
Chart generation using production systems

Sebastian Varges
Information Technology Research Institute

University of Brighton
Sebastian.Varges@itri.brighton.ac.uk

Abstract

Productions systems, traditionally mainly used
for developing expert systems, can also be em-
ployed for implementing chart generators. Fo-
cusing on bottom-up chart generation, we de-
scribe how the notions of chart algorithms re-
late to the knowledge base and Rete network
of production systems. We draw on experience
gained in two research projects on natural lan-
guage generation (NLG), one involving surface
realization, the other involving both a content
determination task (referring expression gener-
ation) and surface realization. The projects
centered around the idea of ‘overgeneration’,
i.e. of generating large numbers of output can-
didates which served as input to a ranking com-
ponent. The purpose of this paper is to extend
the range of implementation options available
to the NLG practitioner by detailing the spe-
cific advantages and disadvantages of using pro-
duction systems for NLG.

1 Introduction
A general question faced by the NLG practitioner is
whether to use an off-the-shelf generator or develop one
‘from scratch.’ Often, understanding the workings of
the off-the-shelf generator and providing the required
input structures requires substantial work. Further-
more, the off-the-shelf generator may not provide the
required functionality without additional programming,
the project may dictate the use of a particular program-
ming language or frequent interaction with components
written in that language.

In this paper, we describe how to implement chart
generators in production systems, i.e. from scratch.
Production systems have traditionally mainly been used
for developing expert systems [Giarratano and Riley,
1993]. The particular production system we use, JESS
[Friedman-Hill, 2003] is implemented in Java, making it
easy to interact with other Java components. The rule
encodings described in this paper should also work for
other production systems such as CLIPS (“C Language
Integrated Production System”, [Riley, 1999]).

We used JESS in two projects centering around the
concept of overgeneration-and-ranking. Both involved
the generation of a large number of alternative outputs
which served as input to a ranker written in Java. Search
was directed by influencing the agenda ordering of the
chart generator. At the syntactic level, realization in
both projects was ‘shallow.’ However, since we were us-
ing expert system technology, we were able to use more
sophisticated domain reasoning for content planning –
more specifically, referring expression generation – to
drive the realizer in one of the projects.

The two characteristics just described, the ability to
deal with issues of search and the integration with rea-
soning capabilities, make generation using production
systems quite different from other methods of shallow
generation. For example, pipelines of XSLT stylesheets
can be used to transform XML trees encoding linguistic
structures [Wilcock, 2001; Moore et al., 2004]. However,
the focus in using XSLT for generation is more on pur-
suing a single alternative than on searching for the best
one. Furthermore, rewriting XML trees with XSLT lends
itself toward top-down generation, whereas the use of
production systems naturally results in bottom-up gen-
eration.

In the following section, we relate chart algorithms to
production systems at a more abstract level. We then
discuss two generators implemented in the production
system JESS.

2 Chart algorithms and production
systems

Knowledge-based expert systems consist of rules (or
‘productions’) and a knowledge base of facts (KB). Rules
express logical implications and facts contingent truths.
Facts match (possibly partially defined) fact descrip-
tions, or ‘conditions’, in the antecedent of rules, and
if all conditions required in a rule antecedent are sat-
isfied, the consequent follows. In a production system,
this means the production is ‘activated.’ All activated
rules are collected in a ‘conflict set.’ After this, a de-
cision is made about what rule to fire according to the
search strategy (breadth-first and depth-first are usually
built-in strategies). Processing can be thought of as a



sequence of cycles where each cycle is defined as adding
one fact to the KB, matching it against the rules, and
computing what rules to fire next. This may result in
new facts, and a new cycle begins.

The basic outline of knowledge-based expert systems
is similar in spirit to declarative rule systems based on
the logic programming paradigm in NLP in which the
order of rule execution does not affect the result. The
knowledge base serves as a store for proven facts and is
hence comparable to the chart data structures in NLP.
More precisely, the knowledge base corresponds to a pas-
sive chart since it only contains completed chart edges.
Executing a rule consequent can involve the assertion
or retraction of facts to/from the KB. Since a chart is
monotonically accumulating, grammar rules only assert
new edges in our implementations.

Another way of thinking about production systems is
in terms of a blackboard architecture: the KB serves as a
blackboard and rules/productions are triggered by new
facts that are added to it.

Probably the most distinctive property of production
systems is the compilation of the productions into a net-
work. The Rete networks of production systems (‘rete’
is Latin for ‘net’) exploit structural similarities between
rule antecedents by creating a network that allows facts
to match antecedents in several rules at once. The idea
is to create tests for conditions in rule antecedents and to
share the results between rules [Forgy, 1982]. Matching
a fact against the Rete network can partially ‘activate’
a whole set of rules that share that node. This avoids
cycling over possibly large numbers of rules in turn and
repeatedly matching the same elements.

Standardly, a forward chaining interpreter is used to
execute productions. This corresponds to bottom-up
tree traversal algorithms in computational linguistics
terminology. The ‘conflict resolution strategy’ addresses
the above mentioned question which of the activated
rules should fire. It corresponds to the agenda strategy
in chart parsing/generation. The following table relates
the terminologies:

Production Systems NLP

productions in grammar rules
Rete network
working memory/ passive chart
knowledge base
facts in knowledge base passive edges
partially activated active edges
productions (inside
Rete network)
conflict resolution agenda with
strategy ordering function

Since the partially activated productions are part of
the Rete network, they are more difficult to observe in
practice than the active edges of a chart. However, pro-
duction systems such as JESS provide means to inspect
the network.

3 Case study 1: realization with
automatically derived rules

The first project involves overgeneration (and ranking)
with rules that were extracted from a semantically an-
notated subset of the Penn Treebank II. The input to
the realizer consists of a bag of semantic tags with asso-
ciated values in the management succession domain, for
example PERSON=Piere Vinken, AGE=61 or POST=chairman.1

We use structured (or ‘unordered’) facts of attribute-
value pairs to define chart edges. Figure 1 shows a
slightly simplified production that, given two facts with
heads NP-POST DESCR ADJ and PP-POST NODET generates a
new fact with head VP-POST DESCR ADJ:

(defrule phrasal-rule-83
(NP-POST_DESCR_ADJ (idx ?i0) (coidx ?cx0) (syn ?s0)

(consumes $?c0) (terms ?t0)
(instances ?table0) (deriv $?d0))

(PP-POST_NODET (idx ?i1) (coidx ?cx1) (syn ?s1)
(consumes $?c1&:(set(create$ $?c0 $?c1)))
(terms ?t1) (instances ?table1)
(deriv $?d1))

(phrasal-rule-83)
=>
(assert

(VP-POST_DESCR_ADJ
(idx (bind ?idx (npt))) (coidx ?cxc)
(syn VP) (consumes (create$ $?c0 $?c1))
(terms was named to ?t0 ?t1)
(instances (combine-tables ?table0 ?table1))
(deriv [VP p83-0366 ?idx was named to $?d0 $?d1])
(fired-by phrasal-rule-83))))

Figure 1: Grammar rule encoded as production

This production effectively results in the bottom-up
traversal of a local tree. The names of the fact heads
combine syntactic and semantic information. The facts
have slots such as idx, a unique edge identifier, and
deriv, which represents the derivation tree. Slot values
are mainly only picked up by variables (prefixed by ?
and $?) and passed on to the rule consequent. However,
there is an exception: the condition matching the second
edge with head PP-POST NODET performs a test in order to
prevent combinations of edges that express overlapping
semantics, based on semantic indices associated with the
attribute-value pairs of the input. These are stored in
the consumes slot.

Typically, the facts matched on the left-hand side of
the production shown above provide realizations such as
‘the additional post’ and ‘of chief executive officer.’ The
newly generated edge combines this into ‘was named to
the additional post of chief executive officer.’ Phono-
logical forms are handled in the terms slot where they
are represented in combination with semantic tags, for
example ‘the [POST DESCR ADJ additional] post.’ These

1These semantic labels are slightly simplified. For reasons
of space we cannot discuss the semantic annotation and rule
construction here. See [Varges, 2003] for more details.



rules/productions encode a phrasal generator with shal-
low syntax: they only use syntactic categories. However,
other simple syntactic features, for example for model-
ing number/gender/person agreement, could be incorpo-
rated by adding the appropriate slots and values.

The instances slot provides an example of the tight in-
tegration of the production system JESS with Java. The
slot contains references to Java objects that are relevant
to the ranker. Furthermore, combine-instance-tables on
the right-hand side of the production is a function call
that is simply passed on to the ranker written in Java.

The left-hand side of the example production also con-
tains a condition that matches a simple unique fact for
the name of the rule (phrasal-rule-83). In this way,
rules can be dynamically blocked and unblocked. Only
those rules are able to fire whose name has been asserted
into the KB. Matching the name fact last in the rule an-
tecedent allows the Rete compiler to identify possible
common prefixes of match patterns across rules. This
would not be possible if a unique match condition was
placed first.

The realizer uses 476 automatically constructed pro-
ductions. Sharing in the Rete network is mostly limited
to the ‘pattern network.’ In contrast, the ‘join network’
is not able to reduce the number of match computa-
tions substantially because most grammar rules are bi-
nary (see [Varges, 2003] for more details). The realizer is
capable of generating several hundred sentences within a
few seconds. Averaged over 40 inputs taken from a test
set, it produced 350 sentences within 5 seconds.

4 Case study 2: referring expression
generation

The second use of a production system for NLG is for
a manually written referring expression generator devel-
oped in the TUNA2 project [Varges, 2004]. Conceptu-
ally, it consists of two modules: a reasoner that pro-
duces logical forms (descriptions of domain objects) from
a domain representation and a realizer for those logical
forms. Both modules are interleaved in the sense that
the reasoner ‘marks’ logical forms that it is able to real-
ize, and the domain reasoner is only allowed to combine
simpler logical forms into more complex ones if they have
been realized successfully. One way to describe this pro-
cessing architecture is in terms of two interleaved chart
algorithms that exchange chart items. The other is in
terms of a blackboard architecture – in fact, the KB al-
most acts as whiteboard [Cahill et al., 1999]. This is
particularly intuitive here, and also closer to the imple-
mentation: the reasoner automatically responds to the
marking of a logical form fact as being realized since pro-
ductions are activated whenever a matching fact is added
to the KB (or changed). In other words, the productions
of the modules communicate via the KB.

The modules of the referring expression generator,
i.e. reasoner and realizer, are implemented by means of
namespaces for the facts and productions they contain.

2EPSRC grant GR/S13330/01

In addition, we define namespaces for facts representing
the domain model and for the lexicon. We show some
facts of the domain model since this is the starting point
of the computation:
(DOMAIN::vertex (index v1))
(DOMAIN::type (name musician) (index v1))
(DOMAIN::attribute (name hair-colour) (value black)

(index v1))
(DOMAIN::vertex (index v2))
(DOMAIN::type (name instrument) (index v2))

(DOMAIN::relation (name hold) (rel-index r1))
(DOMAIN::out-relation (out v1) (rel-index r1))
(DOMAIN::in-relation (in v2) (rel-index r1))

Facts define object types, attribute-values pairs and
relations between the objects. In the example above,
they describe a musician with black hair holding an in-
strument. The facts are defined in namespace DOMAIN
and are related by means of the indices held in the index
and other slots. The use of vertex facts indicates that
the representation is inspired by the Graph approach to
referring expression generation [Krahmer et al., 2003].

At the first stage of processing, content determination
rules produce logical forms paired with a list containing
the vertices of the domain objects they describe:
(LF::type-extension (extension v1) (id 3)

(lf "(" type "=" musician ")")
(depth 1) (type musician))

(LF::neq-type-extension (extension v1) (id 17)
(lf "(" NOT "(" type "=" instrument ")" ")")
(depth 2) (negated 3))

The first fact lists, in slot extension, all domain ob-
jects of type ‘musician’, which is only v1 in our exam-
ple. The second fact contains the vertices of all objects
that are not of type instrument, which again is v1. The
facts contain the logical form as a sequence of atoms and
strings. However, the fact heads are more important
for matching since the logical forms (and many other
slot values) are just passed on to the right-hand side.
Facts can contain slots that are only relevant to their
particular type, for example negated for facts with head
neq-type-extension.

The namespace of the realization module is populated
with facts that contain syntactic information and surface
forms:
(REALIZER::np (phon not an instrument)

(id 35) (dtr-left 5) (dtr-right 11)
(num sing) (pers 3) (form neq-indefinite))

(REALIZER::syntax-semantics-mapping
(sem-id 17) (syn-id 35))

The REALIZER::np fact above is the realization of
a corresponding description fact in the LF namespace.
The separate REALIZER::syntax-semantics-mapping
fact records which description fact in the LF namespace is
realized by which fact in the REALIZER namespace, again
by means of indices. An alternative to using a mapping
fact is to modify the REALIZER::np fact directly.



The implementation currently consists of 95 produc-
tions and 71 additional functions that are invoked on the
right-hand sides of the productions. These functions per-
form tasks such as counting domain objects and relations
between objects, and computing the agenda ordering of
the chart generator.

5 Discussion and conclusions

We consider the use of a production system in these two
projects successful. Production systems are suitable for
the efficient exploration of alternatives and for robust,
‘data-driven’ bottom-up processing. Such processing is
particularly robust if ‘flat’ input structures are used, and
this in turn is encouraged by the unnested structure of
the facts in the knowledge base. This points to a char-
acteristic of production languages that at the same time
is a source of their efficiency (by allowing the construc-
tion of the Rete networks) and a limitation: since the
slot values of facts cannot contain recursive data struc-
tures, we need to resort to the use of indices to express
that certain facts ‘belong together.’ This is evident in
the index slots of the domain model in the second case
study, for example. The same technique is used in the
NL-SOAR project [Rubinoff and Lehman, 1994], to our
knowledge the most extensive use of production systems
for NLP. However, if indices are used extensively, more
work needs to be done in the join network part of the
Rete network, partially offsetting its benefits. In sum,
we see the following advantages of using production sys-
tems for NLG:

• they are able to deal with large numbers of (pos-
sibly machine-learned) rules (case study 1, see also
[Doorenbos, 1993]),

• they are suitable for integrating NLG with more
general inferencing/reasoning (case study 2),

• general advantages: (largely) declarative behaviour;
seamless integration with Java if JESS is used; de-
velopment: rapid prototyping, read-eval-print loop.

On the other hand, we see the following disadvantages:

• facts of limited structure and unavailability of uni-
fication: production systems are not well-suited for
developing generators based on unification-based
grammar formalisms such as HPSG;

• general disadvantages: alternative tree-traversal
strategies such as head-driven approaches not
straightforward to implement; development: limited
compile-time checks.

One possibility of addressing the lack of nested data
structures might be to compile complex feature for-
malisms into a more shallow cfg-like format, i.e. again
to automatically generate productions (as we did in the
first project). A further avenue of future work is the
pre-compilation of descriptions for the referring expres-
sion generator. This is motivated by the fact that in our
approach a large part of the computation of descriptions

is independent of the specific generation input. Such pre-
compilation should result in significant efficiency gains.

In this paper we have not been able to explore pro-
duction systems and, in particular, their Rete networks
in full detail. However, we hope to have convinced the
reader that the use of production systems for NLG can
be advantageous when relatively shallow but rule-based
generation capabilities are required.

References
[Cahill et al., 1999] Lynne Cahill, Christy Doran, Roger

Evans, Chris Mellish, Daniel Paiva, Mike Reape, Do-
nia Scott, and Neil Tipper. In Search of a Reference
Architecture for NLG Systems. In Proc. of EWNLG-
99, 1999.

[Doorenbos, 1993] Robert B. Doorenbos. Matching
100,000 learned rules. In Proc. of AAAI-93, 1993.

[Forgy, 1982] Charles L. Forgy. Rete: A Fast Algorithm
for the Many Pattern/ Many Object Pattern Match
Problem. Artificial Intelligence, 19:17–37, 1982.

[Friedman-Hill, 2003] Ernest Friedman-Hill. JESS -
the Java Expert System Shell, Version 6.x. San-
dia National Laboratories, Software available at
http://herzberg.ca.sandia.gov/jess/, 2003.

[Giarratano and Riley, 1993] Joseph Giarratano and
Gary Riley. Expert Systems: Principles and Practice.
PWS Publishing, Boston, 2nd edition, 1993.

[Krahmer et al., 2003] Emiel Krahmer, Andre Verleg,
and Sebastiaan van Erk. Graph-based Generation
of Referring Expressions. Computational Linguistics,
29(1):53–72, 2003.

[Moore et al., 2004] Johanna Moore, Kaska Porayska-
Pomsta, Sebastian Varges, and Claus Zinn. Generat-
ing tutorial feedback with affect. In Proc. of FLAIRS,
2004.

[Riley, 1999] Gary Riley. CLIPS: A Tool for Build-
ing Expert Systems. http://www.ghg.net/clips/
CLIPS.html, 1999.

[Rubinoff and Lehman, 1994] R. Rubinoff and J. F.
Lehman. Real-time Natural Language Generation in
NL-Soar. In Proc. of IWNLG, 1994.

[Varges, 2003] Sebastian Varges. Instance-based Natural
Language Generation. PhD thesis, ICCS, School of
Informatics, University of Edinburgh, 2003.

[Varges, 2004] Sebastian Varges. Overgenerating refer-
ring expressions involving relations. In Proc. of INLG-
04, 2004.

[Wilcock, 2001] Graham Wilcock. Pipelines, Templates
and Transformations: XML for Natural Language
Generation. In Proc. of First NLP and XML Work-
shop (NLPRS-2001), 2001.


