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Abstract

We introduce a learning semantic parser,
SCISSOR, that maps natural-language sen-
tences to a detailed, formal, meaning-
representation language. It first uses
an integrated statistical parser to pro-
duce a semantically augmented parse tree,
in which each non-terminal node has
both a syntactic and a semantic label.
A compositional-semantics procedure is
then used to map the augmented parse
tree into a final meaning representation.
We evaluate the system in two domains,
a natural-language database interface and
an interpreter for coaching instructions in
robotic soccer. We present experimental
results demonstrating that SCISSOR pro-
duces more accurate semantic representa-
tions than several previous approaches.

1 Introduction

Most recent work in learning for semantic parsing
has focused on “shallow” analysis such asseman-
tic role labeling(Gildea and Jurafsky, 2002). In this
paper, we address the more ambitious task of learn-
ing to map sentences to a complete formalmeaning-
representation language(MRL). We consider two
MRL’s that can be directly used to perform useful,
complex tasks. The first is a Prolog-based language
used in a previously-developed corpus of queries to
a database on U.S. geography (Zelle and Mooney,
1996). The second MRL is a coaching language for

robotic soccer developed for the RoboCup Coach
Competition, in which AI researchers compete to
provide effective instructions to a coachable team of
agents in a simulated soccer domain (et al., 2003).

We present an approach based on a statisti-
cal parser that generates asemantically augmented
parse tree(SAPT), in which each internal node in-
cludes both a syntactic and semantic label. We aug-
ment Collins’ head-driven model 2 (Collins, 1997)
to incorporate a semantic label on each internal
node. By integrating syntactic and semantic inter-
pretation into a single statistical model and finding
the globally most likely parse, an accurate combined
syntactic/semantic analysis can be obtained. Once a
SAPT is generated, an additional step is required to
translate it into a final formalmeaning representa-
tion (MR).

Our approach is implemented in a system called
SCISSOR (Semantic Composition that Integrates
Syntax and Semantics to get Optimal Representa-
tions). Training the system requires sentences an-
notated with both gold-standard SAPT’s and MR’s.
We present experimental results on corpora for both
geography-database querying and Robocup coach-
ing demonstrating that SCISSORproduces more ac-
curate semantic representations than several previ-
ous approaches based on symbolic learning (Tang
and Mooney, 2001; Kate et al., 2005).

2 Target MRL’s

We used two MRLs in our experiments: CLANG and
GEOQUERY. They capture the meaning of linguistic
utterances in their domain in a formal language.
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2.1 CLANG: the RoboCup Coach Language

RoboCup (www.robocup.org) is an interna-
tional AI research initiative using robotic soccer
as its primary domain. In the Coach Competition,
teams of agents compete on a simulated soccer field
and receive advice from a team coach in a formal
language called CLANG. In CLANG, tactics and
behaviors are expressed in terms of if-then rules.
As described in (et al., 2003), its grammar consists
of 37 non-terminal symbols and 133 productions.
Below is a sample rule with its English gloss:

((bpos (penalty-area our))
(do (player-except our {4})

(pos (half our))))

“If the ball is in our penalty area, all our players
except player 4 should stay in our half.”

2.2 GEOQUERY: a DB Query Language

GEOQUERY is a logical query language for a small
database of U.S. geography containing about 800
facts. This domain was originally chosen to test
corpus-based semantic parsing due to the avail-
ability of a hand-built natural-language interface,
GEOBASE, supplied with Turbo Prolog 2.0 (Borland
International, 1988). The GEOQUERY language
consists of Prolog queries augmented with several
meta-predicates (Zelle and Mooney, 1996). Below
is a sample query with its English gloss:

answer(A,count(B,(city(B),loc(B,C),
const(C,countryid(usa))),A))

“How many cities are there in the US?”

3 Semantic Parsing Framework

This section describes our basic framework for se-
mantic parsing, which is based on a fairly stan-
dard approach to compositional semantics (Juraf-
sky and Martin, 2000). First, a statistical parser
is used to construct a SAPT that captures the se-
mantic interpretation of individual words and the
basic predicate-argument structure of the sentence.
Next, a recursive procedure is used to composition-
ally construct an MR for each node in the SAPT
from the semantic label of the node and the MR’s

has2

VP−bowner

player the ball

NN−player CD−unum NP−null

NN−null

VB−bowner

S−bowner

NP−player

DT−null

PRP$−team

our

Figure 1: An SAPT for a simple CLANG sentence.

Function:BUILD MR(N;K)
Input: The root nodeN of a SAPT;

predicate-argument knowledge,K, for the MRL.
Notation: XMR is the MR of nodeX.
Output: NMRCi := theith child node ofN; 1 � i � nCh = GETSEMANTICHEAD(N ) // see Section 3ChMR = BUILD MR(Ch; K)
for each other childCi wherei 6= hCiMR = BUILD MR(Ci; K)

COMPOSEMR(ChMR , CiMR ; K) // see Section 3NMR = ChMR
Figure 2: Computing an MR from a SAPT.

of its children. Syntactic structure provides infor-
mation of how the parts should be composed. Am-
biguities arise in both syntactic structure and the se-
mantic interpretation of words and phrases. By in-
tegrating syntax and semantics in a single statistical
parser that produces an SAPT, we can use both se-
mantic information to resolve syntactic ambiguities
and syntactic information to resolve semantic ambi-
guities.

In a SAPT, each internal node in the parse tree
is annotated with a semantic label. Figure 1 shows
the SAPT for a simple sentence in the CLANG do-
main. The semantic labels which are shown after
dashes areconceptsin the domain. Sometype con-
ceptsdo not take arguments, liketeam and unum
(uniform number). Some concepts, which we refer
to aspredicates, take an ordered list of arguments,
like playerandbowner(ball owner). The predicate-
argument knowledge,K, specifies, for each predi-
cate, the semantic constraints on its arguments. Con-
straints are specified in terms of the concepts that
can fill each argument, such asplayer(team, unum)
andbowner(player). A special semantic labelnull
is used for nodes that do not correspond to any con-
cept in the domain.

Figure 2 shows the basic algorithm for build-
ing an MR from an SAPT. Figure 3 illustrates the
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player the ball

N3−bowner(_)N7−player(our,2)

N2−null

      null      null

N4−player(_,_)    N5−team

our

N6−unum

2

N1−bowner(_)

has

N8−bowner(player(our,2))

Figure 3: MR’s constructed for each SAPT Node.

construction of the MR for the SAPT in Figure 1.
Nodes are numbered in the order in which the con-
struction of their MR’s are completed. The first
step, GETSEMANTICHEAD, determines which of a
node’s children is itssemantic headbased on hav-
ing a matching semantic label. In the example, node
N3 is determined to be the semantic head of the
sentence, since its semantic label,bowner, matches
N8’s semantic label. Next, the MR of the seman-
tic head is constructed recursively. The semantic
head of N3 is clearly N1. Since N1 is a part-of-
speech (POS) node, its semantic label directly de-
termines its MR, which becomesbowner( ). Once
the MR for the head is constructed, the MR of all
other (non-head) children are computed recursively,
and COMPOSEMR assigns their MR’s to fill the ar-
guments in the head’s MR to construct the com-
plete MR for the node. Argument constraints are
used to determine the appropriate filler for each ar-
gument. Since, N2 has anull label, the MR of N3
also becomesbowner( ). When computing the MR
for N7, N4 is determined to be the head with the
MR: player( , ). COMPOSEMR then assigns N5’s
MR to fill the teamargument and N6’s MR to fill
theunumargument to construct N7’s complete MR:
player(our, 2). This MR in turn is composed with
the MR for N3 to yield the final MR for the sen-
tence:bowner(player(our,2)).

For MRL’s, such as CLANG, whose syntax does
not strictly follow a nested set of predicates and ar-
guments, some final minor syntactic adjustment of
the final MR may be needed. In the example, the
final MR is (bowner (player ourf2g)). In the fol-
lowing discussion, we ignore the difference between
these two.

There are a few complications left which re-
quire special handling when generating MR’s,
like coordination, anaphora resolution and non-

compositionality exceptions. Due to space limita-
tions, we do not present the straightforward tech-
niques we used to handle them.

4 Corpus Annotation

This section discusses how sentences for training
SCISSOR were manually annotated with SAPT’s.
Sentences were parsed by Collins’ head-driven
model 2 (Bikel, 2004) (trained on sections 02-21
of the WSJ Penn Treebank) to generate an initial
syntactic parse tree. The trees were then manually
corrected and each node augmented with a semantic
label.

First, semantic labels for individual words, called
semantic tags, are added to the POS nodes in the
tree. The tagnull is used for words that have no cor-
responding concept. Some concepts are conveyed
by phrases, like “has the ball” forbownerin the pre-
vious example. Only one word is labeled with the
concept; the syntactic head word (Collins, 1997) is
preferred. During parsing, the other words in the
phrase will provide context for determining the se-
mantic label of the head word.

Labels are added to the remaining nodes in a
bottom-up manner. For each node, one of its chil-
dren is chosen as the semantic head, from which it
will inherit its label. The semantic head is chosen
as the child whose semantic label can take the MR’s
of the other children as arguments. This step was
done mostly automatically, but required some man-
ual corrections to account for unusual cases.

In order for COMPOSEMR to be able to construct
the MR for a node, the argument constraints for
its semantic head must identify a unique concept
to fill each argument. However, some predicates
take multiple arguments of the same type, such as
point.num(num,num), which is a kind of point that
represents a field coordinate in CLANG.

In this case, extra nodes are inserted in the tree
with new type concepts that are unique for each ar-
gument. An example is shown in Figure 4 in which
the additional type conceptsnum1andnum2are in-
troduced. Again, during parsing, context will be
used to determine the correct type for a given word.

Thepoint label of the root node of Figure 4 is the
concept that includes all kinds of points in CLANG.
Once a predicate has all of its arguments filled, we
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,

0.5 , −RRB−

−RRB−−null  

−LRB− 0.1

CD−num CD−num

−LRB−−point.num

PRN−point

CD−num1 CD−num2

Figure 4: Adding new types to disambiguate argu-
ments.
use the most general CLANG label for its concept
(e.g. point instead ofpoint.num). This generality
avoids sparse data problems during training.

5 Integrated Parsing Model

5.1 Collins Head-Driven Model 2

Collins’ head-driven model 2 is a generative, lexi-
calized model of statistical parsing. In the following
section, we follow the notation in (Collins, 1997).
Each non-terminalX in the tree is a syntactic label,
which is lexicalized by annotating it with aword,w, and aPOS tag, tsyn. Thus, we write a non-
terminal asX(x), where X is a syntactic label andx = hw; tsyni. X(x) is then what is generated by
the generative model.

Each productionLHS ) RHS in the PCFG is
in the form:P (h)!Ln(ln):::L1(l1)H(h)R1(r1):::Rm(rm)
whereH is the head-child of the phrase, which in-
herits the head-wordh from its parentP . L1:::Ln
andR1:::Rm are left and right modifiers ofH.

Sparse data makes the direct estimation ofP(RHSjLHS) infeasible. Therefore, it is decom-
posed into several steps – first generating the head,
then the right modifiers from the head outward,
then the left modifiers in the same way. Syntactic
subcategorization frames, LC and RC, for the left
and right modifiers respectively, are generated be-
fore the generation of the modifiers. Subcat frames
represent knowledge about subcategorization prefer-
ences. The final probability of a production is com-
posed from the following probabilities:

1. The probability of choosing a head constituent
label H:Ph(HjP; h).

2. The probabilities of choosing the left and right
subcat frames LC and RC:Pl(LCjP;H; h)
andPr(RCjP;H; h).

has2our player the

PRP$−team NN−player CD−unum

NN−nullDT−null

NP−player(player) VP−bowner(has)

NP−null(ball)

ball

S−bowner(has)

VB−bowner

Figure 5: A lexicalized SAPT.

3. The probabilities of generat-
ing the left and right modifiers:Qi=1::m+1 Pr(Ri(ri)jH;P; h;�i�1; RC) �Qi=1::n+1Pl(Li(li)jH;P; h;�i�1; LC).
Where� is the measure of the distance from
the head word to the edge of the constituent,
andLn+1(ln+1) andRm+1(rm+1) areSTOP .
The model stops generating more modifiers
whenSTOP is generated.

5.2 Integrating Semantics into the Model

We extend Collins’ model to include the genera-
tion of semantic labels in the derivation tree. Un-
less otherwise stated, notation has the same mean-
ing as in Section 5.1. The subscriptsyn refers to
the syntactic part, andsem refers to the semantic
part. We redefineX and x to include semantics,
each non-terminalX is now a pair of a syntactic la-
bel Xsyn and a semantic labelXsem. Besides be-
ing annotated with the word,w, and the POS tag,tsyn, X is also annotated with the semantic tag,tsem, of the head child. Thus,X(x) now consists ofX = hXsyn;Xsemi, andx = hw; tsyn; tsemi. Fig-
ure 5 shows a lexicalized SAPT (but omittingtsyn
andtsem).

Similar to the syntactic subcat frames, we also
condition the generation of modifiers on semantic
subcat frames. Semantic subcat frames give se-
mantic subcategorization preferences; for example,
player takes ateamand aunum. ThusLC andRC
are now: hLCsyn; LCsemi and hRCsyn; RCsemi.X(x) is generated as in Section 5.1, but using the
new definitions ofX(x), LC andRC. The imple-
mentation of semantic subcat frames is similar to
syntactic subcat frames. They are multisets speci-
fying the semantic labels which the head requires in
its left or right modifiers.

As an example, the probability of generating the
phrase “our player 2” using NP-[player](player)!
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PRP$-[team](our) NN-[player](player) CD-[unum](2)
is (omitting only the distance measure):Ph(NN-[player]jNP-[player],player)�Pl(hfg,fteamgijNP-[player],player)�Pr(hfg,funumgijNP-[player],player)�Pl(PRP$-[team](our)jNP-[player],player,hfg,fteamgi)�Pr(CD-[unum](2)jNP-[player],player,hfg,funumgi)�Pl(STOPjNP-[player],player,hfg,fgi)�Pr(STOPjNP-[player],player,hfg,fgi)
5.3 Smoothing

Since the left and right modifiers are independently
generated in the same way, we only discuss smooth-
ing for the left side. Each probability estimation in
the above generation steps is called aparameter. To
reduce the risk of sparse data problems, the parame-
ters are decomposed as follows:Ph(HjC) = Phsyn(HsynjC)�Phsem(HsemjC;Hsyn)Pl(LCjC) = Plsyn(LCsynjC)�Plsem(LCsemjC;LCsyn)Pl(Li(li)jC) = Plsyn(Lisyn(ltisyn ; lwi)jC)�Plsem(Lisem(ltisem ; lwi)jC;Lisyn(ltisyn))

For brevity,C is used to represent the context on
which each parameter is conditioned;lwi, ltisyn , andltisem are the word, POS tag and semantic tag gener-
ated for the non-terminalLi. The word is generated
separately in the syntactic and semantic outputs.

We make the independence assumption that the
syntactic output is only conditioned on syntactic fea-
tures, and semantic output on semantic ones. Note
that the syntactic and semantic parameters are still
integrated in the model to find the globally most
likely parse. The syntactic parameters are the same
as in Section 5.1 and are smoothed as in (Collins,
1997). We’ve also tried different ways of condition-
ing syntactic output on semantic features and vice
versa, but they didn’t help. Our explanation is the
integrated syntactic and semantic parameters have
already captured the benefit of this integrated ap-
proach in our experimental domains.

Since the semantic parameters do not depend on
any syntactic features, we omit thesem subscripts

in the following discussion. As in (Collins, 1997),
the parameterPl(Li(lti; lwi)jP;H;w; t;�; LC) is
further smoothed as follows:Pl1(LijP;H;w; t;�; LC) �Pl2(ltijP;H;w; t;�; LC;Li)�Pl3(lwijP;H;w; t;�; LC;Li(lti))
Note this smoothing is different from the syntactic
counterpart. This is due to the difference between
POS tags and semantic tags; namely, semantic tags
are generally more specific.

Table 1 shows the various levels of back-off for
each semantic parameter. The probabilities from
these back-off levels are interpolated using the tech-
niques in (Collins, 1997). All words occurring less
than 3 times in the training data, and words in test
data that were not seen in training, are unknown
words and are replaced with the ”UNKNOWN” to-
ken. Note this threshold is smaller than the one used
in (Collins, 1997) since the corpora used in our ex-
periments are smaller.

5.4 POS Tagging and Semantic Tagging

For unknown words, the POS tags allowed are lim-
ited to those seen with any unknown words during
training. Otherwise they are generated along with
the words using the same approach as in (Collins,
1997). When parsing, semantic tags for each known
word are limited to those seen with that word dur-
ing training data. The semantic tags allowed for an
unknown word are limited to those seen with its as-
sociated POS tags during training.

6 Experimental Evaluation

6.1 Methodology

Two corpora of NL sentences paired with MR’s
were used to evaluate SCISSOR. For CLANG, 300
pieces of coaching advice were randomly selected
from the log files of the 2003 RoboCup Coach Com-
petition. Each formal instruction was translated
into English by one of four annotators (Kate et al.,
2005). The average length of an NL sentence in
this corpus is 22.52 words. For GEOQUERY, 250
questions were collected by asking undergraduate
students to generate English queries for the given
database. Queries were then manually translated
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BACK-OFFLEVEL Ph(Hj:::) PLC(LCj:::) PL1(Lij:::) PL2(ltij:::) PL3(lwij:::)
1 P,w,t P,H,w,t P,H,w,t,�,LC P,H,w,t,�,LC, Li P,H,w,t,�,LC, Li, lti
2 P,t P,H,t P,H,t,�,LC P,H,t,�,LC, Li P,H,t,�,LC, Li, lti
3 P P,H P,H,�,LC P,H,�,LC, Li Li, lti
4 – – – Li lti

Table 1: Conditioning variables for each back-off level forsemantic parameters (sem subscripts omitted).

into logical form (Zelle and Mooney, 1996). The
average length of an NL sentence in this corpus is
6.87 words. The queries in this corpus are more
complex than those in the ATIS database-query cor-
pus used in the speech community (Zue and Glass,
2000) which makes the GEOQUERYproblem harder,
as also shown by the results in (Popescu et al., 2004).
The average number of possible semantic tags for
each word which can represent meanings in CLANG

is 1.59 and that in GEOQUERY is 1.46.
SCISSOR was evaluated using standard 10-fold

cross validation. NL test sentences are first parsed
to generate their SAPT’s, then their MR’s were built
from the trees. We measured the number of test sen-
tences that produced complete MR’s, and the num-
ber of these MR’s that were correct. For CLANG,
an MR is correct if it exactly matches the correct
representation, up to reordering of the arguments of
commutative operators likeand. For GEOQUERY,
an MR is correct if the resulting query retrieved
the same answer as the correct representation when
submitted to the database. The performance of the
parser was then measured in terms ofprecision(the
percentage of completed MR’s that were correct)
and recall (the percentage of all sentences whose
MR’s were correctly generated).

We compared SCISSOR’s performance to several
previous systems that learn semantic parsers that can
map sentences into formal MRL’s. CHILL (Zelle and
Mooney, 1996) is a system based on Inductive Logic
Programming (ILP). We compare to the version
of CHILL presented in (Tang and Mooney, 2001),
which uses the improved COCKTAIL ILP system and
produces more accurate parsers than the original ver-
sion presented in (Zelle and Mooney, 1996). SILT is
a system that learns symbolic, pattern-based, trans-
formation rules for mapping NL sentences to formal
languages (Kate et al., 2005). It comes in two ver-
sions, SILT -string, which maps NL strings directly
to an MRL, and SILT -tree, which maps syntactic
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Figure 7: Recall learning curves for GEOQUERY.

parse trees (generated by the Collins parser) to an
MRL. In the GEOQUERY domain, we also compare
to the original hand-built parser GEOBASE.

6.2 Results

Figures 6 and 7 show the precision and recall learn-
ing curves for GEOQUERY, and Figures 8 and 9 for
CLANG. Since CHILL is very memory intensive,
it could not be run with larger training sets of the
CLANG corpus.

Overall, SCISSORgives the best precision and re-
call results in both domains. The only exception
is with recall for GEOQUERY, for which CHILL is
slightly higher. However, SCISSORhas significantly
higher precision (see discussion in Section 7).
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Results on a larger GEOQUERY corpus with 880
queries have been reported for PRECISE(Popescu et
al., 2003): 100% precision and 77.5% recall. On
the same corpus, SCISSORobtains 91.5% precision
and 72.3% recall. However, the figures are not com-
parable. PRECISE can return multiple distinct SQL
queries when it judges a question to be ambigu-
ous and it is considered correct whenany of these
SQL queries is correct. Our measure only considers
the top result. Due to space limitations, we do not
present complete learning curves for this corpus.

7 Related Work

We first discuss the systems introduced in Section
6. CHILL uses computationally-complex ILP meth-
ods, which are slow and memory intensive. The
string-based version of SILT uses no syntactic in-
formation while the tree-based version generates a
syntactic parse first and then transforms it into an
MR. In contrast, SCISSOR integrates syntactic and
semantic processing, allowing each to constrain and
inform the other. It uses a successful approach to sta-

tistical parsing that attempts to find the SAPT with
maximum likelihood, which improves robustness
compared to purely rule-based approaches. How-
ever, SCISSORrequires an extra training input, gold-
standard SAPT’s, not required by these other sys-
tems. Further automating the construction of train-
ing SAPT’s from sentences paired with MR’s is a
subject of on-going research.

PRECISE is designed to work only for the spe-
cific task of NL database interfaces. By comparison,
SCISSOR is more general and can work with other
MRL’s as well (e.g. CLANG). Also, PRECISE is not
a learning system and can fail to parse a query it con-
siders ambiguous, even though it may not be consid-
ered ambiguous by a human and could potentially be
resolved by learning regularities in the training data.

In (Lev et al., 2004), a syntax-driven approach
is used to map logic puzzles described in NL to
an MRL. The syntactic structures are paired with
hand-written rules. A statistical parser is used to
generate syntactic parse trees, and then MR’s are
built using compositional semantics. The meaning
of open-category words (with only a few exceptions)
is considered irrelevant to solving the puzzle and
their meanings are not resolved. Further steps would
be needed to generate MR’s in other domains like
CLANG and GEOQUERY. No empirical results are
reported for their approach.

Several machine translation systems also attempt
to generate MR’s for sentences. In (et al., 2002),
an English-Chinese speech translation system for
limited domains is described. They train a statisti-
cal parser on trees with only semantic labels on the
nodes; however, they do not integrate syntactic and
semantic parsing.

History-based models of parsing were first in-
troduced in (Black et al., 1993). Their original
model also included semantic labels on parse-tree
nodes, but they were not used to generate a formal
MR. Also, their parsing model is impoverished com-
pared to the history included in Collins’ more recent
model. SCISSOR explores incorporating semantic
labels into Collins’ model in order to produce a com-
plete SAPT which is then used to generate a formal
MR.

The systems introduced in (Miller et al., 1996;
Miller et al., 2000) also integrate semantic labels
into parsing; however, their SAPT’s are used to pro-
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duce a much simpler MR, i.e., a single semantic
frame. A sample frame is AIRTRANSPORTATION

which has three slots – the arrival time, origin and
destination. Only one frame needs to be extracted
from each sentence, which is an easier task than
our problem in which multiple nested frames (pred-
icates) must be extracted. The syntactic model in
(Miller et al., 2000) is similar to Collins’, but does
not use features like subcat frames and distance mea-
sures. Also, the non-terminal labelX is not further
decomposed into separately-generated semantic and
syntactic components. Since it used much more spe-
cific labels (the cross-product of the syntactic and
semantic labels), its parameter estimates are poten-
tially subject to much greater sparse-data problems.

8 Conclusion

SCISSORlearns statistical parsers that integrate syn-
tax and semantics in order to produce a semanti-
cally augmented parse tree that is then used to com-
positionally generate a formal meaning representa-
tion. Experimental results in two domains, a natural-
language database interface and an interpreter for
coaching instructions in robotic soccer, have demon-
strated that SCISSORgenerally produces more accu-
rate semantic representations than several previous
approaches. By augmenting a state-of-the-art statis-
tical parsing model to include semantic information,
it is able to integrate syntactic and semantic clues
to produce a robust interpretation that supports the
generation of complete formal meaning representa-
tions.
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