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Introduction

The NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical Translation (SSST)
took place on 26 April 2007 following the NAACL-HLT conference hosted by the University of
Rochester in New York. It was organized in response to growing interest in statistical, tree structured
models of relations between natural languages. Our hope was to bring together researchers working on
various aspects of this subject, and coming from various traditions. One way that the diversity of these
traditions can be seen is in their nomenclature: transduction grammars originated in formal language
theory (Lewis and Stearns 1968, Aho and Ullman 1969), and as interest in them was renewed in the
computational linguistics literature in the 1990s, they came to be also known as synchronous grammars.
Pushdown transducers and tree transducers, also introduced in the late 1960s, embody a less declarative,
rather more procedural view, but, in many cases, have transduction-grammar equivalents.

Another dimension of diversity is the variety of applications of synchronous/transduction grammars,
which is richly reflected in our workshop program. We selected fourteen papers, which include
papers on formal properties of synchronous/transduction grammars from both theoretical (Shieber) and
comparative experimental (Zhang and Gildea; Huang; Dreyer, Hall and Khudanpur) perspectives, and
papers applying synchronous/transduction grammars to machine translation as well as generation (Hall
and Němec) and semantic interpretation (Nesson and Shieber). The invited speaker for the workshop
was William C. Rounds of the University of Michigan, a pioneer of tree-transducer theory who was one
of the first to explore the usefulness of tree transducers for natural language.

The papers included a wide spectrum of experiments trying different tradeoffs between representational
adequacy versus efficiency. Some models adopted binary-rank ITG or inversion transduction grammar
constraints (Cherry and Lin; Huang; Dreyer, Hall and Khudanpur), while others permitted up to STAG
or synchronous tree-adjoining grammar expressiveness (Nesson and Shieber; Shieber), with others in
between at the SDTG or syntax directed transduction grammar a.k.a. SCFG or synchronous context-
free grammar level (Zhang, Zens and Ney; Zhang and Gildea). Transduction rules ranged from mildly
hierarchical, heavily lexical transduction rules on one hand (Cherry and Lin; Zhang, Zens and Ney;
Venkatapathy and Bangalore; Dreyer, Hall and Khudanpur), to abstract transduction rules emphasizing
compositional syntax on the other (Nesson and Shieber; Hall and Němec; Shieber).

A number of papers investigated machine learning techniques for inducing synchronous/transduction
grammars (Zhang, Zens and Ney; Cherry and Lin). Some of these focused on improving algorithms for
binarizing or reducing the rank of synchronous/transduction grammars (Zhang and Gildea; Huang). The
workshop also witnessed a number of papers proposing new ways of integrating tree structured models
into statistical methods in machine translation (Hopkins and Kuhn; Venkatapathy and Joshi; Bonneau-
Maynard, Allauzen, Déchelotte and Schwenk; Font Llitjós and Vogel; Owczarzak, van Genabith and
Way; Venkatapathy and Bangalore).

The Association for Machine Translation in the Americas sponsored $1000 in scholarships for several
students to attend the workshop. We thank AMTA for their generosity, and we also thank the Program
Committee for their extremely quick reviews.

Dekai Wu and David Chiang
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Abstract

In this paper, we describe a source-
side reordering method based on syntac-
tic chunks for phrase-based statistical ma-
chine translation. First, we shallow parse
the source language sentences. Then, re-
ordering rules are automatically learned
from source-side chunks and word align-
ments. During translation, the rules are
used to generate a reordering lattice for
each sentence. Experimental results are
reported for a Chinese-to-English task,
showing an improvement of 0.5%–1.8%
BLEU score absolute on various test sets
and better computational efficiency than
reordering during decoding. The exper-
iments also show that the reordering at
the chunk-level performs better than at the
POS-level.

1 Introduction

In machine translation, reordering is one of the ma-
jor problems, since different languages have differ-
ent word order requirements. Many reordering con-
straints have been used for word reorderings, such
as ITG constraints (Wu, 1996), IBM constraints
(Berger et al., 1996) and local constraints (Kanthak
et al., 2005). These approaches do not make use of
any linguistic knowledge.

Several methods have been proposed to use syn-
tactic information to handle the reordering problem,
e.g. (Wu, 1997; Yamada and Knight, 2001; Gildea,

2003; Melamed, 2004; Graehl and Knight, 2004;
Galley et al., 2006). One approach makes use of
bitext grammars to parse both the source and tar-
get languages. Another approach makes use of syn-
tactic information only in the target language. Note
that these models have radically different structures
and parameterizations than phrase-based models for
SMT.

Another kind of approaches is to use syntactic in-
formation in rescoring methods. (Koehn and Knight,
2003) apply a reranking approach to the sub-task
of noun-phrase translation. (Och et al., 2004) and
(Shen et al., 2004) describe the use of syntactic fea-
tures in reranking the output of a full translation sys-
tem, but the syntactic features give very small gains.

In this paper, we present a strategy to reorder
a source sentence using rules based on syntactic
chunks. It is possible to integrate reordering rules di-
rectly into the search process, but here, we consider
a more modular approach: easy to exchange reorder-
ing strategy. To avoid hard decisions before SMT,
we generate a source-reordering lattice instead of a
single reordered source sentence as input to the SMT
system. Then, the decoder uses the reordered source
language model as an additional feature function. A
language model trained on the reordered source-side
chunks gives a score for each path in the lattice. The
novel ideas in this paper are:

• reordering of the source sentence at the chunk
level,

• representing linguistic chunks-reorderings in a
lattice.
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The rest of this paper is organized as follows. Sec-
tion 2 presents a review of related work. In Sec-
tions 3, we review the phrase-based translation sys-
tem used in this work and propose the framework
of the new reordering method. In Section 4, we in-
troduce the details of the reordering rules, how they
are defined and how to extract them. In Section 5,
we explain how to apply the rules and how to gen-
erate reordering lattice. In Section 6, we present
some results that show that the chunk-level source
reordering is helpful for phrase-based statistical ma-
chine translation. Finally, we conclude this paper
and discuss future work in Section 7.

2 Related Work

Beside the reordering methods during decoding, an
alternative approach is to reorder the input source
sentence to match the word order of the target sen-
tence.

Some reordering methods are carried out on syn-
tactic source trees. (Collins et al., 2005) describe
a method for reordering German for German-to-
English translation, where six transformations are
applied to the surface string of the parsed source
sentence. (Xia and McCord, 2004) propose an ap-
proach for translation from French-to-English. This
approach automatically extracts rewrite patterns by
parsing the source and target sides of the training
corpus. These rewrite patterns can be applied to any
input source sentence so that the rewritten source
and target sentences have similar word order. Both
methods need a parser to generate trees of source
sentences and are applied only as a preprocessing
step.

Another kind of source reordering methods be-
sides full parsing is based on Part-Of-Speech (POS)
tags or word classes. (Costa-jussà and Fonollosa,
2006) view the source reordering as a translation
task that translate the source language into a re-
ordered source language. Then, the reordered source
sentence is taken as the single input to the standard
SMT system.

(Chen et al., 2006) automatically extract rules
from word alignments. These rules are defined at
the POS level and the scores of matching rules are
used as additional feature functions during rescor-

ing. (Crego and Mariño, 2006) integrate source-side
reordering into SMT decoding. They automatically
learn rewrite patterns from word alignment and rep-
resent the patterns with POS tags. To our knowledge
no work is reported on the reordering with shallow
parsing.

Decoding lattices were already used in (Zens et
al., 2002; Kanthak et al., 2005). Those approaches
used linguistically uninformed word-level reorder-
ings.

3 System Overview

In this section, we will describe the phrase-based
SMT system which we use for the experiments.
Then, we will give an outline of the extentions with
the chunk-level source reordering model.

3.1 The Baseline Phrase-based SMT System

In statistical machine translation, we are given a
source language sentencefJ

1 = f1 . . . fj . . . fJ ,
which is to be translated into a target language sen-
tenceeI

1 = e1 . . . ei . . . eI . Among all possible tar-
get language sentences, we will choose the sentence
with the highest probability:

êÎ
1 = argmax

I,eI

1

{

Pr(eI
1|f

J
1 )

}

(1)

= argmax
I,eI

1

{

Pr(eI
1) · Pr(fJ

1 |e
I
1)

}

(2)

This decomposition into two knowledge sources
is known as the source-channel approach to sta-
tistical machine translation (Brown et al., 1990).
It allows an independent modeling of the target
language modelPr(eI

1) and the translation model
Pr(fJ

1 |e
I
1). The target language model describes

the well-formedness of the target language sentence.
The translation model links the source language sen-
tence to the target language sentence. Theargmax

operation denotes the search problem, i.e., the gen-
eration of the output sentence in the target language.

A generalization of the classical source-channel
approach is the direct modeling of the posterior
probability Pr(eI

1|f
J
1 ). Using a log-linear model
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(Och and Ney, 2002), we obtain:

Pr(eI
1|f

J
1 ) =

exp
(

∑M
m=1

λmhm(eI
1, f

J
1 )

)

∑

I′,e′I
′

1

exp
(

∑M
m=1

λmhm(e′I
′

1 , fJ
1
)
)

(3)
The denominator represents a normalization factor
that depends only on the source sentencefJ

1 . There-
fore, we can omit it during the search process. As a
decision rule, we obtain:

êÎ
1 = argmax

I,eI

1

{

M
∑

m=1

λmhm(eI
1, f

J
1 )

}

(4)

The log-linear model has the advantage that addi-
tional modelsh(·) can be easily integrated into the
overall system. The model scaling factorsλM

1 are
trained according to the maximum entropy principle,
e.g., using the GIS algorithm. Alternatively, one can
train them with respect to the final translation quality
measured by an error criterion (Och, 2003).

The log-linear model is a natural framework to in-
tegrate many models. The baseline system uses the
following models:

• phrase translation model

• phrase count features

• word-based translation model

• word and phrase penalty

• target language model (6-gram)

• distortion model (assigning costs based on the
jump width)

All the experiments in the paper are evaluated with-
out rescoring. More details about the baseline sys-
tem can be found in (Mauser et al., 2006)

3.2 Source Sentence Reordering Framework

Encouraged by the work of (Xia and McCord, 2004)
and (Crego and Mariño, 2006), we also reorder the
source language side. Compared to reordering on
the target language side, one advantage is the effi-
ciency since the reordering lattice can be translated
monotonically as in (Zens et al., 2002). Another ad-
vantage is that there is correct sentence information

POS tagging

shallow chunking

Translation Process
Standard Translation Proces

with Source Reordering

source text sentences

reordering rules

SMT system

translation output translation output

source text sentences

SMT system

source reordering lattice

Figure 1: Illustration of the translation process with
and without source reordering.

for the reordering methods, because the source sen-
tences are always given. Syntactic reordering on tar-
get language is difficult, since the methods will de-
grade much because of the errors in hypothesis.

We apply reordering at the syntactic chunk level
which can been seen as an intermediate level be-
tween full parsing and POS tagging. Figure 1 shows
the differences between the new translation frame-
work and the standard translation process. A re-
ordering lattice replaces the original source sentence
as the input to the translation system. The use of a
lattice avoids hard decisions before translation. To
generate the reordering lattice, the source sentence is
first POS tagged and chunk parsed. Then, reorder-
ing rules are applied to the chunks to generate the
reordering lattice.

Reordering rules are the key information for
source reordering. They are automatically learned
from the training data. The details of these two mod-
ules will be introduced in Section 5.

4 Reordering Rules

There has been much work on learning and apply-
ing reordering rules on source language, such as
(Nießen and Ney, 2001; Xia and McCord, 2004;
Collins et al., 2005; Chen et al., 2006; Crego and
Mariño, 2006; Popović and Ney, 2006). The re-
ordering rules could be composed of words, POS
tags or syntactic tags of phrases. In our work, a rule
is composed of chunk tags and POS tags. There is
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Table 1: Examples of reordering rules. (lhs: chunk
and POS tag sequence,rhs: permutation )

no. lhs rhs
1. NP0 PP1 u2 n3 0 1 2 3

2. NP0 PP1 u2 n3 3 0 1 2

3. DNP0 NP1 V P2 0 1 2

4. DNP0 NP1 V P2 1 0 2

5. DNP0 NP1 m2 0 1 2

6. DNP0 NP1 m2 ad3 3 0 1 2

7. DNP0 NP1 m2 ad3 v4 4 3 0 1 2

no hierarchical structure in a rule.

4.1 Definition of Reordering Rules

First, we show some rule examples in Table 1. A re-
ordering rule consists of a left-hand-side (lhs) and a
right-hand-side (rhs). The left-hand-side is a syn-
tactic rule (chunk or POS tags), while the right-
hand-side is the reordering positions of the rule. Dif-
ferent rules can share the same left-hand-side, such
as rules no.1, 2 and no. 3, 4. The rules record
not only thereal reordered chunk sequence, but also
the monotone chunk sequences, like no.1, 3 and
5. Note that the same tag sequence can appear mul-
tiple times according to different contexts, such as
DNP0 NP1 m2 # 0 1 2 in rules no.5, 6, 7.

4.2 Extraction of Reordering Rules

The extraction of reordering rules is based on the
word alignment and the source sentence chunks.
Here, we train word alignments in both directions
with GIZA++ (Och and Ney, 2003). To get align-
ment with high accuracy, we use the intersection
alignment here.

For a given word-aligned sentence pair
(fJ

1 , eI
1, a

J
1 ), the source word sequencefJ

1 is
first parsed into a chunk sequenceFK

1 . Accord-
ingly, the word-to-word alignmentaJ

1 is changed
to a chunk-to-word alignment̃aK

1 which is the
combination of the target words aligned to the
source words in a chunk. It is defined as:

ãk = {i|i = aj ∧ j ∈ [jk, jk+1 − 1]}

Figure 2: Illustration of three kinds of phrases:
(a)monotone phrase, (b)reordering phrase, (c)cross
phrase. The black box is a word-to-word alignment.
The gray box is a chunk-to-word alignment.

Here,jk denotes the position of the first source word
in kth chunk. The new alignment is1 : m from
source chunks to target words. It also meansãk is a
set of positions of target words.

We apply the standard phrase extraction algorithm
(Zens et al., 2002) to(FK

1 , eI
1, ã

K
1 ). Discarding the

cross phrases, we keep the other phrases as rules. In
a cross phrase, at least two chunk-word alignments
overlap on the target language side. An example
of a cross phrase is illustrated in Figure 2(c). Fig-
ure 2(a) and (b) illustrate the phrases for reordering
rules, which could be monotone phrases or reorder-
ing phrases.

5 Reordering Lattice Generation

5.1 Parsing the Source Sentence

The first step of chunk parsing is word segmentation.
Then, a POS tagger is usually needed for further
syntactic analysis. In our experiments, we use the
tool of “Inst. of Computing Tech., Chinese Lexical
Analysis System (ICTCLAS)” (Zhang et al., 2003),
which does the two tasks in one pass.

Referring to the description of the chunking task
in CoNLL-20001, instead of English, a Chinese
chunker is processed and evaluated. Each word is
assigned a chunk tag, which contains the name of the
chunk type and ”B” for the first word of the chunk
and ”I” for each other word in the chunk. The ”O”
chunk tag is used for tokens which are not part of
any chunk. We use the maximum entropy tool YAS-

1http://www.cnts.ua.ac.be/conll2000/chunking/
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Figure 3: Example of applying rules. The left part is the usedrules. The right part is the generated new
orders of source words.

MET2 to learn the chunking model. The model is
based on a combination of word and POS tags. Since
specific training and test data are not available for
Chinese chunking, we convert subtrees of the Chi-
nese treebank (LDC2005T01) into chunks. As there
are many ways to choose a subtree, we uses the min-
imum subtree with the following constraints:

• a subtree has more than one child,

• the children of a subtree are all leaves.

Compared to chunking of English as in CoNLL-
2000, there are more chunk types (24 instead of6)
and no single-word chunks. These two aspects make
chunking for Chinese harder.

5.2 Applying Reordering Rules

First, we search the reordering rules, in which the
chunk sequence matches any tag sequence in the in-
put sentence. A source sentence has many paths
generated by the rules . For a word uncovered by any
rules, its POS tag is used. Each path corresponds to
one sentence permutation.

The left part of the Figure 3 shows seven possible
coverages, the right part is the reordering for each
coverage. Some of the reorderings are identical, like
the permutations in line 1, 3 and 5. That is because
one word sequence is memorized by several rules in
different contexts.

5.3 Lattice Weighting

All reorderings of an input sentenceS are com-
pressed and stored in a lattice. Each path is a possi-

2http://www-i6.informatik.rwth-aachen.de/web/Software
/index.html

ble reorderingS′ and is given a weightW . In this
paper, the weight is computed using a source lan-
guage modelp(S′). The weight is used directly in
the decoder, integrated into Equation(4). There is
also a scaling factor for this weight, which is op-
timized together with other scaling factors on the
development data. The probability of the reordered
source sentence is calculated as follows: for a re-
ordered source sentencew1w2...wn, the trigram lan-
guage model is:

p(S′) =

N
∏

n=1

p(wn|wn−2, wn−1) (5)

Beside a word N-gram language model, a POS tag
N-gram model or a chunk tag N-gram model could
be used as well.

In this paper, we use a word trigram model. The
model is trained on reordered training source sen-
tences. A training source sentence is parsed into
chunks. In the same way as described in Section
4.2, word-to-word alignments is converted to chunk-
to-word alignments. We reorder the source chunks
to monotonize the chunk-to-word alignments. The
chunk boundaries are kept when this reordering is
done.

6 Experiments

6.1 Chunking Result

In this section, we report results for chunk parsing.
The annotation of the data is derived from the Chi-
nese treebank (LDC2005T01). The corpus is split
into two parts: 1000 sentences are randomly se-
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Table 2: Statistics of training and test corpus for
chunk parsing.

train test
sentences 17 785 1 000
words 486 468 21 851
chunks 105 773 4 680
words out of chunks 244 416 10 282

Table 3: Chunk parsing result on 1000 sentences.

accuracy precision recall F-measure
74.51% 65.2% 61.5% 63.3

lected as test data. The remaining part is used for
training. The corpus is from the newswire domain.

Table 2 shows the corpus statistics. For the 4 680
chunks in the test set, the chunker has found 4 414
chunks, of which 2 879 are correct. Following the
criteria of CoNLL-2000, the chunker is evaluated
using the F-score, which is a combination of pre-
cision and recall. The result is shown in Table 3.

The accuracy is evaluated at the word level, the
other three metrics are evaluated at the chunk level.
The results at the chunk level are worse than at the
word level, because a chunk is counted as correct
only if the chunk tag and the chunk boundaries are
both correct.

6.2 Translation Results

For the translation experiments, we report the two
accuracy measures BLEU (Papineni et al., 2002)
and NIST (Doddington, 2002) as well as the two
error rates word error rate (WER) and position-
independent word error rate (PER).

We perform translation experiments on the Ba-
sic Traveling Expression Corpus (BTEC) for the
Chinese-English task. It is a speech translation task
in the domain of tourism-related information. We
report results on the IWSLT 2004, 2005 and 2006
evaluation test sets. There are 16 reference trans-
lations for the IWSLT 2004 and 2005 tasks and 7
reference translations for the IWSLT 2006 task.

Table 4 shows the corpus statistics of the task. A
training corpus is used to train the translation model,
the language model and to obtain the reordering

Table 4: Statistics of training and test corpora for the
IWSLT tasks.

Chinese English

Train Sentences 40k
Words 308k 377k

Dev Sentences 489
Words 5 478 6 008

Test Sentences 500
IWSLT04 Words 3 866 3 581
Test Sentences 506
IWSLT05 Words 3 652 3 579
Test Sentences 500
IWSLT06 Words 5 846 –

rules. A development corpus is used to optimize the
scaling factors for the BLEU score. The English text
is processed using a tokenizer. The Chinese text pro-
cessing uses word segmentation with the ICTCLAS
segmenter (Zhang et al., 2003). The translation is
evaluated case-insensitive and without punctuation
marks.

The translation results are presented in Table 5.
The baseline system is a non-monotone translation
system, in which the decoder does reordering on
the target language side. Compared to the base-
line system, the source reordering method improves
the BLEU score by0.5% − 1.8% absolute. It also
achieves a better WER. Note that the used chun-
ker here is out-of-domain3. An improvement is
achieved even with a low F-measure for chunking.
So, we could hope that larger improvement is possi-
ble using a high-accuracy chunker.

Though the input is a lattice, the source reordering
is still faster than the reordering during decoding,
e.g. for the IWSLT 2006 test set, the baseline system
took 17.5 minutes and the source reordering system
took 12.3 minutes. The result also indicates that the
non-monotone decoding hurts the performance in a
source reordering framework. A similar conclusion
is also presented in (Xia and McCord, 2004).

Additional experiments we carried out to compare
POS-level and chunk-level reorderings. We delete
the chunk information and keep the POS tags. Then,

3The chunker is trained on newswire data, but the test data
is from the tourism domain.
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Table 5: Translation performance for the Chinese-English IWSLT task
WER[%] PER[%] NIST BLEU[%]

IWSLT04 baseline 47.3 38.2 7.78 39.1
source reordering 46.3 37.2 7.70 40.9

IWSLT05 baseline 45.0 37.3 7.40 41.8
source reordering 44.6 36.8 7.51 42.3

IWSLT06 baseline 67.4 50.0 6.65 22.4
source reordering 65.6 50.4 6.46 23.3

source reordering+non-monotone decoder 66.5 50.3 6.52 22.4

Table 6: Translation performance of reordering
methods on IWSLT 2004 test set

WER PER NIST BLEU
[%] [%] [%]

Baseline 47.3 38.2 7.78 39.1

POS 46.9 37.5 7.38 39.7
Chunk 46.3 37.2 7.70 40.9

Table 7: Lattice information for the Chinese-English
IWSLT 2004 test data

avg. density used translation
pro sent rules time [min/sec]

POS 15.7 6 868 7:08
Chunk 8.2 3 685 3:47

we rerun the source reordering system on the IWSLT
2004 test set. The translation results are shown in
Table 6. Though the accuracy of chunking is low,
the chunk-level method gets better results than POS-
level method. With POS tags, we get more reorder-
ing rules and more paths in the lattice, since the sen-
tence length is longer than with chunks. The statis-
tics are shown in Table 7.

7 Conclusions and Future Work

This paper presents a source-side reordering method
which is based on syntactic chunks. The reordering
rules are automatically learned from bilingual data.
To avoid hard decision before decoding, a reorder-
ing lattice representing all possible reorderings is
used instead of single source sentence for decoding.
The experiments demonstrate that even with a very

poor chunker, the chunk-level source reordering is
still helpful for a state-of-the-art statistical transla-
tion system and it has better performance than the
POS-level source reordering and target-side reorder-
ing.

There are some directions for future work. First,
we would like to try this method on larger data sets
and other language pairs. Second, we are going to
improve the chunking accuracy. Third, we would
reduce the number of rules and prune the lattice.

Acknowledgments

This material is partly based upon work sup-
ported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-06-
C-0023, and was partially funded by the Deutsche
Forschungsgemeinschaft (DFG) under the project
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M. R. Costa-jussà and J. A. R. Fonollosa. 2006. Statisticalma-
chine reordering. InProc. of the Conf. on Empirical Meth-
ods in Natural Language Processing, pages 70–76, Sydney,
Australia, July.

J. M. Crego and J. B. Mariño. 2006. Integration of postag-
based source reordering into SMT decoding by an extended
search graph. InProc. of AMTA06, pages 29–36, Mas-
sachusetts, USA, August.

G. Doddington. 2002. Automatic evaluation of machine trans-
lation quality using n-gram co-occurrence statistics. InProc.
ARPA Workshop on Human Language Technology.

M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe,
W. Wang, and I. Thayer. 2006. Scalable inference and train-
ing of context-rich syntactic translation models. InProc. of
the 21st Int. Conf. on Computational Linguistics and 44th
Annual Meeting of the Association for Computational Lin-
guistics, pages 961–968, Sydney, Australia, July.

D. Gildea. 2003. Loosely tree-based alignment for machine
translation. InProc. of the 41th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages 80–87,
Sapporo, Japan, July.

J. Graehl and K. Knight. 2004. Training tree transducers.
In HLT-NAACL 2004: Main Proc., pages 105–112, Boston,
Massachusetts, USA, May 2 - May 7.

S. Kanthak, D. Vilar, E. Matusov, R. Zens, and H. Ney. 2005.
Novel reordering approaches in phrase-based statistical ma-
chine translation. In43rd Annual Meeting of the Assoc. for
Computational Linguistics: Proc. Workshop on Building and
Using Parallel Texts: Data-Driven Machine Translation and
Beyond, pages 167–174, Ann Arbor, Michigan, June.

P. Koehn and K. Knight. 2003. Empirical methods for com-
pound splitting. InProc. 10th Conf. of the Europ. Chapter
of the Assoc. for Computational Linguistics (EACL), pages
347–354, Budapest, Hungary, April.

A. Mauser, R. Zens, E. Matusov, S. Hasan, and H. Ney. 2006.
The RWTH Statistical Machine Translation System for the
IWSLT 2006 Evaluation. InProc. of the Int. Workshop
on Spoken Language Translation, pages 103–110, Kyoto,
Japan.

I. Melamed. 2004. Statistical machine translation by parsing.
In The Companion Volume to the Proc. of 42nd Annual Meet-
ing of the Association for Computational Linguistics, pages
653–660.

S. Nießen and H. Ney. 2001. Morpho-syntactic analysis for
reordering in statistical machine translation. InProc. of MT
Summit VIII, pages 247–252.

F. J. Och and H. Ney. 2002. Discriminative training and max-
imum entropy models for statistical machine translation. In
Proc. of the 40th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 295–302, Philadelphia,
PA, July.

F. J. Och and H. Ney. 2003. A systematic comparison of vari-
ous statistical alignment models.Computational Linguistics,
29(1):19–51, March.

F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada,
A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng, V. Jain,
Z. Jin, and D. Radev. 2004. A smorgasbord of features for
statistical machine translation. InProc. 2004 Human Lan-
guage Technology Conf. / North American Chapter of the
Association for Computational Linguistics Annual Meeting
(HLT-NAACL), pages 161–168, Boston,MA.

F. J. Och. 2003. Minimum error rate training in statistical ma-
chine translation. InProc. of the 41th Annual Meeting of
the Association for Computational Linguistics (ACL), pages
160–167, Sapporo, Japan, July.

K. Papineni, S. Roukos, T. Ward, and W. J. Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In
Proc. of the 40th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 311–318, Philadelphia,
PA, July.
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Abstract

We present a proposal for the structure
of noun phrases in Synchronous Tree-
Adjoining Grammar (STAG) syntax and
semantics that permits an elegant and uni-
form analysis of a variety of phenom-
ena, including quantifier scope and ex-
traction phenomena such as wh-questions
with both moved and in-place wh-words,
pied-piping, stranding of prepositions, and
topicalization. The tight coupling be-
tween syntax and semantics enforced by
the STAG helps to illuminate the critical
relationships and filter out analyses that
may be appealing for either syntax or se-
mantics alone but do not allow for a mean-
ingful relationship between them.

1 Introduction

Nesson and Shieber (2006) showed how a now-
standard variant of the tree-adjoining grammar
(TAG) formalism (multi-component, multiple ad-
junction, finite-feature-based TAG), when synchro-
nized, leads to a natural analysis of the syntax-
semantics relation, including handling of syntactic
movement phenomena such as wh questions and rel-
ativization, semantic “movement” phenomena such
as quantification, quantifier scope ambiguity, and
even their interactions as found in pied-piped rela-
tive clauses.1 phenomena were previously viewed

1This work was supported in part by grant IIS-0329089 from
the National Science Foundation.

as problematic for TAG analyses, leading to the hy-
pothesizing of various extensions to the TAG for-
malism (Kallmeyer and Romero, 2004, and work
cited therein). Independently, Han (2006a) devel-
oped a similar synchronous TAG analysis of pied-
piping, providing evidence for the naturalness of the
analysis.

Here, we update the analyses of noun phrases
found in the previous works in one simple way,
again with no additional formal TAG innovations,
and show that it allows a further coverage of extrac-
tion and quantification phenomena as well as in-situ
wh-phrases and topicalization. We emphasize that
no novel formal devices are postulated to achieve
this increased coverage — just a simple, natural and
uniform change to the canonical structure of NPs
and their semantics.

A word may be useful on the pertinence of this
work in a workshop on “syntax and structure in ma-
chine translation”, above and beyond the intrinsic
importance of exploring the “applications of [syn-
chronous/transduction grammars] to related areas
including. . . formal semantics” underlying the work-
shop. Tree-structured mappings are advocated for
machine translation systems because they allow for
the expression of generalizations about relationships
between languages more accurately and effectively.
Evidence for this benefit ought to be found in the
ability of the formalisms to characterize the primi-
tive linguistic relationships as well, in particular, the
form-meaning relationship for a natural language.
The present work is part of a general program to
explore the suitability of synchronous grammars for
expressing this primary linguistic relationship. Inso-
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far as it is successful, it lends credence to the use of
these formal tools for a variety of language process-
ing tasks, including MT. Insofar as it reveals insuffi-
ciencies in the formalism, it may lead to insights in
the design or deployment of alternative systems.

We present a proposal for the structure of noun
phrases in Synchronous Tree-Adjoining Grammar
(STAG) syntax and semantics that permits an elegant
and uniform analysis of a variety of phenomena, in-
cluding quantifier scope and extraction phenomena
such as wh-questions with both moved and in-situ
wh-words, pied-piping, stranding of prepositions,
and topicalization. Furthermore, the tight coupling
between syntax and semantics enforced by grammar
synchronization helps to illuminate the critical rela-
tionships and filter out analyses that may be appeal-
ing for either syntax or semantics alone but do not
allow for a meaningful relationship between them.

We begin in Section 2 with a brief review of syn-
chronous TAG and its application to English syntax
and semantics. In Section 3, we present an analysis
of quantifier scope that elucidates the relationship
between the syntactic and semantic structures and
explains an anomaly of previously proposed analy-
ses. We apply the underlying idea from Section 3
to wh-questions in Section 4, showing that an al-
teration of the standard TAG syntax analysis of wh-
questions produces the same derived trees while also
elegantly modeling in-place wh-words. In Section 5
we present a challenging case for STAG syntax and
semantics, the stranding of prepositions. This case
is particularly difficult because the syntactic analy-
ses suggested by previous work in STAG syntax do
not encapsulate the relationships that appear neces-
sary for the semantics. Our proposed analysis falls
out naturally from the revision to the syntax of wh-
words and respects both Frank’s Condition on Ele-
mentary Tree Minimality (CETM) and the seman-
tic relationships in the construction. In Section 6
we give an analysis of topicalization that also fol-
lows from the underlying ideas of the earlier analy-
ses. We summarize the main ideas of the analysis in
Section 7.

2 Introduction to Synchronous TAG

A tree-adjoining grammar (TAG) consists of a
set of elementary tree structures of arbitrary depth,

S

NP↓ V P

NP↓V

likes

NP

John
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V P
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NP↓ V P

NP↓V

likesapparently

V P
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=⇒

=⇒

Figure 1: Example TAG substitution and adjunction.

which are combined with two operations, substitu-
tion and adjunction. Internal nodes in the elementary
trees are labeled with a nonterminal symbol. Fron-
tier nodes may be labeled with either terminal sym-
bols or nonterminal symbols annotated with one of
the diacritics ↓ or ∗. The ↓ diacritic marks a frontier
nonterminal node as a substitution node, the target
of the substitution operation. The substitution op-
eration occurs when an elementary tree rooted in a
nonterminal symbol A replaces a substitution node
with the same nonterminal symbol.

Auxiliary trees are elementary trees in which the
root and a frontier node, called the foot node and
distinguished by the diacritic ∗, are labeled with the
same nonterminal A. The adjunction operation in-
volves splicing an auxiliary tree in at an internal
node in an elementary tree also labeled with non-
terminal A. Trees without a foot node, intended for
substitution rather than adjunction into other trees,
are called initial trees. Examples of the substitu-
tion and adjunction operations on sample elemen-
tary trees are shown in Figure 1. For further infor-
mation, refer to Joshi and Schabes (1997).

Synchronous TAG (Shieber, 1994; Shieber and
Schabes, 1990) extends TAG by taking the elemen-
tary structures to be pairs of TAG trees with links
between particular nodes in those trees. Derivation
proceeds as in TAG except that all operations must
be paired. That is, a tree can only be substituted or
adjoined at a node if its pair is simultaneously sub-
stituted or adjoined at a linked node. We notate the
links by using boxed indices i marking linked nodes.
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Figure 2: An English syntax/semantics STAG fragment (a), derived tree pair (b), and derivation tree (c) for
the sentence “John apparently likes Mary.”

As first described by Shieber and Schabes (1990),
STAG can be used to provide a semantics for a TAG
syntactic analysis by taking the tree pairs to repre-
sent a syntactic analysis synchronized with a seman-
tic analysis.

For example, Figure 2(a) contains a sample En-
glish syntax/semantics grammar fragment that can
be used to analyze the sentence “John apparently
likes Mary”. The node labels we use in the seman-
tics correspond to the semantic types of the phrases
they dominate.

Figure 2(c) shows the derivation tree for the sen-
tence. Substitutions are notated with a solid line and
adjunctions are notated with a dashed line. Each link
in the derivation tree specifies a link number in the
elementary tree pair, providing the location at which
the operations take place. In this case, the tree pairs
for the noun phrases John and Mary substitute into
the likes tree pair at links 3 and 4 , respectively. The
word apparently adjoins at link 2 . The tree pair so
derived is shown in Figure 2(b). The resulting se-
mantic representation can be read off the right-hand
derived tree by treating the leftmost child of a node
as a functor and its siblings as its arguments. Our
sample sentence thus results in the semantic repre-
sentation apparently(likes( john,mary)).

3 Quantifier Scope

We start by reviewing the prior approach to quan-
tifier semantics in synchronous TAG. Consider the
sentence “Everyone likes someone.” We would like
to allow both the reading where some takes scope
over every and the reading where every takes scope
over some. We start with the proposal of Shieber and
Schabes (1990), which used multi-component TAG

for the semantic portion of a synchronous TAG.
Each quantified noun phrase has a two-component
tree set as its semantics. One component introduces
the variable quantified over in the scope of the quan-
tifier; the other adjoins over the scope to provide the
quantifier and restriction. Williford (1993) explored
the use of multiple adjunction (Schabes and Shieber,
1993) to achieve scope ambiguity. Since the scope
components of subject and object noun phrases
adjoin at the same location in the semantic tree,
they give rise to a systematic ambiguity as to which
dominates the other in the derived tree, reflecting
the semantic scope ambiguity of the sentence; the
derivation tree itself is therefore a scope neutral
representation. Previous work by Han (2006a;
2006b) and Nesson and Shieber (2006) describe
this approach in detail, showing its applicability to
a range of semantic phenomena.

A range of research has proceeded in an alter-
native line of using complex-feature-based TAG —
rather than synchronous TAG — for TAG seman-
tics (Kallmeyer and Romero, 2004, and work cited
therein). Semantic representations are carried in fea-
tures associated with nodes. Nonetheless, multi-
component TAG with separate trees for bound po-
sition and scope is used here too. However, the two
trees are syntactic trees, the quantified NP tree and a
vestigial S tree, respectively. (An example is shown
in Figure 6.) In such analyses, the single-node aux-
iliary S tree is used for the scope part of the syntax
in order to get the desired relationship between the
quantifier and the quantified expression in features
threaded through the derivation tree and hence in the
semantics.

The present analysis marries these two ap-
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Figure 3: The elementary tree pairs (a), derivation tree (b), and derived trees (c) for the sentence “Everyone
likes someone”. Note that the derivation tree is a scope neutral representation: depending on whether every
or some adjoins higher, we obtain different semantic derived trees and scope orderings.

proaches. Like the previous STAG work, we pro-
pose a solution in which a multi-component tree set
provides semantics for quantified phrases, with mul-
tiple adjunction providing scope ambiguity. Like
the complex-feature-based approach, we reflect the
multi-component structure in the syntax as well. It
is this single change in the analysis that makes pos-
sible the coverage of the wide range of phenomena
we describe here.

Combining these two approaches, we give both
the syntactic and semantic trees for quantifiers two
parts, as depicted in Figure 3(a). In the semantics,
the top part corresponds to the scope of the quan-
tifier and attaches where the quantifier takes scope.
The bottom part corresponds to the bound variable
of the quantifier. By multiply adjoining the scope
parts of the semantic trees of the quantifiers at the
same location in the likes tree, we generate both
available scope readings of the sentence.2 Corre-
spondingly on the syntax side, an NP tree provides
the content of the noun phrase with a vestigial S tree
available as well. Prior to the analyses given in this
paper, the use of two trees in the quantifier syntax
was an arbitrary stipulation used to make the seman-
tic analysis possible. The pairing of the upper tree

2Nesson and Shieber (2006) provide a more in-depth expla-
nation of the multiple-adjunction-driven approach to scope neu-
trality in STAG.

in the syntax with the scope tree in the semantics
explicitly demonstrates their relationship and leads
naturally to the exploration of non-degenerate upper
trees in the syntax that we explore in this paper.

In order to use these multi-component quantifiers,
we change the links in the elementary trees for verbs
to allow a single link to indicate two positions in
the syntax and semantics where a tree pair can ad-
join, as shown in Figure 3(a). We add four-way
links and drop the two-way links used by the un-
quantified noun phrases in the first example. This
choice forces all noun phrase tree pairs to be multi-
component in the syntax and semantics. Essentially,
all noun phrases are “lifted” à la Montague. We ex-
plore the consequences of this in Section 6.

We turn now to the ramifications of this new
syntactico-semantic STAG representation, showing
its utility for a range of phenomena.

4 Wh-questions

The structure we propose for quantifiers suggests a
new possibility for the TAG analysis of wh-words.
We propose to simply treat wh-words as regular
noun phrases by making them a multi-component
tree set with an auxiliary tree that adjoins at the root
of the verb tree and contains the lexical content and
an initial tree with an empty frontier that substitutes
at the argument position. This syntactic tree set can
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Figure 5: Traditional elementary trees for the verb
likes. Using a revised, elementary syntax tree set for
wh-words like who, only the left tree is necessary.

be paired with a multi-component semantic tree set
that has an auxiliary tree containing the scope part
and an initial tree that contains the bound variable.
Wh-questions with the wh-word in place can be ele-
gantly modeled with an alternative syntactic tree set
in which the auxiliary tree has no lexical content and
the wh-word is on the frontier of the initial tree that
substitutes into the argument position. The seman-
tic tree sets for both syntactic variations is the same.
These trees are shown in Figure 4.

Besides the incorporation of a semantics, the ba-
sic analyses for wh-questions familiar from TAG
syntax are otherwise unchanged because the top
piece of the syntax tree set still ends up at the root of
the main verb in sentences such as the following:

(1) Who likes Mary?
who(x, likes(mary,x))

(2) Which person does John like?3

which(x, person(x), likes(x, john))

3The presence of do-support in wh-questions can be handled
independently using a feature on the NP node into which the
bottom part of the wh-word tree pair substitutes that governs
whether and where a do tree adjoins.

(3) Which person does Bill think John likes?
which(x, person(x), thinks(bill, likes(x, john)))

(4) Who does each person like?
who(x,each(y, person(y), likes(x,y)))
each(y, person(y),who(x, likes(x,y)))

Note that in Sentence 3 thinks is not constrained
to appear to the right of who in the syntax, because
thinks and who both adjoin at the same location in
the syntax. However, we can use a feature to force
embedding verbs to adjoin lower than wh-words.
The same situation exists in Sentence 4, though only
in the semantics; the order of words in the syntax
is well-defined but the multiple adjunction of the
scope of who and the scope of each underspecifies
the scope ordering between them. Both scope or-
derings are indeed arguably valid. Again, the pref-
erences for certain orderings can be regulated us-
ing a feature. These issues highlight the many open
questions about how to combine quantification and
wh-terms, but also provides a first step towards their
analysis within a concise STAG construction.

Our approach has several distinct advantages.
First, it allows wh-words to be analyzed in a way that
is uniform with the analysis of other noun phrases
and allows us to simplify the lexical entries for
verbs. In the traditional TAG analysis, wh-words
substitute into specialized lexical trees for verbs that
add an additional frontier node for the wh-word and
abstract over one of the arguments of the verb by
adding an empty terminal node at the frontier. Our
revision to the elementary trees for wh-words allows
us to remove several tree pairs from the elementary
tree sets for verbs such as like. Instead of requir-
ing an elementary tree pair for declarative sentences
and an additional elementary tree for each argument
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Figure 6: Kallmeyer and Scheffler’s syntactic analy-
sis for Sentence 6.

that can be replaced by a fronted wh-word to form a
question (as shown in Figure 5), we can use just the
single declarative sentence elementary tree.

Second, it provides a simple and elegant char-
acterization of the syntax and semantics of wh-
movement and the relationship between fronted and
in-place wh-words. Using the alternative syntax tree
set given in Figure 4 we model in-place use of wh-
words as in Sentence 5 while still maintaining the
usual semantic analysis:

(5) John likes who?
who(x, likes(x, john))

5 Stranded Prepositions

Sentence 6 presents a particularly challenging case
for TAG semantics. The problem arises because who
must contribute its bound variable, x, to the noun
phrase “a picture of x”. However, in the standard
syntactic analysis who substitutes into the likes tree,
and in any reasonable semantic analysis, who takes
scope at the root of the likes tree.

(6) Who does John like a picture of?
who(x,a(y, and(picture(y),of (x,y)),

likes( john,y)))

Kallmeyer and Scheffler (2004) propose a syntac-
tic analysis in which “a picture of” adjoins into the
syntactic tree for “likes”. The syntax for this anal-
ysis is shown for comparison in Figure 6. As-
sociated with the syntactic analysis is a semantic
analysis, which differs from ours in that all of the
semantic computation is accomplished by use of
a flexible set of features that are associated with

nodes in the syntactic trees. This analysis main-
tains Frank’s Constraint on Elementary Tree Min-
imality (CETM) if one analyzes the prepositional
phrase as a complement of picture but it does so at
the expense of a straightforward compositional se-
mantics.4 The source of the problem is that who
contributes its bound variable to likes to form an
intermediate semantics who(x, likes( john,x)), then
a picture of combines non-compositionally to form
the complete semantics given in Sentence 6.

Kroch (1989) describes the intuition eschewing
this analysis: “The problem is that under such a
derivation, the preposed wh-phrase changes its the-
matic role with each adjunction and the interpreta-
tion of the derived tree is not a simple function of the
interpretations of its component elementary trees.”
When we consider the semantics of the two sen-
tences, the anomaly of this analysis becomes appar-
ent. In the first sentence the entity liked by John is
referred to by the variable contributed by who. In the
second sentence John likes an entirely different en-
tity: the entity referred to by the variable contributed
by a. Kallmeyer and Scheffler obtain the correct se-
mantics by making use of non-local TAG operations
to have the scope part of a adjoin into likes to cap-
ture the semantics of the likes proposition and em-
ploying a feature-based mechanism for swapping the
variables as necessary.

Our revision to the syntax of wh-words provides
an alternative way of maintaining the CETM that of-
fers a much simpler semantic analysis. The details
of the analysis are given in Figure 7. We adjoin who
into the preposition of at link 1 where it contributes
both variable and scope. The tree pair for of at-
taches to a at link 1 , thus allowing the scope parts
of the quantifier a and the wh-word who to end up
taking scope over the main verb as in the analysis of
prepositional phrases given by Nesson and Shieber
(2006). It also places all the bound variables in the
correct propositions without use of non-local opera-
tions or additional manipulation. A diagram of the
derived syntax and semantics is given in Figure 8.

4In addition to suggesting a non-compositional seman-
tics, their syntactic analysis makes use of non-local multi-
component TAG in order to achieve the necessary semantic rela-
tionships. Although their use of non-local TAG may be benign
in terms of complexity, our analysis is set-local. Our proposal
therefore simplifies the syntactic analysis while also bringing it
in line with a straightforward, compositional semantics.
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6 Topicalization

The insight that allows us to model in-place wh-
words extends to an elegant analysis of topicaliza-
tion as well. The vestigial S∗ tree that we added
to the tree set for the syntax of every noun phrase
need not always be contentless. Just as we moved
the wh-word who from the top tree in its set to the
bottom tree to model in-situ wh-words, we can move
the lexical content of noun phrases to the top tree in
their sets to model topicalization. For instance, the
alternative tree pair for Mary shown in Figure 9 pro-
vides for an analysis of the sentence

(7) Mary, John likes.
likes(mary,john)

The analysis interacts properly with that for prepo-
sition stranding, so that the sentence

S∗

NP e

t∗

S

ε

NP

Mary

Mary

S∗

NP

S

ε

y

t

t∗a t

〈e, t〉↓ ey

y

1

1 2Det

a

NP

N↓

1

2

Figure 9: Alternative tree pairs for Mary and a that
model topicalization.

(8) A picture of Mary, John likes.
a(x, and(picture(x), of(mary,x)), likes(x,john))

follows from the tree pair for a in the same figure.

7 Conclusion

In this paper we have proposed a uniform change
to the structure of noun phrases in the STAG
syntactico-semantic grammar. The formal tools we
avail ourselves of comprise synchronous TAG with
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set-local multicomponent adjunction and multiple
adjunction. Nothing more is required.

All noun phrases now have a uniform multi-
component structure in both the syntax and the
semantics. In the semantics the top part corresponds
to the scope-giving piece provided by the noun
phrase and the bottom part to the bound variable
or simple noun-phrase meaning. In the syntax, the
top part corresponds to the lexical material that
should appear moved to the edge of the sentence or
clause; the bottom part corresponds to the lexical
material that will fill an argument position of some
head. By moving lexical material among the pieces
of the multi-component set in the syntax, we can
simply model phenomena like in-place wh-words
and topicalization.

Making the top parts of wh-word tree sets into
auxiliary trees allows them to adjoin not just to the
main verb but also to heads of modifying clauses,
such as prepositional phrases. This allows us to
handle more complex sentences like Sentence 6
without violating either the CETM or going beyond
simple compositional semantics. In order to allow
the scope-giving part of the wh-word to percolate
up to the root of the semantics of the main verb,
each tree set that it adjoins into on its way must
also have a scope part in the semantics to which
it can adjoin. Scope carriers, such as prepositions,
are therefore also multi-component in the semantics
with a top node to which scope-givers can adjoin.
One nice property of this analysis is that it predicts
the observed facts about disallowed scope orderings
in sentences that have three quantifiers, one of
which is in a modifying clause. The scope part of
the quantifier of the modified clause and the scope
part of the quantifier of the modifying clause form
an indivisible set as the derivation proceeds so that
when they adjoin multiply with the scope part of the
unmodified clause, that quantifier cannot intervene
between them.

Our synchronous grammar treatment of the
syntax-semantic relation with TAG is at least as
simple and arguably more accurate than previous
TAG proposals, offering treatments of such phe-
nomena as in-situ wh-words, stranded prepositions,
and topicalization.
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Abstract

We present a phrasal inversion trans-
duction grammar as an alternative to
joint phrasal translation models. This
syntactic model is similar to its flat-
string phrasal predecessors, but admits
polynomial-time algorithms for Viterbi
alignment and EM training. We demon-
strate that the consistency constraints that
allow flat phrasal models to scale also help
ITG algorithms, producing an 80-times
faster inside-outside algorithm. We also
show that the phrasal translation tables
produced by the ITG are superior to those
of the flat joint phrasal model, producing
up to a 2.5 point improvement in BLEU
score. Finally, we explore, for the first
time, the utility of a joint phrasal transla-
tion model as a word alignment method.

1 Introduction

Statistical machine translation benefits greatly from
considering more than one word at a time. One
can put forward any number of non-compositional
translations to support this point, such as the col-
loquial Canadian French-English pair, (Wo les mo-
teurs, Hold your horses), where no clear word-to-
word connection can be drawn. Nearly all cur-
rent decoding methods have shifted to phrasal rep-
resentations, gaining the ability to handle non-
compositional translations, but also allowing the de-
coder to memorize phenomena such as monolingual
agreement and short-range movement, taking pres-
sure off of language and distortion models.

Despite the success of phrasal decoders, knowl-
edge acquisition for translation generally begins
with a word-level analysis of the training text, tak-
ing the form of a word alignment. Attempts to apply
the same statistical analysis used at the word level
in a phrasal setting have met with limited success,
held back by the sheer size of phrasal alignment
space. Hybrid methods that combine well-founded
statistical analysis with high-confidence word-level
alignments have made some headway (Birch et al.,
2006), but suffer from the daunting task of heuris-
tically exploring a still very large alignment space.
In the meantime, synchronous parsing methods effi-
ciently process the same bitext phrases while build-
ing their bilingual constituents, but continue to be
employed primarily for word-to-word analysis (Wu,
1997). In this paper we unify the probability models
for phrasal translation with the algorithms for syn-
chronous parsing, harnessing the benefits of both
to create a statistically and algorithmically well-
founded method for phrasal analysis of bitext.

Section 2 begins by outlining the phrase extrac-
tion system we intend to replace and the two meth-
ods we combine to do so: the joint phrasal transla-
tion model (JPTM) and inversion transduction gram-
mar (ITG). Section 3 describes our proposed solu-
tion, a phrasal ITG. Section 4 describes how to ap-
ply our phrasal ITG, both as a translation model and
as a phrasal word-aligner. Section 5 tests our system
in both these capacities, while Section 6 concludes.

2 Background

2.1 Phrase Table Extraction
Phrasal decoders require a phrase table (Koehn et
al., 2003), which contains bilingual phrase pairs and
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scores indicating their utility. The surface heuris-
tic is the most popular method for phrase-table con-
struction. It extracts all consistent phrase pairs from
word-aligned bitext (Koehn et al., 2003). The word
alignment provides bilingual links, indicating trans-
lation relationships between words. Consistency is
defined so that alignment links are never broken by
phrase boundaries. For each token w in a consistent
phrase pair p̄, all tokens linked to w by the alignment
must also be included in p̄. Each consistent phrase
pair is counted as occurring once per sentence pair.
The scores for the extracted phrase pairs are pro-
vided by normalizing these flat counts according to
common English or Foreign components, producing
the conditional distributions p(f̄ |ē) and p(ē|f̄).

The surface heuristic can define consistency ac-
cording to any word alignment; but most often, the
alignment is provided by GIZA++ (Och and Ney,
2003). This alignment system is powered by the
IBM translation models (Brown et al., 1993), in
which one sentence generates the other. These mod-
els produce only one-to-many alignments: each gen-
erated token can participate in at most one link.
Many-to-many alignments can be created by com-
bining two GIZA++ alignments, one where English
generates Foreign and another with those roles re-
versed (Och and Ney, 2003). Combination ap-
proaches begin with the intersection of the two
alignments, and add links from the union heuris-
tically. The grow-diag-final (GDF) combination
heuristic (Koehn et al., 2003) adds links so that each
new link connects a previously unlinked token.

2.2 Joint phrasal translation model

The IBM models that power GIZA++ are trained
with Expectation Maximization (Dempster et al.,
1977), or EM, on sentence-aligned bitext. A transla-
tion model assigns probabilities to alignments; these
alignment distributions are used to count translation
events, which are then used to estimate new parame-
ters for the translation model. Sampling is employed
when the alignment distributions cannot be calcu-
lated efficiently. This statistically-motivated process
is much more appealing than the flat counting de-
scribed in Section 2.1, but it does not directly in-
clude phrases.

The joint phrasal translation model (Marcu and
Wong, 2002), or JPTM, applies the same statistical

techniques from the IBM models in a phrasal setting.
The JPTM is designed according to a generative pro-
cess where both languages are generated simultane-
ously. First, a bag of concepts, or cepts, C is gener-
ated. Each ci ∈ C corresponds to a bilingual phrase
pair, ci = (ēi, f̄i). These contiguous phrases are
permuted in each language to create two sequences
of phrases. Initially, Marcu and Wong assume that
the number of cepts, as well as the phrase orderings,
are drawn from uniform distributions. That leaves
a joint translation distribution p(ēi, f̄i) to determine
which phrase pairs are selected. Given a lexicon of
possible cepts and a predicate L(E,F, C) that de-
termines if a bag of cepts C can be bilingually per-
muted to create the sentence pair (E, F ), the proba-
bility of a sentence pair is:

p(E,F ) ∝
∑

{C|L(E,F,C)}

 ∏
ci∈C

p(ēi, f̄i)

 (1)

If left unconstrained, (1) will consider every phrasal
segmentation of E and F , and every alignment be-
tween those phrases. Later, a distortion model based
on absolute token positions is added to (1).

The JPTM faces several problems when scaling
up to large training sets:

1. The alignment space enumerated by the sum
in (1) is huge, far larger than the one-to-many
space explored by GIZA++.

2. The translation distribution p(ē, f̄) will cover
all co-occurring phrases observed in the bitext.
This is far too large to fit in main memory, and
can be unwieldly for storage on disk.

3. Given a non-uniform p(ē, f̄), there is no effi-
cient algorithm to compute the expectation of
phrase pair counts required for EM, or to find
the most likely phrasal alignment.

Marcu and Wong (2002) address point 2 with a lexi-
con constraint; monolingual phrases that are above
a length threshold or below a frequency threshold
are excluded from the lexicon. Point 3 is handled
by hill-climbing to a likely phrasal alignment and
sampling around it. However, point 1 remains unad-
dressed, which prevents the model from scaling to
large data sets.

Birch et al. (2006) handle point 1 directly by re-
ducing the size of the alignment space. This is
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accomplished by constraining the JPTM to only
use phrase pairs that are consistent with a high-
confidence word alignment, which is provided by
GIZA++ intersection. We refer to this constrained
JPTM as a C-JPTM. This strikes an interesting
middle ground between the surface heuristic de-
scribed in Section 2.1 and the JPTM. Like the sur-
face heuristic, a word alignment is used to limit the
phrase pairs considered, but the C-JPTM reasons
about distributions over phrasal alignments, instead
of taking flat counts. The consistency constraint al-
lows them to scale their C-JPTM up to 700,000 sen-
tence pairs. With this constraint in place, the use of
hill-climbing and sampling during EM training be-
comes one of the largest remaining weaknesses of
the C-JPTM.

2.3 Inversion Transduction Grammar

Like the JPTM, stochastic synchronous grammars
provide a generative process to produce a sentence
and its translation simultaneously. Inversion trans-
duction grammar (Wu, 1997), or ITG, is a well-
studied synchronous grammar formalism. Terminal
productions of the form A → e/f produce a to-
ken in each stream, or a token in one stream with
the null symbol ∅ in the other. To allow for move-
ment during translation, non-terminal productions
can be either straight or inverted. Straight produc-
tions, with their non-terminals inside square brack-
ets [. . .], produce their symbols in the given order in
both streams. Inverted productions, indicated by an-
gled brackets 〈. . .〉, are output in reverse order in the
Foreign stream only.

The work described here uses the binary bracket-
ing ITG, which has a single non-terminal:

A → [AA] | 〈AA〉 | e/f (2)

This grammar admits an efficient bitext parsing al-
gorithm, and holds no language-specific biases.

(2) cannot represent all possible permutations of
concepts that may occur during translation, because
some permutations will require discontinuous con-
stituents (Melamed, 2003). This ITG constraint is
characterized by the two forbidden structures shown
in Figure 1 (Wu, 1997). Empirical studies suggest
that only a small percentage of human translations
violate these constraints (Cherry and Lin, 2006).

e1

e2

e3

e4

f1 f2 f3 f4 f1 f2 f3 f4
e1

e2

e3

e4

Figure 1: The two ITG forbidden structures.

calmez vous

ca
lm

do
wn

calmez vous

ca
lm

do
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calmez vous
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do
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a) A→[AA] b) A→<AA> c) A→e/f

Figure 2: Three ways in which a phrasal ITG can
analyze a multi-word span or phrase.

Stochastic ITGs are parameterized like their
PCFG counterparts (Wu, 1997); productions
A → X are assigned probability Pr(X|A). These
parameters can be learned from sentence-aligned bi-
text using the EM algorithm. The expectation task
of counting productions weighted by their probabil-
ity is handled with dynamic programming, using the
inside-outside algorithm extended to bitext (Zhang
and Gildea, 2004).

3 ITG as a Phrasal Translation Model

This paper introduces a phrasal ITG; in doing so,
we combine ITG with the JPTM. ITG parsing al-
gorithms consider every possible two-dimensional
span of bitext, each corresponding to a bilingual
phrase pair. Each multi-token span is analyzed in
terms of how it could be built from smaller spans us-
ing a straight or inverted production, as is illustrated
in Figures 2 (a) and (b). To extend ITG to a phrasal
setting, we add a third option for span analysis: that
the span under consideration might have been drawn
directly from the lexicon. This option can be added
to our grammar by altering the definition of a termi-
nal production to include phrases: A → ē/f̄ . This
third option is shown in Figure 2 (c). The model
implied by this extended grammar is trained using
inside-outside and EM.

Our approach differs from previous attempts to
use ITGs for phrasal bitext analysis. Wu (1997)
used a binary bracketing ITG to segment a sen-
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tence while simultaneously word-aligning it to its
translation, but the model was trained heuristically
with a fixed segmentation. Vilar and Vidal (2005)
used ITG-like dynamic programming to drive both
training and alignment for their recursive translation
model, but they employed a conditional model that
did not maintain a phrasal lexicon. Instead, they
scored phrase pairs using IBM Model 1.

Our phrasal ITG is quite similar to the JPTM.
Both models are trained with EM, and both em-
ploy generative stories that create a sentence and its
translation simultaneously. The similarities become
more apparent when we consider the canonical-form
binary-bracketing ITG (Wu, 1997) shown here:

S → A | B | C
A → [AB] | [BB] | [CB] |

[AC] | [BC] | [CC]
B → 〈AA〉 | 〈BA〉 | 〈CA〉 |

〈AC〉 | 〈BC〉 | 〈CC〉
C → ē/f̄

(3)

(3) is employed in place of (2) to reduce redundant
alignments and clean up EM expectations.1 More
importantly for our purposes, it introduces a preter-
minal C, which generates all phrase pairs or cepts.
When (3) is parameterized as a stochastic ITG, the
conditional distribution p(ē/f̄ |C) is equivalent to
the JPTM’s p(ē, f̄); both are joint distributions over
all possible phrase pairs. The distributions condi-
tioned on the remaining three non-terminals assign
probability to concept movement by tracking inver-
sions. Like the JPTM’s distortion model, these pa-
rameters grade each movement decision indepen-
dently. With terminal productions producing cepts,
and inversions measuring distortion, our phrasal ITG
is essentially a variation on the JPTM with an alter-
nate distortion model.

Our phrasal ITG has two main advantages over
the JPTM. Most significantly, we gain polynomial-
time algorithms for both Viterbi alignment and EM
expectation, through the use of ITG parsing and
inside-outside algorithms. These phrasal ITG algo-
rithms are no more expensive asymptotically than
their word-to-word counterparts, since each poten-
tial phrase needs to be analyzed anyway during

1If the null symbol ∅ is included among the terminals, then
redundant parses will still occur, but far less frequently.

constituent construction. We hypothesize that us-
ing these methods in place of heuristic search and
sampling will improve the phrasal translation model
learned by EM. Also, we can easily incorporate links
to ∅ by including the symbol among our terminals.
To minimize redundancy, we allow only single to-
kens, not phrases, to align to ∅. The JPTM does not
allow links to ∅.

The phrasal ITG also introduces two new compli-
cations. ITG Viterbi and inside-outside algorithms
have polynomial complexity, but that polynomial is
O(n6), where n is the length of the longer sentence
in the pair. This is too slow to train on large data
sets without massive parallelization. Also, ITG al-
gorithms explore their alignment space perfectly, but
that space has been reduced by the ITG constraint
described in Section 2.3. We will address each of
these issues in the following two subsections.

3.1 Pruning Spans

First, we address the problem of scaling ITG to large
data. ITG dynamic programming algorithms work
by analyzing each bitext span only once, storing its
value in a table for future use. There are O(n4) of
these spans, and each analysis takes O(n2) time. An
effective approach to speeding up ITG algorithms
is to eliminate unlikely spans as a preprocessing
step, assigning them 0 probability and saving the
time spent processing them. Past approaches have
pruned spans using IBM Model 1 probability esti-
mates (Zhang and Gildea, 2005) or using agreement
with an existing parse tree (Cherry and Lin, 2006).
The former is referred to as tic-tac-toe pruning be-
cause it uses both inside and outside estimates.

We propose a new ITG pruning method that lever-
ages high-confidence links by pruning all spans that
are inconsistent with a provided alignment. This
is similar to the constraint used in the C-JPTM,
but we do not just eliminate those spans as poten-
tial phrase-to-phrase links: we never consider any
ITG parse that builds a non-terminal over a pruned
span.2 This fixed-link pruning will speed up both
Viterbi alignment and EM training by reducing the
number of analyzed spans, and so long as we trust

2Birch et al. (2006) re-introduce inconsistent phrase-pairs in
cases where the sentence pair could not be aligned otherwise.
We allow links to ∅ to handle these situations, completely elim-
inating the pruned spans from our alignment space.
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our high-confidence links, it will do so harmlessly.
We demonstrate the effectiveness of this pruning
method experimentally in Section 5.1.

3.2 Handling the ITG Constraint
Our remaining concern is the ITG constraint. There
are some alignments that we just cannot build, and
sentence pairs requiring those alignments will occur.
These could potentially pollute our training data; if
the system is unable to build the right alignment, the
counts it will collect from that pair must be wrong.
Furthermore, if our high-confidence links are not
ITG-compatible, our fixed-link pruning will prevent
the aligner from forming any alignments at all.

However, these two potential problems cancel
each other out. Sentence pairs containing non-ITG
translations will tend to have high-confidence links
that are also not ITG-compatible. Our EM learner
will simply skip these sentence pairs during train-
ing, avoiding pollution of our training data. We can
use a linear-time algorithm (Zhang et al., 2006) to
detect non-ITG movement in our high-confidence
links, and remove the offending sentence pairs from
our training corpus. This results in only a minor re-
duction in training data; in our French-English train-
ing set, we lose less than 1%. In the experiments de-
scribed in Section 5, all systems that do not use ITG
will take advantage of the complete training set.

4 Applying the model

Any phrasal translation model can be used for two
tasks: translation modeling and phrasal word align-
ment. Previous work on JPTM has focused on only
the first task. We are interested in phrasal alignment
because it may be better suited to heuristic phrase-
extraction than word-based models. This section de-
scribes how to use our phrasal ITG first as a transla-
tion model, and then as a phrasal aligner.

4.1 Translation Modeling
We can test our model’s utility for translation by
transforming its parameters into a phrase table for
the phrasal decoder Pharaoh (Koehn et al., 2003).
Any joint model can produce the necessary condi-
tional probabilities by conditionalizing the joint ta-
ble in both directions. We use our p(ē/f̄ |C) dis-
tribution from our stochastic grammar to produce
p(ē|f̄) and p(f̄ |ē) values for its phrasal lexicon.

Pharaoh also includes lexical weighting param-
eters that are derived from the alignments used to
induce its phrase pairs (Koehn et al., 2003). Us-
ing the phrasal ITG as a direct translation model,
we do not produce alignments for individual sen-
tence pairs. Instead, we provide a lexical preference
with an IBM Model 1 feature pM1 that penalizes un-
matched words (Vogel et al., 2003). We include both
pM1(ē|f̄) and pM1(f̄ |ē).

4.2 Phrasal Word Alignment

We can produce a translation model using inside-
outside, without ever creating a Viterbi parse. How-
ever, we can also examine the maximum likelihood
phrasal alignments predicted by the trained model.

Despite its strengths derived from using phrases
throughout training, the alignments predicted by our
phrasal ITG are usually unsatisfying. For exam-
ple, the fragment pair (order of business, ordre des
travaux) is aligned as a phrase pair by our system,
linking every English word to every French word.
This is frustrating, since there is a clear compo-
sitional relationship between the fragment’s com-
ponent words. This happens because the system
seeks only to maximize the likelihood of its train-
ing corpus, and phrases are far more efficient than
word-to-word connections. When aligning text, an-
notators are told to resort to many-to-many links
only when no clear compositional relationship ex-
ists (Melamed, 1998). If we could tell our phrasal
aligner the same thing, we could greatly improve the
intuitive appeal of our alignments. Again, we can
leverage high-confidence links for help.

In the high-confidence alignments provided by
GIZA++ intersection, each token participates in at
most one link. Links only appear when two word-
based IBM translation models can agree. Therefore,
they occur at points of high compositionality: the
two words clearly account for one another. We adopt
an alignment-driven definition of compositional-
ity: any phrase pair containing two or more high-
confidence links is compositional, and can be sep-
arated into at least two non-compositional phrases.
By removing any phrase pairs that are compositional
by this definition from our terminal productions,
we can ensure that our aligner never creates such
phrases during training or alignment. Doing so pro-
duces far more intuitive alignments. Aligned with
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a model trained using this non-compositional con-
straint (NCC), our example now forms three word-
to-word connections, rather than a single phrasal
one. The phrases produced with this constraint are
very small, and include only non-compositional con-
text. Therefore, we use the constraint only to train
models intended for Viterbi alignment, and not when
generating phrase tables directly as in Section 4.1.

5 Experiments and Results

In this section, we first verify the effectiveness of
fixed-link pruning, and then test our phrasal ITG,
both as an aligner and as a translation model. We
train all translation models with a French-English
Europarl corpus obtained by applying a 25 to-
ken sentence-length limit to the training set pro-
vided for the HLT-NAACL SMT Workshop Shared
Task (Koehn and Monz, 2006). The resulting cor-
pus has 393,132 sentence pairs. 3,376 of these
are omitted for ITG methods because their high-
confidence alignments have ITG-incompatible con-
structions. Like our predecessors (Marcu and Wong,
2002; Birch et al., 2006), we apply a lexicon con-
straint: no monolingual phrase can be used by any
phrasal model unless it occurs at least five times.
High-confidence alignments are provided by inter-
secting GIZA++ alignments trained in each direc-
tion with 5 iterations each of Model 1, HMM, and
Model 4. All GIZA++ alignments are trained with
no sentence-length limit, using the full 688K corpus.

5.1 Pruning Speed Experiments
To measure the speed-up provided by fixed-link
pruning, we timed our phrasal inside-outside algo-
rithm on the first 100 sentence pairs in our training
set, with and without pruning. The results are shown
in Table 1. Tic-tac-toe pruning is included for com-
parison. With fixed-link pruning, on average 95%
of the possible spans are pruned, reducing running
time by two orders of magnitude. This improvement
makes ITG training feasible, even with large bitexts.

5.2 Alignment Experiments
The goal of this experiment is to compare the Viterbi
alignments from the phrasal ITG to gold standard
human alignments. We do this to validate our non-
compositional constraint and to select good align-
ments for use with the surface heuristic.

Table 1: Inside-outside run-time comparison.

Method Seconds Avg. Spans Pruned
No Prune 415 -

Tic-tac-toe 37 68%
Fixed link 5 95%

Table 2: Alignment Comparison.

Method Prec Rec F-measure
GIZA++ Intersect 96.7 53.0 68.5
GIZA++ Union 82.5 69.0 75.1
GIZA++ GDF 84.0 68.2 75.2
Phrasal ITG 50.7 80.3 62.2
Phrasal ITG + NCC 75.4 78.0 76.7

Following the lead of (Fraser and Marcu, 2006),
we hand-aligned the first 100 sentence pairs of
our training set according to the Blinker annota-
tion guidelines (Melamed, 1998). We did not dif-
ferentiate between sure and possible links. We re-
port precision, recall and balanced F-measure (Och
and Ney, 2003). For comparison purposes, we in-
clude the results of three types of GIZA++ combina-
tion, including the grow-diag-final heuristic (GDF).
We tested our phrasal ITG with fixed link prun-
ing, and then added the non-compositional con-
straint (NCC). During development we determined
that performance levels off for both of the ITG mod-
els after 3 EM iterations. The results are shown in
Table 2.

The first thing to note is that GIZA++ Intersection
is indeed very high precision. Our confidence in it
as a constraint is not misplaced. We also see that
both phrasal models have significantly higher recall
than any of the GIZA++ alignments, even higher
than the permissive GIZA++ union. One factor con-
tributing to this is the phrasal model’s use of cepts:
it completely interconnects any phrase pair, while
GIZA++ union and GDF may not. Its global view
of phrases also helps in this regard: evidence for a
phrase can be built up over multiple sentences. Fi-
nally, we note that in terms of alignment quality,
the non-compositional constraint is an unqualified
success for the phrasal ITG. It produces a 25 point
improvement in precision, at the cost of 2 points
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of recall. This produces the highest balanced F-
measure observed on our test set, but the utility of
its alignments will depend largely on one’s desired
precision-recall trade-off.

5.3 Translation Experiments
In this section, we compare a number of different
methods for phrase table generation in a French to
English translation task. We are interested in an-
swering three questions:

1. Does the phrasal ITG improve on the C-JPTM?
2. Can phrasal translation models outperform the

surface heuristic?
3. Do Viterbi phrasal alignments provide better

input for the surface heuristic?

With this in mind, we test five phrase tables. Two
are conditionalized phrasal models, each EM trained
until performance degrades:

• C-JPTM3 as described in (Birch et al., 2006)
• Phrasal ITG as described in Section 4.1

Three provide alignments for the surface heuristic:

• GIZA++ with grow-diag-final (GDF)
• Viterbi Phrasal ITG with and without the non-

compositional constraint

We use the Pharaoh decoder (Koehn et al., 2003)
with the SMT Shared Task baseline system (Koehn
and Monz, 2006). Weights for the log-linear model
are set using the 500-sentence tuning set provided
for the shared task with minimum error rate train-
ing (Och, 2003) as implemented by Venugopal
and Vogel (2005). Results on the provided 2000-
sentence development set are reported using the
BLEU metric (Papineni et al., 2002). For all meth-
ods, we report performance with and without IBM
Model 1 features (M1), along with the size of the re-
sulting tables in millions of phrase pairs. The results
of all experiments are shown in Table 3.

We see that the Phrasal ITG surpasses the C-
JPTM by more than 2.5 BLEU points. A large com-
ponent of this improvement is due to the ITG’s use
of inside-outside for expectation calculation, though

3Supplied by personal communication. Run with default pa-
rameters, but with maximum phrase length increased to 5.

Table 3: Translation Comparison.

Method BLEU +M1 Size
Conditionalized Phrasal Model

C-JPTM 26.27 28.98 1.3M
Phrasal ITG 28.85 30.24 2.2M

Alignment with Surface Heuristic
GIZA++ GDF 30.46 30.61 9.8M
Phrasal ITG 30.31 30.39 5.8M
Phrasal ITG + NCC 30.66 30.80 9.0M

there are other differences between the two sys-
tems.4 This improvement over search and sampling
is demonstrated by the ITG’s larger table size; by ex-
ploring more thoroughly, it is extracting more phrase
pairs from the same amount of data. Both systems
improve drastically with the addition of IBM Model
1 features for lexical preference. These features also
narrow the gap between the two systems. To help
calibrate the contribution of these features, we pa-
rameterized the ITG’s phrase table using only Model
1 features, which scores 27.17.

Although ITG+M1 comes close, neither phrasal
model matches the performance of the surface
heuristic. Whatever the surface heuristic lacks in
sophistication, it makes up for in sheer coverage,
as demonstrated by its huge table sizes. Even the
Phrasal ITG Viterbi alignments, which over-commit
wildly and have horrible precision, score slightly
higher than the best phrasal model. The surface
heuristic benefits from capturing as much context
as possible, while still covering smaller translation
events with its flat counts. It is not held back by
any lexicon constraints. When GIZA++ GDF+M1
is forced to conform to a lexicon constraint by drop-
ping any phrase with a frequency lower than 5 from
its table, it scores only 29.26, for a reduction of 1.35
BLEU points.

Phrases extracted from our non-compositional
Viterbi alignments receive the highest BLEU score,
but they are not significantly better than GIZA++
GDF. The two methods also produce similarly-sized
tables, despite the ITG’s higher recall.

4Unlike our system, the Birch implementation does table
smoothing and internal lexical weighting, both of which should
help improve their results. The systems also differ in distortion
modeling and ∅ handling, as described in Section 3.
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6 Conclusion

We have presented a phrasal ITG as an alternative
to the joint phrasal translation model. This syntactic
solution to phrase modeling admits polynomial-time
training and alignment algorithms. We demonstrate
that the same consistency constraints that allow joint
phrasal models to scale also dramatically speed up
ITGs, producing an 80-times faster inside-outside
algorithm. We show that when used to learn phrase
tables for the Pharaoh decoder, the phrasal ITG is
superior to the constrained joint phrasal model, pro-
ducing tables that result in a 2.5 point improve-
ment in BLEU when used alone, and a 1 point im-
provement when used with IBM Model 1 features.
This suggests that ITG’s perfect expectation count-
ing does matter; other phrasal models could benefit
from either adopting the ITG formalism, or improv-
ing their sampling heuristics.

We have explored, for the first time, the utility of a
joint phrasal model as a word alignment method. We
present a non-compositional constraint that turns the
phrasal ITG into a high-recall phrasal aligner with
an F-measure that is comparable to GIZA++.

With search and sampling no longer a concern,
the remaining weaknesses of the system seem to lie
with the model itself. Phrases are just too efficient
probabilistically: were we to remove all lexicon con-
straints, EM would always align entire sentences to
entire sentences. This pressure to always build the
longest phrase possible may be overwhelming oth-
erwise strong correlations in our training data. A
promising next step would be to develop a prior over
lexicon size or phrase size, allowing EM to intro-
duce large phrases at a penalty, and removing the
need for artificial constraints on the lexicon.
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Abstract

Factoring a Synchronous Context-Free
Grammar into an equivalent grammar with
a smaller number of nonterminals in each
rule enables synchronous parsing algo-
rithms of lower complexity. The prob-
lem can be formalized as searching for the
tree-decomposition of a given permutation
with the minimal branching factor. In this
paper, by modifying the algorithm of Uno
and Yagiura (2000) for the closely related
problem of finding all common intervals
of two permutations, we achieve a linear
time algorithm for the permutation factor-
ization problem. We also use the algo-
rithm to analyze the maximum SCFG rule
length needed to cover hand-aligned data
from various language pairs.

1 Introduction

A number of recent syntax-based approaches to
statistical machine translation make use of Syn-
chronous Context Free Grammar (SCFG) as the un-
derlying model of translational equivalence. Wu
(1997)’s Inversion Transduction Grammar, as well
as tree-transformation models of translation such as
Yamada and Knight (2001), Galley et al. (2004), and
Chiang (2005) all fall into this category.

A crucial question for efficient computation in ap-
proaches based on SCFG is the length of the gram-
mar rules. Grammars with longer rules can represent
a larger set of reorderings between languages (Aho

and Ullman, 1972), but also require greater compu-
tational complexity for word alignment algorithms
based on synchronous parsing (Satta and Peserico,
2005). Grammar rules extracted from large paral-
lel corpora by systems such as Galley et al. (2004)
can be quite large, and Wellington et al. (2006) ar-
gue that complex rules are necessary by analyzing
the coverage of gold-standard word alignments from
different language pairs by various grammars.

However, parsing complexity depends not only
on rule length, but also on the specific permutations
represented by the individual rules. It may be possi-
ble to factor an SCFG with maximum rule length
n into a simpler grammar with a maximum ofk
nonterminals in any one rule, if not alln! permuta-
tions appear in the rules. Zhang et al. (2006) discuss
methods for binarizing SCFGs, ignoring the non-
binarizable grammars; in Section 2 we discuss the
generalized problem of factoring tok-ary grammars
for anyk and formalize the problem as permutation
factorization in Section 3.

In Section 4, we describe anO(k · n) left-to-
right shift-reduce algorithm for analyzing permuta-
tions that can bek-arized. Its time complexity be-
comesO(n2) when k is not specified beforehand
and the minimalk is to be discovered. Instead of
linearly shifting in one number at a time, Gildea
et al. (2006) employ a balanced binary tree as the
control structure, producing an algorithm similar in
spirit to merge-sort with a reduced time complex-
ity of O(n log n). However, both algorithms rely
on reduction tests on emerging spans which involve
redundancies with the spans that have already been
tested.
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Uno and Yagiura (2000) describe a clever algo-
rithm for the problem of finding all common inter-
vals of two permutations in timeO(n + K), where
K is the number of common intervals, which can
itself be Ω(n2). In Section 5, we adapt their ap-
proach to the problem of factoring SCFGs, and show
that, given this problem definition, running time can
be improved toO(n), the optimum given the time
needed to read the input permutation.

The methodology in Wellington et al. (2006) mea-
sures the complexity of word alignment using the
number of gaps that are necessary for their syn-
chronous parser which allows discontinuous spans
to succeed in parsing. In Section 6, we provide a
more direct measurement using the minimal branch-
ing factor yielded by the permutation factorization
algorithm.

2 Synchronous CFG and Synchronous
Parsing

We begin by describing the synchronous CFG for-
malism, which is more rigorously defined by Aho
and Ullman (1972) and Satta and Peserico (2005).

We adopt the SCFG notation of Satta and Peserico
(2005). Superscriptindices in the right-hand side of
grammar rules:

X → X
(1)
1 ...X(n)

n , X
(π(1))
π(1) ...X

(π(n))
π(n)

indicate that the nonterminals with the same index
are linked across the two languages, and will eventu-
ally be rewritten by the same rule application. Each
Xi is a variable which can take the value of any non-
terminal in the grammar.

We say an SCFG isn-ary if and only if the max-
imum number of co-indexed nonterminals, i.e. the
longest permutation contained in the set of rules, is
of sizen.

Given a synchronous CFG and a pair of input
strings, we can apply a generalized CYK-style bot-
tom up chart parser to build synchronous parse
trees over the string pair. Wu (1997) demonstrates
the case of binary SCFG parsing, where six string
boundary variables, three for each language as in
monolingual CFG parsing, interact with each other,
yielding an O(N6) dynamic programming algo-
rithm, whereN is the string length, assuming the
two paired strings are comparable in length. For an

n-ary SCFG, the parsing complexity can be as high
asO(Nn+4). The reason is even if we binarize on
one side to maintain3 indices, for many unfriendly
permutations, at mostn + 1 boundary variables in
the other language are necessary.

The fact that this bound is exponential in the rule
lengthn suggests that it is advantageous to reduce
the length of grammar rules as much as possible.
This paper focuses on converting an SCFG to the
equivalent grammar with smallest possible maxi-
mum rule size. The algorithm processes each rule
in the input grammar independently, and determines
whether the rule can be factored into smaller SCFG
rules by analyzing the rule’s permutationπ.

As an example, given the input rule:

[ X → A(1)B(2)C(3)D(4)E(5)F (6)G(7),

X → E(5)G(7)D(4)F (6)C(3)A(1)B(2) ] (1)

we consider the associated permutation:

(5, 7, 4, 6, 3, 1, 2)

We determine that this permutation can be fac-
tored into the following permutation tree:

(2,1)

(2,1)

(2,4,1,3)

5 7 4 6

3

(1,2)

1 2

We define permutation trees formally in the next
section, but note here that nodes in the tree corre-
spond to subsets of nonterminals that form a sin-
gle continuous span in both languages, as shown by
the shaded regions in the permutation matrix above.
This tree can be converted into a set of output rules
that are generatively equivalent to the original rule:

[ X → X
(1)
1 X

(2)
2 , X → X

(2)
2 X

(1)
1 ]

[ X1 → A(1)B(2), X1 → A(1)B(2) ]

[ X2 → C(1)X
(2)
3 , X2 → X

(2)
3 C(1) ]

[ X3 → D(1)E(2)F (3)G(4),

X3 → E(2)G(4)D(1)F (3) ]

whereX1, X2 andX3 are new nonterminals used to
represent the intermediate states in which the syn-
chronous nodes are combined. The factorized gram-
mar is only larger than the original grammar by a
constant factor.
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3 Permutation Trees

We define the notion of permutation structure in this
section. We define apermuted sequence as a per-
mutation ofn (n ≥ 1) consecutive natural numbers.

A permuted sequence is said to bek-ary parsable
if either of the following conditions holds:

1. The permuted sequence only has one number.

2. It has more than one number and can be seg-
mented intok′ (k ≥ k′ ≥ 2) permuted se-
quences each of which isk-ary parsable, and
the k′ subsequences are arranged in an order
identified by one of thek′! permutations ofk′.

This is a recursive definition, and we call the cor-
responding recursive structure over the entire se-
quence ak-ary permutation tree.

Our goal is to find out thek-ary permutation tree
for a given permutation, wherek is minimized.

4 Shift-reduce on Permutations

In this section, we present anO(n · k) algorithm
which can be viewed as a need-to-be-optimized ver-
sion of the linear time algorithm to be presented in
the next section.

The algorithm is based on a shift-reduce parser,
which maintains a stack for subsequences that have
been discovered so far and loops over shift and re-
duce steps:

1. Shift the next number in the input permutation
onto the stack.

2. Go down the stack from the top to the bottom.
Whenever the topm subsequences satisfy the
partition property, which says the total length
of them (k ≥ m ≥ 2) subsequences minus1
is equal to the difference between the smallest
number and the largest number contained in the
m segments, make a reduction by gluing the
m segments into one subsequence and restart
reducing from the top of the new stack. Stop
when no reduction is possible.

3. If there are remaining numbers in the input per-
mutation, go to 1.

When we exit from the loop, if the height of the stack
is 1, the input permutation ofn has been reduced to

Stack Input Operation
5, 7, 4, 6, 3, 1, 2 shift

5 7, 4, 6, 3, 1, 2 shift
5, 7 4, 6, 3, 1, 2 shift
5, 7, 4 6, 3, 1, 2 shift
5, 7, 4, 6 3, 1, 2 reduce by (2,4,1,3)
[4...7] 3, 1, 2 shift
[4...7], 3 1, 2 reduce by (2,1)
[3...7] 1, 2 shift
[3...7], 1 2 shift
[3...7], 1, 2 reduce by (1,2)
[3...7], [1...2] reduce by (2,1)
[1...7]

Table 1: The execution trace of the shift-reduce
parser on the input permutation5, 7, 4, 6, 3, 1, 2.

a linear sequence of1 to n, and parsing is success-
ful. Otherwise, the input permutation ofn cannot be
parsed into ak-ary permutation tree.

An example execution trace of the algorithm is
shown in Table 1.

The partition property is a sufficient and neces-
sary condition for the topm subsequences to be re-
ducible. In order to check if the property holds, we
need to compute the sum of the lengths of subse-
quences under consideration and the difference be-
tween the largest and smallest number in the cov-
ered region. We can incrementally compute both
along with each step going down the stack. Ifm

is bounded byk, we needO(k) operations for each
item shifted onto the stack. So, the algorithm runs in
O(n · k).

We might also wish to compute the minimumk
for which k-arization can be successful on an input
permutation ofn. We can simply keep doing reduc-
tion tests for every possible top region of the stack
while going deeper in the stack to find the minimal
reduction. In the worst case, each time we go down
to the bottom of the increasingly higher stack with-
out a successful reduction. Thus, inO(n2), we can
find the minimumk-arization.

5 Linear Time Factorization

In this section, we show a linear time algorithm
which shares the left-to-right and bottom-up control
structure but uses more book-keeping operations to
reduce unnecessary reduction attempts. The reason
that our previous algorithm is asymptoticallyO(n2)
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is that whenever a new number is shifted in, we have
to try out every possible new span ending at the new
number. Do we need to try every possible span? Let
us start with a motivating example. The permuted
sequence(5, 7, 4, 6) in Table 1 can only be reduced
as a whole block. However, in the last algorithm,
when4 is shifted in, we make an unsuccessful at-
tempt for the span on(7, 4), knowing we are miss-
ing 5, which will not appear when we expand the
span no matter how much further to the right. Yet
we repeat the same mistake to try on7 when6 is
scanned in by attempting on(7, 4, 6). Such wasteful
checks result in the quadratic behavior of the algo-
rithm. The way the following algorithm differs from
and outperforms the previous algorithm is exactly
that it crosses out impossible candidates for reduc-
tions such as7 in the example as early as possible.

Now we state our problem mathematically. We
define a function whose value indicates the re-
ducibility of each pair of positions(x, y) (1 ≤ x ≤

y ≤ n):

f(x, y) = u(x, y)− l(x, y)− (y − x)

where

l(x, y) = min
i∈[x,y]

π(i)

u(x, y) = max
i∈[x,y]

π(i)

l records the minimum of the numbers that are
permuted to from the positions in the region[x, y].
u records the maximum. Figure 1 provides the vi-
sualization ofu, l, andf for the example permuta-
tion (5, 7, 4, 6, 3, 1, 2). u andl can be visualized as
stairs. u goes up from the right end to the left.l
goes down. f is non-negative, but not monotonic
in general. We can make a reduction on(x, y) if
and only if f(x, y) = 0. This is the mathemati-
cal statement of the partition property in step 2 of
the shift-reduce algorithm.u andl can be computed
incrementally from smaller spans to larger spans to
guaranteeO(1) operations for computingf on each
new span of[x, y] as long as we go bottom up. In the
new algorithm, we will reduce the size of the search
space of candidate position pairs(x, y) to be linear
in n so that the whole algorithm isO(n).

The algorithm has two main ideas:

• We filter x’s to maintain the invariant that
f(x, y) (x ≤ y) is monotonically decreasing
with respect tox, over iterations ony (from 1
to n), so that any remaining values ofx corre-
sponding to valid reductions are clustered at the
point wheref tails off to zero. To put it another
way, we never have to test invalid reductions,
because the valid reductions have been sorted
together for us.

• We make greedy reductions as in the shift-
reduce algorithm.

In the new algorithm, we use a doubly linked list,
instead of a stack, as the data structure that stores
the candidatex’s to allow for more flexible main-
taining operations. The steps of the algorithm are as
follows:

1. Increase the left-to-right indexy by one and ap-
pend it to the right end of the list.

2. Find thepivot x∗ in the list which is minimum
(leftmost) amongx satisfying eitheru(x, y −

1) < u(x, y) (exclusively) orl(x, y − 1) >

l(x, y).

3. Remove thosex’s that yield even smaller
u(x, y − 1) than u(x∗, y − 1) or even larger
l(x, y − 1) than l(x∗, y − 1). Thosex’s must
be on the right ofx∗ if they exist. They must
form a sub-list extending to the right end of the
originalx list.

4. Denote thex which is immediately to the left
of x∗ asx′. Repeatedly remove allx’s such that
f(x, y) > f(x′, y) wherex is at the left end of
the sub-list ofx’s starting fromx∗ extending to
the right.

5. Go down the pruned list from the right end, out-
put (x, y) until f(x, y) > 0. Removex’s such
thatf(x, y) = 0, sparing the smallestx which
is the leftmost among all suchx’s on the list.

6. If there are remaining numbers in the input per-
mutation, go to 1.

The tricks lie in step 3 and step 4, where bad can-
didatex’s are filtered out. We use the following di-
agram to help readers understand the parts ofx-list
that the two steps are filtering on.
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x1, ..., x
′,

step 4
︷ ︸︸ ︷

x∗, ..., xi, ..., xj , ..., xk
︸ ︷︷ ︸

step 3

, y

The steps from 2 to 4 are the operations that main-
tain the monotonic invariant which makes the reduc-
tions in step 5 as trivial as performing output. The
stack-based shift-reduce algorithm has the same top-
level structure, but lacks steps 2 to 4 so that in step 5
we have to winnow the entire list. Both algorithms
scan left to right and examine potential reduction
spans by extending the left endpoint from right to
left given a right endpoint.

5.1 Example Execution Trace

An example of the algorithm’s execution is shown
in Figure 1. The evolution ofu(x, y), l(x, y), and
f(x, y) is displayed for increasingy’s (from 2 to 7).
To identify reducible spans, we can check the plot of
f(x, y) to locate the(x, y) pairs that yield zero. The
pivots found by step 2 of the algorithm are marked
with ∗’s on thex-axis in the plot foru andl. Thex’s
that are filtered out by step 3 or 4 are marked with
horizontal bars across. We want to point out the in-
teresting steps. Wheny = 3, x∗ = 1, x = 2 needs
to be crossed out by step 3 in the algorithm. When
y = 4, x∗ = 3, x = 3 itself is to be deleted by step 4
in the algorithm.x = 4 is removed at step 5 because
it is the right end in the first reduction. On the other
hand,x = 4 is also a bad starting point for future
reductions. Notice that we also removex = 5 at
step 6, which can be a good starting point for reduc-
tions. But we exclude it from further considerations,
because we want left-most reductions.

5.2 Correctness

Now we explain why the algorithm works. Both al-
gorithms are greedy in the sense that at each scan
point we exhaustively reduce all candidate spans to
the leftmost possible point. It can be shown that
greediness is safe for parsing permutations.

What we need to show is how the monotonic in-
variant holds and is valid. Now we sketch the proof.
We want to show for allxi remaining on the list,
f(xi, y) ≥ f(xi+1, y). Wheny = 1, it is trivially
true. Now we do the induction ony step by case
analysis:

Case 1: If xi < xi+1 < x∗, then f(xi, y) −
f(xi, y − 1) = −1. The reason is ifxi is on the
left of x∗, bothu(xi, y) andl(xi, y) are not changed
from they − 1-th step, so the only difference is that
y−xi has increased by one. Graphically, thef curve
extending to the left ofx∗ shifts down a unit of1. So,
the monotonic property still holds to the left ofx∗.

Case 2: If x∗ ≤ xi < xi+1, then f(xi, y) −
f(xi, y − 1) = c (c ≥ 0). The reason is that after
executing step 3 in the algorithm, the remainingxi’s
have either theiru(xi, y) shifted up uniformly with
l(xi, y) being unchanged, or the symmetric case that
l(xi, y) is shifted down uniformly without changing
u(xi, y). In both cases, the difference betweenu and
l increases by at least one unit to offset the one unit
increase ofy − xi. The result is that thef curve ex-
tending fromx∗ to the right shifts up or remains the
same.

Case 3: So the half curve off on the left ofx∗ is
shifting down and the half right curve on the right is
shifting up, making it necessary to consider the case
that xi is on the left andxi+1 on the right. Fortu-
nately, step 4 in the algorithm deals with this case
explicitly by cutting down the head of the right half
curve to smooth the whole curve into a monotoni-
cally decreasing one.

We still need one last piece for the proof, i.e., the
validity of pruning. Is it possible we winnow off
goodx’s that will become useful in later stages of
y? The answer is no. The values we remove in step
3 and 4 are similar to the points indexing into the
second and third numbers in the permuted sequence
(5, 7, 4, 6). Any span starting from these two points
will not be reducible because the element5 is miss-
ing.1

To summarize, we remove impossible left bound-
aries and keep good ones, resulting in the mono-
tonicity of f function which in turn makes safe
greedy reductions fast.

5.3 Implementation and Time Analysis

We use a doubly linked list to implement both theu

and l functions, where list element includes a span
of x values (shaded rectangles in Figure 1). Both
lists can be doubly linked with the list ofx’s so that

1Uno and Yagiura (2000) prove the validity of step 3 and
step 4 rigorously.
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we can access theu function andl function atO(1)
time for eachx. At the same time, if we search for
x based onu or l, we can follow the stair functions,
skipping many intermediatex’s.

The total number of operations that occur at step
4 and step 5 isO(n) since these steps just involve
removing nodes on thex list, and onlyn nodes are
created in total over the entire algorithm. To find
x∗, we scan back from the right end ofu list or l

list. Due to step 3, eachu (and l) element that we
scan over is removed at this iteration. So the total
number of operations accountable to step 2 and step
3 is bounded by the maximum number of nodes ever
created on theu andl lists, which is alson.

5.4 Related Work

Our algorithm is based on an algorithm for finding
all common intervals of two permutations (Uno and
Yagiura, 2000). The difference2 is in step 5, where
we remove the embedded reduciblex’s and keep
only the leftmost one; their algorithm will keep all of
the reduciblex’s for future considerations so that in
the example the number3 will be able to involve in
both the reduction([4−7], 3) and(3, [1−2]). In the
worst case, their algorithm will output a quadratic
number of reducible spans, making the whole algo-
rithm O(n2). Our algorithm isO(n) in the worst
case. We can also generate all common intervals by
transforming the permutation tree output by our al-
gorithm.

However, we are not the first to specialize the Uno
and Yagiura algorithm to produce tree structures for
permutations. Bui-Xuan et al. (2005) reached a lin-
ear time algorithm in the definition framework of
PQ trees. PQ trees represent families of permuta-
tions that can be created by composing operations
of scrambling subsequences according to any per-
mutation (P nodes) and concatenating subsequences
in order (Q nodes). Our definition of permutation
tree can be thought of as a more specific version of a
PQ tree, where the nodes are all labeled with a spe-
cific permutation which is not decomposable.

2The original Uno and Yagiura algorithm also has the minor
difference that the scan point goes from right to left.

6 Experiments on Analyzing Word
Alignments

We apply the factorization algorithm to analyzing
word alignments in this section. Wellington et al.
(2006) indicate the necessity of introducing discon-
tinuous spans for synchronous parsing to match up
with human-annotated word alignment data. The
number of discontinuous spans reflects the struc-
tural complexity of the synchronous rules that are
involved in building the synchronous trees for the
given alignments. However, the more direct and de-
tailed analysis would be on the branching factors of
the synchronous trees for the aligned data.

Since human-aligned data has many-to-one word
links, it is necessary to modify the alignments into
one-to-one. Wellington et al. (2006) treat many-to-
one word links disjunctively in their synchronous
parser. We also commit to one of the many-one links
by extracting a maximum match (Cormen et al.,
1990) from the bipartite graph of the alignment. In
other words, we abstract away the alternative links
in the given alignment while capturing the backbone
using the maximum number of word links.

We use the same alignment data for the five
language pairs Chinese/English, Romanian/English,
Hindi/English, Spanish/English, and French/English
(Wellington et al., 2006). In Table 2, we report the
number of sentences that arek-ary parsable but not
k − 1-ary parsable for increasingk’s. Our analysis
reveals that the permutations that are accountable for
non-ITG alignments include higher order permuta-
tions such as(3, 1, 5, 2, 4), albeit sparsely seen.

We also look at the number of terminals the non-
binary synchronous nodes can cover. We are in-
terested in doing so, because this can tell us how
general these unfriendly rules are. Wellington et al.
(2006) did a similar analysis on the English-English
bitext. They found out the majority of non-ITG
parsable cases are not local in the sense that phrases
of length up to 10 are not helpful in covering the
gaps. We analyzed the translation data for the five
language pairs instead. Our result differs. The right-
most column in Table 2 shows that only a tiny per-
cent of the non-ITG cases are significant in the sense
that we can not deal with them through phrases or
tree-flattening within windows of size 10.
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Figure 1: Evolution ofu(x, y), l(x, y), and f(x, y) as y goes from 2 to 7 for the permutation
(5, 7, 4, 6, 3, 1, 2). We use∗ under thex-axis to indicate thex∗’s that are pivots in the algorithm. Use-
lessx’s are crossed out.x’s that contribute to reductions are marked with either( on its left or) on its right.
For thef function, we use solid boxes to plot the values of remainingx’s on the list but also show the other
f values for completeness.
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Branching Factor
1 2 4 5 6 7 10 ≥ 4 (and covering> 10 words)

Chinese/English 451 30 4 5 1 7(1.4%)
Romanian/English 195 4 0
Hindi/English 3 85 1 1 0
Spanish/English 195 4 1(0.5%)
French/English 425 9 9 3 1 6(1.3%)

Table 2: Distribution of branching factors for synchronous trees on various language pairs.

7 Conclusion

We present a linear time algorithm for factorizing
anyn-ary SCFG rule into a set ofk-ary rules where
k is minimized. The algorithm speeds up an easy-
to-understand shift-reduce algorithm, by avoiding
unnecessary reduction attempts while maintaining
the left-to-right bottom-up control structure. Em-
pirically, we provide a complexity analysis of word
alignments based on the concept of minimal branch-
ing factor.
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Abstract

Binarization is essential for achieving
polynomial time complexities in pars-
ing and syntax-based machine transla-
tion. This paper presents a new binariza-
tion scheme,target-side binarization, and
compares it with source-side and syn-
chronous binarizations on both string-
based and tree-based systems using syn-
chronous grammars. In particular, we
demonstrate the effectiveness of target-
side binarization on a large-scale tree-to-
string translation system.

1 Introduction

Several recent syntax-based models for machine
translation (Chiang, 2005; Galley et al., 2006) can
be seen as instances of the general framework of
synchronous grammars and tree transducers. In this
framework, decoding can be thought of as pars-
ing problems, whose complexity is in general expo-
nential in the number of nonterminals on the right
hand side of a grammar rule. To alleviate this prob-
lem, one can borrow from parsing the technique
of binarizing context-free grammars (into Chomsky
Normal Form) to reduce the complexity. With syn-
chronous context-free grammars (SCFG), however,
this problem becomes more complicated with the
additional dimension of target-side permutation.

The simplest method of binarizing an SCFG is
to binarize (left-to-right) on the source-side as if
treating it as a monolingual CFG for the source-
langauge. However, this approach does not guaran-

∗This work is partially supported by NSF ITR grants IIS-
0428020 (while I was visiting USC/ISI) and EIA-0205456. I
also wish to thank Jonathan Graehl, Giorgio Satta, Hao Zhang,
and the three anonymous reviewers for helpful comments.

tee contiguous spans on the target-side, due to the ar-
bitrary re-ordering of nonterminals between the two
languages. As a result, decoding with an integrated
language model still has an exponential complexity.

Synchronous binarization(Zhang et al., 2006)
solves this problem by simultaneously binarizing
both source and target-sides of a synchronous rule,
making sure of contiguous spans on both sides
whenever possible. Neglecting the small amount
of non-binarizable rules, the decoding complexity
with an integrated language model becomes polyno-
mial and translation quality is significantly improved
thanks to the better search. However, this method is
more sophisticated to implement than the previous
method and binarizability ratio decreases on freer
word-order languages (Wellington et al., 2006).

This paper presents a third alternative,target-
side binarization, which is the symmetric version of
the simple source-side variant mentioned above. We
compare it with the other two schemes in two pop-
ular instantiations of MT systems based on SCFGs:
the string-based systems(Chiang, 2005; Galley et
al., 2006) where the input is a string to be parsed
using the source-side of the SCFG; and thetree-
based systems(Liu et al., 2006; Huang et al., 2006)
where the input is a parse tree and is recursively
converted into a target string using the SCFG as a
tree-transducer. While synchronous binarization is
the best strategy for string-based systems, we show
that target-side binarization can achieve the same
performance of synchronous binarization for tree-
based systems, with much simpler implementation
and100% binarizability.

2 Synchronous Grammars and
Binarization Schemes

In this section, we define synchronous context-
free grammars and present the three binarization
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Figure 1: Illustration of the three binarization schemes, with virtual nonterminals in gray.

schemes through a motivational example.
A synchronous CFG (SCFG) is a context-free

rewriting system for generating string pairs. Each
rule (synchronous production) rewrites a nontermi-
nal in two dimensions subject to the constraint that
the sequence of nonterminal children on one side is
a permutation of the nonterminal sequence on the
other side. Each co-indexed child nonterminal pair
will be further rewritten as a unit. Therank of a rule
is defined as the number of its synchronous nonter-
minals. We also define the source and target projec-
tions of an SCFG to be the CFGs for the source and
target languages, respectively.

For example, the following SCFG1

(1)

S → NP1 PP2 VP 3 , NP1 VP 3 PP2

NP → Baoweier, Powell
VP → juxing le huitan, held a meeting
PP → yu Shalong, with Sharon

captures the re-ordering of PP and VP between
Chinese (source) and English (target). The source-
projection of the first rule, for example, is

S→ NP PP VP.

Decoding with an SCFG (e.g., translating from
Chinese to English using the above grammar) can be
cast as a parsing problem (see Section 3 for details),
in which case we need to binarize a synchronous rule
with more than two nonterminals to achieve polyno-
mial time algorithms (Zhang et al., 2006). We will
next present the three different binarization schemes
using Example 1.

1An alternative notation, used by Satta and Peserico (2005),
allows co-indexed nonterminals to take different symbols across
languages, which is convenient in describing syntactic diver-
gences (see Figure 2).

2.1 Source-side Binarization

The first and simplest scheme,source-side binariza-
tion, works left-to-right on the source projection of
the SCFG without respecting the re-orderings on the
target-side. So it will binarize the first rule as:

(2)
S → NP-PP VP

NP-PP → NP PP

which corresponds to Figure 1 (b). Notice that the
virtual nonterminalNP-PP representing the inter-
mediate symbol isdiscontinuouswith two spans on
the target (English) side, because this binarization
scheme completely ignores the reorderings of non-
terminals. As a result, the binarized grammar, with
a gap on the target-side, is no longer an SCFG, but
can be represented in the more general formalism of
Multi-Text Grammars (MTG) (Melamed, 2003):

(3)

(

S
S

)

→⊲⊳
[1, 2]

[1, 2, 1]

(

NP-PP VP
NP-PP(2) VP

)

here[1, 2, 1] denotes that on that target-side, the first
nonterminal NP-PP has two discontinuous spans,
with the second nonterminal VP in the gap.

Intuitively speaking, the gaps on the target-side
will lead to exponential complexity in decoding with
integrated language models (see Section 3), as well
as synchronous parsing (Zhang et al., 2006).

2.2 Synchronous Binarization

A more principled method issynchronous binariza-
tion, which simultaneously binarizes both source
and target sides, with the constraint that virtual non-
terminals always have contiguous spans on both
sides. The resulting grammar is thus another SCFG,
the binary branching equivalent of the original gram-
mar, which can be thought of as an extension of the
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Figure 2: An example of non-binarizable rule from the hand-aligned Chinese-English data in Liu et al.
(2005). The SCFG rule is VP→ ADVP 1 PP2 VB 3 NN 4 , VP→ VB 3 JJ1 NNS4 PP2 in the notatoin
of Satta and Peserico (2005).

Chomsky Normal Form in synchronous grammars.
The example rule is now binarized into:

(4)
S → NP1 PP-VP2 , NP1 PP-VP2

PP-VP → PP1 VP 2 , VP2 PP1

which corresponds to Figure 1 (c). This represen-
tation, being contiguous on both sides, successfully
reduces the decoding complexity to a low polyno-
mial and significantly improved the search quality
(Zhang et al., 2006).

However, this scheme has the following draw-
backs. First, synchronous binarization isnot always
possible with an arbitrary SCFG. Some reorder-
ings, for example, the permutation(2, 4, 1, 3), is
non-binarizable. Although according to Zhang et al.
(2006), the vast majority (99.7%) of rules in their
Chinese-English dataset are binarizable, there do ex-
ist some interesting cases that are not (see Figure 2
for a real-data example). More importantly, the ra-
tio of binarizability, as expected, decreases on freer
word-order languages (Wellington et al., 2006). Sec-
ond, synchronous binarization is significantly more
complicated to implement than the straightforward
source-side binarization.

2.3 Target-side Binarization

We now introduce a novel scheme, target-side bi-
narization, which is the symmetric version of the
source-side variant. Under this method, the target-
side is always contiguous, while leaving some gaps
on the source-side. The example rule is binarized
into the following MTG form:

(5)

(

S
S

)

→⊲⊳
[1, 2, 1]
[1, 2]

(

NP-VP(2) PP
NP-VP PP

)

which corresponds to Figure 1 (d).

scheme s(b) t(b)

source-side 1 ≤ n/2

synchronous 1 1
target-side ≤ n/2 1

Table 1: Source and target arities of the three bina-
rization schemes of an SCFG rule of rankn.

Although the discontinuity on the source-side in
this new scheme causes exponential complexity in
string-based systems (Section 3.1), the continuous
spans on the target-side will ensure polynomial com-
plexity in tree-based systems (Section 3.2).

Before we move on to study the effects of vari-
ous binarization schemes in decoding, we need some
formal machineries of discontinuities.

We define thesource and target arities of a
virtual nonterminalV , denoteds(V ) and t(V ), to
be the number of (consecutive) spans ofV on the
source and target sides, respectively. This definition
extends to a binarizationb of an SCFG rule of rank
n, where aritiess(b) and t(b) are defined as the
maximum source and target arities over all virtual
nonterminals inb, respectively. For example, the
source and target arities of the three binarizations in
Figure 1 are 1 and 2 for (b), 1 and 1 for (c), and
2 and 1 for (d). In general, the arities for the three
binarization schemes are summarized in Table 1.

3 Theoretical Analysis

We now compare the algorithmic complexities of the
three binarization schemes in a central problem of
machine translation: decoding with an integratedn-
gram language model. Depending on the input be-
ing a string or a parse-tree, we divide MT systems
based on synchronous grammars into two broad cat-
egories: string-based and tree-based.
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3.1 String-based Approaches

String-based approaches include both string-to-
string (Chiang, 2005) and string-to-tree systems
(Galley et al., 2006).2 To simplify the presentation
we will just focus on the former but the analysis also
applies to the latter. We will first discuss decoding
with a pure SCFG as the translation model (hence-
forth −LM decoding), and then extend it to include
ann-gram model (+LM decoding).

3.1.1 Translation as Parsing

The −LM decoder can be cast as a (monolin-
gual) parser on the source language: it takes the
source-language string as input and parses it using
the source-projection of the SCFG while building
the corresponding target-language sub-translations
in parallel. For source-side and synchronous bina-
rizations, since the resulting grammar has contigu-
ous source spans, we can apply the CKY algorithm
which guarantees cubic time complexity.

For example, a deduction along the virtual rule in
the synchronously binarized grammar (4) is notated

(PPj,k) : (w1, t1) (VPk,l) : (w2, t2)

(PP-VPj,l) : (w1 + w2, t2t1) (6)

where i, j, k are free indices in the source string,
w1, w2 are the scores of the two antecedent items,
and t1, t2 are the corresponding sub-translations.3

The resulting translationt2t1 is the inverted concate-
nation as specified by the target-side of the SCFG
rule.

The case for a source-side binarized grammar (3)
is slightly more complicated than the above, because
we have to keep track of gaps on the target side. For
example, we first combine NP with PP

(NPi,j) : (w1, t1) (PPj,k) : (w2, t2)

(NP-PPi,k) : (w1 + w2, t1 ⊔ t2) (7)

2Our notation ofX-to-Y systemsis defined as follows: X de-
notes the input, either a string or a tree; while Y represents the
RHS structure of an individual rule: Y isstring if the RHS is
a flat one-level tree (as in SCFGs), and Y istree if the RHS
is multi-level as in (Galley et al., 2006). This convention also
applies to tree-based approaches.

3The actual system does not need to store the translations
since they can be recovered from backpointers and they arenot
considered part of the state. We keep them here only for presen-
tation reasons.
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(a): Deduction (8) (b): Deduction (10)

Figure 3: Illustrations of two deductions with gaps.

leaving a gap (⊔) on the target-side resulting item,
because NP and PP are not contiguous in the En-
glish ordering. This gap is later filled in by the sub-
translationt3 of VP (see also Figure 3 (a)):

(NP-PPi,k) : (w1, t1 ⊔ t2) (VPk,l) : (w2, t3)

(Si,l) : (w1 + w2, t1t3t2)
(8)

In both cases, there are still only three free indices
on the source-side, so the complexity remains cubic.
The gaps on the target-side do not require any ex-
tra computation in the current−LM setting, but as
we shall see shortly below, will lead to exponential
complexity when integrating a language model.

For a target-side binarized grammar as in (5),
however, the source-side spans are discontinuous
where CKY can not apply, and we have to enumerate
more free indices on the source side. For example,
the first deduction

(NPi,j) : (w1, t1) (VPk,l) : (w2, t2)

(NP-VPi,j⊔k,l) : (w1 + w2, t1t2) (9)

leaves a gap in the source-side span of the resulting
item, which is later filled in when the item is com-
bined with a PP (see also Figure 3 (b)):

(NP-VPi,j⊔k,l) : (w1, t1) (PPj,k) : (w2, t2)

(Si,l) : (w1 + w2, t1t2)
(10)

Both of the above deductions have four free in-
dices, and thus of complexityO(|w|4) instead of cu-
bic in the length of the input stringw.

More generally, the complexity of a binarization
scheme depends on its source arity. In the worst-
case, a binarized grammar with a source arity ofs
will require at most(2s+1) free indices in a deduc-
tion, because otherwise if one rule needs(2s + 2)
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indices, then there ares+1 spans, which contradicts
the definition of arity (Huang et al., 2005).4

These deductive systems represent the search
space of decoding without a language model. When
one is instantiated for a particular input string, it de-
fines a set of derivations, called aforest, represented
in a compact structure that has a structure of a hyper-
graph. Accordingly we call items like(PP1,3) nodes
in the forest, and an instantiated deduction like

(PP-VP1,6) → (PP1,3)(VP3,6)

we call ahyperedgethat connects one or more an-
tecedent nodes to a consequent node. In this rep-
resentation, the time complexity of−LM decoding,
which we refer to assource-side complexity, is pro-
portional to the size of the forestF , i.e., the num-
ber of hyperedges (instantiated deductions) inF . To
summarize, the source-side complexity for a bina-
rized grammar of source aritys is

|F | = O(|w|2s+1).

3.1.2 Adding a Language Model

To integrate with a bigram language model, we
can use the dynamic-programming algorithm of Wu
(1996), which we may think of as proceeding in
two passes. The first pass is as above, and the sec-
ond pass traverses the first-pass forest, assigning to
each nodev a set of augmented items, which we call
+LM items, of the form(va⋆b), wherea andb are
target words and⋆ is a placeholder symbol for an
elided part of a target-language string. This item in-
dicates that a possible translation of the part of the
input spanned byv is a target string that starts with
a and ends withb.

Here is an example deduction in the syn-
chronously binarized grammar (4), for a+LM item
for the node(PP-VP1,6) based on the−LM Deduc-
tion (6):

(PPwith ⋆ Sharon
1,3 ): (w1, t1) (VPheld⋆ talk

3,6 ): (w2, t2)

(PP-VPheld⋆ Sharon
1,6 ): (w′, t2t1)

(11)
4Actually this is true only if in any binarization scheme,

a non-contiguous item is always combined with a contiguous
item. We define both source and target binarizations to bein-
cremental(i.e., left-to-right or right-to-left), so this assumption
trivially holds. More general binarization schemes are possible
to have even higher complexities, but also possible to achieve
better complexities. Full discussion is left for a separate paper.

wherew′ = w1 + w2 − log Plm(with | talk) is
the score of the resulting+LM item: the sum of
the scores of the antecedent items, plus acombi-
nation costwhich is the negative log probability of
the bigrams formed in combining adjacent boundary
words of antecedents.

Now that we keep track of target-side boundary
words, an additional complexity, calledtarget-side
complexity, is introduced. In Deduction (11), four
target words are enumerated, and each+LM item
stores two boundary words; this is also true in gen-
eral for synchronous and target-side binarized gram-
mars where we always combine two consecutive
target strings in a deduction. More generally, this
scheme can be easily extended to work with anm-
gram model (Chiang, 2007) wherem is usually≥ 3
(trigram or higher) in practice. The target-side com-
plexity for this case is thus

O(|V |4(m−1))

whereV is the target language vocabulary. This is
because each constituent must store its initial and
final (m − 1)-grams, which yields four(m − 1)-
grams in a binary combination. In practice, it is often
assumed that there are only a constant number of
translations for each input word, which reduces this
complexity intoO(|w|4(m−1)).

However, for source-side binarization which
leaves gaps on the target-side, the situation becomes
more complicated. Consider Deduction (8), where
the sub-translation for the virtual node NP-PP is
gapped (t1⊔t2). Now if we integrate a bigram model
based on that deduction, we have to maintain the
boundary words of botht1 andt2 in the+LM node
of NP-PP. Together with the boundary words in node
VP, there are a total of six target words to enumerate
for this+LM deduction:

(NP-PPa⋆b⊔e⋆f
i,k ) : (w1, t1 ⊔ t2) (VPc⋆d

k,l ) : (w2, t3)

(Sa⋆f
i,l ) : (w′, t1t3t2)

(12)
wherew′ = w1 + w2 − log Plm(c | b)Plm(e | d).

With an analysis similar to that of the source-side,
we state that, for a binarized grammar with target
arity t, the target-side complexity, denotedT , is

T = O(|w|2(t+1)(m−1))
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scheme string-based tree-based
source-side |w|3+2(t+1)(m−1) |w|1+2(t+1)(m−1)

synchronous |w|3+4(m−1) |w|1+4(m−1)

target-side |w|(2s+1)+4(m−1) |w|1+4(m−1)

Table 2: Worst-case decoding complexities of the
three binarization schemes in the two approaches
(excluding theO(|w|3) time for source-side parsing
in tree-based approaches).

because in the worst-case, there aret + 1 spans in-
volved in a+LM deduction (t of them from one vir-
tual antecedent and the other one non-virtual), and
for each span, there arem − 1 target words to enu-
merate at both left and right boundaries, giving a
total of 2(t + 1)(m − 1) words in this deduction.
We now conclude that, in a string-based system,
the combined complexities for a binarized grammar
with source aritys and target arityt is

O(|F |T ) = O(|w|(2s+1)+2(t+1)(m−1)).

The results for the three specific binarization
schemes are summarized in Table 2. Although both
source-side and target-side binarizations lead to ex-
ponential complexities, it is likely that language
model combinations (target-side complexity) dom-
inate the computation, sincem is larger than 2 in
practice. In this sense, target-side binarization is still
preferable to source-side binarization.

It is also worth noting that with the hook trick
of Huang et al. (2005), the target-side complex-
ity can be reduced toO(|w|(2t+1)(m−1)), making
it more analogous to its source-side counterpart:
if we consider the decoding problem as intersect-
ing the SCFG with a source-side DFA which has
|S| = |w|+1 states, and a target-side DFA which has
|T | = O(|w|m−1) states, then the intersected gram-
mar has a parsing complexity ofO(|S|2s+1|T |2t+1),
which is symmetric from both sides.

3.2 Tree-based Approaches

Thetree-based approachesinclude the tree-to-string
(also calledsyntax-directed) systems (Liu et al.,
2006; Huang et al., 2006). This approach takes
a source-language parse tree, instead of the plain
string, as input, and tries to find the best derivation
that recursively rewrites the input tree into a target

...

Sη : t1t3t2

NPη·1 : t1
...

PPη·2 : t2
...

VPη·3 : t3
...

Figure 4: Illustration of tree-to-string deduction.

string, using the SCFG as a tree-transducer. In this
setting, the−LM decoding phase is atree-parsing
problem (Eisner, 2003) which aims to cover the en-
tire tree by a set of rules. For example, a deduction
of the first rule in Example 1 would be:

(NPη·1) : (w1, t1) (PPη·2) : (w2, t2) (VPη·3) : (w3, t3)

(Sη) : (w1 + w2 + w3, t1t3t2)
(13)

whereη and η · i(i = 1, 2, 3) are tree addresses
(Shieber et al., 1995), withη · i being theith child
of η (the address of the root node isǫ). The nonter-
minal labels at these tree nodes must match those in
the SCFG rule, e.g., the input tree must have a PP at
nodeη · 2.

The semantics of this deduction is the following:
if the label of the current node in the input tree is
S, and its three children are labeled NP, PP, and VP,
with corresponding sub-translationst1, t2, and t3,
then a possible translation for the current node S is
t1t3t2 (see Figure 4). An alternative, top-down ver-
sion of this bottom-up deductive system is, at each
node, try all SCFG rules thatpattern-matchthe cur-
rent subtree, and recursively solve sub-problems in-
dicated by the variables, i.e., synchronous nontermi-
nals, of the matching rule (Huang et al., 2006).

With the input tree completely given, this setting
has some fundamental differences from its string-
based counterpart. First, we donot need to bina-
rize the SCFG grammar before−LM decoding. In
fact, it will be much harder to do the tree-parsing
(pattern-matching) with a binarized grammar. Sec-
ond, regardless of the number of nonterminals in a
rule, building the−LM forest always costs time lin-
ear in the size of the input tree (times a grammar
constant, see (Huang et al., 2006, Sec. 5.1) for de-
tails), which is in turn linear in the length of the input
string. So we have:

O(|F |) = O(|w|).
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This fast−LM decoding is a major advantage of
tree-based approaches.

Now in +LM decoding, we still need binariza-
tion of the hyperedges, as opposed to rules, in the
forest, but the analysis is almost identical to that of
string-based approach. For example, the tree-based
version of Deduction (12) for source-side binariza-
tion is now notated

(NPη·1-PPη·2
a⋆b⊔e⋆f ) : (w1, t1 ⊔ t2) (VPη·3

c⋆d) : (w2, t3)

(Sη
a⋆f ) : (w′, t1t3t2)

(14)
In general, the target-side complexity of a bina-
rized grammar with target arityt is still T =
O(|w|2(t+1)(m−1)) and the combined decoding com-
plexity of the tree-based approach is

O(|F |T ) = O(|w|1+2(t+1)(m−1)).

Table 2 shows that in this tree-based setting,
target-side binarization has exactly the same perfor-
mance with synchronous binarization while being
much simpler to implement and does not have the
problem of non-binarizability. The fact that simple
binarization works (at least) equally well, which is
not possible in string-based systems, is another ad-
vantage of the tree-based approaches.

4 Experiments

Section 3 shows that target-side binarization
achieves the same polynomial decoding complexity
as the more sophisticated synchronous binarization
in the tree-based systems. We now empirically com-
pare target-side binarization with an even simpler
variant, on-the-fly generation, where the only dif-
ference is that the latter does target-side left-to-right
binarization during+LM decoding on a hyperedge-
per-hyperedge basis, without sharing common vir-
tual nonterminals across hyperedges, while the for-
mer binarizes the whole−LM forest before the
+LM decoding.

Our experiments are on English-to-Chinese trans-
lation in the tree-to-string system of Huang et al.
(2006), which takes a source-language parse tree as
input and tries to recursively convert it to a target-
language string according to transfer rules in a syn-
chronous grammar (Galley et al., 2006). For in-
stance, the following rule
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translates an English passive construction into Chi-
nese. Although the rules are actually in a syn-
chronous tree-substitution grammar (STSG) instead
of an SCFG, its derivation structure is still a hy-
pergraph and all the analysis in Section 3.2 still
applies. This system performs slightly better than
the state-of-the-art phrase-based system Pharaoh
(Koehn, 2004) on English to Chinese translation. A
very similar system for the reverse direction is de-
scribed in (Liu et al., 2006).

Our data preparation follows (Huang et al., 2006):
the training data is a parallel corpus of 28.3M words
on the English side, from which we extracted 24.7M
tree-to-string rules using the algorithm of (Galley et
al., 2006), and trained a Chinese trigram model on
the Chinese side. We test our methods on the same
test-set as in (Huang et al., 2006) which is a 140 sen-
tence subset of NIST 2003 MT evaluation with 9–36
words on the English side. The weights for the log-
linear model is tuned on a separate development set.

Figure 5 compares the number of nodes in the bi-
narized forests against the original forest. On-the-fly
generation essentially works on a larger forest with
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duplicate nodes due to the lack of sharing, which is
on average 1.85 times bigger than the target-side bi-
narized forest. This difference is also reflected in the
decoding speed, which is illustrated in Figure 6 un-
der various beam settings and where the amount of
computation is measured by the number of+LM
items generated. At each individual beam setting,
the two methods produce exactly the same set of
translations (i.e., there is no relative search error),
but the target-side binarization is consistently 1.3
times faster thanks to the sharing. In terms of transla-
tion quality, the final BLEU score at the largest beam
setting is 0.2614, significantly higher than Pharaoh’s
0.2354 as reported in (Huang et al., 2006).

5 Conclusion

This paper introduces a simple binarization scheme,
target-side binarization, and presents a systematic
study of the theoretical properties of the three bina-
rization schemes in both string-based and tree-based
systems using syncrhonous grammars. In particular,
we show that target-side binarization achieves the
same polynomial complexity as synchronous bina-
rization while being much simpler to implement and
universally applicable to arbitrary SCFGs. We also
demonstrate the empirical effectiveness of this new
scheme on a large-scale tree-to-string system.
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Abstract

We present the main ideas behind a new
syntax-based machine translation system,
based on reducing the machine translation
task to a tree-labeling task. This tree la-
beling is further reduced to a sequence of
decisions (of four varieties), which can be
discriminatively trained. The optimal tree
labeling (i.e. translation) is then found
through a simple depth-first branch-and-
bound search. An early system founded
on these ideas has been shown to be
competitive with Pharaoh when both are
trained on a small subsection of the Eu-
roparl corpus.

1 Motivation

Statistical machine translation has, for a while now,
been dominated by the phrase-based translation par-
adigm (Och and Ney, 2003). In this paradigm,
sentences are translated from a source language to
a target language through the repeated substitution
of contiguous word sequences (“phrases”) from the
source language for word sequences in the target
language. Training of the phrase translation model
builds on top of a standard statistical word align-
ment over the training corpus for identifying corre-
sponding word blocks, assuming no further linguis-
tic analysis of the source or target language. In de-
coding, these systems then typically rely on n-gram
language models and simple statistical reordering
models to shuffle the phrases into an order that is
coherent in the target language.

There are limits to what such an approach can ul-
timately achieve. Machine translation based on a

deeper analysis of the syntactic structure of a sen-
tence has long been identified as a desirable objec-
tive in principle (consider (Wu, 1997; Yamada and
Knight, 2001)). However, attempts to retrofit syn-
tactic information into the phrase-based paradigm
have not met with enormous success (Koehn et al.,
2003; Och et al., 2003)1, and purely phrase-based
machine translation systems continue to outperform
these syntax/phrase-based hybrids.

In this work, we try to make a fresh start with
syntax-based machine translation, discarding the
phrase-based paradigm and designing a machine
translation system from the ground up, using syntax
as our central guiding star. Evaluation with BLEU
and a detailed manual error analysis of our nascent
system show that this new approach might well have
the potential to finally realize some of the promises
of syntax.

2 Problem Formulation

We want to build a system that can learn to translate
sentences from a source language to a destination
language. As our first step, we will assume that the
system will be learning from a corpus consisting of
triples 〈f, e, a〉, where: (i)f is a sentence from our
source language, which is parsed (the words of the
sentence and the nodes of the parse tree may or may
not be annotated with auxiliary information), (ii)e is
a gold-standard translation of sentencef (the words
of sentencee may or may not be annotated with aux-
iliary information), and (iii)a is an automatically-
generated word alignment (e.g. via GIZA++) be-
tween source sentencef and destination sentencee.

1(Chiang, 2005) also reports that with his hierarchical gen-
eralization of the phrase-based approach, the addition of parser
information doesn’t lead to any improvements.
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Figure 1: Example translation object.

Let us refer to these triples astranslation objects.
The learning task is: using the training data, pro-

duce a scoring functionP that assigns a score to
every translation object〈f, e, a〉, such that this scor-
ing function assigns a high score to good transla-
tions, and a low score to poor ones. The decoding
task is: given scoring functionP and an arbitrary
sentencef from the source language, find transla-
tion object〈f, e, a〉 that maximizesP (〈f, e, a〉).

To facilitate matters, we will map translation ob-
jects to an alternate representation. In (Galley et al.,
2003), the authors give a semantics to every trans-
lation object by associating each with an annotated
parse tree (hereafter called aGHKM tree) represent-
ing a specific theory about how the source sentence
was translated into the destination sentence.

In Figure 1, we show an example translation ob-
ject and in Figure 2, we show its associated GHKM
tree. The GHKM tree is simply the parse treef of
the translation object, annotated with rules (hereafter
referred to asGHKM rules). We will not describe in
depth the mapping process from translation object to
GHKM tree. Suffice it to say that the alignment in-
duces a set of intuitive translation rules. Essentially,
a rule like: “not 1→ ne 1 pas” (see Figure 2) means:
if we see the word “not” in English, followed by a
phrase already translated into French, then translate
the entire thing as the word “ne” + the translated
phrase + the word “pas.” A parse tree node gets la-
beled with one of these rules if, roughly speaking,
its span is still contiguous when projected (via the
alignment) into the target language.

Formally, what is a GHKM tree? Define arule el-
ementas a string or an indexed variable (e.g.x1,
x4, x32). A GHKM rule of rank k (where k is
a non-negative integer) is a pair〈Rs, Rd〉, where
source listRs anddestination listRd are both lists
of rule elements, such that each variable ofXk ,

{x1, x2, ..., xk} appears exactly once inRs and ex-
actly once inRd. Moreover, inRs, the variables ap-
pear in ascending order. In Figure 2, some of the
tree nodes are annotated with GHKM rules. For
clarity, we use a simplified notation. For instance,
rule 〈〈x1, x2, x3〉, 〈x3, “,” , x1, x2〉〉 is represented as
“1 2 3→ 3 , 1 2”. We have also labeled the nodes
with roman numerals. When we want to refer to a
particular node in later examples, we will refer to it,
e.g., ast(i) or t(vii).

A rule node is a tree node annotated with a
GHKM rule (for instance, nodest(i) or t(v) of Fig-
ure 2, but not nodet(iv)). A tree nodet2 is reachable
from tree nodet1 iff node t2 is a proper descendant
of nodet1 and there is no rule node (not including
nodest1, t2) on the path from nodet1 to nodet2.

Define thesuccessor listof a tree nodet as the list
of rule nodes and leaves reachable fromt (ordered in
left-to-right depth-first search order). For Figure 2,
the successor list of nodet(i) is 〈t(ii), t(v), t(xiii)〉,
and the successor list of nodet(v) is 〈t(vii), t(viii)〉.
Therule node successor listof a tree node is its suc-
cessor list, with all non-rule nodes removed.

Define thesignatureof a parse tree nodet as the
result of taking its successor list, replacing thejth
rule node with variablexj , and replacing every non-
rule node with its word label (observe that all non-
rule nodes in the successor list are parse tree leaves,
and therefore they have word labels). For Figure 2,
the signature of nodet(i) is 〈x1, x2, x3〉, and the sig-
nature of nodet(v) is 〈“am”, x1〉.

Notice that the signature of every rule node in Fig-
ure 2 coincides with the source list of its GHKM
rule. This is no accident, but rather a requirement.
Define a GHKM tree nodeas a parse tree node
whose children are all GHKM tree nodes, and whose
GHKM rule’s source list is equivalent to its signa-
ture (if the node is a rule node).

Given these definitions, we can proceed to define
how a GHKM tree expresses a translation theory.
Suppose we have a listS = 〈s1, ..., sk〉 of strings.
Define thesubstitutionof string listS into rule ele-
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Figure 2: GHKM tree equivalent of example translation object. The light gray nodes are rule nodes of the
GHKM tree.

mentr as:

r[S] =
� si if r is indexed varxi

r otherwise

Notice that this operation always produces a
string. Define the substitution of string listS into
rule element listR = 〈r1, ..., rj〉 as:

R[S] = concat(r1[S], r2[S], ..., rj [S])

where concat(s1, ..., sk) is the spaced concatenation
of stringss1, ..., sk (e.g., concat( “hi”, “there” ) =
“hi there”). This operation also produces a string.

Finally, define thetranslationof GHKM tree node
t as:

τ(t) , Rd[〈τ(t1), ..., τ(tk)〉]

where〈t1, ..., tk〉 is the rule node successor list of
GHKM tree nodet.

For Figure 2, the rule node successor list of node
t(viii) is 〈t(xi)〉. So:

τ(t(viii)) = 〈“ne”, x1, “pas”〉[〈τ(t(xi))〉]

= 〈“ne”, x1, “pas”〉[〈“vais”〉]

= “ne vais pas”

A similar derivation gives us:

τ(t(i)) = “aujourd’hui , je ne vais pas”

In this way, every GHKM tree encodes a transla-
tion. Given this interpretation of a translation object,
the task of machine translation becomes something
concrete: label the nodes of a parsed source sentence
with a good set of GHKM rules.

3 Probabilistic Approach

To achieve this “good” labeling of GHKM rules,
we will define a probabilistic generative modelP

of GHKM trees, which will serve as our scoring
function. We would like to depart from the stan-
dard probabilistic approach of most phrase-based
translators, which employ very simple probability
models to enable polynomial-time decoding. In-
stead, we will use an alternative probabilistic ap-
proach (anassignment process), which sacrifices
polynomial-time guarantees in favor of a more flexi-
ble and powerful model. This sacrifice of guaranteed
polynomial-time decoding does not entail the sacri-
fice of good running time in practice.

3.1 Assignment Processes

An assignment process builds a sequence of vari-
able assignments (called anassignment history) by
repeatedly iterating the following steps. First, it re-
quests a variable name (sayx22) from a so-named
variable generator. It takes this variable name
and the assignment history built so far and com-
presses this information into a set of features (say
{f2, f6, f80}) using a feature function. These fea-
tures are then mapped to a probability distribution by
a function (sayp7) requested from a so-nameddistri-
bution generator. The iteration ends by assigning to
the chosen variable a value (sayv4) drawn from this
distribution. In the above running example, the iter-
ation assignsv4 to x22, which was drawn according
to distributionp7({f2, f6, f80}). The process ends
when the variable generator produces the reserved
token STOP instead of a variable name. At this
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Var Assignment Distribution Features
x23 true p4 {}
x7 “the” p10 {f12, f102}
x8 blue p2 {f5, f55}
x51 red p2 {f5, f15, f50}
x19 7.29 p5 {f2}
x30 false p4 {f2, f5, f7}
x1 “man” p10 {f1, f2, f12}

x102 blue p2 {f1, f55, f56}

Figure 3: A example assignment history generated
by an assignment process.

point, the assignment history built so far (like the
example in Figure 3) is returned.

Formally, define avariable signatureas a pair
Σ = 〈X, V 〉, whereX is a set of variable names
andV is a set of values. Define avariable assign-
mentof signature〈X, V 〉 as a pair〈x, v〉, for vari-
ablex ∈ X and valuev ∈ V . Define anassignment
historyof signatureΣ as an ordered list of variable
assignments ofΣ. The notationH(Σ) represents the
set of all assignment histories of signatureΣ.

We define afeature functionof signatureΣ =
〈X, V 〉 as a functionf that maps every pair of set
X ×H(Σ) to a set of assignments (calledfeatures)
of an auxiliary variable signatureΣf .

We define anassignment processof signature
Σ = 〈X, V 〉 as a tuple〈f, P, gx, gp〉, where: (i)f is
a feature function ofΣ, (ii) P = {p1, ..., pk} is a fi-
nite set ofk functions (called thefeature-conditional
distributions) that map each feature set inrange(f)
to a probability distribution overV , (iii) gx is a func-
tion (called thevariable generator) mapping each
assignment history in the setH(Σ) to either a vari-
able name inX or the reserved tokenSTOP , and
(iv) gp is a function (called thedistribution gener-
ator) mapping each assignment history in the set
H(Σ) to a positive integer between1 andk.

An assignment process probabilistically generates
an assignment history of signatureΣ in the follow-
ing way:

1. h← empty list

2. Do untilgx(h) = STOP :

(a) Letx = gx(h) and letj = gp(h).

(b) Draw valuev probabilistically from distri-
butionpj(f(x, h)).

(c) Append assignment〈x, v〉 to historyh.

3. Return historyh.

3.2 Training

Given all components of an assignment process
of signatureΣ except for the setP of feature-
conditional distributions, the training task is to learn
P from a training corpus of assignment histories of
signatureΣ. This can be achieved straightforwardly
by taking the feature vectors generated by a partic-
ular distribution and using them to discriminatively
learn the distribution. For instance, say that our cor-
pus consists of the single history given in Figure??.
To learn distributionp2, we simply take the three
variable assignments produced byp2 and feed these
feature vectors to a generic discriminative learner.
We prefer learners that produce distributions (rather
than hard classifiers) as output, but this is not re-
quired.

3.3 Decoding

Notice that an assignment process of signatureΣ in-
duces a probability distribution over the setH(Σ) of
all assignment histories ofΣ. The decoding ques-
tion is: given a partial assignment historyh, what
is the most probable completion of the history, ac-
cording to this induced distribution? We will use
the natural naive search space for this question. The
nodes of this search space are the assignment his-
tories of H(Σ). The children of the search node
representing historyh are those histories that can be
generated fromh in one iteration of the assignment
process. The value of a search node is the proba-
bility of its assignment history (according to the as-
signment process). To decode, we begin at the node
representing historyh, and search for the highest-
value descendant that represents a complete assign-
ment history (i.e. an assignment history terminated
by theSTOP token).

This is, potentially, a very large and intractible
search space. However, if most assignment deci-
sions can be made with relative confidence, then the
great majority of search nodes have values which
are inferior to those of the best solutions. The
standard search technique ofdepth-first branch-and-
bound searchtakes advantage of search spaces with
this particular characteristic by first finding greedy
good-quality solutions and using their values to opti-
mally prune a significant portion of the search space.
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Figure 4: Partial GHKM tree, after rule nodes have been identified (light gray). Notice that once we identify
the rule node, the rule left-hand sides are already determined.

Depth-first branch-and-bound search has the follow-
ing advantage: it finds a good (suboptimal) solution
in linear time and continually improves on this solu-
tion until it finds the optimal. Thus it can be run ei-
ther as an optimal decoder or as a heuristic decoder,
since we can interrupt its execution at any time to get
the best solution found so far. Additionally, it takes
only linear space to run.

4 Generative Model

We now return to where we left off at the end of Sec-
tion 2, and devise an assignment process that pro-
duces a GHKM tree from an unlabeled parse tree.
This will give us a quality measure that we can use
to produce a “good” labeling of a given parse tree
with GHKM rules (i.e., the probability of such a la-
beling according to the assignment process).

The simplest assignment process would have a
variable for each node of the parse tree, and these
variables would all be assigned by the same feature-
conditional distribution over the space of all possible
GHKM rules. The problem with such a formulation
is that such a distribution would be inachievably dif-
ficult to learn. We want an assignment process in
which all variables can take only a very small num-
ber of possible values, because it will be much eas-
ier to learn distributions over such variables. This
means we need to break down the process of con-
structing a GHKM rule into simpler steps.

Our assignment process will begin by sequen-
tially assigning a set of boolean variables (which we
will call rule node indicator variables), one for each
node in the parse tree. For parse tree nodet, we de-
note its corresponding rule node indicator variable

xr
t . Variablexr

t is assignedtrue iff the parse tree
nodet will be a rule node in the GHKM tree.

In Figure 3.3, we show a partial GHKM tree af-
ter these assignments are made. The key thing to
observe is that, after this sequence of boolean deci-
sions, the LHS of every rule in the tree is already
determined! To complete the tree, all we need to do
is to fill in their right-hand sides.

Again, we could create variables to do this di-
rectly, i.e. have a variable for each rule whose do-
main is the space of possible right-hand sides for its
established left-hand sides. But this is still a wide-
open decision, so we will break it down further.

For each rule, we will begin by choosing the
templateof its RHS, which is a RHS in which
all sequences of variables are replaced with an
empty slot into which variables can later be placed.
For instance, the template of〈“ne”, x1, “pas”〉 is
〈“ne”, X, “pas”〉 and the template of〈x3, “,” , x1, x2〉
is 〈X, “,” , X〉, where X represents the empty slots.

Once the template is chosen, it simply needs to be
filled with the variables from the LHS. To do so, we
process the LHS variables, one by one. By default,
they are placed to the right of the previously placed
variable (the first variable is placed in the first slot).
We repeatedly offer the option to push the variable
to the right until the option is declined or it is no
longer possible to push it further right. If the vari-
able was not pushed right at all, we repeatedly offer
the option to push the variable to the left until the
option is declined or it is no longer possible to push
it further left. Figure 4 shows this generative story
in action for the rule RHS〈x3, “,” , x1, x2〉.

These are all of the decisions we need to make
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Decision to make Decision RHS so far
RHS template? X , X X , X
default placement of var 1 1 , X

push var 1 right? yes X , 1
default placement of var 2 X , 1 2

push var 2 left? no X , 1 2
default placement of var 3 X , 1 2 3

push var 3 left? yes X , 1 3 2
push var 3 left? yes X , 3 1 2
push var 3 left? yes 3 , 1 2

Figure 5: Trace of the generative story for the right-
hand side of a GHKM rule.

in order to label a parse tree with GHKM rules. No-
tice that, aside from the template decisions, all of the
decisions are binary (i.e. feasible to learn discrimi-
natively). Even the template decisions are not terri-
bly large-domain, if we maintain a separate feature-
conditional distribution for each LHS template. For
instance, if the LHS template is〈“not” , X〉, then
RHS template〈“ne”, X, “pas”〉 and a few other se-
lect candidates should bear most of the probability
mass.

5 Evaluation

In this section, we evaluate a preliminary English-
to-German translation system based on the ideas
outlined in this paper. We first present a quantia-
tive comparison with the phrase-based approach, us-
ing the BLEU metric; then we discuss two con-
crete translation examples as a preliminary qualita-
tive evaluation. Finally, we present a detailed man-
ual error analysis.

Our data was a subset of the Europarl corpus con-
sisting of sentences of lengths ranging from 8 to 17
words. Our training corpus contained 50000 sen-
tences and our test corpus contained 300 sentences.
We also had a small number of reserved sentences
for development. The English sentences were parsed
using the Bikel parser (Bikel, 2004), and the sen-
tences were aligned with GIZA++ (Och and Ney,
2000). We used the WEKA machine learning pack-
age (Witten and Frank, 2005) to train the distribu-
tions (specifically, we used model trees).

For comparison, we also trained and evaluated
Pharaoh (Koehn, 2005) on this limited corpus, us-
ing Pharaoh’s default parameters. Pharaoh achieved
a BLEU score of 11.17 on the test set, whereas our

system achieved a BLEU score of 11.52. What is
notable here is not the scores themselves (low due to
the size of the training corpus). However our system
managed to perform comparably with Pharaoh in a
very early stage of its development, with rudimen-
tary features and without the benefit of an n-gram
language model.

Let’s take a closer look at the sentences produced
by our system, to gain some insight as to its current
strengths and weaknesses.

Starting with the English sentence (note that all
data is lowercase):

i agree with the spirit of those amendments .

Our system produces:

ich
I

stimme
vote

die
the.FEM

geist
spirit.MASC

dieser
these

änderungsanträge
change-proposals

zu
to

.

.

The GHKM tree is depicted in Figure 5. The key
feature of this translation is how the English phrase
“agree with” is translated as the German “stimme
... zu” construction. Such a feat is difficult to pro-
duce consistently with a purely phrase-based sys-
tem, as phrases of arbitrary length can be placed be-
tween the words “stimme” and “zu”, as we can see
happening in this particular example. By contrast,
Pharaoh opts for the following (somewhat less de-
sirable) translation:

ich
I

stimme
vote

mit
with

dem
the.MASC

geist
spirit.MASC

dieser
these

änderungsanträge
change-proposals

.

.

A weakness in our system is also evident here.
The German noun “Geist” is masculine, thus our
system uses the wrong article (a problem that
Pharaoh, with its embedded n-gram language model,
does not encounter).

In general, it seems that our system is superior to
Pharaoh at figuring out the proper way to arrange the
words of the output sentence, and inferior to Pharaoh
at finding what the actual translation of those words
should be.

Consider the English sentence:

we shall submit a proposal along these lines before
the end of this year .
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Figure 6: GHKM tree output for the first test sentence.

Here we have an example of a double verb: “shall
submit.” In German, the second verb should go at
the end of the sentence, and this is achieved by our
system (translating “shall” as “werden”, and “sub-
mit” as “vorlegen”).

wir
we

werden
will

eine
a.FEM

vorschlag
proposal.MASC

in
in

dieser
these

haushaltslinien
budget-lines

vor
before

die
the.FEM

ende
end.NEUT

dieser
this.FEM

jahres
year.NEUT

vorlegen
submit

.

.

Pharaoh does not manage this (translating “sub-
mit” as “unterbreiten” and placing it mid-sentence).

werden
will

wir
we

unterbreiten
submit

eine
a

vorschlag
proposal

in
in

dieser
these

haushaltslinien
budget-lines

vor
before

ende
end

dieser
this.FEM

jahr
year.NEUT

.

.

It is worth noting that while our system gets the
word order of the output system right, it makes sev-
eral agreement mistakes and (like Pharaoh) doesn’t
get the translation of “along these lines” right.

To have a more systematic basis for comparison,
we did a manual error analysis for 100 sentences
from the test set. A native speaker of German (in the
present pilot study one of the authors) determined
the editing steps required to transform the system
output into an acceptable translation – both in terms
of fluency and adequacy of translation. In order to
avoid a bias for our system, we randomized the pre-
sentation of output from one of the two systems.

We defined the following basic types of edits, with
further subdistinctions depending on the word type:
ADD , DELETE, CHANGE andMOVE. A special type
TRANSLATE-untranslated was assumed for untrans-
lated source words in the output. For theCHANGE,
more fine-grained distinctions were made.2 A sin-
gle MOVE operation was assumed to displace an en-
tire phrase; the distance of the movement in terms
of the number of words was calculated. The table in
Figure 7 shows the edits required for correcting the
output of the two systems on 100 sentences.

We again observe that our system, which is at
an early stage of development and contrary to the
Pharaoh system does not include an n-gram lan-
guage model trained on a large corpus, already
yields promising results. The higher proportion
of CHANGE operations, in particularCHANGE-
inflection andCHANGE-function-word edits is pre-
sumably a direct consequence of providing a lan-
guage model or not. An interesting observation is
that our system currently tends to overtranslate, i.e.,
redundantly produce several translations for a word,
which leads to the need ofDELETE operations. The
Pharaoh system had a tendency to undertranslate, of-
ten with crucial words missing.

2CHANGE-inflection: keeping the lemma and category the
same, e.g. taken→ takes; CHANGE-part-of-speech: choos-
ing a different derivational form, e.g.,judged→ judgement;
CHANGE-function-word: e.g.,in → from; CHANGE-content-
word: e.g.,opinion→ consensus.
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TL-MT Pharaoh
ADD-function-word 40 49
ADD-content-word 17 35
ADD-punctuation 12 13
ADD (total) 69 97
DELETE-function-word 37 18
DELETE-content-word 22 10
DELETE-punctuation 13 15
DELETE-untranslated 2 1
DELETE (total) 74 44
CHANGE-content-word 24 19
CHANGE-function-word 44 26
CHANGE-inflection 101 80
CHANGE-part-of-speech 4 10
CHANGE (total) 173 135
TRANSLATE-untranslated 34 1
MOVE (distance)

1 16 17
2 12 16
3 13 11
4 3 6
≥ 5 7 5

MOVE (total) 51 55
TOTAL # EDITS 401 332
edits-per-word ratio 0.342 0.295

Figure 7: Edits required for an acceptable system
output, based on 100 test sentences.

6 Discussion

In describing this pilot project, we have attempted
to give a “big picture” view of the essential ideas
behind our system. To avoid obscuring the presen-
tation, we have avoided many of the implementation
details, in particular our choice of features. There
are exactly four types of decisions that we need to
train: (1) whether a parse tree node should be a rule
node, (2) the RHS template of a rule, (3) whether a
rule variable should be pushed left, and (4) whether
a rule variable should be pushed right. For each of
these decisions, there are a number of possible fea-
tures that suggest themselves. For instance, recall
that in German, typically the second verb of a double
verb (such as “shall submit” or “can do”) gets placed
at the end of the sentence or clause. So when the
system is considering whether to push a rule’s noun
phrase to the left, past an existing verb, it would be
useful for it to consider (as a feature) whether that
verb is the first or second verb of its clause.

This system was designed to be very flexible with
the kind of information that it can exploit as fea-
tures. Essentially any aspect of the parse tree, or
of previous decisions that have been taken by the

assignment process, can be used. Furthermore, we
can mark-up the parse tree with any auxiliary infor-
mation that might be beneficial, like noun gender or
verb cases. The current implementation has hardly
begun to explore these possibilities, containing only
features pertaining to aspects of the parse tree.

Even in these early stages of development, the
system shows promise in using syntactic informa-
tion flexibly and effectively for machine translation.
We hope to develop the system into a competitive
alternative to phrase-based approaches.
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Abstract

Discriminative approaches for word align-
ment have gained popularity in recent
years because of the flexibility that they
offer for using a large variety of features
and combining information from various
sources. But, the models proposed in the
past have not been able to make much use
of features that capture the likelihood of an
alignment structure (the set of alignment
links) and the syntactic divergence be-
tween sentences in the parallel text. This is
primarily because of the limitation of their
search techniques. In this paper, we pro-
pose a generic discriminative re-ranking
approach for word alignment which allows
us to make use of structural features effec-
tively. These features are particularly use-
ful for language pairs with high structural
divergence (like English-Hindi, English-
Japanese). We have shown that by us-
ing the structural features, we have ob-
tained a decrease of 2.3% in the absolute
value of alignment error rate (AER). When
we add the cooccurence probabilities ob-
tained from IBM model-4 to our features,
we achieved the best AER (50.50) for the
English-Hindi parallel corpus.

1 Introduction

In this paper, we propose a discriminative re-
ranking approach for word alignment which al-
lows us to make use of structural features effec-
tively. The alignment algorithm first generates

11Part of the work was done at Institute for Research
in Cognitive Science (IRCS), University of Pennsylvania,
Philadelphia, PA 19104, USA, when he was visiting IRCS
as a Visiting Scholar, February to December, 2006.

a list of k-best alignments using local features.
Then it re-ranks this list of k-best alignments us-
ing global features which consider the entire align-
ment structure (set of alignment links) and the syn-
tactic divergence that exists between the sentence
pair. Use of structural information associated with
the alignment can be particularly helpful for lan-
guage pairs for which a large amount of unsuper-
vised data is not available to measure accurately
the word cooccurence values but which do have a
small set of supervised data to learn the structure
and divergence across the language pair. We have
tested our model on the English-Hindi language
pair. Here is an example of an alignment between
English-Hindi which shows the complexity of the
alignment task for this language pair.

Figure 1: An example of an alignment between an
English and a Hindi sentence

To learn the weights associated with the param-
eters used in our model, we have used a learning
framework called MIRA (The Margin Infused Re-
laxed Algorithm) (McDonald et al., 2005; Cram-
mer and Singer, 2003). This is an online learning
algorithm which looks at one sentence pair at a
time and compares the k-best predictions of the
alignment algorithm with the gold alignment to
update the parameter weights appropriately.

In the past, popular approaches for doing word
alignment have largely been generative (Och and
Ney, 2003; Vogel et al., 1996). In the past cou-
ple of years, the discriminative models for doing
word alignment have gained popularity because of
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the flexibility they offer in using a large variety of
features and in combining information from vari-
ous sources.

(Taskar et al., 2005) cast the problem of align-
ment as a maximum weight bipartite matching
problem, where nodes correspond to the words
in the two sentences. The link between a pair
of words, (ep,hq) is associated with a score
(score(ep,hq)) reflecting the desirability of the ex-
istence of the link. The matching problem is
solved by formulating it as a linear programming
problem. The parameter estimation is done within
the framework of large margin estimation by re-
ducing the problem to a quadratic program (QP).
The main limitation of this work is that the fea-
tures considered are local to the alignment links
joining pairs of words. The score of an align-
ment is the sum of scores of individual alignment
links measured independently i.e., it is assumed
that there is no dependence between the align-
ment links. (Lacoste-Julien et al., 2006) extend
the above approach to include features for fertil-
ity and first-order correlation between alignment
links of consecutive words in the source sentence.
They solve this by formulating the problem as a
quadratic assignment problem (QAP). But, even
this algorithm cannot include more general fea-
tures over the entire alignment. In contrast to the
above two approaches, our approach does not im-
pose any constraints on the feature space except
for fertility (≤1) of words in the source language.
In our approach, we model the one-to-one and
many-to-one links between the source sentence
and target sentence. The many-to-many alignment
links are inferred in the post-processing stage us-
ing simple generic rules. Another positive aspect
of our approach is the application of MIRA. It, be-
ing an online approach, converges fast and still re-
tains the generalizing capability of the large mar-
gin approach.

(Moore, 2005) has proposed an approach which
does not impose any restrictions on the form of
model features. But, the search technique has cer-
tain heuristic procedures dependent on the types
of features used. For example, there is little vari-
ation in the alignment search between the LLR
(Log-likelihood ratio) based model and the CLP
(Conditional-Link Probability) based model. LLR
and CLP are the word association statistics used
in Moore’s work (Moore, 2005). In contrast to
the above approach, our search technique is more

general. It achieves this by breaking the search
into two steps, first by using local features to get
the k-best alignments and then by using struc-
tural features to re-rank the list. Also, by using
all the k-best alignments for updating the parame-
ters through MIRA, it is possible to model the en-
tire inference algorithm but in Moore’s work, only
the best alignment is used to update the weights
of parameters. (Fraser and Marcu, 2006) have
proposed an algorithm for doing word alignment
which applies a discriminative step at every iter-
ation of the traditional Expectation-Maximization
algorithm used in IBM models. This model still
relies on the generative story and achieves only a
limited freedom in choosing the features. (Blun-
som and Cohn, 2006) do word alignment by com-
bining features using conditional random fields.
Even though their approach allows one to include
overlapping features while training a discrimina-
tive model, it still does not allow us to use fea-
tures that capture information of the entire align-
ment structure.

In Section 2, we describe the alignment search
in detail. Section 3 describes the features that
we have considered in our paper. Section 4 talks
about the Parameter optimization. In Section 5,
we present the results of our experiments. Section
6 contains the conclusion and our proposed future
work.

2 Alignment Search

The goal of the word alignment algorithm is to link
words in the source language with words in the tar-
get language to get the alignments structure. The
best alignment structure between a source sen-
tence and a target sentence can be predicted by
considering three kinds of information, (1) Prop-
erties of alignment links taken independently, (2)
Properties of the entire alignment structure taken
as a unit, and (3) The syntactic divergence between
the source sentence and the target sentence, given
the alignment structure. Using the set of alignment
links, the syntactic structure of the source sentence
is first projected onto the target language to ob-
serve the divergence.

Let ep and hq denote the source and target
words respectively. Letn be the number of words
in source sentence andm be the number of words
in target sentence. Let S be the source sentence
and T be the target sentence.
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2.1 Populate the Beam

The task in this step is to obtain the k-best candi-
date alignment structures using the local features.
The local features mainly contain the cooccurence
information between a source and a target word
and are independent of other alignment links in
the sentence pair. Let the local feature vector be
denoted asfL(ep, hq). The score of a particular
alignment link is computed by taking a dot prod-
uct of the weight vectorW with the local feature
vector of the alignment link. More formally, the
local score of an alignment link is

scoreL(ep, hq) = W.fL(ep, hq)

The total score of an alignment structure is com-
puted by adding the scores of individual alignment
links present in the alignment. Hence, the score of
an alignment structurēa is,

scoreLa(ā, S, T ) =
∑

(ep,hq)∈ā

scoreL(ep, hq)

We have proposed a dynamic programming al-
gorithm of worst case complexityO(nm2 + nk2)
to compute the k-best alignments. First, the local
score of each source word with every target word
is computed and stored in local beams associated
with the source words. The local beams corre-
sponding to all the source words are sorted and the
top-k alignment links in each beam are retained.
This operation has the worst-case complexity of
O(nm2).

Now, the goal is to get the k-best alignments in
the global beam. The global beam initially con-
tains no alignments. The k best alignment links of
the first source worde0 are added to the global
beam. To add the alignment links of the next
source word to the global beam, thek2 (if k < m)
combinations of the alignments in the global beam
and alignments links in the local beam are taken
and the bestk are retained in the global beam.
If k > m, then the total combinations taken are
mk. This is repeated till the entries in all the lo-
cal beams are considered, the overall worst case
complexity beingO(nk2) (or O(nmk) if k > m).

2.2 Reorder the beam

We now have the k-best alignments using the local
features from the last step. We then use global fea-
tures to reorder the beam. The global features look
at the properties of the entire alignment structure
instead of the alignment links locally.

Let the global feature vector be represented as
fG(ā). The global score is defined as the dot prod-
uct of the weight vector and the global feature vec-
tor.

scoreG(ā) = W.fG(ā)

The overall score is calculated by adding the local
score and the global score.

score(ā) = scoreLa(ā) + scoreG(ā)

The beam is now sorted based on the overall scores
of each alignment. The alignment at the top of
the beam is the best possible alignment between
source sentence and the target sentence.

2.3 Post-processing

The previous two steps produce alignment struc-
tures which contain one-to-one and many-to-one
links. In this step, the goal is to extend the best
alignment structure obtained in the previous step
to include the other alignments links of one-to-
many and many-to-many types.

The majority of the links between the source
sentence and the target sentence are one-to-one.
Some of the cases where this is not true are the in-
stances of idioms, alignment of verb groups where
auxiliaries do not correspond to each other, the
alignment of case-markers etc. Except for the
cases of idioms in target language, most of the
many-to-many links between a source and target
sentences can be inferred from the instances of
one-to-one and many-to-one links using three lan-
guage language specific rules (Hindi in our case)
to handle the above cases. Figure 1, Figure 2 and
Figure 3 depict the three such cases where many-
to-many alignments can be inferred. The align-
ments present at the left are those which can be
predicted by our alignment model. The alignments
on the right side are those which can be inferred in
the post-processing stage.

.....  are  playing ......

....... khel rahe hain 

.....  are  playing ......

....... khel rahe hain 
       (play  cont  be)

Figure 2: Inferring the many-to-many alignments
of verb and auxiliaries

After applying the language specific rules, the
dependency structure of the source sentence is tra-
versed to ensure the consistency of the alignment
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John  ne  ....

John ..........

John  ne  ....

John ..........

Figure 3: Inferring the one-to-many alignment to
case-markers in Hindi

... kicked the bucket 

..........  mara gaya

... kicked the bucket 

..........  mara gaya
 (die   go−light verb)

Figure 4: Inferring many-to-many alignment for
source idioms

structure. If there is a dependency link between
two source wordseo andep, whereeo is the head
andep is the modifier and ifeo andep are linked
to one or more common target word(s), it is log-
ical to imagine that the alignment should be ex-
tended such that botheo andep are linked to the
same set of target words. For example, in Figure 4,
new alignment link is first formed between ‘kick’
and ‘gayA’ using the language specific rule, and
as ‘kick’ and ‘bucket’ are both linked to ‘mara’,
‘bucket’ is also now linked to ‘gayA’. Similarity,
‘the’ is linked to both ‘mara’ and ‘gayA’. Hence,
the rules are applied by traversing through the de-
pendency tree associated with the source sentence
words in depth-first order. The dependency parser
used by us was developed by (Shen, 2006). The
following summarizes this step,

• Let w be the next word considered in the dependency
tree, letpw be the parent ofw.

– If w andpw are linked to one or more common
word(s) in target language, alignw to all target
words which are aligned topw.

– Else, Use the target-specific rules (if they match)
to extend the alignments ofw.

• Recursively consider all the children ofw

3 Parameters

As the number of training examples is small, we
chose to use features (both local and structural)
which are generic. Some of the features which we
used in this experiment are as follows:

3.1 Local features (FL)

The local features which we consider are mainly
co-occurrence features. These features estimate
the likelihood of a source word aligning to a tar-

get word based on the co-occurrence information
obtained from a large sentence aligned corpora1.

3.1.1 DiceWords

Dice Coefficient of the source word and the tar-
get word (Taskar et al., 2005).

DCoeff(ep, hq) =
2 ∗ Count(ep, hq)

Count(ep) + Count(hq)

where Count(ep, hq) is the number of times the
wordhq was present in the translation of sentences
containing the wordep in the parallel corpus.

3.1.2 DiceRoots

Dice Coefficient of the lemmatized forms of the
source and target words. It is important to consider
this feature for language pairs which do not have a
large unsupervised sentence aligned corpora. Co-
occurrence information can be learnt better after
we lemmatize the words.

3.1.3 Dict

This feature tests whether there exists a dictio-
nary entry from the source wordep to the target
word hq. For English-Hindi, we used a medium-
coverage dictionary (25000 words) available from
IIIT - Hyderabad, India2.

3.1.4 Null POS

These parameters measures the likelihood of a
source word with a particular part of speech tag3 to
be aligned to no word (Null) on the target language
side. This feature was extremely useful because
it models the cooccurence information of words
with nulls which is not captured by the features
DiceWords andDiceRoots. Here are some of the
features of this type with extreme estimated pa-
rameter weights.

3.2 Lemmatized word pairs

The word pairs themselves are a good indicator
of whether an alignment link exists between the
word pair or not. Also, taking word-pairs as fea-
ture helps in the alignment of some of the most
common words in both the languages. A variation
of this feature was used by (Moore, 2005) in his
paper.

150K sentence pairs originally collected as part of TIDES
MT project and later refined at IIIT-Hyderabad, India.

2http://ltrc.iiit.ac.in/onlineServices/Dictionaries/Dict Frame.html
3We have limited the number of POS tags by considering

only the first alphabets of Penn Tags as our POS tag cate-
gories
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Param. weight Param. weight
Null ‘ 0.2737 null C -0.7030

Null U 0.1969 null D -0.6914

Null L 0.1814 null V -0.6360

Null . 0.0383 null N -0.5600

Null : 0.0055 null I -0.4839

Table 1: Top Five Features each with Maximum
and Minimum weights

Other parameters like the relative distance be-
tween the source wordep and the target wordhq,
RelDist(ep, hq) = abs(j/|e| − k/|h|), which are
mentioned as important features in the previous
literature, did not perform well for the English-
Hindi language pair. This is because of the pre-
dominant word-order variation between the sen-
tences of English and Hindi (Refer Figure 1).

3.3 Structural Features (FG)

The global features are used to model the prop-
erties of the entire alignment structure taken as a
unit, between the source and the target sentence.
In doing so, we have attempted to exploit the syn-
tactic information available on both the source and
the target sides of the corpus. The syntactic infor-
mation on the target side is obtained by projecting
the syntactic information of the source using the
alignment links. Some of the features which we
have used in our work are in the following subsec-
tion.

3.3.1 Overlap

This feature considers the instances in a sen-
tence pair where a source word links to a target
word which is a participant in more than one align-
ment links (has a fertility greater than one). This
feature is used to encourage the source words to
be linked to different words in the target language.
For example, we would prefer the alignment in
Figure 6 when compared to the alignment in Fig-
ure 5 even before looking at the actual words. This
parameter captures such prior information about
the alignment structure.

Figure 5: Alignment where many source words are
linked to one target word

Figure 6: Alignment where the source words are
aligned to many different target words

Formally, it is defined as

Overlap(ā) =

∑
hq∈T,Fert(hq)>1 Fert2(hq)

∑
h∈T Fert(h)

whereT is the Hindi sentence.
∑

Fert2(hq) is
measured in the numerator so that a more uniform
distribution of target word fertilities be favored in
comparison to others. The weight ofoverlap as
estimated by our model is -6.1306 which indicates
the alignments having a low overlap value are pre-
ferred.

3.3.2 NullPercent

This feature measures the percentage of words
in target language sentence which are not aligned
to any word in the source language sentence. It is
defined as

NullPercent =
|hq|hq∈T,Fertility(hq)==0

|h|h∈T

3.3.3 Direction DepPair

The following feature attempts to capture the
first order interdependence between the alignment
links of pairs of source sentence words which are
connected by dependency relations. One way in
which such an interdependence can be measured
is by noting the order of the target sentence words
linked to the child and parent of a source sentence
dependency relation. Figures 7, 8 and 9 depict
the various possibilities. The words in the source
sentence are represented using their part-of-speech
tags. These part-of-speech tags are also projected
onto the target words. In the figuresp is the parent
andc is the part-of-speech of the child.

p c

c p

Figure 7: Target word linked to a child precedes
the target word linked to a parent
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p c

p c

Figure 8: Target word linked to a parent precedes
the target word linked to a child

p c

p c

Figure 9: Parent and the child are both linked to
same target word

The situation in Figure 9 is an indicator that the
parent and child dependency pair might be part or
whole of a multi-word expression on the source
side. This feature thus captures the divergence be-
tween the source sentence dependency structure
and the target language dependency structure (in-
duced by taking the alignment as a constraint).
Hence, in the test data, the alignments which do
not express this divergence between the depen-
dency trees are penalized. For example, the align-
ment in Figure 10 will be heavily penalized by
the model during re-ranking step primarily for two
reasons, 1) The word aligned to the preposition
‘of’ does not precede the word aligned to the noun
‘king’ and 2) The word aligned to the preposition
‘to’ does not succeed the word aligned to the noun
‘king’.

......... to the king of Rajastan .......

......  Rajastan  ke   Raja  ko   ..........

( Rajastan   of    King   to  )

Figure 10: A simple example of an alignment
that would be penalized by the feature Direc-
tion DepPair

3.3.4 Direction Bigram

This feature is a variation of the previous fea-
ture. In the previous feature, the dependency pair
on the source side was projected to the target side
to observe the divergence of the dependency pair.
In this feature, we take a bigram instead of a de-

pendency pair and observe its order in the target
side. This feature is equivalent to the first-order
features used in the related work.

There are three possibilities here, (1) The words
of the bigram maintain their order when projected
onto the target words, (2) The words of the bigram
are reversed when projected, (3) Both the words
are linked to the same word of the target sentence.

4 Online large margin training

For parameter optimization, we have used an on-
line large margin algorithm called MIRA (Mc-
Donald et al., 2005) (Crammer and Singer, 2003).
We will briefly describe the training algorithm that
we have used. Our training set is a set of English-
Hindi word aligned parallel corpus. Let the num-
ber of sentence pairs in the training data bet. We
have{Sr, Tr, âr} for training wherer ≤ t is the
index number of the sentence pair{Sr, Tr} in the
training set and̂ar is the gold alignment for the
pair {Sr, Tr}. Let W be the weight vector which
has to be learnt,Wi be the weight vector after the
end ofith update. To avoid over-fitting,W is ob-
tained by averaging over all the weight vectorsWi.

A generic large margin algorithm is defined
follows for the training instances{Sr, Tr, âr},

Initialize W0, W , i
for p = 1 to Iterations do

for r = 1 to t do
Get K-Best predictionsαr = {a1, a2...ak}

for the training example(Sr, Tr, âr)
using the current modelW i and applying
step 1 and 2 of section 4. ComputeW i+1

by updatingW i based on
(Sr, Tr, âr, αr).

i = i + 1
W = W + W i+1

W = W
Iterations∗m

end for
end for

The goal of MIRA is to minimize the change in
W i such that the score of the gold alignmentâ ex-
ceeds the score of each of the predictions inα by a
margin which is equal to the number of mistakes in
the predictions when compared to the gold align-
ment. One could choose a different loss function
which assigns greater penalty for certain kinds of
mistakes when compared to others.

Step 4 (Get K-Best predictions) in the algo-
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rithm mentioned above can be substituted by the
following optimization problem,

minimize‖(W i+1 − W i)‖
s.t.∀k, score(âr, Sr, Tr)− score(aq,k, Sr, Tr)

>= Mistakes(ak, âr, Sr, Tr)

For optimization of the parameters, ideally, we
need to consider all the possible predictions and
assign margin constraints based on every predic-
tion. But, here the number of such classes is ex-
ponential and therefore we restrict ourselves to the
k − best predictions.

We estimate the parameters in two steps. In the
first step, we estimate only the weights of the lo-
cal parameters. After that, we keep the weights
of local parameters constant and then estimate the
weights of global parameters. It is important to
decouple the parameter estimation to two steps.
We also experimented estimating the parameters
in one stage but as expected, it had an adverse
impact on the parameter weights of local features
which resulted in generation of poor k-best list af-
ter the first step while testing.

5 Experiments and Results

5.1 Data

We have used English-Hindi unsupervised data of
50000 sentence pairs4. This data was used to ob-
tain the cooccurence statistics such asDiceWords
andDiceRoots which we used in our model. This
data was also used to obtain the predictions of
GIZA++ (Implements the IBM models and the
HMM model). We take the alignments of GIZA++
as baseline and evaluate our model for the English-
Hindi language pair.

The supervised training data which is used to
estimate the parameters consists of 4252 sentence
pairs. The development data consists of 100 sen-
tence pairs and the test data consists of 100 sen-
tence pairs. This supervised data was obtained
from IRCS, University of Pennsylvania. For train-
ing our model, we need to convert the many-to-
many alignments in the corpus to one-to-one or
may-to-one alignments. This is done by applying
inverse operations of those performed during the
post-processing step (section 2.3).

4Originally collected as part of TIDES MT project and
later refined at IIIT-Hyderabad, India.

5.2 Experiments

We first obtain the predictions of GIZA++ to ob-
tain the baseline accuracies. GIZA++ was run in
four different modes 1) English to Hindi, 2) Hindi
to English, 3) English to Hindi where the words in
both the languages are lemmatized and 4) Hindi to
English where the words are lemmatized. We then
take the intersections of the predictions run from
both the directions (English to Hindi and Hindi to
English). Table 2 contains the results of experi-
ments with GIZA++. As the recall of the align-
ment links of the intersection is very low for this
dataset, further refinements of the alignments as
suggested by (Och and Ney, 2003) were not per-
formed.

Mode Prec. Rec. F-meas. AER

Normal: Eng-Hin 47.57 40.87 43.96 56.04

Normal: Hin-Eng 47.97 38.50 42.72 57.28

Normal: Inter. 88.71 27.52 42.01 57.99

Lemma.: Eng-Hin 53.60 44.58 48.67 51.33

Lemma.: Hin-Eng 53.83 42.68 47.61 52.39

Lemma.: Inter. 86.14 32.80 47.51 52.49

Table 2: GIZA++ Results

In Table 3, we observe that the best result
(51.33) is obtained when GIZA++ is run after lem-
matizing the words on the both sides of the unsu-
pervised corpus. The best results obtained without
lemmatizing is56.04when GIZA++ is run from
English to Hindi.

The table 4 summarizes the results when we
used only the local features in our model.

Features Prec. Rec. F-meas. AER

DiceRoots 41.49 38.71 40.05 59.95

+ DiceWords

+ Null POS 42.82 38.29 40.43 59.57

+ Dict. 43.94 39.30 41.49 58.51

+ Word pairs 46.27 41.07 43.52 56.48

Table 3: Results using local features

We now add the global features. While esti-
mating the parameter weights associated with the
global features, we keep the weights of local fea-
tures constant. We choose the appropriate beam
size as 50 after testing with several values on the
development set. We observed that the beam sizes
(between 10 and 100) did not affect the alignment
error rates very much.
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Features Prec. Rec. F-meas. AER

Local feats. 46.27 41.07 43.52 56.48

Local feats. 48.17 42.76 45.30 54.70

+ Overlap

Local feats. 47.93 42.55 45.08 54.92

+ Direc. Deppair

Local feats. 48.31 42.89 45.44 54.56

+ Direc. Bigram

Local feats. 48.81 43.31 45.90 54.10

+ All Global feats.

Table 4: Results after adding global features

We see that by adding global features, we ob-
tained an absolute increase of about 2.3 AER sug-
gesting the usefulness of structural features which
we considered. Also, the new AER is much better
than that obtained by GIZA++ run without lem-
matizing the words.

We now add the IBM Model-4 parameters (co-
occurrence probabilities between source and tar-
get words) obtained using GIZA++ and our fea-
tures, and observe the results (Table 6). We can
see that structural features resulted in a significant
decrease in AER. Also, the AER that we obtained
is slightly better than the best AER obtained by the
GIZA++ models.

Features Prec. Rec. F-meas. AER

IBM Model-4 Pars. 48.85 43.98 46.29 52.71

+ LocalFeats

IBM Model-4 Pars. 48.95 50.06 49.50 50.50

+ All feats.

Table 5: Results after combining IBM model-4 pa-
rameters with our features

6 Conclusion and Future Work

In this paper, we have proposed a discriminative
re-ranking approach for word alignment which al-
lows us to make use of structural features effec-
tively. We have shown that by using the structural
features, we have obtained a decrease of 2.3% in
the absolute value of alignment error rate (AER).
When we combine the prediction of IBM model-4
with our features, we have achieved an AER which
is slightly better than the best AER of GIZA++
for the English-Hindi parallel corpus (a language
pair with significant structural divergences). We
expect to get large improvements when we add
more number of relevant local and structural fea-

tures. We also plan to design an appropriate de-
pendency based decoder for machine translation
to make good use of the parameters estimated by
our model.
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Abstract

In this paper we explore a generative
model for recovering surface syntax and
strings from deep-syntactic tree structures.
Deep analysis has been proposed for a
number of language and speech process-
ing tasks, such as machine translation and
paraphrasing of speech transcripts. In an
effort to validate one such formalism of
deep syntax, the Praguian Tectogrammat-
ical Representation (TR), we present a
model of synthesis for English which gen-
erates surface-syntactic trees as well as
strings. We propose a generative model
for function word insertion (prepositions,
definite/indefinite articles, etc.) and sub-
phrase reordering. We show by way of
empirical results that this model is ef-
fective in constructing acceptable English
sentences given impoverished trees.

1 Introduction

Syntactic models for language are being reintro-
duced into language and speech processing sys-
tems thanks to the success of sophisticated statisti-
cal models of parsing (Charniak and Johnson, 2005;
Collins, 2003). Representing deep syntactic rela-
tionships is an open area of research; examples of
such models are exhibited in a variety of grammat-
ical formalisms, such as Lexical Functional Gram-
mars (Bresnan and Kaplan, 1982), Head-driven
Phrase Structure Grammars (Pollard and Sag, 1994)

and the Tectogrammatical Representation (TR) of
the Functional Generative Description (Sgall et al.,
1986). In this paper we do not attempt to analyze the
differences of these formalisms; instead, we show
how one particular formalism is sufficient for au-
tomatic analysis and synthesis. Specifically, in this
paper we provide evidence that TR is sufficient for
synthesis in English.

Augmenting models of machine translation (MT)
with syntactic features is one of the main fronts of
the MT research community. The Hiero model has
been the most successful to date by incorporating
syntactic structure amounting to simple tree struc-
tures (Chiang, 2005). Synchronous parsing mod-
els have been explored with moderate success (Wu,
1997; Quirk et al., 2005). An extension to this work
is the exploration of deeper syntactic models, such
as TR. However, a better understanding of the syn-
thesis of surface structure from the deep syntax is
necessary.

This paper presents a generative model for surface
syntax and strings of English given tectogrammati-
cal trees. Sentence generation begins by inserting
auxiliary words associated with autosemantic nodes;
these include prepositions, subordinating conjunc-
tions, modal verbs, and articles. Following this, the
linear order of nodes is modeled by a similar gen-
erative process. These two models are combined in
order to synthesize a sentence.

The Amalgam system provides a similar model
for generation from a logical form (Corston-Oliver
et al., 2002). The primary difference between our
approach and that of the Amalgam system is that
we focus on an impoverished deep structure (akin to
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logical form); we restrict the deep analysis to con-
tain only the features which transfer directly across
languages; specifically, those that transfer directly
in our Czech-English machine translation system.
Amalgam targets different issues. For example,
Amalgam’s generation of prepositions and subordi-
nating conjunctions is severely restricted as most of
these are considered part of the logical form.

The work of Langkilde-Geary (2002) on the Halo-
gen system is similar to the work we present here.
The differences that distinguish their work from
ours stem from the type of deep representation from
which strings are generated. Although their syntac-
tic and semantic representations appear similar to
the Tectogrammatical Representation, more explicit
information is preserved in their representation. For
example, the Halogen representation includes mark-
ings for determiners, voice, subject position, and
dative position which simplifies the generation pro-
cess. We believe their minimally specified results are
based on input which most closely resembles the in-
put from which we generate in our experiments.

Amalgam’s reordering model is similar to the one
presented here; their model reorders constituents in
a similar way that we reorder subtrees. Both the
model of Amalgam and that presented here differ
considerably from the n-gram models of Langkilde
and Knight (1998), the TAG models of Bangalore
and Rambow (2000), and the stochastic generation
from semantic representation approach of Soricut
and Marcu (2006). In our work, we order the local-
subtrees1 of an augmented deep-structure tree based
on the syntactic features of the nodes in the tree. By
factoring these decisions to be independent for each
local-subtree, the set of strings we consider is only
constrained by the projective strucutre of the input
tree and the local permutation limit described below.

In the following sections we first provide a brief
description of the Tectogrammatical Representation
as used in our work. Both manually annotated and
synthetic TR trees are utilized in our experiments;
we present a description of each type of tree as well
as the motivation for using it. We then describe the
generative statistical process used to model the syn-
thesis of analytical (surface-syntactic) trees based

1A local subtree consists of a parent node (governor) and it’s
immediate children.
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Figure 1: Example of a manually annotated, Synthetic TR
tree (see Section 2.2).
Reference: Now the network has opened a news bureau in
the Hungarian capital
Each sentence has an artificial root node labeled #. Verbs con-
tain their tense and mood (labeled T M).

on the TR trees. Details of the model’s features
are presented in the following section. Finally we
present empirical results for experiments using both
the manually annotated and automatically generated
data.

2 Tectogrammatical (Deep) Syntax

The Tectogrammatical Representation (TR) comes
out of the Praguian linguistic theory known as
the Functional Generative Description of language
(Sgall et al., 1986). TR attempts to capture deep
syntactic relationships based on the valency of pred-
icates (i.e., function-argument structure) and modifi-
cation of participants (i.e., nouns used as actors, pa-
tients, etc.). A key feature of TR is that dependency
relationships are represented only for autosemantic
words (content words), meaning that synsemantic
words (syntactic function words) are encoded as fea-
tures of the grammatical relationships rather than the
actual words. Abstracting away from specific syn-
tactic lexical items allows for the representation to
be less language-specific making the representation
attractive as a medium for machine translation and
summarization.

Figure 1 shows an example TR tree, the nodes of
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which represent the autosemantic words of the sen-
tence. Each node is labeled with a morphologically
reduced word-form called the lemma and a functor
that describes the deep syntactic relationship to its
governor (function-argument form). Additionally,
the nodes are labeled with grammatemes that cap-
ture morphological and semantic information asso-
ciated with the autosemantic words. For example,
English verb forms are represented by the infinitive
form as the lemma and the grammatemes encode
the tense, aspect, and mood of the verb. For a de-
tailed description of the TR annotation scheme see
Böhmová et al. (2002). In Figure 1 we show only
those features that are present in the TR structures
used throughout this paper.

Both the synsemantic nodes and the left-to-right
surface order2 in the TR trees is under-specified. In
the context of machine translation, we assume the
TR word order carries no information with the ex-
ception of a single situation: the order of coordi-
nated phrases is preserved in one of our models.

2.1 Analytic Representation

While it is not part of the formal TR description, the
authors of the TR annotation scheme have found it
useful to define an intermediate representation be-
tween the sentence and the TR tree (Böhmová et
al., 2002). The analytical representation (AR) is a
surface-syntactic dependency tree that encodes syn-
tactic relationships between words (i.e., object, sub-
ject, attribute, etc.). Unlike the TR layer, the analyti-
cal layer contains all words of the sentence and their
relative ordering is identical to the surface order.

2.2 Manually Annotated TR

In order to evaluate the efficacy of the generation
model, we construct a dataset from both manually
annotated data and automatically generated data.
The information contained in the originally manu-
ally annotated TR all but specifies the surface form.
We have modified the annotated data by removing
all features except those that could be directly trans-
fered across languages. Specifically, we preserve
the following features: lemma, functor, verbal gram-

2In a TR tree, a subtree is always between the nodes to the
left and right of its governor. More specifically, all TR trees
are projective. For this reason, the relative ordering of subtrees
imposes an absolute ordering for the tree.

matemes, and part-of-speech tags. The lemma is
the morphologically reduced form of the word; for
verbs this is the infinitive form and for nouns this is
the singular form. The functor is the deep-syntactic
function of the node; for example, the deep functor
indicates whether a node is a predicate, an actor, or a
patient. Modifiers can be labeled as locative, tempo-
ral, benefactive, etc. Additionally we include a ver-
bal grammateme which encodes tense and mood as
well as a Penn Treebank style part-of-speech tag.

3 Generative Process

In this section we describe the generative process
that inserts the synsemantic auxiliary words, re-
orders the trees, and produces a sentence. Our eval-
uation will be on English data, so we describe the
models and the model features in the context of En-
glish. While the model is language independent, the
specific features and the size of the necessary condi-
tioning contexts is a function of the language.

Given a TR tree T , we wish to predict the cor-
rect auxiliary nodes A and an ordering of the words
associated with {T ∪ A}, defined by the function
f({T ∪ A}). The functions f determine the surface
word order of the words associated with nodes of the
auxiliary-inserted TR tree: N = {T ∪A}. The node
features that we use from the nodes in the TR and
AR trees are: the word lemma, the part-of-speech
(POS) tag, and the functor.3 The objective of our
model is:

arg max
A,f

P (A, f |T )

= arg max
A,f

P (f |A,T )P (A|T ) (1)

≈ arg max
f

P (f |T, arg max
A

P (A|T )) (2)

In Equation 2 we approximate the full model with a
greedy procedure. First, we predict the most likely
A according to the model P (A|T ). Given A, we
compute the best ordering of the nodes of the tree,
including those introduced in A.

There is an efficient dynamic-programming solu-
tion to the objective function in Equation 1; how-

3The type of functor used (deep syntactic or surface-
syntactic) depends on the tree to which we are applying the
model. One form of the reordering model operates on AR trees
and therefore uses surface syntactic functors. The other model
is based on TR trees and uses deep-syntactic functors.
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ever, in this work we experiment with the greedy
approximation.

3.1 Insertion Model

The specific English auxiliary nodes which are not
present in TR include articles, prepositions, subor-
dinating conjunctions, and modal verbs.4 For each
node in the TR tree, the generative process predicts
which synsemantic word, if any, should be inserted
as a dependent of the current node. We make the
assumption that these decisions are determined in-
dependently.

Let T = {w1, . . . , wi, . . . , wk} be the nodes of
the TR tree. For each node wi, we define the asso-
ciated node ai to be the auxiliary node that should
be inserted as a dependent of wi. Given a tree T ,
we wish to find the set of auxiliary nodes A =
{a1, . . . , ak} that should be inserted5:

P (A|T )

=
∏

i

P (ai|a1, . . . , ai−1, T ) (3)

≈
∏

i

P (ai|T ) (4)

≈
∏

i

P (ai|wi, wg(i)) (5)

Equation 3 is simply a factorization of the origi-
nal model, Equation 4 shows the independence as-
sumption, and in Equation 5 we make an additional
conditional independence assumption that in order
to predict auxiliary ai, we need only know the asso-
ciated node wi and its governor wg(i).

6

We further divide the model into three compo-
nents: one that models articles, such as the En-
glish articles the and a; one that models preposi-
tions and subordinating conjunctions; and one that
models modal verbs. The first two models are of the
form described by Equation 5. The modal verb in-
sertion model is a deterministic mapping based on

4The function of synsemantic nodes are encoded by func-
tors. For example, the prepositions to, at, in, by, and on may be
used to indicate time or location. An autosemantic modifier will
be labeled as temporal or locative, but the particular preposition
is not specified.

5Note that we include the auxiliary node labeled NOAUX to
be inserted, which in fact means a node is not inserted.

6In the case of nodes whose governor is a coordinating con-
junction, the governor information comes from the governor of
the coordination node.

grammatemes expressing the verb modality of the
main verb. Additionally, each model is independent
of the other and therefore up to two insertions per
TR node are possible (an article and another syntac-
tic modifier). In a variant of our model, we perform
a small set of deterministic transformations in cases
where the classifier is relatively uncertain about the
predicted insertion node (i.e., the entropy of the con-
ditional distribution is high).

We note here that unlike the Amalgam system
(Corston-Oliver et al., 2002), we do not address fea-
tures which are determined (or almost completely
determined) by the underlying deep-structure. For
example, the task of inserting prepositions is non-
trivial given we only know a node’s functor (e.g.,
the node’s valency role).

3.2 Analytical Representation Tree Generation

We have experimented with two paradigms for syn-
thesizing sentences from TR trees. The first tech-
nique involves first generating AR trees (surface
syntax). In this model, we predict the node inser-
tions, transform the functors from TR to AR func-
tions (deep valency relationship to surface-syntactic
relationships), and then reorder the nodes. In the
second framework, we reorder the nodes directly in
the TR trees with inserted auxiliary nodes.

3.3 Surface-order Model

The node ordering model is used to determine a pro-
jection of the tree to a string. We assume the order-
ing of the nodes in the input TR trees is arbitrary,
the reordering model proposed here is based only on
the dependency structure and the node’s attributes
(words, POS tags, etc.). In a variant of the reorder-
ing model, we assume the deep order of coordinating
conjunctions to be the surface order.

Algorithm 1 presents the bottom-up node reorder-
ing algorithm. In the first part of the algorithm, we
determine the relative ordering of child nodes. We
maximize the likelihood of a particular order via the
precedence operator ≺. If node ci ≺ ci+1, then
the subtree of the word associated with ci imme-
diately precedes the subtree of the word associated
with ci+1 in the projected sentence.

In the second half of the algorithm (starting at
line 13), we predict the position of the governor
within the previously ordered child nodes. Recall
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Algorithm 1 Subtree Reordering Algorithm
procedure REORDER(T,A, O) � Result in O

N ←bottomUp(T ∪A); O ← {}
for g ∈ N do

bestScore← 0; og ← {}
5: for C ←permutation of g’s children do

for i← 1 . . . |C| do
s← s ∗ P (ci ≺ ci+1|ci, ci+1, g)

end for
if s > bestScore then

10: bestScore← s; og ← C
end if

end for
bestScore← 0; m← 0
for i← 1 . . . |bestOrder| do

15: s← P (ci ≺ g ≺ ci+1|ci, ci+1, g)
if s > bestScore then

s← bestScore ; m← i
end if

end for
20: Insert governor cg after mth child in og

O ← O ∪ og

end for

end procedure

that this is a dependency structure; knowing the gov-
ernor does not tell us where it lies on the surface
with respect to its children. The model is similar
to the general reordering model, except we consider
an absolute ordering of three nodes (left child, gov-
ernor, right child). Finally, we can reconstruct the
total ordering from the subtree ordering defined in
O = {o1, . . . , on}.

The procedure described here is greedy; first we
choose the best child ordering and then we choose
the location of the governor. We do this to minimize
the computational complexity of the algorithm. The
current algorithm’s runtime complexity is O(n!), but
the complexity of the alternative algorithm for which
we consider triples of child nodes is O(n!(n− 1)!).
The actual complexity is determined by the maxi-
mum number of child nodes k = |C| and is O(n

k k!).

3.4 Morphological Generation

In order to produce true English sentences, we con-
vert the lemma and POS tag to a word form. We
use John Carroll’s morphg tool7 to generate English
word forms given lemma/POS tag pairs. This is
not perfect, but it performs an adequate job at re-
covering English inflected forms. In the complete-
system evaluation, we report scores based on gener-

7Available on the web at:
http://www.informatics.susx.ac.uk/research/nlp/carroll/morph.html.

ated morphological forms.

3.5 Insertion Features

Features for the insertion model come from the cur-
rent node being examined and the node’s governor.
When the governor is a coordinating conjunction,
we use features from the governor of the conjunc-
tion node. The features used are the lemma, POS
tag, and functor for the current node, and the lemma,
POS tag, and functor of the governor.

∏

i

P (ai|wi, wg) (6)

=
∏

i

P (ai|li, ti, fi, lg, tg, fg)

The left-hand side of Equation 6 is repeated from
Equation 5 above. Equation 6 shows the expanded
model for auxiliary insertion where li is the lemma ,
ti is the POS tag, and fi is the functor of node wi

3.6 Reordering Features

Our reordering model for English is based primar-
ily on non-lexical features. We use the POS tag
and functor from each node as features. The two
distributions in our reordering model (used in Algo-
rithm 1) are:

P (ci ≺ ci+1|ci, ci+1, g) (7)

= (ci ≺ ci+1|fi, ti, fi+1, ti+1, fg, tg)
P (ci ≺ g ≺ ci+1|ci, ci+1, g) (8)

= P (ci ≺ g ≺ ci+1|fi, ti, fi+1, ti+1, tg, fg)

In both Equation 7 and Equation 8, only the func-
tor and POS tag of each node is used.

4 Empirical Evaluation

We have experimented with the above models on
both manually annotated TR trees and synthetic
trees (i.e., automatically generated trees). The data
comes from the PCEDT 1.0 corpus8, a version of the
Penn WSJ Treebank that has been been translated to
Czech and automatically transformed to TR in both
English and Czech. The English TR was automat-
ically generated from the Penn Treebank’s manu-
ally annotated surface syntax trees (English phrase-
structure trees). Additionally, a small set of 497 sen-
tences were manually annotated at the TR level: 248

8LDC catalog number: LDC2004T25.
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Model Manual Data Synthetic Data
Ins. Rules No Rules Ins. Rules No Rules

Model Articles Prep & SC Articles Prep & SC Articles Prep & SC Articles Prep & SC
Baseline N/A N/A 77.93 76.78 N/A N/A 78.00 78.40
w/o g. functor 87.29 89.65 86.25 89.31 88.07 91.83 87.34 91.06
w/o g. lemma 86.77 89.48 85.68 89.02 87.53 90.95 86.55 91.16
w/o g. POS 87.29 89.45 86.10 89.14 87.68 91.86 86.89 92.07
w/o functor 86.10 85.02 84.86 84.56 86.01 85.60 84.79 85.65
w/o lemma 81.34 89.02 80.88 88.91 81.28 91.03 81.42 91.33
w/o POS 84.81 88.01 84.01 87.29 85.53 91.08 84.69 90.98
All Features 87.49 89.68 86.45 89.28 87.87 91.83 87.24 92.02

Table 1: Classification accuracy for insertion models on development data from PCEDT 1.0. Article accuracy is computed over
the set of nouns. Preposition and subordinating conjunction accuracy (P & SC) is computed over the set of nodes that appear on
the surface (excluding hidden nodes in the TR – these will not exist in automatically generated data). Models are shown for all
features minus the specified feature. Features with the prefix “g.” indicate governor features, otherwise the features are from the
node’s attributes. The Baseline model is one which never inserts any nodes (i.e., the model which inserts the most probable value –
NOAUX).

for development and 249 for evaluation; results are
presented for these two datasets.

All models were trained on the PCEDT 1.0 data
set, approximately 49,000 sentences, of which 4,200
were randomly selected as held-out training data, the
remainder was used for training. We estimate the
model distributions with a smoothed maximum like-
lihood estimator, using Jelinek-Mercer EM smooth-
ing (i.e., linearly interpolated backoff distributions).
Lower order distributions used for smoothing are es-
timated by deleting the rightmost conditioning vari-
able (as presented in the above models).

Similar experiments were performed at the 2002
Johns Hopkins summer workshop. The results re-
ported here are substantially better than those re-
ported in the workshop report (Hajič et al., 2002);
however, the details of the workshop experiments
are not clear enough to ensure the experimental con-
ditions are identical.

4.1 Insertion Results

For each of the two insertion models (the article
model and the preposition and subordinating con-
junction model), there is a finite set of values for
the dependent variable ai. For example, the articles
are the complete set of English articles as collected
from the Penn Treebank training data (these have
manual POS tag annotations). We add a dummy
value to this set which indicates no article should
be inserted.9 The preposition and auxiliary model

9In the classifier evaluation we consider the article a and an
to be equivalent.

assumes the set of possible modifiers to be all those
seen in the training data that were removed when
modifying the manual TR trees.

The classification accuracy is the percentage of
nodes for which we predicted the correct auxiliary
from the set of candidate nodes for the auxiliary
type. Articles are only predicted and evaluated for
nouns (determined by the POS tag). Prepositions
and subordinating conjunctions are predicted and
evaluated for all nodes that appear on the surface.
We do not report results for the modal verb inser-
tion as it is primarily determined by the features of
the verb being modified (accuracy is approximately
100%). We have experimented with different fea-
tures sets and found that the model described in
Equation 6 performs best when all features are used.

In a variant of the insertion model, when the clas-
sifier prediction is of low certainty (probability less
than .5) we defer to a small set of deterministic rules.
For infinitives, we insert “to”; for origin nouns, we
insert “from”, for actors we insert “of”, and we at-
tach “by” to actors of passive verbs. In the article
insertion model, we do not insert anything if there
is another determiner (e.g., “none” or “any”) or per-
sonal pronoun; we insert “the” if the word appeared
within the previous four sentences or if there is a
suggestive adjective attached to the noun.10

Table 1 shows that the classifiers perform better
on automatically generated data (Synthetic Data),
but also perform well on the manually annotated

10Any adjective that is always followed by the definite article
in the training data.
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Model Manual Data Synthetic Data
Coord. Rules No Rules Coord. Rules No Rules
All Interior All Interior All Interior All Interior

Baseline N/A N/A 68.43 21.67 N/A N/A 69.00 21.42
w/o g. functor 94.51 86.44 92.42 81.27 94.90 87.25 93.37 83.42
w/o g. tag 93.43 83.75 90.89 77.50 93.82 84.56 91.64 79.12
w/o c. functors 91.38 78.70 89.71 74.57 91.91 79.79 90.41 76.04
w/o c. tags 88.85 72.44 82.29 57.36 88.91 72.29 83.04 57.60
All Features 94.43 86.24 92.01 80.26 95.21 88.04 93.37 83.42

Table 2: Reordering accuracy for TR trees on development data from PCEDT 1.0. We include performance on the interior nodes
(excluding leaf nodes) for the Manual data to show a more detailed analysis of the performance. “g.” are the governor features and
“c.” are the child features. The baseline model sorts subtrees of each node randomly.

data. Prediction of articles is primarily dependent on
the lemma and the tag of the node. The lemma and
tag of the governing node and the node’s functor is
important to a lesser degree. In predicting the prepo-
sitions and subordinating conjunctions, the node’s
functor is the most critical factor.

% Errors Reference→Hypothesis
41 the → NULL
19 a/an → NULL
16 NULL → the
11 a/an → the
11 the → a/an
2 NULL → a/an

Table 3: Article classifier errors on development data.

Manual Synthetic
Det. P & SC Det. P & SC
85.53 89.18 85.31 91.54

Table 4: Accuracy of best models on the evaluation data.

Table 3 presents a confusion set from the best ar-
ticle classifier on the development data. Our model
is relatively conservative, incurring 60% of the error
by choosing to insert nothing when it should have in-
serted an article. The model requires more informed
features as we are currently being overly conserva-
tive.

In Table 4 we report the overall accuracy on evalu-
ation data using the model that performed best on the
development data. The results are consistent with
the results for the development data; however, the
article model performs slightly worse on the evalua-
tion set.

4.2 Reordering Results

Evaluation of the final sentence ordering was based
on predicting the correct words in the correct po-

sitions. We use the reordering metric described in
Hajič et al. (2002) which computes the percentage
of nodes for which all children are correctly ordered
(i.e., no credit for partially correct orderings).

Table 2 shows the reordering accuracy for the
full model and variants where a particular feature
type is removed. These results are for ordering
the correct auxiliary-inserted TR trees (using deep-
syntactic functors and the correctly inserted auxil-
iaries). In the model variant that preserves the deep
order of coordinating conjunctions, we see a signif-
icant increase in performance. The child node tags
are critical for the reordering model, followed by the
child functors.

4.3 Combined System Results

Model Manual Synthetic
TR w/ Rules .4614 .4777
TR w/o Rules .4532 .4657

AR .2337 .2451

Table 5: BLEU scores for complete generation system for TR
trees (with and without rules applied) and the AR trees.

In order to evaluate the combined system, we used
the multiple-translation dataset in the PCEDT cor-
pus. This data contains four retranslations from
Czech to English of each of the original English sen-
tences in the development and evaluation datasets.
In Table 5 we report the BLEU scores on develop-
ment data for our TR generation model (including
the morphological generation module) and the AR
generation model. Results for the system that uses
AR trees as an intermediate stage are very poor; this
is likely due to the noise introduced when generating
AR trees. Additionally, the results for the TR model
with the additional rules are consistent with the pre-
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vious results; the rules provide only a marginal im-
provement. Finally, we have run the complete sys-
tem on the evaluation data and achieved a BLEU
score of .4633 on the manual data and .4750 on
the synthetic data. These can be interpreted as the
upper-bound for Czech-English translation systems
based on TR tree transduction.

5 Conclusion

We have provided a model for sentence synthesis
from Tectogrammatical Representation trees. We
provide a number of models based on relatively sim-
ple, local features that can be extracted from impov-
erished TR trees. We believe that further improve-
ments will be made by allowing for more flexible
use of the features. The current model uses sim-
ple linear interpolation smoothing which limits the
types of model features used (forcing an explicit fac-
torization). The advantage of simple models of the
type presented in this paper is that they are robust
to errors in the TR trees – which are expected when
the TR trees are generated automatically (e.g., in a
machine translation system).
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Abstract

The purpose of this work is to explore
the integration of morphosyntactic infor-
mationinto the translation model itself, by
enriching words with their morphosyntac-
tic categories. We investigate word dis-
ambiguation using morphosyntactic cate-
gories,n-best hypotheses reranking, and
the combination of both methods with
word or morphosyntacticn-gram lan-
guage model reranking. Experiments
are carried out on the English-to-Spanish
translation task. Using the morphosyn-
tactic language model alone does not
results in any improvement in perfor-
mance. However, combining morphosyn-
tactic word disambiguation with a word
based 4-gram language model results in a
relative improvement in the BLEU score
of 2.3% on the development set and 1.9%
on the test set.

1 Introduction

Recent works in statistical machine translation
(SMT) shows how phrase-based modeling (Och and
Ney, 2000a; Koehn et al., 2003) significantly out-
perform the historical word-based modeling (Brown
et al., 1993). Using phrases, i.e. sequences of
words, as translation units allows the system to pre-
serve local word order constraints and to improve
the consistency of phrases during the translation pro-
cess. Phrase-based models provide some sort of

context information as opposed to word-based mod-
els. Training a phrase-based model typically re-
quires aligning a parallel corpus, extracting phrases
and scoring them using word and phrase counts. The
derived statistics capture the structure of natural lan-
guage to some extent, including implicit syntactic
and semantic relations.

The output of a SMT system may be difficult to
understand by humans, requiring re-ordering words
to recover its syntactic structure. Modeling language
generation as a word-based Markovian source (ann-
gram language model) discards linguistic properties
such as long term word dependency and word-order
or phrase-order syntactic constraints. Therefore, ex-
plicit introduction of structure in the language mod-
els becomes a major and promising focus of atten-
tion.

However, as of today, it seems difficult to outper-
form a 4-gram word language model. Several stud-
ies have attempted to use morphosyntactic informa-
tion (also known as part-of-speech or POS informa-
tion) to improve translation. (Och et al., 2004) have
explored many different feature functions. Rerank-
ingn-best lists using POS has also been explored by
(Hasan et al., 2006). In (Kirchhoff and Yang, 2005),
a factored language model using POS information
showed similar performance to a 4-gram word lan-
guage model. Syntax-based language models have
also been investigated in (Charniak et al., 2003). All
these studies use word phrases as translation units
and POS information in just a post-processing step.

This paper explores the integration of morphosyn-
tactic informationinto the translation model itself
by enriching words with their morphosyntactic cat-
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egories. The same idea has already been applied
in (Hwang et al., 2007) to the Basic Travel Ex-
pression Corpus (BTEC). To our knowledge, this
approach has not been evaluated on a large real-
word translation problem. We report results on
theTC-STAR task (public European Parliament Ple-
nary Sessions translation). Furthermore, we pro-
pose to combine this approach with classicaln-best
list reranking. Experiments are carried out on the
English-to-Spanish task using a system based on the
publicly availableMosesdecoder.

This paper is organized as follows: In Section
2 we first describe the baseline statistical machine
translation systems. Section 3 presents the consid-
ered task and the processing of the corpora. The
experimental evaluation is summarized in section 4.
The paper concludes with a discussion of future re-
search directions.

2 System Description

The goal of statistical machine translation is to pro-
duce a target sentencee from a source sentencef .
Among all possible target language sentences the
one with the highest probability is chosen. The use
of a maximum entropy approach simplifies the intro-
duction of several additional models explaining the
translation process:

e∗ = arg max Pr(e|f)

= arg max
e
{exp(

∑

i

λihi(e, f))} (1)

where the feature functionshi are the system
models characterizing the translation process, and
the coefficientsλi act as weights.

2.1 Moses decoder

Moses1 is an open-source, state-of-the-art phrase-
based decoder. It implements an efficient beam-
search algorithm. Scripts are also provided to train a
phrase-based model. The popular Giza++ (Och and
Ney, 2000b) tool is used to align the parallel corpora.

The baseline system uses 8 feature functionshi,
namely phrase translation probabilities in both di-
rections, lexical translation probabilities in both di-
rections, a distortion feature, a word and a phrase

1http://www.statmt.org/moses/

penalty and a trigram target language model. Ad-
ditional features can be added, as described in the
following sections. The weightsλi are typically op-
timized so as to maximize a scoring function on a
development set (Och and Ney, 2002).

The moses decoder can outputn-best lists, pro-
ducing either distinct target sentences or not (as
different segmentations may lead to the same sen-
tence). In this work, distinct sentences were always
used.

Thesen-best lists can be rescored using higher
order language models (word- or syntactic-based).
There are two ways to carry out the rescoring: one,
by replacing the language model score or by adding
a new feature function; two, by performing a log-
linear interpolation of the language model used for
decoding and the new language model. This latter
approach was used in all the experiments described
in this paper. The set of weights is systematically
re-optimized using the algorithm presented below.

2.2 Weight optimization

A common criterion to optimize the coefficients of
the log-linear combination of feature functions is to
maximize the BLEU score (Papineni et al., 2002)
on a development set (Och and Ney, 2002). For
this purpose, the public numerical optimization tool
Condor(Berghen and Bersini, 2005) is integrated in
the following iterative algorithm:

0. Using good general purpose weights, the
Moses decoder is used to generate 1000-best
lists.

1. The 1000-best lists are reranked using the cur-
rent set of weights.

2. The current hypothesis is extracted and scored.

3. This BLEU score is passed toCondor, which
either computes a new set of weights (the al-
gorithm then proceeds to step 1) or detects that
a local maxima has been reached and the algo-
rithm stops iterating.

The solution is usually found after about 100 itera-
tions. It is stressed that then-best lists are generated
only once and that the whole tuning operates only
on then-best lists.

66



English: IPP declareV V P resumedV V D theDT sessionNN ofIN theDT EuropeanNP ParliamentNP

Spanish: declaroV Lfin reanudadoV Ladj elART perodoNC dePREP sesionesNC
delPDEL ParlamentoNC EuropeoADJ

Figure 1: Example of POS-tag enriched bi-text used to train the translation models

2.3 POS disambiguation

It is well-known that syntactic structures vary
greatly across languages. Spanish, for example,
can be considered as a highly inflectional language,
whereas inflection plays only a marginal role in En-
glish.

POS language models can be used to rerank the
translation hypothesis, but this requires tagging the
n-best lists generated by the SMT system. This can
be difficult since POS taggers are not well suited for
ill-formed or incorrect sentences. Finding a method
in which morphosyntactic information is used di-
rectly in the translation model could help overcome
this drawback but also takes account for the syntac-
tic specificities of both source and target languages.
It seems likely that the morphosyntactic informa-
tion of each word will be useful to encode linguis-
tic characteristics, resulting in a sort of word disam-
biguation by considering its morphosyntactic cate-
gory. Therefore, in this work we investigate a trans-
lation model which enriches every word with its syn-
tactic category. The enriched translation units are a
combination of the original word and the POS tag, as
shown in Figure 1. The translation system takes a se-
quence of enriched units as inputs and outputs. This
implies that the test data must be POS tagged before
translation. Likewise, the POS tags in the enriched
output are removed at the end of the process to pro-
vide the final translation hypothesis which contain
only a word sequence. This approach also allows
to carry out an-best reranking step using either a
word-based or a POS-based language model.

3 Task, corpus and tools

The experimental results reported in this article were
obtained in the framework of an international evalu-
ation organized by the EuropeanTC-STAR project2

in February 2006. This project is envisaged as a

2http://www.tc-star.org/

long-term effort to advance research in all core tech-
nologies for speech-to-speech translation.

The main goal of this evaluation is to trans-
late public European Parliament Plenary Sessions
(EPPS). The training material consists of the sum-
mary edited by the European Parliament in several
languages, which is also known as the Final Text
Editions (Gollan et al., 2005). These texts were
aligned at the sentence level and they are used to
train the statistical translation models (see Table 1
for some statistics).

Spanish English

Whole parallel corpus
Sentence Pairs 1.2M
Total # Words 34.1M 32.7M
Vocabulary size 129k 74k

Sentence length≤ 40
Sentence Pairs 0.91M
Total # Words 18.5M 18.0M
Word vocabulary 104k 71k
POS vocabulary 69 59
Enriched units vocab. 115k 77.6k

Table 1: Statistics of the parallel texts used to train
the statistical machine translation system.

Three different conditions are considered in the
TC-STAR evaluation: translation of the Final Text
Edition (text), translation of the transcriptions of the
acoustic development data (verbatim) and transla-
tion of speech recognizer output (ASR). Here we
only consider theverbatim condition, translating
from English to Spanish. For this task, the develop-
ment and test data consists of about 30k words. The
test data is partially collected in the Spanish parlia-
ment. This results in a small mismatch between de-
velopment and test data. Two reference translations
are provided. The scoring is case sensitive and in-
cludes punctuation symbols.
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3.1 Text normalization

The training data used for normalization differs sig-
nificantly from the development and test data. The
Final Text Edition corpus follows common ortho-
graphic rules (for instance, the first letter of the word
following a full stop or a column is capitalized) and
represents most of the dates, quantities, article refer-
ences and other numbers in digits. Thus the text had
to be “true-cased” and all numbers were verbalized
using in-house language-specific tools. Numbers are
not tagged as such at this stage; this is entirely left
to the POS tagger.

3.2 Translation model training corpus

Long sentences (more than 40 words) greatly slow
down the training process, especially at the align-
ment step with Giza++. As shown in Figure 2, the
histogram of the length of Spanish sentences in the
training corpus decreases steadily after a length of
20 to 25 words, and English sentences exhibit a sim-
ilar behavior. Suppressing long sentences from the
corpus reduces the number of aligned sentences by
roughly 25% (see Table 1) but speeds the whole
training procedure by a factor of 3. The impact on
performance is discussed in the next section.
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Histogram of Spanish sentences’ lengths (training set)

Figure 2: Histogram of the sentence length (Spanish
part of the parallel corpus).

3.3 Language model training corpus

In the experiments reported below, a trigram word
language model is used during decoding. This
model is trained on the Spanish part of the parallel
corpus using only sentences shorter than 40 words
(total of 18.5M of language model training data).
Second pass language models were trained on all
available monolingual data (34.1M words).

3.4 Tools

POS tagging was performed with theTreeTagger
(Schmid, 1994). This software provides resources
for both of the considered languages and it is freely
available. TreeTaggeris a Markovian tagger that
uses decision trees to estimate trigram transition
probabilities. The English version is trained on the
PENN treebankcorpus3 and the Spanish version on
theCRATERcorpus.4

Language models are built using the SRI-LM
toolkit (Stolcke, 2002). Modified Knesser-Ney dis-
counting was used for all models. In (Goodman,
2001), a systematic description and comparison of
the usual smoothing methods is reported.Modified
Knesser-Neydiscounting appears to be the most ef-
ficient method.

4 Experiments and Results

Two baseline English-to-Spanish translation mod-
els were created with Moses. The first model was
trained on the whole parallel text – note that sen-
tences with more than 100 words are excluded by
Giza++. The second model was trained on the cor-
pus using only sentences with at most 40 words. The
BLEU score on the development set using good gen-
eral purpose weights is 48.0 for the first model and
47.0 for the second. Because training on the whole
bi-text is much slower, we decided to perform our
experiments on the bi-texts restricted to the “short”
sentences.

4.1 Language model generation

The reranking experiments presented below use the
following language models trained on the Spanish
part of the whole training corpus:

• word language models,

• POS language model,

• POS language model, with a stop list used to
remove the 100 most frequent words (POS-
stop100 LM),

• language model of enriched units.

3http://www.cis.upenn.edu/ treebank
4http://www.comp.lancs.ac.uk/linguistics/crater/corpus.html
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English : you will be aware President that over the last few sessions in Strasbourg. ..

Baseline: usted sabe que el Presidentedurante losúltimos sesionesen Estrasburgo ...

Enriched units: usted sabe que el Presidenteen losúltimos peŕıodos de sesionesen Estrasburgo ...

English : ... in this house there might be some recognition ...

Baseline: ... en esta asambleano puede ser un cierto reconocimiento...

Enriched units: ... en esta asambleaexiste un cierto reconocimiento...

Figure 3: Comparative translations using the baseline word system and the enriched unit system.

For each of these four models, various orders
were tested (n = 3, 4, 5), but in this paper we only
report those orders that yielded the greatest improve-
ments. POS language models were obtained by first
extracting POS sequences from the previously POS-
tagged training corpus and then by estimating stan-
dard back-off language models.

As shown in Table 1, the vocabulary size of the
word language model is 104k for Spanish and 74k
for English. The number of POS is small: 69 for
Spanish and 59 for English. We emphasize that
the tagset provided byTreeTaggerdoes include nei-
ther gender nor number distinction. The vocabulary
size of the enriched-unit language model is 115k for
Spanish and 77.6k for English. The syntactical am-
biguity of words is low: the mean ambiguity ratio is
1.14 for Spanish and 1.12 for English.

4.2 Reranking the wordn-best lists

The results concerning reranking experiments of the
n-best lists provided by the translation model based
on words as unitsare summarized in Table 2. The
baseline result, with trigram word LM reranking,
gives a BLEU score of 47.0 (1rst row). From the
n-best lists provided by this translation model, we
compared reranking performances with different tar-
get language models. As observed in the literature,
an improvement can be obtained by reranking with
a 4-gram word language model (47.0→ 47.5, 2d
row). By post-tagging thisn-best list, a POS lan-
guage model reranking can be performed. However,
reranking with a 5-gram POS language model alone
does not give any improvement from the baseline
(BLEU score of 46.9, 3rd row). This result corre-
sponds to known work in the literature (Kirchhoff
and Yang, 2005; Hasan et al., 2006), when using
POS only as a post-processing step during rerank-
ing. As suggested in section 2.3, this lack of per-

formance can be due to the fact that the tagger is
not able to provide a usefull tagging of sentences
included in then-best lists. This observation is
also available when reranking of the wordn-best is
done with a language model based on enriched units
(BLEU score of 47.6, not reported in Table 2).

4.3 POS disambiguation and reranking

The results concerning reranking experiments of the
n-best lists provided by the translation model based
on enriched unitsare summarized in Table 3. Us-
ing a trigram language model of enriched transla-
tion units leads to a BLEU score of 47.4, a 0.4 in-
crease over the baseline presented in section 4.2.
Figure 3 shows comparative translation examples
from the baseline and the enriched translation sys-
tems. In the first example, the baseline system out-
puts “durante losúltimos sesiones” where the en-
riched translation system produces “en losúltimos
peŕıodos de sesiones”, a better translation that may
be attributed to the introduction of the masculine
word “peŕıodos”, allowing the system to build a
syntactically correct sentence. In the second exam-
ple, the syntactical error “no puede ser un cierto re-
conocimiento” produced by the baseline system in-
duces an incorrect meaning of the sentence, whereas
the enriched translation system hypothesis “existe un
cierto reconocimiento” is both syntactically and se-
mantically correct.

Reranking the enrichedn-best with POS language
models (either with or without a stop list) does not
seem to be efficient (0.3 BLEU increasing with the
POS-stop100 language model).

A better improvement is obtained when reranking
is performed with the 4-gram word language model.
This results in a BLEU score of 47.9, correspond-
ing to a 0.9 improvement over the word baseline. It
is interesting to observe that reranking an-best list
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Dev. Test
3g word LM baseline 47.0 46.0
4g word LM reranking 47.5 46.5
5g POS reranking 46.9 46.1

Table 2: BLEU scores using words as translation
units.

obtained with a translation model based on enriched
units with a word LM results in better performances
than a enriched units LM reranking of an-best list
obtained with a translation model based on words.

The last two rows of Table 3 give results when
combining word and POS language models to rerank
the enrichedn-best lists. In both cases, 10 features
are used for reranking (8 Moses features + word
language model probability + POS language model
probability). The best result is obtained by com-
bining the 5-gram word language model with the 5-
gram POS-stop100 language model. In that case,
the best BLEU score is observed (48.1), with a 2.3%
relative increase over the trigram word baseline.

4.4 Results on the test set

The results on the test set are given in the second
column of Tables 2 and 3. Although the enriched
translation system is only 0.1 BLEU over the base-
line system (46.0→ 46.1) when using a trigram lan-
guage model, the best condition observed on the de-
velopment set (word and POS-stop100 LMs rerank-
ing) results in a 46.8 BLEU score, corresponding to
a 0.8 increasing.

It can be observed that rescoring with a 4-gram
word language model leads to same score resulting
in a 1.9% relative increase over the trigram word
baseline.

5 Conclusion and future work

Combining word language model reranking ofn-
best lists based on syntactically enriched units seems
to produce more consistent hypotheses. Using en-
riched translation units results in a relative 2.3%
improvement in BLEU on the development set and
1.9% on the test over the trigram baseline. Over a
standard translation model with 4-gram rescoring,
the enriched unit translation model leads to an abso-
lute increase in BLEU score of 0.4 both on the devel-
opment and the test sets. These first results are en-

Dev. Test
3g enriched units LM baseline 47.4 46.1
4g enriched units LM reranking 47.8 46.8
4g word LM reranking 47.9 46.9
5g POS LM reranking 47.5 46.2
5g POS-stop100 LM reranking 47.7 46.3
word + POS LMs reranking 47.9 46.9
word + POS-stop100 LMs rerank. 48.1 46.8

Table 3: BLEU scores using enriched translation
units.

couraging enough to further investigate the integra-
tion of syntactic information in the translation model
itself, rather than to restrict it to the post-processing
pass. As follow-up experiments, it is planned to in-
clude gender and number information in the tagset,
as well as the word stems to the enriched units.

This work should be considered as preliminary
experiments for the investigation of factored trans-
lation models, which Moses is able to handle. POS
factorization is indeed a way to add some general-
ization capability to the enriched translation models.
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Abstract 

This paper seeks to complement the cur-
rent trend of adding more structure to Sta-
tistical Machine Translation systems, by 
exploring the opposite direction: adding 
statistical components to a Transfer-Based 
MT system. Initial results on the BTEC 
data show significant improvement ac-
cording to three automatic evaluation 
metrics (BLEU, NIST and METEOR). 

1 Introduction 

In recent years the machine translation research 
community has seen a remarkable paradigm shift.  
It is not the first one, but it has been a very dra-
matic one: statistical machine translation has taken 
the center stage. Conferences like ACL or HLT are 
virtually flooded with papers on various flavors of 
SMT.  In international machine translation evalua-
tion like NIST (NIST MT Evaluation), TC-Star 
(TC-STAR Evaluation) or IWSLT (IWSLT 2006) 
evaluations, most participating systems are SMT 
systems, with a few Example-Based systems sprin-
kled in. Rule-Based systems seem to have for the 
most part disappeared. There may be many reasons 
for this paradigm shift. One obvious reason is the 
comparable ease, which with data-driven systems 
can be built once some parallel data is available. 
Another reason is that the performance of statisti-
cal translation systems has dramatically improved 
over the last 5 to 10 years. 

Does this mean that work on grammar-based 
systems should be stopped?  Should all the insight 
into the structure of languages be neglected?  This 
might be too drastic a reaction. Actually, now that 
SMT has reached some maturity, we see several 

attempts to integrate more structure into these sys-
tems, ranging from simple hierarchical alignment 
models (Wu 1997, Chiang 2005) to syntax-based 
statistical systems (Yamada and Knight 2001, 
Zollmann and Venugopal 2006). What can tradi-
tional Rule-Based translation systems learn from 
these approaches? And would it not make sense to 
work from both sides towards that common goal:  
structurally rich statistical translation models.  In 
this paper we study some enhancements for a 
Transfer-Based translation system, using tech-
niques and even components developed for statisti-
cal machine translation.  While the core engine 
remains virtually untouched, additional features are 
added to re-score the n-best list generated by the 
transfer engine. Statistical alignment techniques 
are used to lower the burden in building a lexicon 
for a new domain. Minimum error rate training is 
used to optimize the system. We show that this 
leads to significant improvements in performance. 

2 A Transfer-Based Translation System 

2.1 The Lexicon and Grammar 

In our Rule-Based MT (RBMT) system, translation 
rules include parsing, transfer, and generation in-
formation, similar to the modified transfer ap-
proach used in the early Metal system (Hutchins 
and Somers, 1992).  

The initial lexicon (479 entries) and grammar 
(40 rules) used in our experiments were manually 
written to cover the syntactic structures and the 
vocabulary of the first 400 sentences of the 
AVENUE Elicitation Corpus (Probst et al 2001). 
The Elicitation Corpus contains sets of minimal 
pairs in English and it was designed to cover a va-
riety of linguistic phenomena. Building these two 
language-dependent components took a computa-
tional linguist 2-3 months. Figures 1 and 2 show 

72



examples of a translation rules in the grammar and 
the lexicon. 

 
{S,4} 
S::S : [NP VP] -> [NP VP] 
( (X1::Y1)  (X2::Y2) 
  (x0 = x2) 
  ((y2 subj) = -) 
  ((y1 case) = nom) 
  ((y1 agr) = (x1 agr)) 
  ((y2 tense) = (x2 tense)) 
  ((y2 agr pers) = (y1 agr pers)) 
  ((y2 agr num) = (y1 agr num)) ) 
 

Figure 1: English Spanish translation rule with 
agreement constraints for subject (NP) and verb 
(VP). 
 

V::V |: ["prefer"] -> ["prefiero"] 
((X1::Y1) 
((x0 form) = prefer) 
((x0 tense) = pres) 
((y0 agr pers) = 1) 
((y0 agr num) = sg)) 
 

Figure 2: English Spanish lexical entry for the 
verb “prefer”. 

2.2 Refined MT System 

The original grammar and lexicon were automati-
cally improved with an Automatic Rule Refiner, 
guided by a few bilingual speaker corrections 
(Font Llitjós & Ridmann 2007). In this approach, 
automatic refinements only affect the target lan-
guage side of translation rules, namely transfer and 
generation information. 

The refined MT system used in our experiments 
is the result of adding 30 agreement constraints to 
the grammar rules, which makes the grammar 
tighter (leading to an increase in precision), as well 
as adding three new rules to cover new syntactic 
structures and five lexical entries for new senses 
and forms of existing words (leading to an increase 
in recall). 

2.3 The Transfer Engine 

The Transfer Engine, or Xfer engine for short, 
combines the translation grammar and lexicon in 
order to produce translations of a source language 
sentence into a target language. The Xfer engine 
incorporates the three main processes involved in 
Transfer-based MT: parsing of the source language 
input, transfer of the parsed constituents of the 
source sentence to their corresponding structured 
constituents on the target language side, and gen-
eration of the target sentence. 

The currently implemented algorithm is similar 
to bottom-up chart parsing as described for exam-
ple in Allen (1995). A chart is first populated with 
all constituent structures that were created in the 
course of parsing the source language sentence 
with the source-side portion of the transfer gram-
mar. Transfer and generation are applied to each 
constituent entry. The transfer rules associated 
with each entry in the chart are used in order to 
determine the corresponding constituent structure 
on the target language side. At the word level, lexi-
cal transfer rules are used in order to get the differ-
ent lexical choices. 

Often, no parse for the entire source sentence 
can be found. Partial parses are concatenated se-
quentially to generate complete translations. 

In the current version of the Xfer system, the 
output can be a first-best translation or a n-best list, 
which can be used for additional n-best list rescor-
ing. The alternatives arise from lexical ambiguity 
and multiple synonymous choices for lexical items 
in the dictionary, but also from syntactic ambiguity 
and multiple competing hypotheses from the 
grammar. 

For our experiments, we used version 3 of the 
Xfer engine. An older version of the Xfer engine is 
described in detail in Peterson (2002).  

2.4 Ranking Translations 

The Xfer engine can generate multiple translations.  
This requires a quality score to be assigned to all 
the alternatives. Based on these scores, the 1-best 
translation will be selected by the system. 

Fragmentation Penalty 

In the original Xfer system the only score used to 
rank translation alternatives was a heuristic frag-
mentation penalty. The fragmentation penalty is 
essentially the number of different chunks (rules or 
lexical entries not embedded in another rule) that 
span the whole translation. The intuition behind 
this score is that the more partial parses are neces-
sary to span the entire sentence the less likely the 
resulting translation will be a good one. 

N-gram LM 

The fragmentation feature is rather weak. It does 
not distinguish between words which are more 
likely to be seen in the target language and words 
which are less likely to be used.  To generate sen-
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tences which are not only grammatically correct, 
but also use words and word sequences that are 
more natural and more common, data-driven ma-
chine translation systems use a n-gram language 
model.  To get the same benefit in the Xfer system, 
an n-gram LM has been integrated with the engine.   

This has the advantage that in the case of prun-
ing, the LM score can be used to avoid pruning 
good hypotheses, in addition to re re-rank the final 
translations. 

For our experiments, a suffix array language 
model based on the SALM toolkit (Zhang & Vo-
gel, 2006) is used. 

Length Model 

To adjust for the length of the translations gener-
ated by the system, the difference between the 
number of words generated and the expected num-
ber of words is added as a very simple feature. The 
expected length is calculated by multiplying the 
source sentence length by the ratio of the number 
of target and source words in the training corpus. 
The effect of this feature is to balance globally the 
length of the translations. 

2.5 Pruning 

To deal with the combinatorial explosion during 
the parsing/translation process, pruning has to be 
applied. Only the n top-ranking hypotheses are 
kept in each cell of the chart. The ranking of these 
partial translations is based on their language 
model score, which at this time is only an ap-
proximation, as the true history has not been seen 
and cannot be taken into account. 

3 Building a Xfer System for a New Do-
main 

A major bottleneck in developing a RBMT system 
for a new translation task (a new language pair or a 
new domain) is writing the grammar and building 
the lexicon. Automatic grammar induction using 
statistical alignments has been studied in (Probst 
2005).   

Here, we start with an existing grammar and 
augment the baseline lexicon with entries to cover 
the new domain. We explore semi-automatic lexi-
con generation for fast adaptation to the travel do-
main (Section 3.2). 

3.1 Test Data: BTEC Corpus 

For initial evaluation on unseen data, we selected 
the Basic Travel Expression Corpus (BTEC) 
(Takezawa et al. 2002), which has been used in the 
evaluation campaigns in connection with the Inter-
national Workshop on Spoken Language Transla-
tion (IWSLT 2006). Besides still being currently 
used to build real systems (Shimizu et al. 2006; 
Nakamura, et al. 2006), this corpus contains rela-
tively simple sentences that are comparable to the 
ones initially corrected by users, and which are 
covered by the baseline manual grammar. 

As our test set, we used 506 English sentences 
for which two sets of Spanish reference transla-
tions were available. Table 1 shows corpus statis-
tics for the BTEC data. 

 

Data  English 
Sentences Pairs 123,416 
Sentence Length   7.3 
Word Tokens  903,525 

 
Train 

Word Types  12,578 
Sentence Pairs 506 
Word Tokens 3,764 
Word Types 776 

 
 

BTEC 
 
 
 
 

 
Test  

Coverage Test 756 (97%) 

Table 1: Corpus Statistics for the BTEC corpus 

3.2 Semi-Automatic Generation of the 
Transfer Lexicon 

The Transfer-Based system relies on a lexicon that 
contains POS, gender and number agreement, 
among other linguistic features. To adjust the sys-
tem quickly to a new task, we decided to leverage 
from statistical alignment models to generate word 
and phrase alignments as candidates for the trans-
fer lexicon. 

In the first step, we trained statistical lexicons 
using the well-known IBM1 word alignment 
model: one for the directions Spanish to English, 
and one for the direction English to Spanish. As 
multi-word entries, are often needed ([valuables] 

 [objetos de valor], [reception desk] [recep-
ción], [air conditioner] [aire acondicionado]), we 
used phrase alignment techniques to create transla-
tion candidates for words and 2-word phrases. The 
phrase alignment also generates multi-word trans-
lations for single source words. With reasonably 
tight pruning, a manageable phrase translation ta-
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ble was generated. This first step took about 5 
hours. 

The next step, manually cleaning the translation 
table, annotating them with parts-of-speech, and 
with agreement and tense constraints, was initially 
restricted to those items that overlapped with the 
vocabulary of our development test set, and took 
two days. 

The statistically generated lexicon comprises 
1,248 lexical entries, whereas the initial manual 
lexicon contained 479 lexical entries. For our 
BTEC experiments, we combined both lexicons. 

3.3 Xfer Results with No Ranking 

To determine how the Xfer system would perform 
only on the basis of the lexicon and grammar, we 
ran one translation experiment in which no lan-
guage model was used. This experiment was also 
intended to see if the refined grammar would lead 
to better translations. We took the first-best transla-
tion output by the system without using any statis-
tical components to rank alternative translations. 
 

System METEOR BLEU NIST
Baseline 0.5666 0.2745 5.88 
Refined 0.5676 0.2559 5.62 

Table 2: Automatic metric scores for a purely 
Rule-Based MT System. 
 

Table 2 shows that, in this crude setting, differ-
ent automatic metrics do not agree on the transla-
tion accuracy of both systems. On one hand, 
METEOR (Lavie et al. 2004), which has been 
shown to correlate well with human judgments 
(Snover et al. 2006), indicates that the refined sys-
tem outperforms the baseline system (as measured 
by the latest version v0.5.1,).  On the other hand, 
both BLEU (Papineni et al., 2002) and NIST 
(Doddington 2002) scores are higher for the base-
line system (mteval-v11b.pl).  

However, human inspection revealed that the re-
fined grammar is able to augment the n-best list 
with correct translations that the baseline system 
was not able to generate. This suggests that these 
results reflect poor re-ranking and not n-best list 
quality. In the next section, we describe an oracle 
experiment to measure n-best list quality of both 
systems.  

3.4 Oracle Experiment 

Oracle scores provide an upper-bound in perform-
ance. For the BTEC test set, we approximated a 
human oracle by calculating automatic metric 
scores for METEOR and for BLEU and NIST. 

Given 100-best lists for each source language 
sentence, we selected the best translation hypothe-
sis for each automatic metric separately. 

These scores reflect the fact that automatic re-
finements are able to feed the n-best list with better 
translations, as evulated by comparison against 
human reference translations. Even with a small set 
of independent user corrections, the refined system 
shows potential improved translation quality as 
indicated by higher scores for all three automatic 
evaluation metrics in Table 3. 

 

System METEOR BLEU NIST
Baseline 0.6863 0.4068 7.42 
Refined 0.6954 0.4215 7.51 

Table 3: Automatic metric oracle scores based on a 
100-best list 

 

Moreover, oracle scores provide the margin that 
we can gain when improving on the re-ranking of 
the n-best list produced by the Xfer engine. 

3.5 Xfer Results with Initial Ranking 

As expected, when the Xfer system is run in com-
bination with a LM1 as well as the fragmentation 
penalty, automatic metric scores for the 1-best hy-
pothesis are significantly higher (Table 4), than 
when just using the first translation output by the 
Xfer system alone (Table 2). 

 

System METEOR BLEU NIST
Baseline 0.6176 0.3425 6.53 
Refined 0.6222 0.3513 6.56 

Table 4: Automatic metric scores for 1-best de-
coder hypothesis. 

 

These results are lower than the oracle scores for 
both the baseline and the refined system (Table 3), 
which is also to be expected. However, the impor-
tant thing to notice from these results is that, like in 
the oracle case, the refined system consistently 
outperforms the baseline MT system for all three 
automatic metrics. 

                                                      
1 The Suffix Array Language Model (SALM) was built using 
the 123,416 Spanish sentences from the training data. 
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The difference between the baseline and the re-
fined system in terms of 1-best scores is slightly 
smaller than the difference between oracle scores, 
which means that the decoder can not fully lever-
age the improvements made in the grammar. This 
indicates that the decoder fails to select the best 
translation in most cases. 

4 Adding Statistical Components to a Re-
Ranker 

The information used in the Xfer system to rank 
alternative translations is limited.  Essentially, it is 
the n-gram LM, which is the most important com-
ponent, a simple sentence length model, and the 
fragmentation score, which measures if a com-
pletely spanning parse could be found or if the 
translation is glued together from partial parses. 
Given an n-best list of translations for each source 
sentence, we can apply additional models to re-
rank these n-best list, hopefully pushing more good 
translations into the first rank. We studied the ef-
fect of adding different features to the n-best lists: 
lexical features and rule (type) probability features. 

4.1 Word-To-Word Probabilities 

In SMT systems, rescoring with an IBM1 model-
like word alignment score has become a standard 
feature. We use two word-to-word lexicons (Eng-
lish Spanish and Spanish English) to calculate 
sentence translation probabilities, based on word-
to-word probabilities: 

∏∑= )|(1)|( jiI sep
J

seP       Eq.1 

and: 

∏∑= )|(1)|( ijJ esp
I

esP       Eq.2 

 
Here, we denote the English words with e, the 

Spanish words with s, the sentence lengths are 
given by I and J.  In the IBM1 alignment model, 
the position alignment is a uniform distribution p( i 
| j ) = 1/I for Spanish to English and p( j | i ) = 1/J 
for English to Spanish.  For Spanish to English, we 
have the additional factor of (1/I)J, i.e. longer 
translations get a smaller probability, and for En-
Sp we have (1/J)I, which again gives a bias to-
wards shorter translations.  To compensate for this 
bias, we use probabilities normalized to the sen-
tence length. Table 5 shows that adding the lexical 

probabilities improves the 1-best translation score.  
However, there is no significant difference when 
using different normalization of the lexicon prob-
abilities. The length bias introduced by different 
lexicon features can be balanced by the decoder’s 
length feature. 

 

 BLEU NIST 
Refined 0.3513 6.56 

+Lex Prob 0.3755 6.88 

Table 5: Comparing 1-best scores with scores 
result of rescoring the n-best list with lexical fea-
tures. 

4.2 Rule Probabilities 

The Xfer MT system can display the derivation 
tree showing the rules applied during translation. 
This allows rescoring the translations with rule 
probabilities. However, there is no annotated cor-
pus from which the rule probabilities could be es-
timated. As an approximation to such a training 
corpus, we decided to run the Xfer system over the 
training data and to generate n-best lists with trans-
lations and translation trees. Overall, about 6 mil-
lion parse trees were generated.  Using this data to 
estimate rule probabilities is definitely not ideal, as 
the translation on the training data are far from per-
fect, especially as not all the vocabulary has so far 
been added to the Xfer lexicon.  By averaging over 
all n-best translations a reasonable smoothing is to 
be expected. 

We used this information in three ways.  We es-
timated conditional probabilities rule r given rule-
type R, i.e. the distribution over different VP rules 
or NP rules. For each derivation D the overall 
probability was then calculated as: 

∏= )|()( RrpDP                             Eq. 3 
As an alternative, we just build n-gram language 

models, one on the rule level and on the rule type 
level: 

∏ −−= )...|()( 1rrrpDP n                      Eq. 4 

∏ −−= )...|()( 1RRRpDP n                   Eq. 5 
 

Overall, 1,685 different rules and 19 rule types 
were seen in the training data. For models 2 and 3, 
we used the suffix array LM once again to allow 
for arbitrary long histories. Even though it often 
backs-off to 3-gram, 2-gram or even unigram prob-
abilities. 
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In Table 6, we can see the effect of adding these 
LMs as additional features to the system and run-
ning MER training. 
 

 BLEU NIST
Refined 0.3513 6.56 
Lex. Prob. 0.3755 6.88 
Cond. Prob. 0.3728 6.81 
Rule LM 0.3717 6.74 
Rule Type LM 0.3736 6.78 

Table 6: BLEU scores when rescoring the n-
best list with different rule probability features (as 
well as the n-gram LM). 

5 MER Training 

Like in SMT systems, in the Xfer engine transla-
tions are ranked to their total cost, which is a 
weighted linear combination of the individual 
costs. When adding more features to the translation 
system, a careful balancing of the individual con-
tributions can make a significant difference. How-
ever, with each feature added, manually tuning the 
system becomes less and less practical, and auto-
matic optimization becomes necessary. 

Different optimization techniques are available, 
like the Simplex algorithm or the special Minimum 
Error Training as described in (Och 2003). In 
Minimum Error Rate (MER) training, the n-best 
list generated by the translation system is used to 
find feature weight, thereby re-ranking the n-best 
list. This improves the match between the 1-best 

translation and given reference translations. Opti-
mization can use any metric as objective function.  
Typically, systems are tuned towards high BLEU 
or high NIST scores, more recently also towards 
METEOR or TER (Snover et al. 2006). 

We used a MER training module (Venugopal), 
originally developed for an SMT system, to run 
MER training on the n-best lists generated by the 
Xfer system. This implementation allows for opti-
mization towards BLEU and NIST mteval metrics. 

5.1 Results 

In Table 7, we summarize some of the results from 
different n-best list rescoring experiments.  Using 
only the Xfer engine, without language model, 
gives a very low score, as the selection is based 
only on the fragmentation score. 

Adding the n-gram language model gives a huge 
improvement. Adding additional features leads to 
more then 2 BLEU points improvement. However, 
there is not much difference when using different 
feature combinations. It seems that the rather small 
size of the n-best list is a limiting factor.  

When setting the optimal weights in the Xfer 
engine for the LM and fragmentation penalty 
scores obtained from MER training, both the base-
line and the refined system get higher scores, not 
only according to BLEU, which was used as the 
objective function, but also according to METEOR 
and NIST automatic evaluation metrics (Table 8). 

 
 System + Statistical Components 1-best 

Rule Based Xfer 0.2559 
+ Stat. Comp. Xfer + LM + Frag 0.3513 

POS LM 0.3180 
Rule Probabilities (Prob.) 0.2593 
LM + Rule Type LM 0.3736 
LM + Frag/Len + Rule Type LM 0.3737 
LM + POS + Rule LM 0.3744 
LM + Frag + Rule Type LM + Cond. Rule Prob. 0.3743 
LM + Len + Rule Type LM + Cond. Rule Prob. 0.3745 
LM + POS + Rule LM + Cond. Rule Prob. 0.3741 
LM + Frag + Len + Rule Type LM + Rule Prob. 0.3746 

 
 
 

Optimizing 
weights 

with 
MER training 

LM + Frag + Len + POS + Rule LM + Rule Prob. 0.3741 

Table 7:  BLEU scores for the Refined MT System as the weights for the different statistical components 
described in Section 2.4 and 4 are optimized with MER Training. 
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Moreover, the difference between the Baseline 
and the Refined system after MER training is sta-
tistically significant2, whereas this was not the case 
for the initial ranking results (Table 4). 

 

 

 

Table 8: Automatic metric scores for 1-best de-
coder hypothesis, after LM and Fragmentation 
weights have been optimized. 

 
Table 9 shows a few examples from the BTEC cor-
pus with 1-best translations output by the Refined 
MT system before (No Optimization) and after 
(With Optimization) MER training, given LM and 
Fragmentation penalty scores. From these exam-
ples, it can be observed that re-ranking improves 
after optimizing the LM and fragmentation 
weights. In particular, order issues get resolved 
(examples 1, 2 and 4), which result in correct de-
terminer agreement (1 and 2); determiner insertion 
(3); correct verb form (5 and 7) and omission of 
incorrect pronouns (6 and 7).   

6 Conclusion 

Starting from a Transfer-Based translation system, 
we explored techniques currently used in statistical 
translation systems to rapidly adapt to a new do-
main and to improve its performance.  Using word 
and phrase alignment techniques allowed us to 
quickly augment the transfer lexicon. Adding a 
statistical language model is crucial in selecting 
good translations from the n-best lists generated by 
the Xfer engine. Adding additional features, such 
as word-to-word probabilities and rule (type) prob-
abilities, further improves performance. 

While this information would ideally be used in 
the parsing and transfer steps of the translation sys-
tem, our initial experiments were targeted at using 
this in an n-best list rescoring setup. As rule prob-
abilities were estimated from noisy training data, 
these models are far from optimal.   

To facilitate the experiments with the Xfer sys-
tem, especially when adding more and more fea-
tures, we added a Minimum Error Rate training 

                                                      
2 According to the standard paired two-tailed t-Test, the de-
coder METEOR scores with optimized weights are statisti-
cally significant, with a p value of 0.0051. 

component. Having such a component will defi-
nitely boost the development of the Xfer engine. 

We see statistically significant improvements 
over the baseline system when using optimized 
weights for the word-level language model and the 
fragmentation score.  

System METEOR BLEU NIST
Baseline 0.6184 0.3609 6.68 
Refined 0.6231 0.3780  6.79  

1 Source: where is the boarding gate ?   
   NO: dónde está el embarque puerta ? 
   WO: dónde está la puerta embarque ? 
2 Src: where is the bus stop for city hall ? 
  NO: dónde está el autobús parada para ayuntamiento ? 
  WO: dónde está la parada autobús para ayuntamiento ? 
3 Src: i would like a twin room with a bath please . 
   NO: me gustaría habitación una cama doble con un 
           baño por favor . 
   WO: me gustaría una habitación cama doble con un 
            baño por favor . 
4 Src:  i would like to buy some duty-free items . 
  NO: me gustaría  comprar algunos duty-free productos. 
  WO: me gustaría  comprar algunos artículos duty-free . 
5 Src: does he speak japanese ? 
   NO: él hablar a japonés ? 
   WO: habla japonés ? 
6 Src: it is just round the corner . 
   NO: lo es simplemente a la vuelta de la esquina . 
   WO: es simplemente a la vuelta de la esquina . 
7  Src: do you sell duty-free items ?   
    NO: te venden artículos duty-free ? 
    WO: vendéis artículos duty-free ? 
Table 9: 1-best translations from the BTEC test set 
output by the Refined MT system before and after 
MER training. NO stands for No Optimization of 
LM and Fragmentation weights, and WO stands 
for With Optimization of weights. 

7 Future Work 

Using rule probabilities has shown to be a promis-
ing extension to the current Xfer system.  We plan 
to improve these models by selecting the oracle 
best translations from the n-best list generated on 
the training data. This will reduce the noise in the 
training stage. Ultimately, the rule probabilities 
should be applied not as an n-best list rescoring 
step, but directly in the Xfer engine decoder. 

Analyzing the translation results, one important 
shortcoming became obvious. Currently the trans-
lation lexicon only covers about 88% of the words 
that appear in the reference translations. This se-
verely limits as to what kind of BLEU score we 
can achieve. When we generated the phrasal lexi-
con from the BTEC training data, we deliberately 
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chose to only include few alternatives, mainly to 
limit the manual labor when adding POS and con-
straint. We expect that the Xfer system will sig-
nificantly benefit from further expanding the 
lexicon. 
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Abstract 

We present a novel method for evaluating 

the output of Machine Translation (MT), 

based on comparing the dependency 

structures of the translation and reference 

rather than their surface string forms. Our 

method uses a treebank-based, wide-

coverage, probabilistic Lexical-Functional 

Grammar (LFG) parser to produce a set of 

structural dependencies for each 

translation-reference sentence pair, and 

then calculates the precision and recall for 

these dependencies. Our dependency-

based evaluation, in contrast to most 

popular string-based evaluation metrics, 

will not unfairly penalize perfectly valid 

syntactic variations in the translation. In 

addition to allowing for legitimate 

syntactic differences, we use paraphrases 

in the evaluation process to account for 

lexical variation. In comparison with 

other metrics on 16,800 sentences of 

Chinese-English newswire text, our 

method reaches high correlation with 

human scores. An experiment with two 

translations of 4,000 sentences from 

Spanish-English Europarl shows that, in 

contrast to most other metrics, our method 

does not display a high bias towards 

statistical models of translation. 

1 Introduction 

Since their appearance, string-based evaluation 

metrics such as BLEU (Papineni et al., 2002) and 

NIST (Doddington, 2002) have been the standard 

tools used for evaluating MT quality. Both score a 

candidate translation on the basis of the number of 

n-grams shared with one or more reference 

translations. Automatic measures are indispensable 

in the development of MT systems, because they 

allow MT developers to conduct frequent, cost-

effective, and fast evaluations of their evolving 

models.  

These advantages come at a price, though: an 

automatic comparison of n-grams measures only 

the string similarity of the candidate translation to 

one or more reference strings, and will penalize 

any divergence from them. In effect, a candidate 

translation expressing the source meaning 

accurately and fluently will be given a low score if 

the lexical and syntactic choices it contains, even 

though perfectly legitimate, are not present in at 

least one of the references. Necessarily, this score 

would differ from a much more favourable human 

judgement that such a translation would receive. 

The limitations of string comparison are the 

reason why it is advisable to provide multiple 

references for a candidate translation in BLEU- or 

NIST-based evaluations. While Zhang and Vogel 

(2004) argue that increasing the size of the test set 

gives even more reliable system scores than 

multiple references, this still does not solve the 

inadequacy of BLEU and NIST for sentence-level 

or small set evaluation. In addition, in practice 

even a number of references do not capture the 

whole potential variability of the translation. 

Moreover, when designing a statistical MT system, 

the need for large amounts of training data limits 

the researcher to collections of parallel corpora 

such as Europarl (Koehn, 2005), which provides 

only one reference, namely the target text; and the 

cost of creating additional reference translations of 

the test set, usually a few thousand sentences long, 

is often prohibitive. Therefore, it would be 

desirable to find an evaluation method that accepts 

legitimate syntactic and lexical differences 
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between the translation and the reference, thus 

better mirroring human assessment. 

In this paper, we present a novel method that 

automatically evaluates the quality of translation 

based on the dependency structure of the sentence, 

rather than its surface form. Dependencies abstract 

away from the particulars of the surface string (and 

CFG tree) realization and provide a “normalized” 

representation of (some) syntactic variants of a 

given sentence. The translation and reference files 

are analyzed by a treebank-based, probabilistic 

Lexical-Functional Grammar (LFG) parser (Cahill 

et al., 2004), which produces a set of dependency 

triples for each input. The translation set is 

compared to the reference set, and the number of 

matches is calculated, giving the precision, recall, 

and f-score for that particular translation.   

In addition, to allow for the possibility of valid 

lexical differences between the translation and the 

references, we follow Kauchak and Barzilay 

(2006) and Owczarzak et al. (2006) in adding a 

number of paraphrases in the process of evaluation 

to raise the number of matches between the 

translation and the reference, leading to a higher 

score. 

Comparing the LFG-based evaluation method 

with other popular metrics: BLEU, NIST, General 

Text Matcher (GTM) (Turian et al., 2003), 

Translation Error Rate (TER) (Snover et al., 

2006)
1
, and METEOR (Banerjee and Lavie, 2005), 

we show that combining dependency 

representations with paraphrases leads to a more 

accurate evaluation that correlates better with 

human judgment. 

The remainder of this paper is organized as 

follows: Section 2 gives a basic introduction to 

LFG; Section 3 describes related work; Section 4 

describes our method and gives results of two 

experiments on different sets of data: 4,000 

sentences from Spanish-English Europarl and 

16,800 sentences of Chinese-English newswire text 

from the Linguistic Data Consortium’s (LDC) 

Multiple Translation project; Section 5 discusses 

ongoing work; Section 6 concludes. 

                                                 
1
 As we focus on purely automatic metrics, we omit 

HTER (Human-Targeted Translation Error Rate) here. 

2 Lexical-Functional Grammar 

In Lexical-Functional Grammar (Bresnan, 2001) 

sentence structure is represented in terms of 

c(onstituent)-structure and f(unctional)-structure. 

C-structure represents the surface string word order 

and the hierarchical organisation of phrases in 

terms of CFG trees. F-structures are recursive 

feature (or attribute-value) structures, representing 

abstract grammatical relations, such as subj(ect), 

obj(ect), obl(ique), adj(unct), approximating to 

predicate-argument structure or simple logical 

forms. C-structure and f-structure are related in 

terms of functional annotations (attribute-value 

structure equations) in c-structure trees, describing 

f-structures.  

While c-structure is sensitive to surface word 

order, f-structure is not. The sentences John 

resigned yesterday and Yesterday, John resigned 

will receive different tree representations, but 

identical f-structures, shown in (1). 

 

(1) C-structure:                         F-structure: 

 
              S 
                  
      
 NP                      VP 
   |                     
John       

              V               NP-TMP 
               |                      | 
       resigned       yesterday 

                         

SUBJ        PRED   john 
                 NUM    sg 
                 PERS   3 
PRED       resign 
TENSE     past 
ADJ      {[PRED   yesterday]} 

 

 

                     S 
                  
      
    NP       NP       VP 
      |                 |            | 
Yesterday  John        V              
                                    | 
                            resigned                             

SUBJ        PRED   john 
                 NUM    sg 
                 PERS   3 
PRED       resign 
TENSE     past 
ADJ      {[PRED   yesterday]} 
 

 

 

Notice that if these two sentences were a 

translation-reference pair, they would receive a 

less-than-perfect score from string-based metrics. 

For example, BLEU with add-one smoothing
2
 

gives this pair a score of barely 0.3781. 

The f-structure can also be described as a flat 

set of triples. In triples format, the f-structure in (1) 

could be represented as follows: {subj(resign, 

john), pers(john, 3), num(john, sg), tense(resign, 

                                                 
2
 We use smoothing because the original BLEU gives 

zero points to sentences with fewer than one four-gram. 
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past), adj(resign, yesterday), pers(yesterday, 3), 

num(yesterday, sg)}. 

Cahill et al. (2004) presents Penn-II Treebank-

based LFG parsing resources. Her approach 

distinguishes 32 types of dependencies, including 

grammatical functions and morphological 

information. This set can be divided into two major 

groups: a group of predicate-only dependencies 

and non-predicate dependencies. Predicate-only 

dependencies are those whose path ends in a 

predicate-value pair, describing grammatical 

relations. For example, for the f-structure in (1), 

predicate-only dependencies would include: 

{subj(resign, john), adj(resign, yesterday)}.
3
  

In parser evaluation, the quality of the f-

structures produced automatically can be checked 

against a set of gold standard sentences annotated 

with f-structures by a linguist. The evaluation is 

conducted by calculating the precision and recall 

between the set of dependencies produced by the 

parser, and the set of dependencies derived from 

the human-created f-structure. Usually, two 

versions of f-score are calculated: one for all the 

dependencies for a given input, and a separate one 

for the subset of predicate-only dependencies. 

In this paper, we use the parser developed by 

Cahill et al. (2004), which automatically annotates 

input text with c-structure trees and f-structure 

dependencies, reaching high precision and recall 

rates.
 4
  

3 Related work 

The insensitivity of BLEU and NIST to perfectly 

legitimate syntactic and lexical variation has been 

raised, among others, in Callison-Burch et al. 

(2006), but the criticism is widespread. Even the 

creators of BLEU point out that it may not 

correlate particularly well with human judgment at 

the sentence level (Papineni et al., 2002). A side 

                                                 
3
 Other predicate-only dependencies include: 

apposition,  complement, open complement, 

coordination, determiner, object, second object, 

oblique, second oblique, oblique agent, possessive, 

quantifier, relative clause, topic, relative clause 

pronoun. The remaining non-predicate dependencies 

are: adjectival degree, coordination surface form, focus, 

complementizer forms: if, whether, and that, modal, 

number, verbal particle, participle, passive, person, 

pronoun surface form, tense, infinitival clause. 
4
 http://lfg-demo.computing.dcu.ie/lfgparser.html 

effect of this phenomenon is that BLEU is less 

reliable for smaller data sets, so the advantage it 

provides in the speed of evaluation is to some 

extent counterbalanced by the time spent by 

developers on producing a sufficiently large test 

set in order to obtain a reliable score for their 

system.  

Recently a number of attempts to remedy these 

shortcomings have led to the development of other 

automatic MT evaluation metrics. Some of them 

concentrate mainly on word order, like General 

Text Matcher (Turian et al., 2003), which 

calculates precision and recall for translation-

reference pairs, weighting contiguous matches 

more than non-sequential matches, or Translation 

Error Rate (Snover et al., 2005), which computes 

the number of substitutions, inserts, deletions, and 

shifts necessary to transform the translation text to 

match the reference. Others try to accommodate 

both syntactic and lexical differences between the 

candidate translation and the reference, like CDER 

(Leusch et al., 2006), which employs a version of 

edit distance for word substitution and reordering; 

or METEOR (Banerjee and Lavie, 2005), which 

uses stemming and WordNet synonymy. Kauchak 

and Barzilay (2006) and Owczarzak et al. (2006) 

use paraphrases during BLEU and NIST evaluation 

to increase the number of matches between the 

translation and the reference; the paraphrases are 

either taken from WordNet
5
 in Kauchak and 

Barzilay (2006) or derived from the test set itself 

through automatic word and phrase alignment in 

Owczarzak et al. (2006). Another metric making 

use of synonyms is the linear regression model 

developed by Russo-Lassner et al. (2005), which 

makes use of stemming, WordNet synonymy, verb 

class synonymy, matching noun phrase heads, and 

proper name matching. Kulesza and Schieber 

(2004), on the other hand, train a Support Vector 

Machine using features like proportion of n-gram 

matches and word error rate to judge a given 

translation’s distance from human-level quality. 

Nevertheless, these metrics use only string-

based comparisons, even while taking into 

consideration reordering. By contrast, our 

dependency-based method concentrates on 

utilizing linguistic structure to establish a 

comparison between translated sentences and their 

reference.  

                                                 
5
 http://wordnet.princeton.edu/ 
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4 LFG f-structure in MT evaluation 

The process underlying the evaluation of f-

structure quality against a gold standard can be 

used in automatic MT evaluation as well: we parse 

the translation and the reference, and then, for each 

sentence, we check the set of translation 

dependencies against the set of reference 

dependencies, counting the number of matches. As 

a result, we obtain the precision and recall scores 

for the translation, and we calculate the f-score for 

the given pair. Because we are comparing two 

outputs that were produced automatically, there is 

a possibility that the result will not be noise-free. 

To assess the amount of noise that the parser 

may introduce we conducted an experiment where 

100 English Europarl sentences were modified by 

hand in such a way that the position of adjuncts 

was changed, but the sentence remained 

grammatical and the meaning was not changed. 

This way, an ideal parser should give both the 

source and the modified sentence the same f-

structure, similarly to the case presented in (1). The 

modified sentences were treated like a translation 

file, and the original sentences played the part of 

the reference. Each set was run through the parser. 

We evaluated the dependency triples obtained from 

the “translation” against the dependency triples for 

the “reference”, calculating the f-score, and applied 

other metrics (TER, METEOR, BLEU, NIST, and 

GTM) to the set in order to compare scores. The 

results, inluding the distinction between f-scores 

for all dependencies and predicate-only 

dependencies, appear in Table 1. 

 
 baseline modified 

TER 0.0 6.417 

METEOR   1.0 0.9970 

BLEU 1.0000 0.8725 

NIST 11.5232 11.1704 (96.94%) 

GTM 100 99.18 

dep f-score  100 96.56 

dep_preds f-score 100 94.13 

Table 1. Scores for sentences with reordered adjuncts 

 

The baseline column shows the upper bound for a 

given metric: the score which a perfect translation, 

word-for-word identical to the reference, would 

obtain.
6
 In the other column we list the scores that 

the metrics gave to the “translation” containing 

reordered adjunct. As can be seen, the dependency 

and predicate-only dependency scores are lower 

than the perfect 100, reflecting the noise 

introduced by the parser.  

To show the difference between the scoring 

based on LFG dependencies and other metrics in 

an ideal situation, we created another set of a 

hundred sentences with reordered adjuncts, but this 

time selecting only those reordered sentences that 

were given the same set of dependencies by the 

parser (in other words, we simulated having the 

ideal parser). As can be seen in Table 2, other 

metrics are still unable to tolerate legitimate 

variation in the position of adjuncts, because the 

sentence surface form differs from the reference; 

however, it is not treated as an error by the parser. 

 
 baseline modified 

TER 0.0 7.841 

METEOR   1.0 0.9956 

BLEU 1.0000 0.8485 

NIST 11.1690 10.7422 (96.18%) 

GTM 100 99.35 

dep f-score  100 100 

dep_preds f-score 100 100 

Table 2. Scores for sentences with reordered adjuncts in 

an ideal situation 

4.1 Initial experiment – Europarl 

In the first experiment, we attempted to determine 

whether the dependency-based measure is biased 

towards statistical MT output, a problem that has 

been observed for n-gram-based metrics like 

BLEU and NIST. Callison-Burch et al. (2006) 

report that BLEU and NIST favour n-gram-based 

MT models such as Pharaoh (Koehn, 2004), so the 

translations produced by rule-based systems score 

lower on the automatic evaluation, even though 

human judges consistently rate their output higher 

than Pharaoh’s translation. Others repeatedly 

                                                 
6
 Two things have to be noted here: (1) in case of NIST 
the perfect score differs from text to text, which is why 

we provide the percentage points as well, and (2) in case 

of TER the lower the score, the better the translation, so 

the perfect translation will receive 0, and there is no 

upper bound on the score, which makes this particular 

metric extremely difficult to directly compare with 

others. 
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observed this tendency in previous research as 

well; in one experiment, reported in Owczarzak et 

al. (2006), where the rule-based system 

Logomedia
7
 was compared with Pharaoh, BLEU 

scored Pharaoh 0.0349 points higher, NIST scored 

Pharaoh 0.6219 points higher, but human judges 

scored Logomedia output 0.19 points higher (on a 

5-point scale).  

4.1.1 Experimental design 

In order to check for the existence of a bias in the 

dependency-based metric, we created a set of 

4,000 sentences drawn randomly from the Spanish-

English subset of Europarl (Koehn, 2005), and we 

produced two translations: one by a rule-based 

system Logomedia, and the other by the standard 

phrase-based statistical decoder Pharaoh, using 

alignments produced by GIZA++
8
 and the refined 

word alignment strategy of Och and Ney (2003). 

The translations were scored with a range of 

metrics: BLEU, NIST, GTM, TER, METEOR, and 

the dependency-based method. 

4.1.2 Adding synonyms 

Besides the ability to allow syntactic variants as 

valid translations, a good metric should also be 

able to accept legitimate lexical variation. We 

introduced synonyms and paraphrases into the 

process of evaluation, creating new best-matching 

references for the translations using either 

paraphrases derived from the test set itself 

(following Owczarzak et al. (2006)) or WordNet 

synonyms (as in Kauchak and Barzilay (2006)). 

 

Bitext-derived paraphrases 

Owczarzak et al. (2006) describe a simple way to 

produce a list of paraphrases, which can be useful 

in MT evaluation, by running word alignment 

software on the test set that is being evaluated. 

Paraphrases derived in this way are specific to the 

domain at hand and contain low-level syntactic 

variants in addition to word-level synonymy. 

Using the standard GIZA++ software and the 

refined word alignment strategy of Och and Ney 

(2003) on our test set of 4,000 Spanish-English 

sentences, the method generated paraphrases for 

just over 1100 items. These paraphrases served to 

                                                 
7
 http://www.lec.com/ 
8
 http://www.fjoch.com/GIZA++ 

create new individual best-matching references for 

the Logomedia and Pharaoh translations. Due to 

the small size of the paraphrase set, only about 

20% of reference sentences were actually modified 

to better reflect the translation. This, in turn, led to 

little difference in scores. 

WordNet synonyms 

To maximize the number of matches between a 

translation and a reference, Kauchak and Barzilay 

(2006) use WordNet synonyms during evaluation. 

In addition, METEOR also has an option of 

including WordNet in the evaluation process. As in 

the case of bitext-derived paraphrases, we used 

WordNet synonyms to create new best-matching 

references for each of the two translations. This 

time, given the extensive database containing 

synonyms for over 150,000 items, around 70% of 

reference sentences were modified: 67% for 

Pharaoh, and 75% for Logomedia. Note that the 

number of substitutions is higher for Logomedia; 

this confirms the intuition that the translation 

produced by Pharaoh, trained on the domain which 

is also the source of the reference text, will need 

fewer lexical replacements than Logomedia, which 

is based on a general non-domain-specific model. 

4.1.3 Results 

Table 3 shows the difference between the scores 

which Pharaoh’s and Logomedia’s translations 

obtained from each metric: a positive number 

shows by how much Pharaoh’s score was higher 

than Logomedia’s, and a negative number reflects 

Logomedia’s higher score (the percentages are 

absolute values). As can be seen, all the metrics 

scored Pharaoh higher, inlcuding METEOR and 

the dependency-based method that were boosted 

with WordNet. The values in the table are sorted in 

descending order, from the largest to the lowest 

advantage of Pharaoh over Logomedia. 

Interestingly, next to METEOR boosted with 

WordNet, it is the dependency-based method, and 

especially the predicates-only version, that shows 

the least bias towards the phrase-based translation. 

In the next step, we selected from this set smaller 

subsets of sentences that were more and more 

similar in terms of translation quality (as 

determined by a sentence’s BLEU score). As the 

similarity of the translation quality increased, most 

metrics lowered their bias, as is shown in Table 4. 

The first column shows the case where the 

sentences chosen differed at the most by 0.05 
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points BLEU score; in the second column the 

difference was lowered to 0.01; and in the third 

column to 0.005. The numbers following the hash 

signs in the header row indicate the number of 

sentences in a given set.  

 

metric PH score – LM score 

TER 1.997 

BLEU 7.16% 

NIST 6.58% 

dep 4.93% 

dep+paraphr 4.80% 

GTM 3.89% 

METEOR 3.80% 

dep_preds 3.79% 

dep+paraphr_preds 3.70% 

dep+WordNet 3.55% 

dep+WordNet_preds 2.60% 

METEOR+WordNet 1.56% 

Table 3. Difference between scores assigned to Pharaoh 

and Logomedia. Positive numbers show by how much 

Pharaoh’s score was higher than Logomedia’s. Legend: 

dep = dependency f-score, paraph = paraphrases, _preds = 

predicate-only f-score.  

 

~ 0.05 #1692 ~ 0.01 #567 ~ 0.005 #335 

NIST 2.29% NIST 1.76% NIST 1.48% 

BLEU 0.95% BLEU 0.42% BLEU 0.59% 

GTM 0.94% GTM 0.29% GTM -0.09% 

d+p 0.67% d 0.04% d+p -0.15% 

d 0.61% d+p 0.02% d -0.24% 

d+WN -0.29% d+WN -0.78% d+WN -0.99% 

d+p_pr -0.70% M -0.99% d+p_pr -1.30% 

d_pr -0.75% d_pr -1.37% d_pr -1.43% 

M -1.03% d+p_pr -1.38% M -1.57% 

d+WN_pr -1.43% d+WN_pr -1.97% d+WN_pr -1.94% 

M+WN -2.51% M+WN -2.21% M+WN -2.74% 

TER -1.579 TER -1.228 TER -1.739 

Table 4. Difference between scores assigned to Pharaoh 

and Logomedia for sets of increasing similarity. Positive 

numbers show Pharaoh’s advantage, negative numbers 

show Logomedia’s advantage. Legend: d = dependency f-

score, p = paraphrases, _pr = predicate-only f-score, M = 

METEOR, WN = WordNet.  

 

These results confirm earlier suggestions that 

the predicate-only version of the dependency-

based evaluation is less biased in favour of the 

statistical MT system than the version that includes 

all dependency types. Adding a sufficient number 

of lexical choices reduces the bias even further; 

although again, paraphrases generated from the test 

set only are too few to make a significant 

difference. Similarly to METEOR, the 

dependency-based method shows on the whole 

lower bias than other metrics. However, we cannot 

be certain that the underlying scores vary linearly 

with each other and with human judgements, as we 

have no framework of reference such as human 

segment-level assessment of translation quality in 

this case. Therefore, the correlation with human 

judgement is analysed in our next experiment.   

4.2 Correlation with human judgement – 

MultiTrans 

To calculate how well the dependency-based 

method correlates with human judgement, and how 

it compares to the correlation shown by other 

metrics, we conducted an experiment on Chinese-

English newswire text.  

4.2.1 Experimental design 

We used the data from the Linguistic Data 

Consortium Multiple Translation Chinese (MTC) 

Parts 2 and 4. The data consists of multiple 

translations of Chinese newswire text, four human-

produced references, and segment-level human 

scores for a subset of the translation-reference 

pairs. Although a single translated segment was 

always evaluated by more than one judge, the 

judges used a different reference every time, which 

is why we treated each translation-reference-

human score triple as a separate segment. In effect, 

the test set created from this data contained 16,800 

segments. As in the previous experiment, the 

translation was scored using BLEU, NIST, GTM, 

TER, METEOR, and the dependency-based 

method. 

4.2.2 Results 

We calculated Pearson’s correlation coefficient for 

segment-level scores that were given by each 

metric and by human judges. The results of the 

correlation are shown in Table 5. Note that the 

correlation for TER is negative, because in TER 

zero is the perfect score, in contrast to other 

metrics where zero is the worst possible score; 

however, this time the absolute values can be 

easily compared to each other. Rows are ordered 
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by the highest value of the (absolute) correlation 

with the human score. 

First, it seems like none of the metrics is very 

good at reflecting human fluency judgments; the 

correlation values in the first column are 

significantly lower than the correlation with 

accuracy. However, the dependency-based method 

in almost all its versions has decidedly the highest 

correlation in this area. This can be explained by 

the method’s sensitivity to the grammatical 

structure of the sentence: a more grammatical 

translation is also a translation that is more fluent. 

 

H_FL  H_AC  H_AVE  

d+WN 0.168 M+WN 0.294 M+WN 0.255 

d   0.162 M   0.278 d+WN 0.244 

d+WN_pr 0.162 NIST 0.273 M   0.242 

BLEU 0.155 d+WN 0.266 NIST 0.238 

d_pr 0.154 GTM 0.260 d   0.236 

M+WN 0.153 d  0.257 GTM 0.230 

M   0.149 d+WN_pr 0.232 d+WN_pr 0.220 

NIST 0.146 d_pr 0.224 d_pr 0.212 

GTM 0.146 BLEU 0.199 BLEU 0.197 

TER -0.133 TER -0.192 TER -0.182 

Table 5. Pearson’s correlation between human scores and 

evaluation metrics. Legend: d = dependency f-score, _pr = 

predicate-only f-score, M = METEOR, WN = WordNet, 

H_FL = human fluency score, H_AC = human accuracy 

score, H_AVE = human average score.9 

 

Second, and somewhat surprisingly, in this 

detailed examination the relative order of the 

metrics changed. The predicate-only version of the 

dependency-based method appears to be less 

adequate for correlation with human scores than its 

non-restricted versions. As to the correlation with 

human evaluation of translation accuracy, our 

method currently falls short of METEOR and even 

NIST. This is caused by the fact that both 

METEOR and NIST assign relatively little 

importance to the position of a specific word in a 

sentence, therefore rewarding the translation for 

content rather than linguistic form. For our 

dependency-based method, the noise introduced by 

the parser might be the reason for low correlation: 

if even one side of the translation-reference pair 

contains parsing errors, this may lead to a less 

reliable score. An obvious solution to this problem, 

                                                 
9
 In general terms, an increase of 0.015 between any two 

scores is significant with a 95% confidence interval. 

which we are examining at the moment, is to 

include a number of best parses for each side of the 

evaluation. 

High correlation with human judgements of 

fluency and lower correlation with accuracy results 

in a high second place for our dependency-based 

method when it comes to the average correlation 

coefficient. The WordNet-boosted dependency-

based method scores only slightly lower than 

METEOR with WordNet. These results are very 

encouraging, especially as we see a number of 

ways the dependency-based method could be 

further developed.  

5 Current and future work 

While the idea of a dependency-based method is a 

natural step in the direction of a deeper linguistic 

analysis for MT evaluation, it does require an LFG 

grammar and parser for the target language. There 

are several obvious areas for improvement with 

respect to the method itself. First, we would also 

like to adapt the process of translation-reference 

dependency comparison to include n-best parsers 

for the input sentences, as well as some basic 

transformations which would allow an even deeper 

logical analysis of input (e.g. passive to active 

voice transformation). 

 Second, we want to repeat both 

experiments using a paraphrase set derived from a 

large parallel corpus, rather than the test set, as 

described in Owczarzak et al. (2006). While 

retaining the advantage of having a similar size to 

a corresponding set of WordNet synonyms, this set 

will also capture low-level syntactic variations, 

which can increase the number of matches and the 

correlation with human scores. 

 Finally, we want to take advantage of the 

fact that the score produced by the dependency-

based method is the proportional average of f-

scores for a group of up to 32 (but usually far 

fewer) different dependency types. We plan to 

implement a set of weights, one for each 

dependency type, trained in such a way as to 

maximize the correlation of the final dependency f-

score with human evaluation.  

6 Conclusions 

In this paper we present a novel way of 

evaluating MT output. So far, all metrics relied on 
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comparing translation and reference on a string 

level. Even given reordering, stemming, and 

synonyms for individual words, current methods 

are still far from reaching human ability to assess 

the quality of translation. Our method compares 

the sentences on the level of their grammatical 

structure, as exemplified by their f-structure 

dependency triples produced by an LFG parser. 

The dependency-based method can be further 

augmented by using paraphrases or WordNet 

synonyms, and is available in full version and 

predicate-only version. In our experiments we 

showed that the dependency-based method 

correlates higher than any other metric with human 

evaluation of translation fluency, and shows high 

correlation with the average human score. The use 

of dependencies in MT evaluation is a rather new 

idea and requires more research to improve it, but 

the method shows potential to become an accurate 

evaluation metric.  
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Abstract

We provide a conceptual basis for think-
ing of machine translation in terms of syn-
chronous grammars in general, and proba-
bilistic synchronous tree-adjoining gram-
mars in particular. Evidence for the view
is found in the structure of bilingual dic-
tionaries of the last several millennia.

1 Introduction

In this paper, we provide a conceptual basis for
thinking of machine translation in terms of syn-
chronous grammars in general, and probabilistic
synchronous tree-adjoining grammars in particular.
The basis is conceptual in that the arguments are
based on generalizations about the translation re-
lation at a conceptual level, and not on empirical
results at an engineering level. Nonetheless, the
conceptual idea is consistent with current efforts in
MT, and in fact may be seen as underlying so-called
syntax-aware MT.

We will argue that the nature of the translation re-
lation is such that an appropriate formalism for re-
alizing it should have a set of properties — expres-
sivity, trainability, efficiency — that we will charac-
terize more precisely below. There may be multi-
ple formalisms that can achieve these ends, but one,
at least, is probabilistic synchronous tree-adjoining
grammar, and to our knowledge, no other qualita-
tively distinct formalism has been argued to display
all of the requisite properties.

Below, we will discuss the various properties,
with particular attention to an examination of a par-
ticular source of data about the translation relation,

namely bilingual dictionaries. Multilingual lexicog-
raphy has a history of some four millennia or more.
In that time, a great deal of knowledge about par-
ticular translation relations has been explicitly codi-
fied in multilingual dictionaries. More interestingly
for our present purposes, multilingual dictionaries
through their own structuring implicitly express in-
formation about translation relations in general.

In Section 2, we introduce the Construction Prin-
ciple, a property of the translation relation implicit
in the structure of bilingual dictionaries throughout
their four millennium history. Section 3 provides
a review of synchronous tree-adjoining grammars
showing that this formalism directly incorporates the
Construction Principle and allows the formal im-
plementation of bilingual dictionary relations. In
Section 4, we argue that the probabilistic variant
of STAG (PSTAG) inherits the expressivity advan-
tages of STAG while adding the trainability of sta-
tistical MT. Section 5 concerns the practical efficacy
of STAG. We conclude (Section 6) with an overall
proposal for the use of PSTAG in a statistical MT
system. By virtue of its fundamentality to the mod-
eling of the translation relation, PSTAG or its formal
relatives merits empirical examination as a basis for
statistical MT.

2 Expressivity

Of course, a formalism for describing the transla-
tion relation must be able to capture the relations
between words in the two languages: acqua means
water, dormire means sleep, and so forth. Indeed,
the stereotype of a bilingual dictionary is just such
a relation; the HarperCollins Italian College Dictio-
nary (HCICD) (Clari and Love, 1995) contains en-
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tries 〈acqua / water〉10 and 〈dormire / sleep〉191.1

This property doesn’t distinguish among any of the
formal means for capturing these direct lexical re-
lationships. Finite-state string transducers naturally
capture these simple relationships, but so do more
(and less) expressive formalisms.

Simple word-by-word replacement is not a viable
translation method; this was noted even as early
as Weaver’s famous memorandum (Weaver, 1955).
Systems based on word-to-word lexicons, such as
the IBM systems (Brown et al., 1990; Brown et
al., 1993), incorporate further devices that allow re-
ordering of words (a “distortion model”) and rank-
ing of alternatives (a monolingual language model).
Together, these allow for the possibility that

The Word Principle:
Words translate differently when adjacent to
other words.

This property of the translation relation is patently
true.

Even a word-to-word system with the ability to
reorder words and rank alternatives has obvious lim-
itations, which have motivated the machine transla-
tion research community toward progressively more
expressive formalisms. Again, we see precedent for
the move in bilingual dictionaries, which provide
phrasal translations in addition to simple word trans-
lations: 〈by and large / nel complesso〉86, 〈full moon
/ luna piena〉406. The insight at work here is

The Phrase Principle:
Phrases (not words) translate differently when
adjacent to other phrases.

And again, we see this insight informing statisti-
cal machine translation systems, for instance, in the
phrase-based approaches of Och (2003) and Koehn
et al. (2003). These two principles, while true, do
not exhaust the insights implicit in the structure of
bilingual dictionaries. A fuller view is accomplished
by moving from words and phrases to constructions.

2.1 The construction principle
The phenomenon that underlies the use of syn-
chronous grammars for MT is simply this:

1Throughout, we notate entries in HCICD with the notation
〈entry form / translation form〉page, providing the Italian and
English forms, along with the page number of the cited entry.

The Construction Principle:
Words and phrases translate differently in con-
struction with other words.

The notion of in construction with is a structural no-
tion. A word is in construction with another if they
are related by a structural relation of some sort de-
pendent on the identity or role of the word.

For example, the English word take is prototypi-
cally translated with a form of the Italian prendere
〈take / prendere〉661. But when its object is a bath,
as in the sentence “I like to take several long bubble
baths every day”, the word is translated with a form
of fare. More accurately, the construction typified
by the phrase take a bath is translated by the corre-
sponding construction typified by the phrase fare un
bagno (〈take a bath / fare un bagno〉662).

One may think that we are still in the realm of the
Phrase Principle; the phrase take a bath translates as
the phrase fare un bagno. But the generalization is
clearly much more general than that in several ways.

First, the notion of in construction with does not
necessarily lead to contiguous phrases because of
variability within the constructions. Bilingual dic-
tionaries have developed notational conventions for
such cases. When freely variable objects can inter-
vene between the words in construction, a kind of
variable word is used in dictionary entries, such as
SB (somebody), STH (something), QN (qualcuno),
QC (qualcosa). The word take participates in an-
other construction 〈take SB by surprise / cogliere
[literally “catch”] QN di sorpresa〉. The phe-
nomenon is widespread. We find entries for light
verb phrases such as take SB by surprise, idiomatic
constructions such as 〈pull SB’s leg / prendere in
giro QN〉507, and particle constructions such as 〈call
SB up / chiamare QN〉86. These variable notations
not only stand in for variable textual material and
categorize that material (as specifying an entity (QC)
or human (QN)) but also provide links between the
portions of the two constructions. Whatever lexi-
cal material instantiates a SB variable on the English
side, its translation instantiates the QN in the Ital-
ian. Thus translations require not only structure in
the monolingual representations, but structure bilin-
gually across them.2

2The linking of the subject roles in these constructions is
typically left implicit in these entries, following from an as-
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Second, even constructions that are in and of
themselves contiguous may become discontiguous
by intervention of other lexical material: modifiers,
appositives, and the like. An example has already
been seen in the example “I like to take several long
bubble baths every day”. There is no contiguity be-
tween take and bath here. A formalism based purely
on concatenation of contiguous phrases will be un-
able to model such constructions.

These two aspects of variability and interven-
tion within and between constructions preclude sim-
ple concatenative formalisms such as finite-state or
context-free formalisms.

2.2 Prevalence of bilingual constructions

A natural question arises as to the prevalence of such
nontrivial bilingual constructions. Presumably, if
they are sufficiently rare and exotic, it may be ac-
ceptable, and in fact optimal, from an engineering
point of view to ignore them and stay with simpler
formalisms.

We can ask the prevalence question at the level of
types or tokens. At the type level, a simple examina-
tion of a comprehensive modern bilingual dictionary
reveals a quite high frequency of non-word-for-word
translations. Analysis of a small random subsam-
ple of HCICD yielded only 34% of entries of the
〈acqua / water〉10 sort. In contrast, 52% were con-
tiguous multi-word translations, e.g., 〈guarda caso /
strangely enough〉100. An additional 11% of entries
had variable content, split about equally between en-
tries with overt marking of variability (〈prendere QN

in castagna / to catch SB in the act〉100) and im-
plicit variability (〈hai fatto caso al suo cappello? /
did you notice his hat?〉100, in which the 〈suo cap-
pello / his hat〉 pair serves as a placeholder for other
translates. (The remaining 3% is accounted for by
entries providing monolingual equivalences and un-
translated proper names.) The line between implicit
variability and multi-word translations is quite per-
meable, so that many of the 54% of entries classified
as the latter might in fact be better thought of as the
former, and in any case many of the multi-word en-

sumption that subjects are typically linked across these lan-
guages. Where this assumption fails, however, explicit marking
is found in the dictionary, either by using a passive alternation
〈piacere a QN / to be liked by SB〉424, or implicit linking 〈mi
piace / I like it〉424.

tries would be subject to noncontiguity through in-
sertion of other lexical material. At the type level,
then, there is plenty of evidence for the Phrase Prin-
ciple and the Construction Principle.

At the token level, the general interest in so-
called syntax-aware statistical MT approaches is it-
self evidence that researchers believe that the to-
kens accounting for the performance gap in current
systems based on the Word and Phrase Principles
transcend those principles in some way, presum-
ably because they manifest the Construction Prin-
ciple.3 Only time will tell if such syntax-aware
systems are able to display performance improve-
ments over their nonstructural alternatives. Success-
ful experiments such as those of Chiang (2005) us-
ing synchronous context-free grammar are a good
first start.4

2.3 Heritage of the construction principle

We have argued that a formalism expressive enough
to model the translation relation implicit in bilin-
gual dictionaries must be based on relations over
constructions, the primitive relations found in such
bilingual dictionaries and founded by the Construc-
tion Principle. The fundamentality of this princi-
ple is evidenced by the fact that it has informed
bilingual dictionaries literally since their inception.
The earliest known bilingual dictionaries are those
incorporated in the so-called lexical texts of an-
cient Mesopotamia from four millennia ago. Even
there, we find evidence of the Construction Princi-
ple in entries that describe translation of words de-
pendent upon words they are in construction with.
Civil (1995) cites an example of the Akkadian word
nakāpu (to gore, to knock down) whose translation
into Sumerian is given differentially dependent on
the nature of “grammatical constructions with par-
ticular subjects or objects”:

3A reviewer objects that this point is vacuous: “Is the fact
that researchers aren’t building large-scale statistical semantic
transfer models evidence for the fact that they don’t believe in
semantics?” This is an instance of the logical fallacy of denying
the antecedent. If researchers act on a premise, they believe the
premise. From this it does not follow that if they fail to act on a
premise, they deny the premise.

4It would be more convincing to have empirical token-level
statistics on the prevalence of constructions found in bilingual
dictionaries. Unfortunately, this would require much of the ef-
fort of building an MT system on a construction basis itself.
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Translation When said of
sag-ta-dug4-ga the head
du7 oxen
ru5 rams
si-tu10 oxen/bulls
kur-ku a flood
ru-gú a finger
si-ga a garment

3 Synchronous Grammars Reviewed

To summarize, the translation relation in evidence
implicitly in bilingual dictionaries requires a for-
malism expressive enough to directly represent re-
lations between constructions, appropriately linked,
and to do so in a way that allows these constructions
to be realized noncontiguously by virtue of vari-
ability and intervention. As we will show, the for-
mer requirement is exactly the idea underlying syn-
chronous grammars. The latter requirement of non-
contiguity in its two aspects further implicates oper-
ations of substitution and adjunction (respectively)
to combine constructions. The requirements lead
naturally to a consideration of synchronous tree-
adjoining grammar as the direct embodiment of the
bilingual dictionaries of the last four millennia.

A synchronous grammar formalism is built by
synchronizing grammars from some base formal-
ism. A grammar in the base formalism consists
of a set of elementary tree structures along with
one or more combining operations. All of the fa-
miliar monolingual formalisms—finite-state gram-
mars, context-free grammars, tree-substitution and
-adjoining grammars, categorial grammars, inter
alia—can be thought of in this way. A synchronous
grammar consists of a set of pairs of elementary
trees from the base formalism together with a link-
ing relation between nodes in the trees at which
combining operations can perform. Derivation pro-
ceeds as in the base formalism, whatever that is, ex-
cept that a pair of trees operate at a pair of linked
nodes in an elementary tree pair. An operation per-
formed at one end of a link must be matched by a
corresponding operation at the other end of the link.
For example, the tree pair in Figure 1 might be ap-
propriate for use in translating the sentence Eli took
his father by surprise. The links between the NP
nodes play the same role as the linked variables SB

and QN in the bilingual dictionary entry. They allow

for substitution of tree pairs for Eli and its translation
and his father and its. The additional links allow for
further modification, as in Eli recently took his fa-
ther by surprise by preparing dinner, the modifiers
recently and by preparing dinner adjoining at the VP
and S links, respectively.

Expressing this relation in other frameworks in-
volves either limiting its scope (for instance, to par-
ticular objects and intervening material), expanding
its scope (by separating the translations of the con-
tiguous portions of the constructions), or mimicking
the structure of the STAG (as described at the end of
Section 5).

The basic idea of using synchronous TAG for ma-
chine translation dates from the original definition
(Shieber and Schabes, 1990), and has been pur-
sued by several researchers (Abeille et al., 1990;
Dras, 1999; Prigent, 1994; Palmer et al., 1999), but
only recently in its probabilistic form (Nesson et al.,
2006). The directness with which the formalism fol-
lows from the structure of bilingual dictionaries has
not to our knowledge been previously noted. It leads
to the possibility of making direct use of bilingual
dictionary material in a statistical machine transla-
tion system.5 But even if the formalism is not used
in that way, there is import to the fact that its expres-
sivity matches that thought by lexicographers of the
last several millennia to be needed for capturing the
translation relation; this fact indicates at least that
STAG’s use as a substrate for MT systems may be a
promising research direction to pursue, should other
necessary properties be satisfiable as well. We turn
next to two of these properties: trainability and effi-
ciency.

4 Trainability

The mere ability to formally represent the contents
of manually developed bilingual dictionaries is not
sufficient for the building of robust machine trans-
lation systems. The last decade and a half of MT
research has demonstrated the importance of train-
ability of the models based on statistical evidence
found in corpora. Without such training, manually

5For construction-based MT, reconstruction of tree align-
ments from data is much more difficult than for phrase-based
MT, and hence extracting them from a dictionary becomes
much more appealing.
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Figure 1: A synchronous tree pair.

developed models are too brittle to be seriously con-
sidered as a basis for machine translation.

It may also be the case that with such training, the
manually generated materials are redundant. Cer-
tainly, it has been difficult to show the utility of man-
ually generated annotations in improving MT per-
formance. But this may be because the means by
which the materials are represented is not yet appro-
priate; it does not articulate well with the statistical
substrate used by the training methodology.

A further property, then, for the formalism is that
it be trainable based on bilingual corpora. Consider
training of the sort that underlies the IBM-style word
models and their phrase-based offshoots, or statisti-
cal parsing based on probabilistic CFGs (Lari and
Young, 1990) or other generative formalisms. Such
methods use an underlying probabilistic formalism,
typically structuring the parameters based on a uni-
versal parametric normal form (as n-gram proba-
bilities are for finite-state grammars and Chomsky-
normal form is for PCFGs), and applying an efficient
training algorithm to set values for the parameters.

A full system based on STAG would use the for-
malism to express both the detailed bilingual con-
structional relationships as found in a bilingual dic-
tionary and a backbone in the form of the uni-
versal normal form. Trained together, the normal
form would serve to smooth the brittle construction-
specific part, while the construction-specific part
would relieve the burden on the universal learned
portion to allocate parameters to rare constructions.

How do synchronous tree-adjoining grammars
fare in this area? Do they admit of the kind of uni-
versal normal-form training that might serve as a
smoothing method for the more highly articulated
but brittle lexicographic relation?

A probabilistic variant of synchronous TAG is
straightforward to specify, given that the formal-
ism itself has a natural generative interpretation
(Shieber, 1994). A universal parametric normal
form has been provided by Nesson et al. (2006)
(see Figure 2), who show that, at least on small
training sets, a synchronous TAG in this normal
form performs at a level comparable to standard
word- and phrase-based systems. Synchronous
TAGs thus seem to have the best of both worlds:
They can directly express the types of ramified bilin-
gual constructions as codified in bilingual dictionar-
ies, and they can also express the types of universal
assumption-free normal forms that underlie modern
statistical MT. Importantly, they can do so at one
and the same time, as both types of information are
expressed in the same way, as sets of tree pairs. Both
can therefore be trained together based on bilingual
corpora.

We emphasize that the advantage that we find for
STAGs in displaying well the necessary properties
for statistical machine translation systems implicit in
bilingual dictionaries is not that they are able to code
efficiently all generalizations about the translation
relation. Indeed, STAG is not able to do so (Shieber,
1994), which has motivated more expressive exten-
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Figure 2: A normal form for synchronous tree-insertion grammar. (Reproduced from Nesson et al. (2006).)

sions of the formalism (Chiang et al., 2000). For
example, STAG might express the construction rela-
tion 〈attraversare QC di corsa / run across ST〉 and
similar relations between Italian verbs of direction
with modifiers of motion and English verbs of mo-
tion with directional modifiers. However, the gener-
alization that directional verbs with motion-manner
adverbials translate as motion-manner verbs with di-
rectional adverbials is not expressed or expressible
by STAG. Each instance of the generalization must
be specified or learned separately.6 Nonetheless, we
are content (in the spirit of statistical MT) to have
lots of such particular cases missing a generaliza-
tion, so long as the parts from which they are con-
structed are pertinent, that is, so long as we do not
need to specify 〈attraversare la strada di corsa / run
across the road〉51 separately from all of the other
things one might run across.

5 Efficiency

A final set of considerations has to do with the effi-
ciency of the formalism. Is it practical to use STAG
for the purposes we have outlined? It is important
not to preclude a formalism merely based on im-
practicality of its current use (given the constant in-
creases in computer speed), but inherent intractabil-
ity is another matter.7

6Palmer et al. (1999) provide an approach to STAG that at-
tempts to address this particular problem as does the extension
of Dras (1999). It is unclear to what extent such extensions are
amenable to trainable probabilistic variants.

7Of course, too much might be made of this question of
computational complexity. The algorithms used for decoding
of statistical MT systems almost universally incorporate heuris-
tics for efficiency reasons, even those that are polynomial. One
reviewer notes that “the admittedly perplexing reality is that ex-
ponential decoders run much faster than polynomial ones, pre-

Here, the STAG situation is equivocal. Bilingual
parsing of a corpus relative to an STAG is a nec-
essary first step in parameter training. The recog-
nition problem for STAG, like that for synchronous
context-free grammar (SCFG) is NP-hard (Satta and
Peserico, 2005). Under appropriate restrictions of
binarizability, SCFG parsing can be done in O(n6)
time, doubling the exponent of CFG parsing. Simi-
larly, STAG parsing under suitable limitations (Nes-
son et al. (2005)) can be done in O(n12) time dou-
bling the exponent of monolingual TAG parsing. On
the positive side, recent work exploring the auto-
matic binarization of synchronous grammars (Zhang
et al., 2006) has indicated that non-binarizable con-
structions seem to be relatively rare in practice.
Nonetheless, such a high-degree polynomial makes
the complete algorithm impractical.

Nesson et al. (2006) use synchronous tree-
insertion grammar (STIG) (Schabes and Waters,
1995) rather than STAG for this very reason.
STIG retains the ability to express a universal nor-
mal form, while allowing O(n6) bilingual parsing.
(Again, limitations on the formalism are required to
achieve this complexity.) Even this complexity may
be too high. Methods such as those of Chiang (2005)
have been proposed for further reducing the com-
plexity of SCFG parsing; they may be applicable to
STIG (and STAG) parsing as well.

The STIG formalism can be shown to be expres-
sively equivalent to synchronous tree-substitution
grammar (STSG) and even SCFG. Does this viti-
ate the argument for STIG as a natural formalism
for MT? No. The reductions of STIG to these other
formalisms operate by introducing additional nodes

sumably because they prune more intelligently.”
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in the elementary trees that extend the size of those
trees and hence the complexity of their parsing, un-
less subtle tricks are used to take advantage of the
special structure of these added nodes. These tricks
essentially amount to treating the formalism as an
STIG, not an SCFG. That is, even if an SCFG were
to be used, its structure would best be built on the
observations found here.

For example, the method of Cowan et al. (2006)
synchronizes elementary trees of a prescribed form
to handle translation of clauses (verbs plus their ar-
guments) essentially implementing a kind of STSG.
However, because modifiers can make these trees
discontiguous, they augment the model by allowing
for free insertion of modifiers in certain locations.
One view of this is as an implementation of the prin-
ciple that motivates adjoining, without using adjoin-
ing itself. Thus, systems that are designed to take
account of the principles adduced in this paper are
likely to be implementing aspects of STAG implic-
itly, even if not explicitly.

Similarly, recent research is beginning to unify
synchronous grammar formalisms and tree trans-
ducers (Shieber, 2004; Shieber, 2006). There may
well be equally direct transducer formalisms that el-
egantly express construction-based translation rela-
tions. This would not be a denial of the present the-
sis but a happy acknowledgment of it.

6 Conclusion

We have argued that probabilistic synchronous TAG
or some closely related formalism possesses a con-
stellation of properties—expressivity, trainability,
and efficiency—that make it a good candidate at
a conceptual level for founding a machine transla-
tion system. What would such a system look like?
It would start with a universal normal form sub-
grammar serving as the robust “backoff” relation to
which additional more articulated bilingual material
could be added in the form of additional tree pairs.
These tree pairs might be manually generated, au-
tomatically reconstructed from repurposed bilingual
dictionaries, or automatically induced from aligned
bilingual treebanks (Groves et al., 2004; Groves and
Way, 2005) or even unannotated bilingual corpora
(Chiang, 2005). In fact, since all of these sources
of data yield interacting tree pairs, more than one of

these techniques might be used. In any case, further
training would automatically determine the interac-
tions of these information sources.

The conclusions of this paper are admittedly pro-
grammatic. But plausible arguments for a program
of research may be just the thing for clarifying a re-
search direction and even promoting its pursual. In
that sense, this paper can be read as a kind of man-
ifesto for the use of probabilistic synchronous TAG
as a substrate for MT research.

Acknowledgments

We thank Rani Nelken, Rebecca Nesson, and
Alexander Rush for helpful discussion and the
anonymous reviewers for their insightful comments.
This work was supported in part by grant IIS-
0329089 from the National Science Foundation.

References
Anne Abeille, Yves Schabes, and Aravind K. Joshi.

1990. Using lexicalized tags for machine translation.
In Proceedings of the 13th International Conference
on Computational Linguistics.

Peter F. Brown, John Cocke, Stephen Della Pietra, Vin-
cent J. Della Pietra, Frederick Jelinek, John D. Laf-
ferty, Robert L. Mercer, and Paul S. Roossin. 1990. A
statistical approach to machine translation. Computa-
tional Linguistics, 16(2):79–85.

Peter F. Brown, Stephen Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19(2):263–311.

David Chiang, William Schuler, and Mark Dras. 2000.
Some remarks on an extension of synchronous TAG.
In Proceedings of the 5th International Workshop on
Tree Adjoining Grammars and Related Formalisms
(TAG+5), Paris, France, 25–27 May.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), pages 263–270, Ann
Arbor, Michigan, June. Association for Computational
Linguistics.

Miguel Civil. 1995. Ancient Mesopotamian lexicogra-
phy. In Jack M. Sasson, editor, Civilizations of the An-
cient Near East, volume 4, pages 2305–14. Scribners,
New York.

94



Michela Clari and Catherine E. Love, editors. 1995.
HarperCollins Italian College Dictionary. Harper-
Collins Publishers, Inc., New York, NY.

Brooke Cowan, Ivona Kucerov, and Michael Collins.
2006. A discriminative model for tree-to-tree trans-
lation. In Proceedings of EMNLP 2006.

Mark Dras. 1999. A meta-level grammar: Redefining
synchronous TAG for translation and paraphrase. In
Proceedings of the 37th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 80–87,
Morristown, NJ, USA. Association for Computational
Linguistics.

Declan Groves and Andy Way. 2005. Hybrid example-
based SMT: the best of both worlds? In Workshop on
Building and Using Parallel Texts: Data-Driven Ma-
chine Translation and Beyond, Ann Arbor, MI, June.
ACL ’05.

Declan Groves, Mary Hearne, and Andy Way. 2004. Ro-
bust sub-sentential alignment of phrase-structure trees.
In COLING ’04, Geneva Switzerland.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of HLT/NAACL.

Karim Lari and Steve J. Young. 1990. The estimation
of stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Language,
4:35–56.

Rebecca Nesson, Alexander Rush, and Stuart M. Shieber.
2005. Induction of probabilistic synchronous tree-
insertion grammars. Technical Report TR-20-05, Di-
vision of Engineering and Applied Sciences, Harvard
University, Cambridge, MA.

Rebecca Nesson, Stuart M. Shieber, and Alexander Rush.
2006. Induction of probabilistic synchronous tree-
insertion grammars for machine translation. In Pro-
ceedings of the 7th Conference of the Association for
Machine Translation in the Americas (AMTA 2006),
Boston, Massachusetts, 8-12 August.

Franz Josef Och. 2003. Statistical Machine Transla-
tion: From Single-Word Models to Alignment Tem-
plates. Ph.D. thesis, Technical University of Aachen,
Aachen, Germany.

Martha Palmer, Joseph Rosenzweig, and William
Schuler. 1999. Capturing motion verb generalizations
in synchronous tree-adjoining grammar. In Patrick
Saint-Dizier, editor, Predicative Forms in Natural Lan-
guage and in Lexical Knowledge Bases. Kluwer Press.

Gilles Prigent. 1994. Synchronous TAGs and machine
translation. In Proceedings of the Third International
Workshop on Tree Adjoining Grammar and Related
Formalisms (TAG+3), Université Paris 7.
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Abstract

Machine translation of a source language
sentence involves selecting appropriate
target language words and ordering the se-
lected words to form a well-formed tar-
get language sentence. Most of the pre-
vious work on statistical machine transla-
tion relies on (local) associations of target
words/phrases with source words/phrases
for lexical selection. In contrast, in this
paper, we present a novel approach to lex-
ical selection where the target words are
associated with the entire source sentence
(global) without the need for local asso-
ciations. This technique is used by three
models (Bag–of–words model, sequential
model and hierarchical model) which pre-
dict the target language words given a
source sentence and then order the words
appropriately. We show that a hierarchi-
cal model performs best when compared
to the other two models.

1 Introduction

The problem of machine translation can be viewed
as consisting of two subproblems: (a) lexical se-
lection, where appropriate target language lexi-
cal items are chosen for each source language
lexical item and (b) lexical reordering, where
the chosen target language lexical items are rear-
ranged to produce a meaningful target language
string. Most of the previous work on statisti-
cal machine translation, as exemplified in (Brown
et al., 1993), employs word–alignment algorithm
(such as GIZA++ (Och et al., 1999)) that provides
local associations between source words and target
words. The source–to–target word–alignments are

sometimes augmented with target–to–source word
alignments in order to improve the precision of
these local associations. Further, the word–level
alignments are extended to phrase–level align-
ments in order to increase the extent of local asso-
ciations. The phrasal associations compile some
amount of (local) lexical reordering of the target
words—those permitted by the size of the phrase.
Most of the state–of–the–art machine translation
systems use these phrase–level associations in
conjunction with a target language model to pro-
duce the target sentence. There is relatively little
emphasis on (global) lexical reordering other than
the local re-orderings permitted within the phrasal
alignments. A few exceptions are the hierarchical
(possibly syntax–based) transduction models (Wu,
1997; Alshawi et al., 1998; Yamada and Knight,
2001; Chiang, 2005) and the string transduction
models (Kanthak et al., 2005).

In this paper, we present three models for doing
discriminative machine translation usingglobal
lexical selection andlexical reordering.

1. Bag–of–Words model: Given a source sen-
tence, each of the target words are chosen by
looking at the entire source sentence. The
target language words are then permuted in
various ways and then, the best permutation
is chosen using the language model on the
target side. The size of the search space of
these permutations can be set by a parameter
called the permutation window. This model
does not allow long distance re-orderings of
target words unless a very large permutation
window chosen which is very expensive.

2. Sequential Lexical Choice model: Given
a source sentence, the target words are pre-
dicted in an order which is faithful to the or-
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der of words in the source sentence. Now,
the number of permutations that need to be
examined to obtain the best target language
strings are much less when compared to the
Bag–of–Words model. This model is ex-
pected to give good results for language pairs
such as English–French for which only lo-
cal word order variations exist between sen-
tences.

3. Hierarchical lexical association and re-
ordering model : For language pairs such
as English–Hindi or English–Japanese where
there is a high degree of global reordering
(Figure 1), it is necessary to be able to handle
long distance movement of words/phrases.
In this approach, the target words predicted
through global lexical selection are associ-
ated with various nodes of the source depen-
dency tree and then, hierarchical reordering is
done to obtain the order of words in the tar-
get sentence. Hierarchical reordering allows
phrases to distort to longer distances than the
previous two models.

Figure 1: Sample distortion between En-
glish–Hindi

The outline of the paper is as follows. In Section
2, we talk about the global lexical selection. Sec-
tion 3 describes three models for global lexical se-
lection and reordering. In Section 4, we report the
results of the translation models on English–Hindi
language pair and contrast the strengths and limi-
tations of the models.

2 Global lexical selection

For global lexical selection, in contrast to the
local approaches of associating target words to
the source words, the target words are associated
to the entire source sentence. The intuition is
that there may be lexico–syntactic features of the
source sentence (not necessarily a single source
word) that might trigger the presence of a target
word in the target sentence. Furthermore, it might
be difficult to exactly associate a target word to
a source sentence in many situations - (a) when

translations are not exact but paraphrases (b) the
target language does not have one lexical item
to express the same concept that is expressed in
the source word. The extensions of word align-
ments to phrasal alignments attempt to address
some of these situations in additional to alleviat-
ing the noise in word–level alignments.

As a consequence of the global lexical selection
approach, we no longer have a tight association
between source language words/phrases and tar-
get language words/phrases. The result of lexical
selection is simply a bag of words(phrases) in the
target language and the target sentence has to be
reconstructed using this bag of words.

The target words in the bag, however, might
be enhanced with rich syntactic information that
could aid in the reconstruction of the target sen-
tence. This approach to lexical selection and
sentence reconstruction has the potential to cir-
cumvent the limitations of word–alignment based
methods for translation between significantly dif-
ferent word order languages. However, in this pa-
per, to handle large word order variations, we asso-
ciate the target words with source language depen-
dency structures to enable long distance reorder-
ing.

3 Training the discriminative models for
lexical selection and reordering

In this section, we present our approach for a
global lexical selection model which is based on
discriminatively trained classification techniques.
Discriminant modeling techniques have become
the dominant method for resolving ambiguity in
speech and natural language processing tasks, out-
performing generative models for the same task.
We expect the discriminatively trained global lex-
ical selection models to outperform generatively
trained local lexical selection models as well as
provide a framework for incorporating rich mor-
pho–syntactic information.

Statistical machine translation can be formu-
lated as a search for the best target sequence that
maximizesP (T | S), whereS is the source sen-
tence andT is the target sentence. Ideally,P (T |
S) should be estimated directly to maximize the
conditional likelihood on the training data (dis-
criminant model). However, T corresponds to
a sequence with a exponentially large combina-
tion of possible labels, and traditional classifica-
tion approaches cannot be used directly. Although
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Conditional Random Fields (CRF) (Lafferty et al.,
2001) train an exponential model at the sequence
level, in translation tasks such as ours the compu-
tational requirements of training such models are
prohibitively expensive.

3.1 Bag-of-Words Lexical Choice Model

This model doesn’t require the sentences to be
word aligned in order to learn the local associa-
tions. Instead, we take the sentence aligned cor-
pus as before but we treat the target sentence as a
bag–of–words or BOW assigned to the source sen-
tence. The goal is, given a source sentenceS, to
estimate the probability that we find a given word
(tj) in its translation ie.., we need to estimate the
probabilities P (true|tj , S) and P (false|tj, S).
To train such a model, we need to build binary
classifiers for all the words in the target lan-
guage vocabulary. The probability distributions
of these binary classifiers are learnt using maxi-
mum entropy model (Berger et al., 1996; Haffner,
2006). For the wordtj, the training sentence
pairs are considered as positive examples where
the word appears in the target, and negative other-
wise. Thus, the number of training examples for
each binary classifier equals the number of train-
ing examples. In this model, classifiers are train-
ing using n–gram features (BOgrams(S)).

During decoding, instead of producing the tar-
get sentence directly, what we initially obtain is
the target bag of words. Each word in the target
vocabulary is detected independently, so we have
here a very simple use of binary static classifiers.
Given a sentenceS, the bag of words (BOW (T )
contains those words whose distributions have the
positive probability greater than a threshold (τ ).

BOW (T ) = {t | P (true | t, BOgrams(S)) > τ}
(1)

In order to reconstruct the proper order of words
in the target sentence, we consider various permu-
tations of words inBOW (T ) and weight them by
a target language model. Considering all possible
permutations of the words in the target sentence
is computationally not feasible. But, the number
of permutations examined can be reduced by us-
ing heuristic forward pruning or by constraining
the permutations to be within a local window of
adjustable size (also see (Kanthak et al., 2005)).
We have chosen to constrain permutations here.
Constraining the permutation using a local win-
dow can provide us some very useful local re-

orderings.
The bag–of–words approach can also be modi-

fied to allow for length adjustments of target sen-
tences, if we add optional deletions in the final
step of permutation decoding. The parameterτ

and an additional word deletion penaltyδ can then
be used to adjust the length of translated outputs.

3.2 Sequential Lexical Choice Model

The previous approach gives us a predetermined
order of words initially which are then permuted to
obtain the best target string. Given that we would
not be able to search the entire space, it would be a
helpful if we could start searching various permu-
tations using a more definite string. One such def-
inite order in which the target words can be placed
is the order of source words itself. In this model,
during the lexical selection, we try to place the
target words in an order which is faithful to the
source sentence.

This model associates sets of target words with
every position in the source sentence and yet re-
tains the power of global lexical selection. For
every position (i) of the source sentence, a prefix
string is formed which consists of the sequence of
words from positions 1 toi. Each of these prefix
strings are used to predict bags of target words us-
ing the global lexical selection. Now, these bags
generated using the prefix strings are processed in
the order of source positions. LetTi be the bag of
target words generated by prefix stringi (Figure
2).

T (i+1)

T (i)

i i+1

Figure 2: The generation of target bags associated
with source sentence position

The goal is to associate a set of target words
with every source position. A target wordt
is attached to theith source position if it is
present inTi but not inTi−1 and the probability
P (true|t, Ti) > τ . The intuition behind this ap-
proach is that a wordt is associated with a position
i if there was some information present at theith

source position that triggered the probability of the
t to exceed the thresholdτ .
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Hence, the initial target string is the sequence
of target language words associated with the se-
quence of source language positions. This string
is now permuted in all possible ways (section 3.1)
and the best target string is chosen using the lan-
guage model.

3.3 Hierarchical lexical association and
reordering model

TheSequential Lexical Choice Model presented in
the last section is expected to work best for lan-
guage pairs for which there are mostly local word
order variations. For language pairs with signifi-
cant word order variation, the search for the target
string may still fail examine the best target lan-
guage string given the source sentence. The model
proposed in this section should be able to handle
such long distance movement of words/phrases.

In this model, the goal is to search for the best
target stringT which maximizes the probability
P (T |S,D(S)), where S is the source sentence
andD(S) is the dependency structure associated
with the source sentenceS. The probabilities of
the target words given the source sentence are
estimated in the same way as the bag–of–words
model. The only main difference during the esti-
mation stage is that we consider the dependency
tree based features apart from the n-gram features.

The decoding of the source sentenceS takes
place in three steps,

1. Predict the bag–of–words : Given a source
sentenceS, predict the bag of words BOW(T)
whose distributions have a positive probabil-
ities greater than a threshold (τ ).

2. Attachment to Source nodes : These target
words are now attached to the nodes of source
dependency trees. For making the attach-
ments, the probability distributions of target
words conditioned on features local to the
source nodes are used.

3. Ordering the target language words : Tra-
verse the source dependency tree in a bottom-
up fashion to obtain the best target string.

3.3.1 Predict the bag–of–words

Given a source sentenceS, all the target words
whose positive probability distributions are above
τ are included in the bag.

BOW (T ) = {t | P (true|t, f(S))} (2)

In addition to the n–gram features, this model uses
cues provided by the dependency structure to pre-
dict the target bag–of–words.

S1

S2

S3 S4

S5

Figure 3: Dependency tree of a source sentence
with words s1, s2, s3, s4 and s5

Hence, the features that we have considered in
the model are (Figure 3),

1. N-grams. For example, in Figure 2, ‘s1’, ‘s2
s3 s4’, ‘s4 s5’ etc.

2. Dependency pair (The pair of nodes and its
parents). Example in Figure 2., ‘s2 s1’, ‘s4
s2’ etc.

3. Dependency treelet (The triplet of a node, it’s
parent and sibling). For example, ‘s3 s2 s4’,
‘s2 s1 s5’ etc.

3.3.2 Attachment to Source nodes

For every target wordtj in the bag, the most
likely source nodes are determined by measuring
the positive distribution of the wordtj given the
features of the particular node (Figure 4). Let
S(tj) denote the set of source nodes to which the
word tj can be attached to, thenS(tj) is deter-
mined as,

S1

S2

S3 S4

S5

T1          T2        T3          T4

Figure 4: Dependency tree of a source sentence
with words S1, S2, S3, S4 and S5

S(tj) = argmaxs(P (true|tj , f(s)) (3)

wheref(s) denotes the features ofS in which
only those features are active which contain the
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lexical item representing the nodes. The target
words are in the global bag are processed in the
order of their global probabilitiesp(t|S). While
attaching the target words, it is ensured that no
source node had more thanρ target words attached
to it. Also, a target word should not be attached
to more to more thanσ number of times. There
is another constraint that can be applied to ensure
that the ratio of the total target words (which are
attached to source nodes) to the total number of
words in the source sentence does exceed a value
(µ).

3.4 Ordering the target language words

In this step, the source sentence dependency tree is
traversed in a bottom–up fashion. At every node,
the best possible order of target words associated
with the sub-tree rooted at the node is determined.
This string is then used as a cohesive unit by the
superior nodes.

S1

S2

S3 S4

S5
t1 t2 t3 t4 t5

t6 t7t1 t2 t3 t7 t4 t5 t6

Figure 5: The target string associated with node
S1 is determined by permuting strings attached to
the children (in rectangular boxes, to signify that
they are frozen) and the lexical items attached to
S1

For example, in Figure 5, let ‘t1 t2 t3’, ‘t4 t5’
be the best strings associated with the children of
nodes s2 and s3 respectively. Let t6 and t7 be the
words that are attached to node s1. The best string
for the node s1 is determined by permuting the
strings ‘t1 t2 t3’, ‘t4 t5’, ‘t6’ ‘t7’ in all possible
ways and then choosing the best string using the
language model.

4 Dataset

The language pair that we considered for our ex-
periments are English–Hindi. The training set
consists of 37967 sentence pairs, the development
set contains 819 sentence pairs and the test set
has 699 sentence pairs. The dataset is from the
newspaper domain with topics ranging from pol-
itics to tourism. The sentence pairs have a maxi-

mum source sentence length of 30 words. The av-
erage length of English sentences is 18 while that
of Hindi sentences is 20.

The source language vocabulary is 41017 and
target sentence vocabulary is 48576. The to-
ken/type ratio of English in the dataset is 16.70
and that of Hindi is 15.64. This dataset is rela-
tively sparse. So, the translation accuracies on this
dataset would be relatively less when compared to
those on much larger datasets. In the target side
of the development corpus, the percentage of un-
seen tokens is 13.48%(3.87% types) while in the
source side, the percentage of unseen tokens is
10.77%(3.20% types). On furthur inspection of
a small portion of the dataset, we found that the
maximum percentage of the unseen words on the
target side are the named entities.

5 Results

5.1 Bag-of-Words model

The quality of the bag–of–words obtained is gov-
erned by the parameterτ (probability threshold).
To determine the bestτ value, we experiment with
various values ofτ and measure the lexical accu-
racies (F-score) of the bags generated on the de-
velopment set (See Figure 6). The total number
of features used for training this model are 53166
(with count-cutoff of 2).

Figure 6: Lexical Accuracies of the Bags-of-
words

Now, we order the bags of words obtained
through global selection to get the target lan-
guage strings. While reordering using the lan-
guage model, some of the noisy words from the
bag can be deleted by setting a deletion cost (δ).
We experimented with various deletion costs, and
tuned it according to the best BLEU score that we
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obtained on the development set. Figure 7 shows
the best BLEU scores obtained by reordering the
bags associated with various threshold values.

Figure 7: Lexical Accuracies of the Bags-of-
words

We can see that we obtained the best BLEU
when we choose a threshold of 0.17 to obtain the
bag–of–words, when the deletion cost is set to 19.

The reference target strings of the development
set has 15986 tokens. So, while tuning the param-
eters, we should ensure that the bags (obtained us-
ing the global lexical selection) that we consider
have more tokens than 15986 to allow some dele-
tions during reordering, and in effect obtain the
target strings whose total token count is approx-
imately equal to 15986. Figure 8 shows the varia-
tion in BLEU scores for various deletion costs by
fixing the threshold at 0.17.

Figure 8: BLEU scores for various deletion costs
when the threshold for global lexical selection is
set to 0.17

On the test set, we now fix the threshold at 0.17
(τ ) and the deletion cost (δ) at 19 to obtain the
target language strings. The BLEU score that we
obtained for this set is 0.0428.

5.2 Sequential Lexical Choice Model

The lexical accuracy values of the sequence of
words obtained by the sequential lexical choice
model are comparable to those obtained using the
bag–of–words model. The real difference comes
for the BLEU score. The best BLEU score ob-
tained on the development set was0.0586whenτ

was set to 0.14 and deletion cost was 15. On the
test set, the BLEU score obtained was 0.0473.

5.3 Tree based model

The lexical accuracy values of the words obtained
in this model are comparable to the lexical accu-
racy values of the bag of words model. The total
number of features used for training this model are
118839 (with count-cutoff of 2). On the develop-
ment set, we obtained a BLEU score of0.0650for
τ set at 0.17 and the deletion cost set at 20. On
the test set, we obtained a BLEU score of 0.0498.
We can see that the BLEU scores are now bet-
ter than the ones obtained using any of the other
models discussed before. This is because the Tree
based model has both the strengths of the global
lexical selection that ensures high quality lexical
items in the target sentences and that of an efficient
reconstruction model which takes care of long dis-
tance reordering. The table summarizes the BLEU
scores obtained by the three models on the devel-
opment and test sets.

Devel. Set Test. Set
Bag-of-Words 0.0545 0.0428

Sequential 0.0586 0.0473
Hierarchical 0.0650 0.0498

Table 1: Summary of the results

6 Conclusion

In this paper, we present a novel approach to lex-
ical selection where the target words are associ-
ated with the entire source sentence (global) with-
out the need for local associations. This technique
is used by three models (Bag–of–words model, se-
quential model and hierarchical model) which pre-
dict the target language words given a source sen-
tence and then order the words appropriately. We
show that a hierarchical model performs best when
compared to the other two models. The hierar-
chical model presented in this paper has both the
strengths of the global lexical selection and effi-
cient reconstruction model.
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In the future, we are planning to improve the hi-
erarchical model by making two primary additions

• Handling cases of structural non-
isomorphism between source and target
sentences.

• Obtaining K-best target string per node of the
source dependency tree instead of just one
per node. This would allow us to explore
more possibilities without having to compro-
mise much on computational complexity.
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Abstract

This paper describes a new method to
compare reordering constraints for Statis-
tical Machine Translation. We investi-
gate the best possible (oracle) BLEU score
achievable under different reordering con-
straints. Using dynamic programming, we
efficiently find a reordering that approxi-
mates the highest attainable BLEU score
given a reference and a set of reordering
constraints. We present an empirical eval-
uation of popular reordering constraints:
local constraints, the IBM constraints,
and the Inversion Transduction Grammar
(ITG) constraints. We present results for a
German-English translation task and show
that reordering under the ITG constraints
can improve over the baseline by more
than 7.5 BLEU points.

1 Introduction

Reordering the words and phrases of a foreign sen-
tence to obtain the target word order is a fundamen-
tal, and potentially the hardest, problem in machine
translation. The search space for all possible per-
mutations of a sentence is factorial in the number
of words/phrases; therefore a variety of models have
been proposed that constrain the set of possible per-
mutations by allowing certain reorderings while dis-
allowing others. Some models (Brown et al. (1996),
Kumar and Byrne (2005)) allow words to change
place with their local neighbors, but disallow global

reorderings. Other models (Wu (1997), Xiong et al.
(2006)) explicitly allow global reorderings, but do
not allow all possible permutations, including some
local permutations.

We present a novel technique to compare achiev-
able translation accuracies under different reorder-
ing constraints. While earlier work has trained and
tested instantiations of different reordering models
and then compared the translation results (Zens and
Ney, 2003) we provide a more general mechanism
to evaluate thepotentialefficacy of reordering con-
straints, independent of specific training paradigms.
Our technique attempts to answer the question:
What is the highestBLEU score that a given trans-
lation system could reach when using reordering
constraints X?Using this oracle approach, we ab-
stract away from issues that are not inherent in the
reordering constraints, but may nevertheless influ-
ence the comparison results, such as model and fea-
ture design, feature selection, or parameter estima-
tion. In fact, we compare several sets of reorder-
ing constraints empirically, but do not train them as
models. We merely decode by efficiently search-
ing over possible translations allowed by each model
and choosing the reordering that achieves the high-
est BLEU score.

We start by introducing popular reordering con-
straints (Section 2). Then, we present dynamic-
programming algorithms that find the highest-
scoring permutations of sentences under given re-
ordering constraints (Section 3). We use this tech-
nique to compare several reordering constraints em-
pirically. We combine a basic translation framework
with different reordering constraints (Section 4) and
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present results on a German-English translation task
(Section 5). Finally, we offer an analysis of the
results and provide a review of related work (Sec-
tions 6–8).

2 Reordering Constraints

Reordering constraints restrict the movement of
words or phrases in order to reach or approximate
the word order of the target language. Some of
the constraints considered in this paper were origi-
nally proposed for reordering words, but we will de-
scribe all constraints in terms of reordering phrases.
Phrases are units of consecutive words read off a
phrase translation table.

2.1 Local Constraints

Local constraints allow phrases to swap with one
another only if they are adjacent or very close to
each other. Kumar and Byrne (2005) define two
local reordering models for their Translation Tem-
plate Model (TTM): In the first one, called MJ-1,
only adjacent phrases are allowed to swap, and the
movement has to be done within a window of 2. A
sequence consisting of three phrasesabccan there-
fore becomeacb or bac, but notcba. One phrase
can jump at most one phrase ahead and cannot take
part in more than one swap. In their second strategy,
called MJ-2, phrases are allowed to swap with their
immediate neighbor or with the phrase next to the
immediate neighbor; the maximum jump length is 2.
This allows for all six possible permutations ofabc.
The movement here has to take place within a win-
dow of 3 phrases. Therefore, a four-phrase sequence
abcdcannot be reordered tocadb, for example. MJ-
1 and MJ-2 are shown in Figure 1.

2.2 IBM Constraints

First introduced by Brown et al. (1996), the IBM
constraints are among the most well-known and
most widely used reordering paradigms. Transla-
tion is done from the beginning of the sentence to
the end, phrase by phrase; at each point in time, the
constraints allow one of the firstk still untranslated
phrases to be selected for translation (see Figure 1d,
for k=2). The IBM constraints are much less restric-
tive than local constraints. The first word of the in-
put, for example, can move all the way to the end,
independent of the value ofk. Typically, k is set to

4 (Zens and Ney, 2003). We write IBM withk=4 as
IBM(4). The IBM constraints are supersets of the
local constraints.
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Figure 1: The German word orderif you to-me that explain
could (’wenn Sie mir das erklären k̈onnten’) and all possible
reorderings under different constraints, represented as lattices.
None of these lattices contains the correct English orderif you
could explain that to-me. See also Table 1.

2.3 ITG Constraints

The Inversion Transduction Grammar (ITG) (Wu,
1997), a derivative of the Syntax Directed Trans-
duction Grammars (Aho and Ullman, 1972), con-
strains the possible permutations of the input string
by defining rewrite rules that indicate permutations
of the string. In particular, the ITG allows all per-
mutations defined by all binary branching struc-
tures where the children of any constituent may be
swapped in order. The ITG constraint is different
from the other reordering constraints presented in
that it is not based on finite-state operations. An
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Model # perm. “Best” sentence n-gram precisions BLEU

MJ-1 13 if you that to-me could explain 100.0/66.7/20.0/0.0 0.0
MJ-2 52 to-me if you could explain that 100.0/83.3/60.0/50.0 70.71
IBM(2) 32 if to-me that you could explain 100.0/50.0/20.0/0.0 0.0
IBM(4) 384 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0
IBM(4) (prune) 42 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0
ITG 394 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0
ITG (prune) 78 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0

Table 1: Illustrating example: The number of permutations (# perm.) that different reordering paradigms consider for the input
sequenceif you to-me that explain could, and the permutation with highest BLEU score. The sentence length is 7, but there are
only 6! possible permutations, since the phraseto-mecounts as one word during reordering. ITG (prune) is the ITG BLEU decoder
with the pruning settings we used in our experiments (beam threshold10−4). For comparison, IBM(4) (prune) is the lattice
BLEU decoder with the same pruning settings, but we use pruning only for ITG permutations in our experiments.

Figure 2: The exampleif
you to-me that explain could
and its reordering toif you
could explain that to-meus-
ing an ITG. The alignments
are added below the tree, and
the horizontal bars in the tree
indicate a swap.

ITG decoder runs in polynomial time and allows for
long-distance phrasal reordering. A phrase can, for
example, move from the first position in the input
to the last position in the output and vice versa, by
swapping the topmost node in the constructed bi-
nary tree. However, due to the binary bracketing
constraint, some permutations are not modeled. A
four-phrase sequenceabcdcannot be permuted into
cadbor bdac. Therefore, the ITG constraints are not
supersets of the IBM constraints. IBM(4), for exam-
ple, allowsabcdto be permuted intocadbandbdac.

3 Factored BLEU Computation
The different reordering strategies described allow
for different permutations and restrict the search
space in different ways. We are concerned with
the maximal achievable accuracy under given con-
straints, independent of feature design or parameter
estimation. This is what we call theoracleaccuracy
under the reordering constraints and it is computed
on a dataset with reference translations.

We now describe algorithms that can be used
to find such oracle translations among unreordered
translation candidates. There are two equivalent
strategies: The reordering constraints that are be-

ing tested can be expressed as a special dynamic-
programming decoder which, when applied to an
unreordered hypothesis, searches the space of per-
mutations defined by the reordering constraints and
returns the highest-scoring permutation. We employ
this strategy for the ITG reorderings (Section 3.2).
For the other reordering constraints, we employ a
more generic strategy: Given the set of reorder-
ing constraints, all permutations of an unreordered
translation candidate are precomputed and explicitly
represented as a lattice. This lattice is passed as in-
put to a Dijkstra-style decoder (Section 3.1) which
traverses it and finds the solution that reachest the
highest BLEU score.1

3.1 Dijkstra B LEU Decoder

The Dijkstra-style decoder takes as input a lattice in
which each path represents one possible permutation
of an unreordered hypothesis under a given reorder-
ing paradigm, as in Figure 1. It traverses the lat-
tice and finds the solution that has the highest ap-
proximate BLEU score, given the reference. The
dynamic-programming algorithm divides the prob-
lem into subproblems that are solved independently,
the solutions of which contribute to the solutions
of other subproblems. The general procedure is
sketched in Figure 3: for each subpath of the lat-
tice containing the precomputed permutations, we
store the three most recently attached words (Fig-

1For both strategies, several unreordered translation candi-
dates do not have to be regarded separately, but can be repre-
sented as a weighted lattice and be used as input to the special
dynamic program or to the process that precomputes possible
permutations.
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β([0, k, len+ 1, w2, w3, wnew]) = max
w1

( get bleu( [0, j, len, w1, w2, w3], [j, k, wnew] ) ) (1)

function getbleu( [0, j, len, w1, w2, w3], [j, k, wnew] ) :=
updatengrams(0, j, k, len, w1, w2, w3, wnew) ;

returnexp

(
1
4

4∑
n=1

log

(
ngramsi([0, k, len+ 1, w2, w3, wnew])

len− n+ 1

))
;

(2)

Figure 3:Top: The BLEU score is used as inside score for a subpath from 0 tok with the rightmost wordsw2, w3, wnew in the
Dijkstra decoder.Bottom: Pseudo code for a functionget bleu which updates the n-gram matches ngrams1(. . . ), ngrams2(. . . ),
ngrams3(. . . ), ngrams4(. . . ) for the resulting subpath in a hash table[0, k, len + 1, w2, w3, wnew] and returns its approximate
BLEU score.
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Figure 4: Three right-most words and n-gram matches: This shows the best path for the MJ-2 reordering ofif you to-me that
explain could, along with the words stored at each state and the progressively updated n-gram matches. The full pathto-me if you
could explain thathas 7 unigram matches, 5 bigram, 3 trigram, and 2 fourgram matches. See the full MJ-2 lattice in Figure 1c.

ure 4). A context of three words is needed to com-
pute fourgram precisions used in the BLEU score.
Starting from the start state, we recursively extend
a subpath word by word, following the paths in
the lattice. Whenever we extend the path by a
word to the right we incorporate that word and use
update ngrams to update the four n-gram counts
for the subpath. The functionupdate ngrams has
access to the reference string2 and stores the updated
n-gram counts for the resulting path in a hash table.3

The inside score of each subpath is the approximate
BLEU score, calculated as the average of the four
n-gram log precisions. An n-gram precision is al-
ways the number of n-gram matches divided by the
length len of the path minus(n − 1). A path of
length 4 with 2 bigram matches, for example, has
a bigram precision of2/3. This method is similar to
Dijkstra’s algorithm (Dijkstra, 1959) composed with
a fourgram finite-state language model, where the
scoring is done using n-gram counts and precision

2Multiple reference strings can be used if available.
3An epsilon value of1−10 is used for zero precisions.

scores. We call this the Dijkstra BLEU decoder.

3.2 ITG BLEU Decoder

For the ITG reordering constraints, we use a dy-
namic program that computes the permutations im-
plicitly. It takes only the unreordered hypothesis
as input and creates the possible reorderings under
the ITG constraints during decoding, as it creates
a parse chart. The algorithm is similar to a CKY
parsing algorithm in that it proceeds bottom-up and
combines smaller constituents into larger ones re-
cursively. Figure 5 contains details of the algo-
rithm. The ITG BLEU decoder stores the three left-
most and the three rightmost words in each con-
stituent. A constituent from positioni to posi-
tion k, with wa, wb, and wc as leftmost words,
andwx, wy, wz as rightmost words is written as
[i, k, (wa, wb, wc), (wx, wy, wz)]. Such a constituent
can be built by straight or inverted rules. Using an
inverted rule means swapping the order of the chil-
dren in the built constituent. The successive bottom-
up combinations of adjacent constituents result in hi-
erarchical binary bracketing with swapped and non-
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β ([i, k, (wa, wb, wc), (wx, wy, wz)]) = max
(
β() ([i, k, (wa, wb, wc), (wx, wy, wz)]) ,
β<> ([i, k, (wa, wb, wc), (wx, wy, wz)])

)
(3)

β<>([i, k, (wa, wb, wc), (wx, wy, wz)]) =

max
j,wa′ ,wb′ ,wc′ ,wx′ ,wy′ ,wz′

(
get bleu

( [
j, k, (wa, wb, wc), (wx′ , wy′ , wz′)

]
,

[i, j, (wa′ , wb′ , wc′), (wx, wy, wz)]

) )
(4)

Figure 5:Equations for the ITG oracle BLEU decoder.[i, k, (wa, wb, wc), (wx, wy, wz)] is a constituent fromi to k with leftmost
wordswa,wb,wc and rightmost wordswx,wy,wz. Top: A constituent can be built with a straight or a swapped rule. Bottom: A
swapped rule. Theget bleu function can be adapted from Figure 3

swapped constituents. Our ITG BLEU decoder uses
standard beam search pruning. As in Zens and Ney
(2003), phrases are not broken up, but every phrase
is, at the beginning of reordering, stored in the chart
as one lexical token together with the precomputed
n-gram matches and the n-gram precision score.

In addition to standard ITG we run experiments
with a constrained ITG, in which we impose a bound
ρ on the maximum length of reordered constituents,
measured in phrases. If the combined length of two
constituents exceeds this bound they can only be
combined in the given monotone order. Experiments
with this ITG variant give insight into the effect that
various long-distance reorderings have on the final
BLEU scores (see Table 3). Such bounds are also
effective speedup techniques(Eisner and Tromble,
2006).

3.3 BLEU Approximations

BLEU is defined to use themodifiedn-gram preci-
sion, which means that a correct n-gram that oc-
curs once in the reference, but several times in the
system translation will be counted only once as
correct. The other occurrences are clipped. We
do not include this global feature since we want
a dynamic-programming solution with polynomial
size and runtime. The decoder processes subprob-
lems independently; words are attached locally and
stored only as boundary words of covered paths/
constituents. Therefore we cannot discount a locally
attached word that has already been attached else-
where to an alternative path/constituent. However,
clipping affects most heavily the unigram scores
which are constant, like the length of the sentence.4

4Since the sentence lengths are constant for all reorderings
of a given sentence we can in our experiments also ignore the
brevity penalty which cancels out. If the input consists of sev-

We also adopt the approximation that treats every
sentence with its reference as a separate corpus (Till-
mann and Zhang, 2006) so that ngram counts are not
accumulated, and parallel processing of sentences
becomes possible. Due to these two approximations,
our method is not guaranteed to find the best reorder-
ing defined by the reordering constraints. However,
we have found on our heldout data that an oracle
that does not accumulate n-gram counts is only min-
imally worse than an oracle that does accumulate
them (up to 0.25 BLEU points).5 If, in addition,
clipping is ignored, the resulting oracle stays virtu-
ally the same, at most 0.02 BLEU points worse than
the oracle found otherwise. All results in this paper
are computed with the original BLEU formula on the
sentences found by the oracle algorithms.

4 Creating a Monotone Translation
Baseline

To compare the reordering constraints under ora-
cle conditions we first obtain unreordered candi-
date translations from a simple baseline translation
model. For each reordering paradigm, we take the
candidate translations, get the best oracle reorder-
ings under the given reordering constraints and pick
the best sentence according to the BLEU score.

The baseline translation system is created using
probabilistic word-to-word and phrase-to-phrase ta-

eral sentences of different lengths (see fn. 1) then the brevity
penalty can be built in by keeping track of length ratios of at-
tached phrases.

5The accumulating oracle algorithm makes a greedy deci-
sion for every sentence given the ngram counts so far accumu-
lated (Zens and Ney, 2005). The result of such a greedy or-
acle method may depend on the order of the input sentences.
We tried 100 shuffles of these and received 100 very simi-
lar results, with a variance of under 0.006 BLEU points. The
non-accumulating oracles use an epsilon value (1−10) for zero
counts.
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bles. Using the translation probabilities, we create
a lattice that contains word and phrase translations
for every substring of the source sentence. The re-
sulting lattice is made of English words and phrases
of different lengths. Every word or phrase transla-
tion probabilityp is a mixture ofp(f |e) andp(e|f).
We discard short phrase translations exponentially
by a parameter that is trained on heldout data. Inser-
tions and deletions are handled exclusively by the
use of a phrase table: an insertion takes place wher-
ever the English side of a phrase translation is longer
than the foreign side (e.g. Englishpresidential can-
didate for GermanPräsidentschaftskandidat), and
vice versa for deletions (e.g.we discussedfor wir
haben diskutiert). Gaps or discontinuous phrases
are not handled. The baseline decoder outputs the
n-best paths through the lattice according to the lat-
tice scores6, marking consecutive phrases so that the
oracle reordering algorithms can recognize them and
keep them together. Note that the baseline system is
trained on real data, while the reordering constraints
that we want to test are not trained.

5 Empirical Comparison of Reordering
Constraints

We use the monotone translation baseline model and
the oracle BLEU computation to evaluate different
popular reordering strategies. We now describe the
experimental settings. The word and phrase transla-
tion probabilities of the baseline model are trained
on the Europarl German-English training set, using
GIZA++ and the Pharaoh phrase extraction algo-
rithm. For testing we use the NAACL 2006 SMT
Shared Task test data. For each sentence of the test
set, a lattice is created in the way described in Sec-
tion 4, with parameters optimized on a small heldout
set.7 For each sentence, the 1000-best candidates ac-
cording to the lattice scores are extracted. We take
the 10-best oracle candidates, according to the ref-
erence, and use a BLEU decoder to create the best
permutation of each of them and pick the best one.
Using this procedure, we make sure that we get the
highest-scoring unreordered candidates and choose
the best one among their oracle reorderings. Table 2

6We use a straightforward adaption of Algorithm 3 in Huang
and Chiang (2005)

7We fill the initial phrase and word lattice with the 20 best
candidates, using phrases of 3 or less words.

and Figure 6 show the resulting BLEU scores for dif-
ferent sentence lengths. Table 3 shows results of the
ITG runs with different length boundsρ. The aver-
age phrase length in the candidate translations of the
test set is 1.42 words.

Oracle decodings under the ITG and under
IBM(4) constraints were up to 1000 times slower
than under the other tested oracle reordering meth-
ods in our implementations. Among the faster meth-
ods, decoding under MJ-2 constraints was up to 40%
faster than under IBM(2) constraints in our imple-
mentation.
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Figure 6: Reordering oracle scores for different sentence
lengths. See also Table 2.

6 Discussion

The empirical results show that reordering un-
der sufficiently permissive constraints can improve
a monotone baseline oracle by more than 7.5
BLEU points. This gap between choosing the best
unreordered sentences versus choosing the best op-
timally reordered sentences is small for short sen-
tences and widens dramatically (more than nine
BLEU points) for longer sentences.

The ITG constraints and the IBM(4) constraints
both give very high oracle translation accuracies on
the German-English translation task. Overall, their
BLEU scores are about 2 to more than 4 points bet-
ter than the BLEU scores of the best other meth-
ods. This gap between the two highest-scoring con-
straints and the other methods becomes bigger as
the sentence lengths grow and is greater than 4

108



Sentence length

# of test sentences

BLEU (NIST) scores
ITG (prune) IBM, k=4 IBM, k=2 MJ-2 MJ-1 No reordering

1–5 61 48.21(5.35) 48.21(5.35) 48.21(5.35) 48.21(5.35) 48.21(5.35) 48.17(5.68)

6–10 230 43.83(6.75) 43.71(6.74) 41.94(6.68) 42.50(6.71) 40.85(6.66) 39.21(6.99)

11–15 440 33.66(6.71) 33.37(6.71) 31.23(6.62) 31.49(6.64) 29.67(6.56) 28.21(6.76)

16–20 447 30.47(6.66) 29.99(6.65) 27.00(6.52) 27.06(6.50) 25.15(6.45) 23.34(6.52)

21–25 454 30.13(6.80) 29.83(6.79) 27.21(6.67) 27.22(6.65) 25.46(6.58) 23.32(6.63)

26–30 399 26.85(6.42) 26.36(6.42) 22.79(6.25) 22.47(6.22) 20.38(6.12) 18.31(6.11)

31–35 298 28.11(6.45) 27.47(6.43) 23.79(6.25) 23.28(6.21) 21.09(6.12) 18.94(6.06)

36–40 242 27.65(6.37) 26.97(6.35) 23.31(6.19) 22.73(6.16) 20.70(6.06) 18.22(5.94)

1–40 2571 29.63(7.48) 29.17(7.46) 26.07(7.24) 25.89(7.22) 23.95(7.08) 21.89(7.07)

Table 2: BLEU and NIST results for different reordering methods on binned sentence lengths. The ITG results are, unlike the
other results, with pruning (beam10−4). The BLEU results are plotted in Figure 6. All results are computed with the original
BLEU formula on the sentences found by the oracle algorithms.

BLEU scores for sentences longer than 30 sentences.
This advantage in translation accuracy comes with
high computational cost, as mentioned above.

Among the computationally more lightweight re-
ordering methods tested, IBM(2) and MJ-2 are very
close to each other in translation accuracy, with
IBM(2) obtaining slightly better scores on longer
sentences, while MJ-2 is more efficient. MJ-1 is
less successful in reordering, improving the mono-
tone baseline by only about 2.5 BLEU points at best,
but is the best choice if speed is an issue.

As described above, the reorderings defined by
the local constraints MJ-1 and MJ-2 are subsets of
IBM(2) and IBM(3). We did not test IBM(3), but
the values can be interpolated between IBM(2) and
IBM(4). The ITG constraints do not belong in this
family of finite-state contraints; they allow reorder-
ings that none of the other methods allow, and vice
versa. The fact that ITG constraints can reach such
high translation accuracies supports the findings in
Zens et al. (2004) and is an empirical validation of
the ITG hypothesis.

The experiments with the constrained ITG show
the effect of reorderings spanning different lengths
(see Table 3). While most reorderings are short-
distance (<5 phrases) a lot of improvements can still
be obtained whenρ is increased from length 5 to 10
and even from 10 to 20 phrases.

7 Related Work

There exist related algorithms that search the space
of reorderings and compute BLEU oracle approxi-

Len. ρ=0 ρ=5 ρ=10 ρ=20 ρ=30 ρ=40

26–30 18.31 24.07 26.40 26.79 26.85 26.85

31–35 18.94 25.10 27.21 28.00 28.09 28.11

36–40 18.22 24.46 26.66 27.53 27.64 27.65

26–40 18.49 24.74 26.74 27.41 27.50 27.51

Table 3:BLEU results of ITGs that are constrained to reorder-
ings not exceeding a certain span lengthρ. Results shown for
different sentence lengths.

mations. Zens and Ney (2005) describe a dynamic-
programming algorithm in which at every state the
number of n-gram matches is stored, along with a
multiset that contains all words from the reference
that have not yet been matched. This makes it pos-
sible to compute themodifiedngram precision, but
the search space is exponential. Tillmann and Zhang
(2006) use a BLEU oracle decoder for discrimina-
tive training of a local reordering model. No de-
tails about the algorithm are given. Zens and Ney
(2003) perform a comparison of different reorder-
ing strategies. Their study differs from ours in that
they use reordering models trained on real data and
may therefore be influenced by feature selection,
parameter estimation and other training-specific is-
sues. In our study, only the baseline translation
model is trained on data. Zens et al. (2004) con-
duct a study similar to Zens and Ney (2003) and note
that the results for the ITG reordering constraints
were quite dependent on the very simple probability
model used. Our study avoids this issue by using the
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BLEU oracle approach. In Wellington et al. (2006),
hand-aligned data are used to compare the standard
ITG constraints to ITGs that allow gaps.

8 Conclusions

We have presented a training-independent method
to compare different reordering constraints for ma-
chine translation. Given a sentence in foreign word
order, its reference translation(s) and reordering
constraints, our dynamic-programming algorithms
efficiently find the oracle reordering that has the ap-
proximately highest BLEU score. This allows eval-
uating different reordering constraints experimen-
tally, but abstracting away from specific features,
the probability model or training methods of the re-
ordering strategies. The presented method evaluates
the theoretical capabilities of reordering constraints,
as opposed to more arbitrary accuracies of specifi-
cally trained instances of reordering models.

Using our oracle method, we presented an em-
pirical evaluation of different reordering constraints
for a German-English translation task. The results
show that a good reordering of a given monotone
translation can improve the translation quality dra-
matically. Both short- and long-distance reorderings
contribute to the BLEU score improvements, which
are generally greater for longer sentences. Reorder-
ing constraints that allow global reorderings tend
to reach better oracles scores than ones that search
more locally. The ITG constraints and the IBM(4)
constraints both give the highest oracle scores.

The presented BLEU decoder algorithms can be
useful in many ways: They can generally help de-
cide what reordering constraints to choose for a
given translation system. They can be used for
discriminative training of reordering models (Till-
mann and Zhang, 2006). Furthermore, they can help
detecting insufficient parameterization or incapable
training algorithms: If two trained reordering model
instances show similar performances on a given task,
but the oracle scores differ greatly then the training
methods might not be optimal.
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