
Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 201–204, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Hierarchical Semantic Role Labeling

Alessandro Moschitti¦

moschitti@info.uniroma2.it

¦ DISP - University of Rome “Tor Vergata”, Rome, Italy
† ITC-Irst, ‡ DIT - University of Trento, Povo, Trento, Italy

Ana-Maria Giuglea¦

ana-maria.giuglea@topex.ro
Bonaventura Coppola†‡

coppolab@itc.it
Roberto Basili¦

basili@info.uniroma2.it

Abstract

We present a four-step hierarchical SRL
strategy which generalizes the classical
two-level approach (boundary detection
and classification). To achieve this, we
have split the classification step by group-
ing together roles which share linguistic
properties (e.g. Core Roles versus Ad-
juncts). The results show that the non-
optimized hierarchical approach is com-
putationally more efficient than the tradi-
tional systems and it preserves their accu-
racy.

1 Introduction

For accomplishing the CoNLL 2005 Shared Task
on Semantic Role Labeling (Carreras and Màrquez,
2005), we capitalized on our experience on the se-
mantic shallow parsing by extending our system,
widely experimented on PropBank and FrameNet
(Giuglea and Moschitti, 2004) data, with a two-
step boundary detection and a hierarchical argument
classification strategy.

Currently, the system can work in both basic and
enhanced configuration. Given the parse tree of an
input sentence, the basic system applies (1) a bound-
ary classifier to select the nodes associated with cor-
rect arguments and (2) a multi-class labeler to assign
the role type. For such models, we used some of the
linear (e.g. (Gildea and Jurasfky, 2002; Pradhan et
al., 2005)) and structural (Moschitti, 2004) features
developed in previous studies.

In the enhanced configuration, the boundary an-
notation is subdivided in two steps: a first pass in
which we label argument boundary and a second
pass in which we apply a simple heuristic to elimi-
nate the argument overlaps. We have also tried some
strategies to learn such heuristics automatically. In
order to do this we used a tree kernel to classify the
subtrees associated with correct predicate argument
structures (see (Moschitti et al., 2005)). The ratio-
nale behind such an attempt was to exploit the cor-
relation among potential arguments.

Also, the role labeler is divided into two steps:
(1) we assign to the arguments one out of four possi-
ble class labels:Core Roles, Adjuncts, Continuation
ArgumentsandCo-referring Arguments, and (2) in
each of the above class we apply the set of its spe-
cific classifiers, e.g. A0,..,A5 within the Core Role
class. As such grouping is relatively new, the tradi-
tional features may not be sufficient to characterize
each class. Thus, to generate a large set of features
automatically, we again applied tree kernels.

Since our SRL system exploits the PropBank for-
malism for internal data representation, we devel-
oped ad-hoc procedures to convert back and forth
to the CoNLL Shared Task format. This conversion
step gave us useful information about the amount
and the nature of the parsing errors. Also, we could
measure the frequency of the mismatches between
syntax and role annotation.

In the remainder of this paper, Section 2 describes
the basic system configuration whereas Section 3 il-
lustrates its enhanced properties and the hierarchical
structure. Section 4 describes the experimental set-
ting and the results. Finally, Section 5 summarizes

201



our conclusions.

2 The Basic Semantic Role Labeler

In the last years, several machine learning ap-
proaches have been developed for automatic role la-
beling, e.g. (Gildea and Jurasfky, 2002; Pradhan
et al., 2005). Their common characteristic is the
adoption of flat feature representations for predicate-
argument structures. Our basic system is similar to
the one proposed in (Pradhan et al., 2005) and it is
described hereafter.

We divided the predicate argument labeling in two
subtasks: (a) the detection of the arguments related
to a target, i.e. all the compounding words of such
argument, and (b) the classification of the argument
type, e.g.A0 or AM. To learn both tasks we used the
following algorithm:

1. Given a sentence from thetraining-set, generate
a full syntactic parse-tree;
2. LetP andA be respectively the set of predicates
and the set of parse-tree nodes (i.e. the potential ar-
guments);
3. For each pair<p, a> ∈ P ×A:

- extract the feature representation set,Fp,a;
- if the subtree rooted ina covers exactly the

words of one argument ofp, put Fp,a in T+

(positive examples), otherwise put it inT−

(negative examples).

We trained the SVM boundary classifier onT+ and
T− sets and the role labeleri on theT+

i
, i.e. its pos-

itive examples andT−i , i.e. its negative examples,
whereT+ = T+

i ∪ T−i , according to the ONE-vs.-
ALL scheme. To implement the multi-class clas-
sifiers we select the argument associated with the
maximum among the SVM scores.

To represent theFp,a pairs we used the following
features:
- the Phrase Type, Predicate Word, Head Word,
Governing Category, PositionandVoicedefined in
(Gildea and Jurasfky, 2002);
- the Partial Path, Compressed Path, No Direction
Path, Constituent Tree Distance, Head Word POS,
First and Last Word/POS in Constituent, SubCate-
gorizationandHead Word of Prepositional Phrases
proposed in (Pradhan et al., 2005); and
- theSyntactic Framedesigned in (Xue and Palmer,
2004).

Figure 1:Architecture of the Hierarchical Semantic Role La-

beler.

3 Hierarchical Semantic Role Labeler

Having two phases for argument labeling provides
two main advantages: (1) the efficiency is increased
as the negative boundary examples, which are al-
most all parse-tree nodes, are used with one clas-
sifier only (i.e. the boundary classifier), and (2) as
arguments share common features that do not occur
in the non-arguments, a preliminary classification
between arguments and non-arguments advantages
the boundary detection of roles with fewer training
examples (e.g.A4). Moreover, it may be simpler
to classify the type of roles when the not-argument
nodes are absent.

Following this idea, we generalized the above two
level strategy to a four-step role labeling by group-
ing together the arguments sharing similar proper-
ties. Figure 1, shows the hierarchy employed for ar-
gument classification:

During the first phase, we select the parse tree
nodes which are likely predicate arguments. An
SVM with moderately high recall is applied for such
purpose.

In the second phase, a simple heuristic which se-
lects non-overlappingnodes from those derived in
the previous step is applied. Two nodesn1 andn2

do not overlap ifn1 is not ancestor ofn2 and vicev-
ersa. Our heuristic simply eliminates the nodes that
cause the highest number of overlaps. We have also
studied how to train an overlap resolver by means of
tree kernels; the promising approach and results can
be found in (Moschitti et al., 2005).

In the third phase, we classify the detected argu-
ments in the following four classes: AX, i.e.Core

202



Arguments, AM, i.e. Adjuncts, CX, i.e. Continua-
tion Argumentsand RX, i.e. theCo-referring Argu-
ments. The above classification relies on linguistic
reasons. For exampleCore argumentsclass contains
the arguments specific to the verb frames whileAd-
junct Argumentsclass contains arguments that are
shared across all verb frames.

In the fourth phase, we classify the members
within the classes of the previous level, e.g.A0 vs.
A1, ...,A5.

4 The Experiments
We experimented our approach with the CoNLL
2005 Shared Task standard dataset, i.e. the Pen-
nTree Bank, where sections from 02 to 21 are used
as training set, Section 24 as development set (Dev)
and Section 23 as the test set (WSJ). Additionally,
the Brown corpus’ sentences were also used as the
test set (Brown). As input for our feature extractor
we used only the Charniak’s parses with their POSs.

The evaluations were carried out with the SVM-
light-TK software (Moschitti, 2004) available at
http://ai-nlp.info.uniroma2.it/moschitti/

which encodes the tree kernels in the SVM-light
software (Joachims, 1999). We used the default
polynomial kernel (degree=3) for the linear feature
representations and the tree kernels for the structural
feature processing.

As our feature extraction module was designed
to work on the PropBank project annotation format
(i.e. theprop.txt index file), we needed to generate
it from the CoNLL data. Each PropBank annota-
tion refers to a parse tree node which exactly cov-
ers the target argument but when using automatic
parses such node may not exist. For example, on
the CoNLL Charniak’s parses, (sections 02-21 and
24), we discovered that this problem affects 10,293
out of the 241,121 arguments (4.3%) and 9,741 sen-
tences out of 87,257 (11.5%). We have found out
that most of the errors are due to wrong parsing at-
tachments. This observation suggests that the capa-
bility of discriminating between correct and incor-
rect parse trees is a key issue in the boundary de-
tection phase and it must be properly taken into ac-
count.

4.1 Basic System Evaluation
For the boundary classifier we used a SVM with
the polynomial kernel of degree 3. We set the reg-

ularization parameter,c , to 1 and the cost factor,
j to 7 (to have a slightly higher recall). To re-
duce the learning time, we applied a simple heuristic
which removes the nodes covering the target predi-
cate node. From the initial 4,683,777 nodes (of sec-
tions 02-21), the heuristic removed 1,503,100 nodes
with a loss of 2.6% of the total arguments. How-
ever, as we started the experiments in late, we used
only the 992,819 nodes from the sections 02-08. The
classifier took about two days and half to converge
on a 64 bits machine (2.4 GHz and 4Gb Ram).

The multiclassifier was built with 52 binary ar-
gument classifiers. Their training on all arguments
from sec 02-21, (i.e. 242,957), required about a half
day on a machine with 8 processors (32 bits, 1.7
GHz and overll 4Gb Ram).

We run the role multiclassifier on the output of the
boundary classifier. The results on the Dev, WSJ and
Brown test data are shown in Table 1. Note that, the
overlapping nodes cause the generation of overlap-
ping constituents in the sentence annotation. This
prevents us to use the CoNLL evaluator. Thus, we
used the overlap resolution algorithm also for the ba-
sic system.

4.2 Hierarchical Role Labeling Evaluation

As the first two phases of the hierarchical labeler are
identical to the basic system, we focused on the last
two phases. We carried out our studies over the Gold
Standard boundaries in the presence of arguments
that do not have aperfect-coveringnode in the Char-
niak trees.

To accomplish the third phase, we re-organized
the flat arguments into the AX, AM, CX and RX
classes and we built a single multi-classifier. For
the fourth phase, we built a multi-classifier for each
of the above classes: only the examples related to
the target class were used, e.g. the AX mutliclas-
sifier was designed with the A0,..,A5 ONE-vs-ALL
binary classifiers.

In rows 2 and 3, Table 2 shows the numbers of
training and development set instances. Row 4 con-
tains theF1 of the binary classifiers of the third
phase whereas Row 5 reports theF1 of the result-
ing multi-classifier. Row 6 presents theF1s of the
multi-classifiers of the fourth phase.

Row 7 illustrates theF1 measure of the fourth
phase classifier applied to the third phase output. Fi-

203



Precision Recall Fβ=1

Development 74.95% 73.10% 74.01
Test WSJ 76.55% 75.24% 75.89
Test Brown 65.92% 61.83% 63.81
Test WSJ+Brown 75.19% 73.45% 74.31

Test WSJ Precision Recall Fβ=1

Overall 76.55% 75.24% 75.89
A0 81.05% 84.37% 82.67
A1 77.21% 74.12% 75.63
A2 67.02% 68.11% 67.56
A3 69.63% 54.34% 61.04
A4 74.75% 72.55% 73.63
A5 100.00% 40.00% 57.14
AM-ADV 55.23% 55.34% 55.28
AM-CAU 66.07% 50.68% 57.36
AM-DIR 50.62% 48.24% 49.40
AM-DIS 77.71% 78.44% 78.07
AM-EXT 68.00% 53.12% 59.65
AM-LOC 59.02% 63.09% 60.99
AM-MNR 67.67% 52.33% 59.02
AM-MOD 98.65% 92.56% 95.51
AM-NEG 97.37% 96.52% 96.94
AM-PNC 42.28% 45.22% 43.70
AM-PRD 0.00% 0.00% 0.00
AM-REC 0.00% 0.00% 0.00
AM-TMP 81.90% 74.52% 78.03
R-A0 79.50% 84.82% 82.07
R-A1 62.23% 75.00% 68.02
R-A2 100.00% 31.25% 47.62
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 50.00% 66.67
R-AM-EXT 100.00% 100.00% 100.00
R-AM-LOC 85.71% 85.71% 85.71
R-AM-MNR 22.22% 33.33% 26.67
R-AM-TMP 67.69% 84.62% 75.21
V 97.34% 97.30% 97.32

Table 1: Overall results (top) and detailed results on
the WSJ test (bottom).

nally, in Row 8, we report theF1 of the basic system
on the gold boundary nodes. We note that the basic
system shows a slightly higherF1 but is less compu-
tational efficient than the hierarchical approach.

5 Final Remarks

In this paper we analyzed the impact of a hierarchi-
cal categorization on the semantic role labeling task.
The results show that such approach produces an ac-
curacy similar to the flat systems with a higher ef-
ficiency. Moreover, some preliminary experiments
show that each node of the hierarchy requires differ-
ent features to optimize the associated multiclassi-
fier. For example, we found that the SCF tree kernel
(Moschitti, 2004) improves the AX multiclassifier

AX AM CX RX
# train. examples 172,457 59,473 2,954 7,928
# devel. examples 5,930 2,132 105 284
Phase III: binary class. 97.29 97.35 70.86 93.15
Phase III 95.99
Phase IV 92.50 85.88 91.43 91.55
Phase III & IV 88.15
Basic System 88.61

Table 2: Hierarchical Semantic Role Labeler Results

whereas the PAF tree kernel seems more suited for
the classification within the other classes, e.g. AM.

Future work on the optimization of each phase is
needed to study the potential accuracy limits of the
proposed hierarchical approach.

Acknowledgements
We wish to thank Daniele Pighin for his valuable
support in the development of the SRL system.

References
Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to the

CoNLL-2005 Shared Task: Semantic Role Labeling. Inpro-
ceedings of CoNLL’05.

Daniel Gildea and Daniel Jurasfky. 2002. Automatic labeling
of semantic roles.Computational Linguistic.

Ana-Maria Giuglea and Alessandro Moschitti. 2004. Knowl-
edge Discovering using FrameNet, VerbNet and PropBank.
In proceedings of the Workshop on Ontology and Knowledge
Discovering at ECML’04, Pisa, Italy.

T. Joachims. 1999. Making large-scale SVM learning practical.
In B. Scḧolkopf, C. Burges, and A. Smola, editors,Advances
in Kernel Methods - Support Vector Learning.

Alessandro Moschitti, Bonaventura Coppola, Daniele Pighin,
and Roberto Basili. 2005. Engineering of syntactic features
for shallow semantic parsing. Inproceedings of the Feature
Engineering Workshop at ACL’05, Ann Arbor, USA.

Alessandro Moschitti. 2004. A study on convolution kernel
for shallow semantic parsing. Inproceedings of ACL-2004,
Barcelona, Spain.

Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne Ward,
James H. Martin, and Daniel Jurafsky. 2005. Support vector
learning for semantic argument classification.to appear in
Machine Learning Journal.

Nianwen Xue and Martha Palmer. 2004. Calibrating features
for semantic role labeling. InProceedings of EMNLP’04,
Barcelona, Spain.

204


