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Abstract 
 

This paper argues that computational cognitive 
psychology and computational linguistics have 
much to offer the science of language by 
adopting the research strategy that Donald 
Stokes called Pasteur’s quadrant--starting and 
testing success with important real world 
problems--and that education offers an ideal 
venue. Some putative examples from 
applications of Latent Semantic Analysis 
(LSA) are presented, as well as some detail on 
how LSA works, what it is and is not, and 
what it does and doesn’t do. For example, LSA 
is used successfully in automatic essay grading 
with content coverage feedback, computing 
optimal sequences of study materials, and 
partially automating metadata tagging, but is 
insufficient for scoring mathematical and short 
textual answers, for revealing reasons. It is 
explained that LSA is not construable as 
measuring co-occurrence, but rather measure 
the similarity of words in their effect on 
passage meaning, 
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2     Introduction 
 

In my outsider’s opinion—I’m not a linguist 
and this is my first ACL meeting—this workshop 
marks an important turn in the study of language.  
Here is why I think so. 

Donald Stokes, in Pasteur’s Quadrant 
(1997), argues that the standard view that science 
progresses from pure to applied research to 
engineering implementations is often wrong. This 

doctrine was the brainchild of Vannevar Bush, who 
was Roosevelt’s science advisor during war II. It has, 
of course, since been enshrined in the DoD’s 6.1,2,3 
funding structure, and modeled in the national 
research institutes and large industrial laboratories 
such as Bell Labs, IBM and Microsoft. Stokes shows 
that while this trajectory is sometimes followed, often 
with dramatic success, over the whole course of 
scientific advance it has been the exception rather 
than the rule, and for good reasons. Stokes 
summarized his view of the real relations in a two by 
two table much like the one in the figure, in which I 
have made a few minor additions and modifications. 
 
Pure research Pasteur’s quadrant 
(random walk research) Pragmatic engineering 
 
Table 1. Donald Stokes’ (1997) illustration of his 
conception of science, slightly modified. 
 

The upper left quadrant is “pure” research, 
driven by a desire to understand nature, its problems 
chosen by what natural phenomena are most 
pervasive, mysterious or intuitively interesting. 
Particle physics is its standard bearer. The lower right 
quadrant is empirical engineering, incremental cut 
and try, each improvement based on lessons learned 
from the successes and failures of previous attempts. 
Internal combustion engines are a type case. 

The upper right quadrant, Pasteur’s, is 
research driven by the desire to solve practical 
problems, for Pasteur preventing the spoilage of 
vinegar, beer, wine and milk, and conquering 
diseases in silkworms, sheep, chickens, cattle and 
humans. Such problems inspire and set concrete 
goals for research. To solve them it is often necessary 
to delve into empirical facts and first causes. The 
quadrant also offers an important way to evaluate 
scientific success; because failure proves a lack of 
full understanding. 

Stokes doesn’t name the lower left quadrant, 
but it might be dubbed “random walk” science. It 
resembles theological scholasticism, where the next 
problem is chosen by flaws in the answer to the last. 
In my field, cognitive psychology, it is exemplified 
by 100 years of experiment, thousands of papers, and 
dozens of quantitative models about how people 
remember lists of words. 



Of course, these activities bleed into one 
another and sometimes evince the Bush progression. 
Even list learning has produced basic principles that 
can be used effectively in education and the treatment 
of dementia. Nonetheless, the argument is that efforts 
in Pasteur’s quadrant, because they avoid the dangers 
of excessive-abstraction, simplification and 
irrelevance, are the most productive, both of 
scientific advance and of practical value. 

I believe that the Pasteur attitude is 
especially important in psychology, because 
identifying problems that are critical for understand 
the human mind is anything but easy. Human minds 
do many unique and currently unexplainable things. 
Their first-cause mechanisms are hidden deeply in 
the intricate connections of billions neurons and 
billions of experiences. Better keys to the secrets of 
the mind are needed than hunches of the kind that 
have motivated list-learning research. To be surer 
that what we study is actually relevant to the real 
topic of interest we need to try to solve problems at 
the level of normal, representative mental functions. 
Although there are other good candidates, such as 
automobile driving and economic decision making, 
education is particularly apt. This is partly because 
cognitive psychology already knows quite a lot about 
learning, but more importantly because education is 
the primary venue in which society intentionally 
focuses on making a cognitive function happen well, 
and where success and failure can tell us what we do 
and do not know, and do so with some guarantee that 
the knowing is important to understanding the target 
phenomena. 

It seems to me that computational linguistics 
is in much the same position. Much traditional 
linguistics has concerned itself with descriptions of 
abstract properties of language whose actual role in 
the quotidian human use of language is not often 
studied, and, therefore, whose promise to explain 
how language is acquired and works for its users is 
sometimes hard to evaluate. Computational 
linguistics itself appears to have been devoted mostly 
to the upper left and lower right quadrants; on one 
hand it has spent much of its effort automating or 
supporting traditional linguistic analyses such as 
parsing, part-of-speech tagging and semantic role 
classification. On the other hand, it has developed 
practical tools, such as dictionaries, ontologies and n-
gram language models for doing practical language 
engineering tasks, such as speech-to-text conversion 
and machine translation. There has been relatively 
little effort to use the successes and failures of 
computer automations to guide, illuminate, or test 
models of how human language works. 

This workshop, represents an important step 
northeast in Stokes’ map. Not only is education 

accomplished primarily through the use of language, 
it is also a critical source of advanced abilities to use 
language-- reading, writing, and thinking--and is the 
primary medium by which the fruits of education are 
made useful. Thus trying to improve education is just 
the kind of thing that the Pasteur approach exploits, 
compelling reasons to understand, a laboratory for 
exploration, and strong, broad, relevant tests of 
success. Putting this argument starkly, it is too easy 
to treat language as an isolated abstract system and 
ignore its functional role in human life, and it is too 
easy to treat education as a humanity, where abstract 
philosophical arguments, ethical principles or 
historical precedent guide practice. Attempts to 
enhance the role of language in education through 
computation, which makes exquisitely specific what 
we are doing, should lead to new understanding of 
the nature of language--and vice versa. 

Now for a few words on my own work, and 
some ways in which it has, at least in part, followed 
the Pasteur path, plus a few words on how 
computational linguistics in education might make 
use of some of its outcomes. This will be take the 
form of a review of Latent Semantic Analysis (LSA): 
its origins and history, its computationally simulated 
mental mechanisms, its applications in education, and 
some implications it may have for understanding how 
the mind does language. I’ll briefly describe where 
LSA came from, how it works, what it does and 
doesn’t do, some educational applications in which 
what it does is useful, some things that limit its 
usefulness and beg for better basic science, and some 
nitty-gritty on how and how not to apply it. 
 
3     The History and Nature of LSA 
 

In the early eighties the management of Bell 
Telephone Laboratories, where I was working, asked 
me to form a group to find out why secretaries in the 
legal department were having trouble using UNIX, an 
obvious godsend, and fix them. This led to trying to 
find out why customers sometimes couldn’t find what 
they wanted in the Yellow Pages, why service 
representatives didn’t always give correct charges 
even thought they were plainly stated in well indexed 
manuals, and why the new online databases for parts 
and circuits required so much training and yielded 
only small gains in speed and accuracy, if any. 

 We undertook a series of lab experiments 
whose details are skippable. What we discovered was 
this. In every case the words that people wanted to 
use, to give orders to computers, or to look things up, 
rarely matched the words the computer understood or 
the manuals were indexed by. Roughly, but almost 
always, the data could be summarized as: ask 100 
people by what one word something should be called 



and you will get 30 different answers. The 
distribution is such that it takes five words to cover 
half the answers. We called this the problem of 
“verbal disagreement” (Furnas et al., 1987). 

Our first solution was brute force; find all 
the words people would use for what we called an 
“information object” and index by all of them, which 
we called “unlimited aliasing” (what do you think the 
chances are that anyone else would have named them 
that way?). Later, largely led by George Furnas 
(1985), we invented some ways to semi-automate 
that process by what he called “adaptive indexing”, 
having the computer ask people if the words they had 
used unsuccessfully should be added as pointers to 
things they eventually found. Of course, we also 
worried about the problem of ambiguity, now known 
as “the Google problem”, that almost every word has 
several very different meanings that will lead you 
astray. At least under some circumstances that was 
fixable by giving more context in the response, one 
version of which is Furnas’ “fisheye view”, to guide 
navigation. (Adaptive indexing also greatly reduces 
the ambiguity problem because the pointers are one 
way--from what people said to the one thing they 
actually told the systems they meant.) 

So what had we done here? We’d used the 
practical problem to lead to empirically exploration 
of how people actually used words in daily life 
(although computers were not as much of daily life 
then as now, and some of their persisting problems 
may be due to our failure to get our solutions widely 
adopted. Here I am, still trying.) The surprising 
extent and universality of verbal disagreement could 
be viewed as a baby step in language science, at least 
as we construed language science. 

But just pinning down the nature of the 
problem in the statistics of actual pragmatic word 
usage (we called the new field “statistical semantics”, 
which didn’t catch on), was only a start. Clearly the 
problems that computers were having understanding 
what people meant is special to computers. People 
understand each other much better. (People also have 
trouble, although less, with queries of one or two 
isolated words, but they are very good at using 
baseline statistics of what people mean by a word 
(which is, of course, Google’s stock in trade, using an 
indirect version of adaptive indexing), and they 
appear to use context when available in a much more 
efficient manner (although this still needs research in 
the style of statistical semantics.) 

What was needed was a way to mimic what 
people do so well--understand all the meanings of all 
the words they know, and know just how much and 
how any word is related to any other. It is perfectly 
obvious that people learn the meanings of the words 
in their language, only slightly less so that they must 

do so primarily from experiencing the words in 
context and from how they are used in combination 
to produce emergent meanings. With these facts and 
clues in mind, the next step was to find 
computational techniques to do something similar, 
and see if it improved a computer’s understanding. 
(An apology is in order for idiosyncratic use of the 
words “meaning”, “understanding”, and “semantics”. 
They are used here in special senses that differ from 
myriad usages in linguistics and philosophy, and may 
offend some readers. Because detailed definitions and 
circumlocutions would be burdensome and of little 
value, let us leave it to context.) 

The best method we hit upon was what is 
now called Latent Semantic Analysis, LSA (or, in 
information retrieval, Latent Semantic Indexing, 
LSI.) Because there have been some 
misinterpretations in the literature it may be useful to 
give a conceptual explanation of how LSA works. It 
assumes that the meaning of a passage (in practice 
typically a paragraph) can be approximated by the 
sum of the meanings of its words. That makes a large 
print corpus a huge system of simultaneous linear 
equations. To solve such systems we used the matrix 
algebraic technique of Singular Value Decomposition 
(SVD), the general method behind factor analysis and 
principal components analysis. Applied to a corpus of 
text, the result is a vector standing for every word in 
the corpus, with any passage represented by the 
vector sum of its word vectors. (At first we could 
only do that with rather small corpora, but with 
improved algorithms and hardware, size is no longer 
a barrier.) 

The first applications of LSA were to 
information retrieval, which we conceived of as a 
problem in the psychology of meaning, how to 
measure the similarity of meaning to a human of a 
query and a document given pervasive verbal 
disagreement. The method was to compute the 
similarity of corresponding vectors, typically by their 
cosine (of their angle in a very high dimensional 
“semantic space”.) The result was that, everything 
else equal (e.g. tokenizing, term-weighting, etc.), LSI 
gave about 20% better precision-for-recall results, 
largely because it could rightly judge meaning 
similarity despite differences in literal word use. It 
also does any language, and cross language retrieval 
handily because its numerical vectors don’t care 
whether the “words” are Chinese characters or Arabic 
script. If the training corpus contains a moderate 
number of known good translations, and is processed 
correctly, it does pretty well with no other help. 

Along the way we discovered that choosing 
the right number of dimensions—the number of 
(independent) elements composing each vector--was 
critical, three hundred to five hundred being strongly 



optimal. One way of describing the value of reducing 
the number of dimensions well below the number of 
word types or passages is that it forces the system to 
induce relations between every word and every other 
rather than keeping track of the full pattern of 
empirical occurrences of each, as standard vector 
retrieval methods do. 

Because we like to think we are trying to 
model human minds as well as solve practical 
problems, we have also tested LSA on a variety of 
human tasks. For word meaning an early test was to 
give it a standardized multiple-choice vocabulary 
tests (it chooses the word with the most similar 
meaning by computing which has the highest cosine). 
Trained on text of similar volume and context to what 
an American high school senior has read, it does well 
on the Test of English as a Foreign Language 
(TOEFL), equaling successful non-native applicants 
to U.S. Colleges. It also mimics the astounding ten 
words per day vocabulary growth of middle school 
children as measured by multiple choice tests. To 
evaluate its representations of passage meaning, 
perhaps the most interesting and quantitative tests 
have been through its use in scoring the conceptual 
content of expository essays. In actual essay scoring 
systems we use a suite of analytic tools that includes 
other things. However, for the present purpose we 
need to consider how well LSA does when used 
alone.  In doing this, LSA is used to predict the score 
a human grader would give a new essay on the basis 
of its similarity to other essays on the same topic that 
have previously been humanly scored.  The LSA-
based score predicts very nearly as well as does that 
of a second independent human reader. Several other 
evidences of passage-passage success will be 
described later. 

The astute reader will be puzzled by how 
this could happen, given the very strong 
simplification of LSA’s additivity assumption, by 
which word order within passages is completely 
ignored. We will return to this matter, and to more on 
essay grading later. 

Before going on, a few more common 
misinterpretations of LSA need dealing with. First, 
LSA is not a measure of co-occurrence, at least as co-
occurrence is usually conceived. For LSA a passage 
meaning is the combination of its word meanings. 
This does not imply that the words in a passage have 
the same meaning; indeed that would not be very 
useful. Empirically, over a typical large corpus, the 
correlation between the cosine between a random pair 
of words and the number of passages in which they 
both occurred is +.35, while the correlation with how 
often they occur separately, which by the usual 
interpretation should make them dissimilar, is +.30. 
By the same token--unlike n-gram language models--

LSA estimates the probability that one word will 
follow another only indirectly and very weakly. 
(Although, surprisingly, LSA similarities have 
recently been shown to account for much of what 
goes on in recalling word lists in order, but not by 
conditional probability effects (Howard and Kahana, 
2001)). More correct interpretations are that LSA 
reflects the degree to which two words could 
substitute for one another in similar contexts, that 
they tend to appear in similar (but not necessarily 
identical) contexts, and, most precisely, that they 
have the same effects on passage meanings. 

Now what about the fact that LSA ignores 
word order and thus all syntactically conveyed 
grammatical effects on sentential meaning? First, it 
needs emphasis that LSA is very good at measuring 
the similarity of two words or two passages, 
sometimes good on sentence to sentence similarity 
and sometimes not, and least good on word to 
sentence, or word-to-passage meanings. A good and 
bad feature of its word-to-word function is that it 
merges all contextual effects (different senses) of a 
word into a frequency-weighted average.  LSA, as a 
theory of psychological meaning, proposes that a 
word is represented as a single central meaning that is 
modified by context (see Kintsch (2002) for how this 
could play out in predication and metaphor). The 
reason it does well on passage-to-passage is that 
passages are redundant and complex, and that local 
syntactic effects tend to average out. (This is true for 
humans too—e.g. they ignore misplaced nots) LSA 
should be used with all of this in mind. 

However, still, you might say, LSA’s lack of 
understanding of prediction, attachment, binding, and 
constituent structure, thus of representation of logical 
propositions--all traditional foci of linguistic 
semantics and computational linguistics-- must surely 
weaken if not cripple it. Weaken surely, but by how 
much? Here is one “ballpark” estimate. A typical 
college educated adult understands around 100,000 
word forms, an average sentence contains around 20 
tokens. There are thus 100,00020 possible 
combinations of words in a sentence, therefore a 
maximum of log2 100,00020 = 332 bits of information 
in word choice alone. There are 20! =2.4 x 1018 
possible orders of 20 words for and additional 
maximum of 61 bits from syntactic effects. Of the 
possible information in a sentence, then, the part that 
bag-of-words LSA can use is 332/(61+ 332) = 84%.  

A substantial amount of human meaning is 
missing from LSA, but a much larger component is 
apparently captured. It turns out that, judiciously 
applied, this component can be quite useful. 
Moreover, applying it can help pin down the roles of 
what’s missing and not and thus advance our 
understanding of the nature language as used. Some 



successful and less so applications to education are 
described next, along with some implications, as well 
as some radical conjectures. 
 
4      Applications of LSA in Education 
   

First, a few more words on the use of LSA 
in information retrieval (IR) (and relevant to some 
educational applications described later) and essay 
scoring. What LSA captures in IR is the degree to 
which two documents are about the same thing, 
independent of what equivalent wording may be 
used. Thus it is useful for finding documents that talk 
about something, even though it misses details-- 
sometimes important ones--about what was said 
about the matter. What kind of computation might 
achieve a representation of the rest? 

To achieve a high degree of validity in 
representing word meaning, LSA uses only 
information on how words are used, it does not need 
to assume or identify more primitive semantic 
features. A possible hint from its success may be that 
the meaning of groups of words in their order may 
also rely entirely on how they relate to other groups 
of words in their orders. (Unpublished work of the 
psychologist Simon Dennis is pushing in this 
direction with very interesting results.) Could it be 
possible that word strings themselves actually are the 
deepest, most fundamental representation of verbal 
meaning, not some more abstract underlying 
primitive entities or structures? 

In essay grading, LSA information turns out 
to be almost, but not quite enough.  In practice we 
add a number of primarily statistical measures, for 
example n-gram model estimates of how well the 
words have been ordered relative to standard English 
statistics. The remarkable thing is that even without 
any explicit extraction or representation of the logic 
or propositions in the essays, the methods usually 
produce slightly more reliable scores than do 
humans. Is it possible that merely the joint choosing 
of a set of words and a normative order for arranging 
them (including nonlinear interactions) suffices to 
convey all that’s needed, without needing any deeper 
level of representation? Clearly, this is very doubtful, 
but perhaps worth thinking about? 

LSA’s text analysis and matching capability, 
originally devised for IR, has found several fairly 
direct applications in education. One automatically 
measures the overlap between the content of courses 
by the text in their exams--agreeing well with teacher 
judgments on samples. This is used to help 
rationalize curricula. Another relates the content of 
job tasks, training materials, and work histories, all 
by placing their verbal descriptions in the same 
semantic space, and uses the results to assign people 

to jobs and just-in-time compensatory training. A 
new application automatically matches test items and 
learning materials to state achievement standards, 
with high agreement to human experts. Another 
automatically finds best-sentence summaries and 
categories as an aid for meta-data tagging of learning 
objects. A kind of inversion of the LSA 
representation automatically generates candidate 
keywords. 

The closest relative to essay grading is 
LSA’s role in the Summary Street program. In this 
application students read 4-10 page educational 
documents, then write 100-200 word summaries. 
Using LSA, the system tells the student about how 
well the summary covers each section of the 
document, how coherent it is--by measuring the 
similarity of successive sentences--and marks 
redundant and irrelevant sentences. (Interestingly, 
experiments have shown that students learn more 
from text that is coherent, but not excessively so, and 
LSA can be used to determine the right degree, 
although no working application has yet been built 
around the capability.) 

Another version of the Summary Street and 
essay analysis technology is a web based tool that 
scores short essays written to summarize or discuss 
the content of chapters of college textbooks, 
providing feedback on what sections to re-read to 
improve coverage. 

A somewhat different manner of extending 
LSA’s text analytic properties lies behind another 
group of applications. Suppose that a student reads a 
document about the human heart, then wants to 
choose another to read that will best advance her 
knowledge. Experiments have shown that the greatest 
learning will occur if the next reading introduces 
neither too little nor too much new knowledge. We 
call this the Goldilocks principle. By LSA analysis of 
how all of a set of materials on a topic are related to 
one another it is possible to accurately place them on 
a continuum of conceptual sophistication and 
automatically choose optimum steps. For a large 
electronic maintenance model currently under 
development, the technique is being generalized to 
provide optimum paths to knowledge© in which users 
choose a starting place and a target procedure they 
want to know, and the system picks a sequence of 
sections to read that is intended to introduce the 
needed information in an effective and efficient order 
for understanding. Combined with fisheye views, 
adaptive indexing, meaning-based LSA search, 
embedded LSA-based constructed response 
assessments, and other guidance features the system 
is a sort of midway, automatically constructed, 
intelligent tutor. 



Still another application combines aspects of 
the search and essay evaluation techniques to act as a 
kind of automated mentor for a collaborative learning 
environment. Its most interesting capabilities are 
monitoring and continuously assessing the content of 
the individual and the total group contributions, 
connecting individuals with others who are have 
made comments about similar things, posting alerts 
when the discussion wanders, both on request and 
autonomously reaching out to repositories for 
materials relevant to a discussion, and measuring the 
formation of consensus. In one small experiment, the 
system’s automatic evaluation of individual content 
contributions over a semester had a correlation of .9 
with independent ratings by participating instructors. 

Still more applications are just entering the 
research stage. One set is stimulated by the widely 
perceived inadequacy of multiple choice testing; 
students need to be able to think of answers, not just 
choose someone else’s. The goal is to replace, for 
example, missing word multiple choice vocabulary 
tests with ones in which the student supplies the word 
and the system evaluates how well it fits. 

That’s enough for successes. What about 
failures and limitations, what they teach, and where 
they point research? First, it is true that many 
laboratory tasks can reveal shortcomings and errors 
in LSA. Incorrect measures of similarity occur 
especially for sentences to sentence comparisons in 
which syntax has strong effects, where broader 
contextual information or pragmatic intent is 
involved, and where word meanings have strong 
relations to perceptual sources to which LSA training 
has had no access. In some of these cases, it is 
reasonable to suppose that the basic theoretical 
foundation is sound but the training data is not 
sufficient. In other cases it is fairly obvious that more 
fundamental limitations are at fault, such as the lack 
of a purely computation process by which to 
contextually disambiguate the phenomena 
traditionally described as multiple word senses. 

But what about the lessons from trying to 
solve educational problems promised earlier? There 
are two glaring examples. One is scoring answers to 
math problems, or mathematical answers to problems 
in physics and chemistry (never mind questions 
requiring drawings or diagrams), something we are 
frequently asked to do. Syntactic expressions with 
abstract symbols, where order is critical to logic and 
bindings are arbitrary, are simply beyond the powers 
of LSA. How to get them into a fully computational 
model, one that does not use human help in the form, 
for example, of manually constructed rules that 
natural humans could not know, preferably one in 
which the system learns the capability from the same 
interaction with the world that humans do, is the 

challenge to computational cognitive psychology and 
linguistics that forcefully presents itself, and whose 
solution could not help but require important new 
scientific knowledge about language. 

 A second educational soft spot for LSA is 
its weakness on sentences. It would almost certainly 
be better to be able to treat the meaning of an essay 
as the combination of the meaning of its sentences 
and the propositional information that order, both 
within and between sentences, helps to convey. 
Moreover, simply scoring short answers, another 
frequent request is problematic. The usual LSA-based 
methods are not useless, but they fall significantly 
short of human reliabilities. There seem to be two 
issues involved. One is again the necessity of 
accounting for syntax, especially for negation, 
quantification, and binding. “The price of cloth will 
go up and the cost of plastics down” is not handled 
by LSA.  The other is that short answer questions 
often require very specific responses in which some 
words must be literal entities and others admit of 
synonyms, circumlocutions and ambiguity. No one 
has found a way to match humans with without 
adding what we consider ad hoc methods, rules and 
triggers devised and coded by people who know the 
answer. What we want is a fully computational 
method that might be a possible model of how natural 
human minds represent knowledge and turn it into an 
answer of a few words or sentences that can be 
reliably evaluated by a human who has also learned 
the needed knowledge in a computationally realistic 
way.  Finding one is another strong challenge whose 
successful attack would almost have to reveal new 
scientific truth. 

Finally, it is worth noting that LSA has up to 
very recently relied exclusively on SVD for its 
central engine. There are certainly other possibilities 
for doing the same job, and perhaps for doing it 
better, and for doing more. For example, several new 
matrix decomposition methods (that’s what LSA is) 
have recently been devised that have interesting new 
properties, such as more interpretable representations. 
Other new approaches use entirely different 
computations, for example the model of Simon 
Dennis mentioned earlier relies on string-edit theory, 
computing what operations it takes to change one 
sentence into another. There is no room, and as yet 
no results to warrant review of these here, but it is 
clear that the exploration of innovative computational 
models of language, ones that, like LSA, are quite 
different in spirit from linguistic tradition, is being 
pushed by a desire to solve practical problems, 
featuring especially ones in education, and that the 
effort has not nearly reached its limits. 
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