
Proceedings of the 5th Workshop on Important Unresolved Matters, pages 1–8,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

ElixirFM — Implementation of Functional Arabic Morphology

Otakar Smrž
Institute of Formal and Applied Linguistics

Faculty of Mathematics and Physics
Charles University in Prague

otakar.smrz@mff.cuni.cz

Abstract

Functional Arabic Morphology is a formula-
tion of the Arabic inflectional system seek-
ing the working interface between morphol-
ogy and syntax. ElixirFM is its high-level
implementation that reuses and extends the
Functional Morphology library for Haskell.
Inflection and derivation are modeled in
terms of paradigms, grammatical categories,
lexemes and word classes. The computation
of analysis or generation is conceptually dis-
tinguished from the general-purpose linguis-
tic model. The lexicon of ElixirFM is de-
signed with respect to abstraction, yet is no
more complicated than printed dictionaries.
It is derived from the open-source Buckwal-
ter lexicon and is enhanced with information
sourcing from the syntactic annotations of
the Prague Arabic Dependency Treebank.

1 Overview

One can observe several different streams both in the
computational and the purely linguistic modeling of
morphology. Some are motivated by the need to ana-
lyze word forms as to their compositional structure,
others consider word inflection as being driven by
the underlying system of the language and the for-
mal requirements of its grammar.

In Section 2, before we focus on the principles of
ElixirFM, we briefly follow the characterization of
morphological theories presented by Stump (2001)
and extend the classification to the most promi-
nent computational models of Arabic morphology
(Beesley, 2001; Buckwalter, 2002; Habash et al.,
2005; El Dada and Ranta, 2006).

In Section 3, we survey some of the categories of
the syntax–morphology interface in Modern Written
Arabic, as described by the Functional Arabic Mor-
phology. In passing, we will introduce the basic con-
cepts of programming in Haskell, a modern purely
functional language that is an excellent choice for
declarative generative modeling of morphologies, as
Forsberg and Ranta (2004) have shown.

Section 4 will be devoted to describing the lexicon
of ElixirFM. We will develop a so-called domain-
specific language embedded in Haskell with which
we will achieve lexical definitions that are simulta-
neously a source code that can be checked for con-
sistency, a data structure ready for rather indepen-
dent processing, and still an easy-to-read-and-edit
document resembling the printed dictionaries.

In Section 5, we will illustrate how rules of in-
flection and derivation interact with the parameters
of the grammar and the lexical information. We will
demonstrate, also with reference to the Functional
Morphology library (Forsberg and Ranta, 2004), the
reusability of the system in many applications, in-
cluding computational analysis and generation in
various modes, exploring and exporting of the lex-
icon, printing of the inflectional paradigms, etc.

2 Morphological Models

According to Stump (2001), morphological theories
can be classified along two scales. The first one
deals with the core or the process of inflection:

lexical theories associate word’s morphosyntactic
properties with affixes

inferential theories consider inflection as a result of
operations on lexemes; morphosyntactic prop-

1

erties are expressed by the rules that relate the
form in a given paradigm to the lexeme

The second opposition concerns the question of
inferability of meaning, and theories divide into:

incremental words acquire morphosyntactic prop-
erties only in connection with acquiring the in-
flectional exponents of those properties

realizational association of a set of properties with
a word licenses the introduction of the expo-
nents into the word’s morphology

Evidence favoring inferential–realizational theo-
ries over the other three approaches is presented by
Stump (2001) as well as Baerman et al. (2006) or
Spencer (2004). In trying to classify the implemen-
tations of Arabic morphological models, let us re-
consider this cross-linguistic observation:

The morphosyntactic properties associ-
ated with an inflected word’s individ-
ual inflectional markings may underdeter-
mine the properties associated with the
word as a whole. (Stump, 2001, p. 7)

How do the current morphological analyzers in-
terpret, for instance, the number and gender of the
Arabic broken masculine plurals ǧudud X

�
Y
�
g. new

ones or qud. āh �
èA
�	
�
��
¯ judges, or the case of mustawan

ø
�
ñ
��
J�

�
Ó a level? Do they identify the values of these

features that the syntax actually operates with, or is
the resolution hindered by some too generic assump-
tions about the relation between meaning and form?

Many of the computational models of Arabic
morphology, including in particular (Beesley, 2001),
(Ramsay and Mansur, 2001) or (Buckwalter, 2002),
are lexical in nature. As they are not designed in
connection with any syntax–morphology interface,
their interpretations are destined to be incremental.

Some signs of a lexical–realizational system can
be found in (Habash, 2004). The author mentions
and fixes the problem of underdetermination of in-
herent number with broken plurals, when develop-
ing a generative counterpart to (Buckwalter, 2002).

The computational models in (Soudi et al., 2001)
and (Habash et al., 2005) attempt the inferential–
realizational direction. Unfortunately, they imple-
ment only sections of the Arabic morphological sys-

tem. The Arabic resource grammar in the Grammat-
ical Framework (El Dada and Ranta, 2006) is per-
haps the most complete inferential–realizational im-
plementation to date. Its style is compatible with
the linguistic description in e.g. (Fischer, 2001) or
(Badawi et al., 2004), but the lexicon is now very
limited and some other extensions for data-oriented
computational applications are still needed.

ElixirFM is inspired by the methodology in (Fors-
berg and Ranta, 2004) and by functional program-
ming, just like the Arabic GF is (El Dada and Ranta,
2006). Nonetheless, ElixirFM reuses the Buckwal-
ter lexicon (2002) and the annotations in the Prague
Arabic Dependency Treebank (Hajič et al., 2004),
and implements yet more refined linguistic model.

3 Morphosyntactic Categories

Functional Arabic Morphology and ElixirFM re-
establish the system of inflectional and inher-
ent morphosyntactic properties (alternatively named
grammatical categories or features) and distinguish
precisely the senses of their use in the grammar.

In Haskell, all these categories can be represented
as distinct data types that consist of uniquely identi-
fied values. We can for instance declare that the cate-
gory of case in Arabic discerns three values, that we
also distinguish three values for number or person,
or two values of the given names for verbal voice:
data Case = Nominative | Genitive |

Accusative
data Number = Singular | Dual | Plural
data Person = First | Second | Third
data Voice = Active | Passive

All these declarations introduce new enumerated
types, and we can use some easily-defined meth-
ods of Haskell to work with them. If we load this
(slightly extended) program into the interpreter,1 we
can e.g. ask what category the value Genitive be-
longs to (seen as the :: type signature), or have it
evaluate the list of the values that Person allows:
? :type Genitive → Genitive :: Case
? enum :: [Person] → [First,Second,Third]

Lists in Haskell are data types that can be
parametrized by the type that they contain. So, the
value [Active, Active, Passive] is a list of three
elements of type Voice, and we can write this if nec-
essary as the signature :: [Voice]. Lists can also

1http://www.haskell.org/

2

be empty or have just one single element. We denote
lists containing some type a as being of type [a].

Haskell provides a number of useful types al-
ready, such as the enumerated boolean type or the
parametric type for working with optional values:
data Bool = True | False
data Maybe a = Just a | Nothing

Similarly, we can define a type that couples other
values together. In the general form, we can write
data Couple a b = a :-: b

which introduces the value :-: as a container for
some value of type a and another of type b.2

Let us return to the grammatical categories. In-
flection of nominals is subject to several formal re-
quirements, which different morphological models
decompose differently into features and values that
are not always complete with respect to the inflec-
tional system, nor mutually orthogonal. We will ex-
plain what we mean by revisiting the notions of state
and definiteness in contemporary written Arabic.

To minimize the confusion of terms, we will de-
part from the formulation presented in (El Dada and
Ranta, 2006). In there, there is only one relevant
category, which we can reimplement as State’:
data State’ = Def | Indef | Const

Variation of the values of State’ would enable gen-
erating the forms al-kitābu �

H. A
��
Jº� Ë @ def., kitābun �

H. A
��
J»�

indef., and kitābu �
H. A

��
J»� const. for the nominative

singular of book. This seems fine until we explore
more inflectional classes. The very variation for the
nominative plural masculine of the adjective high
gets ar-rafı̄↪̄una

�	
àñ

�
ªJ

	
�̄
��QË @ def., rafı̄↪̄una

�	
àñ

�
ªJ

	
�̄
�P in-

def., and rafı̄↪̄u ñ
�
ªJ

	
�̄
�P const. But what value does

the form ar-rafı̄↪̄u ñ
�
ªJ

	
�̄
��QË @, found in improper annex-

ations such as in al-mas↩̄ulūna ’r-rafı̄↪̄u ’l-mustawā
ø

�
ñ
��
J��ÜÏ @ ñ

�
ªJ

	
�̄
��QË @

�	
àñ

�
Ëð

�
ñ��ÜÏ@ the-officials the-highs-

of the-level, receive?
It is interesting to consult for instance (Fischer,

2001), where state has exactly the values of State’,
but where the definite state Def covers even forms
without the prefixed al- Ë @ article, since also some
separate words like lā B

�
no or yā A

�
K
 oh can have the

effects on inflection that the definite article has. To
distinguish all the forms, we might think of keeping

2Infix operators can also be written as prefix functions if en-
closed in (). Functions can be written as operators if enclosed
in ‘‘. We will exploit this when defining the lexicon’s notation.

state in the sense of Fischer, and adding a boolean
feature for the presence of the definite article . . .
However, we would get one unacceptable combina-
tion of the values claiming the presence of the def-
inite article and yet the indefinite state, i.e. possibly
the indefinite article or the diptotic declension.

Functional Arabic Morphology refactors the six
different kinds of forms (if we consider all inflec-
tional situations) depending on two parameters. The
first controls prefixation of the (virtual) definite arti-
cle, the other reduces some suffixes if the word is a
head of an annexation. In ElixirFM, we define these
parameters as type synonyms to what we recall:
type Definite = Maybe Bool
type Annexing = Bool

The Definite values include Just True for
forms with the definite article, Just False for
forms in some compounds or after lā B

�
or yā A

�
K

(absolute negatives or vocatives), and Nothing for
forms that reject the definite article for other reasons.

Functional Arabic Morphology considers state as
a result of coupling the two independent parameters:
type State = Couple Definite Annexing

Thus, the indefinite state Indef describes a word
void of the definite article(s) and not heading an an-
nexation, i.e. Nothing :-: False. Conversely, ar-
rafı̄↪̄u ñ

�
ªJ

	
�̄
��QË @ is in the state Just True :-: True.

The classical construct state is Nothing :-: True.
The definite state is Just _ :-: False, where _ is
True for El Dada and Ranta and False for Fischer.
We may discover that now all the values of State

are meaningful.3

Type declarations are also useful for defining in
what categories a given part of speech inflects. For
verbs, this is a bit more involved, and we leave it for
Figure 2. For nouns, we set this algebraic data type:
data ParaNoun = NounS Number Case State

In the interpreter, we can now generate all 54
combinations of inflectional parameters for nouns:
? [NounS n c s | n <- enum, c <- enum,

s <- values]

The function values is analogous to enum, and both
need to know their type before they can evaluate.

3With Just False :-: True, we can annotate e.g. the
‘incorrectly’ underdetermined rafı̄↪̄u ñ

�
ªJ

	
�̄
�P in hum-u ’l-mas↩̄ulū-

na rafı̄↪̄u ’l-mustawā øñ
�
J�ÖÏ @ ñ

�
ªJ

	
�̄
�P
	
àñËð

ñ�ÖÏ @ Ñë they-are the-

officials highs-of the-level, i.e. they are the high-level officials.

3

The ‘magic’ is that the bound variables n, c, and s

have their type determined by the NounS constructor,
so we need not type anything explicitly. We used the
list comprehension syntax to cycle over the lists that
enum and values produce, cf. (Hudak, 2000).

4 ElixirFM Lexicon

Unstructured text is just a list of characters, or string:
type String = [Char]

Yet words do have structure, particularly in Arabic.
We will work with strings as the superficial word
forms, but the internal representations will be more
abstract (and computationally more efficient, too).

The definition of lexemes can include the deriva-
tional root and pattern information if appropriate,
cf. (Habash et al., 2005), and our model will encour-
age this. The surface word kitāb H. A

��
J»� book can de-

compose to the triconsonantal root k t b I.
�
J» and the

morphophonemic pattern FiCAL of type PatternT:
data PatternT = FaCaL | FAL | FaCY |

FiCAL | FuCCAL | {- ... -}
MustaFCaL | MustaFaCL

deriving (Eq, Enum, Show)

The deriving clause associates PatternT with
methods for testing equality, enumerating all the val-
ues, and turning the names of the values into strings:
? show FiCAL → "FiCAL"

We choose to build on morphophonemic patterns
rather than CV patterns and vocalisms. Words like
istaǧāb H. A

�
j.

��
J�@� to respond and istaǧwab H.

�
ñj.

��
J�@�

to interrogate have the same underlying VstVCCVC
pattern, so information on CV patterns alone would
not be enough to reconstruct the surface forms. Mor-
phophonemic patterns, in this case IstaFAL and
IstaFCaL, can easily be mapped to the hypothetical
CV patterns and vocalisms, or linked with each other
according to their relationship. Morphophonemic
patterns deliver more information in a more com-
pact way. Of course, ElixirFM provides functions
for properly interlocking the patterns with the roots:
? merge "k t b" FiCAL → "kitAb"
? merge "ˆg w b" IstaFAL → "istaˆgAb"
? merge "ˆg w b" IstaFCaL → "istaˆgwab"
? merge "s ’ l" MaFCUL → "mas’Ul"
? merge "z h r" IFtaCaL → "izdahar"

The izdahar Q
�
ë
�
X 	P@� to flourish case exemplifies that

exceptionless assimilations need not be encoded in
the patterns, but can instead be hidden in rules.

The whole generative model adopts the multi-
purpose notation of ArabTEX (Lagally, 2004) as a
meta-encoding of both the orthography and phonol-
ogy. Therefore, instantiation of the "’" hamza car-
riers or other merely orthographic conventions do
not obscure the morphological model. With Encode
Arabic4 interpreting the notation, ElixirFM can at
the surface level process the original Arabic script
(non-)vocalized to any degree or work with some
kind of transliteration or even transcription thereof.

Morphophonemic patterns represent the stems of
words. The various kinds of abstract prefixes and
suffixes can be expressed either as atomic values, or
as literal strings wrapped into extra constructors:
data Prefix = Al | LA | Prefix String

data Suffix = Iy | AT | At | An | Ayn |
Un | In | Suffix String

al = Al; lA = LA -- function synonyms

aT = AT; ayn = Ayn; aN = Suffix "aN"

Affixes and patterns are arranged together via
the Morphs a data type, where a is a triliteral pat-
tern PatternT or a quadriliteral PatternQ or a non-
templatic word stem Identity of type PatternL:
data PatternL = Identity
data PatternQ = KaRDaS | KaRADiS {- ... -}

data Morphs a = Morphs a [Prefix] [Suffix]

The word lā-silkı̄y �ú

¾
�
Ê��B

�
wireless can thus be

decomposed as the root s l k ½Ê� and the value
Morphs FiCL [LA] [Iy]. Shunning such concrete
representations, we define new operators >| and |<

that denote prefixes, resp. suffixes, inside Morphs a:
? lA >| FiCL |< Iy → Morphs FiCL [LA][Iy]

Implementing >| and |< to be applicable in the in-
tuitive way required Haskell’s multi-parameter type
classes with functional dependencies (Jones, 2000):
class Morphing a b | a -> b where

morph :: a -> Morphs b

instance Morphing (Morphs a) a where
morph = id

instance Morphing PatternT PatternT where
morph x = Morphs x [] []

The instance declarations ensure how the morph

method would turn values of type a into Morphs b.
4http://sf.net/projects/encode-arabic/

4

|> "k t b" <| [

FaCaL ‘verb‘ ["write", "be destined"] ‘imperf‘ FCuL,

FiCAL ‘noun‘ ["book"] ‘plural‘ FuCuL,

FiCAL |< aT ‘noun‘ ["writing"],

FiCAL |< aT ‘noun‘ ["essay", "piece of writing"] ‘plural‘ FiCAL |< At,

FACiL ‘noun‘ ["writer", "author", "clerk"] ‘plural‘ FaCaL |< aT
‘plural‘ FuCCAL,

FuCCAL ‘noun‘ ["kuttab", "Quran school"] ‘plural‘ FaCACIL,

MaFCaL ‘noun‘ ["office", "department"] ‘plural‘ MaFACiL,

MaFCaL |< Iy ‘adj‘ ["office"],

MaFCaL |< aT ‘noun‘ ["library", "bookstore"] ‘plural‘ MaFACiL]

Figure 1: Entries of the ElixirFM lexicon nested under the root k t b I.
�
J» using morphophonemic templates.

Supposing that morph is available for the two types,
(|<) is a function on y :: a and x :: Suffix giv-
ing a value of type Morphs b. The intermediate re-
sult of morph y is decomposed, and x is prepended
to the stack s of the already present suffixes.

(|<) :: Morphing a b =>
a -> Suffix -> Morphs b

y |< x = Morphs t p (x : s)
where Morphs t p s = morph y

With the introduction of patterns, their synony-
mous functions and the >| and |< operators, we have
started the development of what can be viewed as a
domain-specific language embedded in the general-
purpose programming language. Encouraged by the
flexibility of many other domain-specific languages
in Haskell, esp. those used in functional parsing
(Ljunglöf, 2002) or pretty-printing (Wadler, 2003),
we may design the lexicon to look like e.g.

module Elixir.Data.Lexicon
import Elixir.Lexicon

lexicon = listing {- lexicon’s header -}

|> {- root one -} <| [{- Entry a -}]

|> {- root two -} <| [{- Entry b -}]

-- other roots or word stems and entries

and yet be a verifiable source code defining a data
structure that is directly interpretable. The meaning

of the combinators |> and <| could be supplied via
an external module Elixir.Lexicon, so is very easy
to customize. The effect of these combinators might
be similar to the : and :-: constructors that we met
previously, but perhaps other data structures might
be built from the code instead of lists and pairs.

Individual entries can be defined with functions in
a convenient notational form using ‘‘. Infix opera-
tors can have different precedence and associativity,
which further increases the options for designing a
lightweight, yet expressive, embedded language.

In Figure 1, each entry reduces to a record of type
Entry PatternT reflecting internally the lexeme’s
inherent properties. Consider one such reduction be-
low. Functions like plural or gender or humanness
could further modify the Noun’s default information:
? FiCAL |< aT ‘noun‘ ["writing"] →

noun (FiCAL |< aT) ["writing"] →

Entry (Noun [] Nothing Nothing)
(morph (FiCAL |< aT))
["writing"] →

Entry (Noun [] Nothing Nothing)
(Morphs FiCAL [] [AT])
["writing"]

The lexicon of ElixirFM is derived from the open-
source Buckwalter lexicon (Buckwalter, 2002).5 We
devised an algorithm in Perl using the morpho-

5Habash (2004) comments on the lexicon’s internal format.

5

data Mood = Indicative | Subjunctive | Jussive | Energetic deriving (Eq, Enum)
data Gender = Masculine | Feminine deriving (Eq, Enum)

data ParaVerb = VerbP Voice Person Gender Number
| VerbI Mood Voice Person Gender Number
| VerbC Gender Number deriving Eq

paraVerbC :: Morphing a b => Gender -> Number -> [Char] -> a -> Morphs b
paraVerbC g n i = case n of

Singular -> case g of Masculine -> prefix i . suffix ""
Feminine -> prefix i . suffix "I"

Plural -> case g of Masculine -> prefix i . suffix "UW"
Feminine -> prefix i . suffix "na"

_ -> prefix i . suffix "A"

Figure 2: Excerpt from the implementation of verbal inflectional features and paradigms in ElixirFM.

phonemic patterns of ElixirFM that finds the roots
and templates of the lexical items, as they are avail-
able only partially in the original, and produces the
lexicon in formats for Perl and for Haskell.

Information in the ElixirFM lexicon can get even
more refined, by lexicographers or by programmers.
Verbs could be declared via indicating their deriva-
tional verbal form (that would, still, reduce to some
Morphs a value), and deverbal nouns and participles
could be defined generically for the extended forms.
The identification of patterns as to their derivational
form is implemented easily with the isForm method:
data Form = I | II | III | IV {- .. -} XV

? isForm VIII IFtaCaL → True
? isForm II TaKaRDuS → True
? filter (‘isForm‘ MuFCI) [I ..] → [IV]

Nominal parts of speech need to be enhanced with
information on the inherent number, gender and hu-
manness, if proper modeling of linguistic agreement
in Arabic is desired.6 Experiments with the Prague
Arabic Dependency Treebank (Hajič et al., 2004)
show that this information can be learned from an-
notations of syntactic relations (Smrž, 2007).

5 Morphological Rules

Inferential–realizational morphology is modeled in
terms of paradigms, grammatical categories, lex-
emes and word classes. ElixirFM implements the
comprehensive rules that draw the information from

6Cf. e.g. (El Dada and Ranta, 2006; Kremers, 2003).

the lexicon and generate the word forms given the
appropriate morphosyntactic parameters. The whole
is invoked through a convenient inflect method.

The lexicon and the parameters determine the
choice of paradigms. The template selection mecha-
nism differs for nominals (providing plurals) and for
verbs (providing all needed stem alternations in the
extent of the entry specifications of e.g. Hans Wehr’s
dictionary), yet it is quite clear-cut (Smrž, 2007).

In Figure 2, the algebraic data type ParaVerb

restricts the space in which verbs are inflected by
defining three Cartesian products of the elementary
categories: a verb can have VerbP perfect forms in-
flected in voice, person, gender, number, VerbI im-
perfect forms inflected also in mood, and VerbC im-
peratives inflected in gender and number only.7

The paradigm for inflecting imperatives, the one
and only such paradigm in ElixirFM, is imple-
mented as paraVerbC. It is a function parametrized
by some particular value of gender g and number n.
It further takes the initial imperative prefix i and the
verbal stem (both inferred from the morphophone-
mic patterns in the lexical entry) to yield the in-
flected imperative form. Note the polymorphic type
of the function, which depends on the following:

prefix, suffix :: Morphing a b =>
[Char] -> a -> Morphs b

prefix x y = Prefix x >| y
suffix x y = y |< Suffix x

7Cf. (Forsberg and Ranta, 2004; El Dada and Ranta, 2006).

6

If one wished to reuse the paradigm and apply it on
strings only, it would be sufficient to equate these
functions with standard list operations, without any
need to reimplement the paradigm itself.

The definition of paraVerbC is simple and concise
due to the chance to compose with . the partially
applied prefix and suffix functions and to virtu-
ally omit the next argument. This advanced formu-
lation may seem not as minimal as when specifying
the literal endings or prefixes, but we present it here
to illustrate the options that there are. An abstract
paradigm can be used on more abstract types than
just strings.8 Inflected forms need not be merged
with roots yet, and can retain the internal structure:
? paraVerbC Feminine Plural "u" FCuL →
Prefix "u" >| FCuL |< Suffix "na"

? merge "k t b" ({- previous value -}) →

"uktubna" uktubna
�	á
�
�.

��
J
�
»
�
@ fem. pl. write!

? [merge "q r ’" (paraVerbC g n "i"
FCaL) | g <- values, n <- values] →

masc.: "iqra’" iqra↩
�
@ �Q
��
¯@� sg. "iqra’A" iqra↩̄a

�
@ �Q
��
¯@� du. "iqra’UA" iqra↩̄u @ð

�
ð �Q

��
¯@� pl.

fem.: "iqra’I" iqra↩̄ı ú

G
�

�Q
��
¯@� sg. "iqra’A" iqra↩̄a

�
@ �Q
��
¯@� du. "iqra’na" iqra↩na

�	
à

�
@ �Q
��
¯@� pl. read!

The highlight of the Arabic morphology is that
the ‘irregular’ inflection actually rests in strictly ob-
serving some additional rules, the nature of which
is phonological. Therefore, surprisingly, ElixirFM
does not even distinguish between verbal and nomi-
nal word formation when enforcing these rules. This
reduces the number of paradigms to the prototypical
3 verbal and 5 nominal! Yet, the model is efficient.

Given that the morphophonemic patterns already
do reflect the phonological restrictions, the only
places of further phonological interaction are the
prefix boundaries and the junction of the last letter of
the pattern with the very adjoining suffix. The rules
are implemented with ->- and -<-, respectively, and
are invoked from within the merge function:
merge :: (Morphing a b, Template b) =>

[Char] -> a -> [Char]

(->-) :: Prefix -> [Char] -> [Char]
(-<-) :: Char -> Suffix -> [Char]

8Cf. some morphology-theoretic views in Spencer (2004).

’I’ -<- x = case x of

AT -> "iyaT" ; Un -> "Una"
Iy -> "Iy" ; In -> "Ina"

Suffix "" -> "i"

Suffix "Una" -> "Una"
Suffix "U" -> "U"
Suffix "UW" -> "UW"

Suffix "Ina" -> "Ina"
Suffix "I" -> "I"

Suffix x | x ‘elem‘ ["i", "u"] -> "I"
| x ‘elem‘ ["iN", "uN"] -> "iN"

| "n" ‘isPrefixOf‘ x ||
"t" ‘isPrefixOf‘ x -> "I" ++ x

_ -> "iy" ++ show x

(-<-) is likewise defined when matching on ’Y’,
’A’, ’U’, and when not matching. (->-) imple-
ments definite article assimilation and occasional
prefix interaction with weak verbs.

Nominal inflection is also driven by the informa-
tion from the lexicon and by phonology. The reader
might be noticing that the morphophonemic patterns
and the Morphs a templates are actually extremely
informative. We can use them as determining the in-
flectional class and the paradigm function, and thus
we can almost avoid other unintuitive or excessive
indicators of the kind of weak morphology, diptotic
inflection, and the like.

6 Applications and Conclusion

The ElixirFM linguistic model and the data of the
lexicon can be integrated into larger applications or
used as standalone libraries and resources.

There is another, language-independent part of
the system that implements the compilation of the
inflected word forms and their associated mor-
phosyntactic categories into morphological analyz-
ers and generators. This part is adapted from (Fors-
berg and Ranta, 2004). The method used for analysis
is deterministic parsing with tries (Ljunglöf, 2002).

ElixirFM also provides functions for exporting
and pretty-printing the linguistic model into XML,
LATEX, Perl, SQL, and other custom formats.

We have presented ElixirFM as a high-level func-
tional implementation of Functional Arabic Mor-
phology. Next to some theoretical points, we pro-

7

posed a model that represents the linguistic data
in an abstract and extensible notation that encodes
both orthography and phonology, and whose inter-
pretation is customizable. We developed a domain-
specific language in which the lexicon is stored and
which allows easy manual editing as well as auto-
matic verification of consistency. We believe that the
modeling of both the written language and the spo-
ken dialects can share the presented methodology.

ElixirFM and its lexicons are open-source soft-
ware licensed under GNU GPL and available on
http://sf.net/projects/elixir-fm/.

This work has been supported by the Ministry of
Education of the Czech Republic (MSM00216208-
38), by the Grant Agency of Charles University in
Prague (UK 373/2005), and by the Grant Agency of
the Czech Academy of Sciences (1ET101120413).

References
Elsaid Badawi, Mike G. Carter, and Adrian Gully. 2004.

Modern Written Arabic: A Comprehensive Grammar.
Routledge.

Matthew Baerman, Dunstan Brown, and Greville G. Cor-
bett. 2006. The Syntax-Morphology Interface. A
Study of Syncretism. Cambridge Studies in Linguis-
tics. Cambridge University Press.

Kenneth R. Beesley. 2001. Finite-State Morphological
Analysis and Generation of Arabic at Xerox Research:
Status and Plans in 2001. In EACL 2001 Workshop
Proceedings on Arabic Language Processing: Status
and Prospects, pages 1–8, Toulouse, France.

Tim Buckwalter. 2002. Buckwalter Arabic Morpho-
logical Analyzer Version 1.0. LDC catalog number
LDC2002L49, ISBN 1-58563-257-0.

Ali El Dada and Aarne Ranta. 2006. Open Source Arabic
Grammars in Grammatical Framework. In Proceed-
ings of the Arabic Language Processing Conference
(JETALA), Rabat, Morocco, June 2006. IERA.

Wolfdietrich Fischer. 2001. A Grammar of Classical
Arabic. Yale Language Series. Yale University Press,
third revised edition. Translated by Jonathan Rodgers.

Markus Forsberg and Aarne Ranta. 2004. Functional
Morphology. In Proceedings of the Ninth ACM SIG-
PLAN International Conference on Functional Pro-
gramming, ICFP 2004, pages 213–223. ACM Press.

Nizar Habash, Owen Rambow, and George Kiraz. 2005.
Morphological Analysis and Generation for Arabic
Dialects. In Proceedings of the ACL Workshop

on Computational Approaches to Semitic Languages,
pages 17–24, Ann Arbor, Michigan. Association for
Computational Linguistics.

Nizar Habash. 2004. Large Scale Lexeme Based Ara-
bic Morphological Generation. In JEP-TALN 2004,
Session Traitement Automatique de l’Arabe, Fes, Mo-
rocco, April 2004.

Jan Hajič, Otakar Smrž, Petr Zemánek, Jan Šnaidauf, and
Emanuel Beška. 2004. Prague Arabic Dependency
Treebank: Development in Data and Tools. In NEM-
LAR International Conference on Arabic Language
Resources and Tools, pages 110–117. ELDA.

Paul Hudak. 2000. The Haskell School of Expression:
Learning Functional Programming through Multime-
dia. Cambridge University Press.

Mark P. Jones. 2000. Type Classes with Functional De-
pendencies. In ESOP ’00: Proceedings of the 9th Eu-
ropean Symposium on Programming Languages and
Systems, pages 230–244, London, UK. Springer.

Joost Kremers. 2003. The Arabic Noun Phrase. A
Minimalist Approach. Ph.D. thesis, University of Ni-
jmegen. LOT Dissertation Series 79.

Klaus Lagally. 2004. ArabTEX: Typesetting Arabic and
Hebrew, User Manual Version 4.00. Technical Report
2004/03, Fakultät Informatik, Universität Stuttgart.

Peter Ljunglöf. 2002. Pure Functional Parsing. An Ad-
vanced Tutorial. Licenciate thesis, Göteborg Univer-
sity & Chalmers University of Technology.

Allan Ramsay and Hanady Mansur. 2001. Arabic mor-
phology: a categorial approach. In EACL 2001 Work-
shop Proceedings on Arabic Language Processing:
Status and Prospects, pages 17–22, Toulouse, France.

Otakar Smrž. 2007. Functional Arabic Morphology. For-
mal System and Implementation. Ph.D. thesis, Charles
University in Prague.

Abdelhadi Soudi, Violetta Cavalli-Sforza, and Abder-
rahim Jamari. 2001. A Computational Lexeme-Based
Treatment of Arabic Morphology. In EACL 2001
Workshop Proceedings on Arabic Language Process-
ing: Status and Prospects, pages 155–162, Toulouse.

Andrew Spencer. 2004. Generalized Paradigm Function
Morphology. http://privatewww.essex.
ac.uk/˜spena/papers/GPFM.pdf, October 6.

Gregory T. Stump. 2001. Inflectional Morphology. A
Theory of Paradigm Structure. Cambridge Studies in
Linguistics. Cambridge University Press.

Philip Wadler. 2003. A Prettier Printer. In Jeremy
Gibbons and Oege de Moor, editors, The Fun of Pro-
gramming, Cornerstones of Computing, pages 223–
243. Palgrave Macmillan, March 2003.

8

