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Abstract 

The primary focuses of this entry this year 
was firstly, to develop a framework to al-
low multiple researchers from our group to 
easily contribute metrics measuring textual 
entailment, and secondly, to provide a 
baseline which we could use in our tools to 
evaluate and compare new metrics.  A de-
velopment environment tool was created to 
quickly allow for testing of various metrics 
and to easily randomize the development 
and test sets.  For each test, this RTE tool 
calculated two sets of results by applying 
the metrics to both a univariate Gaussian 
density and by maximizing a linear dis-
criminant function.  The metrics used for 
the submission were a lexical similarity 
metric and a lexical similarity metric using 
synonym and antonym replacement.  The 
two submissions for RTE 2007 scored an 
accuracy of 61.00% and 62.62%. 

 

1 Introduction 

The task of textual entailment for the PASCAL 
Textual Entailment Challenge for 2007 was to cre-
ate a system to determine if a given pair of sen-
tences, called the Text-Hypothesis (T-H) pair, had 
the property of having the Text sentence entail the 
Hypothesis sentence.  Each Text-Hypothesis pair is 
also assigned the type of entailment that should be 
applied to the pair when evaluating its entailment.  
There are four types of entailment, each of which 

may or may not need different techniques to de-
termine entailment, and for the purposes of the 
RTE tool developed, are considered separate prob-
lems. 

2 RTE Development Environment Tool 

Our research group decided to begin focusing on 
the Recognizing Textual Entailment challenge this 
year in February and to continue our participation 
for years to come.  It was decided to create a 
development environment from which our 
researchers could attempt different techniques of 
examining a Text-Hypothesis pair and yet all 
metrics resulting from those techniques could be 
used in calculating the final results.  The RTE tool 
also randomly generates training and testing sets 
from the 800 Text-Hypothesis pairs provided for 
development by the competition to avoid over-
fitting the data during the training stage.   

 

 
 

Figure 1. Screenshot of the RTE Development Environment. 
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The RTE Tool can generate a metric by calling 
a .NET object, COM object, web page, command 
line, or an internal function.  These metrics are 
cached to speed testing, though a specific metric 
type can be cleared manually should the object or 
function generating the metric be changed. 

In the image of the RTE tool above, we can see 
a typical results screen.  We have a misclassified 
sample highlighted and all the relevant data for that 
sample displayed on the bottom.  Each category is 
represented with a folder and displays the accuracy 
results of the last classification.  In this way, we 
can easily compare and contrast different metrics 
and their effectiveness on the samples in a simple 
and intuitive way. 

2.1 Defining Metrics 

Each metric developed is required to produce a 
continuous variable that can measure a feature of 
the T-H pair.  The metric value is required to be 
normalized between 0 and 1 inclusive so that we 
can use the same metrics for future expansion 
when possibly dealing with nearest-neighbor clas-
sification techniques and not be subject to scaling 
issues.  This is also valuable if we intend to de-
velop vague predicates [Brachman and Levesque, 
2004] to use in Boolean rules, another potential 
classification implementation. 

There is also currently a constraint that the 
metric value “0” means the least entailment 
(according to that particular metric) and the value 
“1” means the most entailment.  This helped create 
an easy way to maximize our linear discriminant 
function (which will be described below).  This 
constraint is unnecessary when classifying using 
the univariate density model.  

2.2 Classification Methods 

The tool classifies a T-H test pair using one of two 
classification methods.  The first method uses the 
metrics of the training set to generate the parame-
ters for eight Gaussian distributions, or two distri-
butions for each type of textual entailment.  Each 
distribution describes a probability density function 
(PDF) for a particular type of entailment.  For ex-
ample, there is one PDF for the entailment type of 
“Question Answering” (QA) whose entailment is 
“YES”, and there is one PDF for the entailment 
type of QA whose entailment is “NO”.  This uni-
variate normal model was chosen to simplify the 
calculations over the multivariate model we 

planned to use.  Since the submissions would only 
consider one metric for each run, instead of   using 
all the metrics we have defined, the univariate 
model was appropriate. 

The second method of classification uses the 
metrics from the training set to develop a linear 
decision boundary to maximize the accuracy out-
come in the test set.  Once this boundary, or 
threshold, is determined for each of the four types 
of entailment, a simple comparison of the metric 
from a T-H pair can be classified based on what 
side of the boundary it is on.  This linear discrimi-
nant function had a further constraint that required 
the metric values be described in a certain way to 
simplify the classification function.  This require-
ment will be lifted for our next submission in order 
to deal with solution landscapes that may not ad-
here to our Gaussian distribution model. 

3 Metric Set Used for Submission 

Three different metrics were developed for use in 
our RTE tool this year.  We decided to concentrate 
on producing simple measurements to create a 
baseline for which to judge the development of 
new metrics as well as to judge the performance of 
future training or classification methods. 

Due to time constraints, we chose to employ 
simple metrics, which have been used before, in 
order to meet our primary goals.  Despite the sim-
plicity and the lack of semantic interpretation of 
the metrics, these metrics coupled with our pattern 
classification strategy yielded competitive results. 

3.1 Lexical Similarity Ratio Metric 

Our first metric is a simple lexical similarity ratio 
between the words in the Text and Hypothesis sen-
tences in a T-H pair.  The formula counts number 
of matches between the occurrences of a word in 
the Hypothesis and the words in the Text.  The 
sum is then normalized by dividing it by the num-
ber of words in the Hypothesis itself.  For baseline 
purposes, every word was considered and only 
punctuation was removed.  This technique was also 
used by other teams in previous challenge submis-
sions [Jijkoun and Rijke, 2005]. 

3.2 Average Matched Word Displacement 

Our second metric was not used in the final results, 
but will be described for completeness.  This met-
ric was the average of the distances in the Text be-
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tween matched words from the Hypothesis normal-
ized by dividing that average by the maximum pos-
sible distance.  In other words, if two words in the 
Hypothesis were found in the Text, the distance 
between them in the Text would be averaged with 
all the other combinations of matched word pair 
distances and then normalized by dividing the 
maximum possible distance value for that particu-
lar sentence.  Preliminary results showed a less 
than significant correlation and so were not used in 
this submission. 

3.3 Synonym and Antonym Replacement 

The third metric is nearly identical to the lexical 
similarity metric defined above except that if a 
word in the Hypothesis sentence is not matched, 
then all its synonyms and antonyms are also 
searched for in the Text sentence.  Any synonym 
matches raise the score and any antonym matches 
lower the score by a fixed amount, and in this case 
arbitrarily selected as ±1 (before normalization).  A 
Microsoft Word 2003 COM object was used to 
search for the synonyms and antonyms from Mi-
crosoft Word’s lexical database.  

4 Classification used for Submission 

Two different types of classification methods were 
used to classify entailment for a Text-Hypothesis 
pair.  Both types are described below. 

We chose to initially keep our classification 
models simple and easy to visualize so that both 
our experienced and inexperienced research group 
members could participate. The “No Free Lunch 
Theorem” [Duda, Hart, and Stork, 2001] shows 
that there is no inherent benefit to any specific 
classifier1 , and since the more important task of 
generating the metrics 2  crosses academic disci-
plines in our research group, we found communi-
cating in terms of a Gaussian distribution was eas-
ily understood. 

                                                 
1 For “good generalization performance, there are no 
context-independent or usage-independent reasons to 
favor one learning or classification method over an-
other.” 
2 Since we are creating the metrics, we are attempting to 
distribute the values in a Gaussian curve.  This becomes 
a “context” which we can favor a classifier that will 
classify the data better, such as the univariate normal 
model.  Our goal is to create a better metric and not 
necessarily to find a better classifier. 

4.1 Univariate Normal Model 

The continuous univariate normal model, or Gaus-
sian density, allows us to calculate p(x), or the 
probability that feature x will appear in a dataset.  
The data points in the given dataset is assumed to 
be distributed in a Gaussian distribution, some-
times referred to as a bell curve.  Of course if the 
data points in that data set turn out to be distributed 
in a non-Gaussian curve (i.e. exponential curve or 
even linear) or multimodal curve (more than one 
peak), then we may not be able to draw any con-
clusions.  For the purposes of our metrics, we are 
assuming a Gaussian distribution, and encourage 
the developer of the metric function to attempt to 
fit the metric results into Gaussian curve. 

The two parameters of interest are the mean μ 
and the variance σ2, of the data points.  With these 
two parameters, we are essentially able to calculate 
the probability density function (PDF) for the cate-
gory. After calculating these parameters from the 
development data set, we can apply the following 
formula to generate the probability, p(x), of a sam-
ple, where x is the metric value we wish to classify. 
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During the training step, the mean of a category 

is calculated.  The following formula does this cal-
culation, where n is the number of samples, and xi 
is a particular metric of the ith sample: 
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Also during the training step, the variance of a 

category is also calculated, with this formula: 
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For each type of entailment, there are two classi-

fiers: one classifier for “YES” and one classifier 
for “NO”, representing the two categories.  During 
the training step, the mean and variance parame-
ters are calculated directly from the metrics that 
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come from the development data.  During the test-
ing step, the specified metric is calculated for the 
T-H pair, and using the univariate normal formula, 
we can calculate the probability that the calculated 
metric is in the “YES” category or the “NO” cate-
gory.  Then which ever result is larger, that cate-
gory is chosen as the answer. 

To understand the limitations of this method, we 
have a quick example.  Here is a parameter list of 
each category as well as the decisions that were 
made from them: 
 
(IE,NO) = { μ = 0.6867668 , σ = 0.1824087} 
(IE,YES) = { μ = 0.6874263 , σ = 0.1622136} 
(IR,NO) = { μ = 0.3649016 , σ = 0.1984567} 
(IR,YES) = { μ = 0.5888839 , σ = 0.2035728} 
(QA,NO) = { μ = 0.4470804 , σ = 0.1821738} 
(QA,YES) = { μ = 0.7330091 , σ = 0.1873602} 
(SUM,NO) = { μ = 0.4470848 , σ = 0.2625011} 
(SUM,YES) = { μ = 0.657442 , σ = 0.250246} 
 
Overall correct entailments made: 492 out of 800. 
Overall probability of success : 0.615 
 
IE (200) [  %47.5  with 95 correct] 
   Predicted YES (0) [  %NaN  with 0 correct] 
   Predicted NO (200) [  %47.5  with 95 correct] 
IR (200) [  %66.5  with 133 correct] 
   Predicted YES (76) [  %63.16  with 48 correct] 
   Predicted NO (124) [  %68.55  with 85 correct] 
QA (200) [  %73.5  with 147 correct] 
   Predicted YES (95) [  %77.89  with 74 correct] 
   Predicted NO (105) [  %69.52  with 73 correct] 
SUM (200) [  %58.5  with 117 correct] 
   Predicted YES (133) [  %60.9  with 81 correct] 
   Predicted NO (67) [  %53.73  with 36 correct] 

 
As we can see, the two categories (IE,NO) and 

(IE,YES) are very similar in mean, μ.  This essen-
tially translates to two Gaussian curves peaking at 
the same point, which would cause an overlap that 
would favor the curve with the larger variance dur-
ing the calculation of p(x).  If we look at the results 
using these parameters, we can see that in the “IE” 
type of entailment all decisions were made in favor 
of that category.  This does not mean that there is 
an error, just that the distribution of this metric is 
too similar and so probably is not a good metric to 
use in deciding the classification for that category.  
Whereas in entailment type “QA”, we find that this 
metric does indeed divide the categories into two 
curves that are quite separated, and so yields a 
good accuracy.  

4.2 Maximizing the Discriminant Function 

This is the easiest way the RTE tool calculates 
whether a T-H pair is in a specific category.  If a 

metric is less-than a specific threshold, then the T-
H pair is classified as “NO”, and if it is above the 
threshold, then the pair is classified as “YES”.  
Each type of entailment has its own discriminant 
function and therefore, there are only four classifi-
ers or in this case, technically defined as four di-
chotomizers. 

Each threshold is calculated using a brute force 
iterative technique.  After the metric is calculated 
for each sample, the RTE tool simply increments 
the threshold a certain fixed amount (arbitrarily 
selected as 0.001 each each iteration) and records 
the accuracy over the entire development data set 
for that iteration.  As the process concludes after 
one thousand iterations (that is, moving the thresh-
old from 0 to 1 in .001 increments), the threshold 
with the maximum accuracy is selected as the 
threshold for that classifier.  This, however, places 
a constraint on the way the metric needs to be de-
fined, as described above in section 2.1. 

5 Results 

There are four result sets representing each of the 
metrics used paired with each of the classification 
strategies used.  The first table below shows the 
actual results, broken down into each type of en-
tailment, using the released annotated test set.  The 
second table shows our results by randomly split-
ting the development dataset 80%/20% into a train-
ing set (80%) and a testing set (20%).  From the 
results listed in the second table, it was decided 
which metric/classification pair would be used in 
our final submission. 

Although we cannot truly compare results from 
this competition to last years RTE 2 competition, 
we found that our results seemed quite competitive. 
[Bar-Haim, Dagan, et al. 2006]  We do recognize 
that some of our metrics have already been em-
ployed by other teams [Jijkoun and Rijke, 2005] 
and that our results may be different because of the 
thesaurus corpus we employed and the classifica-
tion strategy we used. 

 

5.1 Actual Results 

The actual results are based on training the RTE 
tool we developed on the released annotated de-
velopment dataset and then applying the trained 
classifiers on the test dataset.  In this table, each 
column represents a training metric used with a 
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classification method.  For the two metrics used, 
“LS” represents Lexical Similarity, while “LR” 
represents Lexical Similarity with Synonym and 
Antonym Replacement (or Lexical Replacement 
for short).  For the two types of classification used, 
“UN” represents the Univariate Normal model, 
while “DM” represents Linear Discriminant 
Maximization. 

 
 LS+UN LR+UN LS+DM LR+DM 
Overall 0.615 0.626 0.61 0.629 
IE 0.475 0.510 0.495 0.505 
IR 0.665 0.630 0.635 0.640 
QA 0.735 0.750 0.750 0.750 
SUM 0.585 0.615 0.560 0.620 

 
As the reader can see, our final submissions’ 

scores were not the maximal ones from the table.  
Our first submission we submitted scored 61% and 
our second submission scored 62.62%.  For our 
first submission, the Lexical Similarity metric was 
used in conjunction with the Linear Discriminant 
Maximization model for classification.  For our 
second submission, our Lexical Replacement met-
ric was used in combination with the Univariate 
Normal model of classification.  These two combi-
nations were chosen, however, from the training 
results below. 

 

5.2 Training results 

Using these results, it was decided to pick the 
maximal overall accuracy using both metrics.  It 
was assumed that the same correlations found in 
the development dataset would be found in the 
testing dataset.  Though this did not ring true in 
actuality, the final results using either method were 
quite close. 

 
 LS+UN LR+UN LS+DM LR+DM
Overall 0.669 0.675 0.717 0.644 
IE 0.425 0.575 0.625 0.600 
IR 0.688 0.667 0.688 0.646 
QA 0.811 0.784 0.811 0.784 
SUM 0.771 0.686 0.775 0.543 

 

6 Conclusions and Future Enhancements  

The lexical similarity metric and its variants obvi-
ously have some correlation to whether a Text-

Hypothesis pair has entailment or not.  Though we 
were surprised by the results (from our runs ex-
ceeding results from other teams’ runs from previ-
ous years) and at how well they worked initially, 
further investigation found the accuracy of certain 
types of entailment, especially Information Extrac-
tion (IE), lacking and perhaps making some met-
rics almost irrelevant as a viable metric. 

By focusing our efforts this year on developing 
a tool to test various methods of classification and 
metrics, we created an excellent way to develop 
our ideas and distribute our research efforts among 
researchers.  The RTE Development Environment 
will help us coordinate our efforts and allow small 
gains in any individual metric to contribute to the 
overall classification in a proportionately signifi-
cant way. 

For future enhancements, we intend to apply the 
multivariate model to process a metric vector in 
determining classification instead of just consider-
ing one metric at a time (as we did in the univariate 
model).  In addition, we intend to extend our met-
rics to consider semantic interpretations and com-
parisons between the Text-Hypothesis pair. 

We feel that our overall success was illuminat-
ing to the larger task at hand and we are looking 
forward to applying our decision making frame-
work to next year’s submission.  Judging by our 
results, the simplicity of our approach will quite 
possibly yield a competitive entailment strategy 
even in comparison to more syntactic or semantic 
decompositions of the sentence pairs at this time. 

Our primary success, over the three week period 
in which we addressed this problem, was the de-
velopment of a tool and a process by which mem-
bers of our research group can interact.  The pool-
ing of expertise from our linguistics, computer sci-
ence, and cognitive science disciplines and con-
structing our future plan of action culminated in 
the development of this tool, benchmarks for our 
group, and constraints in which we can operate 
efficiently and address this problem with more 
depth in the future. 
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