

Temporal Ranking for Fresh Information Retrieval

Nobuyoshi Sato

Dept. of Information and
Computer Sciences

Toyo University
Kawagoe, Saitama, Japan
jju@ds.cs.toyo.ac.jp

Minoru Uehara
Dept. of Information and

Computer Sciences
Toyo University

Kawagoe Saitama Japan
uehara@toyo.ac.jp

Yoshifumi Sakai
Graduate School of

Agricultural Sciences
Tohoku Univeristy

Sendai Japan
sakai@biochem.toyo.ac.jp

Abstract

In business, the retrieval of up-to-date, or fresh,
information is very important. It is difficult for
conventional search engines based on a centralized
architecture to retrieve fresh information, because
they take a long time to collect documents via Web
robots. In contrast to a centralized architecture, a
search engine based on a distributed architecture
does not need to collect documents, because each
site makes an index independently. As a result,
distributed search engines can be used to retrieve
fresh information. However, fast indexing alone is
not enough to retrieve fresh information, as support
for temporal information based retrieval is also
required. In this paper, we describe temporal
information retrieval in distributed search engines. In
particular, we propose an implementation of
temporal ranking.

1. Introduction

In our information-intensive society, it is important for us
to know what information was up-to-date, or fresh, at a
certain point in time. However, since search engines having
a centralized architecture, such as Google, require an
enormous amount of time to collect all documents in a
network, it is difficult to retrieve fresh information using
them even in the present. In order to realize fresh
information retrieval, we have developed Cooperative
Search Engine (CSE)[2]. CSE has a distributed architecture,
and hence does not have to collect all the documents in the
network. Each local site acts as a local search engine for
documents in the site, and each local index for the
documents is updated every few minutes. For this reason we
can retrieve fresh information via CSE.

It is a notable characteristic of CSE that retrieval results
can immediately reflect when the appearance of a new
document or editing of an existing document occurs.
However, since the retrieval results contain not only fresh
documents but also stale documents, it is not easy to
determine which documents include fresh information. In
order to solve this problem, we try to implement a function
in CSE for selecting documents that were fresh at a point in
time arbitrarily specified by user.

This paper is organized as follows. In section 2, we survey
temporal databases and temporal information retrieval. In
section 3 we describe CSE and in section 4 we define
temporal information in CSE. We describe the
implementation of temporal information retrieval in CSE in
section 5 and evaluate it in section 6. Finally, we end the
paper with some conclusions.

2. Temporal Information Retrieval

The value of information is determined by the ratio of the
number of information consumers who want the information
to the number of information providers who have the
information. If the number of information providers
increases then the information value decreases. Information
that is known to everyone is called common knowledge.
According to Shannon’s information theory, information is
entropy. In other words, information creates a system from
chaos, although the system is temporary and will soon
diffuse. Information value is at its highest when the system is
first created. Therefore, the freshest information is the most
valuable. Information retrieval is the process of finding
valuable information, and in this sense, fresh information
retrieval is extremely important.

It is clear that fresh information retrieval is a special type
of temporal information retrieval. Temporal information
retrieval is the process of extracting time-varying
information. A document may be modified any time after it
is created, and hence a document consists of time-varying
information. For example, a word which was included in a
document before modifying often is not included in a
document after modifying. Therefore, time-varying
information must be retrieved with the time specified. This is
quite natural and such temporal information retrieval is
available for digital libraries.

2.1 Temporal Database

Although information retrieval is not data retrieval, the
theoretical background of temporal information retrieval is
in temporal databases. A temporal database is a database to
which a time interval can be specified as a query. The time
interval is based on temporal interval logic proposed by J. F.
Allen[14]. Therefore, temporal information retrieval must
support time intervals as part of a query. In a temporal

database, the unit of time is the chronon.
The granularity of a chronon is selected from year, month,

day, hour, minute, and second.
Assume that there are time points t1, t2, t2’, t3, t3’, t4 (ti<ti+1,

ti=ti’). Also assume that [ti,tj](i<j) is a time interval, where
start([ti,tj])=ti, and end([ti,tj])=tj. The following relations exist
among time points X and Y, and time intervals A and B.
X before Y: X<Y, e.g. t1 before t2
X after Y: X>Y, e.g. t2 after t1
X simultaneous-with Y: X = Y, e.g. t2 simultaneous-with t2’
X in A: start(A)≤X≤end(Y), e.g. t2 in [t1,t3]
A before B: end(A)<start(B), e.g. [t1,t2] before [t3,t4]
A meets B: end(A)=start(B), e.g. [t1,t2] meets [t2’,t3]
A overlaps B: start(B)<end(A)<end(B) ∩ start(A)<start(B),

e.g. [t1,t3] overlaps [t2,t4]
A starts B: start(A)=start(B), e.g. [t2,t3] starts [t2’,t4]
A during B: start(A)>start(B) ∩ end(A)<end(B), e.g. [t2,t3]

during [t1,t4]
A finished B: end(A)=end(B) ∩ start(A)>start(B), e.g. [t2,t3]

finishes [t1,t3’]
A after B: start(A) > end(B), e.g. [t3,t4] after [t1,t2]
A met-by B: start(A)=end(B), e.g. [t2,t3] met-by [t1,t2’]
A overlapped-by B: start(B)<start(A)<end(B) ∩

end(B)<end(A), e.g. [t2,t4] overlapped-by [t1,t3]
A started-by B: start(A)=start(B) ∩ end(A)>end(B), e.g.

[t2,t4] started-by [t2’,t3]
A contains B: start(A)<start(B) ∩ end(A)>end(B), e.g. [t1,t4]

contains [t2,t3]
A finished-by B: end(A)=end(B) ∩ start(A)<start(B), e.g.

[t1,t3] finished-by [t2,t3’]
A cotemporal B: start(A)=start(B) ∩ end(A)=end(B), e.g.

[t2,t3] cotemporal [t2’,t3’]
In a temporal database, there are 2 kinds of times: valid

times and transaction times. Valid times concern facts that
are true in modeled reality. Transaction times concern facts
that are current in the database.

In general, a valid time DB stores only fresh data, whereas
a transaction time DB stores the complete history of the data.
A bitemporal DB supports both kinds of data.

2.2 The Concept of Temporal Information
Retrieval

In this paper, temporal information retrieval is defined as
determining whether or not a document exists at a time point
or in a time interval. This is in contrast to whether or not the
content of a document includes the specified time. For
example, assume that a document containing the text “In
2002, the FIFA World Cup will be held in Korea and Japan”
was written in 1998. In the former case, this document
would be retrieved with the query, 1998 and (Korea or
Japan). In the latter case, this document would be retrieved
with the query, 2002 and (Korea or Japan). The number
1998 in the former case is the modified time of the document.
The number 2002 in the latter case is a keyword in the text
of the document. This latter type of retrieval is classified as a

query expansion or a numerical query. We discuss temporal
information retrieval in the former sense.

Assume that a document always contains facts. In this
case, a fact in temporal information retrieval means the
existence of the document. Valid time is the time when the
document exists in the real world, and transaction time
denotes the time when the document is indexed.

The lifetime of a document depends on the document
model, and there are two kinds of models. The first is the
immutable model, in which the lifetime of a document is
equivalent to the lifetime of the information. The
information is the content of the document, and when a
document is modified, the information is also changed.
Therefore, an old document is deleted and a new document
is created at every modification time. The second type of
model is the mutable model, in which the modification of a
document is allowed. In this model, when a document is
modified, the content of the document is changed but the
document itself is not changed. So, in the mutable model, a
document exists from the time it is created to the time it is
deleted, although its content may change multiple times. In
the immutable model, a document exists only from one
modification time to another. From the viewpoint of the
users the retrieval result, with the exception of time, is not
dependent on the document model. However, in the
immutable model, the retrieval result is based on the
modification time, whereas in the mutable model, it is based
on the creation time.

There are several possible interpretations of created time,
modified time and deleted time. Assume that someone had
information at time t1, he wrote it into a document at t2, he
published the document at t3, and the document was indexed
by a search engine at t4. It is important to determine what
time corresponds to the origin of the information. In
principle, the information is created at t1. However, it is hard
to prove this fact and it is impossible to retrieve it. The time
t2 is determined by outside factors. In addition, it may not be
possible for everyone to publish a web document without
changing the timestamp, so, t2 is not a good measure. The
time t3 is the published time when the document is available
on the web. However, it is difficult to retrieve the document
at precisely t3. In fact, we can retrieve the document after t4.
Ideally, t4 should be nearly equal to t3. In centralized search
engines, because t4 − t3 is greater than t3 − t2, t2 is used
instead of t4. However, in distributed search engines, because
t4 − t3 is very small, t4 is used for the purpose of temporal
information retrieval. In such a case, the valid time is
equivalent to the transaction time.

There are two kinds of temporal queries in temporal
information retrieval. One is an interval query which
retrieves documents existing in an interval of time. The other
is a point query which retrieves documents existing at a
certain time point. An interval query is also called a time
slice query. A temporal query is used in conjunction with a
keyword query. The retrieval results include not only the
content of the documents, but also the created time and the

modified time.
The targets of a temporal query are the lifetime interval

and the modified time point of the document. In a temporal
query, temporal relations mentioned in section 2.1 may be
specified.

2.3 Fresh Information Retrieval

In order to realize fully temporal information retrieval, it is
necessary to store the complete history of every document’s
modification, however this has huge storage requirements.
So instead, we introduce fresh information retrieval as a
practical substitute, which retrieves the last modified
versions of current documents.

Temporal information retrieval is the retrieval of
documents that exist during a time interval. Fresh
information retrieval is not the retrieval of documents that
have current content, but to retrieve current documents
which exist with content during a time interval. With fresh
information retrieval, huge storage is unnecessary because
only the last modified version of a document is stored. Also,
fresh information retrieval supports all the functions of
temporal information retrieval except that the retrieved
document is the current version. In section 2.1, we described
that a valid time DB stores only current versions of
documents. In this sense, fresh information retrieval is valid
time information retrieval.
We illustrate 3 kinds of information retrieval in Fig. 1. In this
figure, there are 3 documents D0, D1 and D2, and the black
dots represent modification events. In non-temporal
information retrieval, documents which exist at the current
point in time are retrieved. In Fig. 1, D0 and D1 are retrieved
by non-temporal information retrieval. D2 is not retrieved
because it is deleted. In fresh information retrieval, D0 and
D1 are retrieved in the same way as in non-temporal
information retrieval. However, D0 is retrieved with the
temporal query shown as the dashed rectangle in Fig. 1.
Non-temporal information retrieval does not support such a
query. Finally, in fully temporal information retrieval, all
documents D0, D1, and D2 may be retrieved with any
temporal query. For example, D0 exists as 3 versions
separated by two modifications.

3. Cooperative Search Engine

First, we explain a basic idea of CSE. In order to
minimize the update interval, every web site basically makes
indices via a local indexer. However, these sites are not
cooperative yet. Each site sends the information about what

(i.e. which words) it knows to the manager. This information
is called Forward Knowledge (FK), and is Meta knowledge
indicating what each site knows. FK is the same as FI of
Ingrid. When searching, the manager tells which site has
documents including any word in the query to the client, and
then the client sends the query to all of those sites. In this
way, since CSE needs two-pass communication at searching,
the retrieval time of CSE becomes longer than that of a
centralized search engine.

CSE consists of the following components (see Figure 1).
 Location Server (LS): It manages FK exclusively.

Using FK, LS performs Query based Site Selection
described later. LS also has Site selection Cache
(SC) which caches results of site selection.

 Cache Server (CS): It caches FK and retrieval results.
LS can be thought of as the top-level CS. It realizes
“Next 10” searches by caching retrieval results.
Furthermore, it realizes a parallel search by calling
LMSE mentioned later in parallel.

 Local Meta Search Engine (LMSE): It receives
queries from a user, sends it to CS (User I/F in
Figure 2), and does local search process by calling
LSE mentioned later (Engine I/F in Figure 2). It
works as the Meta search engine that abstracts the
difference between LSEs.

 Local Search Engine (LSE): It gathers documents
locally (Gatherer in Figure 2), makes a local index
(Indexer in Fig. 2), and retrieves documents by using
the index (Engine in Figure 2). In CSE, Namazu[1]
can be used as a LSE. Furthermore we are
developing an original indexer designed to realize
high-level search functions such as parallel search
and phrase search.

Namazu has widely used as the search services on various
Japanese sites.

Next, we explain how the update process is done. In CSE,
Update I/F of LSE carries out the update process periodically.
The algorithm for the update process in CSE is as follows.

1. Gatherer of LSE gathers all the documents (Web

Figure 1. Temporal Information Retrieval

D0
D1
D2

tnow

Figure 2. The overview of CSE

pages) in the target Web sites using direct access(i.e.
via NFS) if available, using archived access(i.e. via
CGI) if it is available but direct access is not
available, and using HTTP access otherwise.
Here, we explain archived access in detail. In
archived access, a special CGI that provides mobile
agent place functions is used. A mobile agent is sent
to that place. The agent archives local files,
compresses them and sends back to the gatherer.

2. Indexer of LSE makes an index for gathered
documents by parallel processing based on
Boss-Worker model.

3. Update phase 1: Each LMSEi updates as follows.
3.1. Engine I/F of LMSEi obtains from the corresponding

LSE the total number Ni of all the documents, the set
Ki of all the words appearing in some documents,
and the number nk,i of all the documents including
word k, and sends to CS all of them together with its
own URL.

3.2. CS sends all the contents received from each LMSEi
to the upper-level CS. The transmission of the
contents is terminated when they reach the top-level
CS (namely, LS).

3.3. LS calculates the value of idf(k) = log(∑Ni /∑nk,i)
from Nk,i and Ni for each word k.

4. Update phase 2: Each LMSEi updates as follows
4.1. LMSEi receives the set of Boolean queries Q which

has been searched and the set of idf values from LS.
4.2. Engine I/F of LMSEi obtains from the corresponding

LSE the highest score maxd∈D Si(d,q) for each
q∈{Q,Ki}, Si(d,k) is a score of document d
containing k, D is the set of all the documents in the
site, and sends to CS all of them together with its
own URL.

4.3. CS sends all the contents received from each LMSEi
to the upper-level CS. The transmission of the
contents is terminated when they reach the top-level
CS (namely, LS).

Note that the data transferred between each module are
mainly used for distributed calculation to obtain the score
based on the tf*idf method. We call this method the
distributed tf*idf method. The score based on the distributed
tf*idf method is calculated at the search process. So we will
give the detail about the score when we explain the search
process in CSE.

For the good performance of the update process, the
performance of the search process is sacrificed in CSE. Here
we explain how the search process in CSE is done.

1. When LMSE0 receives a query from a user, it sends
the query to CS.

2. CS obtains from LS all the LMSEs expected to have
documents satisfying the query.

3. CS sends the query to each of all LMSEs obtained.
4. Each LMSE searches documents satisfying the

query by using LSE, and returns the result to CS.
5. CS combines with all the results received from

LMSEs, and returns it to LMSE0.
6. LMSE0 displays the search result to the user.

.Here, we describe the design of scalable architecture for the
distributed search engine, CSE.

In CSE, at searching time, there is the problem that
communication delay occurs. Such a problem is solved by
using following techniques.
 Look Ahead Cache in “Next 10” Search[3]

To shorten the delay on search process, CS prepares
the next result for the “Next 10” search. That is, the
search result is divided into page units, and each
page unit is cached in advance by background
process without increasing the response time.

 Score based Site Selection (SbSS)[4]
In the “Next 10” search, the score of the next ranked
document in each site is gathered in advance, and
the requests to the sites with low-ranked documents
are suppressed. By this suppression, the network
traffic does not increase unnecessarily. For example,
there are more than 100,000 domain sites in Japan.
However, by using this technique, about ten sites are
sufficient to requests on each continuous search.

 Global Shared Cache (GSC)[5]
A LMSE sends a query to the nearest CS. Many CS
may send same requests to LMSEs. So, in order to
globally share cached retrieval results among CSs,
we proposed Global Shared Cache (GSC). In this
method, LS memories the authority CSa of each
query and tells CSs CSa instead of LMSEs. CS
caches the cached contents of CSa.

 Persistent Cache(PC)[6]
There is at least one CS in CSE in order to improve
the response time of retrieval. However, the cache
becomes invalid soon because the update interval is
very short in CSE. Valuable first page is also lost.
Therefore, we need persistent cache, which holds
valid cache data before and after updating. In this
method, there are two update phases. At first update
phase, each LMSE sends the number of documents
including each word to LS, and LS detects idf of
each word. At second update phase, preliminary
search is performed using new idfs in order to
update caches.

 Query based Site Selection(QbSS)[7][8]
CSE supports Boolean search based on Boolean
formula. In Boolean search of CSE, the operations
“and”, “or”, and “and-not” are available. Let SA and
SB be the set of target sites for search queries A and B,
respectively. Then, the set of target sites for queries
“A and B”, “A or B”, and “A and-not B” are SA ∩ SB,
SA ∪ SB, and SA, respectively. By this selection of the
target sites, the number of messages in search
process is saved.

These techniques are used as follows:
if the previous page of “Next 10” search has been

already searched

LAC
else if query does not contain “and” or “and-not”

SbSS
else if it has been searched since index was updated

GSC
else if it has been searched once

PC
else // query is new

QbSS
fi

4. Temporal Information Retrieval in CSE
4.1 Temporal Query

Here, we describe the temporal queries used to support the
retrieval of temporal information. CSE currently supports
Boolean queries for keywords, and temporal queries in
addition to keyword queries. Temporal queries are used to
select documents existing at certain times or within certain
time intervals.

A temporal query is an expression of a time point or a
time interval. First, we define a time point expression.
Several conventional search engines can retrieve documents
modified in some days or some months. However, this level
of granularity is not sufficient for retrieving fresh
information. A fresh information retrieval system has to
retrieve documents modified within a matter of minutes at
least. CSE updates the index within a few minutes
independent of the scale of the system. In the near future, we
expect to allow retrieval in real time, which is ideal for the
purpose of fresh information retrieval. Therefore, we employ
the second as the granularity of a chronon.

A computer stores time as an integer which is represented
as the number of seconds after 1970-01-01 00:00:00 GMT.
However, it is not natural for a human to count time using
only seconds, so in this paper we represent time as the
following expression.

Y/M/D/h/m/s
Here, Y is the year in A.D., M is the numerical month (1-12),
D is the day in a month (1-31), h is the hour (0-23), m is the
minute(0-59), s is the second(0-59). If each granularity is
omitted, it denotes an initial value. For an example, Y is
Y/1/1/0/0/0.

Furthermore, a time which is prefixed with a minus sign
denotes the difference from the current time.

-Y/M/D/h/m/s
For example, -1/6 is a year and 6 months ago. If the accepted
temporal query is negative, it is added to the current time. A
negative temporal query is provided for the user’s
convenience.

Next, we define the attributes of a document and their
symbols as time point variables.

/c the created time of the document
/e the effective modified time of the document
/m the last modified time of the document
/now the current time

Here, the effective modified time of the document denotes

the last modified time where the content of the version is
nearly equal to that of the current version. We will describe
how to calculate /e in section 4.2. In the immutable
document model, /m is used, and in the mutable document
model, /c is used. The relationship of /c≤/e≤/m≤/now is
always true.

The following queries exist concerning time points t1 and
t2.

t1 < t2 : t1 before t2
t1 > t2 : t1 after t2
t1 = t2 : t1 simultaneous-with t2

Here, time point queries are compared with each other in the
smallest granularity even if they form an elliptical
representation.

A time interval is represented as [t1,t2] using two time
points t1 and t2. If a time point T is included in [t1,t2] (T ∈
[t1,t2]), t1≤T ∩ T<t2. Although [t1,t2) is mathematically more
accurate compared with [t1,t2], [t1,t2] is easy for us to
understand. In Allen’s temporal interval logic, which lacks
the concept of a time point, it is not clear whether both edges
of the time interval are included in the range of the time
interval or not. In our system, we allow an elliptical
representation of a time interval such as [T] = [T,T+1], where
T+1 denotes the increment of the smallest explicit granularity,
e.g. [2000]=[2000,2001], [2002/1/31]=[2002/1/31,2002/2/1].
The lifetime of the document is represented as [/c,/now].

As mentioned in section 2.1, there are a large number of
relationships between Allen’s time intervals. However, they
can all be reduced to relationships between time points and
the functions giving the start point and the end point of the
time interval. For this reason, CSE does not support interval
queries but only point queries.

Next, we discuss whether a temporal query is mixed with
a keyword query or not. In the case of mixing, the semantics
of a query is simple but its implementation is complex.
Conversely, without mixing, the semantics of a query is
complex but it can be implemented easily. For example, we
can use the following query if mixing is allowed.

“FIFA World Cup” and (((“Korea” or “Japan”) and (/c in
[2002])) or (“France” and (/c in [1998])))
This query searches for both documents that describe the
World Cup held in Korea and Japan in 2002 and documents
that describe the World Cup held in France in 1998.

On the other hand, if mixing is not allowed, the following
query could be used.

“FIFA World Cup” and (“Korea” or “Japan” or “France”)
/c in [2002] or /c in [1998]

Here, the relationship between keyword query and temporal
query is conjunctive. This query searches for documents that
describe both the World Cup of France and the World Cup of
Korea and Japan in 1998 or 2002. In the latter method, a
document describing Korea and Japan in 1998 and another
document describing France in 2002 may both be retrieved.
Therefore, we employ the former method.

Temporal query TQ is represented with BNF as follows:
TQ : Q | TQ or TQ |

TQ and TQ | TQ and TC | TC and TQ |
TQ not TQ | TQ not TC

Q : K | Q and Q | Q or Q | Q not Q
TC : Tv > Tc | Tv < Tc | Tv = Tc | Tv ≤ Tc | Tv ≥ Tc |

Tv in [Tc] | Tv in [Tc, Tc] |
TC or TC | TC and TC

Here, K is a keyword, Q is a Boolean expression of
keywords, Tv is a time point variable, Tc is a time point
constant, and TC is a temporal query. Note that TC alone
cannot be the temporal query TQ. This is because all
documents may be selected if only TC is the query, and such
retrieval is not useful. Especially in distributed search
engines, a traffic overload may occur because sites are not
selected. TC is used to select from the result of Q using a
temporal condition.

The time in a temporal query is not the time interval
where information is current but the time point of the origin
of information. Therefore, the query =/now cannot match
any document. The query </now can match the same
documents as a non-temporal information retrieval.

4.2 Content based Freshness

For a user who wants to know what was fresh at a certain
point in time, it is useful to display a list of documents that
were fresh at that time. However, selecting documents
according to the last modification time recorded by the file
system is not appropriate because even if the last change to a
document was only the correction of a slight typographical
error, the document is regarded as having new content at that
modification time. On the other hand, adopting the time
when each document was published on the network is also
undesirable because we cannot recognize that a document
was fresh at the point in time when the content of the
document was completely changed.

These shortcomings arise from the policy of treating the
freshness of a document without taking into account the
change of the meaning of the content. Unfortunately it is
difficult to determine whether the content of a document has
largely changed or not. In this paper, we propose an
alternative method of determining the change in content of a
document, by using the change in TF*IDFs for keywords
appearing in it. In CSE, a retrieval result is displayed to the
user as a list of documents ranked according to TF*IDF for
the retrieval query. In the same way as other search engines
adopting TF*IDF ranking, if an OR search for all keywords
is requested to CSE, all documents are ranked according to
the largest TF*IDF for a keyword appearing in each
document, which implies that we can think of a document as
containing information regarding the keyword for which
TF*IDF is the largest. Therefore, when the keyword having
the largest TF*IDF is changed by editing a document, the
content of the document is thought of as having changed,
and the document is then ranked according to the keyword
that has the largest TF*IDF after the change. The proposed
method for determining whether or not the content of a
document has changed obeys this policy of TF*IDF ranking.

The concrete algorithm for the method is as follows:
For any time,

if the keyword that has the largest TF*IDF in the
document has changed, then

update the time stamp of the document being fresh
to be the current time.

4.3 Temporal Ranking

Ranking means sorting retrieved results. Conventional
search engines sort retrieved results in the descending order
of document scores. However, in temporal information
retrieval, temporal ranking is required. In temporal ranking, a
temporal search engine sorts retrieved results in order of
document time. Here, assume that ranking method is
independent on Boolean formula of keywords in a query.

In temporal ranking, QbSS and SbSS work well as same
as they work well in score based ranking. These effects are
summarized as table 2. In first column of table 2, there are
two kinds of ranking order: “newer” and “older”. Here, top
item is the newest one in newer order, and it is the oldest one
in older order. In second column, there are two kind of basic
time point queries: Tv < Tc, and Tv > Tc. The third column,
“Case” shows the relation of Tc in a query to total time
interval [min, max] of a server. Total time interval includes
last modified times of all documents in a server. Finally, in
fourth column “effect,” several site selection techniques
which work well are listed. When QbSS works well, the site
is ignored by QbSS. SbSS means that SbSS works well.
PC(Persistent Cache) means that SbSS does not work well
but PC may work. SbSS works well if max is the time of top
item in the newer order or if min is the time of top item in
the older order. A query is sent to the server iff either SbSS or
PC.

SbSS is a key technique for scalability. SbSS does not
work well if non-temporal query includes either AND or
AND-NOT. However, in temporal query, SbSS may work
well even if a temporal query includes AND and AND-NOT.
This is because complex time interval query can be reduced
to the range of one dimension of time. For an example,
ORed time interval query ∪i=1..n[si,ei] is reduced to [min si,

Order
Newer

Older
Table 2. The Effect of Site Selection
Query Case Effect

max < Tc SbSS
min < Tc < max PC

Tv < Tc

Tc < min QbSS
max < Tc QbSS
min < Tc < max SbSS

Tv > Tc

Tc < min SbSS
max < Tc SbSS
min < Tc < max SbSS

Tv < Tc

Tc < min QbSS
max < Tc QbSS
min < Tc < max PC

Tv > Tc

Tc < min SbSS

max ei], and ANDed time interval query ∩i=1..n[si,ei] is
reduced to[max si, min ei]. In this way, all time interval query
can be reduced to simple time point query in table 2.
Therefore, SbSS is efficient in temporal ranking. However,
SbSS does not work well if both temporal queries and
non-temporal queries are combined. From such a point of
view, temporal query should not be used with non-temporal
query. Although SbSS is not effective, PC may work well.
This is because PC works well if the query has already been
retrieved once.

5. Implementation

In this section, we describe the implementation of fresh
information retrieval.

In CSE, LMSE searches for documents by calling LSE.
LSE must support TF based scoring (not TF*IDF). Namazu,
one of the most popular small search engines in Japan
supports TF scoring. We assumed Namazu is used as the
implementation of LSE in our system.

LSE constructs an index when updating occurs. Here,
LSE changes TF of an index even if documents are slightly
modified. This is the original behavior of LSE.

LMSE has yet another index. After LSE has finished
updating LSE’s index, LMSE extracts TF values from each
document in LSE’s index, and compares each TF value from
LMSE’s index and LSE’s index. If they are different, LMSE
copies the TF value of the document from LSE to LMSE’s
index, and changes the publish timestamp of a document to
be the time LSE began the updating. Finally, LMSE extracts
the highest scores of each word and range of timestamps
(oldest and latest) of each document, and sends them to LS.
Since LSE is used to search, slight changes to documents are
reflected in their scores. However, the timestamp is replaced
by the time recorded by LMSE.

If a query includes a temporal expression, Query based
Site Selection (QbSS)[7][8] is also used to select search
target sites. Since LS has only the latest timestamps, LS
cannot select sites. However, it is effective for fresh
information retrieval, which is the main purpose of CSE.

LMSE descends a query recursively, and requests a single
keyword expression from LSE. LSE returns a result which is
sorted in TF order. LMSE multiplies IDF, and carries out a
set operation, selecting by temporal condition. The search
results are sorted in order of scores by a specified ranking
method. CS does not share the cache queues for different
ranking methods.

6. Evaluations

At first, we will show that the distributed search engine
can retrieve fresh information. In paper[2], we compared
update intervals in the same document set between CSE and
a centralized search engine which used Namazu and wget. A
centralized search engine spent 2 hours and 20 minutes,
whereas CSE finished in a few minutes. CSE did not fail to
search for fresh information within the bounds of these few

minutes.
Assume that there are three documents, A, A’ and A’’, which
have similar subjects, and a fourth document, B, on a
different subject. Let the documents which are mixed be A
and A’, A’’, B, in the ratio of t:1−t as tA+(1−t)A’, tA+(1−t)A’’,
tA+(1−t)B. Fig. 3 shows the relationship between t and the
maximum values of TF*IDF. Here, the subjects of A, A’, A’’
and B are emacs, mule, xemacs and vi respectively. The
order of closeness to the subject of emacs is mule < xemacs
< vi. Words which have the maximum TF*IDF value in
each document are changed at t=2 in mule, which has a
similar subject to emacs. In vi, which has quite a different
subject, the maximum TF*IDF word changed at t=3.
Therefore, it will be judged that the content was changed if
20 to 30% of documents were changed, when the variation
of the content is detected by the maximum value of TF*IDF.

7. Related Works

There are two types of temporal information retrieval:
retrieving documents by time and displaying documents in
the order of time. Namazu[1], Goo, Infoseek, NAVER[11],
Google and so on can be used to search documents by time.
Namazu searches HTML documents with HTTP headers
and e-mail like documents by using a regular expression
involving time. Since these documents have a date: field in
their header, they can easily be searched by time. However,
normal HTML documents without headers have no date:
fields. In HTML documents with a header, the date: field
often denotes the time that they were downloaded. For this
reason, Namazu can not search web documents by time.

In Goo, a user can select before/after a particular date.
Goo searches for the newest information since Goo does not
distinguish between different versions of a document.
However, searching documents by date is not efficient for
fresh information retrieval. Searching by second, or at the
most by minute, is required.

In Infoseek, a user can also select before/after a particular
date, and Infoseek supports searching by a range of dates.

NAVER supports specifying a range of months in
document search mode which searches for non-HTML
documents such as MS Word, Excel files, PDF and so on.
However, specifying a range of months is completely
unsuitable. Furthermore, NAVER does not support

0
5

10
15
20
25
30
35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

tf*
id

f

mule xemacs vi

Figure 3. TF*IDF max scores

specifying a particular date or month.
In Google, a user can select “past 3, 6, 12 months” in

Advanced Search mode. However, this is not as efficient as
NAVER.

Among those mentioned above, Infoseek is most similar
to fresh information retrieval, however the freshness is
insufficient because Infoseek only supports specifying
documents by date.

Namazu, FreshEye and NAVER display search results in
order of time. They can also display results in increasing or
decreasing order. Other search engines such as Yahoo,
AltaVista, Excite and Lycos do not support searching by
time.

In the field of databases, there is much work regarding
temporal database management[12]. The Valid Web[13]
realizes temporal retrieval by specifying the valid time of
web documents using XML. However, no HTML
documents are able to specify a valid time.

Although search engines are a kind of database, few
experiments have been conducted on retrieving temporal
information. One of the reasons is the search engine
architecture. The search engines mentioned above all have a
centralized architecture. Centralized search engines spend a
lot of time gathering documents. Therefore, it is difficult for
these search engines to collect temporal information.
However, with distributed search engines, almost real-time
retrieval is practical since they do not need to gather
documents over the network.

A number of distributed search engines exist, such as
Whois++[9], Harvest[10], GlOSS and so on. Whois++ and
Harvest use forward knowledge. Forward knowledge is also
used in CSE, however, these systems have no limitation on
retrieval response time. CSE realizes regular response time
regardless of its scale. In addition, these search engines do
not support temporal information retrieval.

7. Conclusions

In this paper, we introduced the concept of temporal
information retrieval, and clarified the difference between
fresh information retrieval, which is a subset of temporal
information retrieval and existing information retrieval. We
discussed the necessary conditions for fresh information
retrieval, and described an implementation of it in CSE. Also,
we proposed an implementation of temporal ranking in CSE.

The following is a list of our future work: verifying the
effectiveness of search engines for fresh information
retrieval by long–term experiments, and developing a search
engine which realizes complete temporal information
retrieval.

Acknowledgement

This research was cooperatively performed as a part of
“Scalable Distributed Search Engine for Fresh Information
Retrieval (14780242)” in Grant-in-Aid for Scientific
Research promoted by Japan Society for the Promotion of

Science (JSPS).

References
[1] The Namazu Project, “Namazu”,

http://www.namazu.org/
[2] Nobuyoshi Sato, Minoru Uehara, Yoshifumi Sakai,

Hideki Mori, "Fresh Information Retrieval using
Cooperative Meta Search Engines," In Proceedings of
the 16th International Conference on Information
Networking (ICOIN-16), Vol.2, 7A-2, pp.1-7,
(2002.1.31)

[3] Nobuyoshi Sato, Takashi Yamamoto, Yoshihiro
Nishida, Minoru Uehara, Hideki Mori, “Look Ahead
Cache for Next 10 in Cooperative Search Engine”, in
proc. of DPSWS 2000, IPSJ Symposium Series,
Vol.2000, No.15, pp.205-210 (2000.12) (in Japanese)

[4] Nobuyoshi Sato, Minoru Uehara, Yoshifumi Sakai,
Hideki Mori, “Score Based Site Selection in
Cooperative Search Engine”, in proc. of
DICOMO’2001 IPSJ Symposium Series, Vol.2001,
No.7, pp.465-470, (2001.6) (in Japanese)

[5] Nobuyoshi Sato, Minoru Uehara, Yoshifumi Sakai,
Hideki Mori, “Global Shared Cache in Cooperative
Search Engine”, in proc. of DPSWS 2001, IPSJ
Symposium Series, Vol.2001, No.13, pp.219-224,
(2001.10) (in Japanese)

[6] Nobuyoshi Sato, Minoru Uehara, Yoshifumi Sakai,
Hideki Mori “Persistent Cache in Cooperative Search
Engine,” MNSA’02

[7] Yoshifumi Sakai, Nobuyoshi Sato, Minoru Uehara,
Hideki Mori, “The Optimal Monotonization for
Search Queries in Cooperative Search Engine”, in proc.
of DICOMO2001, IPSJ Symposium Series, Vol.2001,
No.7, pp.453-458 (2001.6) (in Japanese)

[8] Nobuyoshi Sato, Minoru Udagawa, Minoru Uehara,
Yoshifumi Sakai, Hideki Mori, “Query based Site
Selection for Distributed Search Engines”, MNSA’03

[9] C. Weider, J. Fullton, S. Spero: “Architecture of the
Whois++ Index Service”, RFC1913

[10] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy,
Udi Manber, Michael F. Schwartz: “The Harvest
Information Discovery and Access System”, 2nd
WWW Conference, http://www.ncsa.uiuc.edu/
SDG/IT94/Proceedings/Searching/schwartz.harvest/sc
hwartz.harvest.html

[11] NAVER, http://www.naver.com/
[12] Christian S. Jensen: “Temporal Database

Management”, Thesis,
http://www.cs.auc.dk/~csj/Thesis/

[13] Fabio Grandi, Federica Mandreoli, “The Valid Web:
An XML/XSL Infrastructure for Temporal
Management of Web Documents,” ADVIS2000, pp.
294-303, 2000

[14] J. F. Allen, ”Towards a general theory of action and
time,” Artificial Intelligence, vol. 23, pp.123-154, 1984

	Nobuyoshi Sato
	Abstract
	Introduction
	2. Temporal Information Retrieval
	2.1 Temporal Database
	2.2 The Concept of Temporal Information Retrieval
	2.3 Fresh Information Retrieval

	3. Cooperative Search Engine
	4. Temporal Information Retrieval in CSE
	4.1 Temporal Query
	4.2 Content based Freshness
	4.3 Temporal Ranking

	5. Implementation
	6. Evaluations
	7. Related Works
	7. Conclusions
	Acknowledgement
	References

