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Abstract

This paper separates conditional parameter estima-
tion, which consistently raises test set accuracy on
statistical NLP tasks, from conditional model struc-
tures, such as the conditional Markov model used
for maximum-entropy tagging, which tend to lower
accuracy. Error analysis on part-of-speech tagging
shows that the actual tagging errors made by the
conditionally structured model derive not only from
label bias, but also from other ways in which the in-
dependence assumptions of the conditional model
structure are unsuited to linguistic sequences. The
paper presents new word-sense disambiguation and
POS tagging experiments, and integrates apparently
conflicting reports from other recent work.

1 Introduction

The success and widespread adoption of probabilis-
tic models in NLP has led to numerous variant meth-
ods for any given task, and it can be difficult to tell
what aspects of a system have led to its relative suc-
cesses or failures. As an example, maximum en-
tropy taggers have achieved very good performance
(Ratnaparkhi, 1998; Toutanova and Manning, 2000;
Lafferty et al., 2001), but almost identical perfor-
mance has also come from finely tuned HMM mod-
els (Brants, 2000; Thede and Harper, 1999). Are any
performance gains due to the sequence model used,
the maximum entropy approach to parameter estima-
tion, or the features employed by the system?

Recent experiments have given conflicting recom-
mendations. Johnson (2001) finds that a condition-
ally trained PCFG marginally outperforms a standard
jointly trained PCFG, but that a conditional shift-
reduce model performs worse than a joint formu-
lation. Lafferty et al. (2001) suggest on abstract
grounds that conditional models will suffer from a
phenomenon called label bias (Bottou, 1991) – see
section 3 – but is this a significant effect for real NLP

problems?

We suggest that the results in the literature, along
with the new results we present in this work, can be
explained by the following generalizations:

• The ability to include better features in a well-
founded fashion leads to better performance.

• For fixed features, assumptions implicit in the
model structure have a large impact on errors.

• Maximizing the objective being evaluated has a re-
liably positive, but often small, effect.

It is especially important to study these issues us-
ing NLP data sets: NLP tasks are marked by their
complexity and sparsity, and, as we show, conclu-
sions imported from the machine-learning literature
do not always hold in these characteristic contexts.

In previous work, the structure of a model and
the method of parameter estimation were often both
changed simultaneously (for reasons of naturalness
or computational ease), but in this paper we seek to
tease apart the separate effects of these two factors.
In section 2, we take the Naive-Bayes model, ap-
plied to word-sense disambiguation (WSD), and train
it to maximize various objective functions. Our ex-
periments reaffirm that discriminative objectives like
conditional likelihood improve test-set accuracy. In
section 3, we examine two different model structures
for part-of-speech (POS) tagging. There, we ana-
lyze how assumptions latent in conditional structures
lower tagging accuracy and produce strange quali-
tative behaviors. Finally, we discuss related recent
findings by other researchers.

2 Objective Functions: Naive-Bayes

For bag-of-words WSD, we have a corpus D of la-
beled examples (s, o). Each o = 〈oi 〉 is a list of con-
text words, and the corresponding s is the correct
sense of a fixed target word occuring in that context.
A particular model for this task is the familiar multi-
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nomial Naive-Bayes (NB) model (Gale et al., 1992;
McCallum and Nigam, 1998), where we assume con-
ditional independence between each of the oi . This
NB model gives a joint distribution over the s and 〈oi 〉

variables:

P(s, o) = P(s)
∏

i
P(oi |s)

It also implicitly makes conditional predictions:

P(s|o) = P(s, o)/
∑

s′
P(s′, o)

In NLP, NB models are typically used in this latter
way to make conditional decisions, such as chosing
the most likely word sense.1

The parameters 2 = 〈θs; θo|s〉 for this model are
the sense priors P(s) and the sense-conditional word
distributions P(o|s). These are typically set using
(smoothed) relative frequency estimators (RFEs):

θs = P(s) = count(s)/|D|

θo|s = P(o|s) = count(s, o)/
∑

o′
count(s, o′)

These intuitive relative frequency estimators are the
estimates for 2 which maximize the joint likelihood
(JL) of D according to the NB model:

J L(2, D) =
∏

(s,o)∈D
P(s, o)

A NB model which has been trained to maximize JL

will be referred to as NB-JL. It is worth emphasiz-
ing that, in NLP applications, the model is typically
trained jointly, then used for its P(s|o) predictions.

We can set the parameters in other ways, without
changing our model. If we are doing classification,
we may not care about JL. Rather, we will want to
minimize whatever kinds of errors we get charged
for. The JL objective is the evaluation criterion for
language modeling, but a decision process’ evalua-
tion is more naturally phrased in terms of P(s|o). If
we want to maximize the probability assigned to the
correct labeling of the corpus, the appropriate objec-
tive is conditional likelihood (CL):

C L(2, D) =
∏

(s,o)∈D
P(s|o)

This focuses on the sense predictions, not the words,
which is what we cared about in the first place.

Figure 1 shows an example of the trade-offs be-
tween JL and CL. Assume there are two classes (1
and 2), two words (a and b), and only 2-word con-
texts. Assume the actual distribution (training and
test) is 3 each of (1, ab) and (1, ba) and one (2, aa)

1A possible use for the joint predictions would be a topic-
conditional unigram language model.

P(s, o) P(s|o) Correct?
s o Counts Actual NB-JL NB-CL Actual NB-JL NB-CL NB-JL NB-CL

1 aa 0 0 3/14 ε/4 0 3/5 ε/4
1 ab 3 3/7 3/14 ε/4 1 1 1 + +
1 ba 3 3/7 3/14 ε/4 1 1 1 + +
1 bb 0 0 3/14 ε/4 0 1 1
2 aa 1 1/7 1/7 1 − ε 1 2/5 1 − ε/4 - +
2 ab 0 0 0 0 0 0 0
2 ba 0 0 0 0 0 0 0
2 bb 0 0 0 0 0 0 0
Limit log prod. -0.44 -0.69 -∞ 0.00 -0.05 0.00

Accuracy 6/7 7/7

Model P(1) P(2) P(a|1) P(b|1) P(a|2) P(b|2)

NB-JL 6/7 1/7 1/2 1/2 1 0
NB-CL ε 1-ε 1/2 1/2 1 0

Figure 1: Example of joint vs. conditional estimation.

for 7 samples. Then, as shown in figure 1, the JL-
maximizing NB model has priors of 6/7 and 1/7, like
the data. The actual (joint) distribution is not in the
family of NB models, and so it cannot be learned per-
fectly. Still, the NB-JL assigns reasonable probabili-
ties to all occurring events. However, its priors cause
it to incorrectly predict that aa belongs to class 1. On
the other hand, maximizing CL will push the prior for
sense 1 arbitrarily close to zero. As a result, its con-
ditional predictions become more accurate at the cost
of its joint prediction. NB-CL joint prediction assigns
vanishing mass to events other than (2, aa), and so its
joint likelihood score gets arbitrarily bad.

There are other objectives (or loss functions). In
the SENSEVAL competition (Kilgarriff, 1998), we
guess sense distributions, and our score is the sum
of the masses assigned to the correct senses. This
objective is the sum of conditional likelihoods (SCL):

SC L(2, D) =
∑

(s,o)∈D
P(s|o)

SCL is less appropriate that CL when the model is
used as a step in a probabilistic process, rather than
in isolation. CL is more appropriate for filter pro-
cesses, because it highly punishes assigning zero or
near-zero probabilities to observed outcomes.

If we choose single senses and receive a score of
either 1 or 0 on an instance, then we have 0/1-loss
(Friedman, 1997). This gives the “number correct”
and so we refer to the corresponding objective as ac-
curacy (Acc):

Acc(2, D) =
∑

(s,o)∈D
δ(s = arg maxs′ P(s′|o))

In the following experiments, we illustrate that, for
a fixed model structure, it is advantageous to max-
imize objective functions which are similar to the
evaluation criteria. Although in principle we can op-
timize any of the objectives above, in practice some
are harder to optimize than others. As stated above,
JL is trivial to maximize with a NB model. CL and



SCL, since they are continuous in 2, can be opti-
mized by gradient methods. Acc is not continuous
in 2 and is unsuited to direct optimization (indeed,
finding an optimum is NP-complete).

When optimizing an arbitrary function of 2, we
have to make sure that our probabilities remain well-
formed. If we want to have a well-formed joint NB in-
terpretation, we must have non-negative parameters
and the inequalities ∀s

∑
o θo|s ≤ 1 and

∑
s θs ≤ 1.

If we want to be guaranteed a non-deficient joint in-
terpretation, we can require equality. However, if we
relax the equality then we have a larger feasible space
which may give better values of our objective.

We performed the following WSD experiments
with Naive-Bayes models. We took as data the col-
lection of SENSEVAL-2 English lexical sample WSD

corpora.2 We set the NB model parameters in several
ways. We optimized JL (using the RFEs).3 We also
optimized SCL and (the log of) CL, using a conju-
gate gradient (CG) method (Press et al., 1988).4 For
CL and SCL, we optimized each objective both over
the space of all distributions and over the subspace
of non-deficient models (giving CL∗ and SCL∗). Acc
was not directly optimized.

Unconstrained CL corresponds exactly to a condi-
tional maximum entropy model (Berger et al., 1996;
Lafferty et al., 2001). This particular case, where
there are multiple explanatory variables and a sin-
gle categorical response variable, is also precisely
the well-studied statistical model of (multinomial)
logistic regression (Agresti, 1990). Its optimization
problem is concave (over log parameters) and there-
fore has a unique global maximum. For CL∗, SCL,
and SCL∗, we are only guaranteed local optima, but
in practice we detected no maxima which were not

2http://www.sle.sharp.co.uk/senseval2/
3Smoothing is an important factor for this task. So that the

various estimates would be smoothed as similarly as possible,
we smoothed implicitly, by adding smoothing data. We added
one instance of each class occurring with the bag containing
each vocabulary word once. This gave the same result as add-
one smoothing on the RFEs for NB-JL, and ensured that NB-
CL would not assign zero conditional probability to any unseen
event. The smoothing data did not, however, result in smoothed
estimates for SCL; any conditional probability will sum to one
over the smoothing instances. For this objective, we added a
penalty term proportional to

∑
θ2, which ensured that no con-

ditional sense probabilities reached 0 or 1.
4All optimization was done using conjugate gradient as-

cent over log parameters λi = log θi , rather than the given
parameters due to sensitivity near zero and improved quality
of quadratic approximations during optimization. Linear con-
straints over θ are not linear in log space, and were enforced
using a quadratic Lagrange penalty method (Bertsekas, 1995).

TRAINING SET
Optimization Acc MacroAcc log J L log C L SCL

NB-JL 86.8 86.2 -22969684.7 -243184.1 4505.9
NB-CL* 98.5 96.2 -23366291.2 -973.0 5101.2
NB-CL 98.5 96.2 -23431010.0 -854.1 5115.1
NB-SCL* 94.2 93.7 -23054768.6 -226187.8 4884.4
NB-SCL 97.3 95.5 -23146735.3 -220145.0 5055.8

TEST SET
Optimization Acc MacroAcc log J L log C L SCL

NB-JL 73.6 55.0 -1816757.1 -55251.5 3695.4
NB-CL* 72.3 53.4 -1954977.1 -19854.1 3566.3
NB-CL 76.2 56.5 -1964498.5 -20498.7 3798.8
NB-SCL* 74.8 57.2 -1841305.0 -43027.8 3754.1
NB-SCL 77.5 59.7 -1872533.0 -33249.7 3890.8

Figure 2: Scores for the NB model trained according to vari-
ous objectives. Scores are usually higher on both training and
test sets for the objective maximized, and discriminative criteria
lead to better test-set accuracy. The best scores are in bold.

global over the feasible region.
Figure 2 shows, for each objective maximized, the

values of all objectives on both the training and test
set. Optimizing for a given objective generally gave
the best score for that objective for both the training
set and the test set. The exception is NB-SCL and NB-
SCL* which have lower SCL score than NB-CL and
NB-CL*. This is due to the penalty used for smooth-
ing the summed models (see fn. 3).

Accuracy is higher when optimizing the discrim-
inative objectives, CL and SCL, than when optimiz-
ing JL (including for macro-averaging, where each
word’s contribution to average accuracy is made
equal). That these estimates beat NB-JL on accu-
racy is unsurprising, since Acc is a discretization of
conditional predictions, not joint ones. This sup-
ports the claim that maximizing conditional likeli-
hood, or other discriminative objectives, improves
test set accuracy for realistic NLP tasks. NB-SCL,
though harder to maximize in general, gives better
test-set accuracy than NB-CL.5 NB-CL* is some-
where between JL and CL for all objectives on the
training data. Its behavior shows that the change
from a standard NB approach (NB-JL) to a maximum
entropy classifier (NB-CL) can be broken into two as-
pects: a change in objective and an abandonment of
a non-deficiency constraint.6 Note that the JL score
for NB-CL*, is not very much lower than for NB-JL,
despite a large change in CL.

It would be too strong to state that maximizing CL

5This difference seems to be partially due to the different
smoothing methods used: Chen and Rosenfeld (1999) show
that quadratic penalties are very effective in practice, while the
smoothing-data method is quite crude.

6If one is only interested in the model’s conditional predic-
tions, there is no reason to disprefer deficient joint models.
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Figure 3: Conditional NB has higher accuracy than joint NB for
WSD on most SENSEVAL-2 word sets. The relative improve-
ment gained by switching to conditional estimation is positively
correlated to training set size.

(in particular) and discriminative objectives (in gen-
eral) is always better than maximizing JL for improv-
ing test-set accuracy. Even on the present task, CL

strictly beat JL in accuracy for only 15 of 24 words.
Figure 3 shows a plot of the relative accuracy for CL:
(AccCL − AccJL)/AccJL. The x-axis is the average
number of training instances per sense, weighted by
the frequency of that sense in the test data. There
is a clear trend that larger training sets saw a larger
benefit from using NB-CL. The scatter in this trend
is partially due to the wide range in data set condi-
tions. The data sets exhibit an unusual amount of
drift between training and test distributions. For ex-
ample, the test data for amaze consists entirely of
70 instances of the less frequent of its two training
senses, and represents the highest point on this graph,
with NB-CL having a relative accuracy increase of
28%. This drift between the training and test cor-
pora generally favors conditional estimates. On the
other hand, many of these data sets are very small,
individually, and 6 of the 7 sets where NB-JL wins
are among the 8 smallest, 4 of them in fact being the
4 smallest. Ng and Jordan (2002) show that, between
NB-JL and NB-CL, the discriminative NB-CL should,
in principle, have a lower asymptotic error, but the
generative NB-JL should perform better in low-data
situations. They argue that unless one has a relatively
large data set, one is in fact likely to be better off
with the generative estimate. Their claim seems too
strong here; even smaller data sets often show benefit
to accuracy from CL estimation, although all would
qualify as small on their scale.

Since the number of senses and skew towards
common senses is so varied between SENSEVAL-2
words, we turned to larger data sets to test the ef-
fective “break-even” size for WSD data, using the
hard and line data from Leacock et al. (1998). Fig-
ure 4 shows the accuracy of NB-CL and NB-JL as the
amount of training data increases. Conditional beats
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Figure 4: Conditional NB is better than Joint NB for WSD given
all but possibly the smallest training sets, and the advantage in-
creases with training set size. (a) “line” (b) “hard”

joint for all but the smallest training sizes, and the im-
provement is greater with larger training sets. Only
for the line data does the conditional model ever drop
below the joint model.

For this task, then, NB-CL is performing better
than expected. This appears to be due to two ways in
which CL estimation is suited to linguistic data. First,
the Ng and Jordan results do not involve smoothed
data. Their data sets do not require it like linguistic
data does, and smoothing largely prevents the low-
data overfitting that can plague conditional models.

There is another, more interesting reason why con-
ditional estimation for this model might work better
for an NLP task like WSD than for a general machine
learning task. One signature difficulty in NLP is that
the data contains a great many rare observations. In
the case of WSD, the issue is in telling the kinds of
rare events apart. Consider a word w which occurs
only once, with a sense s. In the joint model, smooth-
ing ensures that w does not signal s too strongly.
However, every w which occurs only once with s will
receive the same P(w|s). Ideally, we would want to
be able to tell the accidental singletons from true in-
dicator words. The conditional model implicitly does
this to a certain extent. If w occurs with s in an ex-
ample where other good indicator words are present,
then those other words’ large weights will explain the
occurrence of s, and without w having to have a large
weight, its expected count with s in that instance will
approach 1. On the other hand, if no trigger words
occur in that instance, there will be no other expla-
nation for s other than the presence of w and the
other non-indicative words. Therefore, w’s weight,
and the other words’, will grow until s is predicted
sufficiently strongly.

As a concrete illustration, we isolated two senses
of “line” into a two-sense data set. Sense 1 was “a
queue” and sense 2 was “a phone line.” In this cor-
pus, the words transatlantic and flowers both occur
only once, and only with the “phone” sense (plus



once with each in the smoothing data). However,
transatlantic occurs in the instance thanks, anyway,
the transatlantic line 2 died. , while flowers occurs
in the longer instance . . . phones with more than one
line 2, plush robes, exotic flowers, and complimen-
tary wine. In the first instance, the only non-singleton
content word is died which occurs once with sense 1
and twice with sense 2. However, in the other case,
phone occurs 191 times with sense 2 and only 4 times
with sense 1. Additionally, there are more words in
the second instance with which flowers can share the
burden of increasing its expectation. Experimentally,

PJL(flowers|2)

PJL(flowers|1)
=

PJL(transatlantic|2)

PJL(transatlantic|1)
= 2

while with conditional estimation,
PCL(flowers|2)

PCL(flowers|1)
= 2.05

PCL(transatlantic|2)

PCL(transatlantic|1)
= 3.74

With joint estimation, both words signal sense 2 with
equal strength. With conditional estimation, the pre-
sense of words like phone cause flowers to indicate
sense 2 less strongly that transatlantic. Given that
the conditional estimation is implicitly differentially
weighting rare events in a plausibly way, it is perhaps
unsurprising that a task like WSD would see the ben-
efits on smaller corpus sizes than would be expected
on standard machine-learning data sets.7

These trends are reliable, but sometimes small. In
practice, one must decide if, for example, a 5% error
reduction is worth the added work: CG optimization,
especially with constraints, is considerably harder to
implement than simple RFE estimates for JL. It is also
considerably slower: the total training time for the
entire SENSEVAL-2 corpus was less than 3 seconds
for NB-JL, but two hours for NB-CL.

3 Model Structure: HMMs and CMMs

We now consider sequence data, with POS tagging as
a concrete NLP example. In the previous section, we
had a single model, but several ways of estimating
parameters. In this section, we have two different
model structures.

First is the classic hidden Markov model (HMM),
shown in figure 6a. For an instance (s, o), where

7Interestingly, the common approach of discarding low-
count events (for both training speed and overfitting reasons)
when estimating the conditional models used in maxent taggers
robs the system of the opportunity to exploit this effect of con-
ditional estimation.

Model
Objective HMM MEMM MEMM†

JL 91.23 89.22 90.44
CL∗ 91.41 89.22 90.44
CL 91.44 89.22 90.44

Figure 5: Tagging accuracy: For a fixed model, conditional
estimation is slightly advantageous. For a fixed objective, the
MEMM is inferior, though it can be improved by unobserving
unambiguous words.

o = 〈oi 〉 is a word sequence and s = 〈si 〉 is a tag
sequence, we write the following (joint) model:

P(s, o) = P(s)P(o|s) =
∏

i
P(si |si−1)P(oi |si)

where we use a start state s0 to simplify notation.
The parameters of this model are the transition and

emission probabilities. Again, we can set these pa-
rameters to maximize JL, as is typical, or we can set
them to maximize other objectives, without chang-
ing the model structure. If we maximize CL, we get
(possibly deficient) HMMs which are instances of the
conditional random fields of Lafferty et al. (2001).8

Figure 5 shows the tagging accuracy of an HMM

trained to maximize each objective. JL is the standard
HMM. CL duplicates the simple CRFs in (Lafferty
et al., 2001). CL∗ is again an intermediate, where
we optimized conditional likelihood but required the
HMM to be non-deficient. This separates out the ben-
efit of the conditional objective from the benefit from
the possibility of deficiency (which relates to label
bias, see below). In accordance with our observa-
tions in the last section, and consistent with the re-
sults of (Lafferty et al., 2001), the CL accuracy is
slightly higher than JL for this fixed model.

Another model often used for sequence data is the
upward Conditional Markov Model (CMM), shown
as a graphical model in figure 6b. This is the model
used in maximum entropy tagging. The graphical
model shown gives a joint distribution over (s, o),
just like an HMM. It is a conditionally structured
model, in the sense that that distribution can be writ-
ten as P(s, o) = P(s|o)P(o). Since tagging only
uses P(s|o), we can discard what the model says
about P(o). The model as drawn assumes that each
observation is independent, but we could add any ar-
rows we please among the oi without changing the
conditional predictions. Therefore, it is common to
think about this model as if the joint interpretation
were absent, and not to model the observations at
all. For models which are conditional in the sense of

8The general class of CRFs is more expressive and reduces
to deficient HMMs only when they have just these features.
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Figure 6: Graphical models: (a) the downward HMM, and (b)
the upward conditional Markov model (CMM).

the factorization above, the JL and CL estimates for
P(s|o) will always be the same. It is therefore tempt-
ing to believe that since one can find closed-form CL

estimates (the RFEs) for these models, one can gain
the benefit of conditional estimation. We will show
that this is not true, at least not here.

Adopting the CMM has effects in and of itself, re-
gardless of whether a maximum entropy approach is
used to populate the P(s|s−1, o) estimates. The ML

estimate for this model is the RFE for P(s|s−1, o).
For tagging, sparsity makes this impossible to reli-
ably estimate directly, but even if we could do so, we
would have a graphical model with several defects.
Every graphical model embodies conditional inde-
pendence assumptions. The NB model assumes that
observations are independent given the class. The
HMM assumes the Markov property that future ob-
servations are independent from past ones given the
intermediate state. Both assumptions are obviously
false in the data, but the models do well enough for
the tasks we ask of them. However, the assumptions
in this upward model are worse, both qualitatively
and quantitatively. It is a conditional model, in that
the model can be factored as P(o)P(s|o). As a re-
sult, it makes no useful statement about the distribu-
tion of the data, making it useless, for example, for
generation or language modeling. But more subtly
note that states are independent of future observa-
tions. As a result, future cues are unable to influ-
ence past decisions in certain cases. For example,
imagine tagging an entire sentence where the first
word is an unknown word. With this model struc-
ture, if we ask about the possible tags for the first
word, we will get back the marginal distribution over
(sentence-initial) unknown words’ tags, regardless of
the following words.

We constructed two taggers. One was an HMM,
as in figure 6a. It was trained for JL, CL∗, and

CL. The second was a CMM, as in figure 6b. We
used a maximum entropy model over the (word, tag)
and (previous-tag, tag) features to approximate the
P(s|s−1, o) conditional probabilities. This CMM is
referred to as an MEMM. A 9-1 split of the Penn tree-
bank was used as the data corpus. To smooth these
models as equally as possible and to give as unified
a treatment of unseen words as possible, we mapped
all words which occurred only once in training to an
unknown token. New words in the test data were also
mapped to this token.9

Using these taggers, we examined what kinds of
errors actually occurred. One kind of error tendency
in CMMs which has been hypothesized in the liter-
ature is called label bias (Bottou, 1991; Lafferty et
al., 2001). Label bias is a type of explaining-away
phenomenon (Pearl, 1988) which can be attributed
to the local conditional modeling of each state. The
idea is that states whose following-state distributions
have low entropy will be preferred. Whatever mass
arrives at a state must be pushed to successor states;
it cannot be dumped on alternate observations as in
an HMM. In theory, this means that the model can get
into a dysfunctional behavior where a trajectory has
no relation to the observations but will still stumble
onward with high conditional probability. The sense
in which this is an explaining-away phenomenon is
that the previous state explains the current state so
well that the observation at the current state is effec-
tively ignored. What we found in the case of POS tag-
ging was the opposite. The state-state distributions
are on average nowhere near as sharply distributed
as the state-observation distributions. This gives rise
to the reverse explaining-away effect. The observa-
tions explain the states above them so well that the
previous states are effectively ignored. We call this
observation bias.

As an example, consider what happens when a
word has only a single tag. The conditional distri-
bution for the tag above that word will always as-
sign conditional probability one to that single tag, re-
gardless of the previous tag. Figure 7 shows the sen-
tence All the indexes dove ., in which All should be
tagged as a predeterminer (PDT).10 Most occurrences
of All, however, are as a determiner (DT, 106/135 vs
26/135), and it is much more common for a sentence
to begin with a determiner than a predeterminer. The

9Doing so lowered our accuracy by approximately 2% for
all models, but gave better-controlled experiments.

10The treebank predeterminer tag is meant for when words
like All are followed by a determiner, as in this case.



HMM MEMM MEMM†

Correct States PDT DT NNS VBD . -0.0 -1.3 -0.0
Incorrect States DT DT NNS VBD . -5.4 -0.3 -5.7
Observations All the indexes dove .

Figure 7: The MEMM exhibits observation bias: knowing that
the is a DT makes the quality of the DT-DT transition irrelevant,
and All receives its most common tag (DT).

other words occur with only one tag in the tree-
bank.11 The HMM tags this sentence correctly, be-
cause two determiners in a row is rarer than All be-
ing a predeterminer (and a predeterminer beginning
a sentence). However, the MEMM shows exactly the
effect described above, choosing the most common
tag (DT) for All, since the choice of tag for All does
not effect the conditional tagging distribution for the.
The MEMM parameters do assign a lower weight to
the DT DT feature than to the PDT DT feature, but the
the ensures a DT tag, regardless.

Exploiting the joint interpretation of the CMM,
what we can do is to unobserve word nodes, leaving
the graphical model as it is, but changing the obser-
vation status of a given node to “not observed”. For
example, we can retain our knowledge that the state
above the is DT, but “forget” that we know that the
word at that position is the. If we do inference in this
example with the unobserved, taking a weighted sum
over all values of that node, then the conditional dis-
tribution over tag sequences changes as shown under
MEMM†: the correct tagging has once again become
most probable. Unobserving the word itself is not a
priori a good idea. It could easily put too much pres-
sure on the last state to explain the fixed state. This
effect is even visible in this small example: the like-
lihood of the more typical PDT-DT tag sequence is
even higher for MEMM† than the HMM.

These issues are quite important for NLP, since
state-of-the-art statistical taggers are all based on one
of these two models. In order to check which, if ei-
ther, of label or observation bias is actually contribut-
ing to tagging error, we performed the following ex-
periments with our simple HMM and MEMM taggers.
First, we measured, on the training data, the entropy
of the next-state distribution P(s|s−1) for each state
s. For both the HMM and MEMM, we then measured
the relative overproposal rate for each state: the num-
ber of errors where that state was incorrectly pre-
dicted in the test set, divided by the overall frequency
of that state in the correct answers. The label bias hy-
pothesis makes a concrete prediction: lower entropy

11For the sake of clarity, this example has been slightly doc-
tored by the removal of several non-DT occurrences of the in the
treebank – all incorrect.
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Figure 8: State transition entropy (x-axis) does not appear to be
positively correlated with the relative over-proposal frequency
(y-axis) of the tags for the MEMM model, though it is slightly so
with the HMM model.

states should have higher relative overproposal val-
ues, especially for the MEMM. Figure 8 shows that
the trends, if any, are not clear. There does appear
to be a slight tendency to have higher error on the
low-entropy tags for the HMM, but if there is any su-
perficial trend for the MEMM, it is the reverse.

On the other hand, if systematically unobserving
unambiguous observations in the MEMM led to an in-
crease in accuracy, then we would have evidence of
observation bias. Figure 5 shows that this is exactly
the case. The error rate of the MEMM drops when
we unobserve these single-tag words (from 10.8%
to 9.5%), and the error rate in positions before such
words drops even more sharply (17.1% to 15.0%).
The drop in overall error in fact cuts the gap between
the HMM and the MEMM by about half.

The claim here is not that label bias is impossi-
ble for MEMMs, nor that state-of-the-art maxent tag-
gers would necessarily benefit from the unobserving
of fixed-tag words – if there are already (tag, next-
word) features in the model, this effect should be
far weaker. The claim is that the independence as-
sumptions embodied by the conditionally structured
model were the primary root of the lower accuracy
for this model. Label bias and observation bias are
both explaining-away phenomena, and are both con-
sequences of these assumptions. Explaining-away
effects will be found quite generally in conditionally-
structured models, and should be carefully consid-
ered before such models are adopted. The effect can
be good or bad: In the case of the NB-CL model,
there was also an explaining-away effects among the
words. This is exactly the cause for flowers being
a weaker indicator than transatlantic in our condi-
tional estimation example. In that case, we wanted
certain word occurrences to be explained away by the
presence of more explanatory words. However, when
some of the competing conditioned features are pre-
vious local decisions, ignoring them can be harmful.



4 Related Results

Johnson (2001) describes two parsing experiments.
First, he examines a PCFG over the ATIS treebank,
trained both using RFEs to maximize JL, and using a
CG method to maximize what we have been calling
CL∗. He does not give results for the unconstrained
CL, but even in the constrained case, the effects from
section 2 occur. CL and parsing accuracy are both
higher using the CL∗ estimates. He also describes
a conditional shift-reduce parsing model, but notes
that it underperforms the simpler joint formulation.
We take these two results not as contradictory, but as
confirmation that conditional estimation, though of-
ten slow, generally improves accuracy, while condi-
tional model structures must be used with caution.
The conditional shift-reduce parsing model he de-
scribes can be expected to exhibit the same type of
competing-variable explaining-away issues that oc-
cur in MEMM tagging. As an extreme example, if all
words have been shifted, the rest of the parser actions
will be reductions with probability one.

Goodman (1996) describes algorithms for parse
selection where the criterion being maximized in
parse selection is the bracket-based accuracy mea-
sure that parses are scored by. He shows a test-set
accuracy benefit from optimizing accuracy directly.

Finally, model structure and parameter estimation
are not the entirety of factors which determine the be-
havior of a model. Model features are crucial, and the
ability to incorporate richer features in a relatively
sensible way also leads to improved models. This
is the main basis of the real world benefit which has
been derived from maxent models.

5 Conclusions

We have argued that optimizing an objective that is
as close to the task “accuracy” as possible is advanta-
geous in NLP domains, even in data-poor cases where
machine-learning results suggest discriminative ap-
proaches may not be reliable. We have also argued
that the model structure is a far more important issue.
For simple POS tagging, the observation bias effect of
the model’s independence assumptions is more evi-
dent than label bias as a source of error, but both are
examples of explaining-away effects which can arise
in conditionally structured models. Our results, com-
bined with others in the literature, suggest that con-
ditional model structure is, in and of itself, undesir-
able, unless that structure enables methods of incor-
porating better features, explaining why maximum-

entropy taggers and parsers have had such success
despite the inferior performance of their basic skele-
tal models.
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