
Proceedings of the Workshop on Textual Entailment and Paraphrasing, pages 193–200,
Prague, June 2007. c©2007 Association for Computational Linguistics

Natural Logic for Textual Inference

Bill MacCartney
Stanford University

wcmac@cs.stanford.edu

Christopher D. Manning
Stanford University

manning@cs.stanford.edu

Abstract

This paper presents the first use of a com-
putational model of natural logic—a sys-
tem of logical inference which operates
over natural language—for textual infer-
ence. Most current approaches to the PAS-
CAL RTE textual inference task achieve ro-
bustness by sacrificing semantic precision;
while broadly effective, they are easily con-
founded by ubiquitous inferences involving
monotonicity. At the other extreme, systems
which rely on first-order logic and theorem
proving are precise, but excessively brittle.
This work aims at a middle way. Our system
finds a low-cost edit sequence which trans-
forms the premise into the hypothesis; learns
to classify entailment relations across atomic
edits; and composes atomic entailments into
a top-level entailment judgment. We pro-
vide the first reported results for any system
on the FraCaS test suite. We also evaluate
on RTE3 data, and show that hybridizing an
existing RTE system with our natural logic
system yields significant performance gains.

1 Introduction

The last five years have seen a surge of interest in
the problem of textual inference, that is, automat-
ically determining whether a natural-language hy-
pothesis can be inferred from a given premise. A
broad spectrum of approaches have been explored,
ranging from shallow-but-robust to deep-but-brittle.
Up to now, the most successful approaches have
used fairly impoverished semantic representations,
relying on measures of lexical or semantic overlap
(Jijkoun and de Rijke, 2005), pattern-based relation
extraction (Romano et al., 2006), or approximate
matching of predicate-argument structure (Hickl et

al., 2006). Such methods, while robust and broadly
effective, are imprecise, and are easily confounded
by ubiquituous inferences involving monotonicity,
particularly in negative polarity contexts, as in:

P: No case of indigenously acquired rabies
infection has been confirmed in the past 2 years.
H: No rabies cases have been confirmed.

Because it drops important qualifiers in a negative
context, the hypothesis does not follow; yet both the
lexical content and the predicate-argument structure
of the hypothesis closely match the premise.

At the other extreme, textual inference can be ap-
proached as deduction, building on work in formal
computational semantics to translate sentences into
first-order logic (FOL), and then applying a theo-
rem prover or a model builder (Akhmatova, 2005;
Fowler et al., 2005). However, such approaches
tend to founder on the difficulty of accurately trans-
lating natural language in FOL—tricky issues in-
clude idioms, intensionality and propositional at-
titudes, modalities, temporal and causal relations,
certain quantifiers, and so on. FOL-based systems
that have attained high precision (Bos and Markert,
2006) have done so at the cost of very poor recall.

In this work, we explore a different point on the
spectrum, by developing a computational model of
natural logic, that is, a logic whose vehicle of in-
ference is natural language.1 Natural logic eschews
logical notation and model theory. Its proofs pro-
ceed by incremental edits to expressions of natural
language, and its inference rules specify conditions
under which semantic expansions or contractions
preserve truth. It thus permits us to do precise rea-
soning about monotonicity, while sidestepping the
difficulties of translating sentences into FOL.

It should be emphasized that there are many

1Natural logic should not be confused with natural deduc-
tion, a proof system for first-order logic.

193

important kinds of inference which are not ad-
dressed by a natural logic system, including tem-
poral reasoning, causal reasoning (Khan sold nu-
clear plans ⇒ Khan possessed nuclear plans), para-
phrase (McEwan flew to Rome ⇒ McEwan took a
flight to Rome), relation extraction (Bill Gates and
his wife, Melinda... ⇒ Melinda Gates is married
to Bill Gates), etc. Moreover, a natural logic sys-
tem will struggle with inferences requiring model-
building or deep proof search, which are more suit-
able for formal deduction systems. However, the ap-
plicability of natural logic is broader than it might at
first appear, and a natural logic system can be de-
signed to integrate with other kinds of reasoners.

2 Foundations of natural logic

Natural logic aims to explain inferences involving
monotonicity, in which the concepts or constraints
expressed are expanded or contracted. Consider, for
example, the sentence Every meal without wine is a
terrible crime. Some semantic elements can be ex-
panded (but not contracted) salva veritate, and are
therefore said to have positive polarity: wine may be
broadened to drink, terrible crime may be relaxed to
crime, or every may be weakened to some. Other el-
ements can only be contracted (not expanded) salva
veritate, and thus have negative polarity: meal can
be narrowed to dinner. The monotonicity calcu-
lus developed in (Sánchez Valencia, 1991) explains
these polarity effects by (1) defining an entailment
relation over multifarious expressions of natural lan-
guage, (2) defining monotonicity properties of se-
mantic functions, and finally (3) specifying how
monotonicities combine during Fregean composi-
tion of semantic functions.

The entailment relation. Most work in textual
inference reflects a simple concept of entailment:
one sentence entails another, or does not. In nat-
ural logic, however, entailment is a semantic con-
tainment relation (analogous to the set containment
relation ⊆) over expressions of all types, including
words and phrases as well as sentences. We define
the entailment relation v recursively over the se-
mantic types familiar from Montague semantics. If
c and d are of type t (truth values), then c v d iff
c → d. If c and d are of type e (entities), then c v d
iff c = d. Finally, if c and d are of functional type

〈α, β〉, then c v d iff for all a ∈ α, c(a) v d(a).
Otherwise, if c 6v d and d 6v c, we write c # d.

Using these formal definitions, we can establish
entailment relations between common nouns (pen-
guin v bird), common and proper adjectives (tiny v
small, French v European), transitive and intransi-
tive verbs (kick v strike, hover v fly), temporal and
locative modifiers (this morning v today, in Beijing
v in China), connectives (and v or), and quanti-
fiers (everyone v someone, all v most v some).2

Among noun phrases, we have everyone v Einstein
v some physicist. Finally, observe that dropping a
modifier generally yields entailment (eat quickly v
eat) though this heuristic can be violated, e.g., by
operator adjectives (fake vaccine 6v vaccine).

Monotonicity. Under the Fregean hypothesis, the
meaning of a compound expression is the result of
function application. In semantics as in mathemat-
ics, we can describe a function as upward mono-
tone if “larger” inputs yield larger outputs. Formally,
given a function f of functional type 〈α, β〉:

• f is upward-monotone (↑) iff for all x, y ∈ α,
x v y entails f(x) v f(y).

• f is downward-monotone (↓) iff for all x, y ∈
α, x v y entails f(y) v f(x).

• f is non-monotone (6↑↓) iff it is neither upward-
nor downward-monotone.

Most linguistic expressions may be regarded as
upward-monotone semantic functions. Thus tango
in Paris v dance in France, since tango v
dance and in Paris v in France. However, a
number of important linguistic constructions are
downward-monotone, including negation (not), re-
strictive quantifiers (no, few, at most n), restrictive
verbs (lack, fail, prohibit), certain adverbs (without,
except), the antecedent of a conditional, and so on.
We thus have didn’t dance v didn’t tango, few ath-
letes v few sprinters, lack weapons v lack guns,

2The entailment relations among quantifiers may be coun-
terintuitive to those prone to what Peter Geach called “quantifi-
catious thinking”, who might consider someone “smaller” than
everyone. But in the theory of generalized quantifiers, the deno-
tation of a quantified noun phrase is the set of predicates which
it satisfies, and the predicates satisfied by everyone are a subset
of those satisfied by someone. Note also that logicians will deny
that the universal entails the existential: ∀x P (x) 6→ ∃x P (x).
However, most people are happy to infer someone is hungry
from everyone is hungry.

194

without clothes v without pants, and If stocks rise,
we win v If stocks soar, we win. Finally, a few
expressions must be considered non-monotone, in-
cluding superlative adjectives and quantifiers such
as most. Thus prettiest butterfly # prettiest insect
and most boats # most vehicles. Note that certain
generalized quantifiers must be treated as binary
functions having different monotonicities in differ-
ent arguments. Thus every is downward-monotone
in its first argument (every fish swims v every shark
swims) but upward-monotone in its second argument
(every shark swims v every shark moves).

Composition of monotonicity. Finally, we must
specify how monotonicities combine during Fregean
composition of semantic functions. In Sánchez Va-
lencia’s marking algorithm, we represent each input
expression as a parse in the Lambek categorial gram-
mar. We then (1) mark leaf nodes with appropriate
lexical monotonicity values, (2) project monotonic-
ities to internal nodes representing function applica-
tions, and finally (3) compose monotonicities along
the path from the root to each leaf in order to deter-
mine effective polarities. The composition of mono-
tonicities is straightforward. Suppose h = f ◦ g. If
either f or g is non-monotone, then so is h. Other-
wise, if the monotonicities of f and g are the same,
then h is upward-monotone; if they are different,
then h is downward-monotone. (Thus, wine has pos-
itive polarity in no meal without wine because it falls
under two downward-monotone operators.)

3 The NatLog System

Our natural logic system, dubbed the NatLog sys-
tem, has a three-stage architecture similar to those
in (Marsi and Krahmer, 2005; MacCartney et al.,
2006), comprising (1) linguistic pre-preprocessing,
(2) alignment, and (3) entailment classification.

3.1 Linguistic pre-processing

Relative to other textual inference systems, the Nat-
Log system does comparatively little linguistic pre-
processing. We rely on the Stanford parser (Klein
and Manning, 2003), a Treebank-trained statistical
parser, for tokenization, part-of-speech tagging, and
phrase-structure parsing. By far the most impor-
tant analysis performed at this stage is monotonicity
marking, in which we compute the effective mono-

unary operator: without
pattern: IN < /ˆ[Ww]ithout\$/
argument 1: monotonicity ↓ on dominating PP

pattern: __ > PP=proj

binary operator: most
pattern: JJS < /ˆ[Mm]ost\$/ !> QP
argument 1: monotonicity 6↑↓ on dominating NP

pattern: __ >+(NP) (NP=proj !> NP)
argument 2: monotonicity ↑ on dominating S

pattern: __ >+(/.*/) (S=proj !> S)

Figure 1: Two examples of monotonicity operator
definitions. The patterns employ Tregex syntax.

tonicity for each token span in each input sentence.
For this, we use an adaptation of the marking algo-
rithm of Sánchez Valencia (section 2); however, our
choice of a Treebank-trained parser (driven by the
goal of broad coverage) requires us to modify the
algorithm substantially. Unlike the categorial gram-
mar parses assumed by Sánchez Valencia, the nest-
ing of constituents in phrase-structure parses does
not always correspond to the composition of seman-
tic functions, which introduces a number of com-
plications. We define a list of downward-monotone
and non-monotone expressions, and for each item
we specify its arity and a Tregex pattern (Levy and
Andrew, 2006) which permits us to identify its oc-
currences. We also specify, for each argument, both
the monotonicity and another Tregex pattern which
helps us to determine the sentence span over which
the monotonicity is projected. (Figure 1 shows
some example definitions.) The marking process
computes these projections, performs monotonicity
composition where needed, and marks each token
span with its final effective monotonicity.

3.2 Alignment

The second stage of processing establishes an align-
ment between the premise and the hypothesis. While
there are many notions of alignment, in this work we
have chosen to represent alignments as sequences of
atomic edits over spans of word tokens. We define
four types of atomic edits: deletion of a span from
the premise, insertion of a span into the hypothesis,
substitution of a hypothesis span for a premise span,
and advance over a span without modification. Each
atomic edit is parameterized by the token indices at
which it operates. As an example, the first problem

195

in table 3 may be aligned using following edits:

An Irishman =⇒ An Irishman ADV
won =⇒ won ADV

a =⇒ the SUB
Nobel prize =⇒ Nobel prize ADV

=⇒ for literature INS
. =⇒ . ADV

Clearly, this representation imposes certain lim-
itations: there is no atomic edit type representing
the movement of a token span from one sentence
location to another (instead a combination of dele-
tion and insertion must be used), and there can be no
alignments to non-contiguous sets of tokens. How-
ever, the span edit representation also offers impor-
tant benefits. First, there is always a well-defined
sequence of intermediate forms through which the
sentence progresses during editing, which is impor-
tant for the computation of monotonicity features.
Second, given a cost function over edits, it is possi-
ble to construct an efficient dynamic program to find
the lowest-cost edit sequence between any pair of
sentences, using a straightforward extension of the
Levenshtein string-edit algorithm.

For this purpose, we have designed a cost function
which prefers edits which operate on longer spans;
penalizes edits operating on spans which are not
parse-tree constituents; imposes nomimal cost on
substitutions of words having the same lemma; and
imposes little cost on certain “light” edits, involving
prepositions, articles, auxiliaries, etc. When applied
to problems like those in the FraCaS test suite (sec-
tion 4), this cost model gives intuitively pleasing re-
sults. However, because our focus in this work is on
entailment, we have not devoted much energy to op-
timizing our alignment model, and will not discuss it
further. (For the RTE experiments described in sec-
tion 5, we use alignments derived from an indepen-
dent RTE system. Translating those alignments into
the span edit representation requires relaxing some
of its constraints, as we’ll explain.)

3.3 Entailment classification

The edit sequence obtained during the alignment
stage effectively decomposes the global entailment
problem into a sequence of atomic entailment prob-
lems, one for each atomic edit. In the final stage, we
train a model for atomic entailment classification,
and predict an entailment relation for each atomic

relation symbol in terms of v FraCaS RTE
equivalent p = h p v h, h v p yes yes
forward p @ h p v h, h 6v p yes yes
reverse p A h h v p, p 6v h unk no
independent p # h p 6v h, h 6v p unk no
exclusive p | h p v ¬h no no

Table 1: The five elementary entailment relations.
The last two columns indicate correspondences to
FraCaS and RTE answers; see sections 4 and 5.

edit. We then compose our atomic entailment pre-
dictions to produce a global entailment prediction.

The atomic entailment model uses a classifier to
predict one of five elementary entailment relations
(table 1) for each atomic edit. This model uses a
feature representation designed to capture character-
istics of the edit pertinent to a natural logic analysis:
the type of the edit (DEL, INS, or SUB), the effec-
tive monotonicity at the affected token span (↑, ↓, or
6↑↓), and various lexical features of the affected to-
kens. In the case of a SUB edit, the lexical features
help to indicate whether the substitution constitutes
a semantic expansion, contraction, equivalence, or
exclusion, using WordNet-derived measures of syn-
onymy, hyponymy, and antonymy, and a measure
of lemma similarity based on Levenshtein string-
edit distance. In addition, for edits of all types, we
have found it useful to generate a “light edit” fea-
ture indicating whether the affected tokens belong to
categories which are usually negligible for inferen-
tial purposes, including prepositions, articles, auxil-
iaries, and punctuation.

The entailment model uses a decision tree clas-
sifier, trained on a small data set of 69 problems
custom-designed to exercise diverse regions of the
feature space.3 From these examples, the decision
tree effectively learns such heuristics as deletion in
an upward-monotone context yields @, substitution
of a hypernym in a downward-monotone context
yields A, and substitution of an antonym yields |.

To produce a top-level entailment judgment, the
atomic entailment predictions associated with each

3Thus, in using learning, we are not trying to estimate statis-
tical properties of some natural distribution of data. Rather, the
learning framework provides (1) a modular way to add features
which may impact the entailment decision, (2) a principled way
to combine evidence from diverse features, such as real-valued
lexical features, and (3) a convenient way to verify the proper
functioning of the system.

196

atomic edit: SUB(a, the)
features:

type: SUB, monotonicity: ↑, isLightEdit: true,
wnSyno: 0.0, wnHypo: 0.0, wnAnto: 0.0, lemmaSim: 0.0

predicted entailment relation: =

atomic edit: INS(for literature)
features:

type: INS, monotonicity: ↑, isLightEdit: false
predicted entailment relation: A

top-level inference:
composition of entailment relations: = ◦ A ⇒ A
mapping to FraCaS answer: A ⇒ unk

Figure 2: The operation of the entailment model on
FraCaS problem 33 (see table 3).

edit are composed in a fairly obvious way. If r is any
entailment relation, then = ◦ r ≡ r, but # ◦ r ≡ #.
@ and A are transitive, but @ ◦ A ≡ #, and so on.
Compositions are commutative and associative.

Figure 2 shows an example of the operation of the
entailment model.

4 Experiments with the FraCaS test suite

The FraCaS test suite (Cooper et al., 1996) was de-
veloped as part of a collaborative research effort in
computational semantics. It contains 346 inference
problems reminiscent of a textbook on formal se-
mantics. In the authors’ view, “inferencing tasks
[are] the best way of testing an NLP system’s se-
mantic capacity.” Yet, to our knowledge, this work
is the first to present a quantitative system evaluation
using FraCaS.4

The problems are divided into nine sections, each
focused on a category of semantic phenomena, such
as quantifiers or anaphora (see table 2). Each prob-
lem consists of one or more premise sentences, fol-
lowed by a one-sentence question. For this project,
the questions were converted into declarative hy-
potheses. Each problem also has an answer, which
(usually) takes one of three values: yes (the hypoth-
esis can be inferred from the premise(s)), no (the
negation of the hypothesis can be inferred), or unk
(neither the hypothesis nor its negation can be in-
ferred). Some examples are shown in table 3.

4Indeed, our first step was to put the FraCaS data into
machine-readable form, which we make publicly available at
http://nlp.stanford.edu/∼wcmac/downloads/ fracas.xml.

§ Category Count % Acc.
1 Quantifiers 44 84.09
2 Plurals 24 41.67
3 Anaphora 6 50.00
4 Ellipsis 25 28.00
5 Adjectives 15 60.00
6 Comparatives 16 68.75
7 Temporal 36 61.11
8 Verbs 8 62.50
9 Attitudes 9 55.56
Applicable sections: 1, 5, 6 75 76.00
All sections 183 59.56

Table 2: NatLog’s accuracy on the FraCaS test suite,
by section. We exclude degenerate problems and
multiple-premise problems; see text.

Not all of the 346 problems were used in this
work. First, 12 of the problems were excluded
because they are degenerate, lacking either a hy-
pothesis or a well-defined answer. Second, an
additional 151 problems (about 45% of the to-
tal) were excluded because they involve multiple
premises. While many of the multiple-premise prob-
lems should be feasible for NatLog in the future,
such inferences require search, and for now we have
chosen to sidestep this complexity.

Finally, it should be noted that several sections of
the test suite involve semantic phenomena, such as
ellipsis, which the NatLog system makes no attempt
to model. While we report results for these sections,
we do not expect performance to be good, and in
development we have concentrated on the sections
where we expect NatLog to have relevant expertise.
In table 2, results for these sections are aggregated
under the label “applicable sections”.

Results are shown in table 2. On the “applica-
ble” sections, performance is good. (Not supris-
ingly, we make little headway with, e.g., ellipsis.)
Of course, this does not constitute a proper evalua-
tion on unseen test data—but on the other hand, the
system was never trained on the FraCaS problems,
and has had no opportunity to learn biases implicit
in the data.5 Our main goal in testing on FraCaS is
to evaluate the representational and inferential ade-
quacy of our model of natural logic, and from that
perspective, the strong performance in quantifiers,

5This also explains why NatLog’s performance on some
FraCaS sections falls below that of a baseline most-common-
label classifier.

197

§ ID Premise(s) Hypothesis Ans
1 33 An Irishman won a Nobel prize. An Irishman won the Nobel prize for literature. unk
1 38 No delegate finished the report. Some delegate finished the report on time. no
2 99 Clients at the demonstration were all impressed by the sys-

tem’s performance. Smith was a client at the demonstration.
Smith was impressed by the system’s perfor-
mance.

yes

9 335 Smith believed that ITEL had won the contract in 1992. ITEL won the contract in 1992. unk

Table 3: Illustrative examples from the FraCaS test suite

guess
answer yes unk no total

yes 62 40 – 102
unk 15 45 – 60
no 6 13 2 21

total 90 91 2 183

Table 4: Confusions on FraCaS data (all sections)

adjectives, and comparatives is satisfying.
The confusion matrix shown in table 4 is instruc-

tive. By far the largest category of confusions com-
prise problems where we guess unk when the cor-
rect answer is yes. This reflects both the bias to-
ward yes in the FraCaS data, and the system’s ten-
dency to predict unk (entailment relation #) when
confused: given the composition rules for entail-
ment relations, the system can predict yes only if all
atomic-level predictions are either @ or =. On the
other hand, there are a number of problems where
we predict yes mistakenly. Several of these errors
arise in a series of problems in §5 which concern
operator adjectives such as former. The entailment
model wrongly assumes that such modifiers, like any
others, can safely be deleted in upward-monotone
contexts, but in fact former student 6v student. If
the feature set used by the entailment model were
extended to represent occurrences of operator adjec-
tives, and if appropriate examples were included in
the training data, our accuracy in §5—and the av-
erage accuracy for the “applicable” sections—could
easily be boosted over 80%.

5 Experiments with RTE data

Textual inference problems from the PASCAL RTE
Challenge (Dagan et al., 2005) differ from FraCaS
problems in several important ways. (See table 5
for examples.) Instead of textbook examples of se-
mantic phenomena, RTE problems are more natural-
seeming, with premises collected “in the wild” from

newswire text. The premises are much longer, aver-
aging 35 words (vs. 11 words for FraCaS). Also, the
RTE task aims at a binary classification: the RTE no
answer combines the no and unk answers in FraCaS.

Due to the character of RTE problems, we do not
expect NatLog to be a good general-purpose solu-
tion to solving RTE problems. First, most RTE prob-
lems depend on forms of inference, such as para-
phrase, temporal reasoning, or relation extraction,
which NatLog is not designed to address. Second,
in most RTE problems, the edit distance between
premise and hypothesis is relatively large. More
atomic edits means a greater chance that prediction
errors made by the atomic entailment model will
propagate, via entailment composition, to the sys-
tem’s final output. Rather, in applying NatLog to
RTE, we hope to make reliable predictions on a sub-
set of RTE problems, trading recall for precision. If
we succeed, then we may be able to hybridize with a
broad-coverage RTE system to obtain better results
than either system individually—the same strategy
that was adopted by (Bos and Markert, 2006) for
their FOL-based system.

For this purpose, we have chosen to use the Stan-
ford RTE system described in (de Marneffe et al.,
2006). In applying NatLog to RTE problems, we use
alignments from the Stanford system as input to our
entailment model. A Stanford alignment is a map
from hypothesis words to premise words. When we
translate such alignments into the NatLog represen-
tation described in section 3, each pair of aligned
words generates a substitution edit (or, if the words
are identical, an advance edit). Unaligned premise
words yield deletion edits, while unaligned hypothe-
sis words yield insertion edits. Where possible, con-
tiguous sequences of word-level edits are then col-
lected into equivalent span edits. While the result
of this translation method cannot be interpreted as a
conventional edit script (there is no well-defined or-

198

ID Premise(s) Hypothesis Answer
518 The French railway company SNCF is cooperating in

the project.
The French railway company is called SNCF. yes

601 NUCOR has pioneered a giant mini-mill in which steel
is poured into continuous casting machines.

Nucor has pioneered the first mini-mill. no

Table 5: Illustrative examples from the RTE3 test suite

RTE3 Development Set (800 problems)
System % yes precision recall accuracy
Stanford 50.25 68.66 66.99 67.25
NatLog 18.00 76.39 26.70 58.00

Hybrid, bal. 50.00 69.75 67.72 68.25
Hybrid, opt. 55.13 69.16 74.03 69.63

RTE3 Test Set (800 problems)
System % yes precision recall accuracy
Stanford 50.00 61.75 60.24 60.50
NatLog 23.88 68.06 31.71 57.38

Hybrid, bal. 50.00 64.50 62.93 63.25
Hybrid, opt. 54.13 63.74 67.32 63.62

Table 6: Performance on the RTE3 development and
test sets. % yes indicates the proportion of yes pre-
dictions made by the system. Precision and recall
are shown for the yes label.

dering of edits, and multiple edits can operate on the
same input spans), we find that this poses no great
impediment to subsequent processing by the entail-
ment model.

Table 6 shows the performance of the NatLog
system on RTE3 data. Relative to the Stanford
RTE system, NatLog achieves high precision on its
yes predictions—about 76% on the development set,
and 68% on the test set—suggesting that hybridizing
may be effective. For comparison, the FOL-based
system reported in (Bos and Markert, 2006) attained
a similarly high precision of 76% on RTE2 prob-
lems, but was able to make a positive prediction in
only about 4% of cases. NatLog makes positive pre-
dictions far more often—at a rate of 18% on the de-
velopment set, and 24% on the test set.

The Stanford RTE system makes yes/no predic-
tions by thresholding a real-valued inference score.
To construct a hybrid system, we adjust the Stan-
ford inference scores by +x or −x, depending on
whether NatLog predicts yes or no/unk. We choose
the value of x by optimizing development set accu-
racy, while adjusting the threshold to generate bal-

anced predictions (that is, equal numbers of yes and
no predictions). As an additional experiment, we
fix x at this value and then adjust the threshold to
optimize development set accuracy, resulting in an
excess of yes predictions. (Since this optimization
is based solely on development data, its use on test
data is fully legitimate.) Results for these two cases
are shown in table 6. The parameters tuned on devel-
opment data were found to yield good performance
on test data. The optimized hybrid system attained
an absolute accuracy gain of 3.12% over the Stan-
ford system, corresponding to an extra 25 problems
answered correctly. This result is statistically signif-
icant (p < 0.01, McNemar’s test, 2-tailed).

However, the gain cannot be attributed to Nat-
Log’s success in handling the kind of inferences
about monotonicity which are the staple of natural
logic. Indeed, such inferences are quite rare in the
RTE data. Rather, NatLog seems to have gained
primarily by being more precise. In some cases,
this precision works against it: NatLog answers no
to problem 518 (table 5) because it cannot account
for the insertion of called in the hypothesis. On
the other hand, it correctly rejects the hypothesis in
problem 601 because it cannot account for the inser-
tion of first, whereas the less-precise Stanford sys-
tem was happy to allow it.

6 Related work

While the roots of natural logic can be traced back
to Aristotle’s syllogisms, the modern conception of
natural logic began with George Lakoff, who pro-
posed “a logic for natural language” which could
“characterize all the valid inferences that can be
made in natural language” (Lakoff, 1970). The
study of natural logic was formalized by Johan van
Benthem, who crucially connected it with catego-
rial grammar (van Benthem, 1986), and later was
brought to fruition by Victor Sánchez Valencia, who
first gave a precise definition of a calculus of mono-

199

tonicity (Sánchez Valencia, 1991). A small current
of theoretical work has continued up to the present,
for example (Zamansky et al., 2006).

There has been surprisingly little work on build-
ing computational models of natural logic. (Fyo-
dorov et al., 2003) describes a Prolog implementa-
tion for a small fragment of English, based on a cat-
egorial grammar parser.6 In an unpublished draft,
(van Eijck, 2005) describes a preliminary implemen-
tation in Haskell.

Doing inference with representations close to nat-
ural language has also been advocated by Jerry
Hobbs, as in (Hobbs, 1985).

To our knowledge, the FraCaS results reported
here represent the first such evaluation. (Sukkarieh,
2003) describes applying a deductive system to
some FraCaS inferences, but does not perform a
complete evaluation or report quantitative results.

7 Conclusion

Our NatLog implementation of natural logic suc-
cessfully handles a broad range of inferences involv-
ing monotonicity, as demonstrated on the FraCaS
test suite. While a post-hoc analysis of performance
on the RTE3 Challenge suggests that monotonicity-
related inferences have limited applicability in RTE
data, the greater precision of the NatLog system nev-
ertheless significantly improved the performance of
a hybrid RTE system. An area for future work is
further consideration of what kinds of inference are
prevalent and important in prominent computational
linguistic applications.

Acknowledgements The authors wish to thank
Marie-Catherine de Marneffe and the anonymous
reviewers for their helpful comments on an earlier
draft of this paper. This work was supported in part
by ARDA’s Advanced Question Answering for In-
telligence (AQUAINT) Program.

References
Elena Akhmatova. 2005. Textual entailment resolution via

atomic propositions. In Proc. of the PASCAL RTE Challenge
Workshop.

Johan Bos and Katja Markert. 2006. When logical inference
helps determining textual entailment (and when it doesn’t).
In Proc. of the 2nd PASCAL RTE Challenge Workshop.

6Available at http://yeda.cs.technion.ac.il/∼yaroslav/oc/

Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox, Jo-
han Van Genabith, Jan Jaspars, Hans Kamp, David Milward,
Manfred Pinkal, Massimo Poesio, and Steve Pulman. 1996.
Using the framework. Technical Report LRE 62-051 D-16,
The FraCaS Consortium.

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005. The
PASCAL Recognising Textual Entailment Challenge. In
Proc. of the PASCAL RTE Challenge Workshop.

Marie-Catherine de Marneffe, Bill MacCartney, Trond
Grenager, Daniel Cer, Anna Rafferty, and Christopher D.
Manning. 2006. Learning to distinguish valid textual entail-
ments. In Proc. of the 2nd PASCAL RTE Challenge Work-
shop.

Abraham Fowler, Bob Hauser, Daniel Hodges, Ian Niles,
Adrian Novischi, and Jens Stephan. 2005. Applying CO-
GEX to recognize textual entailment. In Proc. of the PAS-
CAL RTE Challenge Workshop.

Yaroslav Fyodorov, Yoad Winter, and Nissim Francez. 2003.
Order-based inference in natural logic. Logic Journal of the
IGPL, 11(4):385–416.

Andrew Hickl, John Williams, Jeremy Bensley, Kirk Roberts,
Bryan Rink, and Ying Shi. 2006. Recognizing textual en-
tailment with LCC’s GROUNDHOG system. In Proc. of the
2nd PASCAL RTE Challenge Workshop.

Jerry R. Hobbs. 1985. Ontological promiscuity. In Proc. of
ACL-85, pages 61–69.

Valentin Jijkoun and Maarten de Rijke. 2005. Recognizing
textual entailment using lexical similarity. In Proc. of the
PASCAL RTE Challenge Workshop.

Dan Klein and Christopher D. Manning. 2003. Accurate unlex-
icalized parsing. In Proc. of ACL-03.

George Lakoff. 1970. Linguistics and natural logic. Synthese,
22:151–271.

Roger Levy and Galen Andrew. 2006. Tregex and Tsurgeon:
tools for querying and manipulating tree data structures. In
Proc. of LREC-06.

Bill MacCartney, Trond Grenager, Marie-Catherine de Marn-
effe, Daniel Cer, and Christopher D. Manning. 2006. Learn-
ing to recognize features of valid textual entailments. In
Proc. of HLT-NAACL-06.

Erwin Marsi and Emiel Krahmer. 2005. Classification of se-
mantic relations by humans and machines. In Proc. of the
ACL 2005 Workshop on Empirical Modeling of Semantic
Equivalence and Entailment.

Lorenza Romano, Milen Kouylekov, Idan Szpektor, Ido Da-
gan, and Alberto Lavelli. 2006. Investigating a generic
paraphrase-based approach for relation extraction. In Proc.
of EACL-06.

Victor Sánchez Valencia. 1991. Studies on Natural Logic and
Categorial Grammar. Ph.D. thesis, Univ. of Amsterdam.

Jana Z. Sukkarieh. 2003. An expressive efficient representation:
Bridging a gap between NLP and KR. In Proc. of the 7th
Int’l Conf. on Knowledge-Based Intelligent Information and
Engineering Systems.

Johan van Benthem. 1986. Essays in logical semantics. Reidel,
Dordrecht.

Jan van Eijck. 2005. Natural logic for natural language. http:
//homepages.cwi.nl/∼jve/papers/05/nlnl/NLNL.pdf .

Anna Zamansky, Nissim Francez, and Yoad Winter. 2006. A
‘natural logic’ inference system using the Lambek calculus.
Journal of Logic, Language and Information, 15:273–295.

200

