2007.

5.3 Results

Adam Hesterberg scored the highest score in the
individual contest. One of the two US teams (Re-
becca Jacobs, Joshua Falk, Michael Gottlieb, and
Anna Tchetchetkine) tied for first place in the team
event.

6 Future directions

The unexpected interest in the NACLO poses a
number of challenges for the organizers. Further

challenges arise from our desire to cover more
computational problems.

6.1 Grading and decentralization?

Grading close to 5,000 submissions from 763
students in 2008 took a toll on our problem com-
mittee. The process took more than two weeks. We
are considering different options for future years,
e.g., reducing the number of problems in the first
round or involving some sort of self-selection (e.g.,
asking each potential participant to do a practice
test and obtain a minimal score on it). These op-
tions are suboptimal as they detract from some of
the stated goals of the NACLO and we will not
consider them seriously unless all other options
(e.g., recruiting more graders). have been ex-
hausted.

6.2 Problem diversity

We would like to include more problem types,
especially on the computational end of the contest.
This is somewhat of a conflict with the ILO which
includes mostly “traditional” LO problems. One
possibility is to have the first round be more com-
putational whereas the invitational round would be
more aimed at picking the team members for the
ILO by focusing more on traditional problems.

6.3 Practice problems

We will be looking to recruit a larger pool of
problem writers who can contribute problems of
various levels of difficulty (including very easy
problems and problems based on the state of the art
in research in NLP). We are also looking for vol-
unteers to translate problems from Russian, includ-
ing the recently published collection “Zadachi
Lingvisticheskyh Olimpiad”.

6.4 Other challenges

The biggest challenges for the NACLO in both
years were funding and time management.

In 2007, four of the students had to pay for their
own airfare and room and board. At the time of
writing, the budget for 2008 is still not fully cov-
ered. The current approach with regard to sponsor-
ship is not sustainable since NSF cannot fund
recurring events and the companies that we ap-
proached either gave nothing or gave a relatively

92

small amount compared to the overall annual
budget.

The main organizers of the NACLO each spent
several hundred hours (one of them claims “the
equivalent to 20 ACL program committee chair-
manships”), mostly above and beyond their regular
appointments. For NACLO to scale up and be suc-
cessful in the future, a much wider pool of organ-
izers will be needed.

6.5 Other countries

Dominique Estival told us recently that an LO
will take place in Australia in Winter 2008 (that is,
Summer 2008 in the Northern Hemisphere). OzLO
(as it is called) will be collaborating with NACLO
on problem sets. Other countries such as the
United Kingdom and the Republic of Ireland are
considering contests as well. One advantage that
these countries all have is that they can share (Eng-
lish-language) problem sets with NACLO.

6.6 Participant self-selection

Some Olympiads provide self-selection prob-
lems. Students who score poorly on these problem
sets are effectively discouraged from participation
in the official contest. If the number of participants
keeps growing, we may need to consider this op-
tion for NACLO.

6.7 More volunteers

NACLO exerted a tremendous toll on the organ-
izers. Thousands of hours of volunteer work went
into the event each year. NACLO desperately
needs more volunteers to help at all levels (prob-
lem writing, local organization, web site mainte-
nance, outreach, grading, etc).

7 Overall assessment

While it will take a long time to properly assess the
impact of NACLO 2007 and 2008, we have some
preliminary observations to share.

7.1 Openness

We made a very clear effort to reach out to all
high school students in the USA and Canada.
Holding the contest online helped make it truly
within everyone’s reach. Students and teachers
overwhelmingly appreciated the opportunity to

participate at no cost (other than postage to send
the submissions back to the jury) and at their own
schools. Students who participated at the university
sites similarly expressed great satisfaction at the
opportunity to meet with peers who share their in-
terests.

7.2 Diversity and outreach

We were pleased to see that the number of male
and female participants was nearly equal. A num-
ber of high schools indicated that clubs in Linguis-
tics were being created or were in the works.

7.3 Success at the ILO

Even though the US participated for the first
time at the ILO, the performance shown there (in-
cluding first place individually and a tie for first
place in the team contest) was outstanding.

Acknowledgments
We want to thank everyone who helped turn
NACLO into a successful event. Specifically, Amy
Troyani from Taylor Allderdice High School in
Pittsburgh, Mary Jo Bensasi of CMU, all problem
writers and graders (which include the PC listed
above as well as Rahel Ringger and Julia Work-
man) and all local contest organizers (James Puste-
jovsky, Lillian Lee, Claire Cardie, Mitch Marcus,
Kathy McKeown, Barry Schiffman, Lori Levin,
Catherine Arnott Smith, Richard Sproat, Roxana
Girju, Steve Abney, Sally Thomason, Aleka
Blackwell, Roula Svorou, Thomas Payne, Stan
Szpakowicz, Diana Inkpen, Elaine Gold). James
Pustejovsky was also the sponsorship chair, with
help from Paula Chesley. Ankit Srivastava, Ronnie
Sim and Willie Costello co-wrote some of the
problems with members of the PC. Eugene Fink
helped with the solutions booklets, Justin Brown
worked on the web site, and Adam Hesterberg was
an invaluable member of the team throughout.
Other people who deserve our gratitude include
Cheryl Hickey, Alina Johnson, Patti Kardia, Josh
Cannon, Christina Hunt, Jennifer Wofford, and
Cindy Robinson. Finally, NACLO couldn’t have
happened without the leadership and funding pro-
vided by NSF and Tanya Korelsky in particular as
well as the generous sponsorship from Google,
Cambridge University Press, and the North Ameri-
can Chapter of the ACL (NAACL).

93

The authors of this paper are also thankful to
Martha Palmer for giving us feedback on an earlier
draft.

NACLO was partially funded by the National
Science Foundation under grant IIS 0633871 Plan-
ning Workshop for a Computational Linguistics
Olympiad.

References
Vasileios Hatzivassiloglou and Kathleen McKeown.

1997. Predicting the Semantic Orientation of Adjec-
tives, ACL 1997.

Jeannette Wing, Computational Thinking, CACM vol.
49, no. 3, March 2006, pp. 33-35.

V. I. Belikov, E. V. Muravenko and M. E. Alexeev,
editors. Zadachi Lingvisticheskikh Olimpiad.
MTsNMO. Moscow, 2007.

Appendix A. Summary of freeform com-
ments

“I think it's a great outreach tool to high schools. I was es-
pecially impressed by the teachers who came and talked to
[the linguistics professors] about starting a linguistics club”

“The problems are great. One of our undergraduates ex-
pressed interest in a linguistics puzzle contest (on the model of
Google's and MS's puzzle contests) at the undergrad level.”

“We got a small but very high-quality group of students.
To get a larger group, we'd need to start earlier.”

“Things could be more streamlined. I think actually *less*
communication, but at key points in the process, would be
more effective.”

“It also would have been nice if there were a camp, like
with the other US olympiads, so that more students would get
the chance to learn about linguistics”

“Just get the word out to as many schools as possible. You
could also advertise on forums like AOPS, Cogito, and even
CollegeConfidential … where students are looking for intel-
lectual challenges”.

“The problems helped develop the basic code breaking.”
“Having a camp would be a huge benefit, but otherwise I

think the contest was done very well. Thank you for bringing
it to the US.”

“Maybe send a press release to school newspapers and ask
them to print something about it.”

“My 9 students enjoyed participating even though none of
them made it to the second round. Several have indicated that
they want to do it again next year now that they know what it
is like.”

“I used every opportunity to utter the phrase "computa-
tional linguistics" to other administrators, at meetings, with
parents, students, other teachers. People inevitably want to
know more!”

“As I mentioned previously, we are all set to start up a new
math/WL club next year. YAY!”

“Advertise with world language professional organizations
(i.e., ACTFL) and on our ListServs (i.e., FLTeach)”

“It was wonderful. KUDOS!”
“There were several practice sessions, about half run by a

math teacher (who organizes many of the competitions of this
nature) and half by the Spanish teacher. Also, several of the
English teachers got really excited about it (especially the
teacher who teaches AP English Language, who teaches often
about logical reasoning) and offered extra credit to the stu-
dents who took it.”

“The preparation for the naclo was done entirely by the
math club.”

“It was a very useful competition. First, it raised awareness
about linguistics among our students. They knew nothing
about this area before, and now they are looking for opportuni-
ties to study linguistics and some started visiting linguistic
research seminars at the University of Washington.”

“The Olympiad was interesting to most students because it
was very different from all the other math Olympiads we par-
ticipate in. Students saw possibilities for other application of
their general math skills. In addition, the students who won
(reasonably succeeded in) this Olympiad were not the same
students that usually win math contests at our school. This
was very useful for their confidence, and showed everybody
that broadening skills is important.”

“I was the only one to take the contest from my school, so
it didn't really increase awareness that much. I, however,
learned a lot about linguistics, and the people who I told about
the contest seemed to find it interesting also.”

“As a result of this competition, an Independent-Study
Linguistics Course was offered this spring for a few interested
students.”

“Three students who participated in NACLO are now do-
ing an Independent Study course with my colleague from th

e World Languages dept (who had a linguistics course in
college)”

“I'd like to see more linguistic indoctrination, so that math
nerds are converted over to the good side.”

“next year I will teach a Computational Linguistics semi-
nar”

Appendix B. Related URLs

http://www.naclo.cs.cmu.edu/
http://www.cogito.org/ContentRedirect.aspx?
 ContentID=16832
http://www.cogito.org/Interviews/
 InterviewsDetail.aspx?ContentID=16901
http://www.ilolympiad.spb.ru/
http://cty.jhu.edu/imagine/PDFs/Linguistics.pdf
http://www.nsf.gov/news/news_summ.jsp?
 cntn_id=109891
http://photofile.name/users/anna_stargazer/2949079/

Figure 5: List of additional references URLs.

Appendix C. Sample problems

We include here some sample problems as well as
one solution. The rest of the solutions are available
on the NACLO Web site.

94

C.1. Molistic

This is a problem from 2007 written by
Dragomir Radev and based on [Hatzivassiloglou
and McKeown 1997].

Imagine that you heard these sentences:

 Jane is molistic and slatty.
 Jennifer is cluvious and brastic.
 Molly and Kyle are slatty but danty.
 The teacher is danty and cloovy.
 Mary is blitty but cloovy.
 Jeremiah is not only sloshful but also weasy.
 Even though frumsy, Jim is sloshful.
 Strungy and struffy, Diane was a pleasure to watch.
 Even though weasy, John is strungy.
 Carla is blitty but struffy.
 The salespeople were cluvious and not slatty.

1. Then which of the following would you be likely to
hear?

 a. Meredith is blitty and brastic.
 b. The singer was not only molistic but also cluvious.
 c. May found a dog that was danty but sloshful.

2. What quality or qualities would you be looking for in a
person?

 a. blitty
 b. weasy
 c. sloshful
 d. frumsy

3. Explain all your answers. (Hint: The sounds of the words
are not relevant to their meanings.)

Figure 6: “Molistic” problem from 2007.

C.2. Garden Path

This is another problem from 2007.

True story: a major wireless company recently started an advertising
campaign focusing on its claim that callers who use its phones
experience fewer dropped calls.

The billboards for this company feature sentences that are split into
two parts. The first one is what the recipient of the call hears, and the
second one - what the caller actually said before realizing that the call
got dropped. The punch line is that dropped calls can lead to serious
misunderstandings. We will use the symbol // to separate the two parts
of such sentences.

(1) Don't bother coming // early.
(2) Take the turkey out at five // to four.
(3) I got canned // peaches.

These sentences are representative of a common phenomenon in
language, called "garden path sentences". Psychologically, people
interpret sentences incrementally, before waiting to hear the full text.
When they hear the ambiguous start of a garden path sentence, they
assume the most likely interpretation that is consistent with what they
have heard so far. They then later backtrack in search of a new parse,
should the first one fail.

In the specific examples above, on hearing the first part, one
incorrectly assumes that the sentence is over. However, when more
words arrive, the original interpretation will need to be abandoned.

(4) All Americans need to buy a house // is a large amount of money.
(5) Melanie is pretty // busy.
(6) Fat people eat // accumulates in their bodies.

1. Come up with two examples of garden path sentences that are not
just modifications of the ones above and of each other. Split each of
these two sentences into two parts and indicate how hearing the
second part causes the hearer to revise his or her current parse.

For full credit, your sentences need to be such that the interpretation
of the first part should change as much as possible on hearing the
second part. For example, in sentence (6) above, the interpretation of
the word "fat" changes from an adjective ("fat people") to a noun ("fat
[that] people eat..."). Note: sentences like "You did a great job..., //
NOT!" don't count.

2. Rank sentences (4), (5), (6) as well as the two sentences from your
solution to H1 above, based on how surprised the hearer is after
hearing the second part. What, in your opinion, makes a garden path
sentence harder to process by the hearer?

Figure 7: “Garden Path” problem from 2007.

95

C.3. Ilocano

This 2008 problem was written by Patrick Littell
of the University of Pittsburgh.

The Ilocano language is one of the major languages of the Philippines,
spoken by more than 8 million people. Today is it written in the
Roman alphabet, which was introduced by the Spanish, but before that
Ilocano was written in the Baybayin script. Baybayin (which literally
means “spelling”) was used to write many Philippine languages and
was in use from the 14th to the 19th centuries.

1. Below are twelve Ilocano words written in Baybayin. Match them
to their English translations, listed in scrambled order below.

��������������____________
� ���� ����������____________
� �� �����������____________
� �� ���� ��������____________
	
 �� � ���������____________
	 ��
 �	
 �� � ����____________
	 �	 �
 ����������____________
	 �	 �	 �	 �
 �������____________
	 �� �	 �	 �	 �
 �����____________

 �� �� ��������____________
� �����������____________
� �� ���������____________

{ to look, is skipping for joy, is becoming a skeleton, to buy, various

skeletons, various appearances, to reach the top, is looking,
appearance, summit, happiness, skeleton }

2. Fill in the missing forms.

	 �� �	 �
 ��������____________
� �� �������____________
� �� �� ������____________
____________ (the/a) purchase
____________ is buying

3. Explain your answers to 1 and 2.

Figure 8: Ilocano problem from 2008.

Practical: 11 points

1. Translations (1/2 point each)
�
��������������appearance
� ���� ����������various appearances
� �� �����������to look
� �� ���� ��������is looking
	
 �� � ���������happiness
	 ��
 �	
 �� � ����is skipping for joy
	 �	 �
 ����������skeleton
	 �	 �	 �	 �
 �������various skeletons
	 �� �	 �	 �	 �
 �����is becoming a skeleton

 �� �� ��������to buy
� �����������summit
� �� ���������to reach the top

2. Missing forms (1 point each)

	 �� �	 �
 ��������to become a skeleton
� �� �������various summits
� �� �� ������is reaching the top

 �� ����� (the/a) purchase

 �� ��
 �� is buying

Assign ½ point each if the basic symbols (the consonants) are correct,
and the other ½ point if the diacritics (the vowels) are correct.

Theoretical: 9 points
* The first step in this problem must be to divide the English items
into semantically similar groups (1 pt) and divide the Baybayin items
into groups based on shared symbols (1 pt).
* From this they can deduce that the group including � ���must
correspond to the “look/appearances” group (4 members each), that
including 	 �	 �
 ��to the “skeleton” group (3 members each), and

 �� �� ��must be “to buy” (1 each). For getting this far they should
get another 2 points.
* Figuring out the nature of the Baybayin alternations is the tricky
part. A maximally good explanation will discover that there are two
basic processes:

• From the basic form, copy the initial two symbols and add
them to the beginning. The first should retain whatever
diacritic it might have, but the second should have its dia-
critic (if any) replaced by a cross below.

• Insert � �as the second symbol, and move the initial sym-
bol’s diacritic (if any) to this one. Add an underdot to the
first symbol.

* Discovering these two processes, and determining that the third
process is the result of doing both, is worth 3 points. Discovering
these two processes, and describing the third as an unrelated process –
that is, not figuring out that it’s just a combination of the first two – is
worth 2 points. Figuring out these processes without reference to the
diacritics is worth 1 point, whether or not they correctly determine the
nature of the third process.
* All that remains is to match up which processes indicate which
categories, which shouldn’t be hard if they’ve gotten this far. Their
description of how to determine this is worth another 1 point.
* The remaining 1 point is reserved to distinguish particularly elegant
solutions described with unusual clarity.

96

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 97–105,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Competitive Grammar Writing∗

Jason Eisner
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21218, USA
jason@cs.jhu.edu

Noah A. Smith
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
nasmith@cs.cmu.edu

Abstract
Just as programming is the traditional introduction to
computer science, writing grammars by hand is an ex-
cellent introduction to many topics in computational lin-
guistics. We present and justify a well-tested introductory
activity in which teams of mixed background compete
to write probabilistic context-free grammars of English.
The exercise brings together symbolic, probabilistic, al-
gorithmic, and experimental issues in a way that is acces-
sible to novices and enjoyable.

1 Introduction

We describe a hands-on group activity for novices
that introduces several central topics in computa-
tional linguistics (CL). While the task is intellec-
tually challenging, it requires no background other
than linguistic intuitions, no programming,1 and
only a very basic understanding of probability.

The activity is especially appropriate for mixed
groups of linguists, computer scientists, and others,
letting them collaborate effectively on small teams
and learn from one another. A friendly competition
among the teams makes the activity intense and en-
joyable and introduces quantitative evaluation.

1.1 Task Overview
Each 3-person team is asked to write a generative
context-free grammar that generates as much of En-

∗ This work was supported by NSF award 0121285,
“ITR/IM+PE+SY: Summer Workshops on Human Language
Technology: Integrating Research and Education,” and by a
Fannie and John Hertz Foundation Fellowship to the second
author. We thank David A. Smith and Markus Dreyer for co-
leading the lab in 2004–2007 and for implementing various im-
provements in 2004–2007 and for providing us with data from
those years. The lab has benefited over the years from feedback
from the participants, many of whom attended the JHU sum-
mer school thanks to the generous support of NAACL. We also
thank the anonymous reviewers for helpful comments.

1In our setup, students do need the ability to invoke scripts
and edit files in a shared directory, e.g., on a Unix system.

glish as possible (over a small fixed vocabulary).
Obviously, writing a full English grammar would
take years even for experienced linguists. Thus each
team will only manage to cover a few phenomena,
and imperfectly.

To encourage precision but also recall and lin-
guistic creativity, teams are rewarded for generating
sentences that are (prescriptively) grammatical but
are not anticipated by other teams’ grammars. This
somewhat resembles scoring in the Boggle word
game, where players are rewarded for finding valid
words in a grid that are not found by other players.

A final twist is that the exercise uses probabilistic
context-free grammars (PCFGs); the actual scoring
methods are based on sampling and cross-entropy.
Each team must therefore decide how to allocate
probability mass among sentences. To avoid assign-
ing probability of zero when attempting to parse an-
other team’s sentences, a team is allowed to “back
off” (when parsing) to a simpler probability model,
such as a part-of-speech bigram model, also ex-
pressed as a PCFG.

1.2 Setting
We have run this activity for six consecutive years,
as a laboratory exercise on the very first afternoon
of an intensive 2-week summer school on various
topics in human language technology.2 We allot 3.5
hours in this setting, including about 15 minutes for
setup, 30 minutes for instructions, 15 minutes for
evaluation, and 30 minutes for final discussion.

The remaining 2 hours is barely enough time for
team members to get acquainted, understand the re-
quirements, plan a strategy, and make a small dent in

2This 2-week course is offered as a prelude to the Johns
Hopkins University summer research workshops, sponsored by
the National Science Foundation and the Department of De-
fense. In recent years the course has been co-sponsored by the
North American ACL.

97

the problem. Nonetheless, participants consistently
tell us that the exercise is enjoyable and pedagogi-
cally effective, almost always voting to stay an extra
hour to make further progress.

Our 3-person teams have consisted of approxi-
mately one undergraduate, one junior graduate stu-
dent, and one more senior graduate student. If pos-
sible, each team should include at least one member
who has basic familiarity with some syntactic phe-
nomena and phrasal categories. Teams that wholly
lack this experience have been at a disadvantage in
the time-limited setting.

1.3 Resources for Instructors

We will maintain teaching materials at http:
//www.clsp.jhu.edu/grammar-writing,
for both the laboratory exercise version and for
homework versions: scripts, data, instructions for
participants, and tips for instructors. While our
materials are designed for participants who are
fluent in English, we would gladly host translations
or adaptations into other languages, as well as other
variants and similar assignments.

2 Why Grammar Writing?

A computer science curriculum traditionally starts
with programming, because programming is acces-
sible, hands-on, and necessary to motivate or under-
stand most other topics in computer science. We be-
lieve that grammar writing should play the same role
in computational linguistics—as it often did before
the statistical revolution3—and for similar reasons.

Grammar writing remains central because many
theoretical and applied CL topics center around
grammar formalisms. Much of the field tries to de-
sign expressive formalisms (akin to programming
languages); solve linguistic problems within them
(akin to programming); enrich them with probabil-
ities; process them with efficient algorithms; learn
them from data; and connect them to other modules
in the linguistic processing pipeline.

3The first author was specifically inspired by his experience
writing a grammar in Bill Woods’s NLP course at Harvard in
1987. An anonymous reviewer remarks that such assignments
were common at the time. Our contributions are to introduce
statistical and finite-state elements, to make the exercise into a
game, and to provide reusable instructional materials.

Of course, there are interesting grammar for-
malisms at all levels of language processing. One
might ask why syntax is a good level at which to be-
gin education in computational linguistics.

First, starting with syntax establishes at the start
that there are formal and computational methods
specific to natural language. Computational linguis-
tics is not merely a set of applied tasks to be solved
with methods already standardly taught in courses
on machine learning, theory of computation,4 or
knowledge representation.

Second, we have found that syntax captures stu-
dents’ interest rapidly. They quickly appreciate the
linguistic phenomena, see that they are non-trivial,
and have little trouble with the CFG formalism.

Third, beginning specifically with PCFGs pays
technical dividends in a CL course. Once one un-
derstands PCFG models, it is easy to understand the
simpler finite-state models (including n-gram mod-
els, HMMs, etc.) and their associated algorithms, ei-
ther by analogy or by explicit reduction to special
cases of PCFGs. CFGs are also a good starting point
for more complex syntactic formalisms (BNF, cate-
gorial grammars, TAG, LFG, HPSG, etc.) and for
compositional semantics. Indeed, our exercise mo-
tivates these more complex formalisms by forcing
students to work with the more impoverished PCFG
formalism and experience its limitations.

3 Educational Goals of the Exercise

Our grammar-writing exercise is intended to serve
as a touchstone for discussion of many subsequent
topics in NLP and CL (which are italicized below).
As an instructor, one can often refer back later to the
exercise to remind students of their concrete experi-
ence with a given concept.

Generative probabilistic models. The first set of
concepts concerns language models. These are eas-
iest to understand as processes for generating text.
Thus, we give our teams a script for generating ran-
dom sentences from their grammar and their backoff

4Courses on theory of computation do teach pushdown au-
tomata and CFGs, of course, but they rarely touch on parsing
or probabilistic grammars, as this exercise does. Courses on
compilers may cover parsing algorithms, but only for restricted
grammar families such as unambiguous LR(1) grammars.

98

model—a helpful way to observe the generative ca-
pacity and qualitative behavior of any model.

Of course, in practice a generative grammar is
most often run “backwards” to parse an observed
sentence or score its inside probability, and we also
give the teams a script to do that. Most teams do ac-
tually run these scripts repeatedly to test their gram-
mars, since both scripts will be central in the evalua-
tion (where sentences are randomly generated from
one grammar and scored with another grammar).

It is common for instructors of NLP to show ex-
amples of randomly-generated text from an n-gram
model (e.g., Jurafsky and Martin, 2000, pp. 202–
203), yet this amusing demonstration may be misin-
terpreted as merely illustrating the inadequacy of n-
gram models. Our use of a hand-crafted PCFG com-
bined with a bigram-based (HMM) backoff grammar
demonstrates that although the HMM is much worse
at generating valid English sentences (precision), it
is much better at robustly assigning nonzero proba-
bility when analyzing English sentences (recall).

Finally, generative models do more than assign
probability. They often involve linguistically mean-
ingful latent variables, which can be recovered
given the observed data. Parsing with an appropri-
ate PCFG thus yields a intuitive and useful analy-
sis (a syntactic parse tree), although only for the
sentences that the PCFG covers. Even parsing with
the simple backoff grammar that we initially provide
yields some coarser analysis, in the form of a part-
of-speech tagging, since this backoff grammar is a
right-branching PCFG that captures part-of-speech
bigrams (for details see §1.1, §4.1, and Table 2). In
fact, parsing with the backoff PCFG is isomorphic to
Viterbi decoding in an HMM part-of-speech tagger,
a topic that is commonly covered in NLP courses.

Modeling grammaticality. The next set of con-
cepts concerns linguistic grammaticality. During the
evaluation phase of our exercise (see below), stu-
dents must make grammaticality judgments on other
teams’ randomly generated sentences—which are
usually nonsensical, frequently hard for humans to
parse, and sometimes ungrammatical. This concrete
task usually prompts questions from students about
how grammaticality ought to be defined, both for
purposes of the task and in principle. It could also
be used to discuss why some of the sentences are

so hard for humans to understand (e.g., garden-path
and frequency effects) and what parsing strategies
humans or machines might use.

The exercise of modeling grammaticality with
the CFG formalism, a formalism that appears else-
where in the computer science curriculum, high-
lights some important differences between natural
languages and formal languages. A natural lan-
guage’s true grammar is unknown (and may not even
exist: perhaps the CFG formalism is inadequate).
Rather, a grammar must be induced or constructed
as an approximate model of corpus data and/or cer-
tain native-speaker intuitions. A natural language
also differs from a programming language in includ-
ing ambiguous sentences. Students observe that the
parser uses probabilities to resolve ambiguity.

Linguistic analysis. Grammar writing is an ex-
cellent way to get students thinking about linguis-
tic phenomena (e.g., adjuncts, embedded sentences,
wh-questions, clefts, point absorption of punctuation
marks). It also forces students to think about appro-
priate linguistic formalisms. Many phenomena are
tedious to describe within CFGs (e.g., agreement,
movement, subcategorization, selectional restric-
tions, morphological inflection, and phonologically-
conditioned allomorphy such as a vs. an). They
can be treated in CFGs only with a large number of
repetitive rules. Students appreciate these problems
by grappling with them, and become very receptive
to designing expressive improvements such as fea-
ture structures and slashed categories.

Parameter tuning. Students observe the effects
of changing the rule probabilities by running the
scripts. For example, teams often find themselves
generating unreasonably long (or even infinite) sen-
tences, and must damp down the probabilities of
their recursive rules. Adjusting the rule probabilities
can also change the score and optimal tree that are
returned by the parser, and can make a big difference
in the final evaluation (see §5). This appreciation for
the role of numerical parameters helps motivate fu-
ture study of machine learning in NLP.

Quantitative evaluation. As an engineering pur-
suit, NLP research requires objective evaluation
measures to know how well systems work.

Our first measure is the precision of each team’s

99

probabilistic grammar: how much of its probability
mass is devoted to sentences that are truly grammat-
ical? Estimating this requires human grammaticality
judgments on a random sample C of sentences gen-
erated from all teams’ grammars. These binary judg-
ments are provided by the participants themselves,
introducing the notion of linguistic annotation (al-
beit of a very simple kind). Details are in §4.3.3.

Our second measure is an upper-bound approx-
imation to cross-entropy (or log-perplexity—in ef-
fect, the recall of a probability model): how well
does each team’s probabilistic model (this time in-
cluding the backoff model of §1.1) anticipate unseen
data that are truly grammatical? (Details in §4.3.3.)

Note that in contrast to parsing competitions, we
do not evaluate the quality of the parse trees (e.g.,
PARSEVAL). Our cross-entropy measure evaluates
only the grammars’ ability to predict word strings
(language modeling). That is because we impose no
annotation standard for parse trees: each team is free
to develop its own theory of syntax. Furthermore,
many sentences will only be parsable by the backoff
grammar (e.g., a bigram model), which is not ex-
pected to produce a full syntactic analysis.

The lesson about cross-entropy evaluation is
slightly distorted by our peculiar choice of test data.
In principle, the instructors might prepare a batch
of grammatical sentences ahead of time and split
them into a test set (used to evaluate cross-entropy
at the end) and a development set (provided to the
students at the start, so that they know which gram-
matical phenomena are important to handle). The
activity could certainly be run in this way to demon-
strate proper experimental design for evaluating a
language model (discussed further in §5 and §6).
We have opted for the more entertaining “Boggle-
style” evaluation described in §1.1, where teams try
to stump one another by generating difficult test
data, using the fixed vocabulary. Thus, we evaluate
each team’s cross-entropy on all grammatical sen-
tences in the collection C, which was generated ex
post facto from all teams’ grammars.

4 Important Details

4.1 Data

A few elements are provided to participants to get
them started on their grammars.

Vocabulary. The terminal vocabulary Σ consists
of words from early scenes of the film Monty Python
and the Holy Grail along with some inflected forms
and function words, for a total vocabulary of 220
words. For simplicity, only 3rd-person pronouns,
nouns, and verbs are included. All words are case-
sensitive for readability (as are the grammar nonter-
minals), but we do not require or expect sentence-
initial capitalization.

All teams are restricted to this vocabulary, so that
the sentences that they generate will not frustrate
other teams’ parsers with out-of-vocabulary words.
However, they are free to use words in unexpected
ways (e.g., using castle in its verbal sense from
chess, or building up unusual constructions with the
available function words).

Initial lexicon. The initial lexical rules take the
form T → w, where w ∈ Σ+ and T ∈ T , with
T being a set of six coarse part-of-speech tags:
Noun: 21 singular nouns starting with consonants

Det: 9 singular determiners

Prep: 14 prepositions

Proper: 8 singular proper nouns denoting people
(including multiwords such as Sir Lancelot)

VerbT: 6 3rd-person singular present transitive
verbs

Misc: 183 other words, divided into several com-
mented sections in the grammar file

Students are free to change this tagset. They
are especially encouraged to refine the Misc tag,
which includes 3rd-person plural nouns (including
some proper nouns), 3rd-person pronouns (nomina-
tive, accusative, and genitive), additional 3rd-person
verb forms (plural present, past, stem, and partici-
ples), verbs that cannot be used transitively, modals,
adverbs, numbers, adjectives (including some com-
parative and superlative forms), punctuation, coor-
dinating and subordinating conjunctions, wh-words,
and a few miscellaneous function words (to, not, ’s).

The initial lexicon is ambiguous: some words are
associated with more than one tag. Each rule has
weight 1, meaning that a tag T is equally likely to
rewrite as any of its allowed nonterminals.

Initial grammar. We provide the “S1” rules in Ta-
ble 1, so that students can try generating and parsing

100

1 S1 → NP VP .
1 VP → VerbT NP

20 NP → Det Nbar
1 NP → Proper

20 Nbar → Noun
1 Nbar → Nbar PP
1 PP → Prep NP

Table 1: The S1 rules: a starting point for building an En-
glish grammar. The start symbol is S1. The weights in
the first column will be normalized into generative proba-
bilities; for example, the probability of expanding a given
NP with NP → Det Nbar is actually 20/(20 + 1).

1 S2 →
1 S2 → Noun
1 S2 → Misc
1 Noun → Noun
1 Noun → Noun Noun
1 Noun → Noun Misc
1 Misc → Misc
1 Misc → Misc Noun
1 Misc → Misc Misc

Table 2: The S2 rules (simplified here where T =
{Noun, Misc}): a starting point for a backoff grammar.
The start symbol is S2. The Noun nonterminal gener-
ates those phrases that start with Nouns. Its 3 rules mean
that following a Noun, there is 1/3 probability each of
stopping, continuing with another Noun (via Noun), or
continuing with a Misc word (via Misc).

sentences right away. The S1 and lexical rules to-
gether implement a very small CFG. Note that no
Misc words can yet be generated. Indeed, this ini-
tial grammar will only generate some simple gram-
matical SVO sentences in singular present tense, al-
though they may be unboundedly long and ambigu-
ous because of recursion through Nbar and PP.

Initial backoff grammar. The provided “S2”
grammar is designed to assign positive probability
to any string in Σ∗ (see §1.1). At least initially, this
PCFG generates only right-branching structures. Its
nonterminals correspond to the states of a weighted
finite-state machine, with start state S2 and one state
per element of T (the coarse parts of speech listed
above). Table 2 shows a simplified version.

From each state, transition into any state except
the start state S2 is permitted, and so is stopping.
These rules can be seen as specifying the transitions

Arthur is the king .
Arthur rides the horse near the castle .
riding to Camelot is hard .
do coconuts speak ?
what does Arthur ride ?
who does Arthur suggest she carry ?
are they suggesting Arthur ride to Camelot ?
Guinevere might have known .
it is Sir Lancelot who knows Zoot !
neither Sir Lancelot nor Guinevere will speak of it .
the Holy Grail was covered by a yellow fruit .
do not speak !
Arthur will have been riding for eight nights .
Arthur , sixty inches , is a tiny king .
Arthur and Guinevere migrate frequently .
he knows what they are covering with that story .
the king drank to the castle that was his home .
when the king drinks , Patsy drinks .

Table 3: Example sentences. Only the first two can be
parsed by the initial S1 and lexical rules.

in a bigram hidden Markov model (HMM) on part-
of-speech tags, whose emissions are specified by the
lexical rules. Since each rule initially has weight 1,
all part-of-speech sequences of a given length are
equally likely, but these weights could be changed
to arbitrary transition probabilities.

Start rules. The initial grammar S1 and the ini-
tial backoff grammar S2 are tied together by a single
symbol START, which has two production rules:

99 START → S1
1 START → S2

These two rules are obligatory, but their weights
may be changed. The resulting model, rooted at
START, is a mixture of the S1 and S2 grammars,
where the weights of these two rules implement
the mixture coefficients. This is a simple form of
backoff smoothing by linear interpolation (Jelinek
and Mercer, 1980). The teams are warned to pay
special attention to these rules. If the weight of
START → S1 is decreased relative to START →
S2, then the model relies more heavily on the back-
off model—perhaps a wise choice for keeping cross-
entropy small, if the team has little faith in S1’s abil-
ity to parse the forthcoming data.

Sample sentences. A set of 27 example sentences
in Σ+ (subset shown in Table 3) is provided for lin-
guistic inspiration and as practice data on which to

101

run the parser. Since only 2 of these sentences can
be parsed with the initial S1 and lexical rules, there
is plenty of room for improvement. A further devel-
opment set is provided midway through the exercise
(§4.3.2).

4.2 Computing Environment

We now describe how the above data are made avail-
able to students along with some software.

4.2.1 Scripts
We provide scripts that implement two important

capabilities for PCFG development. Both scripts
are invoked with a set of grammar files specified on
the command line (typically all of them, “*.gr”).
A PCFG is obtained by concatenating these files
and stripping their comments, then normalizing their
rule weights into probabilities (see Table 1), and
finally checking that all terminal symbols of this
PCFG are legal words of the vocabulary Σ.

The random generation script prints a sample of
n sentences from this PCFG. The generator can op-
tionally print trees or flat word sequences. A start
symbol other than the default S1 may be specified
(e.g., NP, S2, START, etc.), to allow participants to
test subgrammars or the backoff grammar.5

The parsing script prints the most probable parse
tree for each sentence read from a file (or from the
standard input). A start symbol may again be speci-
fied; this time the default is START. The parser also
prints each sentence’s probability, total number of
parses, and the fraction of the probability that goes
to the best parse.

Tree outputs can be pretty-printed for readability.

4.2.2 Collaborative Setup
Teams of three or four sit at adjacent workstations

with a shared filesystem. The scripts above are pub-
licly installed; a handout gives brief usage instruc-
tions. The instructor and teaching assistant roam the
room and offer assistance as needed.

Each team works in its own shared directory. The
Emacs editor will warn users who are simultane-
ously editing the same file. Individual participants
tend to work on different sub-grammar files; all of

5For some PCFGs, the stochastic process implemented by
the script has a nonzero probability of failing to terminate. This
has not caused problems to date.

a team’s files can be concatenated (as *.gr) when
the scripts are run. (The directory initially includes
separate files for the S1 rules, S2 rules, and lexi-
cal rules.) To avoid unexpected interactions among
these grammar fragments, students are advised to di-
vide work based on nonterminals; e.g., one member
of a team may claim jurisdiction over all rules of the
form VP plural → · · ·.

4.3 Activities

4.3.1 Introductory Lecture
Once students have formed themselves into teams

and managed to log in at adjacent computers, we
begin with an 30-minute introductory lecture. No
background is assumed. We explain PCFGs simply
by showing the S1 grammar and hand-simulating the
action of the random sentence generator.

We explain the goal of extending the S1 gram-
mar to cover more of English. We explain how each
team’s precision will be evaluated by human judg-
ments on a sample, but point out that this measure
gives no incentive to increase coverage (recall). This
motivates the “Boggle” aspect of the game, where
teams must also be able to parse one another’s gram-
matical sentences, and indeed assign them as high
a probability as possible. We demonstrate how the
parser assigns a probability by running it on the sen-
tence that we earlier generated by hand.6

We describe how the parser’s probabilities are
turned into a cross-entropy measure, and discuss
strategy. Finally, we show that parsing a sentence
that is not covered by the S1 grammar will lead to
infinite cross-entropy, and we motivate the S2 back-
off grammar as an escape hatch.

4.3.2 Midpoint: Development data
Once or more during the course of the exercise,

we take a snapshot of all teams’ S1 grammars and
sample 50 sentences from each. The resulting col-
lection of sentences, in random order, is made avail-
able to all teams as a kind of development data.
While we do not filter for grammaticality as in the
final evaluation, this gives all participants an idea
of what they will be up against when it comes time

6The probability will be tiny, as a product of many rule prob-
abilities. But it may be higher than expected, and students are
challenged to guess why: there are additional parses beyond the
one we hand-generated, and the parser sums over all of them.

102

to parse other teams’ sentences. Teams are on their
honor not to disguise the true state of their grammar
at the time of the snapshot.

4.3.3 Evaluation procedure
Grammar development ends at an announced

deadline. The grammars are now evaluated on the
two measures discussed in §3. The instructors run a
few scripts that handle most of this work.

First, we generate a collection C by sampling 20
sentences from each team’s probabilistic grammar,
using S1 as the start symbol. (Thus, the backoff S2
grammar is not used for generation.)

We now determine, for each team, what fraction
of its 20-sentence sample was grammatical. The par-
ticipants play the role of grammaticality judges. In
our randomized double-blind procedure, each indi-
vidual judge receives (in his or her team directory)
a file of about 20 sentences from C, with instruc-
tions to delete the ungrammatical ones and save the
file, implying coarse Boolean grammaticality judg-
ments.7 The files are constructed so that each sen-
tence in C is judged by 3 different participants; a
sentence is considered grammatical if ≥ 2 judges
thinks that it is.

We define the test corpus Ĉ to consist of all sen-
tences in C that were judged grammatical. Each
team’s full grammar (using START as the start sym-
bol to allow backoff) is used to parse Ĉ. This
gives us the log2-probability of each sentence in Ĉ;
the cross-entropy score is the sum of these log2-
probabilities divided by the length of Ĉ.

4.3.4 Group discussion
While the teaching assistant is running the evalua-

tion scripts and compiling the results, the instructor
leads a general discussion. Many topics are possi-
ble, according to the interests of the instructor and
participants. For example: What linguistic phenom-
ena did the teams handle, and how? Was the CFG
formalism adequately expressive? How well would
it work for languages other than English?

What strategies did the teams adopt, based on the
evaluation criteria? How were the weights chosen?

7Judges are on their honor to make fair judgments rather
than attempt to judge other teams’ sentences ungrammatical.
Moreover, such an attempt might be self-defeating, as they
might unknowingly be judging some of their own team’s sen-
tences ungrammatical.

cross-entropy new rules
team precision (bits/sent.) lex. other

A 0.30 35.57 202 111
B 0.00 54.01 304 80
C 0.80 38.48 179 48
D 0.25 49.37 254 186
E 0.55 39.59 198 114
F 0.00 39.56 193 37
G 0.65 40.97 71 15
H 0.30 36.53 176 9
I 0.70 36.17 181 54
J 0.00 ∞ 193 29

Table 4: Teams’ evaluation scores in one year, and the
number of new rules (not including weight changes) that
they wrote. Only teams A and H modified the relative
weights of the START rules (they used 80/20 and 75/25,
respectively), giving them competitive perplexity scores.
(Cross-entropy in this year was approximated by an upper
bound that uses only the probability of each sentence’s
single best parse.)

How would you build a better backoff grammar?8

How would you organize a real long-term effort
to build a full English grammar? What would such a
grammar be good for? Would you use any additional
tools, data, or evaluation criteria?

5 Outcomes

Table 4 shows scores achieved in one year (2002).
A valuable lesson for the students was the impor-

tance of backoff. None but the first two of the exam-
ple sentences (Table 3) are parseable with the small
S1 grammar. Thus, the best way to reduce perplexity
was to upweight the S2 grammar and perhaps spend
a little time improving its rules or weights. Teams
that spent all of their time on the S1 grammar may
have learned a lot about linguistics, but tended to
score poorly on perplexity.

Indeed, the winning team in a later year spent
nearly all of their effort on the S2 grammar. They
placed almost all their weight on the S2 grammar,
whose rules they edited and whose parameters they
estimated from the example sentences and develop-
ment data. As for their S1 grammar, it generated
only a small set of grammatical sentences with ob-

8E.g., training the model weights, extending it to trigrams,
or introducing syntax into the S2 model by allowing it to invoke
nonterminals of the S1 grammar.

103

scure constructions that other teams were unlikely to
model well in their S1 grammars. This gave them a
100% precision score on grammaticality while pre-
senting a difficult parsing challenge to other teams.
This team gamed our scoring system, exploiting the
idiosyncrasy that S2 would be used to parse but not
to generate. (See §3 for an alternative system.)

We conducted a post hoc qualitative survey of the
grammars from teams in 2002. Teams were not
asked to provide comments, and nonterminal nam-
ing conventions often tend to be inscrutable, but the
intentions are mostly understandable. All 10 teams
developed more fine-grained parts of speech, includ-
ing coordinating conjunctions, modal verbs, number
words, adverbs. 9 teams implemented singular and
plural features on nouns and/or verbs, and 9 imple-
mented the distinction between base, past, present,
and gerund forms of verbs (or a subset of those). 7
teams brought in other features like comparative and
superlative adjectives and personal vs. possessive
pronouns. 4 teams modeled pronoun case. Team
C created a “location” category.

7 teams explicitly tried to model questions, of-
ten including rules for do-support; 3 of those teams
also modeled negation with do-insertion. 2 teams
used gapped categories (team D used them exten-
sively), and 7 teams used explicit X̄ nonterminals,
most commonly within noun phrases (following the
initial grammar). Three teams used a rudimentary
subcategorization frame model, distinguishing be-
tween sentence-taking, transitive, and intransitive
verbs, with an exploded set of production rules as
a result. Team D modeled appositives.

The amount of effort teams put into weights var-
ied, as well. Team A used 11 distinct weight values
from 1 to 80, giving 79 rules weights > 1 (next clos-
est was team 10, with 7 weight values in [1, 99] and
only 43 up-weighted rules). Most teams set fewer
than 25 rules’ weights to something other than 1.

6 Use as a Homework Assignment

Two hours is not enough time to complete a good
grammar. Our participants are ambitious but never
come close to finishing what they undertake; Table 4
reflects incomplete work. Nonetheless, we believe
that the experience still successfully fulfills many of
the goals of §2–3 in a short time, and the participants

enjoy the energy in a roomful of peers racing toward
a deadline. The fact that the task is open-ended and
clearly impossible keeps the competition friendly.

An alternative would be to allot 2 weeks or more
as a homework assignment, allowing teams to go
more deeply into linguistic issues and/or backoff
modeling techniques. A team’s grade could be
linked to its performance. In this setting, we recom-
mend limiting the team size to 1 or 2 people each,
since larger teams may not be able to find time or
facilities to work side-by-side for long.

This homework version of our exercise might
helpfully be split into two assignments:

Part 1 (non-competitive, smaller vocabulary).
“Extend the initial S1 grammar to cover a certain
small set of linguistic phenomena, as illustrated by a
development set [e.g., Table 3]. You will be eval-
uated on the cross-entropy of your grammar on a
test set that closely resembles the development set
[see §3], and perhaps also on the acceptability of
sentences sampled from your grammar (as judged
by you, your classmates, or the instructor). You
will also receive qualitative feedback on how cor-
rectly and elegantly your grammar solves the lin-
guistic problems posed by the development set.”

Part 2 (competitive, full 220-word vocabulary).
“Extend your S1 grammar from Part 1 to generate
phenomena that stump other teams, and add an S2
grammar to avoid being stumped by them. You will
be evaluated as follows . . . [see §4.3.3].”

We have already experimented with simpler non-
competitive grammar-writing exercises (similar to
Part 1) in our undergraduate NLP courses. Given
two weeks, even without teammates, many students
do a fine job of covering several non-trivial syntactic
phenomena. These assignments are available for use
by others (see §1.3). In some versions, students were
asked to write their own random generator, judge
their own sentences, explain how to evaluate per-
plexity, or guess why the S2 grammar was used.

7 Conclusion

We hope that other instructors can make use of these
materials or ideas. Our competitive PCFG-writing
game touches upon many core CL concepts, is chal-
lenging and enjoyable, allows collaboration, and is
suitable for cross-disciplinary and intro courses.

104

References
F. Jelinek and R. L. Mercer. 1980. Interpolated estima-

tion of Markov source parameters from sparse data. In
Proc. of Workshop on Pattern Recognition in Practice.

D. Jurafsky and J.H. Martin. 2000. Speech and Lan-
guage Processing. Prentice Hall.

105

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 106–113,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Studying Discourse and Dialogue with SIDGrid∗

Gina-Anne Levow
Department of Computer Science

University of Chicago
Chicago, IL 60611, USA

levow@cs.uchicago.edu

Abstract

Teaching Computational Linguistics is in-
herently multi-disciplinary and frequently
poses challenges and provides opportunities in
teaching to a student body with diverse ed-
ucational backgrounds and goals. This pa-
per describes the use of a computational en-
vironment (SIDGrid) that facilitates interdis-
ciplinary instruction by providing support for
students with little computational background
as well as extending the scale of projects ac-
cessible to students with more advanced com-
putational skills. The environment facilitates
the use of hands-on exercises and is being ap-
plied to interdisciplinary instruction in Dis-
course and Dialogue.

1 Introduction

Teaching Computational Linguistics poses many
challenges but also provides many opportunities.
Students in Computational Linguistics courses come
from diverse academic backgrounds, including com-
puter science, linguistics, and psychology. The
students enter with differing experience and expo-
sure to programming, computational and mathemat-
ical models, and linguistic, psycholinguistic and so-
ciolinguistic theories that inform the practice and
study of computational linguistics. However, study-
ing in a common class provides students with the op-
portunity to gain exposure to diverse perspectives on
their research problems and to apply computational

∗The work is supported by a University of Chicago Aca-
demic Technology Innovation Grant.

tools and techniques to expand the range and scope
of problems they can investigate.

While there are many facets of these instructional
challenges that must be addressed to support a suc-
cessful course with a multi-disciplinary class and
perspective, this paper focuses on the use and de-
velopment of a computational environment to sup-
port laboratory exercises for students from diverse
backgrounds. The framework aims to facilitate col-
laborative projects, reduce barriers of entry for stu-
dents with little prior computational experience, and
to provide access to large-scale distributed process-
ing resources for students with greater computa-
tional expertise to expand the scope and scale of
their projects and exercises.

Specifically, we exploit the Social Informatics
Data Grid (SIDGrid) framework developed as part
of the NSF-funded Cyberinfrastructure project, ”Cy-
berinfrastructure for Collaborative Research in the
Social and Behavioral Sciences (PI: Stevens)”, to
support hands-on annotation and analysis exercises
in a computational linguistics course focused on dis-
course and dialogue. We begin by describing the
SIDGrid framework for annotation, archiving, and
analysis of multi-modal, multi-measure data. We
then describe the course setting and the applica-
tion of SIDGrid functionality to expand exercise and
project possibilities. Finally, we discuss the impact
of this framework for multi-disciplinary instruction
in computational linguistics as well as the limita-
tions of the current implementation of the frame-
work.

106

2 SIDGrid Framework

2.1 Motivation
Recent research programs in multi-modal environ-
ments, including understanding and analysis of
multi-party meeting data and oral history recording
projects, have created an explosion of multi-modal
data sets, including video and audio recordings,
transcripts and other annotations, and increased in-
terest in annotation and analysis of such data. A
number of systems have been developed to man-
age and support annotation of multi-modal data, in-
cluding Annotation Graphs (Bird and Liberman,
2001), Exmeralda (Schmidt, 2004), NITE XML
Toolkit (Carletta et al., 2003), Multitool (Allwood
et al., 2001), Anvil (Kipp, 2001), and Elan (Wit-
tenburg et al., 2006). The Social Informatics Data
Grid (SIDGrid), developed under the NSF Cyberin-
frastructure Program, aims to extend the capabilities
of such systems by focusing on support for large-
scale, extensible distributed data annotation, shar-
ing, and analysis. The system is open-source and
multi-platform and based on existing open-source
software and standards. The system greatly eases the
integration of annotation with analysis though user-
defined functions both on the client-side for data ex-
ploration and on the TeraGrid for large-scale dis-
tributed data processing. A web-accessible repos-
itory supports data search, sharing, and distributed
annotation. While the framework is general, anal-
ysis of spoken and multi-modal discourse and dia-
logue data is a primary application.

The details of the system are presented below.
Sections 2.2, 2.3, and 2.4 describe the annota-
tion client, the web-accessible data repository, and
the portal to the TeraGrid, respectively, as shown in
Figure 1 below.

2.2 The SIDGrid Client
The SIDGrid client provides an interactive multi-
modal annotation interface, building on the open-
source ELAN annotation tool from the Max Planck
Institute1. A screenshot appears in Figure 2. ELAN
supports display and synchronized playback of mul-
tiple video files, audio files, and arbitrarily many
annotation ”tiers” in its ”music-score”-style graph-
ical interface. The annotations are assumed to be

1http://www.mpi.nl/tools/elan.html

Web-interface
to TeraGrid &
Repository

Client
Data Repository

TeraGrid

Figure 1: System Architecture

Figure 2: Screenshot of the annotation client interface,
with video, time-aligned textual annotations, and time se-
ries displays.

time-aligned intervals with, typically, text content;
the system leverages Unicode to provide multilin-
gual support. Time series such as pitch tracks or
motion capture data can be displayed synchronously.
The user may interactively add, edit, and do sim-
ple search in annotations. For example, in multi-
modal multi-party spoken data, annotation tiers cor-
responding to aligned text transcriptions, head nods,
pause, gesture, and reference can be created.

The client expands on this functionality by al-
lowing the application of user-defined analysis pro-
grams to media, time series, and annotations asso-
ciated with the current project, such as a conver-
sation, to yield time series files or annotation tiers
displayed in the client interface. Any program with
a command-line or scriptable interface installed on
the user’s system may be added to a pull-down list
for invocation. For example, to support a prosodic

107

analysis of multi-party meeting data, the user can se-
lect a Praat (Boersma, 2001) script to perform pitch
or intensity tracking. Also, the client provides inte-
grated import and export capabilities for the central
repository. New and updated experiments and an-
notations may be uploaded directly to the archive
from within the client interface. Existing experi-
ments may be loaded from local disk or downloaded
from the repository for additional annotation.

2.3 The SIDGrid Repository

The SIDGrid repository provides a web-accessible,
central archive of multi-modal data, annotations, and
analyses. This archive facilitates distributed anno-
tation efforts by multiple researchers working on a
common data set by allowing shared storage and ac-
cess to annotations, while keeping a history of up-
dates to the shared data, annotations, and analysis.

The browser-based interface to the archive allows
the user to browse or search the on-line data col-
lection by media type, tags, project identifier, and
group or owner. Once selected, all or part of any ex-
periment may be downloaded. In addition to lists of
experiment names or thumbnail images, the web in-
terface also provides a streaming preview of the se-
lected media and annotations, allowing verification
prior to download. (Figure 3)

All data is stored in a MySQL database. Anno-
tation tiers are converted to an internal time-span
based representation, while media and time series
files are linked in unanalyzed. This format allows
generation of ELAN format files for download to the
client tool without regard to the original source form
of the annotation file. The database structure further
enables the potential for flexible search of the stored
annotations both within and across multiple annota-
tion types.

2.4 The TeraGrid Portal

The large-scale multimedia data collected for multi-
modal research poses significant computational
challenges. Signal processing of gigabytes of me-
dia files requires processing horsepower that may
strain many local sites, as do approaches such as
multi-dimensional scaling for semantic analysis and
topic segmentation. To enable users to more effec-
tively exploit this data, the SIDGrid provides a por-
tal to the TeraGrid (Pennington, 2002), the largest

distributed cyberinfrastructure for open scientific
research, which uses high-speed network connec-
tions to link high performance computers and large
scale data stores distributed across the United States.
While the TeraGrid has been exploited within the as-
tronomy and physics communities, it has been little
used by the computational linguistics community.

The SIDGrid portal to the TeraGrid allows large-
scale experimentation by providing access to large-
scale distributed processing clusters to enable par-
allel processing on very high capacity servers. The
SIDGrid portal to the TeraGrid allows the user to
specify a set of files in the repository and a program
or programs to run on them on the Grid-based re-
sources. Once a program is installed on the Grid,
the processing can be distributed automatically to
different TeraGrid nodes. Software supports arbi-
trarily complex workflow specifications, but the cur-
rent SIDGrid interface provides simple support for
high degrees of data-parallel processing, as well as a
graphical display indicating the progress of the dis-
tributed program execution, as shown in Figure 4.
The results are then reintegrated with the original
experiments in the on-line repository. Currently in-
stalled programs support distributed acoustic analy-
sis using Praat, statistical analysis using R, and ma-
trix computations using Matlab and Octave.

2.5 Software Availability

The client software is freely available. Ac-
cess to the public portion of the repository
is possible through the project website at
https://sidgrid.ci.uchicago.edu;
full access to the repository to create new experi-
ments may also be requested there.

3 Course Setting and Activities

We explore the use of this framework in a course
which focuses on a subarea of Computational Lin-
guistics, specifically discourse and dialogue, tar-
geted at graduate students interested in research in
this area. This topic is the subject of research not
only in computational speech and language process-
ing, but also in linguistics, psychology, sociology,
anthropology, and philosophy. Research in this area
draws on a growing, large-scale collection of text
and multi-modal interaction data that often relies on

108

Figure 3: Screenshot of the archive download interface, with thumbnails of available video and download and analysis
controls.

Figure 4: Progress of execution of programs on TeraGrid. Table lists file identifiers and status. Graph shows progress.

109

computational tools to support annotation, archiv-
ing, and analysis. However, prior offerings of this
course through the Computer Science Department
had attracted primarily Computer Science gradu-
ate students, even though readings for the course
spanned the range of related fields. In collabora-
tion with researchers in co-verbal gesture in the Psy-
chology department, we hoped to increase the attrac-
tion and accessibility of the course material and ex-
ercises to a more diverse student population. Af-
ter advertising the course to a broader population
through the Linguistics Department mailing list, em-
phasizing the use of computational tools but lack of
requirements for previous programming experience,
the resulting class included members of the Linguis-
tics, Slavic Studies, Psychology, and Computer Sci-
ence Departments, about half of whom had some
prior programming experience, but few were expert.

3.1 Hands-on Exercises

Currently, we have only included a small number of
software tools as proof-of-concept and to enable par-
ticular course exercises in discourse and dialogue.
This first set of exercises explores three main prob-
lems in this area: topic segmentation, dialogue act
tagging, and turn-taking.

The topic segmentation exercise investigates the
impact of segment granularity and automatic speech
recognition errors on topic segmentation of conver-
sational speech. The data is drawn from the Cross-
Language Speech Retrieval Track of the Cross-
language Evaluation Forum (CLEF CL-SR) (Pecina
et al., 2007) collection. This collection includes au-
tomatic transcriptions of interviews from an oral his-
tory project, accompanied by manual segmentation
created as part of the MALACH project (Franz et al.,
2003). The exercise employs the web-based portal
to the TeraGrid to perform segmentation of multiple
interviews in parallel on the Grid, followed by eval-
uation in parallel. We perform segmentation using
LCSeg (Galley et al., 2003) and evaluate using the
pk and WindowDiff metrics. Students identify the
best segmentation parameters for these interviews
and perform error analysis to assess the effect of
ASR errors.

The dialogue act tagging exercise involves both
annotation and analysis components. The students
are asked to download and annotate a small portion

of a conversation from the AMI corpus (Carletta et
al., 2005) with dialogue act tags. The AMI cor-
pus of multiparty meetings includes recorded video,
recorded audio, aligned manual transcriptions, and
manually annotated head and hand gesture. Stu-
dents annotate from text alone, with audio, with
video, and with all modalities. Local ”transforma-
tions”, programs or scripts associated with the an-
notation client, can also provide prosodic analysis
of features such as pitch and intensity. Students
are asked to assess the influence of different fea-
tures on their annotation process and to compare to
a gold standard annotation which is later provided.
The automatic analysis phase is performed on the
web-based portal to assess the impact of different
feature sets on automatic tagging. The tagging is
done in the Feature Latent Semantic Analysis frame-
work (Serafin and Di Eugenio, 2004), augmented
with additional prosodic and multi-modal features
drawn from the annotation. Since this analysis re-
quires Singular Value Decomposition of the poten-
tially large Feature-by-Dialogue-Act matrices, it is
often impractical to execute on single personal or
even departmental servers. Furthermore, feature ex-
traction, such as pitch tracking, of the full conver-
sation can itself strain the computational resources
available to students. Grid-based processing over-
comes both of these problems.

Exercises on turn-taking follow similar patterns.
An initial phase requires annotation and assessment
exercises by the students in the ELAN-based client
tool and downloaded from the web-based repository.
Subsequent phases of the exercises include applica-
tion and investigation of automatic techniques us-
ing the web-based environment and computational
resources of the TeraGrid. Clearly, many other exer-
cises could be framed within this general paradigm,
and we plan to extend the options available to stu-
dents as our interests and available software and data
sets permit.

4 Impact on Interdisciplinary Instruction

We designed these hands-on exercises to allow stu-
dents to investigate important problems in discourse
and dialogue through exploration of the data and
application of automatic techniques to recognize
these phenomena. We aimed in addition to exploit

110

the cyberinfrastructure framework to achieve three
main goals: lower barriers of entry to use of com-
putational tools by students with little prior pro-
gramming experience, enable students with greater
computational skills to expand the scale and scope
of their experiments, and to support collaborative
projects and a broader, interdisciplinary perspective
on research in discourse and dialogue.

4.1 Enabling All Users

A key goal in employing this architecture was to en-
able students with little or no programming expe-
rience to exploit advanced computational tools and
techniques. The integration of so-called ”transfor-
mations”, actually arbitrary program applications, in
both the annotation client and the web-based portal
to the TeraGrid, supports this goal. In both cases,
drop-down menus to select programs and text- and
check-boxes to specify parameters provide graphi-
cal user interfaces to what can otherwise be complex
command-line specifications. In particular, the web-
based portal removes requirements for local instal-
lation of software, shielding the user from problems
due to complex installations, variations in platforms
and operating systems, and abstruse command-line
syntax. In addition, the web-based archive provides
simple mechanisms to browse and download a range
of data sources. The students all found the archive,
download, and transformation mechanisms easy to
use, regardless of prior programming experience. It
is important to remember that the goal of this envi-
ronment is not to replace existing software systems
for Natural Language Processing, such the Natural
Language Toolkit (NLTK) (Bird and Loper, 2004),
but rather to provide a simpler interface to such soft-
ware tools and to support their application to poten-
tially large data sets, irrespective of the processing
power of the individual user’ system.

4.2 Enabling Large-Scale Experimentation

A second goal is to enable larger-scale experimenta-
tion by both expert and non-expert users. The use of
the web-based portal to the TeraGrid provides such
opportunities. The portal provides access to highly
distributed parallel processing capabilities. For ex-
ample, in the case of the segmentation of the oral
history interviews above, the user can select several
interviews, say 60, to segment by checking the as-

sociated check-boxes in the interface. The portal
software will automatically identify available pro-
cessing nodes and distribute the segmentation jobs
for the corresponding interviews to each of the avail-
able nodes to be executed in parallel. Not only are
there many processing nodes, but these nodes are of
very high capacity in terms of CPU speed, number
of CPUs, and available memory.

The multigigabyte data files associated with the
growing number of multi-modal discourse and dia-
logue corpora, such as the AMI and ICSI Meeting
Recorder collections, make such processing power
highly desirable. For example, pitch tracking for
such corpora is beyond the memory limitations of
any single machine in the department, while such
tasks are quickly processed on the powerful Tera-
Grid machines.

Expert users are also granted privileges to upload
their own user-defined programs to be executed on
the Grid. Finally, web services also enable execu-
tion of arbitrary read-only queries on the underly-
ing database of annotations, media files, and time-
series data through standard Structure Query Lan-
guage (SQL) calls. All these capabilities enhance
the scope of problems that more skilled program-
mers can employ in the study of discourse and dia-
logue phenomena.

4.3 Interdisciplinary Collaboration and
Perspectives

The web-based archive in the SIDGrid framework
also provides support for group distributed collab-
orative projects. The archive provides a Unix-style
permission structure that allows data sharing within
groups. The process of project creation, annota-
tion, and experimentation maintains a version his-
tory. Uploads of new annotations create new ver-
sions; older versions are not deleted or overwritten.
Experimental runs are also archived, providing an
experiment history and shared access to intermedi-
ate and final results. Script and software versions
are also maintained. While the version control is not
nearly as sophisticated as that provided by GForge
or Subversion, this simple model requires no spe-
cial training and facilitates flexible, web-based dis-
tributed access and collaboration.

Finally, the interleaving of annotation and auto-
mated experimented permitted by this integrated ar-

111

chitecture provides the students with additional in-
sight into different aspects of research on discourse
and dialogue. Students from linguistics and psy-
chology gain greater experience in automatic analy-
sis and recognition of discourse phenomena, while
more computationally oriented students develop a
greater appreciation of the challenges of annotation
and theoretical issues in analysis of dialogue data.

5 Challenges and Costs

The capabilities and opportunities for study of com-
putational approaches to discourse and dialogue af-
forded within the SIDGrid framework do require
some significant investment of time and effort. In-
corporating new data sets and software packages
requires programming expertise. The framework
can, in principle, incorporate arbitrary data types:
media, physiological measures, manual and auto-
matic annotations, and even motion tracking. The
data must be converted into the ELAN .eaf for-
mat to be deployed effectively by the annotation
client and interpreted correctly by the archive’s un-
derlying database. Converters have been created
for several established formats2, such as Annota-
tion Graphs (Bird and Liberman, 2001), ANVIL
(Kipp, 2001), and EXMARaLDA(Schmidt, 2004),
and projects are underway to improve interoperabil-
ity between formats. However, new formats such as
the CLEF Cross-language Speech Retrieval SGML
format and NITE XML(Carletta et al., 2003) format
for the AMI data used here, required the implemen-
tation of software to convert the source format to one
suitable for use by SIDGrid.

Incorporating new Grid-based ”transformation”
programs can also range in required effort. For self-
contained programs in supported frameworks - cur-
rently, Perl, Python, Praat, and Octave - adding a
new program requires only a simple browser-based
upload. Compiled programs, such as LCSeg here,
must be compatible with the operating systems and
64-bit architecture on the Grid servers, often requir-
ing recompilation and occasionally addition of li-
braries to existing Grid installations. Finally, soft-
ware with licensing restrictions can only run on a
local cluster rather than on the full TeraGrid. Thus,
public domain programs and systems that rely on

2www.multimodal-annotation.org

such are preferred; for example, Octave-based pro-
grams are preferred to Matlab-based ones.

Finally, one must remember that the SIDGrid
framework is itself an ongoing research project. It
provides many opportunities to enhance interdisci-
plinary instruction in Computational Linguistics, es-
pecially in areas involving multi-modal data. How-
ever, the functionality is still under active develop-
ment, and current system users are beta-testers. The
use of the system, both in coursework and in re-
search, has driven improvements and expansions in
service.

6 Conclusions and Future Directions

We have explored the use of the SIDGrid framework
for annotation, archiving, and analysis of multi-
modal data to enhance hands-on activities in the
study of discourse and dialogue in a highly inter-
disciplinary course setting. Our preliminary efforts
have demonstrated the potential for the framework
to lower barriers of entry for students with less pro-
gramming experience to apply computational tech-
niques while enabling large-scale investigation of
discourse and dialogue phenomena by more expert
users. Annotation, analysis, and automatic recog-
nition exercises relating to topic segmentation, di-
alogue act tagging, and turn-taking give students a
broader perspective on research and issues in dis-
course and dialogue. These exercises also allow
students to contribute to class discussion and col-
laborative projects drawing on their diverse disci-
plinary backgrounds. We plan to extend our current
suite of hands-on exercises to cover other aspects of
discourse and dialogue, both in terms of data sets
and software, including well-known toolkits such as
NLTK. We hope that this expanded framework will
encourage additional interdisciplinary collaborative
projects among students.

Acknowledgments

We would like to thank Susan Duncan and David
McNeill for their participation in this project as well
as the University of Chicago Academic Technology
Innovation program. We would also like to thank
Sonjia Waxmonsky for her assistance in implement-
ing the course exercises, and the entire SIDGRID
team for providing the necessary system infrastruc-

112

ture. We are particularly appreciative of the response
to our bug reports and functionality requests by Tom
Uram and Sarah Kenny.

References

Jens Allwood, Leif Groenqvist, Elisabeth Ahlsen, and
Magnus Gunnarsson. 2001. Annotations and tools for
an activity based spoken language corpus. In Proceed-
ings of the Second SIGdial Workshop on Discourse
and Dialogue, pages 1–10.

S. Bird and M. Liberman. 2001. A formal frame-
work for linguistic annotation. Speech Communica-
tion, 33(1,2):23–60.

Steven Bird and Edward Loper. 2004. Nltk: The natural
language toolkit. In Proceedings of the ACL demon-
stration session, pages 214–217.

P. Boersma. 2001. Praat, a system for doing phonetics
by computer. Glot International, 5(9–10):341–345.

J. Carletta, S. Evert, U. Heid, J. Kilgour, J. Robertson,
and H. Voormann. 2003. The NITE XML Toolkit:
flexible annotation for multi-modal language data. Be-
havior Research Methods, Instruments, and Comput-
ers, special issue on Measuring Behavior, 35(3):353–
363.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike
Flynn, Mael Guillemot, Thomas Hain, Jaroslav
Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa
Kronenthal, Guillaume Lathoud, Mike Lincoln, Agnes
Lisowska, Iain A. McCowan, Wilfried Post, Dennis
Reidsma, and Pierre Wellner. 2005. The AMI meet-
ings corpus. In Proceedings of the Measuring Be-
havior 2005 symposium on Annotating and measuring
Meeting Behavior.

M. Franz, B. Ramabhadran, T. Ward, and M. Picheny.
2003. Automated transcription and topic segmenta-
tion of large spoken archives. In Proceedings of EU-
ROSPEECH.

Michel Galley, Kathleen McKeown, Eric Fosler-Lussier,
and Hongyan Jing. 2003. Discourse segmentation of
multi-party conversation. In Proceedings of ACL’03.

M. Kipp. 2001. Anvil- a generic annotation tool for mul-
timodal dialogue. In Proceedings of the 7th European
Conference on Speech Communication and Technol-
ogy (Eurospeech), pages 1367–1370.

Pavel Pecina, Petra Hoffmannova, Gareth J. F. Jones,
Ying Zhang, and Douglas W. Oard. 2007. Overview
of the clef-2007 cross language speech retrieval track.
In Working Notes for CLEF 2007.

Rob Pennington. 2002. Terascale clusters and the Tera-
Grid. In Proceedings for HPC Asia, pages 407–413.
Invited talk.

T. Schmidt. 2004. Transcribing and annotating spoken
language with EXMARaLDA. In Proceedings of the
LREC-Workshop on XML-based richly annotated cor-
pora.

Riccardo Serafin and Barbara Di Eugenio. 2004. Flsa:
Extending latent semantic analysis with features for
dialogue act classification. In Proceedings of the
42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, pages 692–699,
Barcelona, Spain, July.

P. Wittenburg, H. Brugman, A. Russel, A. Klassmann,
and H. Sloetjes. 2006. Elan: a professional framework
for multimodality research. In Proceedings of Lan-
guage Resources and Evaluation Conference (LREC)
2006.

113

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 114–119,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Teaching NLP to Computer Science Majors via Applications and
Experiments

Reva Freedman

Department of Computer Science
Northern Illinois University

DeKalb, IL 60115
rfreedman@niu.edu

Abstract

Most computer science majors at Northern
Illinois University, whether at the B.S. or M.S.
level, are professionally oriented. However,
some of the best students are willing to try
something completely different. NLP is a
challenge for them because most have no
background in linguistics or artificial
intelligence, have little experience in reading
traditional academic prose, and are unused to
open-ended assignments with gray areas. In
this paper I describe a syllabus for Introduction
to NLP that concentrates on applications and
motivates concepts through student
experiments. Core materials include an
introductory linguistics textbook, the Jurafsky
and Martin textbook, the NLTK book, and a
Python textbook.

1 Introduction

Northern Illinois University is a large public
university (25,000 students) located about 60 miles
west of Chicago. Most computer science majors
come from the suburbs and exurbs of Chicago or
small towns near the university. Their preferred
career path is generally to obtain a programming
job in local industry, preferably in a hi-tech area.
Most students take the Introduction to NLP course
out of a desire to do something different from their
required courses.

In this paper I describe the issues I have found in
teaching NLP to this population, and the syllabus I
have developed as a result. Since the students
enjoy programming and see system development
as the core issue of computer science, I concentrate
on applications and their structure. I motivate
many of the issues involved using data and systems

from the web and in-class experiments. I explicitly
teach the linguistics background that they need.

2 Student background

I started from the following assumptions derived
from several years of teaching Introduction to
Artificial Intelligence and Introduction to NLP at
NIU.

Linguistic background:
1. Students have never studied linguistics.
2. Students are not familiar with the common

syntactic constructions of English taught in
traditional English grammar, and are often unsure
about parts of speech.

3. Students have little experience with languages
other than English.

Programming:

4. Students are not familiar with programming
languages other than conventional imperative
languages such as C++, Java, and .NET.

5. Students like to program and to build working
systems.

6. Students expect to have programming
languages explicitly taught in class.

Academic approach:

7. Students live on the web and are
uncomfortable having to use offline reference
materials.

8. Students are not comfortable with or
interested in traditional academic prose or research
papers.

9. Students are taking the course for fun and to
do something different. They are unlikely to need
specific NLP content in their future careers.

114

10. Students taking NLP are unlikely to have
time in their program to take another artificial
intelligence course (although there are exceptions).

3 Course goals

From these presuppositions I have developed the
following general principles to provide a positive
experience for both students and teacher:

1. Teach the linguistic content explicitly, at a
level suitable for beginners.

2. Concentrate on applications, using them to
motivate algorithms.

3. Concentrate on student involvement at all
levels: in-class experiments, take-home
experiments to be discussed in class, and practical
programming projects.

4. Concentrate on a few basic principles that are
repeated in many contexts, such as rule-based vs.
Bayesian approaches and the role of world
knowledge in working systems.

From these presuppositions I have developed a
syllabus that maintains student interest, provides
students a basic background in NLP, and also
provides them with useful skills and knowledge
that they may not otherwise encounter in their
program of study.

The course has three goals:

1. Give students a general background in the
issues involved in handling both speech and
written text, some of the most common
applications, and some of the most widely used
algorithms.

2. Provide students with a productive experience
in a modern programming language.

3. Teach students a number of useful concepts
that they might not otherwise come across in their
course of study. These topics include:

• Bayes’ Law
• Dynamic programming
• Hidden Markov models
• Regular expressions and finite-state machines
• Context-free grammars

The following sections of the paper describe the
most important units of the course, showing how
they use the principles stated above to contribute to

these goals.

4 Introducing NLP

The first goal of the course is to define the NLP
task and explain why it is harder and less
determinate than many of the problems they have
studied in their other courses.

I start by encouraging students to list all the
meanings they can for “I made her duck”, based on
the five meanings given by Jurafsky and Martin
(2000, section 1.2). For a view of a system that can
deal with such issues, I then introduce Figure 1.1
of Bird, Klein, and Loper (2008, henceforce
referred to as the NLTK textbook), which shows a
pipeline architecture for a spoken dialogue system.
I use this opportunity to discuss each component
and possible data representations.

5 Providing linguistic background

I introduce three kinds of background knowledge,
related to speech, words and sentences, and human
factors issues.

5.1 Background for speech processing

To provide essential background for discussing
speech processing, I introduce the concepts of
phone and phoneme. I also teach give a brief
introduction to the IPA so that I can use it in
examples. I use the following sections from
Stewart and Vaillette (2001), a textbook for
introductory linguistics classes:

File 3.1: International Phonetic Alphabet (IPA)
File 3.2: English consonants
File 3.3: English vowels
File 3.5: English transcription exercises
File 4.1: Phones vs. phonemes

These sections were chosen to provide the
background students need while providing
maximum opportunities for interaction. Students
have found this approach more accessible than the
rather terse treatment in Jurafsky and Martin
(2000, ch. 4). I do the following activities, familiar
to teachers of introductory linguistics classes, in
class:

• Putting one’s fingers on the glottis to experience
the difference between voiced and unvoiced

115

consonants
• Putting one’s hand in front of one’s mouth to
experience the difference between aspirated and
unaspirated consonants
• Reading IPA transcription in pairs

I also introduce students to the idea that both
pronunciation and other areas of human language
generation are affected by context. For example,
using Figure 5.7 of Jurafsky and Martin (2000) as
a guide, I try to generate as many as possible of the
sixteen most common pronunciations of because
shown in that figure.

5.2 Background for text processing

As background for the text processing section, I
lecture on a few core aspects of syntax and related
topics that will be needed during the semester.
These topics include the following:

• What is a word?
• How many parts of speech are there?
• Lexical ambiguity
• Syntactic ambiguity, including PP attachment,
 attachment of gerunds, and coordination
 ambiguity
• Difference between syntactic structure and
 intention

5.3 Background in human factors issues

This section includes several topics that experience
has shown will be needed during the semester.

The first is the difference between descriptive
and prescriptive linguistics. I take class polls on
various sociolinguistic issues, including
pronunciation, word choice and sentence structure,
using File 10.10: Language variation from Stewart
and Vaillette (2001) as a basis.

I take a poll on the pronunciation of the word
office, choosing that word since the distribution of
its first vowel is sensitive both to geography and
speaker age. The poll gives me an opportunity to
introduce some of the human factors issues related
to corpus collection and the issue of statistical
significance. We also examine some data
collection tasks found on the Internet, using them
to discuss experimental design and how it relates to
the data collected.

Finally, I begin a discussion on the difference
between rule-based and statistical systems that will

recur frequently during the semester. This is a
good place to discuss the importance of separating
training data and test data.

6 Python

6.1 Basic Python

The next step is to teach basic Python so that there
will be time for some practice programs before the
first major programming project. As computer
science majors, the students tend to find that the
treatment in the NLTK textbook does not answer
enough of their technical questions, such as issues
on argument handling and copying of objects
vs. references to them.

I give several lectures on Python, including the
following topics:

• Basic data structures
• Basic control structures
• Functions and modules
• Objects
• File handling

I have found Lutz (2008) to be the most readable
introductory textbook. I use Chun (2007) as a
reference for topics not covered by Lutz, such as
regular expressions and some of the I/O options.

6.2 Using Python for basic language
 handling

This unit basically covers the material in chapters
2, 3, and 6 of the NLTK textbook. The goal is to
show students how easily some of these problems
can be handled with an appropriate programming
language. Many of them are quite uncomfortable
with the idea of a list not implemented with
pointers, but in the end they cope well with a
language that does not have all the baggage of
C++.

I give a simple assignment that involves finding
the most common words in a corpus. A secondary
purpose of this assignment is to reinforce the
earlier lecture on the difficulty of defining a word.
I lard the input text for the assignment with
problematic cases such as hyphenated multiword
expressions, e.g., “the orange-juice based
confection.”

116

7 Rule-based dialogue systems using
 regular expressions

Since later in the course we will be comparing
rule-based systems to statistics-based systems, this
is an appropriate time to introduce rule based
systems. We experiment in class with Eliza, trying
both to make it work and make it fail. I give out a
list of versions available on the web, and students
can easily find more. In class I often use the emacs
built-in version.

I then give out copies of the original Eliza paper
(Weizenbaum, 1966), which contains the original
script in an appendix. If time permits, I also
discuss PARRY (Parkison, Colby and Faught,
1977), which has a much more linguistically
sophisticated design but there is no simulator
available for it.

I introduce regular expressions at this point for
two reasons. In addition to being required for
continued use of the NLTK textbook, regular
expressions are an important idea that is not
otherwise included in our curriculum. We
experiment with Rocky Ross’ interactive web site
(Pascoe, 2005) and occasionally with other
simulators. I also assign a simple homework using
regular expressions in Python.

The first major project in the course is to write
an shallow interactive written dialogue system, i.e.,
an Eliza-type program. Students have the choice of
choosing a more realistic, limited domain, such as
a database front-end, or of picking a specific case
(e.g., a linguistic issue) that they would like Eliza
to handle. This project is implemented in Python as
a rule-based system with heavy use of regular
expressions. Before they write their code, students
do a five-minute presentation of their domain,
including a sample conversation. After the projects
are due, they present their results to the class.

8 Spelling correction and Bayes’ Law

Bayes’ Law is another core topic that students are
generally unfamiliar with, even though statistics is
required in our program. To provide a contrast to
rule-based systems, and to introduce this core
topic, I present Kernighan, Church and Gale’s
(1990) Bayesian approach to spelling correction, as
explained by Jurafsky and Martin (2000, section
5.5).

Kernighan et al. choose as the preferred

correction the one that maximizes P(t|c)P(c), where
t is the typo and c is a candidate correction. In a
previous paper (Freedman, 2005), I discuss in
detail an assignment where students choose a
corpus and replicate Kernighan’s calculations.
They then compare their results to results from
their favorite word processor.

Students are generally surprised at how similar
the results are from what they originally see as an
unmotivated calculation. They are always surprised
to learn that spelling correction is generally not
done by a lookup process. They are also surprised
to learn that learn that results were largely
independent of the corpus chosen.

I also demonstrate approximating word
frequencies by page counts in Google, along with a
discussion of the advantages and disadvantages of
doing so. In general, students prefer to use one of
the NLTK corpora or a corpus obtained from the
web.

9 Machine translation: rule-based and
 statistical models

This unit has several purposes. In addition to
showing students how the same problem can be
attacked in remarkably different ways, including
multiple levels of rule-based and statistically-based
systems, machine translation gives students a look
at a fielded application that is good enough to be
viable but sill obviously needs improvement.

To the extent that information is publicly
available, I discuss the architecture of one of the
oldest machine translation systems, Systran
(Babelfish), and one of the newest, Microsoft Live
Translator. The latter uses components from
MindNet, Microsoft’s knowledge representation
project, which provides another opportunity to
reinforce the importance of world knowledge in
artificial intelligence and NLP in particular. It also
provides an initial opportunity to discuss the
concept of machine learning as opposed to hand-
crafting rules or databases.

As the assignment for this unit, students choose
a short text in a foreign language. They use
multiple web-based translation systems to translate
it into English, and analyze the results. In addition
to the systems mentioned above, the Reverso
system has done well in these experiments.

Popular inputs include administrative text (e.g.,
citizenship rules) from a bilingual country and

117

chapter 1 of Genesis. One student started with a
French version of the Tolkien poem “... one ring to
rule them all...” Although translation of poetry
obviously poses different issues than technical text,
a fruitful discussion emerged from the fact that two
of the systems misparsed one or more of the lines
of the poem.

10 POS identification, parsing and
 author identification

This unit of the course covers key sections of
chapters 4, 7, 8 and 9 of the NLTK textbook.
Although one student originally stated that “I
really don’t care about parts of speech,” students
find this material more interesting after seeing how
many of the machine translation errors are caused
by parsing errors. Still, I only cover POS
assignment enough to use it for chunking and
parsing.

The application chosen for this unit involves
author identification. I introduce students to the
basics of the Federalist Papers controversy. Then I
discuss the approach of Mosteller and Wallace
(1984), which depends largely on words used
much more frequently by one author than the
other, such as while and whilst.

I suggest to students that more interesting results
could perhaps be obtained if data about items such
as part of speech use and use of specific
constructions of English were added to the input.
As an alternative assignment, I give students
transcripts of tutoring by two different professors
and invite them to identify the authors of
additional transcripts from a test set. A secondary
goal of this assignment is for students to see the
level of cleanup that live data can require.

This assignment also shows students the relative
difficulty level of chunking vs. parsing better than
any lecture could. This is useful because students
otherwise tend to find chunking too ad hoc for
their taste.

I do teach several approaches to parsing since
many students will not otherwise see context-free
grammars in their studies. Having had the
experiences with machine translation systems helps
prevent the reaction of a previous class to Earley’s
algorithm: “we understand it; it’s just not
interesting.” I also frame Earley’s algorithm as
another example of dynamic programming.

11 Speech understanding

Students generally find speech a much more
compelling application than written text. In this
unit I discuss how basic speech processing works.
This unit provides a nice review of the basics of
phonology taught at the beginning of the semester.
It also provides a nice review of Bayes’ Law
because the approach used, based on Jurafsky and
Martin (2000, ch. 5.7–5.9) uses Bayes’ Law in a
fashion similar to spelling correction.

The assignment for this unit involves
experimenting with publicly available speech
understanding systems to see how well they work.
The assignment involves comparing two automated
411 systems, Google’s new system
(1-800-GOOG411), which was built specifically
for data collection, and Jingle (1-800-FREE411),
which is advertising-supported. I also encourage
students to report on their own experiments with
bank, airline, and other systems.

I give at least one anonymous questionnaire
every semester. Students generally report that the
level of detail is appropriate. They generally vote
for more topics as opposed to more depth, and they
always vote for more programming assignments
and real systems rather than theory.

12 Future work

I am considering replacing author identification by
question answering, both because it is an important
and practical topic and because I think it would
provide better motivation for teaching chunking. I
am also considering keeping author identification
and adding the use of a machine learning package
to that unit, since I believe that machine learning is
rapidly becoming a concept that all students should
be exposed to before they graduate.

My long-term goal is to have students build an
end-to-end system. A short-term goal in service of
this objective would be to add a unit on text-to-
speech systems.

13 Conclusions

This paper described a syllabus for teaching NLP
to computer science majors with no background in
the topic. Students enjoyed the course more and
were more apt to participate when the course was
oriented toward applications such as dialogue

118

systems, machine translation, spelling correction
and author identification. Students also learned
about the architecture of these systems and the
algorithms underlying them. Students implemented
versions of some of the smaller applications and
experimented with web versions of large fielded
systems such as machine translation systems.

Acknowledgments

I thank the authors of Jurafsky and Martin (2000)
and Bird, Klein and Loper (2008), whose extensive
labor has made it possible to teach this course. I
would also like to thank the anonymous reviewers
for their suggestions.

References

Steven Bird, Ewan Klein, and Edward Loper. (2008).

Natural Language Processing in Python. Available
on the web at http://nltk.org/index.php/Book.

Wesley J. Chun. (2007). Core Python Programming,
2/e. Upper Saddle River, NJ: Prentice-Hall.

Reva Freedman. (2005). Concrete Assignments for
Teaching NLP in an M.S. Program. In Second
Workshop on Effective Tools and Methodologies for
Teaching NLP and CL, 43rd Annual Meeting of the
ACL.

Daniel Jurafsky and James H. Martin. (2000). Speech
and Language Processing. Upper Saddle River, NJ:
Prentice-Hall.

Mark Lutz. (2008). Learning Python, 3/e. Sebastopol,
CA: O’Reilly.

Mark D. Kernighan, Kenneth W. Church, and William
A. Gale. (1990). A spelling correction program based
on a noisy channel model. In COLING ’90
(Helsinki), v. 2, pp. 205–211.

Frederick and Mosteller and David L. Wallace. (1984).
Applied Bayesian and Classical Inference: The Case
of The Federalist Papers. New York: Springer.
Originally published in 1964 as Inference and
Disputed Authorship: The Federalist.

Brad Pascoe (2005). Webworks FSA applet. Available
at http://www.cs.montana.edu/webworks/projects/
theoryportal/models/fsa-exercise/appletCode/
fsa_applet.html.

Roger C. Parkison, Kenneth Mark Colby, and William
S. Faught. (1977). Conversational Language
Comprehension Using Integrated Pattern-Matching
and Parsing. Artificial Intelligence 9: 111–134.

Thomas W. Stewart, Jr. and Nathan Vaillette. (2001).
Language Files: Materials for an Introduction to
Language and Linguistics, 8/e. Columbus: Ohio
State University Press.

Joseph Weizenbaum. (1966). Eliza—A Computer
Program for the Study of Natural Language
Computation between Man and Machine.
Communications of the ACM 9(1): 36–45.

119

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 120–128,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Psychocomputational Linguistics:
A Gateway to the Computational Linguistics Curriculum

William Gregory Sakas

Department of Computer Science, Hunter College
Ph.D. Programs in Linguistics and Computer Science, The Graduate Center

City University of New York (CUNY)
695 Park Avenue, North 1008
New York, NY, USA, 10065
sakas@hunter.cuny.edu

Abstract

Computational modeling of human language
processes is a small but growing subfield of
computational linguistics. This paper
describes a course that makes use of recent
research in psychocomputational modeling as
a framework to introduce a number of
mainstream computational linguistics
concepts to an audience of linguistics,
cognitive science and computer science
doctoral students. The emphasis on what I
take to be the largely interdisciplinary nature
of computational linguistics is particularly
germane for the computer science students.
Since 2002 the course has been taught three
times under the auspices of the MA/PhD
program in Linguistics at The City University
of New York’s Graduate Center. A brief
description of some of the students’
experiences after having taken the course is
also provided.

1 Introduction

A relatively small (but growing) subfield of
computational linguistics, psychocomputational
modeling affords a strong foundation from which
to introduce graduate students in linguistics to
various computational techniques, and students in
computer science1 (CS) to a variety of topics in

1 For rhetorical reasons I will often crudely partition the
student makeup of the course into linguistics students and CS
students. This preempts lengthy illocutions such as “ … the
students with a strong computational background as compared
to students with a strong linguistics background.” In fact there
have been students from other academic disciplines in
attendance bringing with them a range of technical facility in
both CS and linguistics; linguistics students with an

psycholinguistics, though it has rarely been
incorporated into the computational linguistics
curriculum.

Psychocomputational modeling involves the
construction of computer models that embody one
or more psycholinguistic theories of natural
(human) language processing and use. Over the
past decade or so, there's been renewed interest
within the computational linguistics community
related to the possibility of incorporating human
language strategies into computational language
technologies. This is evidenced by the occassional
special session at computational linguistics
meetings (e.g., ACL-1999 Thematic Session on
Computational Psycholinguistics), several
workshops (e.g., COLING-2004, ACL-2005
Psychocomputational Models of Human Language
Acquisition, ACL-2004 Incremental Parsing:
Bringing Engineering and Cognition Together),
recent conference themes (e.g., CoNLL-2008 "...
models that explain natural phenomena relating to
human language") and regular invitations to
psycholinguists to deliver plenary addresses at
recent ACL and COLING meetings.

Unfortunately, it is too often the case that
computational linguistics programs (primarily
those housed in computer science departments)
delay the introduction of cross-disciplinary
psycholinguistic / computational linguistics
approaches until either late in a student's course of
study (usually as an elective) or not at all. At the
City University of New York (CUNY)’s Graduate
Center (the primary Ph.D.-granting school of the
university) I have created a course that presents

undergraduate degree in CS; and CS students with a strong
undergraduate background in theoretical linguistics.

120

research in this cross-disciplinary area relatively
early in the graduate curriculum. I have also run an
undergraduate version of the course at Hunter
College, CUNY in the interdisciplinary Thomas
Hunter Honors Program.

I contend that a course developed within the
mélange of psycholinguistics and computational
linguistics is not only a valuable asset in a student's
repertoire of graduate experience, but can
effectively be used as a springboard to introduce a
variety of techniques and topics central to the
broader field of CL/NLP.

2 Background

The CUNY Graduate Center (hereafter, GC) has
doctoral programs in both computer science and
linguistics. The Linguistics Program also contains
two master's tracks. Closely linked to both
programs, but administratively independent of
either, there exists a Cognitive Science
Concentration.2 In spring of 2000, I was asked by
the Cognitive Science Coordinator to create an
interdisciplinary course in "computing and
language" that would be attractive to linguistics,
speech and hearing, computer science, philosophy,
mathematics, psychology and anthropology
students. One might imagine how a newly-minted
Ph.D. might react to this request. Well this one, not
yet realizing the potential for abuse of junior
faculty (a slightly more sage me later wondered if
there was a last minute sabbatical-related
cancellation of some course that needed to be
replaced ASAP) dove in and developed
Computational Mechanisms of Syntax Acquisition.

The course was designed to cover generative
and non-generative linguistics and debates
surrounding (child) first language acquisition
principally focused on the question of Chomsky’s
Universal Grammar (UG), or not? Four
computational models drawn from diverse
paradigms – connectionist learning, statistical
formal language induction, principles-and-
parameters acquisition and acquisition in an
optimality theory framework3 – were presented and

2 This is not a state-registered program, but rather an "in-
house" means of allowing students to receive recognition of
interdisciplinary studiy in cognitive science.
3 Although the semester ended as we were only just getting to
cover optimality theoretic acquisition.

discussion of the UG-or-not debate was framed in
the context of these models.

Over the past eight years, I've taught three
variations of this course gradually molding the
course away from a seminar format into a
seminar/lecture format, dropping a large chunk of
the UG-or-not debate, and targeting the course
primarily for students who are in search of a "taste"
of computational linguistics who might very well
go on to take other CL-related course work.4 What
follows is a description of the design
considerations, student makeup, and course content
focusing on its last instantiation in Spring 2007.

3 The Course: Computational Natural
Language Learning

Most readers will recognize the most recent title of
the course which was shamelessly borrowed from
the ACL’s Special Interest Group on Natural
Language Learning’s annual meeting. Although
largely an NLP-oriented meeting, the title and
indeed many of the themes of the meeting’s CFPs
over the years accurately portray the material
covered in the course.

The course is currently housed in the GC’s
Linguistics Program and is primarily designed to
serve linguistics doctoral and masters students who
want some exposure to computational linguistics
but with a decidedly linguistics emphasis.
Importantly though, the course often needs to serve
a high percentage of students from other graduate
programs.

The GC Linguistics and Computer Science
Programs also offer other computational linguistics
(CL) courses: a Natural Language Processing
(NLP) applications survey course, a corpus
analysis course, a statistical NLP course and a CL
methods sequence (in addition to a small variety of
electives). Although (at least until recently, see
Section 7) these courses are not taught within a
structured CL curriculum, they effectively serve as
the “meat-and-potatoes” CL courses which require
projects and assignments involving programming,
a considerable math component and extensive
experimentation with existing NLP/CL

4 Though the details of the undergraduate version of the course
are beyond the scope of this paper, it is worth noting that it did
not undergo this gradual revision; it was structured much as
the original Cognitive Science version of the course, actually
with an increased UG-or-not discussion.

121

applications. The students taking these classes
have already reached the point where they intend
to include a substantial amount of computational
linguistics in their dissertation or master’s thesis.

Computational Natural Language Learning is
somewhat removed from these other courses and
the design considerations were purposefully
directed at providing an “appetizer” that would
both entice interested students into taking other
courses, and prepare them with some experience in
computational linguistics techniques. Over time the
course has evolved to incorporate the following set
of prerequisites and goals.

• No programming prerequisite, no introduction to
programming Many of the students who take the
course are first or second year linguistics students
who have had little or no programming
background. Students are aware that
"Programming for Linguists" is part of the CL
methods sequence. They come to this course
looking for either an overview of CL, or for how
CL concepts might be relevant to psycholinguistic
or theoretical linguistics research.

Often there are students who have had a
substantial programming background – including
graduate students in computer science. This hasn’t
proved to be problematic since the assignments
and projects are designed not to involve
programming.

• Slight math prerequisite, exposure to
probabilities, and information theory Students are
expected to be comfortable with basic algebra. I
dissuade students from taking the course who are
intimidated by a one-line formula with a few Greek
letters in it. Students are not expected to know
what a conditional probability is, but will leave the
course with a decent grasp of basic
(undergraduate-level) concepts in probability and
information theory.

This lightweight math prerequisite actually does
split the class for a brief time during the semester
as the probability/information theory lecture and
assignment is a cinch for the CS students, and
typically quite difficult for the linguistics students.
But this is balanced by the implementation of the
design consideration expressed in the next bullet.

• No linguistics prerequisite, exposure to syntactic
theory Students need to know what a syntax tree is

(at least in the formal language sense) but do not
need to know a particular theory of human
language syntax (e.g., X-bar theory or even S →
NP VP). By the end of the semester students will
be comfortable with elementary syntax beyond the
level covered by most undergraduate “Ling 101”
courses.

• Preparation for follow-up CL courses Students
leaving this course should be comfortably prepared
to enter the other GC computational linguistics
offerings.5

• Appreciation of the interdisciplinary nature of
CL Not all students move on to other
computational linguistics courses. Perhaps the
most important goal of the course is to expose CS
and linguistics students (and others) to the role that
computational linguistics can play in areas of
theoretical linguistics and cognitive science
research, and conversely to the role that cognitive
science and linguistics can play in the field of
computational linguistics.

3.1 Topical units

In this section I present the syllabus of the course
framed in topical units. They have varied over the
years; what follows is the content of the course
mostly as it was taught in Spring 2007.

Janet Dean Fodor and I lead an active
psychocomputational modeling research group at
the City University of New York: CUNY CoLAG –
CUNY Computational Language Acquisition
Group which is primarily dedicated to the design
and evaluation of computational models of first
language acquisition. Most, though not all, of the
topical units purposefully contain material that
intersects with CUNY CoLAG’s ongoing research
efforts.

The depth of coverage of the units is designed to
give the students some fluency in computational
issues (e.g., use and ramifications of Markov
assumptions), and a basic understanding beyond
exposure to the computational mechanisms of CL
(e.g., derivation of the standard MLE bigram

5 The one exception in the Linguistics Program is Corpus
Linguistics which has a programming prerequisite, and the
occasional CL elective course in Computer Science targeted
primarily for their more advanced students.

122

probability formula), but not designed to allow
students to bypass a more computationally rigorous
NLP survey course. The same is true of the breadth
of coverage; a comprehensive survey is not the
goal. For example, in the ngram unit, typically no
more than two or at most three smoothing
techniques are covered.

Note that the citations in this section are mostly
required reading, but some articles are optional. It
has been my experience however, that the students
by and large read most of the material since the
readings were highly directed (i.e., which sections
and pages are most relevant to the course.)
Supplemental materials that present introductory
mathematics and tutorial presentations are not
exhaustively listed, but included Jurafsky and
Martin (2000), Goldsmith (2007, previously
online) and a host of (other) online resources.

History of linguistics and computation [1
lecture] The history is framed around the question
“Is computational linguistics, well uh, linguistics?”
We conclude with “It was, then it wasn’t, now
maybe it is, or at least in part, should be.” The
material is tightly tied to Lee (2004); with
additional discussion along the lines of Sakas
(2004).

Syntax [1 lecture] This is a crash course in syntax
using a context-free grammar with
transformational movement. The more difficult
topics include topicalization (including null-topic),
Wh-movement and verb-second phenomena. We
make effective use of an in-house database of
abstract though linguistically viable cross-
linguistic sentence patterns and tree structures –
the CUNY CoLAG Domain (Sakas, 2003). The
point of this lecture is to introduce non-linguistics
students to the intricacies of a linguistically viable
grammatical theory.

Language Acquisition [1 lecture] We discuss
some of the current debates in L1 (a child’s first)
language acquisition surrounding “no negative
evidence” (Marcus, 1993), Poverty of the Stimulus
(Pullum, 1996), and Chomsky’s conceptualization
of Universal Grammar. This is the least
computational lecture of the semester, although it
often generates some of the most energized
discussion. The language acquisition unit is the

central arena in which we stage most of the rest of
the topics in the course.

Gold and the Subset Principle [2 lectures]
During the presentation of Gold’s (1967) and
Angluin's (1980) proofs and discussion of how
they might be used to argue (often incorrectly) for
a Universal Grammar (Johnson, 2004) some core
CL topics are introduced including formal
language classes (the Chomsky Hierarchy) and the
notions of hypothesis space and search space. The
first (toy) probabilistic analyses are also presented
(e.g., given a finite enumeration and a probability p
that an arbitrary non-target grammar licenses a
sentence in the input sample, what is the “worst
case” number of sentences required to converge on
the target grammar?)

Next, the Subset Principle and linguistic
overgeneralization (Fodor and Sakas, 2005) is
introduced. An important focus is on how keeping
(statistical) track of what’s not encountered might
supply a ‘retreat’ mechanism to pull back from an
over-general hypothesis. Although the
mathematical details of how the statistics might
work are omitted, this topic leads neatly into a unit
on Bayesian learning later in the semester.

This is an important two lectures. It's the first
unit where students are exposed to the use of
computational techniques applied to theoretical
issues in psycholinguistics. By this point, students
often are intellectually engaged in the debates
surrounding L1 acquisition. To understand the
arguments presented in this unit students need to
flex their computational muscles for the first time.

Connectionism [3 lectures] This unit covers the
basics of Simple Recurrent Network (SRN)
learning (Elman, 1990, 1993). More or less, Elman
argues that language acquisition is not necessarily
the acquisition of rules operating over atomic
linguistic units (e.g., phrase markers) but rather the
process of capturing the “dynamics” of word
patterns in the input stream. He demonstrates how
this can be simulated in an SRN paradigm.

The mechanics of how an SRN operates and can
be used to model language acquisition phenomena
is covered but more importantly core concepts
common to most all supervised machine learning
paradigms are emphasized. Topics include how
training and testing corpora are developed and
used, cross validation, hill-climbing, learning bias,

123

linear and non-linear separation of the hypothesis
space, etc. A critique of SRN learning is also
covered (Marcus, 1998) which presents the
important distinction between generalization
performance and learning within the training
space in a way that is approachable by non-CS
students, but also interesting to CS-students.

Information retrieval [1 lecture] Elman (1990)
uses hierarchal clustering to analyze some of his
results. I use Elman's application of clustering to
take a brief digression from the psycholinguistics
theme of the course and present an introduction to
vector space models and document clustering.

This is the most challenging technical lecture of
the semester and is included only when there are a
relatively high proportion of CS students in
attendance. Most of the linguistics students get a
decent feel for the material, but most require a
second exposure it in another course to fully
understand the math. That said, the linguistics
students do understand how weight heuristics are
used to effectively represent documents in vectors
(though most linguistics students have a hard time
swallowing the bag-of-words paradigm at face
value), and how vectors can be nearer or farther
from each other in a hypothesis space.

Ngram language models [3 lecture] In this unit
we return to psycholinguistics. Reali and
Christiansen, (2005) present a simple ngram
language model of child-directed speech to argue
against the need for innate UG-provided
knowledge of hierarchal syntactic structure. Basic
probability and information theory is introduced –
conditional probabilities and Markov assumptions,
the chain rule, Bayes Rule, maximum likelihood
estimates, entropy, etc. Although relatively easy
for the CS students (they had their hands full with
the syntax unit), introduction of this material is
invaluable to the linguistics students who need to
be somewhat fluent in it before entering our other
CL offerings.
We continue with a presentation of the sparse data
problem, Zipf’s law, corpus cross-entropy and a
handful of smoothing techniques (Reali &
Christiansen use a particularly impoverished
version of deleted interpolation). We continue with
a discussion of the pros and cons of employing
Markov assumptions in computational linguistics
generally, the relationship of Markov assumptions

to incremental learning and psycholinguistic
modeling, and the use of cross-entropy as an
evaluation metric, and end with a brief discussion
of the descriptional necessity (or not) of traditional
generative grammars (Pereira, 2000).

.
"Ideal" learning, Bayesian learning and
computational resources [1 lecture] Regier and
Gahl (2004) in response to Lidz et al. (2003)
present a Bayesian learning model that learns the
correct structural referent for anaphoric "one" in
English from a corpus of child-directed speech.
Similarly to Reali & Christiansen (op. cit.), they
argue against the need for innate knowledge of
hierarchal structure since their Bayesian model
starts tabula rasa and learns from linear word
strings with no readily observable structure.

The fundamental mechanics of Bayesian
inference is presented. Since most Bayesian
models are able to retreat from overgeneral
hypotheses in the absence of positive evidence, the
course returns to overgeneralization errors, the
Subset Principle and the alternative of using
statistics as a possible retreat mechanism.
Computationally heavy ("ideal") batch processing,
and incremental (psychologically plausible)
processing are contrasted here as is the use of
heuristics (psycholinguistically-based or not) to
mitigate the potentially huge computational cost of
searching a large domain.

Principle and parameters [2 lectures] As the
academic scheduling has worked out, the course is
usually offered during years when the Linguistics
Program does not offer a linguistics-based
learnability course. As a result, there is a unit on
acquisition within a principles-and-parameters
(P&P) framework (Chomsky, 1981). Roughly, in
the P&P framework cross-linguistic commonalities
are considered principles, and language variation is
standardly specified by the settings of a bank of
binary parameters (i.e., UG = principles +
parameters; a specific language = principles +
parameters + parameter settings).

Although this unit is the furthest away from
mainstream CL, it has served as a useful means to
introduce deterministic learning (Sakas and Fodor,
2001), versus non-deterministic learning (Yang,
2002), the effectiveness of hill-climbing in

124

linguistically smooth and non-smooth domains,6 as
well as the notion of computational complexity and
combinatorial explosion (n binary parameters
yields a search space of 2n possible grammars).
Finally, and perhaps most importantly there is
extensive discussion of the difficulty of building
computational systems that can efficiently and
correctly learn to navigate through domains with
an enormous amount of ambiguity.

In the P&P framework ambiguity stems from
competition of cross-linguistic structural analyses
of surface word order patterns. For example, given
a (tensed) S V O sentence pattern, is the V situated
under the phrase maker I (English), or under the
phrase marker C (German)? Although this is a
somewhat different form of ambiguity than the
within-language structural ambiguity that is all too
familiar to those of use working in CL, it serves as
useful background material for the next unit.

Part of speech tagging and statistical parsing [3
lectures] In this unit we begin by putting aside the
psycholinguistics umbrella of the course and cover
introductory CL in a more traditional manner.
Using Charniak (1997) as the primary reading, we
cover rudimentary HMM's, and probabilistic
CFG's. We use supplemental materials to introduce
lexicalized statistical parsing (e.g., Jurafsky and
Martin, 2000 and online materials). We then turn
back to psycholinguistics and after a (somewhat
condensed overview) of human sentence
processing, discuss the viability of probabilistic
parsing as a model of human sentence processing
(Keller, 2005). This unit, more than some others, is
lightweight on detailed computational mechanics;
the material is presented throughout at a level
similar to that of Charniak’s article. For example
the specifics of EM algorithms are not covered
although what they do, and why they are necessary
are.

The Linguistics Program at CUNY is very active
in human sentence processing research and this
unit is of interest to many of the linguistics
students. In particular we contrast computational
approaches that employ nondeterminism and
parallelism to mainstream psycholinguistics
models which are primarily deterministic, serial
and employ a reanalysis strategy when evaluating a

6 By "smooth", I mean a correlation between the similarity of
grammars, and the similarity of languages they generate.

parse “online” (though of course there is a
significant amount of research that falls outside of
this mainstream). We then focus on issues of
computational resources that each paradigm
requires.

In some ways the last lectures of this unit best
embody the goal of exposing the students to the
potential of interdisciplinary research in
computational linguistics. The CS students leave
with an appreciation of psycholinguistic
approaches to human sentence processing, and the
linguistics students with a firm grasp of the
effectiveness of computational approaches.

4 Assignments and Projects

Across the three most recent incarnations of the
course the number and difficulty of the
assignments and projects has varied quite a bit. In
the last version, there were three assignments (five
to ten hours of student effort each) and one project
(twenty to thirty hours effort).

Due to the typically small size of the course,
assignments and projects (beyond weekly
readings) were often individually tailored and
assessed. The goal of the assignments was to
concretize the CL aspects of the primarily
psycholinguistic readings with either hands-on use
of the computer, mathematically-oriented problem
sets, or a critical evaluation of the CL
methodologies employed. A handful of examples
follow.

• Gold and the Subset Principle (Assignments)
All students are asked to formulate a Markov chain
(though at this point in the course, not by that
name) of a Gold-style enumeration learner
operating over a small finite domain (e.g., 4
grammars, 12 sentences and a sentence to grammar
mapping). The more mathematically inclined are
additionally asked to calculate the expected value
of the number of input sentences consumed by a
learner operating over an enumeration of n
grammars and given a generalized mapping of
sentences to grammars, or to formally prove the
learnability of any finite domain of languages
given text (positive) presentation of input.

• Connectionism (Assignments) All students
were asked to pick a language from the CUNY
CoLAG domain, develop a training and test set

125

from that language using existing software and run
a predict-the-next-word SRN simulation on either a
MatLab or TLearn neural network platform.
Linguistics and CS students were paired on this
assignment. When the assignment is given, a
relatively detailed after-class lab tutorial on how to
run the software is presented.

• Ngram language models (Projects) One CS
student implemented a version of Reali and
Christiansen’s experiment and was asked to
evaluate the effectiveness of different smoothing
techniques on child-directed speech and to design a
study of how to evaluate differences between
child-directed speech and adult-to-adult speech in
terms of language modeling. A linguistics student
was asked to write a paper explaining how one
could develop a computational evaluation of how a
bigram learner might be evaluated longitudinally.
(I.e., to answer the question, how can one measure
the effectiveness of a language model after each
input sentence?). Another linguistics student (with
strong CS skills) created an annotation tool that
semi-automatically mapped child-directed speech
in French onto the CoLAG Domain tag set.

5 Students: Past and Current

As mentioned earlier, the Linguistics Doctoral
Program at CUNY has just recently begun to
structure their computational linguistics offerings
into a cohesive course of study (described briefly
in Section 7). During the past several years
Computational Natural Learning has been offered
on an ad hoc basis primarily in response to student
demand and demographics of students’
computational skills. Since the course was not
originally intended to serve any specific function
as part of a larger curriculum, and was not
integrated into a reoccurring schedule there has
been little need to carry out a systematic evaluation
of the impact of the course on students’ academic
careers. Still a few anecdotal accounts will help
give a picture of the course’s effectiveness.

After the first Cognitive Science offering of the
course in 2000, approximately 30 graduate
students have taken one of the three subsequent
incarnations. Two of the earliest linguistics
students went on to take undergraduate CS courses
in programming and statistics, and subsequently

came back to take graduate level CL courses.7
They have obtained their doctorates and are
currently working in industry as computational
linguists. One is a lead software engineer for an
information retrieval startup company in New
York that does email data mining. And though I’ve
lost track of the other student, she was at one point
working for a large software company on the west
coast.

I am currently the advisor of one CS student,
and two linguistics students who have taken the
course. One linguistics student is in the throws of
writing a dissertation on the plausibility of
exploiting statistical regularities of various
syntactic structures (contra regularities of word
strings) in child-directed speech during L1
acquisition. The other is relatively early in her
academic career, but is interested in working on
computational semantics and discourse analysis
within a categorial grammar framework. Her
thoughts currently revolve around establishing
(and formalizing) relationships between traditional
linguistics-oriented semantics and a computational
semantics paradigm. She hopes to make
contributions to both linguistics and CL. The CS
student, also early in his career, is interested in
semi-productive multi-word expressions and how
young children can come to acquire them. His idea
is to employ a learning component in a machine
translation system that can be trained to translate
productive metaphors between a variety of
languages.

These five students have chosen to pursue
specific areas of study and research directly as a
result of having taken Computational Natural
Language Learning early in their careers.

I am also sitting on two CS students’ second
qualifying exam committees. One is working on
machine translation of Hebrew and the other
working on (relatively) mainstream word-sense
disambiguation. Both of their qualifying exam
papers show a sensitivity to psycholinguistics that
I’m frankly quite happy to see, and am sure
wouldn’t have been present without their having
taken the course.

The parsing unit was just added this past spring
semester and I’ve had two recent discussions with

7 The CL methods sequence was established only 3 years ago,
previously students were encouraged to develop their basic
computational skills at one of CUNY’s undergraduate schools.

126

a second year linguistics student about
incorporating a statistical component into a current
psycholinguistic model of human sentence
processing. Another second year student has
expressed interested in doing a comprehensive
study of neural network models of human sentence
parsing for his first qualifying paper. It’s not clear
that they will ultimately pursue these directions,
but I’m certain they wouldn’t have thought of the
possibilities if they hadn’t taken the Computational
Natural Language Learning.

Finally, most all of the students who have taken
the course have also taken the NLP-survey course
(no programming required), slightly less than a
third have moved on to the CL methods sequence
(includes an introduction to programming), or if
they have some CS background move directly to
Corpus Analysis (programming experience
required as a prerequisite). We hope that
eventually, especially in light of the GC’s new
computational linguistics program, the course will
serve as the gateway for many more students to
begin to pursue studies that will lead to research
areas in both psychocomputational modeling and
more mainstream CL.

6 Brief Discussion

It is my view that computational linguistics is by
nature a cross-disciplinary endeavor. Indeed, one
could argue that only after the incorporation of
techniques and strategies gleaned from theoretical
advances in psychocomputational modeling of
language, can we achieve truly transparent (to the
user) human-computer language applications.

That argument notwithstanding, a course such as
the one described in this paper can effectively
serve as an introduction to an assortment of
concepts in computational linguistics that can
broaden the intellectual horizons of both CS and
linguistics students, as well providing a foundation
that students can build on in the pursuit of more
advanced studies in the field.

7 Postscript: The Future of the Course

The CUNY Graduate Center has recently created a
structured computational linguistics program
housed in the GC’s Linguistics Program. The
program consists of a Computational Linguistics
Concentration in the Linguistics Master’s

subprogram, and particularly relevant to the
discussion in this article, a Computational
Linguistics Certificate8 (both fall under the
acronym CLC). Any City University of New York
doctoral student can enroll in CLC concurrently
with enrollment in their primary doctoral program
(as one might imagine, we expect a substantial
number of Linguistics and CS doctoral candidates
to enroll in the CLC program).

Due to my newly-acquired duties as director of
the CLC program and to scheduling constraints on
CLC faculty teaching assignments, the course
cannot be offered again until Fall 2009 or Spring
2010. At that time Computational Natural
Language Learning will need to morph into a more
technically advanced elective course in applied
machine learning techniques in computational
linguistics (or some such) since the CLC course of
study currently posits the NLP survey course and
the CL Methods sequence as the first year
introductory requirements.

However, I expect that a course similar to the
one described here will supplement the NLP
survey course as a first year requirement in Fall
2010. The course will be billed as having broad
appeal and made available to both CLC students
and linguistics, CS and other students who might
not want or require the “meat-and-potatoes” that
CLC offers, but who only desire a CL “appetizer”.
Though if the appetizer is tasty enough, students
may well hunger for the main course.

Acknowledgments
I would like to thank the three anonymous
reviewers for helpful comments, and the many
intellectually diverse and engaging students I’ve
had the pleasure to introduce to the field of
computational linguistics.

References
Angluin, D. (1980). Inductive inference of formal

languages from positive data. Information and
Control 45:117-135.

Charniak, E. (1997). Statistical Techniques for Natural
language Parsing. AI Magazine 18:33-44.

Chomsky, N. (1981). Lectures on government and
binding: Studies in generative grammar. Dordrecht:
Foris.

8 Pending state Department of Education approval, hopefully
to be received in Spring 2009.

127

Elman, J. L. (1990). Finding structure in time. Cognitive
Science 14:179-211.

Elman, J. L. (1993). Learning and development in
neural networks: The importance of starting small.
Cognition 48:71-99.

Fodor, J. D., and Sakas, W. G. (2005). The Subset
Principle in syntax: Costs of compliance. Journal of
Linguistics 41:513-569.

Gold, E. M. (1967). Language identification in the limit.
Information and Control 10:447-474.

Goldsmith, J. (2007). Probability for Linguists.
Mathematics and Social Sciences 180:5-40.

Johnson, K. (2004). Gold’s Theorem and Cognitive
Science. Philosophy of Science 71:571-592.

Jurafsky, D., and Martin, J. H. (2000). Speech and
Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics,
and Speech Recognition

Keller, F. (2005). Probabilistic Models of Human
Sentence Processing. Presented at Probabilistic
Models of Cognition: The Mathematics of Mind,
IPAM workshop, Los Angeles.

Lee, L. (2004). "I'm sorry Dave, I'm afraid I can't do
that" : Linguistics, statistics, and natural language
processing circa 2001. In Computer Science:
Reflections on the Field, 111-118.
Washington:National Academies Press.

Lidz, J., Waxman, S., and Freedman, J. (2003). What
infants know about syntax but couldn’t have learned:
Experimental evidence for syntactic structure at 18
months. Cognition 89:65-73.

Marcus, G. F. (1993). Negative evidence in language
acquisition. Cognition 46:53-85.

Marcus, G. F. (1998). Can connectionism save
constructivism? Cognition 66:153-182.

Pereira, F. (2000) Formal grammar and information
theory: Together again. Philosophical Transactions
of the Royal Society A358:1239-1253.

Pullum, G. K. (1996). Learnability, hyperlearning, and
the poverty of the stimulus. Proceedings of the 22nd
Annual Meeting of the Berkley Linguistics Society:
General Session and Parasession on the Role of
Learnability in Grammatical Theory, Berkeley: 498-
513.

Reali, F., and Christiansen, M. H. (2005). Uncovering
the richness of the stimulus: Structural dependence
and indirect statistical evidence. Cognitive Science
29:1007-10018.

Regier, T., and Gahl, S. (2004). Learning the
unlearnable: The role of missing evidence. Cognition
93:147-155.

Sakas, W. G., and Fodor, J. D. (2001). The Structural
Triggers Learner. In Language Acquisition and
Learnability, ed. S. Bertolo, 172-233. Cambridge:
Cambridge University Press.

Sakas, W. G. (2003) A Word-Order Database for
Testing Computational Models of Language
Acquisition, Proceedings of the 41st Annual Meeting
of the Association for Computational Linguistics,
ACL-2003: 415-422.

Sakas, W. G. (2004) Introduction. Proceedings of the
First Workshop on Psycho-computational Models of
Human Language Acquisition, COLING-2004.
Geneva: iv-vi.

Yang, C. D. (2002). Knowledge and learning in natural
language. New York: Oxford University Press.

128

Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 129–136,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Support Collaboration by Teaching Fundamentals

Matthew Stone
Computer Science and Cognitive Science

Rutgers, The State University of New Jersey
110 Frelinghuysen Road, Piscataway NJ 08854-8019

Matthew.Stone@Rutgers.EDU

Abstract

This paper argues for teaching computer sci-
ence to linguists through a general course at
the introductory graduate level whose goal is
to prepare students of all backgrounds for col-
laborative computational research, especially
in the sciences. We describe our work over
the past three years in creating a model course
in the area, calledComputational Thinking.
What makes this course distinctive is its com-
bined emphasis on the formulation and solu-
tion of computational problems, strategies for
interdisciplinary communication, and critical
thinking about computational explanations.

1 Introduction

The central long-term challenge of computational
linguistics ismeaningfulness. I want to build situ-
ated, embodied interactive agents that can work with
people through language to achieve a shared under-
standing of the world. We have an increasing toolkit
to approach such problems. Linguistics gives us
powerful resources for representing utterance struc-
ture and interpretation, for example through the fam-
ily of formalisms and models that have grown up
around dynamic semantics and discourse representa-
tion theory. Supervised machine learning has proved
to be a profoundly successful software engineering
methodology for scaling representations and mod-
els from isolated instances to systematic wide cov-
erage. Nevertheless, talking robots are a long way
off. This is not a problem that is likely to be solved
by writing down a corpus of interpretations for sen-
tences (whatever that might mean) and training up

the right kind of synchronous grammar. Nor is
it likely to be solved by some one lone genius—
half Aravind Joshi, half Richard Stallman—driven
to learn and implement solo all of linguistics, artifi-
cial intelligence and cognitive science. Progress will
come through teamwork, as groups from disparate
backgrounds come together to share their discov-
eries, perspectives, and technical skills on concrete
projects of mutual interest. In the course such col-
laborations, I expect research to unlock fundamental
new insights about the nature of meaning, about its
dependence on perception, action, linguistic knowl-
edge and social relationships, and about the archi-
tecture of systems that can pick up on, create, and
generalize meanings in their experience. This pa-
per offers an interim summary of my reflections on
preparing the next generation of scientists for this
endeavor.

My efforts are anchored to the specific commu-
nity where I work. Semantics at Rutgers involves a
core group of eight faculty from linguistics, philoso-
phy and computer science, with a committed group
of about twice that many PhD students. That’s three
or four students a year: not much if you’re think-
ing of running a class for them, but pretty big if the
aim is to place graduates, as we successfully have
recently, in positions where they can continue to do
semantics (that is, in academic research and tenure-
track faculty jobs). Interdisciplinary interaction is
the norm for our group; it means that each seman-
tics project inevitably introduces the team to ques-
tions, concepts and methodologies that lie outside
the background expertise its members bring to the
project as individuals. My own work is a good ex-

129

ample: papers like (DeVault et al., 2006) or (Lep-
ore and Stone, 2007) reveal interconnections be-
tween computational ideas and philosophical analy-
sis that my colleagues and I discovered in attempting
to bridge our different perspectives on meaning and
meaningfulness.

In my experience, what makes it possible for these
efforts to take up sophisticated computational ideas
is not getting everyone up to speed with a spe-
cific programming environment or linguistic formal-
ism. The key step is to get outsiders to appreciate
the arguments that computer scientists make, and
why they make them. Jeannette Wing (2006) calls
this Computational Thinking. Wing argues that you
should have a course where you teach first-year col-
lege students to think like computer scientists. But
her arguments apply just as cogently to graduate stu-
dents in the sciences, and to linguists in particu-
lar. Computation as a framework for data collec-
tion, data analysis, inference, and explanation has
become the norm in the physical and life sciences,
and is rapidly transforming the behavioral sciences
and especially now the environmental sciences. The
situation is not so different in the cultural fields of
media, arts and entertainment either—as video game
designers are quick to remind us. A wide swath
of researchers in any university are now interested
in supporting exploratory and innovative interdisci-
plinary computing research, and specifically in train-
ing future faculty to pursue and mentor such collab-
orations. We decided to make common cause with
them at Rutgers, since computational linguistics is
such a small group. So our computer science depart-
ment offers a general course calledComputational
Thinking at the introductory graduate level, aimed
at preparing researchers across fields to work on
collaborative projects involving computational re-
search. You have an opportunity to do the same.

2 Overview of the Course

We hold Computational Thinkingin three hour
blocks once a week. This responds to Rutgers’s
quirky geography, with philosophy, linguistics and
computer science each on different campuses along
a five-mile stretch of the main local thoroughfare,
route 18. Elsewhere, it might make more sense to
meet in more frequent, shorter sessions.

Each meeting is divided so that students spend
about half of each lecture session (and half of
each week’s work) on technical material drawn
from the standard computer science curriculum.
As outlined in Section 2.1, the technical mate-
rial mixes programming practice, problem-solving
techniques and theoretical tools, and aims to pro-
vide the key elements that are needed to appre-
ciate the computational considerations of an inter-
disciplinary research project. The typical format
of these sessions is live interactive literate pro-
gramming. We work in Scheme, supported by
the DrScheme system available at http://www.plt-
scheme.org/software/drscheme/. I beam an image of
the Scheme development environment in front of the
class and write, run, analyze and debug short pro-
grams on the fly. Students follow along on their lap-
tops, doing exercises, asking questions, and seeing
results as they go.

The remainder of each class meeting (and the as-
sociated outside coursework) explicitly focuses on
the interpretive effort and people skills required to
reframe the ideas and methodologies of another field
in computational terms. Partly, as outlined in Sec-
tion 2.2, that involves developing a shared under-
standing of how computers accomplish the represen-
tation, processing and problem solving they do, so
that students become comfortable at viewing com-
putational systems abstractly as manipulating gen-
erative scientific models and knowledge. Funda-
mentally this understanding is what enables an in-
terdisciplinary team to reconcile the principles of an
outside field with the practice of computer science.
In addition, as outlined in Section 2.3, we offer ex-
plicit discussion of the conversational strategies and
interactive skills involved in bridging the different
perspectives of an interdisciplinary team, and over-
coming the divides of disjoint academic cultures, the
stresses of work and deadlines, and the many possi-
bilities for misunderstanding.

Homework mixes short benchmark problems,
which allow students to assess their progress against
objective standards, with open-ended collaborative
assignments that let students apply their domain ex-
pertise and challenge their developing skills and pro-
gramming, problem solving and teamwork. This
year students worked individually on a set of exer-
cises on list processing, matching of recursive struc-

130

tures, and interpreting programming languages de-
signed to give some general competence in Scheme.
Then they worked in teams of three to four to de-
velop a web site using DrScheme’s Scheme servlet
architecture. Finally, they explored the possibilities
for computational research in their home field in a
brief speculative paper.

The course has been offered twice, with about a
dozen students participating each session. Three or
four each year—the expected number—come from
linguistics and the philosophy of language. The
small numbers nevertheless add up. Already more
than half the students in this spring’s dissertation
reading group in the philosophy of language had
takenComputational Thinking. The group’s focus
was context, and the related problems of common
ground, presupposition, anaphora and accommoda-
tion. You could feel the differenceComputational
Thinking made for many of the students, philoso-
phers included, who succeeded not only in framing
computational arguments about context and context
change, but also in synthesizing computational con-
cerns with philosophical ones in explaining linguis-
tic interpretation in terms of context.

2.1 Technical ideas

The technical goal of the course is to give stu-
dents greater facility in stating problems in compu-
tational terms and understanding and building so-
lutions to computational problems. The perspec-
tive aligns with the online textbookHow to Design
Programs(Felleisen et al., 2001), which accompa-
nies the Dr Scheme distribution, but we emphasize
its continuity with the general mathematical prob-
lem solving that students have been doing since el-
ementary school (Polya, 1945). Indeed, following
Wing (2006), we see computational thinking as or-
dinary and pervasive. “It’s not just the software and
hardware artifacts we produce that will be physically
present everywhere and touch our lives all the time,
it will be the computational concepts we use to ap-
proach and solve problems, manage our daily lives,
and communicate and interact with other people”
(Wing, 2006, p. 35).

On our view, the main challenge of learning to
think like a computer scientist—or to argue with
one—is the abstraction and flexibility you need.
For example, modern machine learning techniques

amount to finding a solution to a problem that is par-
tially specified in advance but partially determined
by empirical evidence that is available to the system
but not to the programmer. Thus we teach compu-
tational problem solving through case studies whose
input and output gets progressively more and more
abstract and remote from the programmer. The pro-
gression is suggested by the following examples,
which we cover either by developing solutions in in-
class literate programming demonstrations or by as-
signing them as programming projects.

• Answer a determinate mathematical question,
but one whose size or complexity invites the use
of an automatic tool in obtaining the results. The
sieve of Eratosthenes is a representative case: list
the prime numbers less than 100.
• Answer a mathematical question parameterized

by an arbitrary and potentially open-ended input.
Prototypical example: given a list of numbers de-
termine its maximum element.
• Answer a mathematical question where the in-

put needs to be understood as a generative, compo-
sitional representation. Given the abstract syntax of
a formula of propositional logic as a recursive list
structure and an interpretation assigning truth val-
ues to the atomic proposition letters, determine the
truth value of the whole formula.
• Answer a question where the input needs to

be understood as the specification of a computation,
and thus fundamentally similar in kind to the so-
lution. Write an interpreter for a simple program-
ming language (a functional language, like a frag-
ment of scheme; an imperative language involving
action and state; or a logical language involving the
construction of answer representations as in a pro-
duction rule shell).
• Answer a mathematical question where theout-

put may best be understood as the specification of a
computation, depending on input programs or data.
A familiar case is taking the derivative of an input
function, represented as a Scheme list. A richer
example that helps to suggest the optimization per-
spective of machine learning algorithms is Huffman
coding. Given a sequence of input symbols, come
up with programs that encode each symbol as a se-
quence of bits and decode bit sequences as symbol
sequences in such a way that the encoded sequence

131

is as short as possible.

• Answer a question whereboth input and output
need to be understood as generative compositional
representations with a computational interpretation.
Reinforcement learning epitomizes this case. Given
training data of a set of histories of action in the
world including traces of perceptual inputs, outputs
selected and reward achieved, compute a policy—
a suitable function from perception to action—that
acts to maximize expected reward if the environment
continues as patterned in the training data.

We go slowly, spending a couple weeks on each
case, and treat each case as an opportunity to teach a
range of important ideas. Students see several useful
data structures, including association lists (needed
for assignments of values to variables in logical for-
mulas and program environments), queues (as an
abstraction of data-dependent control in production
rules for example), and heaps (part of the infrastruc-
ture for Huffman coding). They get an introduction
to classic patterns for the design of functional pro-
grams, such as mapping a function over the elements
of a list, traversing a tree, accumulating results, and
writing helper functions. They get some basic the-
oretical tools for thinking about the results, such as
machine models of computation, the notion of com-
putability, and measures of asymptotic complexity.
Finally, they see lots of different kinds of represen-
tations through which Scheme programs can encode
knowledge about the world, including mathemati-
cal expressions, HTML pages, logical knowledge
bases, probabilistic models and of course Scheme
programs themselves.

The goal is to have enough examples that stu-
dents get a sense that it’s useful and powerful to
think about computation in a more abstract way.
Nevertheless, it’s clear that the abstraction involved
in these cases eventually becomes very difficult.
There’s no getting around this. When these stu-
dents are working successfully on interdisciplinary
teams, we don’t want them struggling across dis-
ciplines to encode specific facts on a case-by-case
basis. We want them to be working collaboratively
to design tools that will let team members express
themselves directly in computational terms and ex-
plore their own computational questions.

2.2 Interdisciplinary Readings

There is a rich literature in cognitive science which
reflects on representation and computation as expla-
nations of complex behavior. We read extensively
from this literature throughout the course. Engaging
with these primary sources helps students see how
their empirical expertise connects with the mathe-
matical principles that we’re covering in our techni-
cal sessions. It energizes our discussions of knowl-
edge, representation and algorithms with provoca-
tive examples of real-world processes and a dynamic
understanding of the scientific questions involved in
explaining these processes as computations.

For example, we read Newell and Simon’s fa-
mous discussions of knowledge and problem solv-
ing in intelligent behavior (Newell and Simon, 1976;
Newell, 1982). But Todd and Gigerenzer (2007)
have much better examples of heuristic problem
solving from real human behavior, and much bet-
ter arguments about how computational thinking and
empirical investigation must be combined together
to understand the problems that intelligent agents
have to solve in the real world. Indeed, students
should expect to do science to find out what repre-
sentations and computations the brain uses—that’s
why interdisciplinary teamwork is so important. We
read Gallistel’s survey (2008) to get a sense of the in-
creasing behavioral evidence from a range of species
for powerful and general computational mechanisms
in cognition. But we also read Brooks (1990) and his
critics, especially Kirsh (1991), as a reminder that
the final explanations may be surprising.

We also spend a fair amount of time consider-
ing how representations might be implemented in
intelligent hardware—whether that hardware takes
the form of silicon, neurons, or even the hydraulic
pipes, tinkertoys, dominoes and legos described by
Hillis (1999). Hardware examples like Agre’s net-
work models of prioritized argumentation for prob-
lem solving and decision making (1997) demystify
computation, and help to show why the knowledge
level or symbol level is just an abstract, functional
characterization of a system. Similarly, readings
from connectionism such as (Hinton et al., 1986)
dramatize the particular ways that network mod-
els of parallel representation and computation an-
ticipate possible explanations in cognitive neuro-

132

science. However, we also explore arguments that
symbolic representations, even in a finite brain, may
not be best thought of as a prewired inventory of fi-
nite possibilities (Pylyshyn, 1984). Computational
cognitive science like Hofstadter’s (1979)—which
emphasizes the creativity that inevitably accompa-
nies compositional representations and general com-
putational capacity—is particularly instructive. In
emphasizing the paradoxes of self-reference and the
generality of Turing machines, it tells a plausible
but challenging story that’s diametrically opposed to
the “modular” Zeitgeist of domain-specific adaptive
cognitive mechanisms.

2.3 Communication

Another tack to motivate course material and keep
students engaged is to focus explicitly on interdis-
ciplinary collaboration as a goal and challenge for
work in the course. We read descriptions of more or
less successful interdisciplinary projects, such as Si-
mon’s description ofLogic Theorist(1996) and Cas-
sell’s account of interdisciplinary work on embod-
ied conversational agents (2007). We try to find our
own generalizations about what allowed these teams
to work together as well as they did, and what we
could do differently.

In tandem, we survey social science research
about what allows diverse groups to succeed in
bridging their perspectives and communicating ef-
fectively with one another. Our sourcebook isDiffi-
cult Conversations(Stone et al., 1999), a guidebook
for conflict resolution developed by the Harvard Ne-
gotiation Project. It can be a bit awkward to teach
such personal material in a technical class, but many
students are fascinated to explore suggestions about
interaction that work just as well for roommates and
significant others as for interdisciplinary colleagues.
Anyway, the practices ofDifficult Conversationsdo
fit with the broader themes of the class; they play out
directly in the joint projects and collaborative dis-
cussions that students must undertake to complete
the class.

I think it’s crucial to take collaboration seriously.
For many years, we offered a graduate computer sci-
ence course on computational linguistics as a first
interdisciplinary experience. We welcomed scien-
tists from the linguistics, philosophy and library and
information science departments, as well as engi-

neers from the computer science and electrical and
computer engineering departments, without expect-
ing anyone to bring any special background to the
course. Nevertheless, we encouraged both individ-
ualized projects and team projects, and worked to
support interdisciplinary teams in particular.

We were unsatisfied with this model based on its
results. We discovered that we hadn’t empowered
science students to contribute their expertise effec-
tively to joint projects, nor had we primed com-
puter science students to anticipate and welcome
their contributions. So joint projects found computer
scientists doing too much translating and not enough
enabling for their linguist partners. Linguists felt
like they weren’t pulling their weight or engaging
with the real issues in the field. Computer scientists
grew frustrated with the distance of their work from
specific practical problems.

Reading and reflecting on about generally-
accessible examples goes a long way to bridge the
divide. One case study that works well is the history
of Logic Theorist—the first implemented software
system in the history of AI, for building proofs in
the propositional logic of Whitehead and Russell’s
Principia Mathematica(1910). In 1955–56, when
Herb Simon, Allen Newell and Cliff Shaw wrote
it, they were actually an interdisciplinary team. Si-
mon was a social scientist trained at the Univer-
sity of Chicago, now a full professor of business,
at what seemed like the peak of a distinguished ca-
reer studying human decisions in the management
of organizations. Newell and Shaw were whiz-kid
hackers—Newell was a Carnegie Tech grad student
interested in software; Shaw was RAND corpora-
tion staff and a builder of prototype research com-
puters. Their work together is documented in two
fun chapters of Simon’s memoirModels of My Life
(1996). The story shows how computational col-
laboration demands modest but real technical exper-
tise and communication skills of all its practitioners.
Reading the story early on helps students appreciate
the goal of the computational thinking class from
the beginning: to instill these key shared concepts,
experiences, attitudes and practices, and thereby to
scaffold interdisciplinary technical research.

To work together, Simon, Newell and Shaw
needed to share a fairly specific understanding of
the concept of arepresentation(Newell and Si-

133

mon, 1976). Their work together consisted of tak-
ing knowledge about their domain and regiment-
ing it into formal structures and manipulations that
they could actually go on to implement. The frame-
work they developed for conceptualizing this pro-
cess rested on representations as symbolic struc-
tures: formal objects which they could understand
as invested with meaning and encoding knowledge,
but which they could also realize in computer sys-
tems and use to define concrete computational op-
erations. In effect, then, the concept of representa-
tion defined their project together, and they all had
to master it.

Simon, Newell and Shaw also needed a shared un-
derstanding of the computational methodology that
would integrate their different contributions into the
final program. Their work centered around the de-
velopment of a high-level programming language
that allowed Simon, Newell and Shaw to coordinate
their efforts together in a particularly transparent
way. Simon workedin the programming language,
using its abstract resources to specify formulas and
rules of inference in intuitive but precise terms; on
his own, he could think through the effects of these
programs. Newell and Shaw worked tobuild the
programming language, by developing the underly-
ing machinery to realize the abstract computations
that Simon was working with. The programming
language was aproductof their effort together; its
features were negotiated based on Simon’s evolving
conceptual understanding of heuristic proof search
and Newell and Shaw’s engagement with the prac-
tical demands of implementation. The language is
in effect a fulcrum where both domain expertise and
computational constraints exercise their leverage on
one another. This perspective on language design
comes as a surprise both to scientists, who are used
to thinking of programming paradigms as remote
and arcane, and to computer scientists, who are used
to thinking of them solely in terms of their software
engineering patterns, but it remains extremely pow-
erful. To make it work, everyone involved in the re-
search has to understand how their judicious collab-
orative exploration of new techniques for specifica-
tion and programming can knit their work together.

In the course of developing their language, Si-
mon, Newell and Shaw also came to share a set
of principles for discussing the computational fea-

sibility of alternative design decisions. Proof, like
most useful computational processes, is most natu-
rally characterized as a search problem. Inevitably,
this meant that the development ofLogic Theorist
ran up against the possibility of combinatorial explo-
sions and the need for heuristics and approximations
to overcome them. The solutions Simon, Newell and
Shaw developed reflected the team’s combined in-
sight in constructing representations for proof search
that made the right information explicit and afforded
the right symbolic manipulations. Many in the class,
especially computer scientists, will have seen such
ideas in introductory AI courses, so it’s challeng-
ing and exciting for them to engage with Simon’s
presentation of these ideas in their original interdis-
ciplinary context as new, computational principles
governing psychological explanations.

Finally—and crucially—this joint effort reflected
the team’s social engagement with each other, not
just their intellectual relationships. In their decades
of work together, Simon and Newell cultivated and
perfected a specific set of practices for engaging and
supporting each other in collaborative work. Simon
particularly emphasizes their practice of open dis-
cussion. Their talk didn’t always aim directly at
problem-solving or design. In the first instance, the
two just worked towards understanding—distilling
potential insights into mutually-satisfying formula-
tions. They put forward vague and speculative ideas,
and engaged with them constructively, not critically.

Simon’s memoirs also bring out the respect
the teammates had for each others’ expertise and
work styles, especially when different—as Newell’s
brash, hands-on, late-night scheming was for
Simon—and the shared commitment they brought
to making their work together fun. Their good re-
lationship as people may have been just as impor-
tant to their success at interdisciplinary research as
the shared interests, ideas and intellectual techniques
they developed together.

These kinds of case studies allow students to
make sense of the goals and methods of the course
in advance of the technical and interpretive details.
Not much has changed sinceLogic Theorist. Effec-
tive computational teamwork still involves develop-
ing a conceptual toolbox that allows all participants
on the project to formulate precise representations
and engage with those representations in computa-

134

tional terms. And it still requires a more nuanced ap-
proach to communication, interaction and collabora-
tion than more homogeneous efforts—one focused
not just on solving problems and getting work done
but on fostering teammates’ learning and commu-
nication, by addressing phenomena from multiple
perspectives, building shared vocabulary, and find-
ing shared values and satisfaction. These skills are
abstract and largely domain independent. The class
allows students to explore them.

3 Interim Assessment

The resources for creating ourComputational
Thinking class came from the award of a train-
ing grant designed to crossfertilize vision research
between psychology and computer science. The
course has now become a general resource for our
cognitive science community. It attracts psychol-
ogists from across the cognitive areas, linguists,
philosophers, and information scientists. We also
make sure that there is a critical mass of computer
scientists to afford everyone meaningful collabora-
tive experiences across disciplines. For example,
participation is required for training grant partici-
pants from computer science, and other interdisci-
plinary projects invite their computer science stu-
dents to build community.

One sign of the success of the course is that stu-
dents take responsibility for shaping the course ma-
terial to facilitate their own joint projects. Our ini-
tial version of the course emphasized the technical
ideas and programming techniques described in Sec-
tion 2.1. Students asked for more opportunities for
collaboration; we added it right away in year one.
Students also asked for more reading and discussion
to get a sense of what computation brings to inter-
disciplinary research, and what it requires of it. We
added that in year two, providing much of the ma-
terials now summarized in Sections 2.2 and 2.3. In
general, we found concrete and creative discussions
aimed at an interdisciplinary audience more helpful
than the general philosophical statements that com-
puter scientists offer of the significance of computa-
tion as a methodology. We will continue to broaden
the reading list with down-to-earth materials cover-
ing rich examples.

From student feedback with the second running

of the class, the course could go further to get stu-
dents learning from each other and working together
early on. We plan to respond by giving an initial
pretest to get a sense of the skills students bring
to the class and pair people with partners of dif-
fering skills for an initial project. As always this
project will provide a setting where all students ac-
quire a core proficiency in thinking precisely about
processes and representations. But by connecting
more experienced programmers with novices from
the beginning, we hope to allow students to ramp up
quickly into hands-on exploration of specification,
program design and collaborative computational re-
search. Possible initial projects include writing a
production rule shell and using it to encode knowl-
edge in an application of identifying visual objects,
recognizing language structure, diagnosing causes
for observed phenomena or planning goal-directed
activity; or writing an interpreter to evaluate math-
ematical expressions and visualize the shapes of
mathematical objects or probabilistic state spaces.

Anecdotally, we can point to a number of cases
whereComputational Thinkinghas empowered stu-
dents to leverage computational methods in their
own research. Students have written programs to
model experimental manipulations, analyze data, or
work through the consequences of a theory, where
otherwise they would have counted on pencil-and-
paper inference or an off-the-shelf tool. However, as
yet, we have only a preliminary sense of how well
the course is doing at its goal of promoting com-
putational research and collaboration in the cogni-
tive science community here. Next year we will get
our first detailed assessment, however, with the first
offering of a new follow-on course called “Inter-
disciplinary Methods in Perceptual Science”. This
course explicitly requires students to team up in
extended projects that combine psychological and
computational methods for visual interaction. We
will be watching students’ experience in the new
class closely to see whether our curriculum supports
them in developing the concepts, experiences, atti-
tudes and practices they need to work together.

4 Conclusion

Teamwork in computational linguistics often starts
by endowing machine learning methods with mod-

135

els or features informed by the principles and re-
sults of linguistic theory. Teams can also work
together to formalize linguistic knowledge and in-
terpretation for applications, through grammar de-
velopment and corpus annotation, in ways that fit
into larger system-building efforts. More generally,
we need to bridge the science of conversation and
software architecture to program interactive systems
that exhibit more natural linguistic behavior. And
we can even bring computation and linguistics to-
gether outside of system building: pursuing compu-
tational theories as an integral part of the explanation
of human linguistic knowledge and behavior.

To work on such teams, researchers do have to
master a range of specific intellectual connections.
But they need the fundamentals first. They have
to appreciate the exploratory nature of interdisci-
plinary research, and understand how such work can
be fostered by sharing representational insight, de-
signing new high-level languages and thinking crit-
ically about computation.Computational Thinking
is our attempt to teach the fundamentals directly.

You should be find it easy to make a case for this
course at your institution. In these days of declin-
ing enrollments and interdisciplinary fervor, most
departments will welcome a serious effort to culti-
vate the place of CS as a bridge discipline for re-
search projects across the university.Computational
Thinkingis a means to get more students taking our
classes and drawing on our concepts and discoveries
to work more effectively with us! As the course sta-
bilizes, we plan to reach out to other departments
with ongoing computational collaborations, espe-
cially economics and the life and environmental sci-
ences departments. You could design the course
from the start for the full spectrum of computational
collaborations already underway at your university.

Acknowledgments

Supported by IGERT 0549115. Thanks to the stu-
dents in 198:503 and reviewers for the workshop.

References

Philip E. Agre. 1997.Computation and Human Experi-
ence. Cambridge.

Rodney A. Brooks. 1990. Elephants don’t play chess.
Robotics and Autonomous Systems, 6:3–15.

Justine Cassell. 2007. Body language: Lessons from
the near-human. In J. Riskin, editor,Genesis Redux:
Essays in the History and Philosophy of Artificial In-
telligence, pages 346–374. Chicago.

David DeVault, Iris Oved, and Matthew Stone. 2006. So-
cietal grounding is essential to meaningful language
use. InProceedings of AAAI, pages 747–754.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
and Shriram Krishnamurthi. 2001.How to Design
Programs: An Introduction to Computing and Pro-
gramming. MIT.

C. R. Gallistel. 2008. Learning and representation. In
John H. Byrne, editor,Learning and Memory: A Com-
prehensive Reference. Elsevier.

W. Daniel Hillis. 1999.The Pattern on the Stone. Basic
Books.

Geoffrey E. Hinton, David E. Rumelhart, and James L.
McClelland. 1986. Distributed representations. In
Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume 1: Foundations,
pages 77–109. MIT.

Douglas Hofstadter. 1979.Gödel, Escher, Bach: An
Eternal Golden Braid. Basic Books.

David Kirsh. 1991. Today the earwig, tomorrow man?
Artificial Intelligence, pages 161–184.

Ernest Lepore and Matthew Stone. 2007. Logic and se-
mantic analysis. In Dale Jacquette, editor,Handbook
of the Philosophy of Logic, pages 173–204. Elsevier.

Allen Newell and Herbert A. Simon. 1976. Computer
science as empirical inquiry: Symbols and search.
Communications of the ACM, 19(3):113–126.

Allen Newell. 1982. The knowledge level.Artificial
Intelligence, 18:87–127.

G. Polya. 1945.How to Solve it. Princeton.
Zenon Pylyshyn. 1984.Computation and Cognition: To-

ward a Foundation for Cognitive Science. MIT.
Herbert A. Simon, 1996.Models of My Life, chapter

Roots of Artificial Intelligence and Artificial Intelli-
gence Achieved, pages 189–214. MIT.

Douglas Stone, Bruce Patton, and Sheila Heen. 1999.
Difficult Conversations: How to Discuss What Matters
Most. Penguin.

Peter M. Todd and Gerd Gigerenzer. 2007. Environ-
ments that make us smart: Ecological rationality.Cur-
rent Directions in Psych. Science, 16(3):170–174.

Alfred North Whitehead and Bertrand Russell. 1910.
Principia Mathematica Volume 1. Cambridge.

Jeannette M. Wing. 2006. Computational thinking.
Communications of the ACM, 49(3):33–35.

136

Author Index

Baldridge, Jason, 1, 62
Bansleben, Erik, 10
Bender, Emily M., 10
Bird, Steven, 27, 62

Christian, Gwen, 80

Dorr, Bonnie J., 71

Eisner, Jason, 97
Erk, Katrin, 1

Fosler-Lussier, Eric, 36
Freedman, Reva, 114

Hockey, Beth Ann, 80

Klein, Ewan, 62

Levin, Lori, 87
Levow, Gina-Anne, 106
Lin, Jimmy, 54
Loper, Edward, 62

Madnani, Nitin, 71

Payne, Thomas E., 87

Radev, Dragomir R., 87

Sakas, William Gregory, 120
Smith, Noah A., 97
Stone, Matthew, 129

Xia, Fei, 10, 45

Zinsmeister, Heike, 19

137

	Conference Program
	Teaching Computational Linguistics to a Large, Diverse Student Body: Courses, Tools, and Interdepartmental Interaction
	Building a Flexible, Collaborative, Intensive Master's Program in Computational Linguistics
	Freshmen's CL Curriculum: The Benefits of Redundancy
	Defining a Core Body of Knowledge for the Introductory Computational Linguistics Curriculum
	Strategies for Teaching ``Mixed'' Computational Linguistics Classes
	The Evolution of a Statistical NLP Course
	Exploring Large-Data Issues in the Curriculum: A Case Study with MapReduce
	Multidisciplinary Instruction with the Natural Language Toolkit
	Combining Open-Source with Research to Re-engineer a Hands-on Introductory NLP Course
	Zero to Spoken Dialogue System in One Quarter: Teaching Computational Linguistics to Linguists Using Regulus
	The North American Computational Linguistics Olympiad (NACLO)
	Competitive Grammar Writing
	Studying Discourse and Dialogue with SIDGrid
	Teaching NLP to Computer Science Majors via Applications and Experiments
	Psychocomputational Linguistics: A Gateway to the Computational Linguistics Curriculum
	Support Collaboration by Teaching Fundamentals

