
Robustness versus Fidelity in Natural Language Understanding

Mark G. Core and Johanna D. Moore
School of Informatics, University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW, UK
[markc,jmoore]@inf.ed.ac.uk

Abstract

A number of issues arise when trying to scale-
up natural language understanding (NLU) tools
designed for relatively simple domains (e.g.,
flight information) to domains such as medical
advising or tutoring where deep understanding
of user utterances is necessary. Because the
subject matter is richer, the range of vocabu-
lary and grammatical structures is larger mean-
ing NLU tools are more likely to encounter
out-of-vocabulary words or extra-grammatical
utterances. This is especially true in med-
ical advising and tutoring where users may
not know the correct vocabulary and use com-
mon sense terms or descriptions instead. Tech-
niques designed to improve robustness (e.g.,
skipping unknown words, relaxing grammat-
ical constraints, mapping unknown words to
known words) are effective at increasing the
number of utterances for which an NLU sub-
system can produce a semantic interpretation.
However, such techniques introduce additional
ambiguity and can lead to a loss of fidelity (i.e.,
a mismatch between the semantic interpreta-
tion and what the language producer meant).
To control this trade-off, we propose semantic
interpretation confidence scores akin to speech
recognition confidence scores, and describe our
initial attempt to compute such a score in a
modularized NLU sub-system.

1 Introduction

Applications such as automated medical advice and tu-
toring use rich knowledge representations, and natural
language input to dialogue systems in these domains
contains a wide range of vocabulary and grammatical
structures. Natural language understanding (NLU) tools

may fail when encountering out-of-vocabulary words or
extra-grammatical utterances. Using robustness features
such as skipping unknown words and mapping unknown
words to known words can allow an NLU sub-system to
recover fully from failure, or at least to extract pieces of
meaning that can be used for a directed clarification ques-
tion (see (Gabsdil, 2003; Rosé, 1997) for more details).
Such robustness is especially critical for the domain of
tutoring. Educators are interested in using dialogue to
address conceptual errors instead of focusing on termi-
nology errors, and students want “partial credit” from tu-
tors if they have the right general idea. Thus, NLU sub-
systems for tutoring must attempt to extract correct ele-
ments from student answers that they do not fully under-
stand.

The problem with such robustness features is that they
introduce additional ambiguity and can lead to a loss of
fidelity (i.e., a mismatch between the semantic interpre-
tation and what the language producer meant) if no clar-
ification or confirmation request is made. We argue that
semantic interpretation confidence scores (akin to speech
recognition confidence scores) are necessary to properly
manage this robustness versus fidelity trade-off. It is not
enough to ask for clarification of missing information;
the dialogue system needs confidence scores so it can de-
cide what information present in the logical form (if any)
should be clarified or confirmed.

In addition to avoiding misunderstandings, dialogue
systems should be sensitive to the lexical and syntactic
choices made by users. Pickering and Garrod (under re-
vision) argue that conversational agents track each other’s
use of referring expressions. In experimental contexts
such as games involving mazes, participants often im-
plicitly agree on a conventional way of referring to en-
tities such as places in the maze. If dialogue systems do
not mimic this alignment process, users can easily be-
come confused if they make a reference such as “the two
o’clock flight” but the system talks about “BA 112” in-

stead. In some domains (e.g., tutoring, medical advising),
the process is more complex as users may use common
sense terms or descriptions instead of correct terminol-
ogy. The system should not use incorrect terminology,
but instead teach the correct terms. To enable dialogue
systems to align or correct user-referring-expressions, the
NLU sub-system must provide pointers from the seman-
tic interpretation back to the words and syntax produced
by the user.

In the body of this paper, we present the architecture of
our NLU sub-system. Features of our architecture such as
a packed parse tree representation and a two-stage seman-
tic interpretation process provide efficiency and portabil-
ity advantages. However, they complicate the calculation
of confidence scores and maintenance of links between
the words and syntax produced by the user and the output
of NLU. The goal of this paper is to highlight the archi-
tectural trade-offs involved in controlling fidelity.

2 Our Architecture

Our NLU sub-system, NUBEE, is part of a tutorial dia-
logue system, BEETLE (Basic Electricity and Electron-
ics Tutorial Learning Environment) (Zinn et al., forth-
coming). BEETLE users are given tasks to perform in
the circuit simulator pictured in figure 1. Users manipu-
late objects in this simulation as well as conversing with
the system through typed input. The typed input is sent
to NUBEE which queries the domain reasoner, BEER,
and dialogue history to help build a logical form which it
sends to the dialogue manager of the system, the central
component of BEETLE’s response generation.

NUBEE uses an application-specific logical frame-
work which closely resembles minimal recursion seman-
tics (MRS) (Copestake et al., 1999). An example logical
form is shown in figure 2. The identifiers in square brack-
ets define the handles for each of the three elementary
predications (EPs). Handles are used by one EP to ref-
erence another EP. The first EP, connect

� �

, takes the han-
dles of two EPs as arguments (the handles for battery

� �

and wire
� �

). Arguments can be handles or atomic val-
ues. Note, we differentiate the definition of a handle from
a handle reference by marking the former with square
brackets. The two arguments to battery

� �

are the atomic
values defNP and singular. To simplify processing we
simply pass on these syntactic features, defNP and sin-
gular, for later processing rather than defining quantifiers
such as the.

In section 5, we describe our two stage interpretation
process. Predicates output by the first stage are marked
with a prime (e.g., connect

�

) and predicates output by the
second stage (such as those in figure 2) are marked with
a double prime.

Ideally each EP and each of its individual atomic ele-
ments would have a confidence score (reflecting the sub-

(1) connect the battery to the wire

(*and*
(connect’’ [id1] id2 id3)
(battery’’ [id2] defNP singular)
(wire’’ [id3] defNP singular))

Figure 2: Example logical form

system’s confidence that it captures the speaker’s mean-
ing), and a link back to the syntactic structures corre-
sponding to the predicate or atomic element. Such a
fine-grained representation would ensure that a dialogue
system could separate low fidelity elements from high fi-
delity ones, and that all the speaker’s lexical and gram-
matical choices were captured.

Building such a representation is difficult because the
NLU process consists of a series of tasks: preprocess-
ing (in a typed system, this consists of spelling correc-
tion and unknown word handling), syntactic and semantic
analysis, and reference resolution. Backward links must
be built across these processing steps and each step in-
troduces ambiguity (e.g., the parser will output multiple
possibilities). In section 7, we see that the system’s parser
uses a packed representation for ambiguity. Such a rep-
resentation is efficient but the connection between indi-
vidual syntactic structures and semantic structures is lost
meaning these links must be recreated post-hoc.

NUBEE’s architecture is shown in figure 3. The
spelling correction, parsing, and post-processing com-
ponents were built using the Carmel workbench (Rosé,
2000; Rosé et al., 2003). In our architecture for typed
NLU, speech recognition is replaced by unknown word
handling and spelling correction which we discuss in sec-
tions 3 and 4. In these modules, it is relatively easy to
calculate confidence scores and record the transforma-
tions made to the user input. These modules can make
dramatic changes to the user input so it is unclear why
current NLU sub-systems do not track these transforma-
tions.

In section 5, we discuss the parsing and post-
processing modules (parts of the Carmel workbench). We
highlight why it is difficult to assign confidence scores
to Carmel’s output and maintain links between logical
predicates and the corresponding words typed by the user.
Section 6 discusses our reference resolution module and
how it calculates confidence scores and records the trans-
formations that it makes (from logical predicates to sim-
ulated objects in the domain reasoner). In section 7, we
discuss how we calculate global confidence scores and
link references to simulated objects back to the user’s re-
ferring expression.

NUBEE
Domain Reasoner

(BEER)

Dialogue

History

Response Generation

Figure 1: NLU-centric diagram of BEETLE

3 Spelling Correction

NUBEE’s spelling corrector (Elmi and Evens, 1998) and
robust parser are both part of the Carmel workbench and
the interface between the two is predefined. The spelling
corrector uses the parser’s lexicon as its dictionary and at-
tempts to fix spelling and typing errors in known words.
Since the parser’s lexicon is typically much smaller than
a lexical database such as WordNet (Miller, 1990), there
is a reduction in token ambiguity (i.e., the number of pos-
sible replacements to consider) but the spelling of un-
known words will not be corrected. The simplification
is also made that known words are never misspelled ver-
sions of other known words (e.g., typing “their” instead
of “there”).

The spelling corrector uses string transformations to
attempt to repair spelling/typing errors. Because repeated

transformations will map any input string to a word in
the dictionary, transformations are given penalty scores
and a threshold defines an allowable spelling correction.
However, the spelling corrector’s decisions are final; re-
placements whose penalty scores are below the threshold
are entered directly into the parser’s chart but the penalty
scores are not passed on.

To produce a record of spelling corrector transforma-
tions, we create a word transformation table for every
new utterance. Each transformation is recorded in a ta-
ble entry consisting of the original word, the transformed
word (after spelling correction), and an associated confi-
dence score. We have modified the spelling corrector to
return a confidence score based on the number of alterna-
tives that it proposes. We show below the transformation
table recording the spelling corrector’s output for the mis-
spelled word “socet”:

Taggerunknown
word

known word

Reference

Resolution

Spelling

Processing

POS
Corrector Lookup

WordNet

known known synonym

Still
Unknown Robust

Parser
Post−

Figure 3: NUBEE architecture

socet -> socket, 0.5
-> set, 0.5

In future work, we plan to modify the spelling correc-
tor so that it outputs its penalty score.

4 Unknown Word Handling

Carmel’s robust parser can skip words while attempt-
ing to find an analysis for the user input. True un-
known words (not spelling errors) will be skipped be-
cause Carmel will have no information about their syn-
tactic or semantic features. For some unknown words,
this is the best solution because they represent concepts
not having an obvious link to knowledge modeled by the
system (users should be alerted to the system’s limita-
tion). However, we are aware of no work on attempting
to recognize novel ways of referring to entities modeled
by the system.

Our approach is to find known synonyms (i.e., in
NUBEE’s lexicon) of unknown words using the Word-
Net lexical database (Miller, 1990). In WordNet, words
are connected to one or more synsets each corresponding
to a distinct concept. Each synset will have a set of hy-
ponymy (all the subtypes of the synset) and hypernymy
(the supertype of the synset) links.

Currently, we use a very simple search process to
look for a known word whose meaning approximates the
meaning of the unknown word. We assign a part-of-
speech (POS) tag to the unknown word, and search the
appropriate WordNet taxonomy. We retrieve the synsets
associated with the word and run the search procedure
SEARCH-WORD stopping when a known word is found.

procedure SEARCH-WORD (SYNSETS)

1. SEARCH-DOWN (SYNSETS)
2. if height threshold not reached then

SEARCH-WORD (hypernyms for SYNSETS)

procedure SEARCH-DOWN (SYNSETS)

1. search all words having a
synset in SYNSETS

2. SEARCH-DOWN (all hyponyms of SYNSETS)

Nodes in the WordNet taxonomy close to its root
have relatively general meanings (e.g., social-relation,

physical-object) so we define a limit (height threshold)
to how far the search can progress up the taxonomy.

To make a record of unknown-word-handling transfor-
mations, we add additional entries to the word transfor-
mation table output by spelling correction. We use the
size of the search space to calculate confidence scores,
treating the set of replacement words retrieved in each
step of the search process as equally likely. Consider
the example of the unknown word “cable”. Step one
of SEARCH-DOWN returns: “telegraph”, “wire”, and
“fasten-with-a-cable”. “wire” is a known word, and “ca-
ble” is replaced by “wire” with a confidence of 0.33:

cable -> wire, 0.33

5 Carmel Workbench

We use the Carmel workbench (Rosé, 2000; Rosé et al.,
2003) for parsing and post-processing. In Carmel’s AU-
TOSEM framework:

“semantic interpretation [operates] in parallel
with syntactic interpretation at parse time in a
lexicon driven fashion. ... [Semantic] knowl-
edge is encoded declaratively within a mean-
ing representation specification. Semantic con-
structor functions are compiled automatically
from this specification and then linked into lex-
ical entries” (Rosé, 2000, p. 311).

Carmel comes with a wide-coverage English grammar
that is compatible with the wide-coverage COMLEX lex-
icon (Grishman et al., 1994). For each COMLEX entry
that we wanted to add into NUBEE’s lexicon, we speci-
fied its meaning as shown below for the words “connect”,
“battery”, and “wire”.

connect: connect’, subject->agent,
object->theme,
modifier->destination

battery: battery’
wire: wire’

This simplified example of the meaning specification
assigns a predicate to each word, and in the case of a
verb such as “connect” assigns a mapping from the syn-
tactic roles of subject, object, and modifier to the seman-
tic roles of agent, theme, and destination. This repre-
sentation is domain-independent and reusable; it will al-
ways be the case that the subject of “connect” realizes the

(2a)
connect the battery to the cable (wire)
(*and*
(frame connect’)
(theme (*and* (*and* (frame battery’)

(number singular))
(def defNP)))

(destination (*and*
(*and* (frame wire’)

(number singular))
(def defNP))))

Figure 4: Example semantic feature value

(2b)
(*and*
(connect’’ [id1] id2 id3)
(battery’’ [id2] defNP singular)
(wire’’ [id3] defNP singular))

Figure 5: Example logical form from section 1

agent, the object realizes the theme, and that the destina-
tion (if present) will be realized as a modifier.

Figure 4 shows a simplified version of the parser’s out-
put given the utterance, “connect the battery to the ca-
ble”. Recall from section 4 that the unknown word han-
dler will replace “cable” with “wire” leading to the wire

�

predicates in figure 4.
The two occurrences of the definite article “the” trig-

ger the feature values (def defNP), marking that battery
�

and wire
�

occurred in definite NPs. The nouns, “battery”
and “wire”, have the associated syntactic feature of being
singular, and the features theme and destination mark the
semantic roles of battery

�

and wire
�

.
Dialogue systems use domain-specific reasoners to

process the output of NLU sub-systems (e.g., to answer a
user question or execute a user command, or to judge the
correctness of a student answer). Such domain reasoners
generally expect input in a predefined, domain-specific
format necessitating a second stage of processing to con-
vert the parser’s output into the correct format.

Our domain reasoner’s representation for the connect
action is a predicate, connect

� �

, taking as arguments, the
two objects to be connected. Carmel provides support for
building such predicates from the parser’s output based
on a declarative specification. Based on our specification
for connect

� �

, Carmel’s predicate mapper will produce the
logical form shown in figure 5 (a copy of figure 2).

During the parsing and post-processing stages, the
string returned from pre-processing (spelling correction
and unknown word handling) is transformed into a series
of predicates. We currently do not keep track of all the
connections between the predicates and the words that
formed them. The predicate mapping stage is difficult to

(2c) (*or* (connect’’ [id4] "|I|BATT1"
"|I|WIRE-1461")

(connect’’ [id5] "|I|BATT1"
"|I|WIRE-1441")

(connect’’ [id6] "|I|BATT1"
"|I|WIRE-1451")

(connect’’ [id7] "|I|BATT1"
"|I|REDLEAD1")

(connect’’ [id8] "|I|BATT1"
"|I|BLACKLEAD1"))

Figure 6: Example logical form after reference resolution

unravel; the mapping rules operate on semantic feature
values (such as those shown in figure 4). There is no di-
rect link between pieces of semantic feature values and
the words that triggered them so it is difficult to associate
the output of predicate mapping with words. See section
7 for more details and our interim solution.

6 Reference Resolution

For each predicate corresponding to a physical entity,
the reference resolution module must decide whether the
predicate refers to: a concept (a generic reading), a novel
object (indefinite reference), or an existing object (defi-
nite reference). If the predicate refers to an existing ob-
ject, the predicate (e.g., wire

� �

) may match several objects
in the domain reasoner but the speaker may only be refer-
ring to a subset of these objects.

Figure 6 shows the example from figure 5 after refer-
ence resolution. The predicate battery

� �

is replaced by
the name of the one battery present in figure 1, but wire

� �

could refer to any of the five wires in the circuit leading
to the ambiguity depicted.

NUBEE can query the dialogue system’s history list
to assign salience and calculate confidence scores for
the transformations it makes. These transformations are
stored in a table such as the one below (assume that
"|I|WIRE-1461" had been mentioned previously but
the other wires had not):

(battery’’ [id2] def singular) ->
"|I|BATT1" (1.0)

(wire’’ [id3] def singular) ->
"|I|WIRE-1461" (0.6) "|I|WIRE-1441" (0.1)
"|I|WIRE-1451" (0.1) "|I|REDLEAD1" (0.1)
"|I|BLACKLEAD1" (0.1)

In the next section, we will see how these table entries
are matched with words from the input.

7 Improving Fidelity

We are currently focusing on improving fidelity for re-
ferring expressions: assigning confidence scores to the
objects retrieved during reference resolution and linking

referenced objects to the words used to refer to them. We
make the assumption that all referring expressions are
NPs and build a table of predicates (formed from NPs)
and the words associated with those NPs. A sample entry
is shown below.

(wire’’ [id2] def singular)
<= ‘‘the wire’’

We run the following procedure on each NP in the one
parse tree node covering the input (in the parser’s packed
representation there will only be one such node with the
category utterance).

procedure PROCESS-NP (NP)

1. run the predicate mapper just on
NP to get its associated predicate

2. follow the children of NP to find
the words associated with it

The next step is consulting the spelling corrector and
unknown word handler. In section 3, we introduced a
table of word substitutions with associated confidence
scores. This table can be used to replace the words found
in the chart with the words actually typed by the user and
to compute a global confidence score by multiplying the
confidence scores of the individual words with the confi-
dence score assigned during reference resolution.

In section 4, we discussed unknown word handling for
“the cable”; combining this result with the reference table
computed above gives us:

"|I|WIRE-1461",
(wire’’ [id3] def singular),
0.198, ‘‘the cable’’

"|I|WIRE-1441",
(wire’’ [id3] def singular),
0.033, ‘‘the cable’’

"|I|WIRE-1451",
(wire’’ [id3] def singular),
0.033, ‘‘the cable’’

"|I|REDLEAD1",
(wire’’ [id3] def singular),
0.033, ‘‘the cable’’

"|I|BLACKLEAD1",
(wire’’ [id3] def singular),
0.033, ‘‘the cable’’

One complication is that NPs can be associated with
an ambiguous set of words. Consider a nonsense word
in our domain, “waters”. The spelling corrector will pro-
pose “watts” and “meters” as possible replacements. In
the parser’s packed representation, the nouns “watts” and
“meters” share the same node. A disjunctive set of fea-
tures represents the ambiguity.

(*or*
(*and* (frame watts’)

(number plural)
(root watt))

(*and* (frame meters’)
(number plural)
(root meter)))

This ambiguity is propagated to the NP node but the
connection between the word stems (the root feature) and
the two NP meanings is lost.

(*or*
(*and* (frame watts’)

(number plural)
(def indef))

(*and* (frame meters’)
(number plural)
(def indef)))

We modified PROCESS-NP to deal with such cases by
adding an additional step:

3. for each meaning, M of the NP
3.1 try to match M with one or

more of the words associated
with the NP (i.e., run the
predicate mapper just on
the word and see if it matches
one of the meanings of the NP)

8 Discussion

Although there has been work on controlling the fidelity
of individual components of the pipeline shown in figure
3, there has been little work considering the NLU sub-
system as a whole. Gabsdil and Bos (2003) incorporate
(speech recognizer) confidence scores into their logical
form for elements that correspond directly to words in the
input (rather than larger structures built through compo-
sition). Consider the example of the word “manager” and
assume it has a speech recognition confidence score of
0.65. Gabsdil and Bos’ parser will assign “manager” the
semantic value of

���
:MANAGER(���) where

���
is a handle

and ��� a variable. This semantic value is given a con-
fidence score of 0.65 the same as “manager”. To com-
pute confidence scores for larger constituents they sug-
gest to “combine confidence scores for sub-formulas re-
cursively” (Gabsdil and Bos, 2003, p. 149).

We have taken this idea further and explored the is-
sues involved in computing confidence scores for larger
constituents. Some of these issues are linked to our two-
stage semantic analysis. However, Carmel’s two-stage
interpretation process (i.e., a domain-independent parsing
stage and a domain-dependent predicate mapping stage)
is not idiosyncratic to the Carmel workbench. Dzikovska
et al. (2002) adopt such a two stage approach because

their NLU sub-system is used in multiple domains (e.g.,
transportation planning, medication advice) necessitating
reuse of resources wherever possible. Milward (2000)
uses a two stage approach because it increases robust-
ness. When the parser is not able to build a parse tree
covering the entire input, there will still be a semantic
chart composed of partial parses and their associated se-
mantic feature values. For the domain of airline flight
information, Milward defines post-processing rules that
scan this semantic chart looking for information such as
departure times. Our goal in this paper was to highlight
the architectural trade-offs of such features on controlling
fidelity.

9 Future Work

Our search process for unknown word handling is rudi-
mentary. Each step of the search procedures described
above returns a set of replacement candidates which are
treated as equally likely. In future work, we plan to re-
vise this search process to use a distance metric such as
one of those discussed in (Budanitsky and Hirst, 2001).
Such distance metrics take into account factors such as
the overall depth of the WordNet taxonomy and the fre-
quency of synsets in a corpus, and will allow us to better
control the search process.

Although we know of no work on using WordNet
to handle unknown words during interpretation, there is
work on using WordNet for lexical variation during gen-
eration. Jing (1998) presents an algorithm for converting
WordNet into a domain-specific taxonomy of replaceable
words. First, words and synsets are removed that do not
appear in a corpus representative of the domain.

The senses of verb arguments in the corpus are disam-
biguated based on the intuition that words appearing as
the same argument to the same verb should have senses
close to each other in WordNet. Consider an example
from Jing’s domain of generating basketball news re-
ports. The verb “add” takes words such as “rebound”,
“throw”, and “shot” as objects. Jing states that “re-
bound” and “throw” have senses that are members of the
synset accomplishment-achievement; their other senses
do not align in this manner and are pruned from WordNet.
“shot” has a sense that is a hyponym of accomplishment-
achievement forming a small taxonomy. This process
can be used in reverse for words not in WordNet such
as “layup”. “layup” often occurs as an object to “hit” as
do the known words “jumper” and “baskets”. Based on
this information, “layup” is added to WordNet under the
synset accomplishment-achievement, the synset Jing as-
signs to “jumper” and “baskets”.

In future work, we will use such a pruning algorithm
on WordNet, and in addition to such static pruning (done
off-line), we want to try dynamic pruning; e.g., to process
the unknown word “X”, in the example, “connect the X

to tab 4”, we should only consider “connectible” entities
as defined by the system’s ontology.

Another area for future work are the parsing and post-
processing steps (section 5); these steps do not maintain
confidence scores nor input-output links making it dif-
ficult to compute global confidence scores and maintain
links between the words and syntax produced by a user
and the resulting output from NUBEE.

The work discussed in section 7 focuses on referring
expressions realized as NPs. An incremental approach to
improving this work would involve supporting other syn-
tactic categories such as verbs, and modifying NUBEE’s
confidence scores to penalize transformations done dur-
ing parsing and post-processing (i.e., skipping words, use
of disambiguation heuristics).

A more general approach would require changes to
the Carmel workbench. Currently the packed represen-
tation represents ambiguity as a disjunction of semantic
feature values (e.g., figure 4). Each of these feature val-
ues could have an associated confidence score and a list
of the words associated with those semantic feature val-
ues. With such a representation, the post-hoc analysis
discussed in section 7 would not be necessary. We could
compute confidence scores as follows. Typically in sta-
tistical parsing, the probability of a parse-tree node is the
product of the probability of the rule forming the node,
and the probabilities of its children. We could propa-
gate confidence scores for individual words in the same
fashion (making the assumption that all rules are equally
likely).

However, the added complexity and associated in-
creased processing load may not be worth the ability
to associate each element of NUBEE’s output with a
confidence score and syntactic information. We plan
to perform a detailed evaluation to investigate the ef-
fect of tracking fidelity on the generation of clarification
and confirmation requests, and alignment of the dialogue
system with the user (and where necessary, correction).
Evaluation will take two forms: building a test suite from
human-human dialogues in this domain, and analysis of
user interactions with the system.

Acknowledgments

The research presented in this paper is supported by Grant
#N000149910165 from the Office of Naval Research,
Cognitive and Neural Sciences Division. Thanks to Car-
olyn Rosé for releasing the CARMEL Workbench for
public use and for her continual support of this software.
Thanks to Myroslava Dzikovska, Claus Zinn, Carolyn
Rosé, Johan Bos, and our anonymous reviewers for their
comments.

References

Alexander Budanitsky and Graeme Hirst. 2001. Seman-
tic distance in WordNet: An experimental, application-
oriented evaluation of five measures. In Proc. of the
NAACL-01 Workshop on WordNet and Other Lexical
Resources.

Ann Copestake, Dan Flickinger, Ivan Sag, and Carl Pol-
lard. 1999. Minimal Recursion Semantics: An intro-
duction. Draft.

Myroslava O. Dzikovska, James F. Allen, and Mary D.
Swift. 2002. Finding the balance between generic
and domain-specific knowledge: a parser customiza-
tion strategy. In Proc. of the LREC 2002 Workshop on
Customizing Knowledge for NLP Applications.

Mohammad A. Elmi and Martha W. Evens. 1998.
Spelling correction using context. In Proc. of ACL-
98/COLING-98, pages 360–364.

Malte Gabsdil and Johan Bos. 2003. Combining acous-
tic confidence scores with deep semantic analysis for
clarification dialogues. In Proc. of the Fifth Interna-
tional Workshop on Computational Semantics (IWCS-
5), pages 137–150.

Malte Gabsdil. 2003. Clarification in spoken dialogue
systems. In Proc. of the AAAI Spring Symposium on
Natural Language Generation in Spoken and Written
Dialogue.

Ralph Grishman, Catherine Macleod, and Adam Meyers.
1994. COMLEX syntax: Building a computational
lexicon. In Proc. of the 15 �

�
International Conference

on Computational Linguistics (COLING-94).

Hongyan Jing. 1998. Usage of WordNet in natural lan-
guage generation. In Proc. of the COLING-ACL-98
Workshop on Usage of WordNet in Natural Language
Processing Systems.

George Miller. 1990. WordNet: An on-line lexical
database. International Journal of Lexicography, 3(4).

David Milward. 2000. Distributing representation for ro-
bust interpretation of dialogue utterances. In Proc. of
the 38 �

�
Annual Meeting of the Association for Com-

putational Linguistics (ACL-00).

Martin J. Pickering and Simon Garrod. under revision.
Toward a mechanistic psychology of dialogue. Behav-
ioral and Brain Sciences.

Carolyn P. Rosé, Andy Gaydos, Brian S. Hall, Antonio
Roque, and Kurt VanLehn. 2003. Overcoming the
knowledge engineering bottleneck for understanding
student language input. In Proc. of the 11 �

�
Interna-

tional Conference on Artificial Intelligence in Educa-
tion (AIED ’03).

Carolyn P. Rosé. 1997. Robust Interactive Dialogue In-
terpretation. Ph.D. thesis, School of Computer Sci-
ence, Carnegie Mellon University.

Carolyn P. Rosé. 2000. A framework for robust semantic
interpretation. In Proc. of the 1

�
� Annual Meeting of

the North American Chapter of the ACL (NAACL-00),
Seatle, pages 311–318.

Claus Zinn, Johanna D. Moore, and Mark G. Core. forth-
coming. Intelligent information presentation for tutor-
ing systems. In Oliviero Stock and Massimo Zanca-
naro, editors, Intelligent Multimodal Information Pre-
sentation. Kluwer.

