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Abstract

The current research demonstrates a system

inspired by cognitive neuroscience and

developmental psychology that learns to

construct mappings between the grammatical

structure of sentences and the structure of their

meaning representations. Sentence to meaning

mappings are learned and stored as

grammatical constructions. These are stored

and retrieved from a construction inventory

based on the constellation of closed class

items uniquely identifying each construction.

These learned mappings allow the system to

processes natural language sentences in order

to reconstruct complex internal representations

of the meanings these sentences describe. The

system demonstrates error free performance

and systematic generalization for a rich subset

of English constructions that includes complex

hierarchical grammatical structure, and

generalizes systematically to new sentences of

the learned construction categories. Further

testing demonstrates (1) the capability to

accommodate a significantly extended set of

constructions, and (2) extension to Japanese, a

free word order language that is structurally

quite different from English, thus

demonstrating the extensibility of the structure

mapping model.

1 Introduction

The nativist perspective on the problem of

language acquisition holds that the <sentence,

meaning> data to which the child is exposed is

highly indeterminate, and underspecifies the

mapping to be learned. This “poverty of the

stimulus” is a central argument for the existence of

a genetically specified universal grammar, such

that language acquisition consists of configuring

the UG for the appropriate target language

(Chomsky 1995). In this framework, once a given

parameter is set, its use should apply to new

constructions in a generalized, generative manner.

An alternative functionalist perspective holds

that learning plays a much more central role in

language acquisition. The infant develops an

inventory of grammatical constructions as

mappings from form to meaning (Goldberg 1995).

These constructions are initially rather fixed and

specific, and later become generalized into a more

abstract compositional form employed by the adult

(Tomasello 1999, 2003). In this context,

construction of the relation between perceptual and

cognitive representations and grammatical form

plays a central role in learning language (e.g.

Feldman et al. 1990, 1996; Langacker 1991;

Mandler 1999; Talmy 1998).

These issues of learnability and innateness have

provided a rich motivation for simulation studies

that have taken a number of different forms.

Elman (1990) demonstrated that recurrent

networks are sensitive to predictable structure in

grammatical sequences. Subsequent studies of

grammar induction demonstrate how syntactic

structure can be recovered from sentences (e.g.

Stolcke & Omohundro 1994). From the

“grounding of language in meaning” perspective

(e.g. Feldman et al. 1990, 1996; Langacker 1991;

Goldberg 1995) Chang & Maia (2001) exploited

the relations between action representation and

simple verb frames in a construction grammar

approach. In effort to consider more complex

grammatical forms, Miikkulainen (1996)

demonstrated a system that learned the mapping

between relative phrase constructions and multiple

event representations, based on the use of a stack

for maintaining state information during the

processing of the next embedded clause in a

recursive manner.

In a more generalized approach, Dominey

(2000) exploited the regularity that sentence to

meaning mapping is encoded in all languages by

word order and grammatical marking (bound or

free) (Bates et al. 1982). That model was based on
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the functional neurophysiology of cognitive

sequence and language processing and an

associated neural network model that has been

demonstrated to simulate interesting aspects of

infant (Dominey & Ramus 2000) and adult

language processing (Dominey et al. 2003).

2 Structure mapping for language learning

The mapping of sentence form onto meaning

(Goldberg 1995) takes place at two distinct levels

in the current model: Words are associated with

individual components of event descriptions, and

grammatical structure is associated with functional

roles within scene events. The first level has been

addressed by Siskind (1996), Roy & Pentland

(2002) and Steels (2001) and we treat it here in a

relatively simple but effective manner. Our

principle interest lies more in the second level of

mapping between scene and sentence structure.

Equations 1-7 implement the model depicted in

Figure 1, and are derived from a

neurophysiologically motivated model of

sensorimotor sequence learning (Dominey et al.

2003).

2.1 Word Meaning

Equation (1) describes the associative memory,

WordToReferent, that links word vectors in the

OpenClassArray (OCA) with their referent vectors

in the SceneEventArray (SEA)1. In the initial

learning phases there is no influence of syntactic

knowledge and the word-referent associations are

stored in the WordToReferent matrix (Eqn 1) by

associating every word with every referent in the

current scene (α = 1), exploiting the cross-

situational regularity (Siskind 1996) that a given

word will have a higher coincidence with referent

to which it refers than with other referents. This

initial word learning contributes to learning the

mapping between sentence and scene structure

(Eqn. 4, 5 & 6 below). Then, knowledge of the

syntactic structure, encoded in SentenceToScene

can be used to identify the appropriate referent (in

the SEA) for a given word (in the OCA),

corresponding to a zero value of α in Eqn. 1. In

this “syntactic bootstrapping” for the new word

“gugle,” for example, syntactic knowledge of

Agent-Event-Object structure of the sentence

“John pushed the gugle” can be used to assign

1 In Eqn 1, the index k = 1 to 6, corresponding to the maximum

number of words in the open class array (OCA). Index m = 1 to 6,

corresponding to the maximum number of elements in the scene event

array (SEA). Indices i and j = 1 to 25, corresponding to the word and

scene item vector sizes, respectively.

“gugle” to the object of push.

WordToReferent(i,j) = WordToReferent(i,j) +

OCA(k,i) * SEA(m,j) *

max(α, SentenceToScene(m,k)) (1)

2.2 Open vs Closed Class Word Categories

Our approach is based on the cross-linguistic

observation that open class words (e.g. nouns,

verbs, adjectives and adverbs) are assigned to their

thematic roles based on word order and/or

grammatical function words or morphemes (Bates

et al. 1982). Newborn infants are sensitive to the

perceptual properties that distinguish these two

categories (Shi et al. 1999), and in adults, these

categories are processed by dissociable

neurophysiological systems (Brown et al. 1999).

Similarly, artificial neural networks can also learn

to make this function/content distinction (Morgan

et al. 1996). Thus, for the speech input that is

provided to the learning model open and closed

class words are directed to separate processing

streams that preserve their order and identity, as

indicated in Figure 2.

Figure 1. Structure-Mapping Architecture. 1. Lexical categorization.

2. Open class words in Open Class Array are translated to Predicted

Referents in the PRA via the WordtoReferent mapping. 3. PRA

elements are mapped onto their roles in the SceneEventArray by the

SentenceToScene mapping, specific to each sentence type. 4. This

mapping is retrieved from Construction Inventory, via the

ConstructionIndex that encodes the closed class words that

characterize each grammatical construction type.

2.3 Mapping Sentence to Meaning

Meanings are encoded in an event predicate,

argument representation corresponding to the

SceneEventArray in Figure 1 (e.g. push(Block,

triangle) for “The triangle pushed the block”).

There, the sentence to meaning mapping can be
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characterized in the following successive steps.

First, words in the Open Class Array are decoded

into their corresponding scene referents (via the

WordToReferent mapping) to yield the Predicted

Referents Array that contains the translated words

while preserving their original order from the OCA

(Eqn 2) 2.

n

i 1

PRA(k,j) = OCA(k,i) * WordToReferent(i,j)
=

� (2)

Next, each sentence type will correspond to a

specific form to meaning mapping between the

PRA and the SEA. encoded in the

SentenceToScene array. The problem will be to

retrieve for each sentence type, the appropriate

corresponding SentenceToScene mapping. To

solve this problem, we recall that each sentence

type will have a unique constellation of closed

class words and/or bound morphemes (Bates et al.

1982) that can be coded in a ConstructionIndex

(Eqn.3) that forms a unique identifier for each

sentence type.

The ConstructionIndex is a 25 element vector.

Each function word is encoded as a single bit in a

25 element FunctionWord vector. When a

function word is encountered during sentence

processing, the current contents of

ConstructionIndex are shifted (with wrap-around)

by n + m bits where n corresponds to the bit that is

on in the FunctionWord, and m corresponds to the

number of open class words that have been

encountered since the previous function word (or

the beginning of the sentence). Finally, a vector

addition is performed on this result and the

FunctionWord vector. Thus, the appropriate

SentenceToScene mapping for each sentence type

can be indexed in ConstructionInventory by its

corresponding ConstructionIndex.

ConstructionIndex = fcircularShift(ConstructionIndex,

FunctionWord) (3)

The link between the ConstructionIndex and the

corresponding SentenceToScene mapping is

established as follows. As each new sentence is

processed, we first reconstruct the specific

SentenceToScene mapping for that sentence (Eqn

4)3, by mapping words to referents (in PRA) and

2 Index k = 1 to 6, corresponding to the maximum number of scene

items in the predicted references array (PRA). Indices i and j = 1 to

25, corresponding to the word and scene item vector sizes,

respectively.

3 Index m = 1 to 6, corresponding to the maximum number of

elements in the scene event array (SEA). Index k = 1 to 6,

corresponding to the maximum number of words in the predicted

referents to scene elements (in SEA). The

resulting, SentenceToSceneCurrent encodes the

correspondence between word order (that is

preserved in the PRA Eqn 2) and thematic roles in

the SEA. Note that the quality of

SentenceToSceneCurrent will depend on the

quality of acquired word meanings in

WordToReferent. Thus, syntactic learning

requires a minimum baseline of semantic

knowledge.

n

i=1

SentenceToSceneCurrent(m,k) =

PRA(k,i)*SEA(m,i)�
(4)

Given the SentenceToSceneCurrent mapping

for the current sentence, we can now associate it in

the ConstructionInventory with the corresponding

function word configuration or ConstructionIndex

for that sentence, expressed in (Eqn 5)4.

ConstructionInventory(i,j) = ConstructionInventory(i,j)

+ ConstructionIndex(i)

* SentenceToScene-Current(j) (5)

Finally, once this learning has occurred, for

new sentences we can now extract the

SentenceToScene mapping from the learned

ConstructionInventory by using the

ConstructionIndex as an index into this associative

memory, illustrated in Eqn. 65.

n

i=1

SentenceToScene(i) =

ConstructionInventory(i,j) * ConstructinIndex(j)�
(6)

To accommodate the dual scenes for complex

events Eqns. 4-7 are instantiated twice each, to

represent the two components of the dual scene. In

the case of simple scenes, the second component of

the dual scene representation is null.

We evaluate performance by using the

WordToReferent and SentenceToScene knowledge

to construct for a given input sentence the

“predicted scene”. That is, the model will

references array (PRA). Index i = 1 to 25, corresponding to the word

and scene item vector sizes.

4 Note that we have linearized SentenceToSceneCurrent from 2 to

1 dimensions to make the matrix multiplication more transparent.

Thus index j varies from 1 to 36 corresponding to the 6x6 dimensions

of SentenceToSceneCurrent.

5 Again to simplify the matrix multiplication, SentenceToScene

has been linearized to one dimension, based on the original 6x6

matrix. Thus, index i = 1 to 36, and index j = 1 to 25 corresponding to

the dimension of the ConstructionIndex.
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construct an internal representation of the scene

that should correspond to the input sentence. This

is achieved by first converting the Open-Class-

Array into its corresponding scene items in the

Predicted-Referents-Array as specified in Eqn. 2.

The referents are then re-ordered into the proper

scene representation via application of the

SentenceToScene transformation as described in

Eqn. 76.

PSA(m,i) = PRA(k,i) * SentenceToScene(m,k) (7)

When learning has proceeded correctly, the

predicted scene array (PSA) contents should match

those of the scene event array (SEA) that is

directly derived from input to the model. We then

quantify performance error in terms of the number

of mismatches between PSA and SEA.

3 Learning Experiments

Three sets of results will be presented. First the

demonstration of the model sentence to meaning

mapping for a reduced set of constructions is

presented as a proof of concept. This will be

followed by a test of generalization to a new

extended set of grammatical constructions.

Finally, in order to validate the cross-linguistic

validity of the underlying principals, the model is

tested with Japanese, a free word-order language

that is qualitatively quite distinct from English.

3.1 Proof of Concept with Two Constructions

3.1.1 Initial Learning of Active Forms for

Simple Event Meanings

The first experiment examined learning with

sentence, meaning pairs with sentences only in the

active voice, corresponding to the grammatical

forms 1 and 2.

1. Active: The block pushed the triangle.

2. Dative: The block gave the triangle to the

moon.

For this experiment, the model was trained on

544 <sentence, meaning> pairs. Again, meaning is

coded in a predicate-argument format, e.g.

push(block, triangle) for sentence 1. During the

first 200 trials (scene/sentence pairs), value α in

Eqn. 1 was 1 and thereafter it was 0. This was

necessary in order to avoid the effect of erroneous

6 In Eqn 7, index i = 1 to 25 corresponding to the size of the scene

and word vectors. Indices m and k = 1 to 6, corresponding to the

dimension of the predicted scene array, and the predicted references

array, respectively.

(random) syntactic knowledge on semantic

learning in the initial learning stages. Evaluation

of the performance of the model after this training

indicated that for all sentences, there was error-free

performance. That is, the PredictedScene

generated from each sentence corresponded to the

actual scene paired with that sentence. An

important test of language learning is the ability to

generalize to new sentences that have not

previously been tested. Generalization in this form

also yielded error free performance. In this

experiment, only 2 grammatical constructions were

learned, and the lexical mapping of words to their

scene referents was learned. Word meaning

provides the basis for extracting more complex

syntactic structure. Thus, these word meanings are

fixed and used for the subsequent experiments.

3.1.2 Passive forms

The second experiment examined learning with

the introduction of passive grammatical forms,

thus employing grammatical forms 1-4.

3. Passive: The triangle was pushed by the block.

4. Dative Passive: The moon was given to the

triangle by the block.

A new set of <sentence, scene> pairs was

generated that employed grammatical

constructions, with two- and three- arguments, and

active and passive grammatical forms for the

narration. Word meanings learned in Experiment 1

were used, so only the structural mapping from

grammatical to scene structure was learned. With

exposure to less than 100 <sentence, scene>, error

free performance was achieved. Note that only the

WordToReferent mappings were retained from

Experiment 1. Thus, the 4 grammatical forms

were learned from the initial naive state. This

means that the ConstructionIndex and

ConstructionInventory mechanism correctly

discriminates and learns the mappings for the

different grammatical constructions. In the

generalization test, the learned values were fixed,

and the model demonstrated error-free

performance on new sentences for all four

grammatical forms that had not been used during

the training.

3.1.3 Relative forms for Complex Events

The complexity of the scenes/meanings and

corresponding grammatical forms in the previous

experiments were quite limited. Here we consider

complex <sentence, scene> mappings that involve

relativised sentences and dual event scenes. A
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small corpus of complex <sentence, scene> pairs

were generated corresponding to the grammatical

construction types 5-10

5. The block that pushed the triangle touched the

moon.

6. The block pushed the triangle that touched the

moon.

7. The block that pushed the triangle was touched by

the moon.

8. The block pushed the triangle that was touched the

moon.

9. The block that was pushed by the triangle touched

the moon.

10. The block was pushed by the triangle that touched

the moon.

After exposure to less than 100 sentences

generated from these relativised constructions, the

model performed without error for these 6

construction types. In the generalization test, the

learned values were fixed, and the model

demonstrated error-free performance on new

sentences for all six grammatical forms that had

not been used during the training.

3.1.4 Combined Test

The objective of the final experiment was to

verify that the model was capable of learning the

10 grammatical forms together in a single learning

session. Training material from the previous

experiments were employed that exercised the

ensemble of 10 grammatical forms. After

exposure to less than 150 <sentence, scene> pairs,

the model performed without error. Likewise, in

the generalization test the learned values were

fixed, and the model demonstrated error-free

performance on new sentences for all ten

grammatical forms that had not been used during

the training.

This set of experiments in ideal conditions

demonstrates a proof of concept for the system,

though several open questions can be posed based

on these results. First, while the demonstration

with 10 grammatical constructions is interesting,

we can ask if the model will generalize to an

extended set of constructions. Second, we know

that the English language is quite restricted with

respect to its word order, and thus we can ask

whether the theoretical framework of the model

will generalize to free word order languages such

as Japanese. These questions are addressed in the

following three sections.

3.2 Generalization to Extended Construction

Set

As illustrated above the model can accommodate

10 distinct form-meaning mappings or

grammatical constructions, including constructions

involving "dual" events in the meaning

representation that correspond to relative clauses.

Still, this is a relatively limited size for the

construction inventory. The current experiment

demonstrates how the model generalizes to a

number of new and different relative phrases, as

well as additional sentence types including:

conjoined (John took the key and opened the door),

reflexive (The boy said that the dog was chased by

the cat), and reflexive pronoun (The block said that

it pushed the cylinder) sentence types, for a total of

38 distinct abstract grammatical constructions. The

consideration of these sentence types requires us to

address how their meanings are represented.

Conjoined sentences are represented by the two

corresponding events, e.g. took(John, key),

open(John, door) for the conjoined example above.

Reflexives are represented, for example, as

said(boy), chased(cat, dog). This assumes indeed,

for reflexive verbs (e.g. said, saw), that the

meaning representation includes the second event

as an argument to the first. Finally, for the

reflexive pronoun types, in the meaning

representation the pronoun's referent is explicit, as

in said(block), push(block, cylinder) for "The

block said that it pushed the cylinder."

For this testing, the ConstructionInventory is

implemented as a lookup table in which the

ConstructionIndex is paired with the corresponding

SentenceToScene mapping during a single learning

trial. Based on the tenets of the construction

grammar framework (Goldberg 1995), if a

sentence is encountered that has a form (i.e.

ConstructionIndex) that does not have a

corresponding entry in the ConstructionInventory,

then a new construction is defined. Thus, one

exposure to a sentence of a new construction type

allows the model to generalize to any new sentence

of that type. In this sense, developing the capacity

to handle a simple initial set of constructions leads

to a highly extensible system. Using the training

procedures as described above, with a pre-learned

lexicon (WordToReferent), the model successfully

learned all of the constructions, and demonstrated

generalization to new sentences that it was not

trained on.

That the model can accommodate these 38

different grammatical constructions with no

modifications indicates its capability to generalize.

This translates to a (partial) validation of the

hypothesis that across languages, thematic role

assignment is encoded by a limited set of
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parameters including word order and grammatical

marking, and that distinct grammatical

constructions will have distinct and identifying

ensembles of these parameters. However, these

results have been obtained with English that is a

relatively fixed word-order language, and a more

rigorous test of this hypothesis would involve

testing with a free word-order language such as

Japanese.

3.3 Generalization to Japanese

The current experiment will test the model with

sentences in Japanese. Unlike English, Japanese

allows extensive liberty in the ordering of words,

with grammatical roles explicitly marked by

postpositional function words -ga, -ni, -wo, -yotte.

This word-order flexibility of Japanese with

respect to English is illustrated here with the

English active and passive di-transitive forms that

each can be expressed in 4 different common

manners in Japanese:

1. The block gave the circle to the triangle.

1.1 Block-ga triangle-ni circle-wo watashita .

1.2 Block-ga circle-wo triangle-ni watashita .

1.3 Triangle-ni block-ga circle-wo watashita .

1.4 Circle-wo block-ga triangle-ni watashita .

2. The circle was given to the triangle by the

block.

2.1 Circle-ga block-ni-yotte triangle-ni watasareta.

2.2 Block-ni-yotte circle-ga triangle-ni watasareta .

2.3 Block-ni-yotte triangle-ni circle-ga watasareta .

2.4 Triangle-ni circle-ga block-ni-yotte watasareta

.

In the “active” Japanese sentences, the

postpositional function words -ga, -ni and –wo

explicitly mark agent, recipient and, object

whereas in the passive, these are marked

respectively by –ni-yotte, -ga, and –ni. For both

the active and passive forms, there are four

different legal word-order permutations that

preserve and rely on this marking. Japanese thus

provides an interesting test of the model’s ability to

accommodate such freedom in word order.

Employing the same method as described in the

previous experiment, we thus expose the model to

<sentence, meaning> pairs generated from 26

Japanese constructions that employ the equivalent

of active, passive, relative forms and their

permutations. We predicted that by processing the

-ga, -ni, -yotte and –wo markers as closed class

elements, the model would be able to discriminate

and identify the distinct grammatical constructions

and learn the corresponding mappings. Indeed, the

model successfully discriminates between all of the

construction types based on the ConstructionIndex

unique to each construction type, and associates

the correct SentenceToScene mapping with each of

them. As for the English constructions, once

learned, a given construction could generalize to

new untrained sentences.

This demonstration with Japanese is an

important validation that at least for this subset of

constructions, the construction-based model is

applicable both to fixed word order languages such

as English, as well as free word order languages

such as Japanese. This also provides further

validation for the proposal of Bates and

MacWhinney (et al. 1982) that thematic roles are

indicated by a constellation of cues including

grammatical markers and word order.

3.4 Effects of Noise

The model relies on lexical categorization of

open vs. closed class words both for learning

lexical semantics, and for building the

ConstructionIndex for phrasal semantics. While we

can cite strong evidence that this capability is

expressed early in development (Shi et al. 1999) it

is still likely that there will be errors in lexical

categorization. The performance of the model for

learning lexical and phrasal semantics for active

transitive and ditransitive structures is thus

examined under different conditions of lexical

categorization errors. A lexical categorization error

consists of a given word being assigned to the

wrong category and processed as such (e.g. an

open class word being processed as a closed class

word, or vice-versa). Figure 2 illustrates the

performance of the model with random errors of

this type introduced at levels of 0 to 20 percent

errors.

Figure 2. The effects of Lexical Categorization Errors (mis-

categorization of an open-class word as a closed-class word or vice-

versa) on performance (Scene Interpretation Errors) over Training

Epochs. The 0% trace indicates performance in the absences of noise,

with a rapid elimination of errors . The successive introduction of

categorization errors yields a corresponding progressive impairment in

learning. While sensitive to the errors, the system demonstrates a

desired graceful degradation
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We can observe that there is a graceful

degradation, with interpretation errors

progressively increasing as categorization errors

rise to 20 percent. In order to further asses the

learning that was able to occur in the presence of

noise, after training with noise, we then tested

performance on noise-free input. The interpretation

error values in these conditions were 0.0, 0.4, 2.3,

20.7 and 33.6 out of a maximum of 44 for training

with 0, 5, 10, 15 and 20 percent lexical

categorization errors, respectively. This indicates

that up to 10 percent input lexical categorization

errors allows almost error free learning. At 15

percent input errors the model has still

significantly improved with respect to the random

behavior (~45 interpretation errors per epoch).

Other than reducing the lexical and phrasal

learning rates, no efforts were made to optimize

the performance for these degraded conditions,

thus there remains a certain degree of freedom for

improvement. The main point is that the model

does not demonstrate a catastrophic failure in the

presence of lexical categorization errors.

4 Discussion

The research demonstrates an implementation of

a model of sentence-to-meaning mapping in the

developmental and neuropsychologically inspired

construction grammar framework. The strength of

the model is that with relatively simple “innate”

learning mechanisms, it can acquire a variety of

grammatical constructions in English and Japanese

based on exposure to <sentence, meaning> pairs,

with only the lexical categories of open vs. closed

class being prespecified. This lexical

categorization can be provided by frequency

analysis, and/or acoustic properties specific to the

two classes (Blanc et al. 2003; Shi et al. 1999). The

model learns grammatical constructions, and

generalizes in a systematic manner to new

sentences within the class of learned constructions.

This demonstrates the cross-linguistic validity of

our implementation of the construction grammar

approach (Goldberg 1995, Tomasello 2003) and of

the “cue competition” model for coding of

grammatical structure (Bates et al. 1982). The

point of the Japanese study was to demonstrate this

cross-linguistic validity – i.e. that nothing extra

was needed, just the identification of constructions

based on lexical category information. Of course a

better model for Japanese and Hungarian etc. that

exploits the explicit marking of grammatical roles

of NPs would have been interesting – but it

wouldn’t have worked for English!

The obvious weakness is that it does not go

further. That is, it cannot accommodate new

construction types without first being exposed to a

training example of a well formed <sentence,

meaning> pair. Interestingly, however, this

appears to reflect a characteristic stage of human

development, in which the infant relies on the use

of constructions that she has previously heard (see

Tomasello 2003). Further on in development,

however, as pattern finding mechanisms operate

on statistically relevant samples of this data, the

child begins to recognize structural patterns,

corresponding for example to noun phrases (rather

than solitary nouns) in relative clauses. When this

is achieved, these phrasal units can then be inserted

into existing constructions, thus providing the basis

for “on the fly” processing of novel relativised

constructions. This suggests how the abstract

construction model can be extended to a more

generalized compositional capability. We are

currently addressing this issue in an extension of

the proposed model, in which recognition of

linguistic markers (e.g. “that”, and directly

successive NPs) are learned to signal embedded

relative phrases (see Miikkulainen 1996).

Future work will address the impact of

ambiguous input. The classical example “John

saw the girl with the telescope” implies that a

given grammatical form can map onto multiple

meaning structures. In order to avoid this violation

of the one to one mapping, we must concede that

form is influenced by context. Thus, the model

will fail in the same way that humans do, and

should be able to succeed in the same way that

humans do. That is, when context is available to

disambiguate then ambiguity can be resolved. This

will require maintenance of the recent discourse

context, and the influence of this on grammatical

construction selection to reduce ambiguity.
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