
A Statistical Constraint Dependency Grammar (CDG) Parser

Wen Wang
Speech Technology and Research Lab

SRI International
Menlo Park, CA 94025,

U.S.A.,
wwang@speech.sri.com

Mary P. Harper
Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907-1285,

U.S.A.,
harper@ecn.purdue.edu

Abstract

CDG represents a sentence’s grammatical structure
as assignments of dependency relations to func-
tional variables associated with each word in the
sentence. In this paper, we describe a statistical
CDG (SCDG) parser that performs parsing incre-
mentally and evaluate it on the Wall Street Jour-
nal Penn Treebank. Using a tight integration of
multiple knowledge sources, together with distance
modeling and synergistic dependencies, this parser
achieves a parsing accuracy comparable to several
state-of-the-art context-free grammar (CFG) based
statistical parsers using a dependency-based eval-
uation metric. Factors contributing to the SCDG
parser’s performance are analyzed.

1 Introduction

Statistical parsing has been an important focus of
recent research (Magerman, 1995; Eisner, 1996;
Charniak, 1997; Collins, 1999; Ratnaparkhi, 1999;
Charniak, 2000). Several of these parsers gen-
erate constituents by conditioning probabilities on
non-terminal labels, part-of-speech (POS) tags, and
some headword information (Collins, 1999; Rat-
naparkhi, 1999; Charniak, 2000). They utilize
non-terminals that go beyond the level of a sin-
gle word and do not explicitly use lexical fea-
tures. Collins’ Model 2 parser (1999) learns the
distinction between complements and adjuncts by
using heuristics during training, distinguishes com-
plement and adjunct non-terminals, and includes
a probabilistic choice of left and right subcate-
gorization frames, while his Model 3 parser uses
gap features to model wh-movement. Charniak
(Charniak, 2000) developed a state-of-the-art sta-
tistical CFG parser and then built an effective lan-
guage model based on it (Charniak, 2001). But
his parser and language model were originally de-
signed to analyze complete sentences. Among the
statistical dependency grammar parsers, Eisner’s
(1996) best probabilistic dependency model used
unlabeled links between words and their heads, as

well as between words and their complements and
adjuncts. However, the parser does not distinguish
between complements and adjuncts or model wh-
movement. Collins’ bilexical dependency grammar
parser (1999) used head-modifier relations between
pairs of words much as in a dependency grammar,
but they are limited to relationships between words
in reduced sentences with base NPs.

Our research interest focuses on building a high
quality statistical parser for language modeling. We
chose CDG as the underlying grammar for several
reasons. Since CDGs can be lexicalized at the word-
level, a CDG parser-based language model is an
important alternative to CFG parser-based models,
which must model both non-terminals and termi-
nals. Furthermore, the lexicalization of CDG parse
rules is able to include not only lexical category in-
formation, but also a rich set of lexical features to
model subcategorization and wh-movement. By us-
ing CDG, our statistical model is able to distinguish
between adjuncts and complements. Additionally,
CDG is more powerful than CFG and is able to
model languages with crossing dependencies and
free word ordering.

In this paper, we describe and evaluate a statisti-
cal CDG parser for which the probabilities of parse
prefix hypotheses are incrementally updated when
the next input word is available, i.e., it parses in-
crementally. Section 2 describes how CDG repre-
sents a sentence’s parse and then defines a Super-
ARV, which is a lexicalization of CDG parse rules
used in our parsing model. Section 3 presents the
parsing model, while Section 4 motivates the eval-
uation metric used to evaluate our parser. Section 5
presents and discusses the experimental results.

2 CDG Parsing
CDG (Harper and Helzerman, 1995) represents syn-
tactic structures using labeled dependencies be-
tween words. Consider an example CDG parse for
the sentence What did you learn depicted in the
white box of Figure 1. Each word in the parse has a
lexical category, a set of feature values, and a set of

roles that are assigned role values, each comprised
of a label indicating the grammatical role of the
word and its modifiee (i.e., the position of the word
it is modifying when it takes on that role). Consider
the role value assigned to the governor role (denoted
G) of you, np-2. The label np indicates the gram-
matical function of you when it is governed by its
head in position 2. Every word in a sentence must
have a governor role with an assigned role value.
Need roles are used to ensure that the grammatical
requirements of a word are met (e.g., subcategoriza-
tion).

pronoun
case=common
behavior=nominal
type=interrogative
agr=3s

G=np-4

verb
subcat=base
verbtype=past
voice=active
inverted=yes
type=none
gapp=yes
mood=whquestion
agr=all

G=vp-1
Need1=S-3
Need2=S-4
Need3=S-2

pronoun
case=common
behavior=nominal
type=personal
agr=2s

G=np-2

 1
 what

 2
 did

 3
 you

The SuperARV of the word "did":
 Category: Verb

 4
 learn

verb
subcat=obj
vtype=infinitive
voice=active
inverted=no
type=none
gapp=yes
mood=whquestion
agr=none

G=vp-2
Need1=S-4
Need2=S-1
Need3=S-4

 Features: {verbtype=past, voice=active, inverted=yes,
 gapp=yes,mood=whquestion,agr=all}

 Role=G, Label=vp, PX>MX, (ModifieeCategory=pronoun)
 Role=Need1, Label=S, PX<MX, (ModifieeCategory=pronoun)
 Role=Need2, Label=S, PX<MX, (ModifieeCategory=verb)
 Role=Need3, Label=S, PX=MX, (ModifieeCategory=verb)

 Dependent Positional Constraints:
 MX[G] < PX = MX[Need3] < MX[Need1]
 < MX[Need2] MC

}

n
ee

d
 r

o
le

co

n
st

ra
in

ts}

}
}C

F }
}

(R,L,UC,MC)+

DC

Figure 1: An example of a CDG parse and the Super-
ARV of the word did in the sentence what did you learn.
PX and MX([R]) represent the position of a word and its
modifiee (for role R), respectively.

Note that CDG parse information can be easily
lexicalized at the word level. This lexicalization is
able to include not only lexical category and syn-
tactic constraints, but also a rich set of lexical fea-
tures to model subcategorization and wh-movement
without a combinatorial explosion of the parametric
space (Wang and Harper, 2002). CDG can distin-
guish between adjuncts and complements due to the
use of need roles (Harper and Helzerman, 1995),
is more powerful than CFG, and has the ability to
model languages with crossing dependencies and
free word ordering (hence, this research could be
applicable to a wide variety of languages).

An almost-parsing LM based on CDG has been
developed in (Wang and Harper, 2002). The un-
derlying hidden event of this LM is a SuperARV.
A SuperARV is formally defined as a four-tuple for
a word, 〈C, F , (R, L, UC, MC)+, DC〉, where C
is the lexical category of the word, F = {Fname1

= Fvalue1, . . . , FNamef = FV aluef} is a fea-
ture vector (where Fnamei is the name of a feature

and Fvaluei is its corresponding value), DC repre-
sents the relative ordering of the positions of a word
and all of its modifiees, (R, L, UC, MC)+ is a list
of one or more four-tuples, each representing an ab-
straction of a role value assignment, where R is a
role variable, L is a functionality label, UC repre-
sents the relative position relation of a word and its
dependent, and MC encodes some modifiee con-
straints, namely, the lexical category of the modifiee
for this dependency relation. The gray box of Figure
1 presents an example of a SuperARV for the word
did. From this example, it is easy to see that a Su-
perARV is a join on the role value assignments of a
word, with explicit position information replaced by
a relation that expresses whether the modifiee points
to the current word, a previous word, or a subse-
quent word. The SuperARV structure provides an
explicit way to organize information concerning one
consistent set of dependency links for a word that
can be directly derived from a CDG parse. Super-
ARVs encode lexical information as well as syntac-
tic and semantic constraints in a uniform represen-
tation that is much more fine-grained than part-of-
speech (POS). A sentence tagged with SuperARVs
is an almost-parse since all that remains is to spec-
ify the precise position of each modifiee. SuperARV
LMs have been effective at reducing word error rate
(WER) on wide variety of continuous speech recog-
nition (CSR) tasks, including Wall Street Journal
(Wang and Harper, 2002), Broadcast News (Wang
et al., 2003), and Switchboard tasks (Wang et al.,
2004).

3 SCDG Parser

3.1 The Basic Parsing Algorithm

Our SCDG parser is a probabilistic generative
model. It can be viewed as consisting of two com-
ponents: SuperARV tagging and modifiee determi-
nation. These two steps can be either loosely or
tightly integrated. To simplify discussion, we de-
scribe the loosely integrated version, but we imple-
ment and evaluate both strategies. The basic parsing
algorithm for the loosely integrated case is summa-
rized in Figure 2, with the algorithm’s symbols de-
fined in Table 1. In the first step, the top N-best
SuperARV assignments are generated for an input
sentence w1, . . . , wn using token-passing (Young
et al., 1997) on a Hidden Markov Model with tri-
gram probabilistic estimations for both transition
and emission probabilities. Each SuperARV se-
quence for the sentence is represented as a sequence
of tuples: 〈w1, s1〉, . . . , 〈wn, sn〉, where 〈wk, sk〉
represents the word wk and its SuperARV assign-
ment sk. These assignments are stored in a stack

ranked in non-increasing order by tag assignment
probability.

During the second step, the modifiees are statis-
tically specified in a left-to-right manner. Note that
the algorithm utilizes modifiee lexical category con-
straints to filter out candidates with mismatched lex-
ical categories. When processing the word wk, k =
1, . . . , n, the algorithm attempts to determine the
left dependents of wk from the closest to the far-
thest. The dependency assignment probability when
choosing the (c + 1)th left dependent (with its posi-
tion denoted dep(k,−(c + 1))) is defined as:

Pr(link(sdep(k,−(c+1)), sk,−(c + 1)|syn,H))

where H = 〈w, s〉k, 〈w, s〉dep(k,−(c+1)), 〈w, s〉
dep(k,−c)
dep(k,−1).

The dependency assignment probability is con-
ditioned on the word identity and SuperARV
assignment of wk and wdep(k,−(c+1)) as well as
all of the c previously chosen left dependents
〈w, s〉

dep(k,−c)
dep(k,−1) for wk. A Boolean random variable

syn is used to model the synergistic relationship
between certain role pairs. This mechanism allows
us to elevate, for example, the probability that the
subject of a sentence wi is governed by a tensed
verb wj when the need role value of wj points to
wi as its subject. The syn value for a dependency
relation is determined heuristically based on the
lexical category, role name, and label information
of the two dependent words. After the algorithm
statistically specifies the left dependents for wk,
it must also determine whether wk could be the
(d+1)th right dependent of a previously seen word
wp, p = 1, . . . , k − 1 (where d denotes the number
of already assigned right dependents of wp), as
shown in Figure 2.

After processing word wk in each partial parse on
the stack, the partial parses are re-ranked according
to their updated probabilities. This procedure is it-
erated until the top parse in the stack covers the en-
tire sentence. For the tightly coupled parser, the Su-
perARV assignment to a word and specification of
its modifiees are integrated into a single step. The
parsing procedure, which is completely incremen-
tal, is implemented as a simple best-first stack-based
search. To control time and memory complexity, we
used two pruning thresholds: maximum stack depth
and maximum difference between the log proba-
bilities of the top and bottom partial parses in the
stack. These pruning thresholds are tuned based on
the tradeoff of time/memory complexity and pars-
ing accuracy on a heldout set, and they both have
hard limits.

Note the maximum likelihood estimation of de-
pendency assignment probabilities in the basic
loosely coupled parsing algorithm presented in Fig-
ure 2 is likely to suffer from data sparsity, and the
estimates for the tightly coupled algorithm are likely
to suffer even more so. Hence, we smooth the prob-
abilities using Jelinek-Mercer smoothing (Jelinek,
1997), as described in (Wang and Harper, 2003;
Wang, 2003).

3.2 Additions to the Basic Model

Some additional features are added to the basic
model because of their potential to improve SCDG
parsing accuracy. Their efficacy is evaluated in Sec-
tion 5.
Modeling crossing dependencies: The basic pars-
ing algorithm was implemented to preclude cross-
ing dependencies; however, it is important to allow
them in order to model wh-movement in some cases
(e.g., wh-PPs).
Distance and barriers between dependents: Be-
cause distance between two dependent words is
an important factor in determining the modifiees
of a word, we evaluate an alternative model that
adds distance, ∆dep(k,±(c+1)),k to H in Figure 2.
Note that ∆dep(k,±(c+1)),k represents the distance
between position dep(k,±(c + 1)) and k. To avoid
data sparsity problems, distance is bucketed and a
discrete random variable is used to model it. We
also model punctuation and verbs based on prior
work. Like (Collins, 1999), we also found that
verbs appear to act as barriers that impact modifiee
links. Hence, a Boolean random variable that rep-
resents whether there is a verb between the depen-
dencies is added to condition the probability esti-
mations. Punctuation is treated similarly to coordi-
nation constructions with punctuation governed by
the headword of the following phrase, and heuris-
tic questions on punctuation were used to provide
additional constraints on dependency assignments
(Wang, 2003).
Modifiee lexical features: The SuperARV struc-
ture employed in the SuperARV LM (Wang and
Harper, 2002) uses only lexical categories of mod-
ifiees as modifiee constraints. In previous work
(Harper et al., 2001), modifiee lexical features were
central to increasing the selectivity of a CDG.
Hence, we have developed methods to add ad-
ditional relevant lexical features to modifiee con-
straints of a SuperARV structure (Wang, 2003).

4 Parsing Evaluation Metric

To evaluate our parser, which generates CDG anal-
yses rather than CFG constituent bracketing, we

Table 1: Definitions of symbols used in the basic parsing algorithm.

Term Denotes
L(sk), R(sk) all dependents of sk to the left and right of wk, respectively
N(L(sk)), N(R(sk)) the number of left and right dependents of sk, respectively

dep(k,−c), dep(k, c) cth left dependent and right dependent of sk, respectively
dep(k,−1), dep(k, 1) the position of the closest left dependent and right dependent of sk, respectively
dep(k,−N(L(sk))), dep(k, N(L(sk))) the position of the farthest left dependent and right dependent of sk, respectively
Cat(sk) the lexical category of sk

ModCat(sk,−c), ModCat(sk, c) the lexical category of sk’s cth left and right dependent (encoded in the SuperARV
structure), respectively

link(si, sj , k) the dependency relation between SuperARV si and sj with wi assigned as the kth

dependent of sj , e.g., link(sdep(k,−(c+1)), sk,−(c + 1)) indicates that

wdep(k,−(c+1)) is the (c + 1)th left dependent of sk.
D(L(sk)), D(R(sk))) the number of left and right dependents of sk already assigned, respectively

〈w, s〉
dep(k,−c)

dep(k,−1) words and SuperARVs of sk’s closest left dependent up to its cth left dependent

〈w, s〉
dep(k,c)

dep(k,1) words and SuperARVs of sk’s closest right dependent up to its cth right dependent
syn a random variable denoting the synergistic relation between some dependents

can either convert the CDG parses to CFG brack-
eting and then use PARSEVAL, or convert the CFG
bracketing generated from the gold standard CFG
parses to CDG parses and then use a metric based on
dependency links. Since our parser is trained using
a CFG-to-CDG transformer (Wang, 2003), which
maps a CFG parse tree to a unique CDG parse,
it is sensible to evaluate our parser’s accuracy us-
ing gold standard CDG parse relations. Further-
more, in the 1998 Johns Hopkins Summer work-
shop final report (Hajic et al., 1998), Collins et al.
pointed out that in general the mapping from de-
pendencies to tree structures is one-to-many: there
are many possible trees that can be generated for
a given dependency structure since, although gen-
erally trees in the Penn Treebank corpus are quite
flat, they are not consistently “flat.” This variability
adds a non-deterministic aspect to the mapping from
CDG dependencies to CFG parse trees that could
cause spurious PARSEVAL scoring errors. Addi-
tionally, when there are crossing dependencies, then
no tree can be generated for that set of dependen-
cies. Consequently, we have opted to use a trans-
former to convert CFG trees to CDG parses and de-
fine a new dependency-based metric adapted from
(Eisner, 1996). We define role value labeled pre-
cision (RLP) and role value labeled recall (RLR)
on dependency links as follows:

RLP =
correct modifiee assignments

number of modifiees our parser found

RLR =
correct modifiee assignments

number of modifiess in the gold test set parses

where a correct modifiee assignment for a word

wi in a sentence means that a three-tuple
〈role id, role label, modifiee word position〉 (i.e.,
a role value) for wi is the same as the three-tuple
role value for the corresponding role id of wi in the
gold test parse. This differs from Eisner’s (1996)
precision and recall metrics which use no label in-
formation and score only parent (governor) assign-
ments, as in traditional dependency grammars. We
will evaluate role value labeled precision and recall
on all roles of the parse, as well as the governor-
only portion of a parse. Eisner (Eisner, 1996) and
Lin (Lin, 1995) argued that dependency link eval-
uation metrics are valuable for comparing parsers
since they are less sensitive than PARSEVAL to sin-
gle misattachment errors that may cause significant
error propagation to other constituents. This, to-
gether with the fact that we must train our parser
using CDG parses generated in a lossy manner from
a CFG treebank, we chose to use RLP and RLR to
compare our parsing accuracy with several state-of-
the-art parsers.

5 Evaluation and Discussion

All of the evaluations were performed on the Wall
Street Journal Penn Treebank task. Following the
traditional data setup, sections 02-21 are used for
training our parser, section 23 is used for testing,
and section 24 is used as the development set for pa-
rameter tuning and debugging. As in (Ratnaparkhi,
1999; Charniak, 2000; Collins, 1999), we evaluate
on all sentences with length ≤ 40 words (2,245 sen-
tences) and length ≤ 100 words (2,416 sentences).
For training our probabilistic CDG parser on this
task, the CFG bracketing of the training set is trans-

BASIC PARSING ALGORITHM

1. Using SuperARV tagging on word sequence w1, . . . , wn, obtain a set of N-best SuperARV sequences with each
element consisting of n (word, SuperARV) tuples, denoted 〈w1, s1〉, . . . , 〈wn, sn〉, which we will call an assignment.

2. For each SuperARV assignment, initialize the stack of parse prefixes with this assignment:
/∗ From left-to-right, process each 〈word, tag〉 of the assignment and generate parse prefixes ∗/
for k : = 1, n do
/∗ Step a: ∗/

/* decide left dependents of 〈wk, sk〉 from the nearest to the farthest */
for c from 0 to N(L(sk)) − 1 do

/∗ Choose a position for the (c + 1)th left dependent of 〈wk, sk〉 from the set of possible positions
C = {1, . . . , dep(k,−c) − 1}. The position choice is denoted dep(k,−(c + 1)) ∗ /
/∗ In the following equations, different left dependent assignments will generate

different parse prefixes, each of which is stored in the stack ∗ /
for each dep(k,−(c + 1)) from positions C = {1, . . . , dep(k,−c) − 1}

/∗ Check whether the lexical category of the choice matches the modifiee lexical

category of the (c + 1)th left dependent of 〈wk, sk〉 ∗ /
if Cat(sdep(k,−(c+1))) == ModCat(sk,−(c + 1)) then

Pr(T) : = Pr(T) × Pr(link(sdep(k,−(c+1)), sk,−(c + 1)|syn,H))

where H = 〈w, s〉k, 〈w, s〉dep(k,−(c+1)), 〈w, s〉
dep(k,−c)

dep(k,−1)

/∗ End of choosing left dependents of 〈wk, sk〉 for this parse prefix ∗/
/∗ Step b: ∗/

/∗ For the word/tag pair 〈wk, sk〉, check whether it could be a right dependent of any previously
seen word within a parse prefix of 〈w1, s1〉, . . . , 〈wk−1, sk−1〉 ∗/

for p : = 1, k − 1 do
/∗ If 〈wp, sp〉 still has right dependents left unspecified, then try out〈wk, sk〉 as a right dependent */
if D(R(sp)) 6= N(R(sp)) then

d : = D(R(sp))

/∗ If the lexical category of 〈wk, sk〉 matches the modifiee lexical category of the(d + 1)th right

dependent of 〈wp, sp〉, then sk might be 〈wp, sp〉’s (d + 1)th right dependent ∗ /
if Cat(sk) == ModCat(sp, d + 1) then

Pr(T) : = Pr(T) × Pr(link(sk, sp, d + 1)|syn,H), where H = 〈w, s〉p, 〈w, s〉k, 〈w, s〉
dep(p,d)

dep(p,1)

Sort the parse prefixes in the stack according to logPr(T) and apply pruning using the thresholds.
3. After processing w1, . . . , wn, pick the parse with the highest logPr(T) in the stack as the parse for that sentence.

Figure 2: The basic loosely coupled parsing algorithm. Note the algorithm updates the probabilities of parse
prefix hypotheses incrementally when processing each input word.

formed into CDG annotations using a CFG-to-CDG
transformer (Wang, 2003). Note that the sound-
ness of the CFG-to-CDG transformer was evaluated
by examining the CDG parses generated from the
transformer on the Penn Treebank development set
to ensure that they were correct given our grammar
definition.

5.1 Contribution of Model Factors

First, we investigate the contribution of the model
additions described in Section 3 to parse accuracy.
Since these factors are independent of the coupling
between the SuperARV tagger and modifiee spec-
ification, we investigate their impact on a loosely
integrated SCDG parser by comparing four models:
(1) the basic loosely integrated model; (2) the ba-
sic model with crossing dependencies; (3) model 2
with distance and barrier information; (4) model 3
with SuperARVs augmented with additional modi-
fiee lexical feature constraints. Each model uses a

trigram SuperARV tagger to generate 40-best Su-
perARV sequences prior to modifiee specification.
Table 2 shows the results for each of the four models
including SuperARV tagging accuracy (%) and role
value labeled precision and recall (%). Allowing
crossing dependencies improves the overall parsing
accuracy, but using distance information with verb
barrier and punctuation heuristics produces an even
greater improvement especially on the longer sen-
tences. The accuracy is further improved by the ad-
ditional modifiee lexical feature constraints added to
the SuperARVs. Note that RLR is lower than RLP
in these investigations possibly due to SuperARV
tagging errors and the use of a tight stack pruning
threshold.

Next, we evaluate the impact of increasing the
context of the SuperARV tagger to a 4-gram while
increasing the size of the N-best list passed from
the tagger to the modifiee specification step of the
parser. For this evaluation, we use model (4)

Table 2: Results on Section 23 of the WSJ Penn Tree-
bank for four loosely-coupled model variations. The
evaluation metrics, RLR and RLP, are our dependency-
based role value labeled precision and recall. Note:
Model (1) denotes the basic model, Model (2) de-
notes (1)+crossing dependencies, Model (3) denotes
(2)+distance (punctuation) model, and Model (4) denotes
(3)+modifiee lexical features.

Models ≤ 40 words (2,245 sentences)
Tagging governor only all roles

Acc. RLP RLR RLP RLR
(1) 94.7 90.6 90.3 86.8 86.2
(2) 95.0 90.7 90.5 87.0 86.5
(3) 95.7 91.1 90.9 87.4 87.0
(4) 96.2 91.5 91.2 88.0 87.4

Models ≤ 100 words (2,416 sentences)
Tagging governor only all roles

Acc. RLP RLR RLP RLR
(1) 94.0 89.7 89.3 86.0 85.5
(2) 94.2 89.9 89.6 86.2 85.8
(3) 94.7 90.4 90.2 86.8 86.3
(4) 95.4 90.9 90.5 87.5 86.8

from Table 2, the most accurate model so far. We
also evaluate whether a tight integration of left-
to-right SuperARV tagging and modifiee specifica-
tion produces a greater parsing accuracy than the
best loosely coupled counterpart. Table 3 shows
the SuperARV tagging accuracy (%) and role value
labeled precision and recall (%) for each model.
Consistent with our intuition, a stronger SuperARV
tagger and a larger search space of SuperARV se-
quences produces greater parse accuracy. However,
tightly integrating SuperARV prediction with mod-
ifiee specification achieves the greatest overall ac-
curacy. Note that SuperARV tagging accuracy and
parse accuracy improve in tandem, as can be seen
in Tables 2 and 3. These results are consistent
with the observations of (Collins, 1999) and (Eis-
ner, 1996). It is important to note that each of the
factors contributing to improved parse accuracy in
these two experiments also improved the word pre-
diction capability of the corresponding parser-based
LM (Wang and Harper, 2003).

5.2 Comparing to Other Parsers
Charniak’s state-of-the-art PCFG parser (Charniak,
2000) has achieved the highest PARSEVAL LP/LR
when compared to Collins’ Model 2 and Model
3 (Collins, 1999), Roark’s (Roark, 2001), Ratna-
parkhi’s (Ratnaparkhi, 1999), and Xu & Chelba’s
(Xu et al., 2002) parsers. Hence, we will com-
pare our best loosely integrated and tightly inte-
grated SCDG parsers to Charniak’s parser. Ad-
ditionally, we will compare with Collins’ Model

Table 3: Results on Section 23 of the WSJ Penn Tree-
bank comparing models that utilize different SuperARV
taggers and N-best sizes with the tightly coupled imple-
mentation. Note L denotes Loose coupling and T de-
notes Tight coupling. Also (a) denotes trigram, 40-best;
(b) denotes trigram, 100-best; (c) denotes 4-gram, 40-
best; (d) denotes 4-gram, 100-best.

Models ≤ 40 words (2,245 sentences)
Tagging governor only all roles

Acc. RLP RLR RLP RLR
L (a) 96.2 91.5 91.2 88.0 87.4

(b) 96.7 91.9 91.5 88.3 87.7
(c) 96.9 92.2 91.7 88.6 88.1
(d) 97.2 92.4 92.3 89.1 88.6

T 97.4 93.2 92.9 89.8 89.2

Models ≤ 100 words (2,416 sentences)
Tagging governor only all roles

Acc. RLP RLR RLP RLR
L (a) 95.4 90.9 90.5 87.5 86.8

(b) 95.8 91.3 90.8 87.7 87.0
(c) 96.0 91.7 91.2 88.0 87.4
(d) 96.3 91.8 91.5 88.5 87.8

T 96.6 92.6 92.2 89.1 88.5

2 since it makes the complement/adjunct distinc-
tion and Model 3 since it handles wh-movement
(Collins, 1999). Charniak’s parser does not explic-
itly model these phenomena.

Among the statistical CFG parsers to be com-
pared, only Collins’ Model 3 produces trees with
information about wh-movement. Since the trans-
former uses empty node information to transform
the CFG parse trees to CDG parses, the accuracy
of Charniak’s parser and Collins’ Model 2 may be
slightly reduced for sentences with empty nodes.
Hence, we compare results on two test sets: one that
omits all sentences with traces and one that does not.
As can be seen in Table 4, our tightly coupled parser
consistently produces an accuracy that equals or ex-
ceeds the accuracies of the other parsers, with one
exception (Collins’ Model 3), regardless of whether
the test set contains sentences with traces.

Using our evaluation metrics, Collins’ Model 3
achieves a better precision/recall than Model 2 and
Charniak’s parser. Since trace information is used
by the CFG-to-CDG transformer to generate cer-
tain lexical features (Wang, 2003), the output from
Model 3 is likely to be mapped to more accu-
rate CDG parses. Although Charniak’s maximum-
entropy inspired parser achieved the highest PAR-
SEVAL results, Collins’ Model 3 is more accu-
rate using our dependency metric, possibly be-
cause it makes the complement/adjunct distinction
and models wh-movement. Since the statistical

Table 4: Evaluation of five models on Section 23 sentences with and without traces: L denotes the best loosely
coupled CDG parser and T the tightly coupled CDG parser.

Models ≤ 40 words (2,245 sentences)
Without TRACE All
(1,903 sentences) (2,245 sentences)

governor only all roles governor only all roles
RLP RLR RLP RLR RLP RLR RLP RLR

L 92.4 92.4 89.5 88.7 92.4 92.3 89.1 88.6
T 93.2 92.9 89.9 89.3 93.2 92.9 89.8 89.2

Charniak (Charniak, 2000) 92.6 92.5 89.4 88.9 92.5 92.3 88.9 88.7
Collins, Model 2 (Collins, 1999) 92.5 92.3 89.1 88.5 92.2 92.1 89.0 88.5
Collins, Model 3 (Collins, 1999) 92.8 92.7 89.9 89.4 92.7 92.4 89.3 89.1

Models ≤ 100 words (2,416 sentences)
Without TRACE All
(1,979 sentences) (2,416 sentences)

governor only all roles governor only all roles
RLP RLR RLP RLR RLP RLR RLP RLR

L 91.9 91.6 88.8 88.1 91.8 91.5 88.5 87.8
T 92.7 92.3 89.4 88.7 92.6 92.2 89.1 88.5

Charniak (Charniak, 2000) 92.0 91.8 88.8 88.2 91.9 91.6 88.4 87.9
Collins, Model 2 (Collins, 1999) 91.8 91.6 88.6 88.0 91.7 91.5 88.2 87.9
Collins, Model 3 (Collins, 1999) 92.2 92.1 89.4 88.8 92.1 91.9 88.8 88.5

CFG parsers may loose accuracy from the CFG-to-
CDG transformation, similarly to Collins’ experi-
ment reported in (Hajic et al., 1998), we also trans-
formed our CDG parses to Penn Treebank style
CFG parse trees and scored them using PARSE-
VAL. On the WSJ PTB test set, Charniak’s parser
achieved 89.6% LR and 89.5% LP, Collins’ Model 2
and 3 obtained 88.1% LR and 88.3% LP and 88.0%
LR and 88.3% LP, while the tightly coupled CDG
parser obtains 85.8% LR and 86.4% LP. It is im-
portant to remember that this score is impacted by
two lossy conversions, one for training and one for
testing.

We have conducted a non-parametric Monte
Carlo test to determine the significance of the differ-
ences between the parsing accuracy results in Table
3 and Table 4. We found that the difference between
the tightly and loosely coupled SCDG parsers is sta-
tistically significant, as well as the difference be-
tween the SCDG parser and Charniak’s parser and
Collins’ Model 2. Although the difference between
our parser and Collins’ Model 3 is not statistically
significant, our parser represents a first attempt to
build a high quality SCDG parser, and there is still
room for improvement, e.g., better handling of bar-
riers (including punctuation) and employing more
sophisticated search and pruning strategies.

This paper has presented a statistical implemen-
tation of a CDG parser, which is both genera-
tive and highly lexicalized. With a framework
of tightly integrated, multiple knowledge sources,

model distance, and synergistic dependencies, we
have achieved a parsing accuracy comparable to the
state-of-the-art statistical parsers trained on the Wall
Street Journal Penn Treebank corpus. However,
more work must be done to build a parser model
capable of coping with speech disfluencies present
in spontaneous speech. We also intend to investi-
gate a hybrid parser that combines the generality of
a CFG with the specificity of a CDG.

References
E. Charniak. 1997. Statistical parsing with a context-

free grammar and word statistics. In Proceedings of
the Fourteenth National Conference on Artificial In-
telligence.

E. Charniak. 2000. A Maximum-Entropy-Inspired
Parser. In Proceedings of the First Annual Meeting
of the North American Association for Computational
Linguistics.

E. Charniak. 2001. Immediate-head parsing for lan-
guage models. In Proceedings of ACL’2001.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania.

J. M. Eisner. 1996. An empirical comparison of prob-
ability models for dependency grammar. Technical
report, University of Pennsylvania, CIS Department,
Philadelphia PA 19104-6389.

J. Hajic, E. Brill, M. Collins, B. Hladka, D. Jones,
C. Kuo, L. Ramshaw, O. Schwartz, C. Tillmann, and
D. Zeman. 1998. Core natural language processing
technology applicable to multiple languages – Work-
shop ’98. Technical report, Johns Hopkins Univ.

M. P. Harper and R. A. Helzerman. 1995. Extensions

to constraint dependency parsing for spoken language
processing. Computer Speech and Language.

M. P. Harper, W. Wang, and C. M. White. 2001. Ap-
proaches for learning constraint dependency grammar
from corpora. In Proceedings of the Grammar and
Natural Language Processing Conference, Montreal,
Canada.

F. Jelinek. 1997. Statistical Methods For Speech Recog-
nition. The MIT Press.

D. Lin. 1995. A dependency-based method for evaluat-
ing broad-coverage parsers. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence,
pages 1420–1427.

D. M. Magerman. 1995. Statistical decision-tree models
for parsing. In Proceedings of the 33rd Annual Meet-
ing of the Association for Computational Linguistics,
pages 276–283.

A. Ratnaparkhi. 1999. Learning to parse natural lan-
guage with maximum entropy models. Machine
Learning, 34:151–175.

B. Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249–276.

W. Wang and M. P. Harper. 2002. The SuperARV lan-
guage model: Investigating the effectiveness of tightly
integrating multiple knowledge sources. In Proceed-
ings of Conference of Empirical Methods in Natural
Language Processing.

W. Wang and M. P. Harper. 2003. Language model-
ing using a statistical dependency grammar parser. In
Proceedings of International Workshop on Automatic
Speech Recognition and Understanding.

W. Wang, M. P. Harper, and A. Stolcke. 2003. The ro-
bustness of an almost-parsing language model given
errorful training data. In ICASSP 2003.

W. Wang, A. Stolcke, and M. P. Harper. 2004. The use
of a linguistically motivated language model in con-
versational speech recognition. In ICASSP 2004.

W. Wang. 2003. Statistical Parsing and Language Mod-
eling based on Constraint Dependency Grammar.
Ph.D. thesis, Purdue University.

P. Xu, C. Chelba, and F. Jelinek. 2002. A study on richer
syntactic dependencies for structured language mod-
eling. In Proceedings of ACL 2002.

S. J. Young, J. Odell, D. Ollason, V. Valtchev, and P. C.
Woodland, 1997. The HTK Book. Entropic Cam-
bridge Research Laboratory, Ltd.

