
The Problem of Precision in Restricted-Domain Question-Answering.
Some Proposed Methods of Improvement

DOAN-NGUYEN Hai and Leila KOSSEIM
CLaC Laboratory, Department of Computer Science, Concordia University

Montreal, Quebec, H3G-1M8,
Canada

haidoan@cs.concordia.ca, kosseim@cs.concordia.ca

Abstract

This paper discusses some main difficulties of
restricted-domain question-answering systems,
in particular the problem of precision
performance. We propose methods for
improving the precision, which can be
classified into two main approaches:
improving the Information Retrieval module,
and improving its results. We present the
application of these methods in a real QA
system for a large company, which yielded
very good results.

1 Introduction

Restricted-domain Question-Answering
(RDQA) works on specific domains and often uses
document collections restricted in subject and
volume. It has some characteristics that make
techniques developed recently for open-domain
QA, particularly those within TREC (Text
REtrieval Conference, e.g. (TREC, 2002))
competitions, become less helpful. First, in RDQA,
correct answers to a question may often be found
in only very few documents. Light et al (2001)
give evidence that the performance on precision of
a system depends greatly on the redundancy of
answer occurrences in the document collection1.
Second, a RDQA system has often to work with
domain-specific terminology, including domain-
specific word meaning. Lexical and semantic
techniques based on general lexicons and thesauri,
such as WordNet, may not apply well here. Third,
if a QA system is to be used for a real application,
e.g. answering questions from clients of a
company, it should accept complex questions, of

1 For example, they estimate that only about 27% of

the systems participating in TREC-8 produced a correct
answer for questions with exactly one answer
occurrence, while about 50% of systems produced a
correct answer for questions with 7 answer occurrences.
(7 is the average answer occurrences per question in the
TREC-8 collection.)

various forms and styles. The system should then
return a complete answer, which can be long and
complex, because it has to, e.g., clarify the context
of the problem posed in the question, explain the
options of a service, give instructions, procedures,
or suggestions, etc. Contrarily, techniques from
TREC competitions, aiming at finding short and
precise answers, are often based on the hypothesis
that the questions are constituted by a single, and
often simple, sentence, and can be categorized into
a well-defined and simple semantic classification
(e.g. Person, Time, Location, Quantity, etc.).

RDQA has a long history, beginning with
systems working over databases (e.g., BASEBALL
(Green et al, 1961) and LUNAR (Woods, 1973)).
Recently, research in QA has concentrated mostly
on open-domain QA, in particular on how to find a
very precise and short answer. Nonetheless, RDQA
seems to be regaining attention, as shown by this
ACL workshop. Researchers are also beginning to
recognize the importance of long and complete
answers. Lin et al (2003) carried out experiments
showing that users prefer an answer within context,
e.g., an answer within its containing paragraph.
Buchholz and Daelemans (2001) defined some
types of complex answers, and proposed that the
system presents a list of good candidates to the
user, and let him construct the reply by himself.
Harabagiu et al (2001) mentioned the class of
questions that need a listing answer.

One well-known approach for RDQA was
semantic grammars (Brown and Burton, 1975),
which build pre-defined patterns of questions for a
specific task. Simple and easy to implement, this
approach can only deal with very small tasks, and a
restricted set of questions. The most popular class
of techniques for QA – whether it is restricted-
domain or open-domain, includes using thesauri
and lexicons, classifying documents, and
categorizing the questions. Harabagiu et al (2000),
for example, use WordNet extensively to generate
keyword alternations and infer the expected answer
category of a question.

In this paper, we present several methods to
improve the precision of a RDQA system which

should accept freely complex questions and return
complete answers. We use our experiments in
developing a real system as demonstration.

2 Overview of the demonstration system

The objective of this system is to reply to clients'
questions on services offered by a large company,
here Bell Canada. The company provides wide-
range services on telephone, wireless, Internet,
Web, etc. for personal and enterprise clients. The
document collection was derived from HTML and
PDF files from the company's website
(www.bell.ca). As the structure of these files was
so complicated, documents were saved as pure text
with no mark-ups, sacrificing some important
formatting cues like titles, listings, tables. The
collection comprises more than 220 documents, of
a total of about 560K characters.

The available question set has 140 questions. It
was assured that every question has an answer
from the contents of the collection. The form and
style of the questions vary freely. Most questions
are composed of one sentence, but some are
composed of several sentences. The average length
of questions is 11.3 words (to compare, that of
TREC questions is 7.3 words). The questions ask
about what a service is, its details, whether a
service exists for a certain need, how to do
something with a service, etc. For the project, we
divided the question set at random into 80
questions for training and 60 for testing. Below are
some examples of questions:

Do I have a customized domain name even
with the Occasional Plan of Business Internet
Dial?

With the Web Live Voice service, is it possible
that a visitor activates a call to our company
from our web pages, but then the call is
connected over normal phone line?

It seems that the First Rate Plan is only good
if most of my calls are in the evenings or
weekends. If so, is there another plan for long
distance calls anytime during the day?

Although our collection was not very large, it
was not so small either so that a strategy of
searching the answers directly in the collection
could be obvious. Hence we first followed the
classic two-step strategy of QA: information
retrieval (IR), and then candidate selection and
answer extraction. For the first step, we used
Okapi, a well-known generic IR engine
(www.soi.city.ac.uk/~andym/OKAPI-PACK/, also
(Beaulieu et al, 1995)). For each question, Okapi
returns an ordered list of answer candidates,
together with a relevance score for each candidate

and the name of the document containing it. An
answer candidate is a paragraph which Okapi
considers most relevant to the question.2

The candidates were then evaluated by a human
judge using a binary scale: correct or incorrect.
This kind of judgment is recommended in the
context of communications between a company
and its clients, because the conditions and technical
details of a service should be edited as clearly as
possible in the reply to the client. However we did
also accept some tolerance in the evaluation. If a
question is ambiguous, e.g., it asks about phones
but does not specify whether it pertains to wired
phones or wireless phones, all correct candidates of
either case will be accepted. If a candidate is good
but incomplete as a reply, it will be judged correct
if it contains the principal theme of the supposed
answer, and if missing information can be found in
paragraphs around the candidate's text in the
containing document.

Table 1 shows Okapi's performance on the
training question set. We kept at most the 10 best
candidates for each question, because after rank 10
a good answer was very rare. C(n) is the number of
candidates at rank n which are judged correct. Q(n)
is the number of questions in the training set which
have at least one correct answer among the first n
ranks. As for answer redundancy, among the 45
questions having at least a correct answer (see
Q(10)), there were 33 questions (41.3% of the
entire training set) having exactly 1 correct answer,
10 questions (12.5%) having 2, and 2 questions
(2.5%) having 3 correct answers. Table 2 gives
Okapi's precision on the test question set.

The results show that Okapi's performance on
precision was not satisfying, conforming to our
discussion about characteristics of RDQA above.
The precision was particularly weak for n's from 1
to 5. Unfortunately, these are cases that the system
aims at. n=1 means that only one answer will be
returned – a totally automatic system. n=2 to 5
correspond to more practical scenarios of a semi-
automatic system, where an agent of the company
chooses the best one among the n candidates, edits
it, and sends it to the client. We stopped at n=5
because a greater number of candidates seems too
heavy psychologically to the human agent. Also
note that the rank of the candidates is not important
here, because they would be equally examined by
the agent. This explains why we used Q(n) to
measure the precision performance rather than

2 A paragraph is a block of text separated by double

newlines. As formatted files were saved in plain text,
original "logical" paragraphs may be joined up into one
paragraph, which may affect the precision of the
candidates.

other well-known scoring such as mean reciprocal
rank (MRR).

Examining the correct candidates, we found that
they were generally good enough to be sent to the
user as an understandable reply. About 25% of
them contained superfluous information for the
corresponding question, while 15% were lacking

of information. However, only 2/3 of the latter
(that is 10% of all) looked difficult to be completed
automatically. Building the answer from a good
candidate therefore seemed less important than
improving the precision of the IR module. We
therefore concentrated on how to improve Q(n), n=
1 to 5, of the system.

n 1 2 3 4 5 6 7 8 9 10
C(n) 20 11 5 4 9 3 1 1 4 1
%C(n) 25% 13.8% 6.3% 5% 11.3% 3.8% 1.3% 1.3% 5% 1.3%
Q(n) 20 26 28 32 39 41 42 43 44 45
%Q(n) 25% 32.5% 35% 40% 48.8% 51.3% 52.5% 53.8% 55% 56.3%

Table 1: Precision performance of Okapi on the training question set (80 questions).

n 1 2 3 4 5 6 7 8 9 10
C(n) 18 8 7 2 4 3 3 2 1 1
%C(n) 30% 13.3% 11.7% 3.3% 6.7% 5% 5% 3.3% 1.7% 1.7%
Q(n) 18 23 28 29 32 33 35 36 36 37
%Q(n) 30% 38.3% 46.7% 48.3% 53.3% 55% 58.3% 60% 60% 61.7%

Table 2: Precision performance of Okapi on the test question set (60 questions).

3 Methods for Improving Precision
Performance

The first approach to improve the precision
performance of the IR module is to use a better
engine, e.g. by adjusting the parameters, modifying
the formulas of the engine, or replacing a generic
engine by a more domain-specific one, etc.

Now suppose that the IR engine is already fixed,
e.g. because we have achieved the best engine, or,
more practically, because we cannot make changes
or afford another engine. The second approach
consists in improving the results returned by the IR
engine. One main direction is candidate re-ranking,
i.e. pushing good candidates in the returned
candidate list to the first ranks as much as possible,
thus increasing Q(n). To do this, we need some
information that can characterize the relevance of a
candidate to the corresponding question better than
the IR engine did. The most prominent kind of
such information may be the domain-specific
language used in the working domain of the QA
system, particularly its vocabulary, or even more
narrowly, its terminological set.

In the following, we will present our
development of the second approach on the Bell
Canada QA system first, because it seems less
costly than the first one. However, we will present
some implementations of the first approach later.

4 Improving Precision by Re-ranking
Candidates

We experimented with two methods of re-
ranking, one with a strongly specific
terminological set, and one with a good document
characterization.

4.1 Re-ranking using specific vocabulary

In the first experiment, we noted that the names
of specific Bell services, such as 'Business Internet
Dial', 'Web Live Voice', etc., could be used as a
relevance characterizing information, because they
occurred very often in almost every document and
question, and a service was often presented or
mentioned in only one or a few documents, making
these terms very discriminating. To have a generic
concept, let's call these names 'special terms'.
Luckily, these special terms occurred normally in
capital letters, and could be automatically extracted
easily. After a manual filtering, we obtained more
than 450 special terms.

We designed a new scoring system which raises
the score of the candidates containing occurrences
of special terms found in the corresponding
question, as follows:
(1) Score_of_candidate[i] = DC × (OW ×

Okapi_score + RC[i] × Term_score + 1)

Thus, the score of candidate i in the ranked list
returned by Okapi depends on: (i) The original
Okapi_score given by Okapi, weighted by some
integer value OW. (ii) A Term_score that
measures the importance of common occurrences
of special terms, and, with less emphasis, other
noun phrases and open-class words, in the question
and the candidate. It is weighted by some integer
value RC[i] (for rank coefficient) that represents
the role of the relative ranking of Okapi. (iii) A
document coefficient DC that indicates the relative
importance of a candidate i coming or not coming
from a document which contains at least a special
term occurring in the question. DC is thus
represented by a 2-value pair; e.g., the pair (1, 0)
corresponds to the extreme case of keeping only
candidates coming from a document which
contains at least one special term in the question,
and throwing out all others. We ran the system
with 20 different values of DC, 50 of RC, and OW
from 0 to 60, on the training question set. See
(Doan-Nguyen and Kosseim, 2004) for a detailed
explanation of how formula (1) was derived, and
how to design the values of DC, RC, and OW.

Formula (1) gave very good improvements on
the training set (Table 3), but just modest results
when running the system with optimal training
parameters on the test set (Table 4). Note: ∆Q(n) =
System's Q(n) – Okapi’s Q(n); %∆Q(n) =
∆Q(n)/Okapi’s Q(n).3

n 1 2 3 4 5
Q(n) 30 40 42 43 44
∆Q(n) 10 14 14 11 5
%∆Q(n) 50% 53.8% 50% 34.4% 12.8%

Table 3: Best results of formula (1) on the
training set.

n 1 2 3 4 5
Q(n) 22 29 32 33 34
∆Q(n) 4 6 4 4 2
%∆Q(n) 22.2% 26.1% 14.3% 13.8% 6.3%

Table 4: Results of formula (1) on the test set.

3 Okapi allows one to give it a list of phrases as

indices, in addition to indices automatically created
from single words. In fact, the results in Tables 1 and 2
correspond to this kind of indexing, in which we
provided Okapi with the list of special terms. These
results are much better than those of standard indexing,
i.e. without the special term list.

4.2 Re-ranking with a better document
characterization

In formula (1), the coefficient DC represents an
estimate of the relevance of a document to a
question based only on special terms; it cannot
help when the question and document do not
contain special terms. To find another document
characterization which can complement this, we
tried to map the documents into a system of
concepts. Each document says things about a set of
concepts, and a concept is discussed in a set of
documents. Building such a concept system seems
feasible within closed-domain applications,
because the domain of the document collection is
pre-defined, the number of documents is in a
controlled range, and the documents are often
already classified topically, e.g. by their creator. If
no such classification existed, one can use
techniques of building hierarchies of clusters (e.g.
those summarized in (Kowalski, 1997)).

We used the original document classification of
Bell Canada, represented in the web page URLs, as
the basis for constructing the concept hierarchy
and the mapping between it and the document
collection. Below is a small excerpt from the
hierarchy:
BellAll
 Personal
 Personal-Phone
 Personal-Phone-LongDistance
 Personal-Phone-LongDistance-BasicRate
 Personal-Phone-LongDistance-FirstRate

In general, a leaf node concept corresponds to
one or very few documents talking about it. A
parent concept corresponds to the union of
documents of its child concepts. Note that although
many concepts coincide in fact with a special term,
e.g. 'First Rate', many others are not special terms,
e.g. 'phone', 'wireless', 'long distance', etc.

The use of the concept hierarchy in the QA
system was based on the following assumption: A
question can be well understood only when we can
recognize the concepts implicit in it. For example,
the concepts in the question:

It seems that the First Rate Plan is only good
if most of my calls are in the evenings or
weekends. If so, is there another plan for long
distance calls anytime during the day?

include Personal-Phone-LongDistance and
Personal-Phone-LongDistance-FirstRate.
Once the concepts are recognized, it is easy to
determine a small set of documents relevant to
these concepts, and carry out the search of answers
in this set.

To map a question to the concept hierarchy, we
postulated that the question should contain words

expressing the concepts. These words may be those
constituting the concepts, e.g., 'long', 'distance',
'first', 'rate', etc., or synonyms/near synonyms of
them, e.g., 'telephone' to 'phone'; 'mobile',
'cellphone' to 'wireless'. For every concept, we
built a bag of words which make up the concept,
e.g., the bag of words for Personal-Phone-
LongDistance-FirstRate is {'personal', 'phone',
'long', 'distance', 'first', 'rate'}. We also built
manually a small lexicon of (near) synonyms as
mentioned above.

Now, a question will be analyzed into separate
words (stop words removed), and we look for
concepts whose bags of words have elements in
common with them. (Here we used the Porter
stemmed form of words in comparison, and also
counted cases of synonyms/near synonyms.) A
concept is judged more relevant to a question if: (i)
its bag of words has more elements in common
with the question's set of words; (ii) the quotient of
the size of the common subset mentioned in (i)
over the size of the entire bag of words is larger;
and (iii) the question contains more occurrences of
words in that subset.

From the relevant concept set, it is
straightforward to derive the relevant document set
for a given question. The documents will be ranked
according to the order of the deriving concepts. (If
a document is derived from several concepts, the
highest rank will be used.) As for the coverage of
the mapping, there were only 4 questions in the
training set and 6 in the test set (7% of the entire
question set) having an empty relevant document
set. In fact, these questions seemed to need a
context to be understood, e.g., a question like
'What does Dot org mean?' should be posed in a
conversation about Internet services.

Now the score of a candidate is calculated by:
(2) Score_of_candidate[i] = (CC + DC) × (OW

× Okapi_score + RC[i] × Term_score + 1)

The value of CC (concept-related coefficient)
depends on the document that provides the
candidate. CC should be high if the rank of the
document is high, e.g. CC=1 if rank=1, CC=0.9 if
rank=2, CC=0.8 if rank=3, etc. If the document
does not occur in the concept-derived list, its CC
should be very small, e.g. 0. The sum (CC + DC)
represents a combination of the two kinds of
document characterization. We ran the system with
15 different values of the CC vector, with CC for
rank 1 varying from 0 to 7, and CC for other ranks
decreasing accordingly. Values for other
coefficients are the same as in the previous
experiment using formula (1). Results (Tables 5
and 6) are uniformly better than those of formula

(1). Good improvements show that the approach is
appropriate and effective.

n 1 2 3 4 5
Q(n) 32 41 44 44 44
∆Q(n) 12 15 16 12 5
%∆Q(n) 60% 57.7% 57.1% 37.5% 12.8%

Table 5: Best results of formula (2) on the
training set.

n 1 2 3 4 5
Q(n) 30 32 35 35 36
∆Q(n) 12 9 7 6 4
%∆Q(n) 66.6% 39.1% 25% 20.7% 12.5%

Table 6: Results of formula (2) on the test set.

5 Two-Level Candidate Searching

As the mapping in the previous section seems to
be able to point out the documents relevant to a
given question with a high precision, we tried to
see how to combine it with the IR engine Okapi. In
the previous experiments, the entire document
collection was indexed by Okapi. Now indexing
will be carried out separately for each question:
only the document subset returned by the mapping,
which usually contains no more than 20
documents, is indexed, and Okapi will search for
candidate answers for the question only in this
subset. We hoped that Okapi could achieve higher
precision in working with a much smaller
document set. This strategy can be considered as a
kind of two-level candidate searching.

n 1 2 3 4 5
MO Q(n) 18 33 38 45 46
Q(n) 31 42 48 48 48
∆Q(n) 11 16 20 16 9
%∆Q(n) 55% 61.5% 71.4% 50% 23.1%

Table 7: Best results of two-level search
combined with re-ranking on the training set.

n 1 2 3 4 5
MO Q(n) 20 25 26 29 31
Q(n) 24 28 32 32 33
∆Q(n) 6 5 4 3 1
%∆Q(n) 33.3% 21.8% 14.3% 10.3% 3.1%

Table 8: Results of two-level search combined
with re-ranking on the test set.

Results show that Okapi did not do better in this
case than when it worked with the entire document
collection (compare MO Q(n) in Tables 7 and 8
with Q(n) in Tables 1 and 2. MO means 'mapping-
then-Okapi'). We then applied formula (2) to
rearrange the candidate list as in the previous
section. Although results on the training set (Table
7) are generally better than those of the previous
section, results on the test set (Table 8) are worse,
which leads to an unfavorable conclusion for this
method. (Note that ∆Q(n) and %∆Q(n) are always
comparisons of the new Q(n) with the original
Okapi Q(n) in Tables 1 and 2.)

6 Re-implementing the IR engine

The precision of the question-document mapping
was good, but the performance of the two-level
system based on Okapi in the previous section was
not very persuasive. This led us back to the first
approach mentioned in Section 3, i.e. replacing
Okapi by another IR engine. We would not look
for another generic engine because it was not
interesting theoretically, but would instead
implement a two-level engine using the question-
document mapping. As already known, the
mapping returns just a small set of relevant
documents for a given question; the new engine
will search for candidate answers in this set. If the
document set is empty, the system takes the
candidates proposed by Okapi as results ("Okapi as
Last Resort").

We implemented just a simple IR engine. First
the question is analyzed into separate words (stop
words removed). For every document in the set
returned by the question-document mapping, the
system scores each paragraph by counting in this
paragraph the number of occurrences of words
which also appear in the question (using the
stemmed form of words). Here 'paragraph' means a
block of text separated by one newline, not two as
in Okapi sense. Note that texts in the Bell Canada
collection contain a lot of short and empty
paragraphs. The candidate passage is extracted by
taking the five consecutive paragraphs which have
the highest score sum. However, if the document is
"small", i.e. contains less than 2000 characters, the
entire document is taken as the candidate and its
score is the sum of scores of all paragraphs.

This choice seemed unfair to previous
experiments because about 60% of the collection
are such small documents. However, we decided to
have a more realistic notion of answer candidates
which reflects the nature of the collection and of
our current task: in fact, those small documents are
often dedicated to a very specific topic, and it
seems necessary to present its contents in its
entirety to any related question for reasons of

understandability, or because of important
additional information in the document. Also, a
size of 2000 characters (which are normally 70%
of a page) seems acceptable for a human
judgement in the scenario of semi-automatic
systems.4

Let's call the score calculated as above
Occurrence_score. We also considered the role of
the rank of the document in the list returned by the
question-document mapping. The final score
formula is as follows:
(3) Score_of_candidate = RC × (21 -

Document_Rank) + Occurrence_score

The portion (21 - Document_Rank) guarantees
that high-rank documents contribute high scores.
That portion is always positive because we
retained no more than 20 documents for every
question. RC is a coefficient representing the
importance of the document rank. Due to time
limit – judgement of candidates has to be done
manually and is very time consuming, we carried
out the experiment with only RC=0, 1, 1.5, and 2,
and achieved the best results with RC=1.5.

Results (Tables 9 and 10) show that except the
case of n=1 in the test set, the new system
performs well in precision. This might be
explained partly because it tolerates larger
candidates than previous experiments. However
what is interesting here is that the engine is very
simple but efficient because it does searching on a
well selected and very small document subset.

n 1 2 3 4 5
Q(n) 42 55 60 60 61
∆Q(n) 22 29 32 28 22
%∆Q(n) 110% 112% 114% 88% 56%

Table 9: Best results of the specific engine on
the training set.

n 1 2 3 4 5
Q(n) 23 37 41 42 42
∆Q(n) 5 14 13 13 10
%∆Q(n) 27.8% 60.9% 46.4% 44.8% 31.3%

Table 10: Results of the specific engine on the
test set.

4 In fact, candidates returned by Okapi are not

uniform in length. Some are very short (e.g. one line),
some are very long (more than 2000 characters).

7 Second Approach Revisited: Extending
Answer Candidates

The previous experiment has shown that
extending the size of answer candidates can greatly
ease the task. This can be considered as another
method belonging to the second approach – that of
improving precision performance by improving the
results returned by the IR engine. To be fair, it may
be necessary to see how precision performance
will be improved if this extending is used in other
experiments. We did two small experiments. In the
first one, any candidates returned by Okapi (cf.
Tables 1 and 2) which came from a document of
less than 2000 characters were extended into the
entire document. Table 11 shows that
improvements are not as good as those obtained by
other methods.

n 1 2 3 4 5
Q(n) - A 24 32 35 39 47
∆Q(n) 4 6 7 7 8
%∆Q(n) 20% 23.1% 25% 21.9% 20.5%
Q(n) - B 20 27 32 34 37
∆Q(n) 2 4 4 5 5
%∆Q(n) 11.1% 17.4% 14.3% 17.2% 15.6%

Table 11: Results of extending Okapi candidates
on the training set (A) and test set (B).

In the second experiment, we similarly extended
candidates returned by the two-level search process
"mapping-then-Okapi" in Section 5. Improvements
(Table 12) seem comparable to those of the
experiment in Section 5 (Tables 7 and 8), but less
good than those of experiments in Sections 4.2 and
6. The two experiments of this section suggest that
extending candidates helps improve the precision,
but not so much unless it is combined with other
methods. We have not yet, however, carried out
experiments of combining candidate extending
with re-ranking.

n 1 2 3 4 5
Q(n) - A 25 43 48 57 60
∆Q(n) 5 17 20 25 21
%∆Q(n) 25% 65.4% 71.4% 78.1% 53.8%
Q(n) - B 24 31 32 38 41
∆Q(n) 6 8 4 9 9
%∆Q(n) 25% 34.8% 14.3% 31% 23.1%

Table 12: Results of extending two-level search
candidates on the training set (A) and test set (B).

8 Discussions and Conclusions

RDQA, working on small document collections
and restricted subjects, seems to be a task no less
difficult than open-domain QA. Due to candidate
scarcity, the precision performance of a RDQA
system, and in particular that of its IR module,
becomes a problematic issue. It affects seriously
the entire success of the system, because if most of
the retrieved candidates are incorrect, it is
meaningless to apply further techniques of QA to
refine the answers.

In this paper, we have discussed several methods
to improve the precision performance of the IR
module. They include the use of domain-specific
terminology to rearrange the candidate list and to
better characterize the question-document
relevance relationship. Once this relationship has
been well established, one can expect to obtain a
small set of (almost) all relevant documents for a
given question, and use this to guide the IR engine
in a two-level search strategy.

Also, long and complex answers may be a
common characteristic of RDQA systems. Being
aware of this, one can design appropriate systems
which are more tolerant on answer size to achieve
a higher precision, and to avoid the need of
expanding a short but insufficient answer into a
complete one. However, what a good answer
should be is still an open question, which would
need a lot more study to clarify.

We have also presented applications of these
methods in the real QA system for Bell Canada.
Good improvements achieved compared to results
of the original IR module show that these methods
are applicable and effective.

Many other problems on the precision
performance of a RDQA system have not been
tackled in this paper. Some of them relate to the
free form of the questions: how to identify the
category of the question (e.g. the mapping 'Who' –
Person, 'When' – Time, 'How many' – Quantity,
etc.), how to analyze the question into pragmatic
parts (pre-suppositions, problem context, question
focus), etc. Certainly, they are also problems of
open-domain QA if one wants to go further than
pre-defined question pattern tasks.

9 Acknowledgements

This project was funded by Bell University
Laboratories (BUL) and the Canada Natural
Science and Engineering Research Council
(NSERC).

References

Beaulieu M., M. Gatford, X. Huang, S.E.
Robertson, S. Walker, P. Williams (1995). Okapi
at TREC-3. In: Overview of the Third Text
REtrieval Conference (TREC-3). Edited by D.K.
Harman. Gaithersburg, MD: NIST, April 1995.

Brown, J., Burton, R. (1975). Multiple
representations of knowledge for tutorial
reasoning. In Bobrow and Collins (Eds),
Representation and Understanding. Academic
Press, New York.

Buchholz, S., Daelemans, W. (2001). Complex
Answers: A Case Study using a WWW Question
Answering System. Natural Language
Engineering, 7(4), 2001.

Doan-Nguyen, H., Kosseim, L. (2004). Improving
the Precision of a Closed-Domain Question-
Answering System with Semantic Information.
Proceedings of RIAO (Recherche d'Information
Assistée par Ordinateur (Computer Assisted
Information Retrieval)) 2004. Avignon, France.
pp. 850-859.

Green, W., Chomsky, C., Laugherty, K. (1961).
BASEBALL: An automatic question answerer.
Proceedings of the Western Joint Computer
Conference, pp. 219-224.

Harabagiu, S., D. Moldovan, M. Pasca, R.
Mihalcea, M. Surdeanu, R. Bunescu, R. Gîrju, V.
Rus, P. Morarescu (2000). FALCON: Boosting
Knowledge for Answer Engines. Proceedings of
the Ninth Text REtrieval Conference (TREC
2000).

Harabagiu, S., D. Moldovan, M. Pasca, M.
Surdeanu, R. Mihalcea, R. Girju, V. Rus, F.
Lactusu, P. Morarescu, R. Bunescu (2001).
Answering Complex, List and Context Questions
with LCC's Question-Answering Server.
Proceedings of the Tenth Text REtrieval
Conference (TREC 2001).

Kowalski, G. (1997). Information Retrieval
Systems – Theory and Implementation. Kluwer
Academic Publishers, Boston/Dordrecht/London.

Light, M., Mann, G., Riloff, E., Breck, E. (2001).
Analyses for Elucidating Current Question
Answering Technology. Natural Language
Engineering, 7(4), 2001.

Lin, J., Quan, D., Sinha, V., Bakshi, K., Huynh, D.,
Katz, B., Karger, D. (2003). The Role of Context
in Question Answering Systems. Proceedings of
the 2003 Conference on Human Factors in
Computing Systems (CHI 2003), April 2003, Fort
Lauderdale, Florida.

TREC (2002). Proceedings of The Eleventh Text
Retrieval Conference. NIST Special Publication:

SP 500-251. E. M. Voorhees and L. P. Buckland
(Eds).

Woods W. A. (1973). Progress in natural language
understanding: An application to lunar geology.
AFIPS Conference Proceedings, Vol. 42, pp.
441-450.

	Introduction
	Overview of the demonstration system
	Methods for Improving Precision Performance
	Improving Precision by Re-ranking Candidates
	Re-ranking using specific vocabulary
	Re-ranking with a better document characterization

	Two-Level Candidate Searching
	Re-implementing the IR engine
	Second Approach Revisited: Extending Answer Candidates
	Discussions and Conclusions
	Acknowledgements

