
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), pages 618–626,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Solving the Problem of Cascading Errors: Approximate Bayesian
Inference for Linguistic Annotation Pipelines

Jenny Rose Finkel, Christopher D. Manning and Andrew Y. Ng
Computer Science Department

Stanford University
Stanford, CA 94305

{jrfinkel, manning, ang}@cs.stanford.edu

Abstract

The end-to-end performance of natural
language processing systems for com-
pound tasks, such as question answering
and textual entailment, is often hampered
by use of a greedy 1-best pipeline archi-
tecture, which causes errors to propagate
and compound at each stage. We present
a novel architecture, which models these
pipelines as Bayesian networks, with each
low level task corresponding to a variable
in the network, and then we perform ap-
proximate inference to find the best la-
beling. Our approach is extremely sim-
ple to apply but gains the benefits of sam-
pling the entire distribution over labels at
each stage in the pipeline. We apply our
method to two tasks – semantic role la-
beling and recognizing textual entailment
– and achieve useful performance gains
from the superior pipeline architecture.

1 Introduction

Almost any system for natural language under-
standing must recover hidden linguistic structure
at many different levels: parts of speech, syntac-
tic dependencies, named entities, etc. For exam-
ple, modern semantic role labeling (SRL) systems
use the parse of the sentence, and question answer-
ing requires question type classification, parsing,
named entity tagging, semantic role labeling, and
often other tasks, many of which are dependent
on one another and must be pipelined together.
Pipelined systems are ubiquitous in NLP: in ad-
dition to the above examples, commonly parsers
and named entity recognizers use part of speech
tags and chunking information, and also word seg-

mentation for languages such as Chinese. Almost
no NLP task is truly standalone.

Most current systems for higher-level, aggre-
gate NLP tasks employ a simple 1-best feed for-
ward architecture: they greedily take the best out-
put at each stage in the pipeline and pass it on to
the next stage. This is the simplest architecture to
build (particularly if reusing existing component
systems), but errors are frequently made during
this pipeline of annotations, and when a system
is given incorrectly labeled input it is much harder
for that system to do its task correctly. For ex-
ample, when doing semantic role labeling, if no
syntactic constituent of the parse actually corre-
sponds to a given semantic role, then that seman-
tic role will almost certainly be misidentified. It
is therefore disappointing, but not surprising, that
F-measures on SRL drop more than 10% when
switching from gold parses to automatic parses
(for instance, from 91.2 to 80.0 for the joint model
of Toutanova (2005)).

A common improvement on this architecture is
to passk-best lists between processing stages, for
example (Sutton and McCallum, 2005; Wellner et
al., 2004). Passing on ak-best list gives useful
improvements (e.g., in Koomen et al. (2005)), but
efficiently enumeratingk-best lists often requires
very substantial cognitive and engineering effort,
e.g., in (Huang and Chiang, 2005; Toutanova et
al., 2005).

At the other extreme, one can maintain the
entire space of representations (and their proba-
bilities) at each level, and use this full distribu-
tion to calculate the full distribution at the next
level. If restricting oneself to weighted finite state
transducers (WFSTs), a framework applicable to a
number of NLP applications (as outlined in Kart-
tunen (2000)), a pipeline can be compressed down

618

into a single WFST, giving outputs equivalent
to propagating the entire distribution through the
pipeline. In the worst case there is an exponential
space cost, but in many relevant cases composition
is in practice quite practical. Outside of WFSTs,
maintaining entire probability distributions is usu-
ally infeasible in NLP, because for most intermedi-
ate tasks, such as parsing and named entity recog-
nition, there is an exponential number of possible
labelings. Nevertheless, for some models, such as
most parsing models, these exponential labelings
can be compactly represented in a packed form,
e.g., (Maxwell and Kaplan, 1995; Crouch, 2005),
and subsequent stages can be reengineered to work
over these packed representations, e.g., (Geman
and Johnson, 2002). However, doing this normally
also involves a very high cognitive and engineer-
ing effort, and in practice this solution is infre-
quently adopted. Moreover, in some cases, a sub-
sequent module is incompatible with the packed
representation of a previous module and an ex-
ponential amount of work is nevertheless required
within this architecture.

Here we present an attractive middle ground
in dealing with linguistic pipelines. Rather than
only using the 1 ork most likely labelings at each
stage, we would indeed like to take into account
all possible labelings and their probabilities, but
we would like to be able to do so without a lot of
thinking or engineering. We propose that this can
be achieved by use of approximate inference. The
form of approximate inference we use is very sim-
ple: at each stage in the pipeline, we draw a sam-
ple from the distribution of labels, conditioned on
the samples drawn at previous stages. We repeat
this many times, and then use the samples from
the last stage, which corresponds to the ultimate,
higher-level task, to form a majority vote classifier.
As the number of samples increases, this method
will approximate the complete distribution. Use of
the method is normally a simple modification to an
existing piece of code, and the method is general.
It can be applied not only to all pipelines, but to
multi-stage algorithms which are not pipelines as
well.

We apply our method to two problems: seman-
tic role labeling and recognizing textual entail-
ment. For semantic role labeling we use a two
stage pipeline which parses the input sentence, and
for recognizing textual entailment we use a three
stage pipeline which tags the sentence with named

entities and then parses it before passing it to the
entailment decider.

2 Approach

2.1 Overview

In order to do approximate inference, we model
the entire pipeline as a Bayesian network. Each
stage in the pipeline corresponds to a variable in
the network. For example, the parser stage cor-
responds to a variable whose possible values are
all possible parses of the sentence. The probabil-
ities of the parses are conditioned on the parent
variables, which may just be the words of the sen-
tence, or may be the part of speech tags output by
a part of speech tagger.

The simple linear structure of a typical linguis-
tic annotation network permits exact inference that
is quadratic in the number of possible labels at
each stage, but unfortunately our annotation vari-
ables have a very large domain. Additionally,
some networks may not even be linear; frequently
one stage may require the output from multiple
previous stages, or multiple earlier stages may be
completely independent of one another. For ex-
ample, a typical QA system will do question type
classification on the question, and from that ex-
tract keywords which are passed to the informa-
tion retreival part of the system. Meanwhile, the
retreived documents are parsed and tagged with
named entities; the network rejoins those outputs
with the question type classification to decide on
the correct answer. We address these issues by
using approximate inference instead of exact in-
ference. The structure of the nodes in the network
permits direct sampling based on a topological sort
of the nodes. Samples are drawn from the condi-
tional distributions of each node, conditioned on
the samples drawn at earlier nodes in the topolog-
ical sort.

2.2 Probability of a Complete Labeling

Before we can discuss how to sample from these
Bayes nets, we will formalize how to move from
an annotation pipeline to a Bayes net. LetA be
the set ofn annotatorsA1, A2, ..., An (e.g., part
of speech tagger, named entity recognizer, parser).
These are the variables in the network. For annota-
tor ai, we denote the set of other annotators whose
input is directly needed asParents(Ai) ⊂ A

and a particular assignment to those variables is
parents(Ai). The possible values for a particu-

619

lar annotatorAi areai (e.g., a particular parse tree
or named entity tagging). We can now formulate
the probability of a complete annotation (over all
annotators) in the standard way for Bayes nets:

PBN(a1, a2, ..., an) =
N
∏

i=1

P (ai|parents(Ai))

(1)

2.3 Approximate Inference in Bayesian
Networks

This factorization of the joint probability distri-
bution facilitates inference. However, exact in-
ference is intractable because of the number of
possible values for our variables. Parsing, part of
speech tagging, and named entity tagging (to name
a few) all have a number of possible labels that is
exponential in the length of the sentence, so we
use approximate inference. We chose Monte Carlo
inference, in which samples drawn from the joint
distribution are used to approximate a marginal
distribution for a subset of variables in the dis-
tribution. First, the nodes are sorted in topologi-
cal order. Then, samples are drawn for each vari-
able, conditioned on the samples which have al-
ready been drawn. Many samples are drawn, and
are used to estimate the joint distribution.

Importantly, for many language processing
tasks our application only needs to provide the
most likely value for a high-level linguistic an-
notation (e.g., the guessed semantic roles, or an-
swer to a question), and other annotations such as
parse trees are only present to assist in performing
that task. The probability of the final annotation is
given by:

PBN(an) =
∑

a1,a2,...,an−1

PBN(a1, a2, ..., an) (2)

Because we are summing out all variables other
than the final one, we effectively use only the sam-
ples drawn from the final stage, ignoring the labels
of the variables, to estimate the marginal distribu-
tion over that variable. We then return the label
which had the highest number of samples. For
example, when trying to recognize textual entail-
ment, we count how many times we sampled “yes,
it is entailed” and how many times we sampled
“no, it is not entailed” and return the answer with
more samples.

When the outcome you are trying to predict is
binary (as is the case with RTE) orn-ary for small

n, the number of samples needed to obtain a good
estimate of the posterior probability is very small.
This is true even if the spaces being sampled from
during intermediate stages are exponentially large
(such as the space of all parse trees). Ng and
Jordan (2001) show that under mild assumptions,
with only N samples the relative classification er-
ror will be at mostO(1

N
) higher than the error of

the Bayes optimal classifier (in our case, the clas-
sifier which does exact inference). Even if the out-
come space is not small, the sampling technique
we present can still be very useful, as we will see
later for the case of SRL.

3 Generating Samples

The method we have outlined requires the ability
to sample from the conditional distributions in the
factored distribution of (1): in our case, the prob-
ability of a particular linguistic annotation, condi-
tioned on other linguistic annotations. Note that
this differs from the usual annotation task: taking
the argmax. But for most algorithms the change is
a small and easy change. We discuss how to ob-
tain samples efficiently from a few different anno-
tation models: probabilistic context free grammars
(PCFGs), and conditional random fields (CRFs).

3.1 Sampling Parses

Bod (1995) discusses parsing with probabilistic
tree substitution grammars, which, unlike simple
PCFGs, do not have a one-to-one mapping be-
tween output parse trees and a derivation (a bag of
rules) that produced it, and hence the most-likely
derivation may not correspond to the most likely
parse tree. He therefore presents a bottom-up ap-
proach to sampling derivations from a derivation
forest, which does correspond to a sample from the
space of parse trees. Goodman (1998) presents a
top-down version of this algorithm. Although we
use a PCFG for parsing, it is the grammar of (Klein
and Manning, 2003), which uses extensive state-
splitting, and so there is again a many-to-one cor-
respondence between derivations and parses, and
we use an algorithm similar to Goodman’s in our
work.

PCFGs put probabilities on each rule, such as
S→ NP VPandNN→ ‘dog’. The probability of
a parse is the product of the probabilities of the
rules used to construct the parse tree. A dynamic
programing algorithm, theinside algorithm, can
be used to find the probability of a sentence. The

620

inside probabilityβk(p, q) is the probability that
words p throughq, inclusive, were produced by
the non-terminalk. So the probability of the sen-
tenceThe boy pet the dog.is equal to the inside
probability βS(1, 6), where the first word,w1 is
Theand the sixth word,w6, is [period]. It is also
useful for our purposes to view this quantity as the
sum of the probabilities of all parses of the sen-
tence which haveSas the start symbol. The prob-
ability can be defined recursively (Manning and
Schütze, 1999) as follows:

βk(p, q) =

P (Nk → wp) if p = q

∑

r,s

q−1
∑

d=p

P (Nk → N rN s)βr(p, d)βs(d + 1, q)

otherwise
(3)

whereNk, N r andN s are non-terminal symbols
andwp is the word at positionp. We have omit-
ted the case of unary rules for simplicity since it
requires a closure operation.

These probabilities can be efficiently computed
using a dynamic program. or memoization of each
value as it is calculated. Once we have computed
all of the inside probabilities, they can be used to
generate parses from the distribution of all parses
of the sentence, using the algorithm in Figure 1.

This algorithm is called after all of the inside
probabilities have been calculated and stored, and
take as parametersS, 1, andlength(sentence). It
works by building the tree, starting from the root,
and recursively generating children based on the
posterior probabilities of applying each rule and
each possible position on which to split the sen-
tences. Intuitively, the algorithm is given a non-
terminal symbol, such asS or NP, and a span of
words, and has to decide (a) what rule to apply to
expand the non-terminal, and (b) where to split the
span of words, so that each non-terminal result-
ing from applying the rule has an associated word
span, and the process can repeat. The inside prob-
abilities are calculated just once, and we can then
generate many samples very quickly;DrawSam-
plesis linear in the number of words, and rules.

3.2 Sampling Named Entity Taggings

To do named entity recognition, we chose to use
a conditional random field (CRF) model, based on
Lafferty et al. (2001). CRFs represent the state of

function DRAWSAMPLE(Nk, r, s)
if r = s

tree.label = Nk

tree.child = word(r)
return (tree)

for eachrule m ∈ {m′ : head(m′) = Nk}
N i ← lChild(m)
Nj ← rChild(m)
for q ← r to s− 1

scores(m,q)← P (m)βi(r, q)βj(q + 1, s)
(m, q)← SAMPLEFROM(scores)
tree.label = head(m)
tree.lChild = DRAWSAMPLE(lChild(m), r, q)
tree.rChild = DRAWSAMPLE(rChild(m), q + 1, s)
return (tree)

Figure 1: Pseudo-code for sampling parse trees from a PCFG.
This is a recursive algorithm which starts at the root of the
tree and expands each node by sampling from the distribu-
tion of possible rules and ways to split the span of words. Its
arguments are a non-terminal and two integers corresponding
to word indices, and it is initially called with argumentsS, 1,
and the length of the sentence. There is a call tosampleFrom,
which takes an (unnormalized) probability distribution, nor-
malizes it, draws a sample and then returns the sample.

the art in sequence modeling – they are discrimi-
natively trained, and maximize the joint likelihood
of the entire label sequence in a manner which
allows for bi-directional flow of information. In
order to describe how samples are generated, we
generalize CRFs in a way that is consistent with
the Markov random field literature. We create a
linear chain ofcliques, each of which represents
the probabilistic relationship between an adjacent
set ofn states using afactor tablecontaining|S|n

values. These factor tables on their own should
not be viewed as probabilities, unnormalized or
otherwise. They are, however, defined in terms of
exponential models conditioned on features of the
observation sequence, and must be instantiated for
each new observation sequence. The probability
of a state sequence is then defined by the sequence
of factor tables in the clique chain, given the ob-
servation sequence:

PCRF(s|o) =
1

Z(o)

N
∏

i=1

Fi(si−n . . . si) (4)

where Fi(si−n . . . si) is the element of the fac-
tor table at positioni corresponding to statessi−n

through si, and Z(o) is the partition function
which serves to normalize the distribution.1 To in-

1To handle the start condition properly, imagine also that
we define a set of distinguished start statess−(n−1) . . . s0.

621

fer the most likely state sequence in a CRF it is
customary to use the Viterbi algorithm.

We then apply a process calledclique tree cal-
ibration, which involves passingmessagesbe-
tween the cliques (see Cowell et al. (2003) for
a full treatment of this topic). After this pro-
cess has completed, the factor tables can be
viewed as unnormalized probabilities, which can
be used to compute conditional probabilities,
PCRF(si|si−n . . . si−1, o). Once these probabili-
ties have been calculated, generating samples is
very simple. First, we draw a sample for the label
at the first position,2 and then, for each subsequent
position, we draw a sample from the distribution
for that position, conditioned on the label sampled
at the previous position. This process results in
a sample of a complete labeling of the sequence,
drawn from the posterior distribution of complete
named entity taggings.

Similarly to generating sample parses, the ex-
pensive part is calculating the probabilities; once
we have them we can generate new samples very
quickly.

3.3 k-Best Lists

At first glance,k-best lists may seem like they
should outperform sampling, because in effect
they are thek best samples. However, there are
several important reasons why one might prefer
sampling. One reason is that thek best paths
through a word lattice, or thek best derivations in
parse forest do not necessarily correspond to the
k best sentences or parse trees. In fact, there are
no known sub-exponential algorithms for the best
outputs in these models, when there are multiple
ways to derive the same output.3 This is not just a
theoretical concern – the Stanford parser uses such
a grammar, and we found that when generating a
50-best derivation list that on average these deriva-
tions corresponded to about half as many unique
parse trees. Our approach circumvents this issue
entirely, because the samples are generated from
the actual output distribution.

Intuition also suggests that sampling should
give more diversity at each stage, reducing the
likelihood of not even considering the correct out-
put. Using the Brown portion of the SRL test
set (discussed in sections 4 and 6.1), and50-
samples/50-best, we found that on average the50-

2Conditioned on the distinguished start states.
3Many thanks to an anonymous reviewer for pointing out

this argument.

samples system considered approximately25%
more potential SRL labelings than the50-best sys-
tem.

When pipelines have more than two stages, it
is customary to do a beam search, with a beam
size of k. This means that at each stage in the
pipeline, more and more of the probability mass
gets “thrown away.” Practically, this means that
as pipeline length increases, there will be in-
creasingly less diversity of labels from the earlier
stages. In a degenerate10-stage,k-best pipeline,
where the last stage depends mainly on the first
stage, it is probable that all but a few labelings
from the first stage will have been pruned away,
leaving something much smaller than ak-best
sample, possibly even a1-best sample, as input to
the final stage. Using approximate inference to es-
timate the marginal distribution over the last stage
in the pipeline, such as our sampling approach, the
pipeline length does not have this negative impact
or affect the number of samples needed. And un-
like k-best beam searches, there is an entire re-
search community, along with a large body of lit-
erature, which studies how to do approximate in-
ference in Bayesian networks and can provide per-
formance bounds based on the method and the
number of samples generated.

One final issue with thek-best method arises
when instead of a linear chain pipeline, one is us-
ing a general directed acyclic graph where a node
can have multiple parents. In this situation, doing
thek-best calculation actually becomes exponen-
tial in the size of the largest in-degree of a node –
for a node withn parents, you must try allkn com-
binations of the values for the parent nodes. With
sampling this is not an issue; each sample can be
generated based on a topological sort of the graph.

4 Semantic Role Labeling

4.1 Task Description

Given a sentence and a target verb (thepredicate)
the goal of semantic role labeling is to identify and
label syntactic constituents of the parse tree with
semantic roles of the predicate. Common roles
are agent, which is the thing performing the ac-
tion, patient, which is the thing on which the ac-
tion is being performed, andinstrument, which is
the thing with which the action is being done. Ad-
ditionally, there aremodifier argumentswhich can
specify the location, time, manner, etc. The fol-
lowing sentence provides an example of a predi-

622

cate and its arguments:

[The luxury auto maker]agent [last
year]temp [sold]pred [1,214 cars]patient

in [the U.S]location.

Semantic role labeling is a key component for
systems that do question answering, summariza-
tion, and any other task which directly uses a se-
mantic interpretation.

4.2 System Description

We modified the system described in Haghighi
et al. (2005) and Toutanova et al. (2005) to test
our method. The system uses both local models,
which score subtrees of the entire parse tree inde-
pendently of the labels of other nodes not in that
subtree, and joint models, which score the entire
labeling of a tree with semantic roles (for a partic-
ular predicate).

First, the task is separated into two stages, and
local models are learned for each. At the first
stage, theidentification stage, a classifier labels
each node in the tree as eitherARG, meaning that
it is an argument (either core or modifier) to the
predicate, orNONE, meaning that it is not an argu-
ment. At the second stage, theclassification stage,
the classifier is given a set of arguments for a pred-
icate and must label each with its semantic role.

Next, a Viterbi-like dynamic algorithm is used
to generate a list of thek-best joint (identification
and classification) labelings according to the lo-
cal models. The algorithm enforces the constraint
that the roles should be non-overlapping. Finally,
a joint model is constructed which scores a com-
pletely labeled tree, and it is used to re-rank thek-
best list. The separation into local and joint mod-
els is necessary because there are an exponential
number of ways to label the entire tree, so using
the joint model alone would be intractable. Ide-
ally, we would want to use approximate inference
instead of ak-best list here as well. Particle fil-
tering would be particularly well suited - particles
could be sampled from the local model and then
reweighted using the joint model. Unfortunately,
we did not have enough time modify the code of
(Haghighi et al., 2005) accordingly, so thek-best
structure remained.

To generate samples from the SRL system, we
take the scores given to thek-best list, normalize
them to sum to1, and sample from them. One
consequence of this, is that any labeling not on the
k-best list has a probability of0.

5 Recognizing Textual Entailment

5.1 Task Description

In the task of recognizing textual entailment
(RTE), also commonly referred to as robust textual
inference, you are provided with two passages, a
textand ahypothesis, and must decide whether the
hypothesis can be inferred from the text. The term
robust is used because the task is not meant to be
domain specific. The terminferenceis used be-
cause this is not meant to be logical entailment, but
rather what an intelligent, informed human would
infer. Many NLP applications would benefit from
the ability to do robust textual entailment, includ-
ing question answering, information retrieval and
multi-document summarization. There have been
two PASCAL workshops (Dagan et al., 2005) with
shared tasks in the past two years devoted to RTE.
We used the data from the 2006 workshop, which
contains 800 text-hypothesis pairs in each of the
test and development sets4 (there is no training
set). Here is an example from the development
set from the first RTE challenge:

Text: Researchers at the Harvard School of Pub-
lic Health say that people who drink coffee
may be doing a lot more than keeping them-
selves awake – this kind of consumption ap-
parently also can help reduce the risk of dis-
eases.

Hypothesis: Coffee drinking has health benefits.

The positive and negative examples are bal-
anced, so the baseline of guessing either allyes
or all nowould score 50%. This is a hard task – at
the first challenge no system scored over 60%.

5.2 System Description

MacCartney et al. (2006) describe a system for do-
ing robust textual inference. They divide the task
into three stages – linguistic analysis, graph align-
ment, and entailment determination. The first of
these stages,linguistic analysisis itself a pipeline
of parsing and named entity recognition. They use
the syntactic parse to (deterministically) produce
a typed dependency graph for each sentence. This
pipeline is the one we replace. The second stage,
graph alignmentconsists of trying to find good
alignments between the typed dependency graphs

4The dataset and further information from both
challenges can be downloaded fromhttp://www.pascal-
network.org/Challenges/RTE2/Datasets/

623

NER parser RTE

Figure 2: The pipeline for recognizing textual entailment.

for the text and hypothesis. Each possible align-
ment has a score, and the alignment with the best
score is propagated forward. The final stage,en-
tailment determination, is where the decision is
actually made. Using the score from the align-
ment, as well as other features, a logistic model
is created to predict entailment. The parameters
for this model are learned from development data.5

While it would be preferable to sample possible
alignments, their system for generating alignment
scores is not probabilistic, and it is unclear how
one could convert between alignment scores and
probabilities in a meaningful way.

Our modified linguistic analysis pipeline does
NER tagging and parsing (in their system, the
parse is dependent on the NER tagging because
some types of entities are pre-chunked before
parsing) and treats the remaining two sections of
their pipeline, the alignment and determination
stages, as one final stage. Because the entailment
determination stage is based on a logistic model, a
probability of entailment is given and sampling is
straightforward.

6 Experimental Results

In our experiments we compare the greedy
pipelined approach with our sampling pipeline ap-
proach.

6.1 Semantic Role Labeling

For the past two years CoNLL has had shared
tasks on SRL (Carreras and Màrquez (2004) and
Carreras and Màrquez (2005)). We used the
CoNLL 2005 data and evaluation script. When
evaluating semantic role labeling results, it is com-
mon to present numbers on both the core argu-
ments (i.e., excluding the modifying arguments)
and all arguments. We follow this convention and
present both sets of numbers. We give precision,

5They report their results on the first PASCAL dataset,
and use only the development set from the first challenge for
learning weights. When we test on the data from the second
challenge, we use all data from the first challenge and the
development data from the second challenge to learn these
weights.

SRL Results – Penn Treebank Portion
Core Args Precision Recall F-measure

Greedy 79.31% 77.7% 78.50%
K-Best 80.05% 78.45% 79.24%

Sampling 80.13% 78.25% 79.18%
All Args Precision Recall F-measure
Greedy 78.49% 74.77% 76.58%
K-Best 79.58% 74.90% 77.16%

Sampling 79.81% 74.85% 77.31%
SRL Results – Brown Portion

Core Args Precision Recall F-measure
Greedy 68.28% 67.72% 68.0%
K-Best 69.25% 69.02% 69.13%

Sampling 69.35% 68.93% 69.16%
All Args Precision Recall F-measure
Greedy 66.6% 60.45% 63.38%
K-Best 68.82% 61.03% 64.69%

Sampling 68.6% 61.11% 64.64%

Table 1: Results for semantic role labeling task. The sampled
numbers are averaged over several runs, as discussed.

recall and F-measure, which are based on the num-
ber of arguments correctly identified. For an argu-
ment to be correct both the span and the classifica-
tion must be correct; there is no partial credit.

To generate sampled parses, we used the Stan-
ford parser (Klein and Manning, 2003). The
CoNLL data comes with parses from Charniak’s
parser (Charniak, 2000), so we had to re-parse
the data and retrain the SRL system on these new
parses, resulting in a lower baseline than previ-
ously presented work. We choose to use Stan-
ford’s parser because of the ease with which we
could modify it to generate samples. Unfortu-
nately, its performance is slightly below that of the
other parsers.

The CoNLL data has two separate test sets; the
first is section 23 of the Penn Treebank (PTB),
and the second is “fresh sentences” taken from the
Brown corpus. For full results, please see Table 1.
On the Penn Treebank portion we saw an absolute
F-score improvement of 0.7% on both core and all
arguments. On the Brown portion of the test set we
saw an improvement of 1.25% on core and 1.16%
on all arguments. In this context, a gain of over
1% is quite large: for instance, the scores for the
top 4 systems on the Brown data at CoNLL 2005
were within 1% of each other. For both portions,
we generated 50 samples, and did this 4 times, av-
eraging the results. We most likely saw better per-
formance on the Brown portion than the PTB por-
tion because the parser was trained on the Penn
Treebank training data, so the most likely parses
will be of higher quality for the PTB portion of
the test data than for the Brown portion. We also

624

RTE Results
Accuracy Average Precision

Greedy 59.13% 59.91%
Sampling 60.88% 61.99%

Table 2: Results for recognizing textual entailment. The sam-
pled numbers are averaged over several runs, as discussed.

ran the pipeline using a50-best list, and found the
two results to be comparable.

6.2 Textual Entailment

For the second PASCAL RTE challenge, two dif-
ferent types of performance measures were used
to evaluate labels and confidence of the labels for
the text-hypothesis pairs. The first measure is ac-
curacy – the percentage of correct judgments. The
second measure isaverage precision. Responses
are sorted based on entailment confidence and then
average precision is calculated by the following
equation:

1

R

n
∑

i=1

E(i)
correct up to pairi

i
(5)

wheren is the size of the test set,R is the number
of positive (entailed) examples,E(i) is an indi-
cator function whose value is1 if the ith pair is
entailed, and theis are sorted based on the entail-
ment confidence. The intention of this measure is
to evaluate how well calibrated a system is. Sys-
tems which are more confident in their correct an-
swers and less confident in their incorrect answers
will perform better on this measure.

Our results are presented in Table 2. We gen-
erated 25 samples for each run, and repeated the
process 7 times, averaging over runs. Accuracy
was improved by 1.5% and average precision by
2%. It does not come as a surprise that the average
precision improvement was larger than the accu-
racy improvement, because our model explicitly
estimates its own degree of confidence by estimat-
ing the posterior probability of the class label.

7 Conclusions and Future Work

We have presented a method for handling lan-
guage processing pipelines in which later stages
of processing are conditioned on the results of
earlier stages. Currently, common practice is to
take the best labeling at each point in a linguistic
analysis pipeline, but this method ignores informa-
tion about alternate labelings and their likelihoods.
Our approach uses all of the information available,

and has the added advantage of being extremely
simple to implement. By modifying your subtasks
to generate samples instead of the most likely la-
beling, our method can be used with very little ad-
ditional overhead. And, as we have shown, such
modifications are usually simple to make; further,
with only a “small” (polynomial) number of sam-
plesk, under mild assumptions the classification
error obtained by the sampling approximation ap-
proaches that of exact inference. (Ng and Jordan,
2001) In contrast, an algorithm that keeps track
only of thek-best list enjoys no such theoretical
guarantee, and can require an exponentially large
value fork to approach comparable error. We also
note that in practice,k-best lists are often more
complicated to implement and more computation-
ally expensive (e.g. the complexity of generat-
ing k sample parses or CRF outputs is substan-
tially lower than that of generating thek best parse
derivations or CRF outputs).

The major contribution of this work is not
specific to semantic role labeling or recognizing
textual entailment. We are proposing a general
method to deal with all multi-stage algorithms. It
is common to build systems using many different
software packages, often from other groups, and to
string together the1-best outputs. If, instead, all
NLP researchers wrote packages which can gen-
erate samples from the posterior, then the entire
NLP community could use this method as easily
as they can use the greedy methods that are com-
mon today, and which do not perform as well.

One possible direction for improvement of this
work would be to move from a Bayesian network
to an undirected Markov network. This is desir-
able because influence should be able to flow in
both directions in this pipeline. For example, the
semantic role labeler should be able to tell the
parser that it did not like a particular parse, and
this should influence the probability assigned to
that parse. The main difficulty here lies in how
to model this reversal of influence. The problem
of using parse trees to help decide good semantic
role labelings is well studied, but the problem of
using semantic role labelings to influence parses is
not. Furthermore, this requires building joint mod-
els over adjacent nodes, which is usually a non-
trivial task. However, we feel that this approach
would improve performance even more on these
pipelined tasks and should be pursued.

625

8 Acknowledgements

We would like to thank our anonymous review-
ers for their comments and suggestions. We
would also like to thank Kristina Toutanova, Aria
Haghighi and the Stanford RTE group for their as-
sistance in understanding and using their code.

This paper is based on work funded in part by a
Stanford School of Engineering fellowship and in
part by the Defense Advanced Research Projects
Agency through IBM. The content does not nec-
essarily reflect the views of the U.S. Government,
and no official endorsement should be inferred.

References

Rens Bod. 1995. The problem of computing the most proba-
ble tree in data-oriented parsing and stochastic tree gram-
mars. InProceedings of EACL 1995.

Xavier Carreras and Lluı́s Màrquez. 2004. Introduction to
the CoNLL-2004 shared task: Semantic role labeling. In
Proceedings of CoNLL 2004.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to
the CoNLL-2005 shared task: Semantic role labeling. In
Proceedings of CoNLL 2005.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. InProceedings of the 14th National Conference
on Artificial Intelligence.

Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and
David J. Spiegelhalter. 2003.Probabilistic Networks and
Expert Systems. Springer.

Richard Crouch. 2005. Packed rewriting for mapping se-
mantics to KR. InProceedings of the 6th International
Workshop on Computational Semantics.

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005.
The PASCAL recognizing textual entailment challenge. In
Proceedings of the PASCAL Challenges Workshop on Rec-
ognizing Textual Entailment.

Stuart Geman and Mark Johnson. 2002. Dynamic program-
ming for parsing and estimation of stochastic unification-
based grammars. InProceedings of ACL 2002.

Joshua Goodman. 1998.Parsing Inside-Out. Ph.D. thesis,
Harvard University.

Aria Haghighi, Kristina Toutanova, and Christopher D. Man-
ning. 2005. A joint model for semantic role labeling. In
Proceedings of CoNLL 2005.

Liang Huang and David Chiang. 2005. Betterk-best pars-
ing. In Proceedings of the 9th International Workshop on
Parsing Technologies.

Lauri Karttunen. 2000. Applications of finite-state trans-
ducers in natural-language processing. InProceesings of
the Fifth International Conference on Implementation and
Application of Automata.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. InProceedings of ACL 2003.

Peter Koomen, Vasin Punyakanok, Dan Roth, and Wen tau
Yih. 2005. Generalized inference with multiple semantic
role labeling systems. InProceedings of CoNLL 2005,
pages 181–184.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional Random Fields: Probabilistic models
for segmenting and labeling sequence data. InProceed-
ings of the Eighteenth International Conference on Ma-
chine Learning, pages 282–289.

Bill MacCartney, Trond Grenager, Marie de Marneffe, Daniel
Cer, and Christopher D. Manning. 2006. Learning to rec-
ognize features of valid textual entailments. InProceed-
ings of NAACL-HTL 2006.

Christopher D. Manning and Hinrich Schütze. 1999.Foun-
dations of Statistical Natural Language Processing. The
MIT Press, Cambridge, Massachusetts.

John T. Maxwell, III and Ronald M. Kaplan. 1995. A method
for disjunctive constraint satisfaction. In Mary Dalrymple,
Ronald M. Kaplan, John T. Maxwell III, and Annie Zae-
nen, editors,Formal Issues in Lexical-Functional Gram-
mar, number 47 in CSLI Lecture Notes Series, chapter 14,
pages 381–481. CSLI Publications.

Andrew Ng and Michael Jordan. 2001. Convergence rates of
the voting Gibbs classifier, with application to Bayesian
feature selection. InProceedings of the Eighteenth Inter-
national Conference on Machine Learning.

Charles Sutton and Andrew McCallum. 2005. Joint pars-
ing and semantic role labeling. InProceedings of CoNLL
2005, pages 225–228.

Kristina Toutanova, Aria Haghighi, and Christopher D. Man-
ning. 2005. Joint learning improves semantic role label-
ing. In Proceedings of ACL 2005.

Kristina Toutanova. 2005.Effective statistical models for syn-
tactic and semantic disambiguation. Ph.D. thesis, Stan-
ford University.

Ben Wellner, Andrew McCallum, Fuchun Peng, and Michael
Hay. 2004. An integrated, conditional model of informa-
tion extraction and coreference with application to citation
matching. InProceedings of the 20th Annual Conference
on Uncertainty in Artificial Intelligence.

626

