
Selecting the Most Highly Correlated Pairs within a Large Vocabulary

Kyoji Umemura
Department of Computer Science

Toyoahshi University of Technology
umemura@tutics.tut.ac.jp

Abstract

Occurence patterns of words in documents
can be expressed as binary vectors. When
two vectors are similar, the two words cor-
responding to the vectors may have some
implicit relationship with each other. We
call these two words a correlated pair.
This report describes a method for obtain-
ing the most highly correlated pairs of a
given size. In practice, the method re-
quires

���������
	���������
computation time,

and
�������

memory space, where
�

is the
number of documents or records. Since
this does not depend on the size of the
vocabulary under analysis, it is possible
to compute correlations between all the
words in a corpus.

1 Introduction

In order to find relationships between words in a
large corpus or between labels in a large database,
we may use a distance measure between the binary
vectors of

�
dimensions, where

�
is the number of

documents or records, and the � th element is 1 if the
� th document/record contains the word or the label,
or 0 otherwise.

There are several distance measures suitable
for this purpose, such as the mutual informa-
tion(Church and Hanks, 1990), the dice coeffi-
cient(Manning and Schueutze 8.5, 1999), the phi
coefficient(Manning and Schuetze 5.3.3, 1999), the
cosine measure(Manning and Schueutze 8.5, 1999)

and the confidence(Arrawal and Srikant, 1995).
There are also special functions for certain applica-
tions, such as then complimentary similarity mea-
sure (CSM)(Hagita and Sawaki, 1995) which is
known as to be suitable for cases with a noisy pat-
tern.

All of these five measures can be obtained from a
simple contingency table. This table has four num-
bers for each word/label � and word/label � . The
first number is the number of documents/records
that have both � and � . We define this number as����� � ����� � . The second number is the number of doc-
uments/records that have � but not � . We define this
number as

����� � ����� � . The third number is the num-
ber of documents/records that do not have � but do
have � . We define this number as

����� � ����� � . The
fourth and the last number is the number of docu-
ments/records that have neither � nor � . We define
this number as

���� � ����� � .
An obvious method to obtain the most highly re-

lated pairs is to calculate
���!�

,
�����

,
�����

,
����

for all
pairs of words/labels, compute the similarity for all
pairs and then select pairs of the highest values. Let"

be the number of possible words/labels, and
�

be the total number of documents/records in a cor-
pus/database. This method requires

��� "�# �
memory

space and
��� " #$�����

computation time. However,
its use is only feasible if

"
is smaller than %'&!(. When"

is larger than ten thousand, execution of this pro-
cedure becomes difficult.

The method described here is based on the obser-
vation that there is an upper boundary to the number
of different words in one document. The assumption
of such a boundary could even made of a large scale

corpus. For example, a collective corpus of a news-
paper may become larger and larger, but the length
of each article is stable. It is not likely that one arti-
cle would contain thousands of different words.

In view of this observation and the assumption,
this method is effective for obtaining the most highly
correlated pairs in a large corpus, and uses

�������
memory space, and

����� � �
	�� �������
computation

time.

2 Notations

Several notations are introduced in this section to de-
scribe the method. Assuming a corpus C, which is a
set of sets of words, values are assigned as follows.� � : documents (elements of the corpus).

�����
� � , � , � : label (elements of a document).

� � � ��� � � ��� � �
� �	� � : � is placed after � in the alphabetical

order.

� � : the total number of documents.
��
� � �

� ��� � � � : the number of documents that contain
� . ��� � � ��
��� � � � � ��� �

� ����� � ����� � : the number of documents that con-
tain � and contain � .

����� � � ��� ��
���� � � � � ��� � � ��� �
� ����� � ����� � : the number of documents that con-

tain � but not � .
����� � � ��� ��
��� � � � � ��� ���� ��� �

� ����� � ����� � : the number of documents that con-
tains � but not � .

����� � � ��� ��
��� � � ���� ��� � � ��� �
� ���� � ����� � : the number of documents that cone-

tain neither � nor � .
���� � ����� ��
��� � � ���� ��� ���� ��� �

3 Problem Definition

When the corpus of a set of sets of labels is provided,
and the function �! " � ����� � of a pair of labels to the
number in the following form is also provided, we
will obtain " : the set of pairs of a given size that
satisfies the following condition.

� � # ��� # � �� "%$ # � �'& ���(& � � "%$)� � �'&'���(& �+* � � � # ��� # �
where

� � ����� �
 � � ��� � � ����� � � ����� � ����� � � ��� � � ����� � � ���� � � ��� ���

The following are examples of
� �-, �/. ��0 � � � .

� cosine function ,1 �-,�2 . � � �-,�2 0 �
� dice coefficient 3

�4,
�-,52 . �62 �-,52 0 �

� confidence ,,�2 0
� pairwise mutual information

,
� � � 	�� , � �

�-,�2 . � � �-,�2 0 �
� phi coefficient

, � �87 . � 01 �-,�2 . � � �-,�2 0 � � � . 2 � � � � 0 2 � �

� complementary similarity measure

, � �87 . � 01 �-,�2 0 � � � . 2 � ���

Implementation of a program that requires � � "�#
memory space and � � " # � �

computation time
is easy. A program of this type could be used to
calculate

�����
,
�����

,
�����

, and
����

for all pairs of � and
� , and could then provide the most highly correlated
pairs. However, compuation with this method is not
feasible when

"
is large.

For example, in order to calculate the most highly
correlated words within a newspaper over several
years of publication,

"
becomes roughly %'&�� , and

�
becomes %'&�� . The amount of computation time is
then increased to %'& & � .
4 Approach

In terms of the actual data, the number of correlated
pairs is usually much smaller than the number of un-
correlated pairs. Moreover, most of the uncorrelated
pairs usually satisfy the condition:

���!� � ����� �
 & ,
and are not of interest. This method takes this fact
into account. Moreover, it also uses the relationship
between

� � � ������� and
� ��� � ����� � ����� � ���� � to make the

computation feasible.

5 Relationship between ���	��
� ��� and��
����
� � ��
� � ��
� �
Proofs of the following equations are provided be-
low.

��� � � �
 ����� � ����� ������ � � ��� �
 ����� � ����� � 7 ����� � ����� ���� � � � ��� �
 ��� � � � ��� � 7 ��� �!� ����� ����� � � ��� �
 � 7 ����� � � ��� � 7 ����� � � ��� �'2 ����� � ����� �

Proof:

1. " � " is equivalent to " .

����� � ����� �
 � � � � � � � � � � ��� �
 � � � � � � ��� �
 ��� � � �

2. By definition, the sum of
�����

,
�����

,�����
, and

����
always represents the to-

tal number of documents.

����� � � ��� � 2 ����� � ����� �2 ����� � ����� �'2 ���� � ����� �
 �

3. Similarly, the sum of
����� � ����� � and����� � ����� � is the number of documents

that contain � . This equals
��� � � � .

����� � � ��� � 2 ����� � ����� �
 � � � � � � ��� � � ��� �2� � � � � � ��� ���� ��� �
 � � � � � � ��� �
 ��� � � �

4. Similarly, the sum of
����� � ����� � and����� � ����� � is the number of documents

that contain � . This equals
��� � � � .

��� � ����� �'2 ����� � ����� �
 � � � � � � ��� � � ��� �2� � � � � �� ��� � � ��� �
 � � � � � � ��� �
 ��� � � �

5. These four equations make it possi-
ble to express

���
,
�����

,
�����

and
����

by��� �
and

�
.

These formulas indicate that the number of re-
quired two-dimensional tables is not four, but just
one. In other words, if we create a table of

��� � � ����� �
and one variable for

�
, we can obtain

��� � � � ,����� � � ��� � , ����� � ����� � , and
���� � � ��� � .

6 The memory requirement for
� �
Let � be the maximum number of different
words/labels in one document. The following prop-
erty exists in

����� � ����� � .������� ����� � � ��� ��� � # � �

The left side of the formula equals the
total number of all pairs of words/labels.
This cannot exceed � # � � .

This relationship indicates that if the table
is stored using tuples of

� ����� � ����� � ����� ��� where��� � � ����� ��� & , the required memory space is
�������

.
Tuples where

����� � ����� �
 & are not necessary be-
cause we know that

����� � � ��� �
 & when the tuple
for

� � ��� � ����� � ����� ��� does not exist in memory.
This estimation is pessimistic. The actual size of

the tuples will be smaller than � # � � , since not all
documents will have � different words/labels.

7 Obtaining
� � , and �
The algorithm to obtain

���!� � ����� � , and
�

is straight-
forward. First, the corpus must be trasformed into a
set of sets of words/labels. Since this is a set form,
there are no duplications of the words/labels of one
document. In the following program, the hashtable
returns 0 for a non-existent item.

(01) Let DFA be empty hashtable.
(02) Let DF be empty hashtable
(03) Let N be 0

(04) For each document, assign it to D
(05) | N = N + 1
(06) | For each word in D
(07) | assign the word to X
(08) | | For each word in D
(09) | | assign the word to Y
(10) | | | DFA(X, Y)=DFA(X,Y)+1
(11) | | end of loop
(12) | end of loop
(13) end of loop

The computation time for this program is less than� # � � . Since � is independent from
�

, the compu-
tation time is

�������
. Again, � # � � is a pessimistic

estimation, since not all documents will have � dif-
ferent words/labels.

8 Selecting Pairs

Even though
��� �

,
�����

,
��� �

, and
��� �

can be obtained
in constant time after

�������
preprocessing, there are" #

values to consider to obtain the best N correlated
pairs. Fortunately, many of the functions that are
usable as indicators of correlation and, at least, all
five functions, return a lower value than the known
threshold if

����� � ����� ��
 & .

The cosine measure, the dice coefficient, and pair-
wise mutual information have property 1 and prop-
erty 2 as defined below. This implies that the value
for

� ����� � where
����� � � ��� �
 & is actually the mini-

mum value of all
� ����� � . Therefore, the first part of

the total ordered sequence of
� ����� � is the sorted list

of
� ����� � where

��� � � ��� ��� & . The rest is an arbitary
order of pairs where

��� � ����� ��
 & .

Property 1: the value is not negative.

Property 2: when
����� � ����� ��
 & , the value is & .

The phi coefficient and the complementary simi-
larity measure have the following properties 1, 2 and
3. Therefore, the first part of the total ordered se-
quence where the value is positive, is equal to first
part of the sorted list where

��� � ����� ��� & and the
value is positive. Moreover, this list contains all
pairs that have a positive correlation. This list is long
enough for the actual application.

Property 1: when
��� �!� ����� �+
 & , the value is nega-

tive.

Property 2: when � and � are not correlated, the
estimated value is & .

Property 3: when � and � tend to appear at the
same time, the estimated value is positive.

It should be recalled that the number of pairs
where

��� �!� � ��� ��� & is less than � # ��� . The sorted
list is obtained in

��� � # � � � � 	�� � � # � �����
com-

putation time, where � is the maximum number of
different words/labels in one document. Since � is
constant, it becomes

����� � �
	�� �������
, even if the

size ofvocabulary is very large.
It is true that for the given some fixed vocabu-

lary of size
"
, � # � � might be larger than

" #
as we

increase the size of corpus. Fortunately, the actual
memory consumption of this procedure also have
the upper bound of

��� " # �
, and we will not loose

any memory space. When
"

is not fixed and
"

may
become very large compare to

�
as is the case for

proper nouns, � # � � is smaller than
" #

.

9 Case study of a Newspaper Corpus

The computation time of the baseline system is" # � �
where

"
is the distinct number of labels in the

�
time(sec.) speed(sec./doc)

1000 2.4

3
� � � %'& � �

3000 7.8

3
��� � %'& � �

10000 21.1

3
� % � %'& � �

30000 60.9

3
� & � %'& � �

Table 1: The actual execution time shows a linear
relationship to the size of input data.

corpus. When we analyzed labels of names of places
in a newspaper over the course of one year, this cor-
pus consisted of about 60,000 documents. The place
names totalled 1902 after morphological analysis.
The maximum number of names in one document
was 142, and the average in one document was 4.02.
In this case, the method described here, was much
more efficient than the baseline system.

Table 1 shows the actual execution time of the
program in the appendix, changing the length of the
corpus. This program computes similarity values for
all pairs of words where

����� � & . It indicates that
the execution time is linear.

Our observation shows that even if the corpus
were extended year by year, � which is the maxi-
mum number of different words in one document is
stable, even though the total number of words would
increase with the ongoing addition of proper nouns
and new concepts.

10 For a large corpus

Although the program in the appendix cannot be ap-
plied to a corpus larger than memory size, we can
obtain a table of

�����
using sequential access to file.

The program in the appendix stores every pair in
memory. The space requirement of � # � �

may
seem too great to hold in memory. However, se-
quential file can be used to obtain the

��� �
table, as

follows. Although the computation time for
��� �

is����� � �
	�� �������
rather than

�������
, the total compu-

tation time remains the same because computation
of
����� � �
	�� �������

is required to select pairs in both
cases.

Consider the following data. Each line corre-
sponds to one document.
a b
a c
x y
x

x y z
a b c

When the pairs of words in each document are
recorded, the following file is obtained. Note that
since

��� �!� ����� ��
 ��� � � � ��� � , it is not necessary to
record pairs where � � � . This reduces the memory
requirement.

a a
a b
b b
a a
a c
c c
x x
x y
y y
x x
x x
x y
x z
y y
y z
z z
a a
a b
a c
b b
b c
c c

Using the merge sort algorithm which can sort a
large file using sequential access only, the file can
be sorted in

����� � �
	���������
computation time. Af-

ter sorting in alphabetical order, same pairs come
together. Then, the pairs can be counted with se-
quential access, thereby providing the

���!�
table. An

example of this table fllows:

a a 3
a b 2
a c 2
b b 2
b c 1
c c 2
x x 3
x y 2
x z 1
y y 2
y z 1
z z 1

It should be noted that the
���

table can be obtained
easily by extracting lines in which letter of the first
column and that of the second column are the same,
since

��� � � ��
 ����� � ����� � . The
���

table can usually be
stored in memory since it is a one dimensional array.
After storing

���
in memory, similarity can be com-

puted line by line. The following example uses the

phi coefficient. The first column is the coefficient,
followed by

�����
,
�����

,
�����

,
����

, � and � . Since the phi
coefficient is reflective, the

� � ��� � value where � � �
is not required. When the function is not symmetric,� ����� � and

� ����� � ��� � � can be exchanged at the same
time.

0.544705 3 0 0 3 a a
0.384900 2 1 0 3 a b
0.384900 2 1 0 3 a c
0.624695 2 0 0 4 b b
0.156174 1 1 1 3 b c
0.624695 2 0 0 4 c c
0.544705 3 0 0 3 x x
0.384900 2 1 0 3 x y
0.242536 1 2 0 3 x z
0.624695 2 0 0 4 y y
0.392232 1 1 0 4 y z
0.674200 1 0 0 5 z z

The ordered list can be obtained by sorting this
table with the first column. This example shows that
pairs where

����� � ����� �
 & , such as
��� ��� � or

��� ��� � ,
do not add any overhead to either memory or com-
putation time.

11 Comparison with Apriori

There is a well known algorithm for forming a list of
related items termed Apriori(Arrawal and Srikant,
1995). Apriori lists all relationship using confi-
dence, where

����� � ����� � is larger than a specified
value. Using Apriori, the

���!�
threshold can be spec-

ified in order to reduce computation, whereas with
the proposed method, there is no way to adjust this
threshold. This implies that Apriori may be faster
than our algorithm in terms of confidence. However,
since Apriori uses the property of confidence to re-
duce computation, it cannot be used for other func-
tions, unlike the proposed method which can employ
many standard functions, at least the five measures
used here including confidence.

12 Correlation of All Substrings

When computing correlations of all substrings in a
corpus,

"
can be as large as

� � ��� 7 % ���
3
. Since the

memory space requirement and computation time
does not depend on

"
, this method can be used to

generate a list of the most hightly correlated sub-
strings of any length. In fact, in some cases, � may
be too large to compute.

The Yamamoto-Church method(Yamamoto and
Church, 2001) allows for the creation of a

��� � � � ta-

ble using
�������

memory space and
����� � � 	�� �������

computation time, where � represents all substrings
in a given corpus. Yamamoto’s method shows that
although there may be

� � ��� 7 % ���
3

kinds of
substrings in a corpus, there is

3
� �

occurence
patterns (or sets of substrings which have same oc-
curence pattern) at most. The computational cost
is greatly reduced if we deal with each pattern in-
stead of each substring. Although the order of com-
putional complexity does not depend on

"
, � differs

whether the pattern is used or not. We have also de-
veloped a system using the pattern which actually re-
duces the cost of computation. Although the number
of � is still problematic even using the Yamamoto-
Church method, and although the computation cost
is much larger than using words, the program runs
much faster than the simple method.

13 Conclusion

This paper describes a method for selecting cor-
related pairs in

�������
memory space and

����� �
�
	�� �������

computation time, where
�

is the num-
ber of documents in a corpus, provided that there
is an upper boundary in the number of different
words/labels in one document/record. We have ob-
served that a corpus usually has this kind of upper
boundary, and have shown that we can uses a se-
quential file for most of our memory requirements.
This method is useful not only for confidence but
also for other functions whose values are decided by��� �

,
�����

,
��� �

,
����

. Examples of these functions are
mutual information, the dice coefficient, the confi-
dence measure, the phi coefficient and the compli-
mentary similarity measure.

References
K. W. Church and P. Hanks 1990 Word association

norms, mutual information and lexicography Compu-
tational Linguistics, 16(1):22–29

R. Agrawal and R. Srikant 1995 Mining of association
rules between sets of items in large databases. In Pro-
ceedings of the ACM SIGMOD Conference on Man-
agement of Data:94–105

N. Hagita and M. Sawaki: 1995 Robust recognition
of degraded machine-printedcharacters using com-
plimentary similarity measure and error-correction
learning Proceedings of the SPIE - The International
Society for Optical Engineering 2442:234–244

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth The
KDD Process for Extracting Useful Knowledge from
Volumes of Data Communications of the ACM,
39(11):27–34,

Christopher D. Manning and Hinrich Schuetze, 1999
Chapter 8.5, Semantic Similarity Foundations of
statistical natural language processing:294–303, The
MIT Press

Christopher D. Manning and Hinrich Schuetze, 1999
Chapter 5.3.3, Pearson’s chi-square test Founda-
tions of statistical natural language processing:169–
172, The MIT Press

Mikio Yamamoto and Kenneth W. Church 2001 Using
Suffix Arrrays to Compute Term Frequency and Docu-
ment Frequency for All Substring in a Corpus Com-
putational Linguistics, 27(1):1–30, The MIT Press.

Appendix

Sample of DATA

1992.01.01.00000043 Takarazuka Tokyo
1992.01.01.00000046 Okinawa Yatushiro
1992.01.01.00000048 Hiroshima Kurihara Onomichi Yokohama
1992.01.01.00000049 Tokyo
1992.01.01.00000050 Ichihara Tokyo
1992.01.01.00000051 Aizuwakamatu Fukushima Tokyo
1992.01.01.00000056 Matumoto Sahara Utsunomiya
1992.01.01.00000065 Tokyo
1992.01.01.00000066 Aomori Shimokita

Sample Program(csm.awk)
1 # Definition of similarity -
2 # Complimentary Similarity Measure.
3 function f(a, b, c, d) {
4 return (a * d - b * c) / sqrt((a + c) * (b + d));
5 }
6 # For each line, count up both df(x) and dfa(x, y).
7 { for(i=2; i<= NF; i++) {
8 df[$i]++;
9 for(j=i;j<= NF; j++) {

10 dfa[$i, $j]++;
11 }
12 }
13 }
14 # For all (x, y) where dfa(x, y)<>0, get the value.
15 END{
16 for(k in dfa) {
17 split(k, x, SUBSEP);
18 if(x[1] != x[2]) {
19 a = dfa[k];
20 b = df[x[1]] - a;
21 c = df[x[2]] - a;
22 d = NR - a - b - c;
23 r = f(a, b, c, d);
24 printf("%10.6f\t%s\t%s\n",
25 r, x[1], x[2]);
26 r = f(a, c, b, d);
27 printf("%10.6f\t%s\t%s\n",
28 r, x[2], x[1]);
29 }
30 }
31 }

Usage:
$ awk -f csm.awk < mai.txt | sort -nr | head -20

	Table of Content
	Workshops
	Authors

