
Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X),
pages 85–92, New York City, June 2006.c©2006 Association for Computational Linguistics

Unsupervised Parsing with U-DOP

Rens Bod
School of Computer Science
University of St Andrews
North Haugh, St Andrews
KY16 9SX Scotland, UK

rb@dcs.st-and.ac.uk

Abstract

We propose a generalization of the super-
vised DOP model to unsupervised learning.
This new model, which we call U-DOP,
initially assigns all possible unlabeled binary
trees to a set of sentences and next uses all
subtrees from (a large subset of) these binary
trees to compute the most probable parse
trees. We show how U-DOP can be
implemented by a PCFG-reduction tech-
nique and report competitive results on
English (WSJ), German (NEGRA) and
Chinese (CTB) data. To the best of our
knowledge, this is the first paper which
accurately bootstraps structure for Wall
Street Journal sentences up to 40 words
obtaining roughly the same accuracy as a
binarized supervised PCFG. We show that
previous approaches to unsupervised parsing
have shortcomings in that they either
constrain the lexical or the structural context,
or both.

1 Introduction

How can we learn syntactic structure from unlabeled
data in an unsupervised way? The importance of
unsupervised parsing is nowadays widely acknow-
ledged. While supervised parsers suffer from
shortage of hand-annotated data, unsupervised
parsers operate with unlabeled raw data, of which
unlimited quantities are available. During the last
few years there has been considerable progress in
unsupervised parsing. To give a brief overview: van
Zaanen (2000) achieved 39.2% unlabeled f-score on
ATIS word strings by a sentence-aligning technique
called ABL. Clark (2001) reports 42.0% unlabeled

f-score on the same data using distributional
clustering, and Klein and Manning (2002) obtain
51.2% unlabeled f-score on ATIS part-of-speech
strings using a constituent-context model called
CCM. Moreover, on Penn Wall Street Journal p-o-
s-strings ≤ 10 (WSJ10), Klein and Manning (2002)
report 71.1% unlabeled f-score. And the hybrid
approach of Klein and Manning (2004), which
combines a constituency and a dependency model,
leads to a further increase of 77.6% f-score.

Although there has thus been steady
progress in unsupervised parsing, all these
approaches have shortcomings in that they either
constrain the lexical or the structural context that is
taken into account, or both. For example, the CCM
model by Klein and Manning (2005) is said to
describe "all contiguous subsequences of a
sentence" (Klein and Manning 2005: 1410). While
this is a very rich lexical model, it is still limited in
that it neglects dependencies that are non-contiguous
such as between more and than in "BA carried
more people than cargo". Moreover, by using an
"all-substrings" approach, CCM risks to under-
represent structural context. Similar shortcomings
can be found in other unsupervised models.

In this paper we will try to directly model
structural as well as lexical context without
constraining any dependencies beforehand. An
approach that may seem apt in this respect is an all-
subtrees approach (e.g Bod 2003; Goodman 2003;
Collins and Duffy 2002). Subtrees can model both
contiguous and non-contiguous lexical dependencies
(see section 2) and they also model constituents in a
hierarchical context. Moreover, we can view the all-
subtrees approach as a generalization of Klein and
Manning's all-substrings approach and van Zaanen's
ABL model.

In the current paper, we will use the all-
subtrees approach as proposed in Data-Oriented

85

Parsing or DOP (Bod 1998). We will generalize the
supervised version of DOP to unsupervised parsing.
The key idea of our approach is to initially assign all
possible unlabeled binary trees to a set of given
sentences, and to next use counts of all subtrees
from (a large random subset of) these binary trees to
compute the most probable parse trees. To the best
of our knowledge, such a model has never been
tried out. We will refer to this unsupervised DOP
model as U-DOP, while the supervised DOP model
(which uses hand-annotated trees) will be referred to
as S-DOP. Moreover, we will continue to refer to
the general approach simply as DOP.

U-DOP is not just an engineering approach
to unsupervised learning but can also be motivated
from a cognitive perspective (Bod 2006): if we don't
have a clue which trees should be assigned to
sentences in the initial stages of language acquisit-
ion, we can just as well assume that initially all trees
are possible. Only those (sub)trees that partake in
computing the most probable parse trees for new
sentences are actually "learned". We have argued in
Bod (2006) that such an integration of unsupervised
and supervised methods results in an integrated
model for language learning and language use.

In the following we will first explain how
U-DOP works, and how it can be approximated by
a PCFG-reduction technique. Next, in section 3 we
discuss a number of experiments with U-DOP and
compare it to previous models on English (WSJ),
German (NEGRA) and Chinese (CTB) data. To the
best of our knowledge, this is the first paper which
bootstraps structure for WSJ sentences up to 40
words obtaining roughly the same accuracy as a
binarized supervised PCFG. This is remarkable
since unsupervised models are clearly at a
disavantage compared to supervised models which
can literally reuse manually annotated data.

2 Unsupervised data-oriented parsing

At a general level, U-DOP consists of the following
three steps:

1. Assign all possible binary trees to a set of
 sentences

2. Convert the binary trees into a PCFG-reduction
 of DOP

3. Compute the most probable parse tree for each
 sentence

Note that in unsupervised parsing we do not need to
split the data into a training and a test set. In this

paper, we will present results both on entire corpora
and on 90-10 splits of such corpora so as to make
our results comparable to a supervised PCFG using
the treebank grammars of the same data ("S-
PCFG").

In the following we will first describe each
of the three steps given above where we initially
focus on inducing trees for p-o-s strings for the
WSJ10 (we will deal with other corpora and the
much larger WSJ40 in section 3). As shown by
Klein and Manning (2002, 2004), the extension to
inducing trees for words instead of p-o-s tags is
rather straightforward since there exist several
unsupervised part-of-speech taggers with high
accuracy, which can be combined with unsupervised
parsing (see e.g. Schütze 1996; Clark 2000).

Step 1: Assign all binary trees to p-o-s strings
from the WSJ10

The WSJ10 contains 7422 sentences ≤ 10 words
after removing empty elements and punctuation. We
assigned all possible binary trees to the
corresponding part-of-speech sequences of these
sentences, where each root node is labeled S and
each internal node is labeled X. As an example,
consider the p-o-s string NNS VBD JJ NNS, which
may correspond for instance to the sentence
Investors suffered heavy losses. This string has a
total of five binary trees shown in figure 1 -- where
for readability we add words as well.

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

X
X

S

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

XX

S

Figure 1. All binary trees for NNS VBD JJ NNS
(Investors suffered heavy losses)

86

The total number of binary trees for a sentence of
length n is given by the Catalan number Cn−1,
where Cn = (2n)!/((n+1)!n!). Thus while a sentence
of 4 words has 5 binary trees, a sentence of 8 words
has already 429 binary trees, and a sentence of 10
words has 4862 binary trees. Of course, we can
represent the set of binary trees of a string in
polynomial time and space by means of a chart,
resulting in a chart-like parse forest if we also
include pointers. But if we want to extract rules or
subtrees from these binary trees -- as in DOP -- we
need to unpack the parse forest. And since the total
number of binary trees that can be assigned to the
WSJ10 is almost 12 million, it is doubtful whether
we can apply the unrestricted U-DOP model to such
a corpus.

However, for longer sentences the binary
trees are highly redundant. In these larger trees, there
are many rules like X → XX which bear little
information. To make parsing with U-DOP possible
we therefore applied a simple heuristic which takes
random samples from the binary trees for sentences
≥ 7 words before they are fed to the DOP parser.
These samples were taken from the distribution of
all binary trees by randomly choosing nodes and
their expansions from the chart-like parse forests of
the sentences (which effectively favors trees with
more frequent subtrees). For sentences of 7 words
we randomly sample 60% of the trees, and for
sentences of 8, 9 and 10 words we sample
respectively 30%, 15% and 7.5% of the trees. In this
way, the set of remaining binary trees contains 8.23
* 105 trees, which we will refer to as the binary
tree-set. Although it can happen that the correct tree
is deleted for some sentence in the binary tree-set,
there is enough redundancy in the tree-set such that
either the correct binary tree can be generated by
other subtrees or that a remaining tree only
minimally differs from the correct tree. Of course,
we may expect better results if all binary trees are
kept, but this involves enormous computational
resources which will be postponed to future
research.

Step 2: Convert the trees into a PCFG-
reduction of DOP

The underlying idea of U-DOP is to take all subtrees
from the binary tree-set to compute the most
probable tree for each sentence. Subtrees from the
trees in figure 1 include for example the subtrees in
figure 2 (where we again added words for
readability). Note that U-DOP takes into account
both contiguous and non-contiguous substrings.

NNS VBD

Investors suffered

X

X

S

VBD

suffered

X

X

NNS NNS

Investors losses

X

X

S

JJ NNS

heavy losses

XX

S

JJ NNS

heavy losses

X

NNS VBD

Investors suffered

X

VBD JJ

suffered heavy

X

Figure 2. Some subtrees from the binary trees for
NNS VBD JJ NNS given in figure 1

As in the supervised DOP approach (Bod 1998), U-
DOP parses a sentence by combining corpus-
subtrees from the binary tree-set by means of a
leftmost node substitution operation, indicated as °.
The probability of a parse tree is computed by
summing up the probabilities of all derivations
producing it, while the probability of a derivation is
computed by multiplying the (smoothed) relative
frequencies of its subtrees. That is, the probability of
a subtree t is taken as the number of occurrences of t
in the binary tree-set, | t |, divided by the total
number of occurrences of all subtrees t' with the
same root label as t. Let r(t) return the root label of t:

P(t) =

| t |

Σ t': r (t')=r (t) | t' |

The subtree probabilities are smoothed by applying
simple Good-Turing to the subtree distribution (see
Bod 1998: 85-87). The probability of a derivation
t1°...°tn is computed by the product of the
probabilities of its subtrees t i:

P(t1°...°tn) = Π i P(ti)

Since there may be distinct derivations that generate
the same parse tree, the probability of a parse tree T

87

is the sum of the probabilities of its distinct
derivations. Let ti d be the i-th subtree in the
derivation d that produces tree T, then the probability
of T is given by

P(T) = ΣdΠi P(tid)

As we will explain under step 3, the most probable
parse tree of a sentence is estimated by Viterbi n-
best summing up the probabilities of derivations that
generate the same tree.

It may be evident that had we only the
sentence Investors suffered heavy losses in our
corpus, there would be no difference in probability
between the five parse trees in figure 1, and U-DOP
would not be able to distinguish between the
different trees. However, if we have a different
sentence where JJ NNS (heavy losses) appears in a
different context, e.g. in Heavy losses were
reported, its covering subtree gets a relatively higher
frequency and the parse tree where heavy losses
occurs as a constituent gets a higher total probability
than alternative parse trees. Of course, it is left to the
experimental evaluation whether non-constituents
("distituents") such as VBD JJ will be ruled out by
U-DOP (section 3).

An important feature of (U-)DOP is that it
considers counts of subtrees of a wide range of
sizes: everything from counts of single-level rules to
entire trees. A disadvantage of the approach is that
an extremely large number of subtrees (and
derivations) must be taken into account. Fortunately,
there exists a rather compact PCFG-reduction of
DOP which can also be used for U-DOP
(Goodman 2003). Here we will only give a short
summary of this PCFG-reduction. (Collins and
Duffy 2002 show how a tree kernel can be used for
an all-subtrees representation, which we will not
discuss here.)

Goodman's reduction method first assigns
every node in every tree a unique number which is
called its address. The notation A@k denotes the
node at address k where A is the nonterminal
labeling that node. A new nonterminal is created for
each node in the training data. This nonterminal is
called Ak. Let aj represent the number of subtrees
headed by the node A@j. Let a represent the number
of subtrees headed by nodes with nonterminal A,
that is a = Σjaj. Goodman then gives a small PCFG
with the following property: for every subtree in the
training corpus headed by A, the grammar will
generate an isomorphic subderivation with
probability 1/a. For a node A@j(B@k, C@l), the

following eight PCFG rules in figure 3 are
generated, where the number in parentheses
following a rule is its probability.

Aj → BC (1/aj) A → BC (1/a)
Aj → BkC (bk/aj) A → BkC (bk/a)
Aj → BCl (cl/aj) A → BCl (cl/a)
Aj → BkCl (bkcl/aj) A → BkCl (bkcl/a)

Figure 3. PCFG-reduction of DOP

In this PCFG reduction, bk represents the number of
subtrees headed by the node B@k, and cl refers to
the number of subtrees headed by the node C@l.
Goodman shows by simple induction that his
construction produces PCFG derivations
isomorphic to (U-)DOP derivations with equal
probability (Goodman 2003: 130-133). This means
that summing up over derivations of a tree in DOP
yields the same probability as summing over all the
isomorphic derivations in the PCFG.1

The PCFG-reduction for U-DOP is slightly
simpler than in figure 3 since the only labels are S
and X, and the part-of-speech tags. For the tree-set
of 8.23 * 105 binary trees generated under step 1,
Goodman's reduction method results in a total
number of 14.8 * 106 distinct PCFG rules. While it
is still feasible to parse with a rule-set of this size, it
is evident that our approach can deal with longer
sentences only if we further reduce the size of our
binary tree-set.

It should be kept in mind that while the
probabilities of all parse trees generated by DOP
sum up to 1, these probabilities do not converge to
the "true" probabilities if the corpus grows to
infinity (Johnson 2002). In fact, in Bod et al. (2003)
we showed that the most probable parse tree as
defined above has a tendency to be constructed by
the shortest derivation (consisting of the fewest and
thus largest subtrees). A large subtree is overruled
only if the combined relative frequencies of smaller
subtrees yields a larger score. We refer to Zollmann
and Sima'an (2005) for a recently proposed
estimator that is statistically consistent (though it is
not yet known how this estimator performs on the
WSJ) and to Zuidema (2006) for a theoretical
comparison of existing estimators for DOP.

1 As in Bod (2003) and Goodman (2003: 136), we
additionally use a correction factor to redress DOP's
bias discussed in Johnson (2002).

88

Step 3: Compute the most probable parse tree
for each WSJ10 string

While Goodman's reduction method allows for
efficiently computing the most probable derivation
for each sentence (i.e. the Viterbi parse), it does not
allow for an efficient computation of (U-)DOP's
most probable parse tree since there may be
exponentially many derivations for each tree whose
probabilities have to be summed up. In fact, the
problem of computing the most probable tree in
DOP is known to be NP hard (Sima'an 1996). Yet,
the PCFG reduction in figure 4 can be used to
estimate DOP's most probable parse tree by a
Viterbi n-best search in combination with a CKY
parser which computes the n most likely derivations
and next sums up the probabilities of the derivations
producing the same tree. (We can considerably
improve efficiency by using k-best hypergraph
parsing as recently proposed by Huang and Chiang
2005, but this will be left to future research).

In this paper, we estimate the most probable
parse tree from the 100 most probable derivations
(at least for the relatively small WSJ10). Although
such a heuristic does not guarantee that the most
probable parse is actually found, it is shown in Bod
(2000) to perform at least as well as the estimation
of the most probable parse with Monte Carlo
techniques. However, in computing the 100 most
probable derivations by means of Viterbi it is
prohibitive to keep track of all subderivations at each
edge in the chart. We therefore use a pruning
technique which deletes any item with a probability
less than 10−5 times of that of the best item from
the chart.

To make our parse results comparable to
those of Klein and Manning (2002, 2004, 2005), we
will use exactly the same evaluation metrics for
unlabeled precision (UP) and unlabeled recall (UR),
defined in Klein (2005: 21-22). Klein's definitions
slightly differ from the standard PARSEVAL
metrics: multiplicity of brackets is ignored, brackets
of span one are ignored and the bracket labels are
ignored. The two metrics of UP and UR are
combined by the unlabled f-score F1 which is
defined as the harmonic mean of UP and UR: F1 =
2*UP*UR/(UP+UR). It should be kept in mind that
these evaluation metrics were clearly inspired by the
evaluation of supervised parsing which aims at
mimicking given tree annotations as closely as
possible. Unsupervised parsing is different in this
respect and it is questionable whether an evaluation
on a pre-annotated corpus such as the WSJ is the

most appropriate one. For a subtle discussion on
this issue, see Clark (2001) or Klein (2005).

3 Experiments

3.1 Comparing U-DOP to previous work

Using the method described above, our parsing
experiment with all p-o-s strings from the WSJ10
results in an f-score of 78.5%. We next tested U-
DOP on two additional domains from Chinese and
German which were also used in Klein and
Manning (2002, 2004): the Chinese treebank (Xue
et al. 2002) and the NEGRA corpus (Skut et al.
1997). The CTB10 is the subset of p-o-s strings
from the Penn Chinese treebank containing 10
words or less after removal of punctuation (2437
strings). The NEGRA10 is the subset of p-o-s
strings of the same length from the NEGRA corpus
using the supplied converson into Penn treebank
format (2175 strings). Table 1 shows the results of
U-DOP in terms of UP, UR and F1 compared to
the results of the CCM model by Klein and
Manning (2002), the DMV dependency learning
model by Klein and Manning (2004) together with
their combined model DMV+CCM.

Model English German Chinese
(WSJ10) (NEGRA10) (CTB10)

UP UR F1 UP UR F1 UP UR F1

CCM 64.2 81.6 71.9 48.1 85.5 61.6 34.6 64.3 45.0

DMV 46.6 59.2 52.1 38.4 69.5 49.5 35.9 66.7 46.7

DMV+CCM 69.3 88.0 77.6 49.6 89.7 63.9 33.3 62.0 43.3

U-DOP 70.8 88.2 78.5 51.2 90.5 65.4 36.3 64.9 46.6

Table 1. Results of U-DOP compared to previous
models on the same data

Table 1 indicates that our model scores slightly
better than Klein and Manning's combined
DMV+CCM model, although the differences are
small (note that for Chinese the single DMV model
scores better than the combined model and slightly
better than U-DOP). But where Klein and
Manning's combined model is based on both a
constituency and a dependency model, U-DOP is,
like CCM, only based on a notion of constituency.
Compared to CCM alone, the all-subtrees approach
employed by U-DOP shows a clear improvement
(except perhaps for Chinese). It thus seems to pay
off to use all subtrees rather than just all
(contiguous) substrings in bootstrapping

89

constituency. It would be interesting to investigate
an extension of U-DOP towards dependency
parsing, which we will leave for future research. It is
also noteworthy that U-DOP does not employ a
separate class for non-constituents, so-called
distituents, while CCM does. Thus good results can
be obtained without keeping track of distituents but
by simply assigning all binary trees to the strings
and letting the DOP model decide which substrings
are most likely to form constituents.

To give an idea of the constituents learned
by U-DOP for the WSJ10, table 2 shows the 10
most frequently constituents in the trees induced by
U-DOP together with the 10 actually most
frequently occurring constituents in the WSJ10 and
the 10 most frequently occurring part-of-speech
sequences (bigrams) in the WSJ10.

Rank Most frequent Most Frequent Most frequent
U-DOP constituents WSJ10 constituents WSJ10 substrings

1 DT NN DT NN NNP NNP
2 NNP NNP NNP NNP DT NN
3 DT JJ NN CD CD JJ NN
4 IN DT NN JJ NNS IN DT
5 CD CD DT JJ NN NN IN
6 DT NNS DT NNS DT JJ
7 JJ NNS JJ NN JJ NNS
8 JJ NN CD NN NN NN
9 VBN IN IN NN CD CD
10 VBD NNS IN DT NN NN VBZ

Table 2. Most frequently learned constituents by
U-DOP together with most frequently occurring
constituents and p-o-s sequences (for WSJ10)

Note that there are no distituents among U-DOP's
10 most frequently learned constituents, whilst the
third column shows that distituents such as IN DT
or DT JJ occur very frequently as substrings in the
WSJ10. This may be explained by the fact that (the
constituent) DT NN occurs more frequently as a
substring in the WSJ10 than (the distituent) IN DT,
and therefore U-DOP's probability model will favor
a covering subtree for IN DT NN which consists of
a division into IN X and DT NN rather than into IN
DT and X NN, other things being equal. The same
kind reasoning can be made for a subtree for DT JJ
NN where the constituent JJ NN occurs more
frequently as a substring than the distituent DT JJ.
Of course the situation is somewhat more complex
in DOP's sum-of-products model, but our argument
may illustrate why distituents like IN DT or DT JJ
are not proposed among the most frequent
constituents by U-DOP while larger constituents
like IN DT NN and DT JJ NN are in fact proposed.

3.2 Testing U-DOP on held-out sets and longer
sentences (up to 40 words)

We were also interested in U-DOP's performance
on a held-out test set such that we could compare the
model with a supervised PCFG treebank grammar
trained and tested on the same data (S-PCFG). We
started by testing U-DOP on 10 different 90%/10%
splits of the WSJ10, where 90% was used for
inducing the trees, and 10% to parse new sentences
by subtrees from the binary trees from the training
set (or actually a PCFG-reduction thereof). The
supervised PCFG was right-binarized as in Klein
and Manning (2005). The following table shows the
results.

Model UP UR F1

U-DOP 70.6 88.1 78.3

S-PCFG 84.0 79.8 81.8

Table 3. Average f-scores of U-DOP compared to a
supervised PCFG (S-PCFG) on 10 different 90-10

splits of the WSJ10

Comparing table 1 with table 3, we see that on 10
held-out WSJ10 test sets U-DOP performs with an
average f-score of 78.3% (SD=2.1%) only slightly
worse than when using the entire WSJ10 corpus
(78.5%). Next, note that U-DOP's results come near
to the average performance of a binarized supervised
PCFG which achieves 81.8% unlabeled f-score
(SD=1.8%). U-DOP's unlabeled recall is even
higher than that of the supervised PCFG. Moreover,
according to paired t-testing, the differences in f-
scores were not statistically significant. (If the
PCFG was not post-binarized, its average f-score
was 89.0%.)

As a final test case for this paper, we were
interested in evaluating U-DOP on WSJ sentences ≤
40 words, i.e. the WSJ40, which is with almost
50,000 sentences a much more challenging test case
than the relatively small WSJ10. The main problem
for U-DOP is the astronomically large number of
possible binary trees for longer sentences, which
therefore need to be even more heavily pruned than
before.

We used a similar sampling heuristic as in
section 2. We started by taking 100% of the trees for
sentences ≤ 7 words. Next, for longer sentences we
reduced this percentage with the relative increase of
the Catalan number. This effectively means that we
randomly selected the same number of trees for
each sentence ≥ 8 words, which is 132 (i.e. the

90

number of possible binary trees for a 7-word
sentence). As mentioned in section 2, our sampling
approach favors more frequent trees, and trees with
more frequent subtrees. The binary tree-set obtained
in this way for the WSJ40 consists of 5.11 * 106

different trees. This resulted in a total of 88+ million
distinct PCFG rules according to the reduction
technique in section 2. As this is the largest PCFG
we have ever attempted to parse with, it was
prohibitive to estimate the most probable parse tree
from 100 most probable derivations using Viterbi n-
best. Instead, we used a beam of only 15 most
probable derivations, and selected the most probable
parse from these. (The number 15 is admittedly ad
hoc, and was inspired by the performance of the so-
called SL-DOP model in Bod 2002, 2003). The
following table shows the results of U-DOP on the
WSJ40 using 10 different 90-10 splits, compared to
a supervised binarized PCFG (S-PCFG) and a
supervised binarized DOP model (S-DOP) on the
same data.

Model F1

U-DOP 64.2

S-PCFG 64.7

S-DOP 81.9

Table 4. Performance of U-DOP on WSJ40
using10 different 90-10 splits, compared to a

binarized S-PCFG and a binarized S-DOP model.

Table 4 shows that U-DOP obtains about the same
results as a binarized supervised PCFG on WSJ
sentences ≤ 40 words. Moreover, the differences
between U-DOP and S-PCFG were not statistically
significant. This result is important as it shows that
it is possible to parse the rather challinging WSJ in a
completely unsupervised way obtaining roughly the
same accuracy as a supervised PCFG. This seems
to be in contrast with the CCM model which quickly
degrades if sentence length is increased (see Klein
2005). As Klein (2005: 97) notes, CCM's strength
is finding common short constituent chunks. U-
DOP on the other hand has a preference for large
(even largest possible) constituent chunks. Klein
(2005: 97) reports that the combination of CCM and
DMV seems to be more stable with increasing
sentence length. It would be extremely interesting to
see how DMV+CCM performs on the WSJ40.

It should be kept in mind that simple
treebank PCFGs do not constitute state-of-the-art
supervised parsers. Table 4 indicates that U-DOP's

performance remains still far behind that of S-DOP
(and indeed of other state-of-the-art supervised
parsers such as Bod 2003 or Charniak and Johnson
2005). Moreover, if S-DOP is not post-binarized, its
average f-score on the WSJ40 is 90.1% -- and there
are some hybrid DOP models that obtain even
higher scores (see Bod 2003). Our long-term goal is
to try to outperform S-DOP by U-DOP. An
important advantage of U-DOP is of course that it
only needs unannotated data of which unlimited
quanitities are available. Thus it would be interesting
to test how U-DOP performs if trained on e.g. 100
times more data. Yet, as long as we compute our f-
scores on hand-annotated data like Penn's WSJ, the
S-DOP model is clearly at an advantage. We
therefore plan to compare U-DOP and S-DOP (and
other supervised parsers) in a concrete application
such as phrase-based machine translation or as a
language model for speech recognition.

4 Conclusions

We have shown that the general DOP approach can
be generalized to unsupervised learning, effectively
leading to a single model for both supervised and
unsupervised parsing. Our new model, U-DOP,
uses all subtrees from (in principle) all binary trees
of a set of sentences to compute the most probable
parse trees for (new) sentences. Although heavy
pruning of trees is necessary to make our approach
feasible in practice, we obtained competitive results
on English, German and Chinese data. Our parsing
results are similar to the performance of a binarized
supervised PCFG on the WSJ ≤ 40 sentences. This
triggers the provocative question as to whether it is
possible to beat supervised parsing by unsupervised
parsing. To cope with the problem of evaluation, we
propose to test U-DOP in specific applications
rather than on hand-annotated data.

References

Bod, R. 1998. Beyond Grammar: An Experience-
Based Theory of Language, Stanford: CSLI
Publications (Lecture notes number 88),
distributed by Cambridge University Press.

Bod, R. 2000. An improved parser for data-oriented
lexical-functional analysis. Proceedings
ACL'2000, Hong Kong.

Bod, R. 2002. A unified model of structural
organization in language and music. Journal of

91

Artificial Intelligence Research 17(2002), 289-
308.

Bod, R., R. Scha and K. Sima'an (eds.) 2003. Data-
Oriented Parsing. CSLI Publications/University
of Chicago Press.

Bod, R. 2003. An efficient implementation of a new
DOP model. Proceedings EACL'2003,
Budapest.

Bod, R. 2006. Exemplar-based syntax: How to get
productivity from examples? The Linguistic
Review 23(3), Special Isssue on Exemplar-
Based Models in Linguistics.

Charniak, E. and M. Johnson 2005. Coarse-to-fine
n-best parsing and Max-Ent discriminative
reranking. Proceedings ACL'2005, Ann-Arbor.

Clark, A. 2000. Inducing syntactic categories by
context distribution clustering. Proceedings
CONLL'2000.

Clark, A. 2001. Unsupervised induction of
stochastic context-free grammars using
distr ibutional clustering. Proceed ings
CONLL'2001.

Collins, M. and N. Duffy 2002. New ranking
algorithms for parsing and tagging: kernels over
discrete structures, and the voted perceptron.
Proceedings ACL'2002, Philadelphia.

Goodman, J. 2003. Efficient algorithms for the
DOP model. In R. Bod, R. Scha and K. Sima'an
(eds.). Data-Oriented Parsing, The University
of Chicago Press.

Huang, L. and Chiang D. 2005. Better k-best
parsing. Proceedings IWPT'2005, Vancouver.

Johnson, M. 2002. The DOP estimation method is
biased and inconsistent. Computational
Linguistics 28, 71-76.

Klein, D. 2005. The Unsupervised Learning of
Natural Language Structure. PhD thesis,
Stanford University.

Klein, D. and C. Manning 2002. A general
constituent-context model for improved

grammar induction. Proceedings ACL'2002,
Philadelphia.

Klein, D. and C. Manning 2004. Corpus-based
induction of syntactic structure: models of
dependency and constituency. Proceedings
ACL'2004, Barcelona.

Klein, D. and C. Manning 2005. Natural language
grammar induction with a generative constituent-
context model. Pattern Recognition 38, 1407-
1419.

Schütze, H. 1995. Distributional part-of-speech
tagging. Proceedings ACL'1995, Dublin.

Sima'an, K. 1996. Computational complexity of
probabilistic disambiguation by means of tree
grammars. Proceedings COLING'1996,
Copenhagen.

Skut, W., B. Krenn, T. Brants and H. Uszkoreit
1997. An annotation scheme for free word order
languages. Proceedings ANLP'97.

Xue, N., F. Chiou and M. Palmer 2002. Building a
large-scale annotated Chinese corpus.
Proceedings COLING 2002, Taipei.

van Zaanen, M. 2000. ABL: Alignment-Based
Learning. Proceedings COLING'2000,
Saarbrücken.

Zollmann, A. and K. Sima'an 2005. A consistent
and efficient estimator for data-oriented parsing.
Journal of Automata, Languages and
Combinatorics, in press.

Zuidema, W. 2006. Theoretical evaluation of
estimation methods for data-oriented parsing.
Proceedings EACL'2006, Trento.

92

