
Learning languages from positive examples with dependencies

Jérôme Besombes, Jean-Yves Marion
Loria, INRIA Lorraine

Abstract

We investigate learning dependency grammar from positive data, in Gold’s identification in the limit model. Examples
are dependency trees. For this, we introduce reversible lexical dependency grammars which generate a significant class
of languages. We have demonstrated that reversible dependency languages are learnable. We provide a

���������
-time, in

the example size, algorithm. Our objective is to contribute to design and the understanding of formal process of language
acquisition. For this, dependency trees play an important role because they naturally appear in every tree phrase structure.

1. An identification paradigm

From Tesniére (Tesnière, 1959) seminal study, and from ideas of Mel’c̆uk (Mel’c̆uk, 1988), we propose a two
tier communication process between two speakers, see Figure 1. Jean transmits a sentence to Marie. At the first
stage, Jean generates a structural sentence, like the following dependency tree

the rabbit runs fast

Then, Jean transforms it into a linear phrase, the rabbit runs fast, and send it to Marie. Now, Marie has to inverse
the two tier process of Jean. For this, she has (i) to recover the structural sentence from the linear sentence (�
��),
(ii) to build/update/improve her grammar in order to understand the message, and to generate other messages
(�
��). In the setting of natural language learning, parsers perform the first task of Marie. Roughly speaking,
parsing corresponds to inverse 	 , that is to compute 	�
�� .

We are investigating identification, that is exact learning, of dependency tree languages. The leading idea is
that data used to learn are dependency trees. Dependencies are semantic annotation by additional informations
which facilitates the learning process. Such data are widely available and come from a lot of computational
linguistic formal grammars such as LFG, TAG, categorial grammar and interaction grammar. The relations between
those formalism are explained in the special issue of TAL (Kahane, 2000) on dependency grammars.

The data available are positive examples of a language, that is a sequence of dependency trees. Our hypothesis
is that the computation of is reversible, that is the inputs can always be deduced from the outputs. So, identifi-
cation corresponds to inverse . For this, we give a sufficient condition of reversibility on the grammars (���). We
show that the class of reversible dependency tree languages is efficiently identifiable in Gold’s model (Gold, 1967).
That is, given a finite sequence of examples of a reversible language, we determine a reversible grammar that gen-
erates it. We refer to (Jain et al., 1999) for further explanations. Our study leans on the work of Angluin (Angluin,
1982) on learning languages produced by deterministic and reversibles finite automaton. It is also closely related
to Sakakibara (Sakakibara, 1992) work on reversible context free grammars and to Kanazawa (Kanazawa, 1998)
work on rigid categorial grammars.

Linear
sentence

Structural
sentencesentence

Structural

PSfrag replacements
 �
��

	 	�
��

� � � �

Figure 1: A two tier communication process

c
�

2000 . Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks (TAG+6),
pp. 25–29. Universitá di Venezia.

26 Proceedings of TAG+6

2. Lexical dependency grammar

Following Dikovsky and Modina (Dikovsky and Modina, 2000), we present a class of projective dependency
grammars which was introduced by Hays (Hays, 1961) and Gaifman (Gaifman, 1965).

A lexical dependency grammar (LDG)
�

is a quadruplet ���������
	��
�� , where � is the set of terminal symbols,
� is the set of non-terminal symbols, ����� is the start symbol, and 	 is the set of productions. Each production

is of the form ����� � . . . ������� � . . . ��� , where ����� , each �! and �#" are in �%$&� . The terminal symbol �
is called the head of the production. In other words, the head is the root of the flat tree formed by the production
right handside. Actually, if we forget dependencies, we just deal with context free grammars.

Example 1. The grammar
� ��'(�*)+�,�.-0/1�2)+�3/4��	��.�� where 	 consists

�5�����6-�78��-
Partial dependency trees are recursively defined as follows.

1. � is a partial dependency tree generated by
�

.

2. If . . . � . . . b . . . is a partial dependency tree generated by
�

, and if

�9�(� � . . . �:�;��� � . . . ��� is a production of
�

, then

. . . � � . . . �:���<� � . . . �#� . . . b . . .

is a partial dependency tree generated by
�

.

A dependency tree generated by a LDG
�

is a partial dependency tree of
�

in which all nodes are terminal
symbols. The language =?> ��@ is the set of all dependency trees generated by

�
.

Example 2. The language generated by
� � of Example 1 is

=?> � � @ 'A)0��- ���<�<-8- ���<�<�<-!-�- �2B2BCBD/

Without dependencies, we recognize the context free language)0�FEG-HEFI+J&KML#/ .

3. Reversible LDG

A LDG grammar
�

is reversible if the conditions N&O , NQP and NQR of Figure 2 are satisfied. The class of
reversible dependency tree languages is the class of languages generated by reversible LDG.

4. The learning algorithm

The learning algorithm works as follows. The input is a finite set S of positive examples which are de-
pendency trees. Define TG >TS @ as the grammar constructed from all productions outputed by TG >TU��
� @ , for each
UA��S . The function TG is described in Figure 3.

Stage 0 � � ' TG >VS @ .
Stage n+1 The grammar � EXW�� is defined by applying one of the rule of Figure 2.

Besombes and Marion 27

N&O If � � � ��� and if � � � ��� , then ��'�� .

N�P If � �����
	 ��� and if �9�����	 ��� , then � '� , where �8�� ��� .

NQR If � ��� a 	���� and if �Q��� a 	��� , then � '� , where �8�� ��� .

We write �M��	 for � � . . . � ����� � . . . � � .
Figure 2: Reversibility conditions and reduction rules.

Function TG > U���� @
Inputs : U is a dependency tree,

� is a non-terminal symbol.
if U �6�

then Output � � U

if U '�� � . . . � � a � � . . . � �
then Take new � � �2BCB2BH� � � and � � �CB2B2BC�
� �

Output � � � � . . . ��� a � � . . . ���
for � '�� to � do TG >�� ��.�� @
for � '�� to � do TG >�� �
� @

Figure 3: TG >TU�� � @ recognizes exactly U , i.e. =?> TG > U���� @ @ 'A)CU</

The process terminates at some stage � because the number of grammar productions decreases at each stage.
So, put �>TS @ ' �
! .

Theorem 3. learns the class of reversible dependency tree languages.

The learning algorithm is incremental and runs in quadratic time in the size of the examples. Our algorithm is
implemented as a Java prototype which is accessible from http://www.loria.fr/ " besombes.

Example 4. S�') the rabbit is very fast, the rabbit is fast, the rabbit is very very fast / ,

The productions of � � ' TG >VS @ are

28 Proceedings of TAG+6

TG > the rabbit is very fast �.� @ '

���������������� ���������������

� � � � is ��� �
� � � ��� rabbit �

� � � ��� fast �
���;� the �
����� very

TG > the rabbit is fast �
� @ '

���������� ���������
� � ��	 is ��
 �
� 	 � ��� rabbit �
��
;� fast �
� � � the B

TG > the rabbit is very very fast /1�.� @ '

��������������������� ��������������������

� � ��� is �� �
���;� � � � rabbit �

��;� � � � fast �
� � � � the �

� � � � very � � � �� � �;� very

Second, we apply N6O to identify � � 'M� � � , � � ' � � ' � � � .

� � � � is � � ���;� the � 	 � ��� rabbit � � � ��� rabbit

� � � ��� rabbit ����� very �
 � fast � � � � � fast

����� � � fast � � ��	 is ��
 � � ��� is �� � � � � very � �
We apply N6O to identify � � 'M��� and ��	;'M� � .

� � � � is � � ����� very �5� � � is �
� � � � � rabbit � � � � is ��
 ��;� � � � fast

���;� � � fast ��
;� fast � � � � very � �
� � � the

Besombes and Marion 29

Now, we merge � � ' �
 ' � by applying N?R on � rules.

� � � � is � � � � � � � � fast ����� very

� � � � � rabbit ���;� fast � � � � very � �
����� � � fast � � � the

Lastly, we apply NQP on � � rules by merging � � 'M� � � . We obtain the final grammar:

� � � � is ��� ���;� fast � � � very

� � � � � rabbit � � � the � � � very � �
���;� � � fast

5. Related works

� Sakakibara (Sakakibara, 1992) gives a learning algorithm to infer reversible context free languages from skeleton
parse trees. The definition of reversible grammar is very similar to ours. However, we distinguish between both

productions ��� � �<- and � � �9��- , unlike (Sakakibara, 1992) in which they are considered identical.

� Kanazawa (Kanazawa, 1998) studies inference of several classes of categorial grammars from functor structures,
based on counting the number of categories associated to a terminal symbol. It is not difficult to faithfully
translate rigid grammar in reversible dependency grammars.

The defect of learning from structures is that examples usually depend on the implicit grammar that we have
to guess. It appears that it is not the case in our approach because we deal with tree languages, and so is seemingly
more natural.

References

Angluin, Dana. 1982. Inference of reversible languages. Journal of the ACM, 29:741–765.
Dikovsky, A. and L. Modina. 2000. Dependencies on the other side of the curtain. Traitement automatique des langues,

41(1):67–96.
Gaifman, H. 1965. Dependency systems and phrase structure systems. Information and Control, 8(3):304–337.
Gold, M.E. 1967. Language identification in the limit. Information and Control, 10:447–474.
Hays, D.G. 1961. Grouping and dependency theories. In National symp. on machine translation.
Jain, J., D. Osherson, J. Royer and A. Sharma. 1999. Systems that learn. MIT press.
Kahane, S. 2000. Les grammaires de dépendance, volume 41. Hermes.
Kanazawa, M. 1998. Learnable classes of Categorial Grammars. CSLI.
Mel’c̆uk, I. 1988. Dependency Syntax: Theory and Practice. The SUNY Press.
Sakakibara, Y. 1992. Efficient learning of context free grammars from positive structural examples. Information and Compu-

tation, 97:23–60.
Tesnière, L. 1959. Eléments de syntaxe structurale. Klincksieck.

